
The Inverting 
Configuration 
with General 
Impedances



The op-amp circuit applications we have studied thus far utilized resistors in the op-
amp feedback path and in connecting the signal source to the circuit (feed-in ), that is,
in the feed-in path. As a result, circuit operation has been (ideally) independent of
frequency.
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By allowing the use of capacitors together with resistors in the feedback and feed-in
paths of op-amp circuits, a door is open to a very wide range of useful and exciting
applications of the op amp.

The op-amp-RC circuits are considering two basic applications, namely, signal
integrators and differentiators.



The inverting closed-loop configuration with impedances Z1(s) and Z2(s) replacing
resistors R1 and R2, respectively is shown below.

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= -

𝑍2(𝑠)

𝑍1(𝑠)

By replacing s by jω provides the transfer function, that is, the transmission magnitude
and phase for a sinusoidal input signal of frequency ω.
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A single time constant network (STC) is one that is composed of, or can be reduced to, one 
reactive component (capacitance or inductance) and one resistance. 

low-pass network high-pass network

Note

STC
STC



For the circuit below:

1) Derive an expression for the transfer function. Show that the transfer function is that
of a low-pass STC (single time constant) circuit.

2) By expressing the transfer function in the standard form shown find the dc gain and
the 3-dB frequency.

3) Design the circuit to obtain a dc gain of 40 dB, a 3-dB frequency of 1 kHz, and an
input resistance of 1 kΩ.

Exercise 1



To obtain the transfer function of the circuit we substitute in the transfer function Z1 = R1

and since Z2 is the parallel connection of two components, it is more convenient to work 
in terms of Y2. that is, we use the following alternative form of the transfer function:
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𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= -

𝑍2(𝑠)

𝑍1(𝑠)

𝑓𝑜 =
1

2π𝑅2𝐶2



low-pass network

𝑓𝑜 =
1

2π𝑅2𝐶2



Now to obtain a dc gain of 40 dB, that is, 100 V/V, we select R2 /R1 = 100.3

For an input resistance of 1 kΩ, we select:

Finally, for a 3dB frequency at f0 = 1 kHz, we calculate C2:

The capacitor behaves as an open circuit at dc. Thus at dc the gain is simply (-R2 /R1).  2

R1 = 1 kΩ R2 = 100 kΩ



The Integrator



The Inverting Integrator

By placing a capacitor in the feedback path and a resistor at the input, we obtain the
circuit below. We shall now show that this circuit realizes the mathematical operation of
integration.

Let the input be a time-varying function vI(t). The virtual ground at the inverting op-amp
input causes vI(t) to appear in effect across R, and thus the current i1(t) will be vI(t)/R

This current flows through the capacitor C, causing charge to accumulate on C. If we
assume that the circuit begins operation at time t = 0, then at an arbitrary time t the
current i1(t) will have deposited on C the following charge Q:

𝑄 = න
0

𝑡

𝑖𝐼 𝑡 𝑑𝑡

The capacitor voltage vc(t) will change by: 

𝑣𝑐 𝑡 =
1

𝐶
න
0

𝑡

𝑖𝐼 𝑡 𝑑𝑡

1

2

3

𝑖𝐼(t)=C 
𝑑𝑉𝐶(𝑡)

𝑑𝑡



The output voltage vO(t) = - vC(t). Thus,

𝑣𝑐 𝑡 = 𝑉𝑐 +
1

𝐶
න
0

𝑡

𝑖𝐼 𝑡 𝑑𝑡

𝑣0 𝑡 = −
1

𝑅𝐶
න
0

𝑡

𝑣𝐼 𝑡 𝑑𝑡 − 𝑉𝑐

If the initial voltage (at t=0) on C is Vc , thus

Thus the circuit provides an output voltage that is proportional to the time integral of 
the input, with VC being the initial condition of integration and RC is the integrator 
time constant.

Note that there is a negative sign attached to the output voltage, and thus this
integrator circuit is said to be an inverting integrator. It is also known as a Miller
integrator.

𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= -

𝑍2(𝑠)

𝑍1(𝑠)
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Comparison of the frequency response of the integrator to that of an STC low-pass 
network indicates that the integrator behaves as a low-pass filter. 

corner frequency (fc ) 

Low-pass STC 
network (k=R2/R1)Integrator

𝑓𝑐 =
1

2π𝑅2𝐶2

R2 causes the frequency of the integrator pole to move from its ideal location at ω =
0 to one determined by the corner frequency of the STC network (RF,C).

Observe also that at ω = 0, the magnitude of
the integrator transfer function is infinite. This
indicates that at dc the op amp is operating
with an open loop.
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The dc problem of the integrator circuit can be alleviated by connecting a resistor RF

across the integrator capacitor C, as shown below, and thus the gain at dc will be –RF/R
rather than infinite. Such a resistor provides a dc feedback path. Specifically, the
integrator transfer function becomes:

The lower the value we select for RF , the higher the corner frequency will be and the
more nonideal the integrator becomes. Thus selecting a value for RF presents the
designer with a trade-off between dc performance and signal performance.

Unfortunately, however, the integration is no longer ideal, and the lower the value of
RF, the less ideal the integrator circuit becomes. This is because RF causes the
frequency of the integrator pole to move from its ideal location at ω = 0 to one
determined by the corner frequency of the STC network (RF,C).
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𝑓𝑜 =
1

2πC𝑅𝐹



Find the output produced by a Miller integrator in response to an input pulse of 1V height
and 1ms width as shown below. Let R = 10 kΩ and C = 10 nF.
If the integrator capacitor is shunted by a 1-MΩ resistor, how will the response be modified?
The op amp is specified to saturate at ± 13V.

In response to a 1V, 1ms input pulse, the integrator output, if VC = 0, will be:

𝑣𝑜 𝑡 = −
1

𝑅𝐶
න
0

𝑡

𝑣𝐼 𝑡 𝑑𝑡 − 𝑉𝑐 𝑣𝑜 𝑡 = −
1

𝑅𝐶
න
0

𝑡

1𝑑𝑡 0 ≤ t ≤ 1ms

𝑣𝑜 𝑡 = −10𝑡

Charging a capacitor with a 
constant current produces 
a linear voltage across it !
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Exercise 2

The current in the resistor produces a constant current in the capacitor:
IR = IC = 1V/10kΩ = 0,1mA
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Next consider the situation with resistor connected RF = 1MΩ across C.
As before, the 1V pulse will provide a constant current I = 0.1 mA. Now, however, this
current is supplied to an STC network composed of RF in parallel with C.

𝑣𝑜 𝑡 = −100(1 − 𝑒−𝑡/0,01))

0 ≤ t ≤ 1ms

𝑣𝑜 1𝑚𝑠 = −100 1 − 𝑒0,001/0,01) = −9,5𝑉

𝑣𝑜 𝑡 = 𝑣𝑜𝑓𝑖𝑛𝑎𝑙 − (𝑣𝑜𝑓𝑖𝑛𝑎𝑙 - 𝑣𝑜𝑖𝑛𝑖𝑡𝑖𝑎𝑙)𝑒
−𝑡/Ԏ

𝑣𝑜𝑓𝑖𝑛𝑎𝑙 = 𝐼𝑅𝑓 = 0.1𝑥106 = 100

𝑣𝑜𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0

RF
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Ԏ =CRF = 10 x 10−9 x 106 = 10ms



The output waveform is shown below, from which we see that including RF causes the
ramp to be slightly rounded such that the output reaches only −9.5 V, 0.5 V short of the
ideal value of −10 V.
Furthermore, for t >1 ms, the capacitor discharges through RF with the relatively long
time-constant of 10 ms.

This example hints at an important application of integrators, namely, their use in 
providing triangular waveforms in response to square-wave inputs !

Integrators have many other applications, including their use in the design of active
filters.
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The Differentiator



The Op Amp Differentiator

Interchanging the location of the capacitor and the resistor of the integrator circuit
results in the circuit that performs the mathematical function of differentiation.

To see how this comes about, let the input be the time-varying function, and note that
the virtual ground at the inverting input terminal of the op amp causes to appear in effect
across the capacitor C. Thus the current through C will be C(dvI/dt), and this current flows
through the feedback resistor R providing at the op-amp output the following voltage:

1

2

𝑖 = 𝐶
𝑑(𝑉𝐶)

𝑑𝑡

𝑉𝑜 = −𝑉𝐶



The Bode plot of the magnitude response can be found by noting that for an octave
increase in ω, the magnitude doubles (increases by 6 dB). Thus the plot is simply a
straight line of slope +6 dB/octave (+20 dB/decade) intersecting the 0 dB line where RC is
the differentiator time-constant.
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The frequency-domain transfer function of the differentiator circuit can be found by
substituting Z1(s)=1/sC and Z2(s)= R in the transfer function of an inverting configuration
with general impedances:
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𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
= -

𝑍2(𝑠)

𝑍1(𝑠)



The differentiator circuit suffer from stability problems and are generally avoided in
practice. This is due to the spike introduced at the output every time there is sharp
change in vI(t). Such a change could be interference coupled electromagnetically (“picke
up”) from adjacent signal sources.

When the circuit is used, it is usually necessary to connect a small-valued resistor in series
with the capacitor. This modification, unfortunately, turns the circuit into a nonideal
differentiator.

For this reasons and because they suffer from stabily problems, differentiator circuits are
generally avoided in practice.
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