PME-3463 Introdução à Qualidade Prof. Walter Ponge-Ferreira Prova Substitutiva - 10/07/2018 - Duração: 120 minutos

Questão 1 – Engenharia da Qualidade (2 pontos)

Construir um diagrama de relações para organizar as diversas filosofias e estratégias da *Engenharia da Qualidade*, indicando o parentesco entre elas e suas principais características.

Questão 2 – Filosofias da Qualidade (2 pontos)

Escolha um (e somente um) dos conceitos a seguir e explique-o (identifique claramente qual é o conceito escolhido, defina, exemplifique, descreva, contextualize, apresente suas principais características):

- (i) Ferramenta Poka-Yoke
- (ii) Qualidade na Indústria 4.0
- (iii) Produção Just-in-time
- (iv) Seis Sigma
- (v) Business Inteligence
- (vi) Total Quality Management
- (vii) Lean Manufactoring
- (viii) PDCA
- (ix) Zero Defeitos
- (x) Melhoria contínua Kaizen

Questão 3 – Incerteza de Medição (2 pontos)

Para avaliar a incerteza de medição de um mensurando foi realizada uma série de medidas com um paquímetro cuja incerteza de calibração vale 0,07 mm. O valor médio da série de medidas vale 20,6 mm. Pede-se:

- a) Com base na informação fornecida, qual tipo de incerteza de medição é possível estimar, i.e., estimação tipo A ou tipo B da incerteza? Justifique!
- b) Qual é a contribuição dessa fonte de incerteza para a incerteza de medição? Calcule a incerteza padrão dessa fonte de incerteza. Qual modelo de distribuição de probabilidade deve ser utilizada para realizar essa estimativa? Suponha que o nível de confiança adotado no certificado de calibração seja de 95%.
- c) Considerando somente essa fonte de incerteza, quanto vale o coeficiente de abrangência *k* para um nível de confiança de 95% e quanto vale a incerteza expandida.
- d) Exprima o valor da medida e sua incerteza de medição conforme ISO GUM.

Distribuição t-Student com 95% de grau de confiança

v = n-1	1	2	3	4	5	6	7	8	9	10	20	30	50	80	∞
k	12,71	4,30	3,18	2,78	2,57	2,45	2,37	2,31	2,26	2,23	2,09	2,04	2,01	1,99	1,96

São dadas as seguintes expressões:

$$x \sim N(\mu, \sigma) \qquad U_y = \sqrt{\sum_{i=1}^m \left(\frac{\partial f}{\partial x_i} \cdot U_{x_i}\right)^2} \qquad \frac{U_y^4}{V_{ef}} = \sum_{i=1}^m \frac{U_{x_i}^4}{V_i} \qquad \sigma^2 = \frac{(2a)^2}{12}$$

PME-3463 Introdução à Qualidade Prof. Walter Ponge-Ferreira

Prova Substitutiva - 10/07/2018 - Duração: 120 minutos

Questão 4 – CEP e Capacidade de Processo (2 pontos)

Deve-se avaliar o controle estatístico e determinar o desempenho e a capacidade de um processo de produção de anéis metálicos. Segunda as especificações, os aneis devem ter diâmetro interno \emptyset 20,5 $^{\pm0,5}$ mm. Foram recolhidas 6 amostras aleatórias na sequência da produção, cada uma com 4 aneis, conforme mostrado na tabela abaixo. O desvio padrão do processo é conhecido e vale σ = 0,240 mm.

amostra	Medida (mm)							
	1	2	3	4				
1	20,150	21,094	20,135	20,247				
2	20,272	20,214	20,191	20,288				
3	20,246	20,272	20,272	20,063				
4	20,213	20,237	20,194	20,198				
5	20,261	21,194	19,964	20,128				
6	20,233	20,066	20,249	20,241				

Pede-se:

- a) Determinar os limites de especificação, USL e LSL.
- b) Construir o histograma da produção.
- c) Qual é a proporção de aneis que atende à especificação (process yield).
- d) Estimar os índices de desempenho do processo Pp e Ppk.
- e) Construir as cartas de controle de \bar{x} e s.
- f) Estimar os índices de capacidade do processo C_p e C_{pk}.
- g) Pode-se dizer que o processo está estável sob controle estatístico? Justifique!
- h) Pode-se dizer que o processo é capaz? Justifique!

São fornecidas as seguintes expressões:

$$\hat{p} = \frac{N_c}{N} = 1 - \frac{N_{nc}}{N} \qquad \hat{\sigma}_{LT} = s = \frac{\sum_{j=1}^{m} \sum_{i=1}^{n} (x_{ij} - \bar{x})^2}{n \cdot m - 1} \qquad \hat{\sigma}_{ST} = \frac{\bar{s}}{c_4}$$

$$\hat{p}_p = \frac{USL - LSL}{6\hat{\sigma}_{LT}} \qquad \hat{p}_{pkU} = \frac{USL - \hat{\mu}}{3\hat{\sigma}_{LT}} \qquad \hat{p}_{pkL} = \frac{\hat{\mu} - LSL}{3\hat{\sigma}_{LT}}$$

$$\hat{C}_p = \frac{USL - LSL}{6\hat{\sigma}_{ST}} \qquad \hat{C}_{pkU} = \frac{USL - \bar{x}}{3\hat{\sigma}_{ST}} \qquad \hat{C}_{pkL} = \frac{\bar{x} - LSL}{3\hat{\sigma}_{ST}}$$

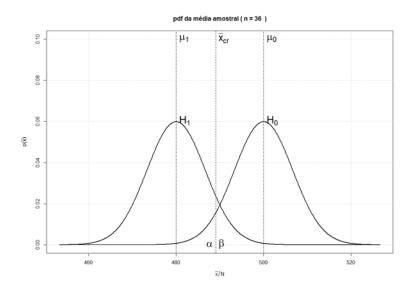
$$CL_{\bar{x}} = \hat{\mu} = \bar{x} \qquad UCL_{\bar{x}} = \hat{\mu} + \frac{3\hat{\sigma}}{\sqrt{n}} \qquad LCL_{\bar{x}} = \hat{\mu} - \frac{3\hat{\sigma}}{\sqrt{n}}$$

$$CL_s = \hat{s} = \bar{s} \qquad UCL_s = \hat{s} + \frac{3\bar{s}\sqrt{1 - c_4^2}}{c_4} \qquad LCL_s = \hat{s} - \frac{3\bar{s}\sqrt{1 - c_4^2}}{c_4}$$

e a seguinte tabela:

n	2	3	4	5	6	7	8	9	10
c_4	0,7979	0,8862	0,9213	0,9400	0,9515	0,9594	0,9650	0,9693	0,9727

PME-3463 Introdução à Qualidade Prof. Walter Ponge-Ferreira Prova Substitutiva - 10/07/2018 - Duração: 120 minutos


Questão 5 – Inspeção por amostragem (2 pontos)

Um lote de N=10.000 peças é adquirido de um produtor de parafusos que produz parafusos com desvio-padrão da carga de ruptura conhecido e igual a $\sigma=40~N$.

Deseja-se que:

- i. A carga de ruptura dos parafusos seja $\mu_0 = 500 N$.
- ii. Se o lote satisfaz à especificação, o comprado deseja limitar a 5% a probabilidade de concluir que o lote é insatisfatório.
- iii. Se o lote tiver uma resistência média ligeiramente menor que 500 N, tal fato não causa preocupação, porém deseja-se que, se a verdadeira resistência média for inferior a 480 N, tal fato seja identificado com pelo menos 90% de probabilidade.

A fim de avaliar o lote deseja-se realizar uma inspeção por amostragem simples da resistência média de uma amostra de tamanho igual a n=36 peças. Considere que a distribuição de probabilidade da resistência obedeça à distribuição normal. O lote é reprovado quando a média amostral é menor que a carga crítica para o nível de confiança de $1-\alpha$.

Pede-se:

- a) Para as condições propostas, quanto valem o risco do produtor α e risco do consumidor β ? Quanto valem o nível de qualidade aceitável AQL e o nível de qualidade limite QL?
- b) Para o tamanho da amostra de n = 36, qual é o valor crítico da carga de ruptura que limita a faixa de rejeição para um nível de confiança de 1α ? Qual é a probabilidade de aceitar um lote cuja resistência média amostral seja pelo menos igual ao valor desejado?
- c) Qual é a probabilidade de aceitar um lote cuja resistência média amostral seja igual ao valor crítico? Qual é a probabilidade de aceitar um lote cuja resistência média amostral seja igual ao nível de qualidade limite QL?
- d) Esboçar a Curva Característica de Operação CCO, i.e., a probabilidade de aceitar o lote em função da resistência média amostral. Indique AQL, α, QL e β no gráfico.
- e) Analisando a Curva Característica de Operação, verifique se o tamanho da amostra é adequado para atender aos critérios de decisão pretendidos. Caso não seja adequado, deve-se aumentar ou reduzir o tamanho da amostra?

PME-3463 Introdução à Qualidade Prof. Walter Ponge-Ferreira Prova Substitutiva - 10/07/2018 - Duração: 120 minutos

Distribuição Norma Padrão x~N(0,1): $P(0 \le Z \le Z_0)$

Z ₀ 0,00 0,01 0,02 0,03 0,04 0,05 0,06	0,07 0,08	0,09
0,0 0,0000 0,0040 0,0080 0,0120 0,0160 0,0199 0,0239	0,0279 0,0319	0,0359
0,1 0,0398 0,0438 0,0478 0,0517 0,0557 0,0596 0,0636	0,0675 0,0714	0,0753
0,2 0,0793 0,0832 0,0871 0,0910 0,0948 0,0987 0,1026	0,1064 0,1103	0,1141
0,3 0,1179 0,1217 0,1255 0,1293 0,1331 0,1368 0,1406	0,1443 0,1480	0,1517
0,4 0,1554 0,1591 0,1628 0,1664 0,1700 0,1736 0,1772	0,1808 0,1844	0,1879
0,5 0,1915 0,1950 0,1985 0,2019 0,2054 0,2088 0,2123	0,2157 0,2190	0,2224
0,6 0,2257 0,2291 0,2324 0,2357 0,2389 0,2422 0,2454	0,2486 0,2517	0,2549
0,7 0,2580 0,2611 0,2642 0,2673 0,2704 0,2734 0,2764	0,2794 0,2823	0,2852
0,8 0,2881 0,2910 0,2939 0,2967 0,2995 0,3023 0,3051	0,3078 0,3106	0,3133
0,9 0,3159 0,3186 0,3212 0,3238 0,3264 0,3289 0,3315	0,3340 0,3365	0,3389
1,0 0,3413 0,3438 0,3461 0,3485 0,3508 0,3531 0,3554	0,3577 0,3599	0,3621
1,1 0,3643 0,3665 0,3686 0,3708 0,3729 0,3749 0,3770	0,3790 0,3810	0,3830
1,2 0,3849 0,3869 0,3888 0,3907 0,3925 0,3944 0,3962	0,3980 0,3997	0,4015
1,3 0,4032 0,4049 0,4066 0,4082 0,4099 0,4115 0,4131	0,4147 0,4162	0,4177
1,4 0,4192 0,4207 0,4222 0,4236 0,4251 0,4265 0,4279	0,4292 0,4306	0,4319
1,5 0,4332 0,4345 0,4357 0,4370 0,4382 0,4394 0,4406	0,4418 0,4429	0,4441
1,6 0,4452 0,4463 0,4474 0,4484 0,4495 0,4505 0,4515	0,4525 0,4535	0,4545
1,7 0,4554 0,4564 0,4573 0,4582 0,4591 0,4599 0,4608	0,4616 0,4625	0,4633
1,8 0,4641 0,4649 0,4656 0,4664 0,4671 0,4678 0,4686	0,4693 0,4699	0,4706
1,9 0,4713 0,4719 0,4726 0,4732 0,4738 0,4744 0,4750	0,4756 0,4761	0,4767
2,0 0,4772 0,4778 0,4783 0,4788 0,4793 0,4798 0,4803	0,4808 0,4812	0,4817
2,1 0,4821 0,4826 0,4830 0,4834 0,4838 0,4842 0,4846	0,4850 0,4854	0,4857
2,2 0,4861 0,4864 0,4868 0,4871 0,4875 0,4878 0,4881	0,4884 0,4887	0,4890
2,3 0,4893 0,4896 0,4898 0,4901 0,4904 0,4906 0,4909	0,4911 0,4913	0,4916
2,4 0,4918 0,4920 0,4922 0,4925 0,4927 0,4929 0,4931	0,4932 0,4934	0,4936
2,5 0,4938 0,4940 0,4941 0,4943 0,4945 0,4946 0,4948	0,4949 0,4951	0,4952
2,6 0,4953 0,4955 0,4956 0,4957 0,4959 0,4960 0,4961	0,4962 0,4963	0,4964
2,7 0,4965 0,4966 0,4967 0,4968 0,4969 0,4970 0,4971	0,4972 0,4973	0,4974
2,8 0,4974 0,4975 0,4976 0,4977 0,4977 0,4978 0,4979	0,4979 0,4980	0,4981
2,9 0,4981 0,4982 0,4982 0,4983 0,4984 0,4984 0,4985	0,4985 0,4986	0,4986
3,0 0,4987 0,4987 0,4987 0,4988 0,4988 0,4989 0,4989	0,4989 0,4990	0,4990
3,1 0,4990 0,4991 0,4991 0,4991 0,4992 0,4992 0,4992	0,4992 0,4993	0,4993
3,2 0,4993 0,4994 0,4994 0,4994 0,4994 0,4994	0,4995 0,4995	0,4995
3,3 0,4995 0,4995 0,4995 0,4996 0,4996 0,4996 0,4996	0,4996 0,4996	0,4997
3,4 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997 0,4997	0,4997 0,4997	0,4998
3,5 0,4998 0,4998 0,4998 0,4998 0,4998 0,4998	0,4998 0,4998	0,4998
3,6 0,4998 0,4999 0,4999 0,4999 0,4999 0,4999	0,4999 0,4999	0,4999
3,7 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999	0,4999 0,4999	0,4999
3,8 0,4999 0,4999 0,4999 0,4999 0,4999 0,4999	0,4999 0,4999	0,4999
3,9 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000 0,5000	0,5000 0,5000	0,5000