Computer Vision

Spring 2012 15-385,-685

Instructor: S. Narasimhan

Wean Hall 5409 T-R 10:30am – 11:50am

Frequency domain analysis and Fourier Transform

Lecture #4

How to Represent Signals?

Option 1: Taylor series represents any function using polynomials.

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}$$
$$(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + \dots$$

- Polynomials are not the best unstable and not very physically meaningful.
- Easier to talk about "signals" in terms of its "frequencies" (how fast/often signals change, etc).

Jean Baptiste Joseph Fourier (1768-1830)

- Had crazy idea (1807):
- **Any** periodic function can be rewritten as a weighted sum of **Sines** and **Cosines** of different frequencies.
- Don't believe it?
 - Neither did Lagrange, Laplace, Poisson and other big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

A Sum of Sinusoids

• Our building block:

 $A\sin(\omega x + \phi)$

- Add enough of them to get any signal *f(x)* you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?

Fourier Transform

• We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of *x*:

- For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$
 - How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

F(ω)

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

Inverse Fourier Transform

Time and Frequency

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

Time and Frequency

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

frequency

3f

0.3

0

f

2f

• Usually, frequency is more interesting than the phase

FT: Just a change of basis

IFT: Just a change of basis

 $\mathsf{M}^{-1} * F(\omega) = f(x)$

Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi u x} dx$$

Note:
$$e^{ik} = \cos k + i \sin k$$
 $i = \sqrt{-1}$

Arbitrary function \longrightarrow Single Analytic ExpressionSpatial Domain (x) \longrightarrow Frequency Domain (u)
(Frequency Spectrum F(u))

Inverse Fourier Transform (IFT)

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i2\pi u x} dx$$

Fourier Transform

• Also, defined as:

$$F(u) = \int_{-\infty}^{\infty} f(x)e^{-iux} dx$$

Note: $e^{ik} = \cos k + i\sin k$ $i = \sqrt{-1}$

• Inverse Fourier Transform (IFT)

$$f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(u) e^{iux} dx$$

Fourier Transform Pairs (I)

Fourier Transform Pairs (I)

Note that these are derived using angular frequency (e^{-iux})

Fourier Transform and Convolution

Let
$$g = f * h$$

Then $G(u) = \int_{-\infty}^{\infty} g(x)e^{-i2\pi ux} dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\tau)h(x-\tau)e^{-i2\pi ux} d\tau dx$
 $= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau\right] h(x-\tau)e^{-i2\pi u(x-\tau)} dx$
 $= \int_{-\infty}^{\infty} \left[f(\tau)e^{-i2\pi u\tau} d\tau\right] \int_{-\infty}^{\infty} \left[h(x')e^{-i2\pi ux'} dx'\right]$
 $= F(u)H(u)$

Convolution in spatial domain

⇔ Multiplication in frequency domain

Fourier Transform and Convolution

So, we can find g(x) by Fourier transform

Properties of Fourier Transform

I I

	Spatial Domain (x)	F
Linearity	$c_1 f(x) + c_2 g(x)$	
Scaling	f(ax)	
Shifting	$f(x-x_0)$	
Symmetry	F(x)	
Conjugation	$f^*(x)$	
Convolution	$f(x) \ast g(x)$	
Differentiation	$\frac{d^n f(x)}{dx^n}$	

requency Domain (u) $c_1F(u)+c_2G(u)$ $\frac{1}{|a|}F\left(\frac{u}{a}\right)$ $e^{-i2\pi u x_0}F(u)$ f(-u) $F^*(-u)$ F(u)G(u) $(i2\pi u)^n F(u)$

Note that these are derived using frequency ($e^{-i2\, \pi \mathrm{i} x}$)

Properties of Fourier Transform

Parseva	l's theorem:	
$\int_{-\infty}^{\infty} f(x) ^2 dx$ $\int_{-\infty}^{\infty} f(x)g^*(x) dx$	$\begin{aligned} x &= \int_{-\infty}^{\infty} F(\xi) ^2 d\xi \\ x &= \int_{-\infty}^{\infty} F(\xi) G^*(\xi) d\xi \end{aligned}$	
f(x)	$F(\xi)$	
Real(R)	Real part even (RE) Imaginary part odd (IO)	
Imaginary (I)	RO,IE	
RE,IO	R	
RE,IE	I	
RE	RE	
RO	IO	
IE	IE	
IO	RO	
Complex even (CE)	CE	
CO	CO	

Example use: Smoothing/Blurring

• We want a smoothed function of f(x)

g(x) = f(x) * h(x)

• Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\frac{x^2}{\sigma^2}\right]$$

• Then

$$H(u) = \exp\left[-\frac{1}{2}(2\pi u)^2 \sigma^2\right]$$
$$G(u) = F(u)H(u)$$

H(u) attenuates high frequencies in F(u) (Low-pass Filter)!

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Convolution is Multiplication in Fourier Domain

Ę

 \times

 $|F(s_x,s_y)|$

h(x,y)

g(x,y)

 $|H(s_x,s_y)|$

Low-pass Filtering

Let the low frequencies pass and eliminating the high frequencies.

Low-pass image

FFT of low-pass image

Generates image with overall shading, but not much detail

High-pass Filtering

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

High-pass image

FFT of high-pass image

Boosting High Frequencies

Original image

FFT of original image

High-boost filter

High boosted image

FFT of high boosted image

Most information at low frequencies!

Fun with Fourier Spectra

Next Class

- Image resampling and image pyramids
- Horn, Chapter 6