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ig. 4.15 Comparison of the reliability of a TMR system composed of three iden-
ical modules with the reliability of a single module.

'he two solutions to the quadratic equation are 0.5 and 1.0, which implies
hat the reliability of the TMR system is equal to that of the corresponding
onredundant system when the reliability of the single module is 0.5 or the
nodule is mw_‘mmnﬁ (R=1). .
This further illustrates a point that we made when we defined fault tol-
.rance and reliability. A system can be tolerant of faults and still have a low
-eliability. For example, a TMR system constructed from modules that have
individual reliabilities of 0.5 can tolerate a fault in one of those modules,
but the reliability of the TMR system is the same as the reliability of a sin-
gle module. Conversely, a system can achieve a high reliability without be-
ing fault tolerant. Certainly, a system that consists of a perfect module will
have the highest possible reliability but will not possess, or need, the at-
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tribute of fault tolerance. This is, of course, an unrealistic example, but, i
mmmm.Hm_. as the reliability of the components of a system .En_,mmmwm th " MH
mcn_*_:% of the system also increases. It is possible for the reliability ~om M on
ano ::ﬂwa system to approach that of a redundant system oo:mﬁﬂcmws

m the same modules. The nonredundant system, how ji be
fault tolerant. \ ‘ ever, will not b
. %.Zﬂwsm. M»MMM.n ”Mw H&W mMWMBm ﬁ.rmﬁ are Mm the M-of-N structure but are

R; em IS a good ex i

are N identical modules and M of those mmm nmacmw“nmwn. Mnmmmm ummﬂ,mmnw. M m m“m:
tion properly, the system can tolerate N — M module mm:E.mM. Th pres.
sion for the reliability of an M-of-N system can be written as i

N-M 2 )
Ryoin(t) = Wo ; R (1) (1 = R(1))'

where : ‘

N A

i)~ W -
For example, the TMR system reliability is given by

1
Rewa() = 3 (2 )R™(0) (1 - RE)Y

i=o \ !

which reduces to

Rrue(t) = 3R(1) - 2R’(1)

which is identical to the expression derived earlier.

4.3.4 Markov Models

The primary difficulty with the ¢combinatorial models is that many compl
M«_m.ﬂm:wm cannot be modeled easily in a combinatorial fashion. The wmmwm
bility ._onw Pmmnmam can be extremely difficult to construct, and th 1
ing reliability expressions are often very complex. In mma,m:c: %,me: “
Mowﬁmnmm.m that we have seen to be extremely important in the no:m___u::v\ Mﬂh
:M mmnam _w.moamﬁ.::mm 950:.: to incorporate into the reliability expression
L mt 539.&_ ani. Finally, the process of repair that occurs in ma
ystems is very difficult to model in a combinatorial fashion. For th o
sons, we often use Markov models. o fese rea:
Bwh,nrh ﬂ“ﬂw_mmm MM ﬁMWMMMmﬂNMO% mﬂ this ﬁmxnﬁmm not to delve into the mathe-
: odels but to understand how t >
models. For more explicit mathematical details, refer the reorarkoy
. it m , tother
Mm.rooaw: 1968] .m:m {Trivedi 1982]). The discussions here will v_.MMMMM:mn:mM
cient Bmﬁ.rm_dm:om_ background to apply the Markov model b ili
pursue various techniques for solving the models. Hew et
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The two main concepts in the Markov model are the system state and
the state transition. The state of a system represents all that must be known
to describe the system at any given instant of time. For reliability models,
cach state of the Markov model represents a distinct combination of faulty
and fault-free modules. For example, suppose we have a TMR system with
three identical computers in a majority voting arrangement with a perfect
voter. We can define the state of this system as S =(S,,5, Sy where S, = 1 if
module i is fault free and S; = 0 if module i is faulty. The TMR system has
eight distinct states in which it can operate: (000), (001), (010), (011), (100),
(101), (110), and, (111). Each state represents a unique combination of faulty
and fault-free modules within the system. For TMR, we know that at least
two of the modules must be fault free for the system to operate correctly.
Therefore, the states (000), (001), (010), w:u (100) represent states in which
the system has ceased to function correctly. The remaining states are those
in which the system is functioning correctly. . .

The state transitions govern the changes of state that occur within a sys-
tem. As time passes and failures and reconfigurations occur, the system
goes from one state 10 another. For example, if the TMR system starts its
operation in state (11 1) and at some time ¢ module 1 fails, the system transi-
tions to state (011). The state transitions are characterized by probabilities
such as the probability of failure, fault coverage, and the probability of
repair.

As an example of the state transitions that can occur, consider the TMR
system. We have already defined the states that can exist in the system;
now let us define the transitions that can occur. We construct our transi-
tions using several assumptions. First, we assume that the system does not
contain repair. In other words, once a module has failed, it remains failed
permanently. Second, we assume that only one failure will occur at a time.
In a TMR system, the single failure assumption implies that the system
cannot go directly from the state corresponding to all modules operating
correctly to a state that corresponds to the system having failed. In other
words, no single failure can cause the complete TMR system to fail. Finally,
we assume that the system starts in the perfect state (111) where all of the
system’s modules are operating correctly. .

The state diagram that results for the TMR system is shown in Fig. 4.16.
As can be seen, the system begins in state (111) and, upon the first module
failure, transitions to state (110), (101), or (011), depending on whether
module 1,2, or 3 is the module that fails. Note that the transition exists for
the module to remain in a state if a module failure does not occur. The state
diagram shown in Fig. 4.16 is analogous to the state diagram of a synchro-
nous digital circuit. When some event, a module failure in the case of the
reliability model and the occurrence of a clock signal in the case of a syn-
chronous machine, occurs, the system transitions from one state to another.

4.3 & Reliability Modeling -

One Module Two Modules Three Module

Failed Failed Failed

|
i
|
|
|
|
|
|
Perfect State "

System Failed

Fig. 4.16 State diagram showing possible states and state transitions for a
system.

The states in the diagram shown in Fig. 4.16 can be partitionec
three major categories: the perfect state (11 1) in which all modules fur
correctly; the one-failed states (110), (101), and (01 1) in which a single
ule has failed, and the system-failed states (100), (001), (010), and (O(
which enough modules have failed to cause the system to fail. State
tioning will be useful later when we attempt to reduce the Markov m

As stated earlier, each state transition has associated with it a trar
probability that describes the probability of that state transition occ
within a specified period of time. In the case of the TMR example t}
have been considering, each transition represented in Fig. 4.16 is the
of a single module failure. If we assume that each module in the TM
tem obeys the exponential failure law and has a constant failure rat
the probability of a module being failed at some time ¢ + At, given t}
module was operational at time 7, is given by

1 - &n»?
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The exponential can be written in a series expansion as

~NAL)?
e =1+ (-1At) ! TR
such that we have ;
-\ ALY (=AAD)"
1 —e™=1- _+T>>:+{+.: = (AL =,

For small values of At, the expression reduces to simply
1 — e = \At
In other words, the probability that a module will fail within the time pe-

iod At is approximately XA Az. . N .
w WmmmquM to our example on the TMR system, the transition probabili

ties can now be specified for each possible state transition. Figure 4.17

1-2hAt

Three Modules
Failed Failed
——

System Failed

Perfect State

|
I

One Module “ Two Modules
A

Failed

Fig. 4.17 Markov model of the TMR system showing possible states, state transi-
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shows the resulting state diagram for the Markov model of the TMR sy
including the specification of each state transition probability. It is |
ble, however, to reduce the Markov model of Fig. 4.17. As mentioned ez
the states of the TMR model can be partitioned into three major classe.
perfect state, the one-failed state, and the system-failed state. If we a
priately define the state transition probabilities, the several states w
the TMR model can be combined.

Suppose that we let state 3 correspond to the state in which all
modules in the TMR system are functioning correctly; state 2 is the stz
which two modules are working correctly; state F is the failed sta
which two or more modules have failed. The resulting Markov model c:
illustrated as shown in Fig. 4.18. The state transition probabilities shoy
Fig. 4.18 have been derived to account for one of several failures occur
For example, the probability of transitioning from state 3 to state 2 dep
on the probability of any one of three modules failing. Consequently
transition probability assigned to the transition from state 3 to state
3\(A1). Likewise the transition probability assigned to the state trans
from state 2 to state F is 20 (AD).

The equations of the Markov model of the TMR system can be wr
easily from the state diagram shown in Fig. 4.18. The probability of the
tem being in any given state S at some time { + A7 depends on the pr
bility that the system was in a state from which it could transition 1o ¢
S and the probability of that transition occurring. For example, the pr
bility that the TMR system will be in state 3 at time 1 + A depends or
probability that the svstem was in state 3 at time 7 (since the svstem
only transition to state 3 from state 3) and the probability of the sve
transitioning from state 3 back into state 3.

In mathematical terms, we have

palt + A1) = (1 = 3AA1)pL(1)

where p,(1) is the probability of being in state 3 at time 7 and py(r + A
the probability of being in state 3 at time ¢ + Az, In a similar fashion,
equations for the remaining two states can be written as

1 =34t - 1 - 2nAt

Fig. 4.18 Reduced Markov model of the TMR svstem with a minimal nunr
of states.
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pilt + At)

(3NAps(t) + (1 — N>>:,PS
(2N ANp,(t) + pe(t)

assuming that the system will remain in the failed state if it ever enters the
failed state. p,(t + At) is the probability of being in state 2 at time ¢ + Af;
p:(1) is the probability of being in state 2 at time #; ps(t + At) is the proba-
bility of being in state F at time ¢ + At; and pg(t) is the probability of being
in state F at time 1.

The equations of the Markov model of the TMR system can be written
in matrix form as

it

pe(t + Af)

pylt + At) (1 = 30 AD) 0 0] py0)

pift + At) |.= 3AAL (1 - 20NAD O] pu(t)
pelt + At) 0 2A At 11| pe(t)

The resulting matrix equation can be written in a condensed form as

P(: + At) = AP(t)
where

-

Pyt + At)
po(f + At)
pelt + At)

(1 — 3)\AY) 0 0
A= 3N\AT (1 —2)2A1) O
0 2MAL 1

i

Pt + At)

L

L

ps(1)
pa(t)
‘hw:v :

P(t) is the probability state vector at time ¢, P(t + At) is the probability
state vector at time ¢ + Az, and A is the transition matrix.

The matrix equations for the Markov model can be viewed as a differ-
ence cquation for the purpose of obtaining a solution. By assuming some
initial value of the probability state vector, P(0), the value of P(Af) can be
obtained as P(At) = AP(0). Similarly, the value of the probability state vec-
tor at time 2 At can be written as P(2 At) = AP(At) = A’P(0). In general, the
sclution is given as

P(1)

P(n At) = A"P(0)

The probability of the system failing is given by the probability of the
system being in the failed state. For example, in the TMR illustration, the
probability of the system failing is the element of P(t) given by p(¢). The re-
liability of the TMR system can be written as

4.3 @ Reliability Modeling

Ruwr(t) = 1 = pe(t) = py(t) + pilt)

The Markov models considered thus far have been discrete-time
in which state transitions occur at fixed intervals At. It is possible tc
systems using continuous-time Markov models in which state trat
can occur at any point in time [Nelson 1986]. The continuous-tim
tions can be derived from the discrete-time equations by allowing t
interval At to approach zero. For example, the equations of the d
time Markov model for the TMR system can be written as

pt + >%~ =P _ )
Pt + 80 - Pt) _ 35p(0) - 20pa00)
pelt + A1) = pe(t) _

A 2Ap,(t) .

through simple algebraic manipulations. Taking the limit as Az apf
zero results in a set of differential equations given by

dpy(t) _ -
s 3Aps(2)
@% = 3apy(t) = 2Ap,(1)
dpe(t) = .
= 2Ap,(t)

The simultaneous differential equations can be solved using a
of techniques. For example, if Laplace transforms are used, we hav

sPy(s) — p3(0) = =3APs(s)
sPy(s) — p,(0) = 3APy(s) — 2APy(s)
sPp(s) — pr(0) = 2APy(s)

where P5(s) is the Laplace transform of py(t), Pi(s) is the Laplace t1
of p,(t), Pr(s) is the Laplace transform of ps(t), px(0) is the initial
pi(t) at time 1 = 0, p,(0) is the initial value of p,(t) at time ¢ = 0, an«
the initial value of ps(t) at time t = 0. We assume in the analysis, |
that the system starts in the perfect state at time ¢ = 0, s0 pi(0) =1
0, and p;(0) =0. Consequently, the Laplace transform equations can
ten as

1

Pys) = s+ 3\
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£

3A

P9 = ST 06 + 30
%

Pe(s) = s(s + 2\ (s + 3))

which can be rewritten as

P = 5
3 -3
Pils) = (s + 2M\) * (s + 3N
1 -3 2

Pe) =<+ 5 T 5+

Taking the inverse Laplace transform results in the solution given by

~ 3\t

pilt) = e
E~A~v - um|~2 - wmlut
pet)y =1 - 3™ 4 2e7M

Recall that the reliability of the TMR system is the probability of being
in either state 3 or state 2, so

=3 -2\
Rowr(t) = pa(t) + pa(t) = ¢ Wy 37N g 3e |
same result obtained using the combinatorial tech-

i xpected.

niques. Also note that the sum of p,(t), py(t), and 38 is M. ﬁﬂmmm&mgmﬁ-nn:m

It is interesting to verify that the computer mo__.:_osmo At
Markov model yields the same results as the equations from the

i -ti ode

i ode! and the continuous-time m . con-

M“M_Q:”_S TMR system. The primary reason for using the HZM wwwmwwsﬂm:m.

example is the relative ease with which both the Markov an

ted. Recall that the combi-
i ls of the TMR system can be construc . e,
”W.”_MMMWOMMMM of the TMR system that obeys the exponential failure law

produces the reliability function
R(t) = 3¢ — 2e

=3n me: — N&nuz

which is exactly the

-3t

i i the
Table 4.3 shows the values obtained from the non%w_:wmmq“\mmfmmm%ﬁwawmsna
’ . - . . m o
S t various points in time compar o
W,Z:m pﬂzoﬂnmo:qucﬁmn solution of the &%RH.:B«.Z&WO« .B.ow& of ﬁrmmn“,vn &
3&@3 The Markov model was solved by assuming an _s_zm._m»wam <~m Lo o
Mov = .:oov and using a time step, Af of o..~ seconds. The mm«mﬂnmmﬂﬂmm: has
been chosen as 0.1 failures per hour. The differences that exi

1. For example, suppose we con- -

4.3 @ Relability Modelir

TABLE 4.3 Comparison of results from computer
solution of the discrete-time Markov and the
combinatorial model for the TMR system

Reliability
Time (t) Combinatorial Markov
in minutes results results
1 0.99999177 0.99999171
2 0.99996674 0.99996686
3 0.99992549 0.99992561
4 0.99986792 0.99986809
5 0.99979424 0.99979442
6 0.99970472 0.99970472
: 7 0.99959898 0.99959916
8 0.99947786 0.99947786
9 0.99934101 0.99934095
10 0.99918842 0.99918854
Failure rate A is 0.1 failures per hour, and time step At is 0.1
seconds.

two sets of numbers are within the computational accuracy used 1
the numbers.

We have seen how the Markov model can be used to model syst(
do not depend on fault coverage or a repair process. Now we want
ine the process of developing a Markov model that depends on the ¢
factor. After examining coverage, we will investigate the Markov me
system with repair.

The system that we wish to model is a triply redundant svst
uses fault detection techniques to detect the occurrence of a fault wi
of the three independent modules. The modules provide their outp
flux-summer such that only one of the three modules must perfo
rectly for the system to function correctly. Consequently, the svstem
erate as many as two module failures provided that the failures are |
appropriately. The correct way for a module failure to be handled i
affected unit to be removed from the flux-summing operation by og
switch. As long as the switch is closed, the associated module provi
rent to the flux-summer. Once the switch is opened, however, the m
completely disconnected from the flux-summer and no longer all
operation of the system. The probability that a failure will be cc
handled is the fault coverage and is denoted as C. The basic structur
system to be analyzed is shown in Fig. 4.19.

The Markov model of this system is similar to that of the bas;
system with majority voting. In fact, if the coverage factor € becom
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Feedback
Signals

o X
Module 1

1 Openwhen
failure detected
in Module 1

Module 2 L

puts 4 Openwhen
failure detected
in Modute 2

Module 3 &

O —— Openwhen
failure detected
in Module 3

System
Under
Control

ig. 4.19 An example hybrid redundancy technique to be used to illustrate the
evelopment of a Markov model that includes coverage.

1-2041t 1-AAt

2A01(1-C)

AAL(I-C)

1-200t 1.0

Fig. 4.20 Discrete-time Markov model of the system shown in Fig. 4.19.
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the system reduces to the basic TMR system. The Markov model of the sys-

tem is shown in Fig. 4.20. The system is assumed to begin in the fault-free

state, which is labeled as state 3. There are two paths by which the system

can exit state 3. The first is shown as a transition to state 2 and corresponds
to the failure of one of the three modules and the correct handling of that
failure. The second transition that can occur from state 3 is the transition tc
state UD, which corresponds to one of the three modules failing and the
failure going undetected or being handled inappropriately. Once the systemr
enters state UD, it becomes equivalent to the basic TMR system with ma:
jority voting; the system cannot tolerate the second failure if the first failur
is not handled correctly. The same types of transitions exist from state 2 tc
state 1 and the failed state. State 2 corresponds to the system having hac
one module to fail and having handled that failure correctly. While in state
2, the system can tolerate a failure and transition to state 1 provided tha
the failure is detected and handled correctly. Any undetected failures, how
ever, take the system from state 2 to the failed state. Finally, any failure
that occur while the system is in state 1 cause the system to transitio
immediately to the failed state.

While in any state, there is a nonzero probability that the system wil
remain in that particular state. For example, if the system is currently i

_state 3, the system remains in state 3 as long as a failure does not occu

Likewise, the system remains in states 2, 1, and UD if the system is presentl
in those states and new failures do not occur. The probability of being in th
same state at the end of a At time period as at the beginning of that tim
period is calculated as 1 — PexiAt), where poi(At) is the probability of exit
ing a state during the At time period. For example, the probability of exitin
state 3 during a At time period is the probability that any one of the thre
modules will fail. In other terms, the probability of exiting state 3 is 3AA
The probability of not exiting state 3 is, therefore, 1 — 3MAr.

The equations of the Markov model for the system of Fig. 4.19 are deve
oped as they were for the basic TMR system. The probability of being i
state i at time ¢ + At depends on: (1) the probability of being in a state :
time ¢ from which the system can transition to state i, and (2) the associate
transition probabilities. For example, the system can go to state 2 during
At time period if and only if it is in either state 3 or state 2. Therefore, tt
probability of being in state 2 at time £ + Atis

palt + At) = 3NACpy(1) + (1 = 2A ADp, (1)

The complete set of equations for the Markov model of the system of Fig. 4.]
can be written as
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TABLE 4.4 Reliability as a function of fault coverage
for the system modeled using the Markov model of

Fig. 4.20. i
Fault coverage Reliability (after 1 hour)
. 0.97460
mw 0.97484
o.w 0.97558
o.w 0.97680
o.& 0.97852
o.m 0.98073
o.o 0.98343
0.7 0.98662
0.8 0.99030
0.9 0.99448
H..o 0.99914
Failure rate A is 0.1 failures per hour, and time step At is
0.1 seconds.
0
ps(t + At) 1 — 3nAt 0 0 N °
pa(t + At) 3xAC 1-2\ A1 0 0
pt+ A | = 0 IAIC  L-AAL O 0
_ - 2X At
puplt + A1) Al =0 0 0 1 - 2x _
pelt + A1) 0 22 A1 =€) A AL PALY]
F )
pslt)
pat)
py(t)
Puolt)
pelt)

The reliability of the system described by the Markov model cM Em\m »nmnﬁ_v_m_w
the probability of being in states 3, 2, 1, or UD . In other words, the
bility can be written as
R(1) = pslt) + p,(1) + pi(t) + peolt)

ficet that fault coverage has on the reliabil-
liability of the system
step At has
n as 0.1

It is interesting to note the e
ity of this system. Table 4.4, for example, shows the re ility ¢
after one hour as a function of the coverage Eﬁcﬁr H:m ,M,“Ewrc%
been selected as 0.1 seconds and the failure rate A has r,r,: e ol
failures per hour. For perfect oo<nwwmo. the J&Mﬂ;ﬂ&”rcwﬁnmmm:amc o

oximately 0.99914, which is the samc reliabihiy \ ¢
mwwﬂm nolmnwnmqm:m_ system with three identical modules. When the cov

Ve "™ ERNCERGIPILELY AVBRSSTRLELY

erage is zero, the system is identical to the basic TMR system with m
voting. In other words, the system will be a 2-of-3 system where twc
three modules must work for the system to work. The reliability ac
by this system when the coverage is zero is approximately 0.9746. 1
Table 4.4 that the impact of changes in the fault coverage is more
cant at the higher values of fault coverage.

We now consider systems that incorporate repair as a form of re
For example, many applications require that the repair rate's effe
system be modeled. A system that possesses a poor repair rate can
quired to have fault tolerance to the extent that the system can fu
while elements are being repaired. The Markov model is an extreme
ful tool for analyzing the effect that repair has on a system.

Consider the Markov model of a simple system consisting of on.
puter and no redundancy. The single computer might be a banking s
for example, and we wish to model the failure and recovery process
single computer. Further assume that the computer has a constant
rate A and a constant repair rate x. During the time interval Az, th
puter will have a probability of failure given by A Ar. Since the repair
analogous to the failure rate and represents the number of repairs t}
expected to occur in a specific time period, the probability of a repair
ring within the time period At is uAt. Using this information allow:
formulate the simple Markov model shown in Fig. 4.21 for the com
State O represents the condition of the computer being completely
tional, and state F represents the failed condition. If the computer sys
in state O, the probability of the system transitioning to state F duri
time period At is A Az. Likewise, if the system is in state F, the probab:
transitioning to state O is u Ar. As we discovered during previous exai
if the system is in state O and a failure does not occur, the svstem re
in state O. Similarly, if the system is in state F and a repair does not
the system remains in state F.

The equations for the Markov model of Fig. 4.21 can be written a.

LTI

Lot

O = Operational State
F = Failed State

Fig. 421 Markov model of a simple nonredundant svstem with repai
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polt + Aty | |1 —AAr  pAt
pe(t + At) At

Polt)
I — ndt] | pe(t)

it is interesting to solve this Markov model to determine the effect that the
repair rate has on the probability of the system being operational. Fig-
ure 4.22 shows the plot of the probability of the system being in state O
versus the repair rate. The failure rate A was selected as 0.1 failures per
hour, and the time step Ar was chosen as 0.1 seconds for this example. The
system was assumed to start in the operational state.

It is also instructive to determine the continuous-time solution for the
model shown in Fig. 4.21. Using a procedure identical to that used to deter-
mine the continuous-time equations for the TMR system, the equations
from the discrete-time Markov model are manipulated algebraically to
obtain ,,

polt + At) — py(t)
At

pe(t + At) — pr(t)

It

—Apo(t) + upe(t)

Apo(t) = upp(t)

At

Operational
Probability

1.00

0.80

0.60

0.40

0.20 —

L i

100.00

0.00 L t +
0.00 25.00 50.00 75.00

Time in Hours (t)

Fig. 4.22 Probability of remaining operational for the system described by the
Markov model of Fig. 4.21.
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Taking the limit as At approaches zero results in the differential equations
given by

400) — _\po(t) + wpr(t)
mmw@ = Apo(t) — ups(t)

Assuming that the initial conditions are po(0) = 1 wn.m pr(0) = 0 and using
Laplace transforms results in the simultaneous equations

sPo(s) =1 — Vﬁoﬁ.&% puP:(s)
sPp(s) = NPp(s) — pPr(s)
Solving the simultaneous equations for Po(s) and P (s) yields

1 + ©
s+ (+p) s(s+ A+ w)
Yoo
s(s + (A + )

I

Py(s)

Pr(s) =

which can be rewritten as
M A
At u
Pols) = s +M+A>+E
A A
At p At

s s+ (N+ w

Taking the inverse Laplace transform results in the time-domain solutio
given by

Pe(s)

[ A —(A+p)t
=+ e
Po(t) A+p Atp
pe(t) = A |.>|Im|¢+§
£

At op T+ M

Several interesting features are apparent in the :Em...mwﬂmwn expre
sions for po(t) and p,(t). For example, as time approaches infinity, po(t) aj
proaches the constant value of

w1
e Xy
n

pol(=) =
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e

and p;(t) approaches

p(er) = —— = _
At p M 41 i
X
As we will discover when discussing availability modeling, the value of

po(t) as time approaches infinity is the steady-state availability.

4.4 Safety Modeling

The safety of a system, as defined in Chapter 1, is the probability that the
system will either perform correctly or will fail in a safe manner. The con-
cepts of safe and unsafe are highly dependent upon the application. In many
cases, for example, a safe course of action is to simply turn the system off
after a failure occurs. In some applications, however, turning the system off
can be a disastrous course of action. In any case, however, the fundamental
concept of safety analysis is that a system will possess two different ways in
which it can fail: one system failure is defined as safe, and the other is cate-
gorized as unsafe. The definition of safe and unsafe failures must be created
uniquely for each application.

Safety can be modeled using Markov models by splitting the system
failed state into two separate states. One failed state is normally labeled FS
for failed safe, and the other failed state is labeled as FU for failed unsafe. A
Markov model for a simple system containing one hardware module with a
failure rate of A and self-diagnostics with a fault detection coverage of C is
shown in Fig. 4.23. Safe failures are defined in this example as those that
are detected by the self-diagnostics. Consequently, unsafe failures are de-
fined as those that are not detected by the self-diagnostics. If a failure oc-
curs, the system transitions to either state FS or FU depending on whether
or not the condition is detected.

1.0

1 - ALt

aAt(1 - C) 10

Fig. 423 Three-state Markov model allowing safety calculations.

T = assmaweg aresem—an

The safety of the system described by the Markov model of Fig
be written as

S(t) = polt) + pes(t)

where MAC is the safety, po(t) is the probability of being in the o}
state at time ¢, and pys(t) is the probability of being in the failed
at time ¢. The complete equations of the discrete-time Markov mo:
written as.

polt + At) = (1 — MAt)po(t)
prs(t + At) = NAtCpy (1) + pes(t)
peu(t + A1) = MAK1 = C)po(t) + pru()

>m. we rw<.m done previously, the differential equations of |
sponding continuous-time Markov model can be written as

WWMB = —Apo(t)
mluwB = ACpo(t)
alnmub = M1 = C)po(t)
Taking the Laplace transform results in
Pyls) = Mohow

Prgls) = 2Po®, Prs0)

] s(s + A) s
3&%& = i_mm Mvﬂwav + Emmﬁov

where m&.ov. prs(0), and pgy(0) are the intial values of the respe
probabilities. If we assume that the system begins in state O such th
1, prs(0) = 0, and pgy(0) = 0, we obtain

1
NUoavnm+>
AC C C
P =t == _
rs(s) ss+A) s s+ A
Al - - _
FQEIA c)_(1-0 (-0

MAM.TVVI. s s+ A
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The time domain solutions can now be written as
polt) = e
Pes(t) = C ~ Ce™
pro(t) =(1-C)=(1-Cle™

Intuitively, the equations are as expected. For example, the reliability of the
system is

.Y

]

R(t) = polt) = ™
and the probability of being in one of the two failed states is
Prs(t) + pry(t) = 1 —e™ =1~ R(t)
The safety of the system is written as
S(t) = po(t) + pes(t) =C+ (1 = Cle™

At time t = 0, the safety of the system is 1, as expected. As time approaches
infinity, however, the safety approaches

S(x)=C

In other words, if the fault detection coverage is perfect (C = 1), the system
has perfect safety. However, if the fault detection coverage is nonexistent
(C = 0), the system will eventually fail in an unsafe manner. The safety of
the system, in this example, is directly dependent upon the fault detection
coverage. In subsequent sections, we investigate the safety of more com-
plex systems.

4.5 System Comparisons

Now that we have several tools at our disposal, we can begin to examine the
process of comparing two or more systems. When we make comparisons, we
must be careful about the parameters that we choose to compare. For exam-
ple, if we choose to compare the MTTF of two systems or the reliability of
the systems, the results can be surprising. Suppose that we wish to compare
a simplex system consisting of a single computer to a TMR system with
three computers in a majority voting arrangement. Assume for simplicity
that the majority voter is perfect. The two systems are shown in Fig. 4.24.
The computers in each system are identical and are assumed to obey the ex-
ponential failure law.
Recall that the MTTF of a system is defined as

MTTF u% R(t)dt
0

» 4,5 8 System Comparisons

( . 003“::2

input Output
— Computer — < —P Computer

2

Inputs

Computer
L 3

Simplex System TMR System .

Fig. 424 Simplex and TMR gystems to be compared to assess the benefits
dundancy.

| ‘where R(t) is the reliability function of the system. The reliability fun

of the simplex system is
Rimpiex(t) = e™™
whereas that of the TMR system is
Royr(t) = 3e™ — 2¢™

If we integrate Rgppiex(t) and Ryur(?), we find that the MTTF of each sy
is given by

- 1
zdﬁéin%mé&nﬂ

5

0
gHHmHZW = AWN T NNtuAVQ NNN = WM
0 .

Thus, the MTTF of the TMR system is lower than the MTTF of the
plex system.

Based on these calculations, we might conclude that the TMR syst
not as good as the simplex system. This may or may not be a correct co
sion depending on the application and the length of time ﬂro system
pected to operate correctly. Figure 4.25 provides a good insight int
reason why the MTTF of the TMR system is less than that of the sir
system. Figure 4.25 shows the reliability of the simplex and the TMI
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Retiability
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Fig. 4.25 Simplex and TMR reliabilities versus A\f—a crossover point occurs
where the two reliabilities are equal.

tems as functions of At. As can be seen, a point in time is reached when %.m
TMR system becomes less reliable than the simplex system. The Z.,_,Hm is
the area under the reliability curve, and that'area is larger for the simplex
than for the TMR configuration. The point of this discussion is that the
MTTF can sometimes misrepresent the quality of a system. For certain val-
ues of the product Az, the TMR system’s reliability will be superior to that
of the simplex system. Regardless of the reliability, if fault tolerance is nec-
essary, the TMR system will be superior to the simplex system.

Sometimes, a single parameter comparison that is better than the
MTTF is the mission time, denoted as MT[r]. The mission time is the time
at which the reliability of a system falls below the level r. For mxm:d.n._m.
a simplex system that obeys the exponential failure Jaw has a reliability
of r when

r=e

The time at which the reliability value of r occurs can be m.o::n_ by Sf.:m
the natural logarithm of both sides of the preceding equation and solving
the resulting equation. The solution yields

~In(r)

MT([r] = X

A mission time improvement can be calculated as the ratio ol
sion times of the two systems being compared. For example, sup
we wish to compare two computer systems: (1) a simplex comput
with a single computer that has a failure rate of 0.01 failures per
(2) a TMR system constructed using three of that same computer.
puters are assumed to obey the exponential failure law. We wish
mine the mission time improvement of the TMR system over th
system for a reliability of 0.86.

The MT,;,1.x[0.86] is fairly easy to calculate from the expone
ability function as

—In(r) _ —In(0.86)
A 0.01

The MT;z[0.86] is found from the solution of the equation
NNHZNC_V = .wNINxob: - leux.co: = .86

for the time ¢, which results in MTz[0.86] = 27 hours. The mis
improvement of the TMR system over the simplex system is appr¢
1.8. In other words, the TMR system, in this example, can operate
as long as the simplex system while still maintaining a reliability «
than 0.86. The graph shown in Fig. 4.26 illustrates the concepts ol
sion time and the mission time improvement for the comparison o
plex and the TMR systems with the failure rate of 0.01 failures pe

MT;0,[0.86] = = 15.08 hours

4.6 Availability Models

Thus far, we have considered only the modeling of the reliability
tem. However, we have seen in the discussions of Chapters | a1
parameters such as availability and maintainability arc also imp
the analysis of fault-tolerant systems. Many computer companies
cerned more with the probability of their systems being availa
their customers want to use them (availability) rather than with t
of time the system can operate without failure (related to reliat
a result, the rate at which a system can be repaired becomes a cri
of the design. The repair rate can dramatically affect the avail:
a system.

Recall that the availability A(z) of a system is defined as the pr
that a system will be available to perform its tasks at the instant
Intuitively, we can see that the availability can be approximat
total time that a system has been operational divided by the t
clapsed since the system was initially placed into operation. In oth
the availability is the percentage of time that the system is availab
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Fig. 4.26 Mission time improvement comparison between simplex and TMR.

?.::3 its expected tasks. Suppose that we place a system into operation at
time ¢ = 0. As time moves along, the system performs its functions, perhaps
fails, and is repaired. At some time { = f,,en, suppose that the m%wﬁma has
ovwnmam Q.uddnz% for a total of ¢,, hours and has been in the process of re-
pair or waiting for repair to begin for a total of t,.,;, hours. The time ¢

is then the sum of t,, and ¢,.,,;,. The availability can be determined as o

t
\wANnc:,m:.v = —2—

Ncu + anvw:.
where A(fren) 15 the availability at time £, en
. The preceding expression lends itself well to the experimental evalua-
tion om. the availability of a system; we can simply place the system into
operation and measure the appropriate times required to calculate the
mﬁzigrﬁw of the system at a number of points in time. Unfortunately, the
mxwmw_amim_ evaluation of the availability is often not possible Gmnmsmm of
Em. time and expense involved. Also, we would like to have some means of
estimating the availability before we actually build the system so that
m<m:.m§:€ considerations can be factored into the design process. We will
consider two approaches. The first is based on the single parameter mea-
sures such as MTTF and MTTR and yields what is typically called the

4.6 ® Availability Models

steady-state availability A,. The second approach uses the failure rate
the repair rates in a Markov model to calculate the availability as a
tion of time. .

We have seen that availability is basically the percentage of time
system is operational. Using knowledge of the statistical interpretat
the MTTF and the MTTR, we expect that, on the average, a system W
erate for MTTF hours and then encounter its first failure. Once the |
has occurred, the system will then, again on the average, require |
hours to be repaired and placed into operation once again. The syste:
then operate for another MTTF hours before encountering its second £
This concept has been illustrated in Fig. 4.2. .

If the average system experiences N failures during its lifetime, th
time that the system is operational is N (MTTF) hours. Likewise, th
time that the system is “down” for repairs is N(MTTR) hours. In
words, the operational time Zo, is N (MTTF) hours and the down-time
N(MTTR) hours. The average, or steady-state, availability is

4= N(MTTF) ___ MTTF
s = N(MITF) + N(MITR) MTTF + MTTR

We know, however, that the MTTF and the MTTR of a simplex syst
related to the failure rate and the repair rate, respectively, as

1
MTTF = —
A
1
MTTR = —
D
Therefore, the steady-state availability of a simplex system is given
1
A, = A1
1 1 A
S +— 1+
N -

Recal] that the repair rate p is expressed in repairs per hour, whe
failure rate \ is in failures per hour. We would expect that if the fail
goes to 0, implying that the system never fails, or the repair rate
infinity, implying that no time is required to repair the syst
availability will go to 1. Looking at the expression for the stea
availability, we can see that this is true. :

As an example calculation, consider a computer system that h:
ure rate of one failure every 100 hours and a repair rate of one rep:
10 hours. The failure rate of this system is A = 0.01 failures per how
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repair rate is u = 0.1 repairs per hour. The steady-state availability is calcu-
lated as

1
A, = —5g7 = 090909
14—
0.1

This implies that the system is available for use an average of slightly more
than 90% of the time.

Now suppose we investigate the use of the Markov model as a means of
determining the availability of a system. We already have the necessary
tools to accomplish this task. The Markov model of a system with repair is
in fact the model required to calculate the availability of a system. Recall
the two-state model of a simple system with repair and having a failure rate
of A and a repair rate of u. The state diagram of this model is repeated in
Fig. 4.27 for convenience. State O represents the state in which the system
is completely operational, whereas state F is the state in which the system
has failed and is in the process of being repaired. The probability of the sys-
tem failing during the time interval At is given by A Az, whereas the proba-
bility of the system being repaired during the time interval At is w At.

The equations of the Markov model are given by

pr(t + A1) AAr 1 - At pAt)

where po(t) is the probability, at time 7, that the system is in the opera-
tional state and is, therefore, available to perform its tasks. Consequently,
polt) is the availability of the system. Y

As an example, the Markov model shown in Fig. 4.27 has been solved for
the failure rate of A = 0.01 failures per hour and the repair rate of w = 0.1
repairs per hour. The plot of the resulting availability is shown in Fig. 4.28.
Note that the availability approaches the value of 0.90909 that was previ-

1-hAtL T-uit

O = Operational State
F = Failed State

Fig. 4.27 Markov model of a simple nonredundant system with repair.
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Fig. 4.28 Availability versus time for a sim
: ple nonredundant syst i
0.01 failures per hour and u = 0.1 repairs per hour. ey

o.cm_w amﬁwwgms& as the steady-state availability of a system with thi
ticular failure rate and repair rate.

4.7 Maintainability Models

As defined in Chapter 1, the maintainability is the probability that a
system will be restored to working order within a specified time. W
use :.5 notation that M(t) is the maintainability for time ¢. In oﬁrm.:, \
M(2) is the probability that a system will be repaired in a time less t}
equal to 1.

An important parameter in maintainability modeling is the repai
. .E._m repair rate is the average number of repairs that can be perfc
per time unit. The inverse of the repair rate is the MTTR, which is the
age time required to perform a single repair. Mathematically, the rel
ship between the repair rate and the MTTR is given by B

MTTR = 1
n
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In industry, the MTTR, and as a result y, is usually derived in an experi-
Bm:ﬁ_ fashion. A system can be constructed and faults injected; the aver-
age time required to repair the system is measured and recorded as the
EH._,%. A mona estimate of the MTTR can be obtained only if a sufficient
Mm_%:n_wn_%\m@%m_mmmm“mw.::m are injected and repair personnel with a variety

An mx.nnmm,ﬁo: for the maintainability of a system can be derived in a
manner similar to that used to develop the exponential failure law for the
wm:wU.:_Q function. Suppose that we have N systems. We inject one unique
mm:.: into each of the systems, and we allow one maintenance person to re-
pair each system. We begin this experiment by injecting the faults into
the systems at time ¢ = 0. Later, at some time ¢, we determine that N, (¢) of
~rm.m%m~.m3m have been repaired and N,,(t) have not been repaired. mmsmm the
maintainability of a system at time ¢ is the probability that the system can

be repaired by time ¢, an estimate of the maintainability can be com-
puted as

N() _ _ NQ)
N N, (1) + N, (1)
If we differentiate M(z) with respect to time, we obtain

dM(t) 1.dN,(1)

dt N dt

M(t) =

which can also be written as

dN,(t) _  dM(1)
dt =N dt

The am._,?m:é of N,(t) is simply the rate at which components are repaired
at the instant of time 7. ,
At time ¢, we have N, (¢) systems that have not b i : i
. , (1) S een repaired. If we di-
vide dN,(t)/dt by N,,(t), we obtain P

1 _dN, (1)
N, () dt
which is called the repair rate function and is assumed to have a constant
value wm w, the repair rate; u has the units of repairs per unit of time.
. c.m_:m the expression for the repair rate and the expression for the de-
rivative of N,(t), we can write

= 1 dN.@1) _ N dM()
N, () dt N, () dt
which yields a differential equation of the form

dM(t) N, ()
a PN

4.7 8 Maintainability Models

we know, however, that N,,(t1)/N is 1 ~ M(t), so we can write

dM(t) _

. p(l = M(1))

The solution to the differential equation is well known and is given t
M(i@y=1-e™*

The relationship developed for M(t) has the desired character
First, if the repair rate is zero, the maintainability is also zero since t]
tem cannot be repaired in any length of time. Second, if the repair
infinite, the maintainability is one since repair can be performed i
time. A final interesting feature of the maintainability function is its
at a time corresponding to the MTTR. At ¢ = MTTR, the maintain

function will be

M(@=MTTR) = 1 — e™/* = 1 — e3' = 632
which implies that there is a probability of 0.632 that a system will
paired in a time less than or equal to its MTTR.

As we have seen, the repair. rate plays a crucial role in the mal
ability of a system. The repair rate can differ depending on the t
repair that must be performed. For example, a banking system that
repaired on location by a local maintenance person will have a better
rate than one that must be returned to the factory or some third pa
repair. In addition, certain types of faults can be easily repaired on lo
whereas others require facilities that are not practical to bring to th
tion of the electronic system. For example, the replacement of a m
card can be performed easily at the site of the system, but the replac
of the power supply and eooling system can be much more difficult.

Because of the preceding issues, the repair rate is typically specif
several levels of repair. The most common partitioning is to providt
levels of repair. The first is called the organizational level and consist
repairs that can be performed at the site where the system is located
nizational repairs typically include all faults that can be located to s
circuit cards such that the cards can simply be replaced and the ¢
made operational once again. For example, if an aircraft can be re
without bringing it off the runway, it is considered an organizationz
repair. The key to organizational repairs is the ability to locate the f;
is seldom feasible to bring sophisticated fault detection and location
ment to the site of the system. Repairs at the organizational leve
often depend on the built-in test provided by the system to loce
specific problem.

The second level of repair is called the intermediate level. Intern
level repairs cannot be performed at the organizational level, but th
be performed in the immediate vicinity of the system. For example,
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puter firm can have a local repair facility to which the faulty pieces of
equipment are taken for repair. Intermediate level repair is not as good as
being able to perform the repair on site, but it is better than having to
return a piece of equipment to the factory. In the case of an airplane, for
example, an intermediate level repair might be made in the hangar as
opposed to on the runway.

The final level of repair is called the depot level or the factory level. In
depot level repairs, the equipment must be returned to a major facility for
the repair process. For example, if a calculator cannot be repaired at home
(organizational level), it is taken to the store from which it was purchased
(intermediate level). If the store is unable to perform the repair, they send
the calculator to a site designated by the manufacturer as a major repair
facility (depot level). The length of time required to perform the repair
depends on the level at which it is performed. It may take less than an hour
to repair a device at the organizational level, several hours or perhaps days
at the intermediate level, and as much as several weeks or months at the
depot level.

As an example, assume that the MTTR for a computer system is 2.0
hours at the organizational level, 8.0 hours at the intermediate level, and
one week (168 hours) at the depot level. The resulting maintainability func-
tions are plotted versus time in Fig. 4.29. Note the tremendous difference
that exists between the maintainability of the svstem for the different levels
of repair.

4.8 Redundancy Ratios

A system that is more reliable or more available than another is better with
regards to that one attribute. However, to achieve the improved reliability,
availability, or maintainability, the system may contain an excessive amount
of redundancy. The cost of the extra redundancy will appear in the weight,
size, power consumption, volume, and financial costs of the improved sys-
tem. In many applications, the improvements in the reliability, for ex-
ample, may not be worth the extra weight that the system contains.

One good measure of the impact that improvements in reliability,
availability, and maintainability have on a system is the redundancy ratio.
The redundancy ratio is defined simply as the amount of hardware, informa-
tion, time, or software that the redundant system requires divided by the
amount required in a nonredundant system that performs the same func-
tion. The redundancy ratio can be specified for cach type of hardware com-
ponent; for example, the processors, memory, buses, interface units, power
supplies, and displays. The redundancy ratio gives a measure of the extra
resources required for a given application.

4.9 8 Qualitative Methods

Maintainability MTTR =
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Fig. 4.29 Maintainability M(¢) versus time for example values of the M

A good example of the redundancy ratio can be found in a TMR I
sor system. If the nonredundant system requires onlv a single pro
the TMR system will clearly require three and will have a redundanc
for the processors of three. Redundancy ratios are equally applice
software as well as hardware. If a nonredundant system mm@::om
lines of code and the redundant system requires 40,000 lines, the so
redundancy ratio is 1.33. In other words, one-third more software

quired to implement the redundant system than is required in the
dundant system.

4.9 Qualitative Methods

Thus far, we have discussed methods of evaluation that generate sg
numbers to use to compare two or more systems. For example, one s
may have a higher reliability, another may be less expensive, a thir
weigh less, and still another may consume less power. Often, we {in
certain attributes of a system that enter into the design process a
tremely difficult to quantify. We may anticipate a drop in the prices of
hardware at a future date, or we may feel that the production plar



