Prática 1

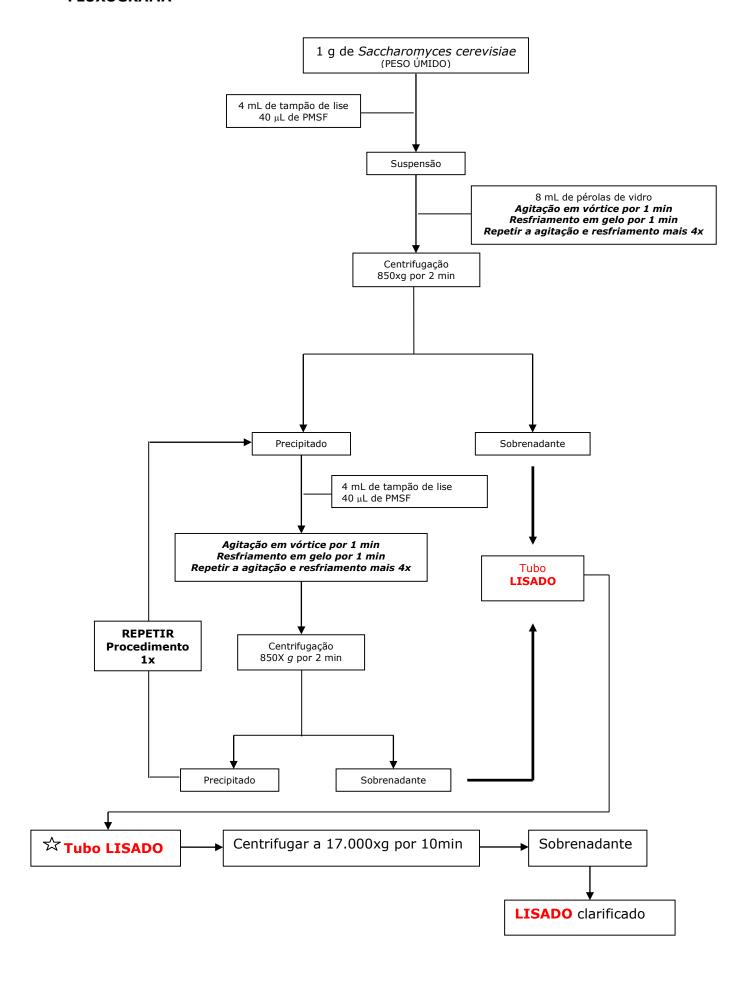
A) Lise de Células de Levedura

Objetivos

Romper as células de Saccharomyces cerevisiae.

Reagentes -água destilada -células de levedura (fase log tardia) -etanol -fluoreto de α-fenilmetilsulfonila (PMSF) 100 mM em etanol	Materiais -banho de gelo -pérolas de vidro 0,5 mm ∅ -pipetadores -pipetas -ponteiras	Aparelhagem -centrífuga -estufa -freezer -vórtice
-hipoclorito de sódio 20 g/L (água sanitária)	-suporte para tubos -tubos de centrífuga	
-tampão fosfato 100 mM pH 7,0 com EDTA 5 mM (tampão de lise)	-tubos plásticos de 15ml	

Procedimento A - Fracionamento celular


OBSERVAÇÃO: MANTER TUBOS DE ENSAIO EM BANHO DE GELO

- 1. Em um tubo de <u>centrífuga</u> com tampa colocar aproximadamente 1 g (peso úmido) de células de leveduras crescidas até a fase logarítmica tardia
- 2. Adicionar 4 mL de tampão de lise
- 3. Ressuspender as células usando um vórtice
- 4. Adicionar 40 μL de PMSF (100 mM em etanol)
- 5. Homogeneizar em vórtice
- 6. Adicionar à suspensão 8 mL de pérolas de vidro lavadas e secas
- 7. Agitar ininterruptamente em vórtice durante 1 min (processo de lise)
- 8. Resfriar em banho de gelo por 1 min
- 9. Repetir as operações 7 e 8 por mais 4 vezes
- 10. Centrifugar a suspensão de células + pérolas de vidro a 850xg por 2 min a 4°C
- 11. Remover cuidadosamente o sobrenadante *evitar coletar o material precipitado* para um tubo de <u>centrífuga</u> limpo e identificado como **LISADO**
- 12. Manter tubo LISADO em banho de gelo
- 13. Ressuspender o precipitado + pérolas de vidro em 4 mL de tampão de lise
- 14. Adicionar 40 µL de PMSF (100mM em etanol)
- 15. Homogeneizar em vórtice
- 16. Repetir as etapas 7 a 15 mais duas vezes, reunindo os sobrenadantes no mesmo tubo LISADO
- 17. Centrifugar o LISADO a 17.000xg por 10min a 4°C
- 18. Transferir o sobrenadante do LISADO clarificado para um tubo de 15mL
- 19. Determinar o volume aproximado do LISADO clarificado observando a graduação do tubo
- 20. Homogeneizar o lisado clarificado e dividir em 3 alíquotas de igual volume em tubos de 15mL
- 21. Identificar os tubos com o nome do grupo.
- 22. Armazenar em freezer a −20°C.

Procedimento B - Lavagem das pérolas de vidro

(Executado por monitores ou técnica)

- 1. Transferir as pérolas de vidro para um erlenmeyer.
- 2. Adicionar hipoclorito de sódio no erlenmeyer.
- 3. Agitar algumas vezes durante 15 min.
- 4. Descartar cuidadosamente o hipoclorito de sódio
- 5. Repetir a lavagem com hipoclorito de sódio.
- 6. Adicionar água no erlenmeyer
- 7. Lavar as pérolas.
- 8. Descartar cuidadosamente a água.
- 9. Repetir as etapas 6 a 8 por mais 5 vezes.
- 10. Adicionar etanol no erlenmeyer.
- 11. Colocar o erlenmeyer numa estufa.
- 12. Aguardar a secagem das pérolas.

B) Dosagem de açúcares redutores

Objetivos

Dosar colorimetricamente açúcares redutores solúveis no lisado de Saccharomyces cerevisiae.

ReagentesMateriaisAparelhagem-água destilada-tubos de ensaio grandes-espectrofotômetro-glicose 5 mM-pipetadores-vórtice-lisado de leveduras-pipetas-banho-maria

(DNS) 10 g/L -suportes para tubos de ensaio

-ponteiras

-placa de 96 poços

Procedimento A - Curva padrão de glicose

-ácido 3,5-dinitrosalicilíco

- 1. em cada tubo, adicionar as quantidades estipuladas de água e de glicose, conforme a tabela 1
- 2. adicionar a quantidade necessária de reagente de DNS
- 3. Tampar o tubo de ensaio com plástico filme e homogeneizar cuidadosamente por inversão
- 4. Remover o plástico filme e colocar os tubos em banho-maria fervente por 10 min
- 5. esfriá-los em uma bandeja com água
- 6. adicionar 8 mL de água destilada, completando o volume para 10 mL totais
- 7. Homogeneizar o tubo novamente (usando plástico filme)
- 8. transferir 200µL de cada solução para pocinhos da placa de 96 poços
- 9. ler as absorbâncias a 540 nm, descontando o valor do branco

Solução padrão de glicose = $5 \text{ mM} = 5 \text{ mmol/L} = 5 \text{ } \mu \text{mol/mL};$ Massa molar glicose = 180 g/mol

Tabela 1

	Tabela I					
tubos	Solução glicose (mL)	água (mL)	DNS (mL)	massa glicose (mg)	A ₅₄₀	A ₅₄₀ - branco
branco	0,0	1,0	1,0			
1	0,1	0,9	1,0			
2	0,2	0,8	1,0			
3	0,3	0,7	1,0			
4	0,4	0,6	1,0			
5	0,5	0,5	1,0			
6	0,6	0,4	1,0			
7	0,7	0,3	1,0			
8	0,8	0,2	1,0			
9	0,9	0,1	1,0			
10	1,0	0,0	1,0			

Procedimento B - Dosagem de açúcares redutores no lisado obtido

- 1. Agitar o lisado suavemente por inversão
- 2. Dilui-lo conforme indicado abaixo

OBSERVAÇÃO: para esse procedimento é necessário que o lisado seja diluído

- 1. Transferir 0,4 mL do lisado para um tubo de ensaio grande identificado como L5X.
- 2. Adicionar 1,6 mL de água destilada.
- 3. Homogeneizar em vórtice.
- 4. Transferir 0,5 mL do tubo **L5X** para um tubo de ensaio grande identificado como **L10X**.
- 5. Adicionar 0,5 mL de água destilada
- 6. Homogeneizar em vórtice.
- 3. Preparar os tubos segundo a Tabela 2
- 4. Proceder com o mesmo protocolo da curva padrão (passos 3 a 8)

Tabela 2

tubos	amostras (mL)	água (mL)	DNS (mL)	A ₅₄₀	A ₅₄₀ - branco
L1	0,25 (L)	0,75	1,0		
L2	0,25 (L)	0,75	1,0		
L3	0,25 (L)	0,75	1,0		
L5x 1	0,25 (L5X)	0,75	1,0		
L5x 2	0,25 (L5X)	0,75	1,0		
L5X 3	0,25 (L5X)	0,75	1,0		
L10X 1	0,25 (L10X)	0,75	1,0		
L10X 2	0,25 (L10X)	0,75	1,0		
L10X 3	0,25 (L10x)	0,75	1,0		

Caso a absorbância esteja fora dos limites da curva padrão, repita a dosagem com as modificações necessárias para que o valor obtido fique dentro dos limites da curva padrão.

Tratamento de Dados e Análise dos Resultados

PRÁTICA 1B - DOSAGEM DE AÇÚCARES REDUTORES

INSTRUÇÕES:

- 1. Completar as tabelas com os resultados experimentais.
- 2. Construir a curva padrão para quantificação de glicose com o reagente DNS.
- 3. Calcular a concentração de açucares redutores (mg/mL) no lisado de Saccharomyces cerevisiae.

TABELA PARA CURVA PADRÃO DE GLICOSE

tubos	massa de glicose	Abs ₅₄₀
	(mg)	
1		
2		
3		
4		
5		
6		
7		
8		
9		
10		

Equação de reta: y = a	x + b
coeficiente angular = a	
Intercepto no eixo y = b	

TABELA PARA O CÁLCULO DA CONCENTRAÇÃO DE AÇÚCARES REDUTORES NO LISADO DE S. CEREVISIAE

tubos	A ₅₄₀	Massa de açúcar calculada usando a curva padrão (mg)	Volume da amostra (mL)	Concentração (mg/mL)	Diluição prévia (X)	Concentração de açúcar redutor no lisado original (sem diluição)
L1			0,25			
L2			0,25			
L3			0,25			
L5X 1			0,25			
L5X 2			0,25			
L5X 3			0,25			
L10X 1			0,25			
L10X 2			0,25			
L10X 3			0,25	_		

Apenas valores de absorbância contidos na curva padrão podem ser utilizados. Caso seu grupo tenha usado uma diluição diferente do protocolo, ajustar de acordo.