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characterize and measure operational system un-
reliability due to software. There is a large gulf
between the varables that can be easily meas-
ured in a running system and the number of bugs
in its software, Instead, a cost-effective analysis
should allow precise evaluation of software unre-
liability from variables easily measurable in an
operational system, without knowing the details
of how the software has been written.

MODELING TECHNIQUES

Redundant systems can be modeled under var-
ious operational assumptions, such as failure to
exhaustion and failure with repair. Redundancy

th failure to exhausiion is a simplistic and

-simistic model which assumes that all redun-
«ant modules fail before any repair. Failure with
repair, on the other hand, models two separate
but concurrent processes: the failure process and
the repair process. Failure to exhaustion can be
modeled by simple combinatorial probability,
the first topic in this section. Failure with repair,

. which requires solutions of sets of differential

equations, is the second main topic. Next, the
impact on system availability of different as-
sumptions concerning repair strategy is explored,
followed by modeis built on the assumption that
failures affect the performance of redundant
systems.

Combinatorial Modeling

In combinatorial modeling, the system is divided
into nonoverlapping modules. Each module is
assigned either a probability of working, P, ora
probability as a function of time, R;(r). The goal
is to derive the probability, Py, or function,
Rsys(l), of correct system operation. The follow-
ing assumptions are made:

1. Module faiiures are independent,

2. Once a module has failed, it is assumed always to

yield incorrect results.
3. The system is considered failed if it does not satisfy
the minimai set of functioning modules,
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4. Once the system enters a failed state, subsequent
failures cannot return the system to a functional
state. This property, called coherency, is mathemat-
ically defined by Esary and Proschan [1962] in
terms of a structure function ¢(x), x is a vector
composed of elements x;, x4, ..., x,,, where each
x; 18 | if module i is functional, and 0 if module i is
failed. A coherent system satisfies the following
properties:

a. @, i,...,1) =1, when all modules function.
the system must function;
b. ¢{0,0,...,0) = 0, when all modules fail, the
system fails; and
c. g{x) > ofy) whenever x; > y; Vi, i = 1, 2,
L

Failure to exhaustion models typically enu-
merate all the states of the system (where a state
is a pattern of failed and working modules}) that
meet or exceed the requirements of the minimal
module set. Combinatonial counting techniques
are used to simplify this enumeration. The fol-
lowing three subsections treat commonly used
modeling techniques for series/parallel systems.
M-of-N systems, and complex systems.

Series/ Parallel Systems

Most frequently, reliability evaluation involves a
series or parallel combination of independent
systems. Figure 5-1 illustrates a serial string of
modules, all of which must function for the
system to function correctly. The modules could
be resistors, fuel valves, computers, or any other
components. If R{r) is the reliability of module i
and if the modules are assumed independent,
then the overall system rehiability is:

Rearies® = IT R) a)

i=1
Hence, the failure probability, denoted by O, of
a series system can be written as:

Qs = 1 = Ry () = 1 = ] RD)

i=1

. (2)
=1- I:I; (1 — Qi)
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Lro{ma ) -

* Rn—1 (t) Rn (t)

Figure 5=1. A series connection of n maodules,

The parallel configuration in -Figure 5-2 fails
only if all the systems fajl. The probability of
failure is: :

Qparai]el(t) = Ijl Qi(t) (3)

The system reliability is:

Rparal[ei(t) =1- Qparallei(t) =1~ fIl Qi(t)
| ; T W
=1- 1__[] (1 - R,(9)

Note the duality between R, 0; Equations ! and
3; and Equations 2 and 4. For some systems it
may be easier to work with failure probability
than with reliability. Equations 1 through 4 can
be applied recursively to complex series/parallel
configurations to arrive at an overall reliability
function. Figure 5-3 depicts two different inter-
connections of four components. These configu-
rations have been used in aerospace systems for
providing redundant transmission paths between
terminals 4 and ¢, where each working path has
lo contain at least one good component. The
modules may be resistors or diodes (such as the
component quadding used in OAQ, the Orbital
Astronomical Observatory) or valves controlling
fuel flow to a rocket motor. The configuration in

Figure 5-2. A paralle! connection of n modules.

Figure 5-3a tolerates more patterns of shorted
components (such as shorted resistors/diodes or
stuck-at-open fuel valves) than does configura-
tion (b). Both configurations tolerate ali single
shorts and double shorts (ac, bd). Configuration
{a} also tolerates double shorts (ad, be). In a dyal
manner, configuration (b) tolerates more pat-
terns of open components (such as open resistors/
diodes or stuck-at-closed fuel valves). In particu-
lar, configuration (b) tolerates the double-open
failures of (ad, bc) for which configuration (a) fails,

Now consider the case where blocks (a, ¢) are
processors and (b, d) are memories. For the
system to operate, at least one processor-memory
pair is required. Configuration (a) represents a

[ 4]
Shorts tolerated: a, b, c, d, ac, ad, be, bd

Opens tolerated: a, b, ¢, d, ab, cd
a.

4]
Sharts tolerated: a, b, ¢, d, ac, bd
Opens tolerated: a, b, ¢, d, ab, ad, bc, cd
b,

Figure 5-3. Two forms of series/parallel intercon-
nection designed to tolerate a.) short and b.) open
failures,
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computer with a standby spare. Figure 5-d4a
illustrates the application of the series reliability
equation. Now, applying the parallel reliability
equation:

Rshort(’) =1- (1 - RaRb)(l - RcRd) (5)

Note that the R;s may be either a single value such
as a probability of success, or a function of time.
In this text the function notation Ri{#) is reserved
for special cases. The reader may interpret R; as
either a single numbered probability or a function.
Applying the parallel reliability equation to config-
uration (b) (Figure 5-4b) results in:

Ropen = (1 - (} - Ra)(] - RC))
| X (1= (1~ R)(1— R,))
Letting R, = R, = R, = R; = R,, yields

Ry, = 2R: - R ©)

short

and

Ryper = 4Rp — 4R3 + RY

open

Because there are more combinations of working
systems in configuration (b), it is obvious that

Ropen > Rshon

for all > 0. Now consider the case of #» mod-
ules in parallel, only one of which is required to
function. The other n — 1 modules represent

Qa Qc Qb Qd'

-h.

Figure 5-4. Applying a.) the series and b)) the
parallel unreliability formula to Figure 5-3b.
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spares. The spares can be operating in parallel
or, as is more usually the case, standing by to
replace the operating module when it fails. The
form of Equation 3 suggests that as n grows
large, Q,,.n, becomes close to perfection. For
example, for R, .,y to be within ¢ of 1.0, choose
n such that:

_ Ine

"= o (7)

fore =10"%and Q,, = 0.1, » = 6.

Equations 3 and 4, however, assume that the
detection of the failed operating module and the
switchover of a standby spare occur flawlessly.
This is not a valid asumption in complex sys-
tems, in which even failure detection is far from
perfect (a typical diagnostic program, for exam-
ple, may detect only 80-90 percent of possible
faults). As a result, the concept of coverage
[Wyle and Burnett, 1967; Bouricius, Carter, and
Schneider, 1969a, 1969b] has been introduced. In
this context, coverage is defined as the condition-
al probability that a system recovers, given there
has been a failure. What constitutes proper re-
covery is a strong function of the intended
application. It may mean merely establishing a
workable hardware system configuration (such
as telephone switching processors) or it may
demand that no data are lost or corrupted (such
as in transaction processing computers, used in
banks). Let coverage be denoted by ¢. Then, for
a.system with two modules:

Rsys = Rl + CRz(l - Rl) (8)

The first term is the probability that the first
module survives. The second term is the proba-
bility that the first module fails, the second is still
functioning, and a successful switchover was
accomplished. Note that if ¢ = 1 and R, = R,
= Rm? Rsys = 2Rm - Rgl =1- (1 - Rm)z- i
the modules are identical, then Equation 8 can
be generalized to:

-1 .
Ry, =R, _20 (1 - R, 9
i=
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This geometric progression can be evaluated by
noting that:

n A 1-— xrr-r-l
I
;gox - 1 —x
For0 < x <« 1
Hence:
1 —c"(1 - Rm)"

Rys = Rm( T—ai —R.) )
_ 1—c"0n
= Rm( 1=¢0, )

For RSys to be within e of 1.0, choose n such that:

_ (I - €)(I _ ch)
l"[l R, ] (10)
In(cQ,,)

Returning to the example where Ry =1 —
¢ for e = 107%, R, = 0.9, and ¢ = 1.0, it was
shown that n = 6 was sufficient. Now assume a
nonperfect, but still high coverage of ¢ = 0.99.
Even for n = oo, RsyS from Equation 9 is only
0.99889. For a more conservative coverage of
¢ = 09, the maximum value for Rsys with »
= oo is 0.989.

Tabie 5-3 Iists the values of system reliability
expressed by Equation 9 as a function of module
reliability (R,,), coverage (c), and number of
modules (n). Two things should be noted from
this table. First, as in all redundancy techniques,
the initial application of redundancy produces a
major decrease in system unreliability. Factors
of 10 or more are not uncommon. In a compari-
son of R, with R__for n = 2, the ratios of un-
reliability vary from a high of 9.09 to a low of 1.67.
However, once » is increased to 4, the great
majority of the system reliability improvement has
been realized. Second, the single most important
parameter is coverage. For high values of cover-
age (such a5 0.99) and a moderate number of mod-
ules (say, four to six), system reliability is almost
independent of module reliability over a wide
range. Although coverage is a mathematically
concise concept, it is often impossible to measure
(or indeed even estimate) in practice because so
many factors influence the final value of c.

H =

The MTTF of a standby sparing system can
be derived by integrating Equation 9.

MTTF (# modules)
o0 -l ;
=f0 Ry 2 c'(1=R,) dt

which can be rewritien for exponential reliability
as:

MTTF (n modules) = MTTF (n — I modules)
= n—1
+ ]{; R,c
n—1
X (1 — R, )" dt
= MTTF (# — 1 modules)
+ J‘;}x e—MCn—l
¥ (1 — e_?\')ﬂ_ldt

= MTTF {r» — } modules)

(11)

™
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The nth spare’s contribution to MTTF is ¢"~ ' /a
times that of a single module. If ¢ is not very
close to 1.0, the added spare’s contribution to
MTTF is negligible.

The impact of improving coverage can also be
demonstrated using mission time improvement.
Setting Equation 4, with r replaced by Ir, equal
to Equation 9, yields:

- =R0( g )

Solving for I gives:
! L 1~ Q.0

Equation 12 is tabulated in Table 5-4 and plotted
in Figure 5-5 for the value of R, (1} = 0.9. Both
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Table 5-3. = Standby system reliability for various values of module relfability,

coverage, and number of spares.

Coverage
n
0.99 0.9 0.8
R, 2 4 o 2 4 00 2 4 60
0.9 0.9891 0.9988 0.9989 0.9810 0.9889 ) 0.9890 0.9720 0.9782 0.9783
0.8 0.9584 0.9960 0.9975 0.9440 0.9746 0.9756 0.9280 09518 0.9524
0.7 0.5079 0.9880 0.9957 0.8890 0.9538 0.958¢ 0.8680 0.9180 0.9211
0.6 0.8376 0.968% 0.9934 0.8160 0.9218 0.9375 0.7920 0.8731 0.8824
0.5 0.7475 0.9307 0.9901 0.7250 0.8718 0.9091 0.7000 0.8120 (.8333

illustrate the high sensitivity to the coverage
parameter c.

M-of-N Systems

M-of-N systems are a generalization of the par-
allel model. However, instead of requiring only

" one of the N modules for the system to function.

M modules are required. Consider triple modular
redundancy (TMR), in which two of three must
function in order for the system to function.
Thus for module reliability R, :

3
Rymp = R, + (2)11,31(1 —-R,) (13)

Equation 13 enumerates all the working states.
The R}, term represents the state in which all
three modules function. The (3)}R%(1 — R,)

Table 5-4. Mission time improvement derived
from increasing coverage from the indicated value
to 1.0.

C n=12 n =4
028 1.738 4.601
0.85 1.579 4208
0.9 1.408 3.720
0.95 1.218 3.034
0.99 1.047 1.957

term rtepresents the three states in which one
module is failed and two are functional. Because
the modules are assumed to be identical, al} three
states need not be enumerated. Any combination
of two of the three modules is enumerated by the
3-take-2 combinatorial coefficient, denoted by
(3) where

(N) _ !
M) T WMy
60—
5.0+
1.0}

3.0

Mission time improvement

n=2

1ol_A,_t 1 1 L 1-10

0.80 0.85 0.90 0.95
Current coverage, ¢

Figure 5-5. Potential mission time improvement
with coverage increase from C to 1.0.
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The M-of-N model can be generalized as: If
there are /V identical modules with the reliability
of each module R,, (R, may be a single number.
such as a probability of success. or may be a
function of time), and if a task requires k mod-
ules, the system can tolerate up to N — k fail-
ures, and the reliability of such a system is:

SN v i
We will use the M-of-¥ model to make several
further points about system modeling, including
incorrect conclusions drawn from single para-
meter summaries and the effect on redundant
system reliability of extra logic- {e.g.. voters).
more detailed medeling, more accurate model-
ing, and nonredundant components.

Single and Multiple Parameters. To compare
different redundant systems, it is often desirable
to summarize their models by a single parameter.
The reliability may be an arbitrarily complex
function of time and the selection of the wrong

1.0 ¢
0.9

0.8 -—- —},_————-————Mission

0.7

summary parameter could lead to incorrect con-
clusions. Consider, for example, TMR and
MTTF. For the nonredundant system:

5
Rsimplex = e
|
MTTFsimplex = X

For TMR with an exponential rehability func-
tion:

Rpyp = (€)' + (?)(eﬁ)\')z(l — ™M)

— 38_2}“ _ 29*3?\{

3 2
MTTFTMR = ﬁ - ﬁ
5 1
= 6A < by = MTTFsimplex

Thus, by the MTTF summary, TMR is worse
than a simplex system. :
Figure 5-6 plots the reliability functions for a
simplex PDP-8 and a redundant PDP-§ (TMR

PDP-8/E {nonredundant) rekiability

i
i ;
[ 3 function
ool | INE PDP-8/E with TMR processor,
= | | SEC memory
Z o5k | |
o
£ ([ MTI[.8] = MT[8}/MT[.8]
& [ = 2212/1334
04 1 I = 166
t
o2 ||
o2p |1
Il-—}—m[.a] = 133 hrs .
0.1 2212 hrs

E
=)
N

B___I__LI_ 1 i | I 1 N ]

Hours

Figure 5-6.

6,000 8000 10,000 12,000 14,000

Relation of reliability function, mission time, and mission reliability.
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processor and Hamming coded memory). Even
though there is more area under the nonredun-
dant curve (e.g., MTTF), the redundant system
maintains a higher reliability for the first 6,000
hours of system life. Hence, comparison func-
tions such as Mission Time Improvement (MTI)
have been utilized to compare redundant sys-
tems in subregions of their operational life. The
redundant PDP-8 in Figure 5-6 operates at or
above a probability of success of 0.8, 66 percent
longer than the simplex PDP-8. The S-shaped
curve is typical of redundant systems; usually
there is a well-defined knee. Above the knee, the
redundant system has spare components that
tolerate failures and keep the probability of
system success high. Once the system has ex-
hausted its redundancy, however, there is merely
more hardware to fail (voters, switches, and
other elements that support the redundancy)
than in the nonredundant system. Thus, there is
a sharper decrease in the redundant system’s
reliability function.

When modeling redundant systems with re-

_ pair, single parameters such as MTTF may again

be appropriate since the repair process replenish-
es the redundancy. There is no exhaustion phe-
nomenon. This topic s discussed later in the
chapter. -

The Effect of Extra Logic in Redundant Sys-
fems.* In adding redundancy to a system, care
must be taken that the extra logic to control the
redundancy does not actually decrease the over-
all system reliability. Ingle and Siewiorek [1976]
model various switches proposed for hybrid re-
dundancy and show that the switch is a signifi-
cant factor in determining the overall system
reliability. A hybrd redundancy scheme with a
TMR core may have a maximum attainable
reliability for only one or two spares. Adding
spares complicates the switch enough to cause
the system reliability actually to decrease. There
are conditions under which the switch becomes
so complex that simple TMR would vield a
better solution.

* This section is based on Ingle and Siewiorek {1976].
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Consider the hybrid redundancy with a TMR
voter described in Chapter 3. If only one of the
three TMR core modules (those currently being
voted on} is assumed to, fail at a time, the system
fails only if all the modules fail or if all but one
module fails. The reliability of the hybrid system
with a TMR core and » — 3 spares is:

Rigbria = R X R,

X{1—nR, (1 — R, — (1 - R,)

m mn

where R, and R are the voter and switch reli-
abilities, respectively. Subtracting the system re-
liability for » modules from that for n + | mod-
ules:

Ry X (1= (n+ 1) X R, (1= R,)" — (1 = R, )"

m

~R, X (1 =nR, (1 =R = (1—R )

i "

= RSM' X ”Rlzﬂ(l - RI")H7E
This expression is positive for any 0 < R,
< land n > ]|. Therefore, under the assump-
tion that R, is independent of n, adding mod-

ules increases the system reliability, The switch
typically becomes more complex as more mod-
ules are added, although the dependence of the
switch complexity on »n will be a function of the
particular design. A reasonable assumption,
however, is that switch complexity grows nearly
linearly with n; that is, the addition of each
module to the system increases switch complex-
ity by a constant amount [Siewiorek and
McCluskey, 1973). Consequently, as a2 more real-
istic assumption we will consider the
R, to be p", where p is the reliability of the

switch component that must be added when a
module is added. Further, let p = R}, where a
is used to relate the relative complexities of the
incremental switch component to the basic mod-

ule. Hence, the system reliability is:
-1
Rhybrid = Rg?{l - an(l - Rm)”
- (l - R, )n}

)

e e
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standard SS81/MSI logic, Hamming code support
circuitry has a failure rate several times that of
the support circuitry for an equivalent nonredun-
dant memory. Most current commercial designs
use SSI/MSI support circuitry. Using more reli-
able LSI logic for ECC support would greatly
tmprove the total ECC memory reliability.

Reduction of the
Nonseries/ Nonparallel Case

Sometimes a “success” diagram is used to de-
scribe the operational modes of a system. Figure
5-21a depicts a success diagram that is not
directly reducible by application of the series/
parallel formulas. Each path from terminal x to
terminal y represents a configuration that leaves
the system successfully operational. The exact
reliability can be derived by expanding around a
single module:

R, =R, X P(system works | m works)
' 1)
+ (1 — R,,) X P(system works |m fails)
where the notation P(s|m) denotes the condition-
al probability “s given m has occurred.”
Selecting module B to expand around, Equa-
tion 21 yields the two reduced diagrams in
Figure 5-21b. In one, module B is replaced by a
“short” (module B works); in the other, module
B is replaced by an “open” (module B is failed

and not available). Using the series/parallel re-
ductions on the case where B is failed yields:

R, = Rg X P(system works | B works)

+(I = Ry} (Rp[t - (1 - RiRp) (22)
X (I = ReR-))

The case for module B working has to be further
reduced. Expanding around module € vields:

P(system works | B works)
= Re[Rp(L = (1 = R (1 — R}
“i’ (1 - RC){RA ‘RDRE}

Thus:
Ry = Rg[ReRp(Ry + Ry — R, Ry)
(1~ Rp)[Rp(Ry Ry +Ry R
Letting
RA =RB=RC=RD=RE=RF:RHI:
R, =R — 3R, + R: + 2R}
If the success diagram becomes too complex
to evaluate exactly, upper- and lower-limit ap-
proximations on R, . can be used. An upper-

5YS
bound on system reﬁabi]ity is [Essary and Pros-
chan, 1962]:

R <1-— H(] - Rpa[h i) (23)

5YS
where R ; is the serial reliability of path ..
Equation 23 calculates the system reliability as if
all paths were in parallel. Placing the paths in
parallel yields a Reliability Block Diagram
(RBD). Figure 5-22 shows the RBD of Figure

5-21. Equation 23 is an upperbound because the

paths are not independent; that is, the failure of
a single module affects more than one path.
Equation 23 is a close approximation when
Ry, ; 18 small,

Hence:

sys
X (1 = ReRC-Rp) (24)
Letting
RA =RB:RC:RD=RE=RF=RH?:

Ry, < 2R} + R — RS, — 2R + R
The RBD method can be altered to vield an
exact resuit. ‘

Because the paths are not independent, per-
form the multiplication in Equation 23 by re-

Figure 521
duced diag
(working) &
reduction v
module Cr

Figure 5-2.
Figure 5-21.
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Figure 5-21. A system success diagram. a.) Re-
duced diagram replacing module B by a “short”
(working) and an “open” (failed) b.) and further
reduction with module B “shorted” (working) and
module C replaced by an “open” and a “short” c.).

Figure 5-22. Reliability block diagram (RBD) of
Figure 5-21.
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placing R, with R, ; that is, an individual mod-
ule can only have its reliability raised to the first
power.

Rsys = RyRpR-Rp+ RyR: Ry,
“RyRgR-RpR;
+RcRp Ry — RyR-RpR-R,
—RyRpR-RpRp
+RyRyR Ry R Ry
Letting
Ry=Rg=Rr=Rp=Rg=Rr=R,:

Ry, = RS — 3R, + R + 2R},
which is the same result obtained from Equation
22. Setting all R/s to R,, has to occur after the
multiplication; otherwise, individual R;’s would
be raised to higher than the first power and the
result would be a lower bound. For obtaining
exact reliability, the RBD approach is more
suitable to noncomputerized calculations, be-
cause simplifying assumptions (such as R, = R,,
for all {) can be made before algebraic expan-
sion.

Essary and Proschan [1962] also define a lower
bound in terms of the minimal cut sets of the
system. Given that a minimal cut set is a list of
components such that removal of any compo-
nent from the list (by changing the component
from operational to failed) will cause the system
to change from operationdl to failed, a lower
bound is given by:

Rsys = H(ﬂ - cht i) (25)

where Qe ; is the probability that the minimal cut
i does not occur. The minimal cut sets for Figure
5-2la are D, AC, AF, CE, and BEF. Hence assum-
ing all modules are identical:

Ry = R(1 — (1 - R — (1 - R
and

Roys = 24R° — 60R® + 62R7 - 33R® + 9r® -~ R
:




