The Inverting
 Configuration with General Impedances

1 The op-amp circuit applications we have studied thus far utilized resistors in the opamp feedback path and in connecting the signal source to the circuit (feed-in), that is, in the feed-in path. As a result, circuit operation has been (ideally) independent of frequency.

By allowing the use of capacitors together with resistors in the feedback and feed-in paths of op-amp circuits, a door is open to a very wide range of useful and exciting applications of the op amp.

The op-amp-RC circuits are considering two basic applications, namely, signal integrators and differentiators.

The inverting closed-loop configuration with impedances $Z_{1}(s)$ and $Z_{2}(s)$ replacing resistors R_{1} and R_{2}, respectively is shown below.

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)}
$$

By replacing s by $j \omega$ provides the transfer function, that is, the transmission magnitude and phase for a sinusoidal input signal of frequency ω.

Note A single time constant network (STC) is one that is composed of, or can be reduced to, one reactive component (capacitance or inductance) and one resistance.

Table 1.2 Frequency Response of STC Networks		
	Low-Pass (LP)	High-Pass (HP)
Transfer Function $T(s)$	$\frac{K}{1+\left(s / \omega_{0}\right)}$	$\frac{K s}{s+\omega_{0}}$
Transfer Function (for physical frequencies) $T(j \omega)$	$\frac{K}{1+j\left(\omega / \omega_{0}\right)}$	$\frac{K}{1-j\left(\omega_{0} / \omega\right)}$
Magnitude Response $\|T(j \omega)\|$	$\frac{\|K\|}{\sqrt{1+\left(\omega / \omega_{0}\right)^{2}}}$	$\frac{\|K\|}{\sqrt{1+\left(\omega_{0} / \omega\right)^{2}}}$
Phase Response $\angle T(j \omega)$	$-\tan ^{-1}\left(\omega / \omega_{0}\right)$	$\tan ^{-1}\left(\omega_{0} / \omega\right)$
Transmission at $\omega=0$ (dc)	K	0
Transmission at $\omega=\infty$	0	K
3-dB Frequency	$\begin{aligned} \omega_{0} & =1 / \tau ; \tau \equiv \text { time constant } \\ \tau & =C R \text { or } L / R \end{aligned}$	

low-pass network
high-pass network

Exercise 1

For the circuit below:

1) Derive an expression for the transfer function. Show that the transfer function is that of a low-pass STC (single time constant) circuit.
2) By expressing the transfer function in the standard form shown find the dc gain and the $3-\mathrm{dB}$ frequency.
3) Design the circuit to obtain a dc gain of 40 dB , a $3-\mathrm{dB}$ frequency of 1 kHz , and an input resistance of $1 \mathrm{k} \Omega$.

1 To obtain the transfer function of the circuit we substitute in the transfer function $Z_{1}=R_{1}$ and since Z_{2} is the parallel connection of two components, it is more convenient to work in terms of Y_{2}. that is, we use the following alternative form of the transfer function:

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} \longrightarrow \frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{Z_{1}(s) Y_{2}(s)}\left\{\begin{array}{l}
Z_{1}=R_{1} \\
Y_{2}(s)=\left(1 / R_{2}\right)+s C_{2}
\end{array}\right.
$$

$$
\longrightarrow \frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{\frac{R_{1}}{R_{2}}+s C_{2} R_{1}} \rightarrow \frac{V_{o}(s)}{V_{i}(s)}=\frac{-R_{2} / R_{1}}{1+s C_{2} R_{2}} \rightarrow \omega_{0}=\frac{1}{C_{2} R_{2}} \rightarrow f_{o}=\frac{1}{2 \pi R_{2} C_{2}}
$$

2 The capacitor behaves as an open circuit at dc. Thus at dc the gain is simply $\left(-R_{2} / R_{1}\right)$.

3 Now to obtain a dc gain of 40 dB , that is, $100 \mathrm{~V} / \mathrm{V}$, we select $R_{2} / R_{1}=100$.
For an input resistance of $1 \mathrm{k} \Omega$, we select:

$$
R_{1}=1 \mathrm{k} \Omega \rightarrow R_{2}=100 \mathrm{k} \Omega
$$

Finally, for a 3 dB frequency at $f_{0}=1 \mathrm{kHz}$, we calculate C_{2} :

$$
\omega_{0}=\frac{1}{C_{2} R_{2}} \longrightarrow \quad 2 \pi \times 1 \times 10^{3}=\frac{1}{C_{2} \times 100 \times 10^{3}} \longrightarrow C_{2}=1.59 \mathrm{nF}
$$

The Integrator

The Inverting Integrator

1
By placing a capacitor in the feedback path and a resistor at the input, we obtain the circuit below. We shall now show that this circuit realizes the mathematical operation of integration.

2 Let the input be a time-varying function $v_{l}(t)$. The virtual ground at the inverting op-amp input causes $v_{l}(t)$ to appear in effect across R, and thus the current $i_{1}(t)$ will be $v_{1}(\mathrm{t}) / \mathrm{R}$

This current flows through the capacitor C, causing charge to accumulate on C. If we assume that the circuit begins operation at time $t=0$, then at an arbitrary time t the current $i_{1}(t)$ will have deposited on C the following charge Q :

$$
Q=\int_{0}^{t} i_{I}(t) d t
$$

3 The capacitor voltage $v_{c}(t)$ will change by:

$$
i_{I}(\mathrm{t})=\mathrm{C} \frac{d V_{C}(t)}{d t} \quad v_{c}(t)=\frac{1}{C} \int_{0}^{t} i_{I}(t) d t
$$

4 If the initial voltage (at $t=0$) on C is V_{c}, thus

$$
v_{c}(t)=V_{c}+\frac{1}{C} \int_{0}^{t} i_{I}(t) d t
$$

5 The output voltage $v_{o}(t)=-v_{c}(t)$. Thus,

$$
v_{0}(t)=-\frac{1}{R C} \int_{0}^{t} v_{I}(t) d t-V_{c}
$$

Thus the circuit provides an output voltage that is proportional to the time integral of the input, with V_{C} being the initial condition of integration and $\mathbf{R C}$ is the integrator time constant.

Note that there is a negative sign attached to the output voltage, and thus this integrator circuit is said to be an inverting integrator. It is also known as a Miller integrator.

$$
\left.\begin{array}{l}
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} \\
Z_{1}(s)=R \\
Z_{2}(s)=1 / s C
\end{array}\right] \longrightarrow \frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{s C R} \longrightarrow \frac{V_{o}(j \omega)}{V_{i}(j \omega)}=-\frac{1}{j \omega C R} \longrightarrow \begin{array}{||}
\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\omega C R} \\
\phi=+90^{\circ} \\
\hline
\end{array}
$$

Comparison of the frequency response of the integrator to that of an STC low-pass network indicates that the integrator behaves as a low-pass filter.

Integrator

Observe also that at $\omega=0$, the magnitude of the integrator transfer function is infinite. This indicates that at dc the op amp is operating

$$
\left|\frac{V_{o}}{V_{i}}\right|=\frac{1}{\omega C R}
$$ with an open loop.

R_{2} causes the frequency of the integrator pole to move from its ideal location at $\omega=$ 0 to one determined by the corner frequency of the STC network $\left(R_{F}, C\right)$.

The dc problem of the integrator circuit can be alleviated by connecting a resistor R_{F} across the integrator capacitor C, as shown below, and thus the gain at dc will be $-\boldsymbol{R}_{F} / \boldsymbol{R}$ rather than infinite. Such a resistor provides a dc feedback path. Specifically, the integrator transfer function becomes:

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{1}{s C R}
$$

$$
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{R_{F} / R}{1+s C R_{F}}
$$

9 Unfortunately, however, the integration is no longer ideal, and the lower the value of R_{F}, the less ideal the integrator circuit becomes. This is because R_{F} causes the frequency of the integrator pole to move from its ideal location at $\omega=0$ to one determined by the corner frequency of the STC network (R_{F}, C).

The lower the value we select for R_{F}, the higher the corner frequency will be and the more nonideal the integrator becomes. Thus selecting a value for R_{F} presents the designer with a trade-off between dc performance and signal performance.

$$
f_{o}=\frac{1}{2 \pi C R_{F}}
$$

Exercise 2

Find the output produced by a Miller integrator in response to an input pulse of 1 V height and 1 ms width as shown below. Let $R=10 \mathrm{k} \Omega$ and $C=10 \mathrm{nF}$.
If the integrator capacitor is shunted by a $1-\mathrm{M} \Omega$ resistor, how will the response be modified? The op amp is specified to saturate at $\pm 13 \mathrm{~V}$.

1 In response to a $1 \mathrm{~V}, 1 \mathrm{~ms}$ input pulse, the integrator output, if $\mathrm{V}_{\mathrm{C}}=0$, will be:

$$
\begin{aligned}
v_{o}(t)=-\frac{1}{R C} \int_{0}^{t} v_{I}(t) d t-V_{c} & \longrightarrow v_{o}(t)=-\frac{1}{R C} \int_{0}^{t} 1 d t \quad 0 \leq \mathrm{t} \leq 1 \mathrm{~ms} \\
& v_{o}(t)=-10 t
\end{aligned}
$$

Charging a capacitor with a constant current produces a linear voltage across it !

2 The current in the resistor produces a constant current in the capacitor:

$$
\mathrm{I}_{\mathrm{R}}=\mathrm{I}_{\mathrm{C}}=1 \mathrm{~V} / 10 \mathrm{k} \Omega=0,1 \mathrm{~mA}
$$ Next consider the situation with resistor connected $R_{F}=1 \mathrm{M} \Omega$ across C. As before, the 1 V pulse will provide a constant current $I=0.1 \mathrm{~mA}$. Now, however, this current is supplied to an STC network composed of R_{F} in parallel with C.

$$
v_{o}(t)=v_{\text {ofinal }}-\left(v_{\text {ofinal }}-v_{\text {oinitial }}\right) e^{-t / \tau}
$$

$$
\begin{aligned}
& v_{\text {oinitial }}=0 \\
& v_{\text {ofinal }}=I R_{f}=0.1 \times 10^{6}=100 \\
& \tau=C R_{F}=10 \times 10^{-9} \times 10^{6}=10 \mathrm{~ms}
\end{aligned}
$$

$$
\longrightarrow \quad v_{o}(1 m s)=-100\left(1-e^{0,001 / 0,01)}\right)=-9,5 \mathrm{~V}
$$

The output waveform is shown below, from which we see that including R_{F} causes the ramp to be slightly rounded such that the output reaches only -9.5 $\mathrm{V}, 0.5 \mathrm{~V}$ short of the ideal value of -10 V .
Furthermore, for $t>1 \mathrm{~ms}$, the capacitor discharges through R_{F} with the relatively long time-constant of 10 ms .

This example hints at an important application of integrators, namely, their use in providing triangular waveforms in response to square-wave inputs !

Integrators have many other applications, including their use in the design of active filters.

The Differentiator

The Op Amp Differentiator

1 Interchanging the location of the capacitor and the resistor of the integrator circuit results in the circuit that performs the mathematical function of differentiation.

2
To see how this comes about, let the input be the time-varying function, and note that the virtual ground at the inverting input terminal of the op amp causes to appear in effect across the capacitor C. Thus the current through C will be $C\left(\mathrm{dv}_{\mathrm{l}} / \mathrm{dt}\right)$, and this current flows through the feedback resistor R providing at the op-amp output the following voltage:

$$
\left.\begin{array}{l}
i=C \frac{d\left(V_{C}\right)}{d t} \\
V_{o}=-V_{C}
\end{array}\right\} \longrightarrow v_{0}(t)=-C R \frac{d v_{I}(t)}{d t}
$$

3 The frequency-domain transfer function of the differentiator circuit can be found by substituting $Z_{1}(s)=1 / s C$ and $Z_{2}(s)=R$ in the transfer function of an inverting configuration with general impedances:

$$
\left.\begin{array}{l}
\frac{V_{o}(s)}{V_{i}(s)}=-\frac{Z_{2}(s)}{Z_{1}(s)} \\
Z_{1}(s)=R \\
Z_{2}(s)=1 / s C
\end{array}\right] \longrightarrow \frac{V_{o}(s)}{V_{i}(s)}=-s C R \longrightarrow \frac{V_{o}(j \omega)}{V_{i}(j \omega)}=-j \omega C R \longrightarrow\left\{\begin{array}{r}
\left|\frac{V_{o}}{V_{i}}\right|=\omega C R \\
\phi=-90^{\circ}
\end{array}\right.
$$

4 The Bode plot of the magnitude response can be found by noting that for an octave increase in ω, the magnitude doubles (increases by 6 dB). Thus the plot is simply a straight line of slope +6 dB /octave $(+20 \mathrm{~dB} /$ decade $)$ intersecting the 0 dB line where $R C$ is the differentiator time-constant.

The differentiator circuit suffer from stability problems and are generally avoided in practice. This is due to the spike introduced at the output every time there is sharp change in $v_{l}(\mathrm{t})$. Such a change could be interference coupled electromagnetically ("picke up") from adjacent signal sources.

When the circuit is used, it is usually necessary to connect a small-valued resistor in series with the capacitor. This modification, unfortunately, turns the circuit into a nonideal differentiator.

For this reasons and because they suffer from stabily problems, differentiator circuits are generally avoided in practice.

