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Preface

The continuing popularity of Microwave Engineering is gratifying. I have received many
letters and emails from students and teachers from around the world with positive com-
ments and suggestions. I think one reason for its success is the emphasis on the funda-
mentals of electromagnetics, wave propagation, network analysis, and design principles
as applied to modern RF and microwave engineering. As I have stated in earlier editions,
I have tried to avoid the handbook approach in which a large amount of information is
presented with little or no explanation or context, but a considerable amount of material
in this book is related to the design of specific microwave circuits and components, for
both practical and motivational value. I have tried to base the analysis and logic behind
these designs on first principles, so the reader can see and understand the process of ap-
plying fundamental concepts to arrive at useful results. The engineer who has a firm grasp
of the basic concepts and principles of microwave engineering and knows how these can
be applied toward practical problems is the engineer who is the most likely to be rewarded
with a creative and productive career.

For this new edition I again solicited detailed feedback from teachers and readers for
their thoughts about how the book should be revised. The most common requests were
for more material on active circuits, noise, nonlinear effects, and wireless systems. This
edition, therefore, now has separate chapters on noise and nonlinear distortion, and ac-
tive devices. In Chapter 10, the coverage of noise has been expanded, along with more
material on intermodulation distortion and related nonlinear effects. For Chapter 11, on
active devices, I have added updated material on bipolar junction and field effect transis-
tors, including data for a number of commercial devices (Schottky and PIN diodes, and Si,
GaAs, GaN, and SiGe transistors), and these sections have been reorganized and rewritten.
Chapters 12 and 13 treat active circuit design, and discussions of differential amplifiers,
inductive degeneration for nMOS amplifiers, and differential FET and Gilbert cell mix-
ers have been added. In Chapter 14, on RF and microwave systems, I have updated and
added new material on wireless communications systems, including link budget, link mar-
gin, digital modulation methods, and bit error rates. The section on radiation hazards has
been updated and rewritten. Other new material includes a section on transients on trans-
mission lines (material that was originally in the first edition, cut from later editions, and
now brought back by popular demand), the theory of power waves, a discussion of higher
order modes and frequency effects for microstrip line, and a discussion of how to deter-
mine unloaded Q from resonator measurements. This edition also has numerous new or
revised problems and examples, including several questions of the “open-ended” variety.
Material that has been cut from this edition includes the quasi-static numerical analysis of
microstrip line and some material related to microwave tubes. Finally, working from the
original source files, I have made hundreds of corrections and rewrites of the original text.

v
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vi Preface

Today, microwave and RF technology is more pervasive than ever. This is especially
true in the commercial sector, where modern applications include cellular telephones,
smartphones, 3G and WiFi wireless networking, millimeter wave collision sensors for ve-
hicles, direct broadcast satellites for radio, television, and networking, global positioning
systems, radio frequency identification tagging, ultra wideband radio and radar systems,
and microwave remote sensing systems for the environment. Defense systems continue to
rely heavily on microwave technology for passive and active sensing, communications, and
weapons control systems. There should be no shortage of challenging problems in RF and
microwave engineering in the foreseeable future, and there will be a clear need for engi-
neers having both an understanding of the fundamentals of microwave engineering and the
creativity to apply this knowledge to problems of practical interest.

Modern RF and microwave engineering predominantly involves distributed circuit
analysis and design, in contrast to the waveguide and field theory orientation of earlier
generations. The majority of microwave engineers today design planar components and in-
tegrated circuits without direct recourse to electromagnetic analysis. Microwave computer-
aided design (CAD) software and network analyzers are the essential tools of today’s
microwave engineer, and microwave engineering education must respond to this shift in
emphasis to network analysis, planar circuits and components, and active circuit design.
Microwave engineering will always involve electromagnetics (many of the more sophisti-
cated microwave CAD packages implement rigorous field theory solutions), and students
will still benefit from an exposure to subjects such as waveguide modes and coupling
through apertures, but the change in emphasis to microwave circuit analysis and design
is clear.

This text is written for a two-semester course in RF and microwave engineering for
seniors or first-year graduate students. It is possible to use Microwave Engineering with or
without an electromagnetics emphasis. Many instructors today prefer to focus on circuit
analysis and design, and there is more than enough material in Chapters 2, 4–8, and 10–14
for such a program with minimal or no field theory requirement. Some instructors may wish
to begin their course with Chapter 14 on systems in order to provide some motivational
context for the study of microwave circuit theory and components. This can be done, but
some basic material on noise from Chapter 10 may be required.

Two important items that should be included in a successful course on microwave
engineering are the use of CAD simulation software and a microwave laboratory experi-
ence. Providing students with access to CAD software allows them to verify results of the
design-oriented problems in the text, giving immediate feedback that builds confidence and
makes the effort more rewarding. Because the drudgery of repetitive calculation is elimi-
nated, students can easily try alternative approaches and explore problems in more detail.
The effect of line losses, for example, is explored in several examples and problems; this
would be effectively impossible without the use of modern CAD tools. In addition, class-
room exposure to CAD tools provides useful experience upon graduation. Most of the
commercially available microwave CAD tools are very expensive, but several manufactur-
ers provide academic discounts or free “student versions” of their products. Feedback from
reviewers was almost unanimous, however, that the text should not emphasize a particular
software product in the text or in supplementary materials.

A hands-on microwave instructional laboratory is expensive to equip but provides the
best way for students to develop an intuition and physical feeling for microwave phenom-
ena. A laboratory with the first semester of the course might cover the measurement of
microwave power, frequency, standing wave ratio, impedance, and scattering parameters,
as well as the characterization of basic microwave components such as tuners, couplers,
resonators, loads, circulators, and filters. Important practical knowledge about connectors,
waveguides, and microwave test equipment will be acquired in this way. A more advanced
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laboratory session can consider topics such as noise figure, intermodulation distortion, and
mixing. Naturally, the type of experiments that can be offered is heavily dependent on the
test equipment that is available.

Additional resources for students and instructors are available on the Wiley website.
These include PowerPoint slides, a suggested laboratory manual, and an online solution
manual for all problems in the text (available to qualified instructors, who may apply for
access at the website http://he-cda.wiley.com/wileycda/).
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C h a p t e r O n e

Electromagnetic Theory

We begin our study of microwave engineering with a brief overview of the history and
major applications of microwave technology, followed by a review of some of the fundamental
topics in electromagnetic theory that we will need throughout the book. Further discussion of
these topics may be found in references [1–8].

1.1 INTRODUCTION TO MICROWAVE ENGINEERING

The field of radio frequency (RF) and microwave engineering generally covers the behavior
of alternating current signals with frequencies in the range of 100 MHz (1 MHz = 106 Hz)
to 1000 GHz (1 GHz = 109 Hz). RF frequencies range from very high frequency (VHF)
(30–300 MHz) to ultra high frequency (UHF) (300–3000 MHz), while the term microwave
is typically used for frequencies between 3 and 300 GHz, with a corresponding electrical
wavelength between λ = c/ f = 10 cm and λ = 1 mm, respectively. Signals with wave-
lengths on the order of millimeters are often referred to as millimeter waves. Figure 1.1
shows the location of the RF and microwave frequency bands in the electromagnetic spec-
trum. Because of the high frequencies (and short wavelengths), standard circuit theory
often cannot be used directly to solve microwave network problems. In a sense, standard
circuit theory is an approximation, or special case, of the broader theory of electromag-
netics as described by Maxwell’s equations. This is due to the fact that, in general, the
lumped circuit element approximations of circuit theory may not be valid at high RF and
microwave frequencies. Microwave components often act as distributed elements, where
the phase of the voltage or current changes significantly over the physical extent of the de-
vice because the device dimensions are on the order of the electrical wavelength. At much
lower frequencies the wavelength is large enough that there is insignificant phase variation
across the dimensions of a component. The other extreme of frequency can be identified
as optical engineering, in which the wavelength is much shorter than the dimensions of the
component. In this case Maxwell’s equations can be simplified to the geometrical optics
regime, and optical systems can be designed with the theory of geometrical optics. Such

1
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2 Chapter 1: Electromagnetic Theory
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L band
S band
C band
X band
Ku band
K band
Ka band
U band
V band
E band
W band
F band

300 kHz–3 MHz
3 MHz–30 MHz
30 MHz–300 MHz
300 MHz–3 GHz
1–2 GHz
2–4 GHz
4–8 GHz
8–12 GHz
12–18 GHz
18–26 GHz
26–40 GHz
40–60 GHz
50–75 GHz
60–90 GHz
75–110 GHz
90–140 GHz

FIGURE 1.1 The electromagnetic spectrum.

techniques are sometimes applicable to millimeter wave systems, where they are referred
to as quasi-optical.

In RF and microwave engineering, then, one must often work with Maxwell’s equa-
tions and their solutions. It is in the nature of these equations that mathematical complexity
arises since Maxwell’s equations involve vector differential or integral operations on vec-
tor field quantities, and these fields are functions of spatial coordinates. One of the goals
of this book is to try to reduce the complexity of a field theory solution to a result that
can be expressed in terms of simpler circuit theory, perhaps extended to include distributed
elements (such as transmission lines) and concepts (such as reflection coefficients and scat-
tering parameters). A field theory solution generally provides a complete description of the
electromagnetic field at every point in space, which is usually much more information than
we need for most practical purposes. We are typically more interested in terminal quanti-
ties such as power, impedance, voltage, and current, which can often be expressed in terms
of these extended circuit theory concepts. It is this complexity that adds to the challenge,
as well as the rewards, of microwave engineering.

Applications of Microwave Engineering

Just as the high frequencies and short wavelengths of microwave energy make for diffi-
culties in the analysis and design of microwave devices and systems, these same aspects
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provide unique opportunities for the application of microwave systems. The following con-
siderations can be useful in practice:

� Antenna gain is proportional to the electrical size of the antenna. At higher frequen-
cies, more antenna gain can be obtained for a given physical antenna size, and this
has important consequences when implementing microwave systems.

� More bandwidth (directly related to data rate) can be realized at higher frequencies.
A 1% bandwidth at 600 MHz is 6 MHz, which (with binary phase shift keying
modulation) can provide a data rate of about 6 Mbps (megabits per second), while
at 60 GHz a 1% bandwidth is 600 MHz, allowing a 600 Mbps data rate.

� Microwave signals travel by line of sight and are not bent by the ionosphere as are
lower frequency signals. Satellite and terrestrial communication links with very high
capacities are therefore possible, with frequency reuse at minimally distant locations.

� The effective reflection area (radar cross section) of a radar target is usually propor-
tional to the target’s electrical size. This fact, coupled with the frequency character-
istics of antenna gain, generally makes microwave frequencies preferred for radar
systems.

� Various molecular, atomic, and nuclear resonances occur at microwave frequencies,
creating a variety of unique applications in the areas of basic science, remote sens-
ing, medical diagnostics and treatment, and heating methods.

The majority of today’s applications of RF and microwave technology are to wire-
less networking and communications systems, wireless security systems, radar systems,
environmental remote sensing, and medical systems. As the frequency allocations listed
in Figure 1.1 show, RF and microwave communications systems are pervasive, especially
today when wireless connectivity promises to provide voice and data access to “anyone,
anywhere, at any time.”

Modern wireless telephony is based on the concept of cellular frequency reuse, a tech-
nique first proposed by Bell Labs in 1947 but not practically implemented until the 1970s.
By this time advances in miniaturization, as well as increasing demand for wireless com-
munications, drove the introduction of several early cellular telephone systems in Europe,
the United States, and Japan. The Nordic Mobile Telephone (NMT) system was deployed
in 1981 in the Nordic countries, the Advanced Mobile Phone System (AMPS) was intro-
duced in the United States in 1983 by AT&T, and NTT in Japan introduced its first mobile
phone service in 1988. All of these early systems used analog FM modulation, with their
allocated frequency bands divided into several hundred narrow band voice channels. These
early systems are usually referred to now as first-generation cellular systems, or 1G.

Second-generation (2G) cellular systems achieved improved performance by using
various digital modulation schemes, with systems such as GSM, CDMA, DAMPS, PCS,
and PHS being some of the major standards introduced in the 1990s in the United States,
Europe, and Japan. These systems can handle digitized voice, as well as some limited data,
with data rates typically in the 8 to 14 kbps range. In recent years there has been a wide
variety of new and modified standards to transition to handheld services that include voice,
texting, data networking, positioning, and Internet access. These standards are variously
known as 2.5G, 3G, 3.5G, 3.75G, and 4G, with current plans to provide data rates up to at
least 100 Mbps. The number of subscribers to wireless services seems to be keeping pace
with the growing power and access provided by modern handheld wireless devices; as of
2010 there were more than five billion cell phone users worldwide.

Satellite systems also depend on RF and microwave technology, and satellites have been
developed to provide cellular (voice), video, and data connections worldwide. Two large
satellite constellations, Iridium and Globalstar, were deployed in the late 1990s to provide
worldwide telephony service. Unfortunately, these systems suffered from both technical
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drawbacks and weak business models and have led to multibillion dollar financial failures.
However, smaller satellite systems, such as the Global Positioning Satellite (GPS) system
and the Direct Broadcast Satellite (DBS) system, have been extremely successful.

Wireless local area networks (WLANs) provide high-speed networking between com-
puters over short distances, and the demand for this capability is expected to remain strong.
One of the newer examples of wireless communications technology is ultra wide band
(UWB) radio, where the broadcast signal occupies a very wide frequency band but with a
very low power level (typically below the ambient radio noise level) to avoid interference
with other systems.

Radar systems find application in military, commercial, and scientific fields. Radar is
used for detecting and locating air, ground, and seagoing targets, as well as for missile
guidance and fire control. In the commercial sector, radar technology is used for air traffic
control, motion detectors (door openers and security alarms), vehicle collision avoidance,
and distance measurement. Scientific applications of radar include weather prediction, re-
mote sensing of the atmosphere, the oceans, and the ground, as well as medical diagnostics
and therapy. Microwave radiometry, which is the passive sensing of microwave energy
emitted by an object, is used for remote sensing of the atmosphere and the earth, as well as
in medical diagnostics and imaging for security applications.

A Short History of Microwave Engineering

Microwave engineering is often considered a fairly mature discipline because the funda-
mental concepts were developed more than 50 years ago, and probably because radar, the
first major application of microwave technology, was intensively developed as far back as
World War II. However, recent years have brought substantial and continuing developments
in high-frequency solid-state devices, microwave integrated circuits, and computer-aided
design techniques, and the ever-widening applications of RF and microwave technology to
wireless communications, networking, sensing, and security have kept the field active and
vibrant.

The foundations of modern electromagnetic theory were formulated in 1873 by James
Clerk Maxwell, who hypothesized, solely from mathematical considerations, electromag-
netic wave propagation and the idea that light was a form of electromagnetic energy.
Maxwell’s formulation was cast in its modern form by Oliver Heaviside during the period
from 1885 to 1887. Heaviside was a reclusive genius whose efforts removed many of the
mathematical complexities of Maxwell’s theory, introduced vector notation, and provided
a foundation for practical applications of guided waves and transmission lines. Heinrich
Hertz, a German professor of physics and a gifted experimentalist who understood the the-
ory published by Maxwell, carried out a set of experiments during the period 1887–1891
that validated Maxwell’s theory of electromagnetic waves. Figure 1.2 is a photograph of
the original equipment used by Hertz in his experiments. It is interesting to observe that
this is an instance of a discovery occurring after a prediction has been made on theoretical
grounds—a characteristic of many of the major discoveries throughout the history of sci-
ence. All of the practical applications of electromagnetic theory—radio, television, radar,
cellular telephones, and wireless networking—owe their existence to the theoretical work
of Maxwell.

Because of the lack of reliable microwave sources and other components, the rapid
growth of radio technology in the early 1900s occurred primarily in the HF to VHF range.
It was not until the 1940s and the advent of radar development during World War II that
microwave theory and technology received substantial interest. In the United States, the
Radiation Laboratory was established at the Massachusetts Institute of Technology to de-
velop radar theory and practice. A number of talented scientists, including N. Marcuvitz,
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FIGURE 1.2 Original apparatus used by Hertz for his electromagnetics experiments. (1) 50 MHz
transmitter spark gap and loaded dipole antenna. (2) Wire grid for polarization ex-
periments. (3) Vacuum apparatus for cathode ray experiments. (4) Hot-wire gal-
vanometer. (5) Reiss or Knochenhauer spirals. (6) Rolled-paper galvanometer. (7)
Metal sphere probe. (8) Reiss spark micrometer. (9) Coaxial line. (10–12) Equip-
ment to demonstrate dielectric polarization effects. (13) Mercury induction coil
interrupter. (14) Meidinger cell. (15) Bell jar. (16) Induction coil. (17) Bunsen
cells. (18) Large-area conductor for charge storage. (19) Circular loop receiving
antenna. (20) Eight-sided receiver detector. (21) Rotating mirror and mercury inter-
rupter. (22) Square loop receiving antenna. (23) Equipment for refraction and dielec-
tric constant measurement. (24) Two square loop receiving antennas. (25) Square
loop receiving antenna. (26) Transmitter dipole. (27) Induction coil. (28) Coaxial
line. (29) High-voltage discharger. (30) Cylindrical parabolic reflector/receiver. (31)
Cylindrical parabolic reflector/transmitter. (32) Circular loop receiving antenna.
(33) Planar reflector. (34, 35) Battery of accumulators. Photographed on October
1, 1913, at the Bavarian Academy of Science, Munich, Germany, with Hertz’s as-
sistant, Julius Amman.

Photograph and identification courtesy of J. H. Bryant.

I. I. Rabi, J. S. Schwinger, H. A. Bethe, E. M. Purcell, C. G. Montgomery, and R. H. Dicke,
among others, gathered for a very intensive period of development in the microwave field.
Their work included the theoretical and experimental treatment of waveguide components,
microwave antennas, small-aperture coupling theory, and the beginnings of microwave net-
work theory. Many of these researchers were physicists who returned to physics research
after the war, but their microwave work is summarized in the classic 28-volume Radiation
Laboratory Series of books that still finds application today.

Communications systems using microwave technology began to be developed soon
after the birth of radar, benefiting from much of the work that was originally done for
radar systems. The advantages offered by microwave systems, including wide bandwidths
and line-of-sight propagation, have proved to be critical for both terrestrial and satellite
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communications systems and have thus provided an impetus for the continuing develop-
ment of low-cost miniaturized microwave components. We refer the interested reader to
references [1] and [2] for further historical perspectives on the fields of wireless commu-
nications and microwave engineering.

1.2 MAXWELL’S EQUATIONS

Electric and magnetic phenomena at the macroscopic level are described by Maxwell’s
equations, as published by Maxwell in 1873. This work summarized the state of electro-
magnetic science at that time and hypothesized from theoretical considerations the exis-
tence of the electrical displacement current, which led to the experimental discovery by
Hertz of electromagnetic wave propagation. Maxwell’s work was based on a large body of
empirical and theoretical knowledge developed by Gauss, Ampere, Faraday, and others. A
first course in electromagnetics usually follows this historical (or deductive) approach, and
it is assumed that the reader has had such a course as a prerequisite to the present material.
Several references are available [3–7] that provide a good treatment of electromagnetic
theory at the undergraduate or graduate level.

This chapter will outline the fundamental concepts of electromagnetic theory that we
will require later in the book. Maxwell’s equations will be presented, and boundary condi-
tions and the effect of dielectric and magnetic materials will be discussed. Wave phenom-
ena are of essential importance in microwave engineering, and thus much of the chapter is
spent on topics related to plane waves. Plane waves are the simplest form of electromag-
netic waves and so serve to illustrate a number of basic properties associated with wave
propagation. Although it is assumed that the reader has studied plane waves before, the
present material should help to reinforce the basic principles in the reader’s mind and per-
haps to introduce some concepts that the reader has not seen previously. This material will
also serve as a useful reference for later chapters.

With an awareness of the historical perspective, it is usually advantageous from a
pedagogical point of view to present electromagnetic theory from the “inductive,” or ax-
iomatic, approach by beginning with Maxwell’s equations. The general form of time-
varying Maxwell equations, then, can be written in “point,” or differential, form as

∇ × Ē = −∂B̄
∂t

− M̄, (1.1a)

∇ × H̄ = ∂D̄
∂t

+ J̄ , (1.1b)

∇ · D̄ = ρ, (1.1c)

∇ · B̄ = 0. (1.1d)

The MKS system of units is used throughout this book. The script quantities represent
time-varying vector fields and are real functions of spatial coordinates x, y, z, and the time
variable t . These quantities are defined as follows:

Ē is the electric field, in volts per meter (V/m).1

H̄ is the magnetic field, in amperes per meter (A/m).

1 As recommended by the IEEE Standard Definitions of Terms for Radio Wave Propagation, IEEE Standard
211-1997, the terms “electric field” and “magnetic field” are used in place of the older terminology of “electric
field intensity” and “magnetic field intensity.”
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D̄ is the electric flux density, in coulombs per meter squared (Coul/m2).

B̄ is the magnetic flux density, in webers per meter squared (Wb/m2).

M̄ is the (fictitious) magnetic current density, in volts per meter (V/m2).

J̄ is the electric current density, in amperes per meter squared (A/m2).

ρ is the electric charge density, in coulombs per meter cubed (Coul/m3).

The sources of the electromagnetic field are the currents M̄ and J̄ and the electric
charge density ρ. The magnetic current M̄ is a fictitious source in the sense that it is
only a mathematical convenience: the real source of a magnetic current is always a loop
of electric current or some similar type of magnetic dipole, as opposed to the flow of an
actual magnetic charge (magnetic monopole charges are not known to exist). The magnetic
current is included here for completeness, as we will have occasion to use it in Chapter 4
when dealing with apertures. Since electric current is really the flow of charge, it can be
said that the electric charge density ρ is the ultimate source of the electromagnetic field.

In free-space, the following simple relations hold between the electric and magnetic
field intensities and flux densities:

B̄ = µ0H̄, (1.2a)

D̄ = ε0Ē, (1.2b)

where µ0 = 4π × 10−7 henry/m is the permeability of free-space, and ε0 = 8.854 × 10−12

farad/m is the permittivity of free-space. We will see in the next section how media other
than free-space affect these constitutive relations.

Equations (1.1a)–(1.1d) are linear but are not independent of each other. For instance,
consider the divergence of (1.1a). Since the divergence of the curl of any vector is zero
[vector identity (B.12), from Appendix B], we have

∇ · ∇ × Ē = 0 = − ∂

∂t
(∇ · B̄) − ∇ · M̄.

Since there is no free magnetic charge, ∇ · M̄ = 0, which leads to ∇ · B̄ = 0, or (1.1d).
The continuity equation can be similarly derived by taking the divergence of (1.1b), giving

∇ · J̄ + ∂ρ

∂t
= 0, (1.3)

where (1.1c) was used. This equation states that charge is conserved, or that current is
continuous, since ∇ · J̄ represents the outflow of current at a point, and ∂ρ/∂t represents
the charge buildup with time at the same point. It is this result that led Maxwell to the
conclusion that the displacement current density ∂D̄/∂t was necessary in (1.1b), which
can be seen by taking the divergence of this equation.

The above differential equations can be converted to integral form through the use of
various vector integral theorems. Thus, applying the divergence theorem (B.15) to (1.1c)
and (1.1d) yields

∮
S
D̄ · ds̄ =

∫
V

ρ dv = Q, (1.4)

∮
S
B̄ · ds̄ = 0, (1.5)
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C
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FIGURE 1.3 The closed contour C and surface S associated with Faraday’s law.

where Q in (1.4) represents the total charge contained in the closed volume V (enclosed
by a closed surface S). Applying Stokes’ theorem (B.16) to (1.1a) gives

∮
C
Ē · dl̄ = − ∂

∂t

∫
S
B̄ · ds̄ −

∫
S
M̄ · ds̄, (1.6)

which, without the M̄ term, is the usual form of Faraday’s law and forms the basis for
Kirchhoff’s voltage law. In (1.6), C represents a closed contour around the surface S, as
shown in Figure 1.3. Ampere’s law can be derived by applying Stokes’ theorem to (1.1b):

∮
C
H̄ · dl̄ = ∂

∂t

∫
S
D̄ · ds̄ +

∫
S
J̄ · ds̄ = ∂

∂t

∫
S
D̄ · ds̄ + I, (1.7)

where I = ∫
S J̄ · ds̄ is the total electric current flow through the surface S. Equations

(1.4)–(1.7) constitute the integral forms of Maxwell’s equations.
The above equations are valid for arbitrary time dependence, but most of our work will

be involved with fields having a sinusoidal, or harmonic, time dependence, with steady-
state conditions assumed. In this case phasor notation is very convenient, and so all field
quantities will be assumed to be complex vectors with an implied e jωt time dependence
and written with roman (rather than script) letters. Thus, a sinusoidal electric field polarized
in the x̂ direction of the form

Ē(x, y, z, t) = x̂ A (x, y, z) cos (ωt + φ), (1.8)

where A is the (real) amplitude, ω is the radian frequency, and φ is the phase reference of
the wave at t = 0, has the phasor for

Ē(x, y, z) = x̂ A(x, y, z)e jφ. (1.9)

We will assume cosine-based phasors in this book, so the conversion from phasor quanti-
ties to real time-varying quantities is accomplished by multiplying the phasor by e jωt and
taking the real part:

Ē(x, y, z, t) = Re{Ē(x, y, z)e jωt }, (1.10)

as substituting (1.9) into (1.10) to obtain (1.8) demonstrates. When working in phasor
notation, it is customary to suppress the factor e jωt that is common to all terms.

When dealing with power and energy we will often be interested in the time average of
a quadratic quantity. This can be found very easily for time harmonic fields. For example,
the average of the square of the magnitude of an electric field, given as

Ē = x̂ E1 cos(ωt + φ1) + ŷE2 cos(ωt + φ2) + ẑE2 cos(ωt + φ3), (1.11)

has the phasor form

Ē = x̂ E1e jφ1 + ŷE2e jφ2 + ẑE3e jφ3, (1.12)
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can be calculated as

|Ē |2avg = 1

T

∫ T

0
Ē · Ē dt

= 1

T

∫ T

0

[
E2

1 cos2(ωt + φ1) + E2
2 cos2(ωt + φ2) + E2

3 cos2(ωt + φ3)
]

dt

= 1

2

(
E2

1 + E2
2 + E2

3

) = 1

2
|Ē |2 = 1

2
Ē · Ē∗. (1.13)

Then the root-mean-square (rms) value is |Ē |rms = |Ē |/√2.
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FIGURE 1.4 Arbitrary volume, surface, and line currents. (a) Arbitrary electric and magnetic vol-
ume current densities. (b) Arbitrary electric and magnetic surface current densities
in the z = z0 plane. (c) Arbitrary electric and magnetic line currents. (d) Infinitesi-
mal electric and magnetic dipoles parallel to the x-axis.
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Assuming an e jωt time dependence, we can replace the time derivatives in (1.1a)–
(1.1d) with jω. Maxwell’s equations in phasor form then become

∇ × Ē = − jω B̄ − M̄, (1.14a)

∇ × H̄ = jωD̄ + J̄ , (1.14b)

∇ · D̄ = ρ, (1.14c)

∇ · B̄ = 0. (1.14d)

The Fourier transform can be used to convert a solution to Maxwell’s equations for an
arbitrary frequency ω into a solution for arbitrary time dependence.

The electric and magnetic current sources, J̄ and M̄ , in (1.14) are volume current
densities with units A/m2 and V/m2. In many cases, however, the actual currents will be in
the form of a current sheet, a line current, or an infinitesimal dipole current. These special
types of current distributions can always be written as volume current densities through
the use of delta functions. Figure 1.4 shows examples of this procedure for electric and
magnetic currents.

1.3 FIELDS IN MEDIA AND BOUNDARY CONDITIONS

In the preceding section it was assumed that the electric and magnetic fields were in free-
space, with no material bodies present. In practice, material bodies are often present; this
complicates the analysis but also allows the useful application of material properties to
microwave components. When electromagnetic fields exist in material media, the field
vectors are related to each other by the constitutive relations.

For a dielectric material, an applied electric field Ē causes the polarization of the
atoms or molecules of the material to create electric dipole moments that augment the
total displacement flux, D̄. This additional polarization vector is called P̄e, the electric
polarization, where

D̄ = ε0 Ē + P̄e. (1.15)

In a linear medium the electric polarization is linearly related to the applied electric field
as

P̄e = ε0χe Ē, (1.16)

where χe, which may be complex, is called the electric susceptibility. Then,

D̄ = ε0 Ē + P̄e = ε0(1 + χe)Ē = ε Ē, (1.17)

where

ε = ε′ − jε′′ = ε0(1 + χe) (1.18)

is the complex permittivity of the medium. The imaginary part of ε accounts for loss in
the medium (heat) due to damping of the vibrating dipole moments. (Free-space, having a
real ε, is lossless.) Due to energy conservation, as we will see in Section 1.6, the imaginary
part of ε must be negative (ε′′ positive). The loss of a dielectric material may also be
considered as an equivalent conductor loss. In a material with conductivity σ , a conduction
current density will exist:

J̄ = σ Ē, (1.19)



c01ElectromagneticTheory Pozar July 28, 2011 8:7

1.3 Fields in Media and Boundary Conditions 11

which is Ohm’s law from an electromagnetic field point of view. Maxwell’s curl equation
for H̄ in (1.14b) then becomes

∇ × H̄ = jωD̄ + J̄

= jωε Ē + σ Ē

= jωε′ Ē + (ωε′′ + σ)Ē

= jω
(
ε′ − jε′′ − j

σ

ω

)
Ē, (1.20)

where it is seen that loss due to dielectric damping (ωε′′) is indistinguishable from conduc-
tivity loss (σ). The term ωε′′ + σ can then be considered as the total effective conductivity.
A related quantity of interest is the loss tangent, defined as

tan δ = ωε′′ + σ

ωε′ , (1.21)

which is seen to be the ratio of the real to the imaginary part of the total displacement
current. Microwave materials are usually characterized by specifying the real relative per-
mittivity (the dielectric constant),2 εr , with ε′ = εrε0, and the loss tangent at a certain fre-
quency. These properties are listed in Appendix G for several types of materials. It is useful
to note that, after a problem has been solved assuming a lossless dielectric, loss can eas-
ily be introduced by replacing the real ε with a complex ε = ε′ − jε′′ = ε′(1 − j tan δ) =
ε0εr (1 − j tan δ).

In the preceding discussion it was assumed that P̄e was a vector in the same direction
as Ē . Such materials are called isotropic materials, but not all materials have this property.
Some materials are anisotropic and are characterized by a more complicated relation be-
tween P̄e and Ē , or D̄ and Ē . The most general linear relation between these vectors takes
the form of a tensor of rank two (a dyad), which can be written in matrix form as

[ Dx

Dy

Dz

]
=

[
εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

] [ Ex

Ey

Ez

]
= [ε]

[ Ex

Ey

Ez

]
. (1.22)

It is thus seen that a given vector component of Ē gives rise, in general, to three components
of D̄. Crystal structures and ionized gases are examples of anisotropic dielectrics. For a
linear isotropic material, the matrix of (1.22) reduces to a diagonal matrix with elements ε.

An analogous situation occurs for magnetic materials. An applied magnetic field may
align magnetic dipole moments in a magnetic material to produce a magnetic polarization
(or magnetization) P̄m . Then,

B̄ = µ0(H̄ + P̄m). (1.23)

For a linear magnetic material, P̄m is linearly related to H̄ as

P̄m = χm H̄ , (1.24)

where χm is a complex magnetic susceptibility. From (1.23) and (1.24),

B̄ = µ0(1 + χm)H̄ = µH̄ , (1.25)

2 The IEEE Standard Definitions of Terms for Radio Wave Propagation, IEEE Standard 211-1997, suggests
that the term “relative permittivity” be used instead of “dielectric constant.” The IEEE Standard Definitions of
Terms for Antennas, IEEE Standard 145-1993, however, still recognizes “dielectric constant.” Since this term
is commonly used in microwave engineering work, it will occasionally be used in this book.
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where µ = µ0(1 + χm) = µ′ − jµ′′ is the complex permeability of the medium. Again,
the imaginary part of χm or µ accounts for loss due to damping forces; there is no magnetic
conductivity because there is no real magnetic current. As in the electric case, magnetic
materials may be anisotropic, in which case a tensor permeability can be written as

[ Bx

By

Bz

]
=

[
µxx µxy µxz

µyx µyy µyz

µzx µzy µzz

] [ Hx

Hy

Hz

]
= [µ]

[ Hx

Hy

Hz

]
. (1.26)

An important example of anisotropic magnetic materials in microwave engineering is the
class of ferrimagnetic materials known as ferrites; these materials and their applications
will be discussed further in Chapter 9.

If linear media are assumed (ε, µ not depending on Ē or H̄), then Maxwell’s equa-
tions can be written in phasor form as

∇ × Ē = − jωµH̄ − M̄, (1.27a)

∇ × H̄ = jωε Ē + J̄ , (1.27b)

∇ · D̄ = ρ, (1.27c)

∇ · B̄ = 0. (1.27d)

The constitutive relations are

D̄ = ε Ē, (1.28a)

B̄ = µH̄ , (1.28b)

where ε and µ may be complex and may be tensors. Note that relations like (1.28a) and
(1.28b) generally cannot be written in time domain form, even for linear media, because of
the possible phase shift between D̄ and Ē , or B̄ and H̄ . The phasor representation accounts
for this phase shift by the complex form of ε and µ.

Maxwell’s equations (1.27a)–(1.27d) in differential form require known boundary val-
ues for a complete and unique solution. A general method used throughout this book is to
solve the source-free Maxwell equations in a certain region to obtain solutions with un-
known coefficients and then apply boundary conditions to solve for these coefficients. A
number of specific cases of boundary conditions arise, as discussed in what follows.

Fields at a General Material Interface

Consider a plane interface between two media, as shown in Figure 1.5. Maxwell’s equa-
tions in integral form can be used to deduce conditions involving the normal and tangential

Bn2

Bn1

Ht1

Et2

Dn2

Dn1Et1

Ht2

Medium 2: �2, �2

Medium 1: �1, �1

n
Js

Ms�s
ˆ

FIGURE 1.5 Fields, currents, and surface charge at a general interface between two media.
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Dn2

Dn1

Medium 2

Medium 1

n

�s

∆S

s

h

ˆ

FIGURE 1.6 Closed surface S for equation (1.29).

fields at this interface. The time-harmonic version of (1.4), where S is the closed “pillbox”-
shaped surface shown in Figure 1.6, can be written as

∮
S

D̄ · ds̄ =
∫

V
ρ dv. (1.29)

In the limit as h → 0, the contribution of Dtan through the sidewalls goes to zero, so (1.29)
reduces to

�SD2n − �SD1n = �Sρs,

or

D2n − D1n = ρs, (1.30)

where ρs is the surface charge density on the interface. In vector form, we can write

n̂ · (D̄2 − D̄1) = ρs . (1.31)

A similar argument for B̄ leads to the result that

n̂ · B̄2 = n̂ · B̄1, (1.32)

because there is no free magnetic charge.
For the tangential components of the electric field we use the phasor form of (1.6),

∮
C

Ē · dl̄ = − jω
∫

S
B̄ · ds̄ −

∫
S

M̄ · ds̄, (1.33)

in connection with the closed contour C shown in Figure 1.7. In the limit as h → 0, the
surface integral of B̄ vanishes (because S = h�� vanishes). The contribution from the
surface integral of M̄ , however, may be nonzero if a magnetic surface current density M̄s

exists on the surface. The Dirac delta function can then be used to write

M̄ = M̄sδ(h), (1.34)

where h is a coordinate measured normal from the interface. Equation (1.33) then gives

��Et1 − ��Et2 = −��Ms,

Medium 2

Medium 1

nEt2 Msn

Et1

S

C
h

∆ l

ˆ

FIGURE 1.7 Closed contour C for equation (1.33).
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or

Et1 − Et2 = −Ms, (1.35)

which can be generalized in vector form as

(Ē2 − Ē1) × n̂ = M̄s . (1.36)

A similar argument for the magnetic field leads to

n̂ × (H̄2 − H̄1) = J̄s, (1.37)

where J̄s is an electric surface current density that may exist at the interface. Equations
(1.31), (1.32), (1.36), and (1.37) are the most general expressions for the boundary condi-
tions at an arbitrary interface of materials and/or surface currents.

Fields at a Dielectric Interface

At an interface between two lossless dielectric materials, no charge or surface current den-
sities will ordinarily exist. Equations (1.31), (1.32), (1.36), and (1.37) then reduce to

n̂ · D̄1 = n̂ · D̄2, (1.38a)

n̂ · B̄1 = n̂ · B̄2, (1.38b)

n̂ × Ē1 = n̂ × Ē2, (1.38c)

n̂ × H̄1 = n̂ × H̄2. (1.38d)

In words, these equations state that the normal components of D̄ and B̄ are continuous
across the interface, and the tangential components of Ē and H̄ are continuous across the
interface. Because Maxwell’s equations are not all linearly independent, the six boundary
conditions contained in the above equations are not all linearly independent. Thus, the
enforcement of (1.38c) and (1.38d) for the four tangential field components, for example,
will automatically force the satisfaction of the equations for the continuity of the normal
components.

Fields at the Interface with a Perfect Conductor (Electric Wall)

Many problems in microwave engineering involve boundaries with good conductors (e.g.,
metals), which can often be assumed as lossless (σ → ∞). In this case of a perfect con-
ductor, all field components must be zero inside the conducting region. This result can
be seen by considering a conductor with finite conductivity (σ < ∞) and noting that the
skin depth (the depth to which most of the microwave power penetrates) goes to zero as
σ → ∞. (Such an analysis will be performed in Section 1.7.) If we also assume here that
M̄s = 0, which would be the case if the perfect conductor filled all the space on one side
of the boundary, then (1.31), (1.32), (1.36), and (1.37) reduce to the following:

n̂ · D̄ = ρs, (1.39a)

n̂ · B̄ = 0, (1.39b)

n̂ × Ē = 0, (1.39c)

n̂ × H̄ = J̄s, (1.39d)

where ρs and J̄s are the electric surface charge density and current density, respectively, on
the interface, and n̂ is the normal unit vector pointing out of the perfect conductor. Such
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a boundary is also known as an electric wall because the tangential components of Ē are
“shorted out,” as seen from (1.39c), and must vanish at the surface of the conductor.

The Magnetic Wall Boundary Condition

Dual to the preceding boundary condition is the magnetic wall boundary condition, where
the tangential components of H̄ must vanish. Such a boundary does not really exist in
practice but may be approximated by a corrugated surface or in certain planar transmission
line problems. In addition, the idealization that n̂ × H̄ = 0 at an interface is often a con-
venient simplification, as we will see in later chapters. We will also see that the magnetic
wall boundary condition is analogous to the relations between the voltage and current at
the end of an open-circuited transmission line, while the electric wall boundary condition
is analogous to the voltage and current at the end of a short-circuited transmission line.
The magnetic wall condition, then, provides a degree of completeness in our formulation
of boundary conditions and is a useful approximation in several cases of practical interest.

The fields at a magnetic wall satisfy the following conditions:

n̂ · D̄ = 0, (1.40a)

n̂ · B̄ = 0, (1.40b)

n̂ × Ē = −M̄s, (1.40c)

n̂ × H̄ = 0, (1.40d)

where n̂ is the normal unit vector pointing out of the magnetic wall region.

The Radiation Condition

When dealing with problems that have one or more infinite boundaries, such as plane
waves in an infinite medium, or infinitely long transmission lines, a condition on the fields
at infinity must be enforced. This boundary condition is known as the radiation condition
and is essentially a statement of energy conservation. It states that, at an infinite distance
from a source, the fields must either be vanishingly small (i.e., zero) or propagating in an
outward direction. This result can easily be seen by allowing the infinite medium to contain
a small loss factor (as any physical medium would have). Incoming waves (from infinity)
of finite amplitude would then require an infinite source at infinity and so are disallowed.

1.4 THE WAVE EQUATION AND BASIC PLANE WAVE SOLUTIONS

The Helmholtz Equation

In a source-free, linear, isotropic, homogeneous region, Maxwell’s curl equations in phasor
form are

∇ × Ē = − jωµH̄ , (1.41a)

∇ × H̄ = jωε Ē, (1.41b)

and constitute two equations for the two unknowns, Ē and H̄ . As such, they can be solved
for either Ē or H̄ . Taking the curl of (1.41a) and using (1.41b) gives

∇ × ∇ × Ē = − jωµ∇ × H̄ = ω2µε Ē,
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which is an equation for Ē . This result can be simplified through the use of vector identity
(B.14), ∇ × ∇ × Ā = ∇(∇ · Ā) − ∇2 Ā, which is valid for the rectangular components of
an arbitrary vector Ā. Then,

∇2 Ē + ω2µε Ē = 0, (1.42)

because ∇ · Ē = 0 in a source-free region. Equation (1.42) is the wave equation, or
Helmholtz equation, for Ē . An identical equation for H̄ can be derived in the same manner:

∇2 H̄ + ω2µε H̄ = 0. (1.43)

A constant k = ω
√

µε is defined and called the propagation constant (also known as the
phase constant, or wave number), of the medium; its units are 1/m.

As a way of introducing wave behavior, we will next study the solutions to the above
wave equations in their simplest forms, first for a lossless medium and then for a lossy
(conducting) medium.

Plane Waves in a Lossless Medium

In a lossless medium, ε and µ are real numbers, and so k is real. A basic plane wave solution
to the above wave equations can be found by considering an electric field with only an x̂
component and uniform (no variation) in the x and y directions. Then, ∂/∂x = ∂/∂y = 0,
and the Helmholtz equation of (1.42) reduces to

∂2 Ex

∂z2
+ k2 Ex = 0. (1.44)

The two independent solutions to this equation are easily seen, by substitution, to be of the
form

Ex (z) = E+e− jkz + E−e jkz, (1.45)

where E+ and E− are arbitrary amplitude constants.
The above solution is for the time harmonic case at frequency ω. In the time domain,

this result is written as

Ex (z, t) = E+ cos(ωt − kz) + E− cos(ωt + kz), (1.46)

where we have assumed that E+ and E− are real constants. Consider the first term in
(1.46). This term represents a wave traveling in the +z direction because, to maintain a
fixed point on the wave (ωt − kz = constant), one must move in the +z direction as time
increases. Similarly, the second term in (1.46) represents a wave traveling in the negative z
direction—hence the notation E+ and E− for these wave amplitudes. The velocity of the
wave in this sense is called the phase velocity because it is the velocity at which a fixed
phase point on the wave travels, and it is given by

vp = dz

dt
= d

dt

(
ωt − constant

k

)
= ω

k
= 1√

µε
(1.47)

In free-space, we have vp = 1/
√

µ0ε0 = c = 2.998 × 108 m/sec, which is the speed of
light.

The wavelength, λ, is defined as the distance between two successive maxima (or
minima, or any other reference points) on the wave at a fixed instant of time. Thus,

(ωt − kz) − [ωt − k(z + λ)] = 2π,
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so

λ = 2π

k
= 2πvp

ω
= vp

f
. (1.48)

A complete specification of the plane wave electromagnetic field should include the
magnetic field. In general, whenever Ē or H̄ is known, the other field vector can be readily
found by using one of Maxwell’s curl equations. Thus, applying (1.41a) to the electric field
of (1.45) gives Hx = Hz = 0, and

Hy = j

ωµ

∂ Ex

∂z
= 1

η
(E+e− jkz − E−e jkz), (1.49)

where η = ωµ/k = √
µ/ε is known as the intrinsic impedance of the medium. The ratio

of the Ē and H̄ field components is seen to have units of impedance, known as the wave
impedance; for planes waves the wave impedance is equal to the intrinsic impedance of the
medium. In free-space the intrinsic impedance is η0 = √

µ0/ε0 = 377 �. Note that the Ē
and H̄ vectors are orthogonal to each other and orthogonal to the direction of propagation
(±ẑ); this is a characteristic of transverse electromagnetic (TEM) waves.

EXAMPLE 1.1 BASIC PLANE WAVE PARAMETERS

A plane wave propagating in a lossless dielectric medium has an electric field
given as Ex = E0 cos(ωt − βz) with a frequency of 5.0 GHz and a wavelength
in the material of 3.0 cm. Determine the propagation constant, the phase velocity,
the relative permittivity of the medium, and the wave impedance.

Solution

From (1.48) the propagation constant is k = 2π

λ
= 2π

0.03
= 209.4 m−1, and from

(1.47) the phase velocity is

vp = ω

k
= 2π f

k
= λ f = (0.03) (5 × 109) = 1.5 × 108 m/sec.

This is slower than the speed of light by a factor of 2.0. The relative permittivity
of the medium can be found from (1.47) as

εr =
(

c

vp

)2

=
(

3.0 × 108

1.5 × 108

)2

= 4.0

The wave impedance is

η = η0/
√

εr = 377√
4.0

= 188.5 � ■

Plane Waves in a General Lossy Medium

Now consider the effect of a lossy medium. If the medium is conductive, with a conductiv-
ity σ , Maxwell’s curl equations can be written, from (1.41a) and (1.20) as

∇ × Ē = − jωµH̄ , (1.50a)

∇ × H̄ = jωε Ē + σ Ē . (1.50b)
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The resulting wave equation for Ē then becomes

∇2 Ē + ω2µε
(

1 − j
σ

ωε

)
Ē = 0, (1.51)

where we see a similarity with (1.42), the wave equation for Ē in the lossless case. The
difference is that the quantity k2 = ω2µε of (1.42) is replaced by ω2µε[1 − j (σ/ωε)] in
(1.51). We then define a complex propagation constant for the medium as

γ = α + jβ = jω
√

µε

√
1 − j

σ

ωε
(1.52)

where α is the attenuation constant and β is the phase constant. If we again assume an
electric field with only an x̂ component and uniform in x and y, the wave equation of
(1.51) reduces to

∂2 Ex

∂z2
− γ 2 Ex = 0, (1.53)

which has solutions

Ex (z) = E+e−γ z + E−eγ z . (1.54)

The positive traveling wave then has a propagation factor of the form

e−γ z = e−αze− jβz,

which in the time domain is of the form

e−αz cos(ωt − βz).

We see that this represents a wave traveling in the +z direction with a phase velocity
vp = ω/β, a wavelength λ = 2π/β, and an exponential damping factor. The rate of decay
with distance is given by the attenuation constant, α. The negative traveling wave term of
(1.54) is similarly damped along the −z axis. If the loss is removed, σ = 0, and we have
γ = jk and α = 0, β = k.

As discussed in Section 1.3, loss can also be treated through the use of a complex
permittivity. From (1.52) and (1.20) with σ = 0 but ε = ε′ − jε′′ complex, we have that

γ = jω
√

µε = jk = jω
√

µε′(1 − j tan δ), (1.55)

where tan δ = ε′′/ε′ is the loss tangent of the material.
The associated magnetic field can be calculated as

Hy = j

ωµ

∂ Ex

∂z
= − jγ

ωµ
(E+e−γ z − E−eγ z). (1.56)

The intrinsic impedance of the conducting medium is now complex,

η = jωµ

γ
, (1.57)

but is still identified as the wave impedance, which expresses the ratio of electric to mag-
netic field components. This allows (1.56) to be rewritten as

Hy = 1

η
(E+e−γ z − E−eγ z). (1.58)

Note that although η of (1.57) is, in general, complex, it reduces to the lossless case of
η = √

µ/ε when γ = jk = jω
√

µε.
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Plane Waves in a Good Conductor

Many problems of practical interest involve loss or attenuation due to good (but not perfect)
conductors. A good conductor is a special case of the preceding analysis, where the con-
ductive current is much greater than the displacement current, which means that σ � ωε.
Most metals can be categorized as good conductors. In terms of a complex ε, rather than
conductivity, this condition is equivalent to ε′′ � ε′. The propagation constant of (1.52)
can then be adequately approximated by ignoring the displacement current term, to give

γ = α + jβ � jω
√

µε

√
σ

jωε
= (1 + j)

√
ωµσ

2
. (1.59)

The skin depth, or characteristic depth of penetration, is defined as

δs = 1

α
=

√
2

ωµσ
. (1.60)

Thus the amplitude of the fields in the conductor will decay by an amount 1/e, or 36.8%,
after traveling a distance of one skin depth, because e−αz = e−αδs = e−1. At microwave
frequencies, for a good conductor, this distance is very small. The practical importance of
this result is that only a thin plating of a good conductor (e.g., silver or gold) is necessary
for low-loss microwave components.

EXAMPLE 1.2 SKIN DEPTH AT MICROWAVE FREQUENCIES

Compute the skin depth of aluminum, copper, gold, and silver at a frequency of
10 GHz.

Solution
The conductivities for these metals are listed in Appendix F. Equation (1.60) gives
the skin depths as

δs =
√

2

ωµσ
=

√
1

π f µ0σ
=

√
1

π(1010)(4π × 10−7)

√
1

σ

= 5.03 × 10−3

√
1

σ
.

For aluminum: δs = 5.03 × 10−3

√
1

3.816 × 107 = 8.14 × 10−7m.

For copper: δs = 5.03 × 10−3

√
1

5.813 × 107 = 6.60 × 10−7m.

For gold: δs = 5.03 × 10−3

√
1

4.098 × 107 = 7.86 × 10−7m.

For silver: δs = 5.03 × 10−3

√
1

6.173 × 107 = 6.40 × 10−7m.

These results show that most of the current flow in a good conductor occurs in an
extremely thin region near the surface of the conductor. ■
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TABLE 1.1 Summary of Results for Plane Wave Propagation in Various Media

Type of Medium

Lossless General Good Conductor

Quantity (ε′′ = σ = 0) Lossy (ε′′ � ε′ or σ � ωε′)

Complex propagation γ = jω
√

µε γ = jω
√

µε γ = (1 + j)
√

ωµσ/2

constant = jω
√

µε′
√

1 − j
σ

ωε′
Phase constant β = k = ω

√
µε β = Im{γ } β = Im{γ } = √

ωµσ/2

(wave number)

Attenuation constant α = 0 α = Re{γ } α = Re{γ } = √
ωµσ/2

Impedance η = √
µ/ε = ωµ/k η = jωµ/γ η = (1 + j)

√
ωµ/2σ

Skin depth δs = ∞ δs = 1/α δs = √
2/ωµσ

Wavelength λ = 2π/β λ = 2π/β λ = 2π/β

Phase velocity vp = ω/β vp = ω/β vp = ω/β

The intrinsic impedance inside a good conductor can be obtained from (1.57) and
(1.59). The result is

η = jωµ

γ
� (1 + j)

√
ωµ

2σ
= (1 + j)

1

σδs
. (1.61)

Notice that the phase angle of this impedance is 45◦, a characteristic of good conductors.
The phase angle of the impedance for a lossless material is 0◦, and the phase angle of the
impedance of an arbitrary lossy medium is somewhere between 0◦ and 45◦.

Table 1.1 summarizes the results for plane wave propagation in lossless and lossy
homogeneous media.

1.5 GENERAL PLANE WAVE SOLUTIONS

Some specific features of plane waves were discussed in Section 1.4, but we will now
look at plane waves from a more general point of view and solve the wave equation by
the method of separation of variables. This technique will find application in succeeding
chapters. We will also discuss circularly polarized plane waves, which will be important
for the discussion of ferrites in Chapter 9.

In free-space, the Helmholtz equation for Ē can be written as

∇2 Ē + k2
0 Ē = ∂2 Ē

∂x2
+ ∂2 Ē

∂y2
+ ∂2 Ē

∂z2
+ k2

0 Ē = 0, (1.62)

and this vector wave equation holds for each rectangular component of Ē :

∂2 Ei

∂x2
+ ∂2 Ei

∂y2
+ ∂2 Ei

∂z2
+ k2

0 Ei = 0, (1.63)

where the index i = x, y, or z. This equation can be solved by the method of separation of
variables, a standard technique for treating such partial differential equations. The method
begins by assuming that the solution to (1.63) for, say, Ex , can be written as a product of
three functions for each of the three coordinates:

Ex (x, y, z) = f (x)g(y)h(z). (1.64)
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Substituting this form into (1.63) and dividing by f gh gives

f ′′

f
+ g′′

g
+ h′′

h
+ k2

0 = 0, (1.65)

where the double primes denote the second derivative. The key step in the argument is to
recognize that each of the terms in (1.65) must be equal to a constant because they are
independent of each other. That is, f ′′/ f is only a function of x , and the remaining terms
in (1.65) do not depend on x , so f ′′/ f must be a constant, and similarly for the other terms
in (1.65). Thus, we define three separation constants, kx , ky , and kz , such that

f ′′/ f = −k2
x ; g′′/g = −k2

y; h′′/h = −k2
z ;

or

d2 f

dx2
+ k2

x f = 0; d2g

dy2
+ k2

y g = 0; d2h

dz2
+ k2

z h = 0. (1.66)

Combining (1.65) and (1.66) shows that

k2
x + k2

y + k2
z = k2

0 . (1.67)

The partial differential equation of (1.63) has now been reduced to three separate ordinary
differential equations in (1.66). Solutions to these equations have the forms e± jkx x , e± jky y ,
and e± jkz z , respectively. As we saw in the previous section, the terms with + signs result
in waves traveling in the negative x, y, or z direction, while the terms with − signs result
in waves traveling in the positive direction. Both solutions are possible and are valid; the
amount to which these various terms are excited is dependent on the source of the fields and
the boundary conditions. For our present discussion we will select a plane wave traveling
in the positive direction for each coordinate and write the complete solution for Ex as

Ex (x, y, z) = Ae− j (kx x+ky y+kz z), (1.68)

where A is an arbitrary amplitude constant. Now define a wave number vector k̄ as

k̄ = kx x̂ + ky ŷ + kz ẑ = k0n̂. (1.69)

Then from (1.67), |k̄| = k0, and so n̂ is a unit vector in the direction of propagation. Also
define a position vector as

r̄ = x x̂ + y ŷ + zẑ; (1.70)

then (1.68) can be written as

Ex (x, y, z) = Ae− j k̄·r̄ . (1.71)

Solutions to (1.63) for Ey and Ez are, of course, similar in form to Ex of (1.71), but with
different amplitude constants:

Ey(x, y, z) = Be− j k̄·r̄ , (1.72)

Ez(x, y, z) = Ce− j k̄·r̄ . (1.73)

The x, y, and z dependences of the three components of Ē in (1.71)–(1.73) must be the
same (same kx , ky, kz), because the divergence condition that

∇ · Ē = ∂ Ex

∂x
+ ∂ Ey

∂y
+ ∂ Ez

∂z
= 0
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must also be applied in order to satisfy Maxwell’s equations, and this implies that Ex , Ey ,
and Ez must each have the same variation in x , y, and z. (Note that the solutions in the
preceding section automatically satisfied the divergence condition because Ex was the only
component of Ē , and Ex did not vary with x .) This condition also imposes a constraint on
the amplitudes A, B, and C because if

Ē0 = Ax̂ + B ŷ + Cẑ,

we have

Ē = Ē0e− j k̄·r̄ ,

and

∇ · Ē = ∇ · (Ē0e− j k̄·r̄ ) = Ē0 · ∇e− j k̄·r̄ = − j k̄ · Ē0e− j k̄·r̄ = 0,

where vector identity (B.7) was used. Thus, we must have

k̄ · Ē0 = 0, (1.74)

which means that the electric field amplitude vector Ē0 must be perpendicular to the direc-
tion of propagation, k̄. This condition is a general result for plane waves and implies that
only two of the three amplitude constants, A, B, and C , can be chosen independently.

The magnetic field can be found from Maxwell’s equation,

∇ × Ē = − jωµ0 H̄ , (1.75)

to give

H̄ = j

ωµ0
∇ × Ē = j

ωµ0
∇ × (Ē0e− j k̄·r̄ )

= − j

ωµ0
Ē0 × ∇e− j k̄·r̄

= − j

ωµ0
Ē0 × (− j k̄)e− j k̄·r̄

= k0

ωµ0
n̂ × Ē0e− j k̄·r̄

= 1

η0
n̂ × Ē0e− j k̄·r̄

= 1

η0
n̂ × Ē, (1.76)

where vector identity (B.9) was used in obtaining the second line. This result shows that
the magnetic field vector H̄ lies in a plane normal to k̄, the direction of propagation, and
that H̄ is perpendicular to Ē . See Figure 1.8 for an illustration of these vector relations.
The quantity η0 = √

µ0/ε0 = 377 � in (1.76) is the intrinsic impedance of free-space.
The time domain expression for the electric field can be found as

Ē(x, y, z, t) = Re
{

Ē(x, y, z)e jωt}
= Re

{
Ē0e− j k̄·r̄ e jωt}

= Ē0 cos(k̄ · r̄ − ωt), (1.77)
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FIGURE 1.8 Orientation of the Ē, H̄ , and k̄ = k0n̂ vectors for a general plane wave.

assuming that the amplitude constants A, B, and C contained in Ē0 are real. If these
constants are not real, their phases should be included inside the cosine term of (1.77). It
is easy to show that the wavelength and phase velocity for this solution are the same as
obtained in Section 1.4.

EXAMPLE 1.3 CURRENT SHEETS AS SOURCES OF PLANE WAVES

An infinite sheet of surface current can be considered as a source for plane waves.
If an electric surface current density J̄s = J0 x̂ exists on the z = 0 plane in free-
space, find the resulting fields by assuming plane waves on either side of the
current sheet and enforcing boundary conditions.

Solution
Since the source does not vary with x or y, the fields will not vary with x or y but
will propagate away from the source in the ±z direction. The boundary conditions
to be satisfied at z = 0 are

n̂ × (Ē2 − Ē1) = ẑ × (Ē2 − Ē1) = 0,

n̂ × (H̄2 − H̄1) = ẑ × (H̄2 − H̄1) = J0 x̂,

where Ē1, H̄1 are the fields for z < 0, and Ē2, H̄2 are the fields for z > 0. To
satisfy the second condition, H̄ must have a ŷ component. Then for Ē to be or-
thogonal to H̄ and ẑ, Ē must have an x̂ component. Thus the fields will have the
following form:

for z < 0, Ē1 = x̂ Aη0e jk0z,

H̄1 = −ŷ Ae jk0z,

for z > 0, Ē2 = x̂ Bη0e− jk0z,

H̄2 = ŷ Be− jk0z,

where A and B are arbitrary amplitude constants. The first boundary condition,
that Ex is continuous at z = 0, yields A = B, while the boundary condition for
H̄ yields the equation

−B − A = J0.

Solving for A, B gives

A = B = −J0/2,

which completes the solution. ■
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Circularly Polarized Plane Waves

The plane waves discussed previously all had their electric field vector pointing in a fixed
direction and so are called linearly polarized waves. In general, the polarization of a plane
wave refers to the orientation of the electric field vector, which may be in a fixed direction
or may change with time.

Consider the superposition of an x̂ linearly polarized wave with amplitude E1 and a ŷ
linearly polarized wave with amplitude E2, both traveling in the positive ẑ direction. The
total electric field can be written as

Ē = (E1 x̂ + E2 ŷ)e− jk0z . (1.78)

A number of possibilities now arise. If E1 
= 0 and E2 = 0, we have a plane wave linearly
polarized in the x̂ direction. Similarly, if E1 = 0 and E2 
= 0, we have a plane wave linearly
polarized in the ŷ direction. If E1 and E2 are both real and nonzero, we have a plane wave
linearly polarized at the angle

φ = tan−1 E2

E1
.

For example, if E1 = E2 = E0, we have

Ē = E0(x̂ + ŷ)e− jk0z,

which represents an electric field vector at a 45◦ angle from the x-axis.
Now consider the case in which E1 = j E2 = E0, where E0 is real, so that

Ē = E0(x̂ − j ŷ)e− jk0z . (1.79)

The time domain form of this field is

Ē(z, t) = E0[x̂ cos(ωt − k0z) + ŷ cos(ωt − k0z − π/2)]. (1.80)

This expression shows that the electric field vector changes with time or, equivalently, with
distance along the z-axis. To see this, pick a fixed position, say z = 0. Equation (1.80) then
reduces to

Ē(0, t) = E0[x̂ cos ωt + ŷ sin ωt], (1.81)

so as ωt increases from zero, the electric field vector rotates counterclockwise from the
x-axis. The resulting angle from the x-axis of the electric field vector at time t , at z = 0, is
then

φ = tan−1
(

sin ωt

cos ωt

)
= ωt,

which shows that the polarization rotates at the uniform angular velocity ω. Since the
fingers of the right hand point in the direction of rotation of the electric field vector when
the thumb points in the direction of propagation, this type of wave is referred to as a right-
hand circularly polarized (RHCP) wave. Similarly, a field of the form

Ē = E0(x̂ + j ŷ)e− jk0z (1.82)

constitutes a left-hand circularly polarized (LHCP) wave, where the electric field vector
rotates in the opposite direction. See Figure 1.9 for a sketch of the polarization vectors for
RHCP and LHCP plane waves.

The magnetic field associated with a circularly polarized wave may be found from
Maxwell’s equations or by using the wave impedance applied to each component of the
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FIGURE 1.9 Electric field polarization for (a) RHCP and (b) LHCP plane waves.

electric field. For example, applying (1.76) to the electric field of a RHCP wave as given
in (1.79) yields

H̄ = E0

η0
ẑ × (x̂ − j ŷ)e− jk0z = E0

η0
(ŷ + j x̂)e− jk0z = j E0

η0
(x̂ − j ŷ)e− jk0z,

which is also seen to represent a vector rotating in the RHCP sense.

1.6 ENERGY AND POWER

In general, a source of electromagnetic energy sets up fields that store electric and magnetic
energy and carry power that may be transmitted or dissipated as loss. In the sinusoidal
steady-state case, the time-average stored electric energy in a volume V is given by

We = 1

4
Re

∫
V

Ē · D̄∗ dv, (1.83)

which in the case of simple lossless isotropic, homogeneous, linear media, where ε is a
real scalar constant, reduces to

We = ε

4

∫
V

Ē · Ē∗ dv. (1.84)

Similarly, the time-average magnetic energy stored in the volume V is

Wm = 1

4
Re

∫
V

H̄ · B̄∗ dv, (1.85)

which becomes

Wm = µ

4

∫
V

H̄ · H̄∗ dv, (1.86)

for a real, constant, scalar µ.
We can now derive Poynting’s theorem, which leads to energy conservation for elec-

tromagnetic fields and sources. If we have an electric source current J̄s and a conduction
current σ Ē as defined in (1.19), then the total electric current density is J̄ = J̄s + σ Ē .
Multiplying (1.27a) by H̄∗ and multiplying the conjugate of (1.27b) by Ē yields

H̄∗ · (∇ × Ē) = − jωµ|H̄ |2 − H̄∗ · M̄s,

Ē · (∇ × H̄∗) = Ē · J̄ ∗ − jωε∗|Ē |2 = Ē · J̄ ∗
s + σ |Ē |2 − jωε∗|Ē |2,
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FIGURE 1.10 A volume V , enclosed by the closed surface S, containing fields Ē, H̄ , and current
sources J̄s , M̄s .

where M̄s is the magnetic source current. Using these two results in vector identity (B.8)
gives

∇ · (Ē × H̄∗) = H̄∗ · (∇ × Ē) − Ē · (∇ × H̄∗)
= −σ |Ē |2 + jω(ε∗|Ē |2 − µ|H̄ |2) − (Ē · J̄ ∗

s + H̄∗ · M̄s).

Now integrate over a volume V and use the divergence theorem:∫
V

∇ · (Ē × H̄∗) dv =
∮

S
Ē × H̄∗ · ds̄

= −σ

∫
V

|Ē |2 dv + jω
∫

V
(ε∗|Ē |2 − µ|H̄ |2) dv −

∫
V
(Ē · J̄ ∗

s + H̄∗ · M̄s) dv, (1.87)

where S is a closed surface enclosing the volume V , as shown in Figure 1.10. Allowing
ε = ε′ − jε′′ and µ = µ′ − jµ′′ to be complex to allow for loss, and rewriting (1.87),
gives

− 1

2

∫
V
(Ē · J̄ ∗

s + H̄∗ · M̄s) dv = 1

2

∮
S

Ē × H̄∗ · ds̄ + σ

2

∫
V

|Ē |2 dv

+ω

2

∫
V
(ε′′|Ē |2 + µ′′|H̄ |2) dv + j

ω

2

∫
V
(µ′|H̄ |2 − ε′|Ē |2) dv. (1.88)

This result is known as Poynting’s theorem, after the physicist J. H. Poynting (1852–1914),
and is basically a power balance equation. Thus, the integral on the left-hand side repre-
sents the complex power Ps delivered by the sources J̄s and M̄s inside S:

Ps = −1

2

∫
V
(Ē · J̄ ∗

s + H̄∗ · M̄s) dv. (1.89)

The first integral on the right-hand side of (1.88) represents complex power flow out of the
closed surface S. If we define a quantity S̄, called the Poynting vector, as

S̄ = Ē × H̄∗, (1.90)

then this power can be expressed as

Po = 1

2

∮
S

Ē × H̄∗ · ds̄ = 1

2

∮
S

S̄ · ds̄. (1.91)

The surface S in (1.91) must be a closed surface for this interpretation to be valid. The
real parts of Ps and Po in (1.89) and (1.91) represent time-average powers.

The second and third integrals in (1.88) are real quantities representing the time-
average power dissipated in the volume V due to conductivity, dielectric, and magnetic
losses. If we define this power as P� we have

P� = σ

2

∫
V

|Ē |2 dv + ω

2

∫
V
(ε′′|Ē |2 + µ′′|H̄ |2) dv, (1.92)
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which is sometimes referred to as Joule’s law. The last integral in (1.88) can be seen to be
related to the stored electric and magnetic energies, as defined in (1.84) and (1.86).

With the above definitions, Poynting’s theorem can be rewritten as

Ps = Po + P� + 2 jω(Wm − We). (1.93)

In words, this complex power balance equation states that the power delivered by the
sources (Ps) is equal to the sum of the power transmitted through the surface (Po),
the power lost to heat in the volume (P�), and 2ω times the net reactive energy stored
in the volume.

Power Absorbed by a Good Conductor

Practical transmission lines involve imperfect conductors, leading to attenuation and power
losses, as well as the generation of noise. To calculate loss and attenuation due to an im-
perfect conductor we must find the power dissipated in the conductor. We will show that
this can be accomplished using only the fields at the surface of the conductor, which is a
very helpful simplification when calculating attenuation.

Consider the geometry of Figure 1.11, which shows the interface between a lossless
medium and a good conductor. A field is incident from z < 0, and the field penetrates into
the conducting region, z > 0. The real average power entering the conductor volume de-
fined by the cross-sectional area S0 at the interface and the surface S is given from (1.91) as

Pavg = 1

2
Re

∫
S0+S

Ē × H̄∗ · n̂ ds, (1.94)

where n̂ is a unit normal vector pointing into the closed surface S0 + S, and Ē, H̄ are the
fields over this surface. The contribution to the integral in (1.94) from the surface S can
be made zero by proper selection of this surface. For example, if the field is a normally
incident plane wave, the Poynting vector S̄ = Ē × H̄∗ will be in the ẑ direction, and so
tangential to the top, bottom, front, and back of S, if these walls are made parallel to the
z-axis. If the wave is obliquely incident, these walls can be slanted to obtain the same
result. If the conductor is good, the decay of the fields away from the interface at z = 0
will be very rapid, so the right-hand end of S can be made far enough away from z = 0
such that there is negligible contribution to the integral from this part of the surface S. The

n

n
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z

x

S0

P

n = z
�, �

� >> ��

ˆ ˆ

ˆ

ˆ

FIGURE 1.11 An interface between a lossless medium and a good conductor with a closed sur-
face S0 + S for computing the power dissipated in the conductor.
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time-average power entering the conductor through S0 can then be written as

Pavg = 1

2
Re

∫
S0

Ē × H̄∗ · ẑ ds. (1.95)

From vector identity (B.3) we have

ẑ · (Ē × H̄∗) = (ẑ × Ē) · H̄∗ = ηH̄ · H̄∗, (1.96)

since H̄ = n̂ × Ē/η, as generalized from (1.76) for conductive media, where η is the in-
trinsic impedance (complex) of the conductor. Equation (1.95) can then be written as

Pavg = Rs

2

∫
S0

|H̄ |2 ds, (1.97)

where

Rs = Re{η} = Re

{
(1 + j)

√
ωµ

2σ

}
=

√
ωµ

2σ
= 1

σδs
(1.98)

is defined as the surface resistance of the conductor. The magnetic field H̄ in (1.97) is
tangential to the conductor surface and needs only to be evaluated at the surface of the con-
ductor; since Ht is continuous at z = 0, it does not matter whether this field is evaluated
just outside the conductor or just inside the conductor. In the next section we will show
how (1.97) can be evaluated in terms of a surface current density flowing on the surface of
the conductor, where the conductor can be approximated as perfect.

1.7 PLANE WAVE REFLECTION FROM A MEDIA INTERFACE

A number of problems to be considered in later chapters involve the behavior of electro-
magnetic fields at the interface of various types of media, including lossless media, lossy
media, a good conductor, or a perfect conductor, and so it is beneficial at this time to study
the reflection of a plane wave normally incident from free-space onto a half-space of an
arbitrary material. The geometry is shown in Figure 1.12, where the material half-space
z > 0 is characterized by the parameters ε, µ, and σ .

General Medium

With no loss of generality we can assume that the incident plane wave has an electric field
vector oriented along the x-axis and is propagating along the positive z-axis. The incident

x

�0, �0 �, �, �

z

Ei

Er

Et

FIGURE 1.12 Plane wave reflection from an arbitrary medium; normal incidence.
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fields can then be written, for z < 0, as

Ēi = x̂ E0e− jk0z, (1.99a)

H̄i = ŷ
1

η0
E0e− jk0z, (1.99b)

where η0 is the impedance of free-space and E0 is an arbitrary amplitude. Also in the
region z < 0, a reflected wave may exist with the form

Ēr = x̂�E0e+ jk0z, (1.100a)

H̄r = −ŷ
�

η0
E0e+ jk0z, (1.100b)

where � is the unknown reflection coefficient of the reflected electric field. Note that in
(1.100), the sign in the exponential terms has been chosen as positive, to represent waves
traveling in the −ẑ direction of propagation, as derived in (1.46). This is also consis-
tent with the Poynting vector S̄r = Ēr × H̄∗

r = −|�|2|E0|2 ẑ/η0, which shows power to
be traveling in the −ẑ direction for the reflected wave.

As shown in Section 1.4, from equations (1.54) and (1.58), the transmitted fields for
z > 0 in the lossy medium can be written as

Ēt = x̂TE0e−γ z, (1.101a)

H̄t = ŷTE0

η
e−γ z, (1.101b)

where T is the transmission coefficient of the transmitted electric field and η is the intrinsic
impedance (complex) of the lossy medium in the region z > 0. From (1.57) and (1.52) the
intrinsic impedance is

η = jωµ

γ
, (1.102)

and the propagation constant is

γ = α + jβ = jω
√

µε
√

1 − jσ/ωε. (1.103)

We now have a boundary value problem where the general form of the fields are known
via (1.99)–(1.101) on either side of the material discontinuity at z = 0. The two unknown
constants � and T are found by applying boundary conditions for Ex and Hy at z = 0.
Since these tangential field components must be continuous at z = 0, we arrive at the fol-
lowing two equations:

1 + � = T, (1.104a)

1 − �

η0
= T

η
. (1.104b)

Solving these equations for the reflection and transmission coefficients gives

� = η − η0

η + η0
, (1.105a)

T = 1 + � = 2η

η + η0
. (1.105b)

This is a general solution for reflection and transmission of a normally incident wave at the
interface of an arbitrary material, where η is the intrinsic impedance of the material. We
now consider three special cases of this result.
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Lossless Medium

If the region for z > 0 is a lossless dielectric, then σ = 0, and µ and ε are real quantities.
The propagation constant in this case is purely imaginary and can be written as

γ = jβ = jω
√

µε = jk0
√

µrεr , (1.106)

where k0 = ω
√

µ0ε0 is the propagation constant (wave number) of a plane wave in free-
space. The wavelength in the dielectric is

λ = 2π

β
= 2π

ω
√

µε
= λ0√

µrεr
, (1.107)

the phase velocity is

vp = ω

β
= 1√

µε
= c√

µrεr
, (1.108)

(slower than the speed of light in free-space) and the intrinsic impedance of the dielectric is

η = jωµ

γ
=

√
µ

ε
= η0

√
µr

εr
. (1.109)

For this lossless case, η is real, so both � and T from (1.105) are real, and Ē and H̄ are in
phase with each other in both regions.

Power conservation for the incident, reflected, and transmitted waves can be demon-
strated by computing the Poynting vectors in the two regions. Thus, for z < 0, the complex
Poynting vector is found from the total fields in this region as

S̄− = Ē × H̄∗ = (Ēi + Ēr ) × (H̄i + H̄r )
∗

= ẑ|E0|2 1

η0
(e− jk0z + �e jk0z)(e− jk0z − �e jk0z)∗

= ẑ|E0|2 1

η0
(1 − |�|2 + �e2 jk0z − �∗e−2 jk0z)

= ẑ|E0|2 1

η0
(1 − |�|2 + 2 j� sin 2k0z), (1.110a)

since � is real. For z > 0 the complex Poynting vector is

S̄+ = Ēt × H̄∗
t = ẑ

|E0|2|T |2
η

,

which can be rewritten, using (1.105), as

S̄+ = ẑ|E0|2 4η

(η + η0)2
= ẑ|E0|2 1

η0
(1 − |�|2). (1.110b)

Now observe that at z = 0, S̄− = S̄+, so that complex power flow is conserved across the
interface. Next consider the time-average power flow in the two regions. For z < 0 the
time-average power flow through a 1 m2 cross section is

P− = 1

2
Re

{
S̄−· ẑ

} = 1

2
|E0|2 1

η0
(1 − |�|2). (1.111a)
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and for z > 0, the time-average power flow through a 1 m2 cross section is

P+ = 1

2
Re

{
S̄+ · ẑ

} = 1

2
|E0|2 1

η0
(1 − |�|2) = P−, (1.111b)

so real power flow is conserved.
We now note a subtle point. When computing the complex Poynting vector for z < 0 in

(1.110a), we used the total Ē and H̄ fields. If we compute separately the Poynting vectors
for the incident and reflected waves, we obtain

S̄i = Ēi × H̄∗
i = ẑ

|E0|2
η0

, (1.112a)

S̄r = Ēr × H̄∗
r = −ẑ

|E0|2|�|2
η0

, (1.112b)

and we see that S̄i + S̄r 
= S̄− of (1.110a). The missing cross-product terms account for
stored reactive energy in the standing wave in the z < 0 region. Thus, the decomposition
of a Poynting vector into incident and reflected components is not, in general, meaningful.
It is possible to define a time-average Poynting vector as (1/2)Re{Ē × H̄∗}, and in this
case such a definition applied to the individual incident and reflected components will give
the correct result since Pi = (1/2)|Ē0|2/η0 and Pr = (−1/2)|E0|2|�|2/η0, so Pi + Pr =
P−. However, this definition will fail to provide meaningful results when the medium for
z < 0 is lossy.

Good Conductor

If the region for z > 0 is a good (but not perfect) conductor, the propagation constant can
be written as discussed in Section 1.4:

γ = α + jβ = (1 + j)

√
ωµσ

2
= (1 + j)

1

δs
. (1.113)

Similarly, the intrinsic impedance of the conductor simplifies to

η = (1 + j)

√
ωµ

2σ
= (1 + j)

1

σδs
. (1.114)

Now the impedance is complex, with a phase angle of 45◦, so Ē and H̄ will be 45◦ out of
phase, and � and T will be complex. In (1.113) and (1.114), δs = 1/α is the skin depth, as
defined in (1.60).

For z < 0 the complex Poynting vector can be evaluated at z = 0 to give

S̄−(z = 0) = ẑ|E0|2 1

η0
(1 − |�|2 + � − �∗). (1.115a)

For z > 0 the complex Poynting vector is

S̄+ = Ēt × H̄∗
t = ẑ|E0|2|T |2 1

η∗ e−2αz,

and using (1.105) for T and � gives

S̄+ = ẑ|E0|2 4η

|η + η0|2 e−2αz = ẑ|E0|2 1

η0
(1 − |�|2 + � − �∗)e−2αz . (1.115b)

So at the interface at z = 0, S̄− = S̄+, and complex power is conserved.
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Observe that if we were to compute the separate incident and reflected Poynting vec-
tors for z < 0 as

S̄i = Ēi × H̄∗
i = ẑ

|E0|2
η0

, (1.116a)

S̄r = Ēr × H̄∗
r = −ẑ

|E0|2|�|2
η0

, (1.116b)

we would not obtain S̄i + S̄r = S̄− of (1.115a), even for z = 0. It is possible, however, to
consider real power flow in terms of the individual traveling wave components. Thus, the
time-average power flows through a 1 m2 cross section are

P− = 1

2
Re(S̄− · ẑ) = 1

2
|E0|2 1

η0
(1 − |�|2), (1.117a)

P+ = 1

2
Re(S̄− · ẑ) = 1

2
|E0|2 1

η0
(1 − |�|2)e−2αz, (1.117b)

which shows power balance at z = 0. In addition, Pi = |E0|2/2η0 and Pr = −|E0|2 |�|2 /

2η0, so that Pi + Pr = P−, showing that the real power flow for z < 0 can be decomposed
into incident and reflected wave components.

Notice that S̄+, the power density in the lossy conductor, decays exponentially accord-
ing to the e−2αz attenuation factor. This means that power is being dissipated in the lossy
material as the wave propagates into the medium in the +z direction. The power, and also
the fields, decay to a negligibly small value within a few skin depths of the material, which
for a reasonably good conductor is an extremely small distance at microwave frequencies.

The electric volume current density flowing in the conducting region is given as

J̄t = σ Ēt = x̂σ E0T e−γ zA/m2, (1.118)

and so the average power dissipated in (or transmitted into) a 1 m2 cross-sectional volume
of the conductor can be calculated from the conductor loss term of (1.92) (Joule’s law) as

Pt = 1

2

∫
V

Ēt · J̄ ∗
t dv = 1

2

∫ 1

x=0

∫ 1

y=0

∫ ∞

z=0
(x̂ E0T e−γ z) · (x̂σ E0T e−γ z)∗ dz dy dx

= 1

2
σ |E0|2|T |2

∫ ∞

z=0
e−2αz dz = σ |E0|2|T |2

4α
. (1.119)

Since 1/η = σδs/(1 + j) = (σ/2α)(1 − j), the real power entering the conductor through
a 1 m2 cross section [as given by (1/2)Re{S̄+ · ẑ} at z = 0] can be expressed using (1.115b)
as Pt = |E0|2|T |2(σ/4α), which is in agreement with (1.119).

Perfect Conductor

Now assume that the region z > 0 contains a perfect conductor. The above results can be
specialized to this case by allowing σ → ∞. Then, from (1.113), α → ∞; from (1.114),
η → 0; from (1.60), δs → 0; and from (1.105a, b), T → 0 and � → −1. The fields for
z > 0 thus decay infinitely fast and are identically zero in the perfect conductor. The perfect
conductor can be thought of as “shorting out” the incident electric field. For z < 0, from
(1.99) and (1.100), the total Ē and H̄ fields are, since � = −1,

Ē = Ēi + Ēr = x̂ E0(e
− jk0z − e jk0z) = −x̂2 jE0 sin k0z, (1.120a)

H̄ = H̄i + H̄r = ŷ
1

η0
E0(e

− jk0z + e jk0z) = ŷ
2

η0
E0 cos k0z. (1.120b)
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Observe that at z = 0, Ē = 0 and H̄ = ŷ(2/η0)E0. The Poynting vector for z < 0 is

S̄− = Ē × H̄∗ = −ẑ j
4

η0
|E0|2 sin k0z cos k0z, (1.121)

which has a zero real part and thus indicates that no real power is delivered to the perfect
conductor.

The volume current density of (1.118) for the lossy conductor reduces to an infinitely
thin sheet of surface current in the limit of infinite conductivity:

J̄s = n̂ × H̄ = −ẑ ×
(

ŷ
2

η0
E0 cos k0z

) ∣∣∣∣
z=0

= x̂
2

η0
E0 A/m. (1.122)

The Surface Impedance Concept

In many problems, particularly those in which the effect of attenuation or conductor loss
is needed, the presence of an imperfect conductor must be taken into account. The sur-
face impedance concept allows us to do this in an approximate, but very convenient and
accurate, manner. We will develop this method from the theory presented in the previous
sections.

Consider a good conductor in the region z > 0. As we have seen, a plane wave nor-
mally incident on this conductor is mostly reflected, and the power that is transmitted into
the conductor is dissipated as heat within a very short distance from the surface. There are
three ways to compute this power.

First, we can use Joule’s law, as in (1.119). For a 1 m2 area of conductor surface, the
power transmitted through this surface and dissipated as heat is given by (1.119). Using
(1.105b) for T , (1.114) for η, and the fact that α = 1/δs gives the following result:

σ |T |2
α

= σδs4|η|2
|η + η0|2 � 8

σδsη
2
0

, (1.123)

where we have assumed η � η0, which is true for a good conductor. Then the power of
(1.119) can be written as

Pt = σ |E0|2|T |2
4α

= 2 |E0|2
σδsη

2
0

= 2|E0|2 Rs

η2
0

, (1.124)

where

Rs = Re{η} = Re

{
1 + j

σδs

}
= 1

σδs
=

√
ωµ

2σ
(1.125)

is the surface resistance of the metal.
Another way to find the power loss is to compute the power flow into the conductor

using the Poynting vector since all power entering the conductor at z = 0 is dissipated. As
in (1.115b), we have

Pt = 1

2
Re

{
S̄+ · ẑ

}∣∣
z=0 = 2|E0|2Re {η}

|η + η0|2 ,

which for large conductivity becomes, since η � η0,

Pt = 2|E0|2 Rs

η2
0

, (1.126)

which agrees with (1.124).
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A third method uses an effective surface current density and the surface impedance,
without the need for knowing the fields inside the conductor. From (1.118), the volume
current density in the conductor is

J̄t = x̂σTE0e−γ z A/m2, (1.127)

so the total (surface) current flow per unit width in the x direction is

J̄s =
∫ ∞

0
J̄t dz = x̂σTE0

∫ ∞

0
e−γ z dz = x̂σTE0

γ
A/m.

Approximating σ T/γ for large σ and using (1.113), (1.105b), and (1.114) gives

σ T

γ
= σδs

(1 + j)

2η

(η + η0)
� σδs

(1 + j)

2(1 + j)

σδsη0
= 2

η0
,

so

J̄s � x̂
2E0

η0
A/m. (1.128)

If the conductivity were infinite, then � = −1 and a true surface current density of

J̄s = n̂ × H̄ |z=0 = −ẑ × (H̄i + H̄r )|z=0 = x̂ E0
1

η0
(1 − �) = x̂

2E0

η0
A/m

would flow, which is identical to the total current in (1.128).
Now replace the exponentially decaying volume current of (1.127) with a uniform

volume current extending a distance of one skin depth. Thus, let

J̄t =
{

J̄s/δs for 0 < z < δs

0 for z > δs ,
(1.129)

so that the total current flow is the same. Then Joule’s law gives the power lost:

Pt = 1

2σ

∫
S

∫ δs

z=0

| J̄s |2
δ2

s
dz ds = Rs

2

∫
S
| J̄s |2 ds = 2|E0|2 Rs

η2
0

, (1.130)

where
∫

S denotes a surface integral over the conductor surface, in this case chosen as 1 m2.
The result of (1.130) agrees with our previous results for Pt in (1.126) and (1.124) and
shows that the power loss in a good conductor can be accurately and simply calculated as

Pt = Rs

2

∫
S
| J̄s |2 ds = Rs

2

∫
S
|H̄t |2 ds, (1.131)

in terms of the surface resistance Rs and the surface current J̄s , or tangential magnetic field
H̄t . It is important to realize that the surface current can be found from J̄s = n̂ × H̄ , as if
the metal were a perfect conductor. This method is very general, applying to fields other
than plane waves and to conductors of arbitrary shape, as long as bends or corners have
radii on the order of a skin depth or larger. The method is also quite accurate, as the only
approximation was that η � η0, which is a good approximation. As an example, copper at
1 GHz has |η| = 0.012 �, which is indeed much less than η0 = 377 �.

EXAMPLE 1.4 PLANE WAVE REFLECTION FROM A CONDUCTOR

Consider a plane wave normally incident on a half-space of copper. If f = 1
GHz, compute the propagation constant, intrinsic impedance, and skin depth for
the conductor. Also compute the reflection and transmission coefficients.
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Solution
For copper, σ = 5.813 × 107 S/m, so from (1.60) the skin depth is

δs =
√

2

ωµσ
= 2.088 × 10−6m,

and the propagation constant is, from (1.113),

γ = 1 + j

δs
= (4.789 + j4.789) × 105 m−1.

The intrinsic impedance is, from (1.114),

η = 1 + j

σδs
= (8.239 + j8.239) × 10−3�,

which is quite small relative to the impedance of free-space (η0 = 377 �). The
reflection coefficient is, from (1.105a),

� = η − η0

η + η0
= 1.0
 179.99◦

(practically that of an ideal short circuit), and the transmission coefficient is

T = 2η

η + η0
= 6.181 × 10−5 
 45◦. ■

1.8 OBLIQUE INCIDENCE AT A DIELECTRIC INTERFACE

We continue our discussion of plane waves by considering the problem of a plane wave
obliquely incident on a plane interface between two lossless dielectric regions, as shown in
Figure 1.13. There are two canonical cases of this problem: the electric field is either in the
xz plane (parallel polarization) or normal to the xz plane (perpendicular polarization). An
arbitrary incident plane wave, of course, may have a polarization that is neither of these,
but it can be expressed as a linear combination of these two individual cases.

The general method of solution is similar to the problem of normal incidence: we will
write expressions for the incident, reflected, and transmitted fields in each region and match
boundary conditions to find the unknown amplitude coefficients and angles.

z

x

Er, Hr

Ei, Hi

Et, Ht
�r

�i

�t

�2, �2
Region 2

�1, �1
Region 1

FIGURE 1.13 Geometry for a plane wave obliquely incident at the interface between two dielec-
tric regions.
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Parallel Polarization

In this case the electric field vector lies in the xz plane, and the incident fields can be
written as

Ēi = E0(x̂ cos θi − ẑ sin θi )e
− jk1(x sin θi +z cos θi ), (1.132a)

H̄i = E0

η1
ŷe− jk1(x sin θi +z cos θi ), (1.132b)

where k1 = ω
√

µ0ε1 and η1 = √
µ0/ε1 are the propagation constant and impedance of

region 1. The reflected and transmitted fields can be written as

Ēr = E0�(x̂ cos θr + ẑ sin θr )e
− jk1(x sin θr −z cos θr ), (1.133a)

H̄r = −E0�

η1
ŷe− jk1(x sin θr −z cos θr ), (1.133b)

Ēt = E0T (x̂ cos θt − ẑ sin θt )e
− jk2(x sin θt +z cos θt ), (1.134a)

H̄t = E0T

η2
ŷe− jk2(x sin θt +z cos θt ). (1.134b)

Here, � and T are the reflection and transmission coefficients, and k2 and η2 are the prop-
agation constant and impedance of region 2, defined as

k2 = ω
√

µ0ε2, η2 = √
µ0/ε2.

At this point we have �, T, θr , and θt as unknowns.
We can obtain two complex equations for these unknowns by enforcing the continuity

of Ex and Hy , the tangential field components, at the interface between the two regions at
z = 0. We then obtain

cos θi e− jk1x sin θi + � cos θr e− jk1x sin θr = T cos θt e
− jk2x sin θt , (1.135a)

1

η1
e− jk1x sin θi − �

η1
e− jk1x sin θr = T

η2
e− jk2x sin θt . (1.135b)

Both sides of (1.135a) and (1.135b) are functions of the coordinate x . If Ex and Hy are
to be continuous at the interface z = 0 for all x , then this x variation must be the same on
both sides of the equations, leading to the following condition:

k1 sin θi = k1 sin θr = k2 sin θt .

This results in the well-known Snell’s laws of reflection and refraction:

θi = θr , (1.136a)

k1 sin θi = k2 sin θt . (1.136b)

The above argument ensures that the phase terms in (1.135) vary with x at the same rate
on both sides of the interface, and so is often called the phase matching condition.

Using (1.136) in (1.135) allows us to solve for the reflection and transmission coeffi-
cients as

� = η2 cos θt − η1 cos θi

η2 cos θt + η1 cos θi
, (1.137a)

T = 2η2 cos θi

η2 cos θt + η1 cos θi
. (1.137b)
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Observe that for normal incidence θi = 0, we have θr = θt = 0, so then

� = η2 − η1

η2 + η1
and T = 2η2

η2 + η1
,

which is in agreement with the results of Section 1.7.
For this polarization a special angle of incidence, θb, called the Brewster angle, ex-

ists where � = 0. This occurs when the numerator of (1.137a) goes to zero (θi = θb):
η2 cos θt = η1 cos θb, which can be rewritten using

cos θt =
√

1 − sin2 θt =
√

1 − k2
1

k2
2

sin2 θb,

to give

sin θb = 1√
1 + ε1/ε2

. (1.138)

Perpendicular Polarization

In this case the electric field vector is perpendicular to the xz plane. The incident field can
be written as

Ēi = E0 ŷe− jk1(x sin θi +z cos θi ), (1.139a)

H̄i = E0

η1
(−x̂ cos θi + ẑ sin θi )e

− jk1(x sin θi +z cos θi ), (1.139b)

where k1 = ω
√

µ0ε1 and η1 = √
µ0/ε1 are the propagation constant and impedance for

region 1, as before. The reflected and transmitted fields can be expressed as

Ēr = E0� ŷe− jk1(x sin θr −z cos θr ), (1.140a)

H̄r = E0�

η1
(x̂ cos θr + ẑ sin θr )e

− jk1(x sin θr −z cos θr ), (1.140b)

Ēt = E0T ŷe− jk2(x sin θt +z cos θt ), (1.141a)

H̄t = E0T

η2
(−x̂ cos θt + ẑ sin θt )e

− jk2(x sin θt +z cos θt ), (1.141b)

with k2 = ω
√

µ0ε2 and η2 = √
µ0/ε2 being the propagation constant and impedance in

region 2.
Equating the tangential field components Ey and Hx at z = 0 gives

e− jk1x sin θi + �e− jk1x sin θr = T e− jk2x sin θt , (1.142a)

−1

η1
cos θi e

− jk1x sin θi + �

η1
cos θr e− jk2x sin θr = −T

η2
cos θt e

− jk2x sin θt . (1.142b)

By the same phase matching argument that was used in the parallel case, we obtain Snell’s
laws

k1 sin θi = k1 sin θr = k2 sin θt

identical to (1.136).
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Using (1.136) in (1.142) allows us to solve for the reflection and transmission coeffi-
cients as

� = η2 cos θi − η1 cos θt

η2 cos θi + η1 cos θt
, (1.143a)

T = 2η2 cos θi

η2 cos θi + η1 cos θt
. (1.143b)

Again, for the normally incident case, these results reduce to those of Section 1.7.
For this polarization no Brewster angle exists where � = 0, as we can see by examin-

ing the possibility that the numerator of (1.143a) could be zero:

η2 cos θi = η1 cos θt ,

and using Snell’s law to give

k2
2

(
η2

2 − η2
1

) = (
k2

2η2
2 − k2

1η2
1

)
sin2 θi.

This leads to a contradiction since the term in parentheses on the right-hand side is identi-
cally zero for dielectric media. Thus, no Brewster angle exists for perpendicular polariza-
tion for dielectric media.

EXAMPLE 1.5 OBLIQUE REFLECTION FROM A DIELECTRIC INTERFACE

Plot the reflection coefficients versus incidence angle for parallel and perpendic-
ular polarized plane waves incident from free-space onto a dielectric region with
εr = 2.55.

Solution
The impedances for the two regions are

η1 = 377�,

η2 = η0√
εr

= 377√
2.55

= 236�.

We then evaluate (1.137a) and (1.143a) versus incidence angle; the results are
shown in Figure 1.14. ■

Total Reflectio and Surface Waves

Snell’s law of (1.136b) can be rewritten as

sin θt =
√

ε1

ε2
sin θi . (1.144)

Consider the case (for either parallel or perpendicular polarization) where ε1 > ε2. As θi

increases, the refraction angle θt will increase, but at a faster rate than θi increases. The
incidence angle θi for which θt = 90◦ is called the critical angle, θc, where

sin θc =
√

ε2

ε1
. (1.145)

At this angle and beyond, the incident wave will be totally reflected, as the transmitted
wave will not propagate into region 2. Let us look at this situation more closely for the
case of θi > θc with parallel polarization.
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FIGURE 1.14 Reflection coefficient magnitude for parallel and perpendicular polarizations of a
plane wave obliquely incident on a dielectric half-space.

When θi > θc (1.144) shows that sin θt > 1, so that cos θt =
√

1 − sin2 θt must be
imaginary, and the angle θt loses its physical significance. At this point, it is better to
replace the expressions for the transmitted fields in region 2 with the following:

Ēt = E0T

(− jα

k2
x̂ − β

k2
ẑ

)
e− jβx e−αz, (1.146a)

H̄t = E0T

η2
ŷe− jβx e−αz . (1.146b)

The form of these fields is derived from (1.134) after noting that − jk2 sin θt is still imag-
inary for sin θt > 1 but − jk2 cos θt is real, so we can replace sin θt by β/k2 and cos θt by
− jα/k2. Substituting (1.146b) into the Helmholtz wave equation for H̄ gives

−β2 + α2 + k2
2 = 0. (1.147)

Matching Ex and Hy of (1.146) with the x̂ and ŷ components of the incident and reflected
fields of (1.132) and (1.133) at z = 0 gives

cos θi e
− jk1x sin θi + � cos θr e− jk1x sin θr = − jα

k2
T e− jβx , (1.148a)

1

η1
e− jk1x sin θi − �

η1
e− jk1x sin θr = T

η2
e− jβx . (1.148b)

To obtain phase matching at the z = 0 boundary, we must have

k1 sin θi = k1 sin θr = β,



c01ElectromagneticTheory Pozar July 28, 2011 8:7

40 Chapter 1: Electromagnetic Theory

which leads again to Snell’s law for reflection, θi = θr , and to β = k1 sin θi . Then α is
determined from (1.147) as

α =
√

β2 − k2
2 =

√
k2

1 sin2 θi − k2
2, (1.149)

which is seen to be a positive real number since sin2 θi > ε2/ε1. The reflection and trans-
mission coefficients can be obtained from (1.148) as

� = (− jα/k2)η2 − η1 cos θi

(− jα/k2)η2 + η1 cos θi
, (1.150a)

T = 2η2 cos θi

(− jα/k2)η2 + η1 cos θi
. (1.150b)

Since � is of the form ( ja − b)/( ja + b), its magnitude is unity, indicating that all incident
power is reflected.

The transmitted fields of (1.146) show propagation in the x direction, along the inter-
face, but exponential decay in the z direction. Such a field is known as a surface wave3

since it is tightly bound to the interface. A surface wave is an example of a nonuniform
plane wave, so called because it has an amplitude variation in the z direction, apart from
the propagation factor in the x direction.

Finally, it is of interest to calculate the complex Poynting vector for the surface wave
fields of (1.146):

S̄t = Ēt × H̄∗
t = |E0|2|T |2

η2

(
ẑ
− jα

k2
+ x̂

β

k2

)
e−2αz . (1.151)

This shows that no real power flow occurs in the z direction. The real power flow in the
x direction is that of the surface wave field, and it decays exponentially with distance into
region 2. So even though no real power is transmitted into region 2, a nonzero field does
exist there, in order to satisfy the boundary conditions at the interface.

1.9 SOME USEFUL THEOREMS

Finally, we discuss several theorems in electromagnetics that we will find useful for later
discussions.

The Reciprocity Theorem

Reciprocity is a general concept that occurs in many areas of physics and engineering,
and the reader may already be familiar with the reciprocity theorem of circuit theory. Here
we will derive the Lorentz reciprocity theorem for electromagnetic fields in two different
forms. This theorem will be used later in the book to obtain general properties of network
matrices representing microwave circuits and to evaluate the coupling of waveguides from
current probes and loops, as well as the coupling of waveguides through apertures. There
are a number of other important uses of this powerful concept.

3 Some authors argue that the term “surface wave” should not be used for a field of this type since it exists only
when plane wave fields exist in the z < 0 region, and so prefer the term “surface wave–like” field, or a “forced
surface wave.”
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FIGURE 1.15 Geometry for the Lorentz reciprocity theorem.

Consider the two separate sets of sources, J̄1, M̄1 and J̄2, M̄2, which generate the fields
Ē1, H̄1, and Ē2, H̄2, respectively, in the volume V enclosed by the closed surface S, as
shown in Figure 1.15. Maxwell’s equations are satisfied individually for these two sets of
sources and fields, so we can write

∇ × Ē1 = − jωµH̄1 − M̄1, (1.152a)

∇ × H̄1 = jωε Ē1 + J̄1, (1.152b)

∇ × Ē2 = − jωµH̄2 − M̄2, (1.153a)

∇ × H̄2 = jωε Ē2 + J̄2. (1.153b)

Now consider the quantity ∇ · (Ē1 × H̄2 − Ē2 × H̄1), which can be expanded using vector
identity (B.8) to give

∇ · (Ē1 × H̄2 − Ē2 × H̄1) = J̄1 · Ē2 − J̄2 · Ē1 + M̄2 · H̄1 − M̄1 · H̄2. (1.154)

Integrating over the volume V and applying the divergence theorem (B.15), gives
∫

V
∇ · (Ē1 × H̄2 − Ē2 × H̄1) dv =

∮
S
(Ē1 × H̄2 − Ē2 × H̄1) · ds (1.155)

=
∫

V
(Ē2 · J̄1 − Ē1 · J̄2 + H̄1 · M̄2 − H̄2 · M̄1) dv

Equation (1.155) represents a general form of the reciprocity theorem, but in practice a
number of special situations often occur leading to some simplification. We will consider
three cases.

S encloses no sources: Then J̄1 = J̄2 = M̄1 = M̄2 = 0, and the fields Ē1, H̄1 and Ē2, H̄2
are source-free fields. In this case, the right-hand side of (1.155) vanishes, with the result
that ∮

S
Ē1 × H̄2 · ds̄ =

∮
S

Ē2 × H̄1 · ds̄. (1.156)

This result will be used in Chapter 4 when we demonstrate the symmetry of the impedance
matrix for a reciprocal microwave network.

S bounds a perfect conductor: For example, S may be the inner surface of a perfectly con-
ducting closed cavity. Then the surface integral of (1.155) vanishes since Ē1 × H̄2 · n̂ =
(n̂ × Ē1) · H̄2 [by vector identity (B.3)], and n̂ × Ē1 is zero on the surface of a perfect
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conductor (similarly for Ē2). The result is∫
V
(Ē1 · J̄2 − H̄1 · M̄2) dv =

∫
V
(Ē2 · J̄1 − H̄2 · M̄1) dv. (1.157)

This result is analogous to the reciprocity theorem of circuit theory. In words, this result
states that the system response Ē1 or Ē2 is not changed when the source and observation
points are interchanged. That is, Ē2 (caused by J̄2) at J̄1 is the same as Ē1 (caused by J̄1)

at J̄2.

S is a sphere at infinity: In this case the fields evaluated on S are very far from the sources
and so can be considered locally as plane waves. Then the wave impedance relation H̄ =
n̂ × Ē/η applies to (1.155) to give

(Ē1 × H̄2 − Ē2 × H̄1) · n̂ = (n̂ × Ē1) · H̄2 − (n̂ × Ē2) · H̄1

= 1

η
H̄1 · H̄2 − 1

η
H̄2 · H̄1 = 0,

so that the result of (1.157) is again obtained. This result can also be obtained for the case
of a closed surface S where the surface impedance boundary condition applies.

Image Theory

In many problems a current source (electric or magnetic) is located in the vicinity of a
conducting ground plane. Image theory permits the removal of the ground plane by placing
a virtual image source on the other side of the ground plane. The reader should be familiar
with this concept from electrostatics, so we will prove the result for an infinite current sheet
next to an infinite ground plane and then summarize other possible cases.

Consider the surface current density J̄s = Js0 x̂ parallel to a ground plane, as shown
in Figure 1.16a. Because the current source is of infinite extent and is uniform in the x, y
directions, it will excite plane waves traveling outward from it. The negatively traveling

FIGURE 1.16 Illustration of image theory as applied to an electric current source next to a ground
plane. (a) An electric surface current density parallel to a ground plane. (b) The
ground plane of (a) is replaced with image current at z = −d.
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wave will reflect from the ground plane at z = 0 and then travel in the positive direction.
Thus, there will be a standing wave field in the region 0 < z < d and a positively traveling
wave for z > d . The forms of the fields in these two regions can thus be written as

Es
x = A(e jk0z − e− jk0z), for 0 < z < d, (1.158a)

Hs
y = −A

η0
(e jk0z + e− jk0z), for 0 < z < d, (1.158b)

E+
x = Be− jk0z, for z > d, (1.159a)

H+
y = B

η0
e− jk0z, for z > d, (1.159b)

where η0 is the impedance of free-space. Note that the standing wave fields of (1.158) have
been constructed to satisfy the boundary condition that Ex = 0 at z = 0. The remaining
boundary conditions to satisfy are the continuity of Ē at z = d and the discontinuity in the
H̄ field at z = d due to the current sheet. From (1.36), since M̄s = 0,

Es
x = E+

x |z=d , (1.160a)

while from (1.37) we have

J̄s = ẑ × ŷ(H+
y − Hs

y )|z=d . (1.160b)

Using (1.158) and (1.159) then gives

2 j A sin k0d = Be− jk0d

and Js0 = − B

η0
e− jk0d − 2A

η0
cos k0d,

which can be solved for A and B:

A = −Js0η0

2
e− jk0d ,

B = − j Js0η0 sin k0d.

So the total fields are

Es
x = − j Js0η0e− jk0d sin k0z, for 0 < z < d, (1.161a)

Hs
y = Js0e− jk0d cos k0z, for 0 < z < d, (1.161b)

E+
x = − j Js0η0 sin k0de− jk0z, for z > d, (1.162a)

H+
y = − j Js0 sin k0de− jk0z, for z > d. (1.162b)

Now consider the application of image theory to this problem. As shown in Figure
1.16b, the ground plane is removed and an image source of − J̄s is placed at z = −d. By
superposition, the total fields for z > 0 can be found by combining the fields from the two
sources individually. These fields can be derived by a procedure similar to that in the above,
with the following results:

Fields due to source at z = d:

Ex =

⎧⎪⎪⎨
⎪⎪⎩

−Js0η0

2
e− jk0(z−d) for z > d

−Js0η0

2
e jk0(z−d) for z < d,

(1.163a)
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Hy =

⎧⎪⎪⎨
⎪⎪⎩

−Js0

2
e− jk0(z−d) for z > d

Js0

2
e jk0(z−d) for z < d.

(1.163b)

Fields due to source at z = −d:

Ex =

⎧⎪⎪⎨
⎪⎪⎩

Js0η0

2
e− jk0(z+d) for z > −d

Js0η0

2
e jk0(z+d) for z < −d,

(1.164a)

Hy =

⎧⎪⎪⎨
⎪⎪⎩

Js0

2
e− jk0(z+d) for z > −d

−Js0

2
e jk0(z+d) for z < −d.

(1.164b)

The reader can verify that this solution is identical to that of (1.161) for 0 < z < d and to
that of (1.162) for z > d , thus verifying the validity of the image theory solution. Note that
image theory only gives the correct fields to the right of the conducting plane. Figure 1.17
shows more general image theory results for electric and magnetic dipoles.

Original
Geometry

Image
Equivalent

(a)

≡

(b)

≡

(c)

≡

(d)

≡

FIGURE 1.17 Electric and magnetic current images. (a) An electric current parallel to a ground
plane. (b) An electric current normal to a ground plane. (c) A magnetic current
parallel to a ground plane. (d) A magnetic current normal to a ground plane.
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PROBLEMS

1.1 Who invented radio? Guglielmo Marconi often receives credit for the invention of modern radio,
but there were several important developments by other workers before Marconi. Write a brief sum-
mary of the early work in wireless during the period of 1865–1900, particularly the work by Mahlon
Loomis, Oliver Lodge, Nikola Tesla, and Marconi. Explain the difference between inductive com-
munication schemes and wireless methods that involve wave propagation. Can the development of
radio be attributed to a single individual? Reference [1] may be a good starting point.

1.2 A plane wave traveling along the x-axis in a polystyrene-filled region with εr = 2.54 has an elec-
tric field given by Ey = E0 cos(ωt − kx). The frequency is 2.4 GHz, and E0 = 5.0 V/m. Find the
following: (a) the amplitude and direction of the magnetic field, (b) the phase velocity, (c) the wave-
length, and (d) the phase shift between the positions x1 = 0.1 m and x2 = 0.15 m.

1.3 Show that a linearly polarized plane wave of the form Ē = E0(ax̂ + bŷ)e− jk0z , where a and b are
real numbers, can be represented as the sum of an RHCP and an LHCP wave.

1.4 Compute the Poynting vector for the general plane wave field of (1.76).

1.5 A plane wave is normally incident on a dielectric slab of permittivity εr and thickness d, where d =
λ0/(4

√
εr ) and λ0 is the free-space wavelength of the incident wave, as shown in the accompanying

figure. If free-space exists on both sides of the slab, find the reflection coefficient of the wave reflected
from the front of the slab.

1

Γ

T

�0 �0�r�0

d

d z0

1.6 Consider an RHCP plane wave normally incident from free-space (z < 0) onto a half-space (z > 0)

consisting of a good conductor. Let the incident electric field be of the form

Ēi = E0(x̂ − j ŷ)e− jk0z,



c01ElectromagneticTheory Pozar July 28, 2011 8:7

46 Chapter 1: Electromagnetic Theory

and find the electric and magnetic fields in the region z > 0. Compute the Poynting vectors for z < 0
and z > 0 and show that complex power is conserved. What is the polarization of the reflected wave?

1.7 Consider a plane wave propagating in a lossy dielectric medium for z < 0, with a perfectly conduct-
ing plate at z = 0. Assume that the lossy medium is characterized by ε = (5 − j2)ε0, µ = µ0, and
that the frequency of the plane wave is 1.0 GHz, and let the amplitude of the incident electric field be
4 V/m at z = 0. Find the reflected electric field for z < 0 and plot the magnitude of the total electric
field for −0.5 ≤ z ≤ 0.

1.8 A plane wave at 1 GHz is normally incident on a thin copper sheet of thickness t . (a) Compute the
transmission losses, in dB, of the wave at the air–copper and the copper–air interfaces. (b) If the sheet
is to be used as a shield to reduce the level of the transmitted wave by 150 dB, what is the minimum
sheet thickness?

1.9 A uniform lossy medium with εr = 3.0, tan δ = 0.1, and µ = µ0 fills the region between z = 0 and
z = 20 cm, with a ground plane at z = 20 cm, as shown in the accompanying figure. An incident
plane wave with an electric field

Ēi = x̂100e−γ z V/m

is present at z = 0 and propagates in the +z direction. The frequency is 3.0 GHz.

(a) Compute Si , the power density of the incident wave, and Sr , the power density of the reflected
wave, at z = 0.

(b) Compute the input power density, Sin, at z = 0 from the total fields at z = 0. Does Sin =
Si − Sr ?

0 l = 20 cm z

Ei

Er

�r = 3.0
tan � = 0.1

1.10 Assume that an infinite sheet of electric surface current density J̄s = J0 x̂ A/m is placed on the z = 0
plane between free-space for z < 0 and a dielectric with ε = εr ε0 for z > 0, as in the accompanying
figure. Find the resulting Ē and H̄ fields in the two regions. HINT: Assume plane wave solutions
propagating away from the current sheet, and match boundary conditions to find the amplitudes, as
in Example 1.3.

z

x

�0 �r�0

0

Js = xJ0 A/mˆ

1.11 Redo Problem 1.10, but with an electric surface current density of J̄s = J0 x̂e− jβx A/m, where
β < k0.
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1.12 A parallel polarized plane wave is obliquely incident from free-space onto a magnetic material with
permittivity ε0 and permeability µ0µr . Find the reflection and transmission coefficients. Does a
Brewster angle exist for this case where the reflection coefficient vanishes for a particular angle of
incidence?

1.13 Repeat Problem 1.12 for the perpendicularly polarized case.

1.14 An artificial anisotropic dielectric material has the tensor permittivity [ε] given as follows:

[ε] = ε0

[ 1 3 j 0
−3 j 2 0

0 0 4

]

At a certain point in the material the electric field is known to be Ē = 3x̂ − 2ŷ + 5ẑ. What is D̄ at
this point?

1.15 The permittivity tensor for a gyrotropic dielectric material is

[ε] = ε0

[
εr jκ 0

− jκ εr 0
0 0 1

]
.

Show that the transformations

E+ = Ex − j Ey , D+ = Dx − j Dy,

E− = Ex + j Ey , D− = Dx + j Dy,

allow the relation between Ē and D̄ to be written as
[ D+

D−
Dz

]
= [ε′]

[ E+
E−
Ez

]
,

where [ε′] is now a diagonal matrix. What are the elements of [ε′]? Using this result, derive wave
equations for E+ and E− and find the resulting propagation constants.

1.16 Show that the reciprocity theorem expressed in (1.157) also applies to a region enclosed by a closed
surface S, where a surface impedance boundary condition applies.

1.17 Consider an electric surface current density of J̄s = ŷ J0e−βx A/m located on the z = d plane. If a
perfectly conducting ground plane is located at z = 0, use image theory to find the total fields for
z > 0.

1.18 Let Ē = Eρρ̂ + Eφφ̂ + Ez ẑ be an electric field vector in cylindrical coordinates. Demonstrate that

it is incorrect to interpret the expression ∇2 Ē in cylindrical coordinates as ρ̂∇2 Eρ + φ̂∇2 Eφ +
ẑ∇2 Ez by evaluating both sides of the vector identity ∇ × ∇ × Ē = ∇(∇ · Ē) − ∇2 Ē for the given
electric field.
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Transmission Line Theory

Transmission line theory bridges the gap between field analysis and basic circuit theory
and therefore is of significant importance in the analysis of microwave circuits and devices.
As we will see, the phenomenon of wave propagation on transmission lines can be approached
from an extension of circuit theory or from a specialization of Maxwell’s equations; we shall
present both viewpoints and show how this wave propagation is described by equations very
similar to those used in Chapter 1 for plane wave propagation.

2.1 THE LUMPED-ELEMENT CIRCUIT MODEL
FOR A TRANSMISSION LINE

The key difference between circuit theory and transmission line theory is electrical size.
Circuit analysis assumes that the physical dimensions of the network are much smaller
than the electrical wavelength, while transmission lines may be a considerable fraction
of a wavelength, or many wavelengths, in size. Thus a transmission line is a distributed-
parameter network, where voltages and currents can vary in magnitude and phase over
its length, while ordinary circuit analysis deals with lumped elements, where voltage and
current do not vary appreciably over the physical dimension of the elements.

As shown in Figure 2.1a, a transmission line is often schematically represented as a
two-wire line since transmission lines (for transverse electromagnetic [TEM] wave propa-
gation) always have at least two conductors. The piece of line of infinitesimal length �z of
Figure 2.1a can be modeled as a lumped-element circuit, as shown in Figure 2.1b, where
R, L , G, and C are per-unit-length quantities defined as follows:

R = series resistance per unit length, for both conductors, in �/m.

L = series inductance per unit length, for both conductors, in H/m.

G = shunt conductance per unit length, in S/m.

C = shunt capacitance per unit length, in F/m.

48
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∆ z

∆ z

i (z , t)

i (z , t) i (z +∆z , t)

z

(a)

(b)

R∆z L∆z

G∆z C∆z v (z + ∆z , t)

v (z , t)
+

+

–

–

v (z , t)

+

–

FIGURE 2.1 Voltage and current definitions and equivalent circuit for an incremental length of
transmission line. (a) Voltage and current definitions. (b) Lumped-element equiva-
lent circuit.

The series inductance L represents the total self-inductance of the two conductors,
and the shunt capacitance C is due to the close proximity of the two conductors. The
series resistance R represents the resistance due to the finite conductivity of the individual
conductors, and the shunt conductance G is due to dielectric loss in the material between
the conductors. R and G, therefore, represent loss. A finite length of transmission line can
be viewed as a cascade of sections of the form shown in Figure 2.1b.

From the circuit of Figure 2.1b, Kirchhoff’s voltage law can be applied to give

v(z, t) − R�zi(z, t) − L�z
∂i(z, t)

∂t
− v(z + �z, t) = 0, (2.1a)

and Kirchhoff’s current law leads to

i(z, t) − G�zv(z + �z, t) − C�z
∂v(z + �z, t)

∂t
− i(z + �z, t) = 0. (2.1b)

Dividing (2.1a) and (2.1b) by �z and taking the limit as �z → 0 gives the following
differential equations:

∂v(z, t)

∂z
= −Ri(z, t) − L

∂i(z, t)

∂t
, (2.2a)

∂i(z, t)

∂z
= −Gv(z, t) − C

∂v(z, t)

∂t
. (2.2b)

These are the time domain form of the transmission line equations, also known as the
telegrapher equations.

For the sinusoidal steady-state condition, with cosine-based phasors, (2.2a) and (2.2b)
simplify to

dV (z)

dz
= −(R + jωL)I (z), (2.3a)

d I (z)

dz
= −(G + jωC)V (z). (2.3b)
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Note the similarity in the form of (2.3a) and (2.3b) and Maxwell’s curl equations of (1.41a)
and (1.41b).

Wave Propagation on a Transmission Line

The two equations (2.3a) and (2.3b) can be solved simultaneously to give wave equations
for V (z) and I (z):

d2V (z)

dz2
− γ 2V (z) = 0, (2.4a)

d2 I (z)

dz2
− γ 2 I (z) = 0, (2.4b)

where

γ = α + jβ = √
(R + jωL)(G + jωC) (2.5)

is the complex propagation constant, which is a function of frequency. Traveling wave
solutions to (2.4) can be found as

V (z) = V +
o e−γ z + V −

o eγ z, (2.6a)

I (z) = I +
o e−γ z + I −

o eγ z, (2.6b)

where the e−γ z term represents wave propagation in the +z direction, and the eγ z term
represents wave propagation in the −z direction. Applying (2.3a) to the voltage of (2.6a)
gives the current on the line:

I (z) = γ

R + jωL

(
V +

o e−γ z − V −
o eγ z) .

Comparison with (2.6b) shows that a characteristic impedance, Z0, can be defined as

Z0 = R + jωL

γ
=

√
R + jωL

G + jωC
, (2.7)

to relate the voltage and current on the line as follows:

V +
o

I +
o

= Z0 = −V −
o

I −
o

.

Then (2.6b) can be rewritten in the following form:

I (z) = V +
o

Z0
e−γ z − V −

o

Z0
eγ z . (2.8)

Converting back to the time domain, we can express the voltage waveform as

v(z, t) = |V +
o | cos(ωt − βz + φ+)e−αz

+ |V −
o | cos(ωt + βz + φ−)eαz, (2.9)

where φ± is the phase angle of the complex voltage V ±
o . Using arguments similar to those

in Section 1.4, we find that the wavelength on the line is

λ = 2π

β
, (2.10)
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and the phase velocity is

vp = ω

β
= λ f. (2.11)

The Lossless Line

The above solution is for a general transmission line, including loss effects, and it was seen
that the propagation constant and characteristic impedance were complex. In many practi-
cal cases, however, the loss of the line is very small and so can be neglected, resulting in a
simplification of the results. Setting R = G = 0 in (2.5) gives the propagation constant as

γ = α + jβ = jω
√

LC,

or

β = ω
√

LC, (2.12a)

α = 0. (2.12b)

As expected for a lossless line, the attenuation constant α is zero. The characteristic
impedance of (2.7) reduces to

Z0 =
√

L

C
, (2.13)

which is now a real number. The general solutions for voltage and current on a lossless
transmission line can then be written as

V (z) = V +
o e− jβz + V −

o e jβz, (2.14a)

I (z) = V +
o

Z0
e− jβz − V −

o

Z0
e jβz . (2.14b)

The wavelength is

λ = 2π

β
= 2π

ω
√

LC
, (2.15)

and the phase velocity is

vp = ω

β
= 1√

LC
. (2.16)

2.2 FIELD ANALYSIS OF TRANSMISSION LINES

In this section we will rederive the time-harmonic form of the telegrapher’s equations start-
ing from Maxwell’s equations. We will begin by deriving the transmission line parameters
(R, L , G, C) in terms of the electric and magnetic fields of the transmission line and then
derive the telegrapher equations using these parameters for the specific case of a coaxial
line.

Transmission Line Parameters

Consider a 1 m length of a uniform transmission line with fields Ē and H̄ , as shown in
Figure 2.2, where S is the cross-sectional surface area of the line. Let the voltage between
the conductors be Voe± jβz and the current be Ioe± jβz . The time-average stored magnetic



c02TransmissionLineTheory Pozar July 26, 2011 17:33

52 Chapter 2: Transmission Line Theory

FIGURE 2.2 Field lines on an arbitrary TEM transmission line.

energy for this 1 m length of line can be written, from (1.86), as

Wm = µ

4

∫
S

H̄ · H̄∗ds,

while circuit theory gives Wm = L|Io|2/4 in terms of the current on the line. We can thus
identify the self-inductance per unit length as

L = µ

|Io|2
∫

S
H̄ · H̄∗ds H/m. (2.17)

Similarly, the time-average stored electric energy per unit length can be found from (1.84)
as

We = ε

4

∫
S

Ē · Ē∗ds,

while circuit theory gives We = C |Vo|2/4, resulting in the following expression for the
capacitance per unit length:

C = ε

|Vo|2
∫

S
Ē · Ē∗ds F/m. (2.18)

From (1.131), the power loss per unit length due to the finite conductivity of the metallic
conductors is

Pc = Rs

2

∫
C1+C2

H̄ · H̄∗d�

(assuming H̄ is tangential to S), while circuit theory gives Pc = R|Io|2/2, so the series
resistance R per unit length of line is

R = Rs

|Io|2
∫

C1+C2

H̄ · H̄∗dl �/m. (2.19)

In (2.19), Rs = 1/σδs is the surface resistance of the conductors, and C1 + C2 represent
integration paths over the conductor boundaries. From (1.92), the time-average power dis-
sipated per unit length in a lossy dielectric is

Pd = ωε′′

2

∫
S

Ē · Ē∗ds,

where ε′′ is the imaginary part of the complex permittivity ε = ε′ − jε′′ = ε′(1 − j tan δ).
Circuit theory gives Pd = G|Vo|2/2, so the shunt conductance per unit length can be
written as

G = ωε′′

|Vo|2
∫

S
Ē · Ē∗ds S/m. (2.20)
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Rs

x

y

a

b

�

�

�, �

FIGURE 2.3 Geometry of a coaxial line with surface resistance Rs on the inner and outer
conductors.

EXAMPLE 2.1 TRANSMISSION LINE PARAMETERS OF A COAXIAL LINE

The fields of a traveling TEM wave inside the coaxial line of Figure 2.3 can be
expressed as

Ē = Voρ̂

ρ ln b/a
e−γ z,

H̄ = Ioφ̂

2πρ
e−γ z,

where γ is the propagation constant of the line. The conductors are assumed to
have a surface resistivity Rs , and the material filling the space between the con-
ductors is assumed to have a complex permittivity ε = ε′ − jε′′ and a permeabil-
ity µ = µ0µr . Determine the transmission line parameters.

Solution
From (2.17)–(2.20) and the given fields the parameters of the coaxial line can be
calculated as

L = µ

(2π)2

∫ 2π

φ=0

∫ b

ρ=a

1

ρ2
ρdρdφ = µ

2π
ln b/a H/m,

C = ε′

(ln b/a)2

∫ 2π

φ=0

∫ b

ρ=a

1

ρ2
ρdρdφ = 2πε′

ln b/a
F/m,

R = Rs

(2π)2

{∫ 2π

φ=0

1

a2
adφ +

∫ 2π

φ=0

1

b2
bdφ

}
= Rs

2π

(
1

a
+ 1

b

)
�/m,

G = ωε′′

(ln b/a)2

∫ 2π

φ=0

∫ b

ρ=a

1

ρ2
ρdρdφ = 2πωε′′

ln b/a
S/m. ■

Table 2.1 summarizes the parameters for coaxial, two-wire, and parallel plate lines.
As we will see in the next chapter, the propagation constant, characteristic impedance, and
attenuation of most transmission lines are usually derived directly from a field theory so-
lution; the approach here of first finding the equivalent circuit parameters (L , C, R, G) is
useful only for relatively simple lines. Nevertheless, it provides a helpful intuitive concept
for understanding the properties of a transmission line and relates a transmission line to its
equivalent circuit model.
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TABLE 2.1 Transmission Line Parameters for Some Common Lines

COAX TWO-WIRE PARALLEL PLATE

a
b

a

a

D

w

d

L
µ

2π
ln

b

a

µ

π
cosh−1

(
D

2a

)
µd

w

C
2πε′

ln b/a

πε′
cosh−1(D/2a)

ε′w
d

R
Rs

2π

(
1

a
+ 1

b

)
Rs

πa

2Rs

w

G
2πωε′′
ln b/a

πωε′′
cosh−1 (D/2a)

ωε′′w
d

The Telegrapher Equations Derived from Field Analysis
of a Coaxial Line

We now show that the telegrapher equations of (2.3), derived using circuit theory, can
also be obtained from Maxwell’s equations. We will consider the specific geometry of the
coaxial line of Figure 2.3. Although we will treat TEM wave propagation more generally
in the next chapter, the present discussion should provide some insight into the relationship
of circuit and field quantities.

A TEM wave on the coaxial line of Figure 2.3 will be characterized by Ez = Hz = 0 ;
furthermore, due to azimuthal symmetry, the fields will have no φ variation, so ∂/∂φ = 0.
The fields inside the coaxial line will satisfy Maxwell’s curl equations,

∇ × Ē = − jωµH̄ , (2.21a)

∇ × H̄ = jωε Ē, (2.21b)

where ε = ε′ − jε′′ may be complex to allow for a lossy dielectric filling. Conductor loss
will be ignored here. A rigorous field analysis of conductor loss can be carried out but at
this point would tend to obscure our purpose; the interested reader is referred to references
[1] and [2].

Expanding (2.21a) and (2.21b) gives the following two vector equations:

−ρ̂
∂ Eφ

∂z
+ φ̂

∂ Eρ

∂z
+ ẑ

1

ρ

∂

∂ρ
(ρEφ) = − jωµ(ρ̂Hρ + φ̂Hφ), (2.22a)

−ρ̂
∂ Hφ

∂z
+ φ̂

∂ Hρ

∂z
+ ẑ

1

ρ

∂

∂ρ
(ρHφ) = jωε(ρ̂Eρ + φ̂Eφ). (2.22b)

Since the ẑ components of these two equations must vanish, it is seen that Eφ and Hφ must
have the forms

Eφ = f (z)

ρ
, (2.23a)

Hφ = g(z)

ρ
. (2.23b)
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To satisfy the boundary condition that Eφ = 0 at ρ = a, b, we must have Eφ = 0 every-
where, due to the form of Eφ in (2.23a). Then from the ρ̂ component of (2.22a), it is seen
that Hρ = 0. With these results, (2.22) can be reduced to

∂ Eρ

∂z
= − jωµHφ, (2.24a)

∂ Hφ

∂z
= − jωεEρ. (2.24b)

From the form of Hφ in (2.23b) and (2.24a), Eρ must be of the form

Eρ = h(z)

ρ
. (2.25)

Using (2.23b) and (2.25) in (2.24) gives

∂h(z)

∂z
= − jωµg(z), (2.26a)

∂g(z)

∂z
= − jωεh(z). (2.26b)

The voltage between the two conductors can be evaluated as

V (z) =
∫ b

ρ=a
Eρ(ρ, z)dρ = h(z)

∫ b

ρ=a

dρ

ρ
= h(z) ln

b

a
, (2.27a)

and the total current on the inner conductor at ρ = a can be evaluated using (2.23b) as

I (z) =
∫ 2π

φ=0
Hφ(a, z)adφ = 2πg(z). (2.27b)

Then h(z) and g(z) can be eliminated from (2.26) by using (2.27) to give

∂V (z)

∂z
= − j

ωµ ln b/a

2π
I (z),

∂ I (z)

∂z
= − jω(ε′ − jε′′)2πV (z)

ln b/a
.

Finally, using the results for L , G, and C for a coaxial line as derived earlier, we obtain the
telegrapher equations as

∂V (z)

∂z
= − jωL I (z), (2.28a)

∂ I (z)

∂z
= −(G + jωC)V (z). (2.28b)

This result excludes R, the series resistance, since the conductors were assumed to have
perfect conductivity. A similar analysis can be carried out for other simple transmission
lines.
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Propagation Constant, Impedance, and Power Flow
for the Lossless Coaxial Line

Equations (2.24a) and (2.24b) for Eρ and Hφ can be simultaneously solved to yield a wave
equation for Eρ (or Hφ):

∂2 Eρ

∂z2
+ ω2µεEρ = 0, (2.29)

from which it is seen that the propagation constant is γ 2 = −ω2µε, which, for lossless
media, reduces to

β = ω
√

µε = ω
√

LC, (2.30)

where the last result is from (2.12). Observe that this propagation constant is of the same
form as that for plane waves in a lossless dielectric medium. This is a general result for
TEM transmission lines.

The wave impedance for the coaxial line is defined as Zw = Eρ/Hφ , which can be
calculated from (2.24a), assuming an e− jβz dependence, to give

Zw = Eρ

Hφ

= ωµ

β
= √

µ/ε = η. (2.31)

This wave impedance is seen to be identical to the intrinsic impedance of the medium, η,
and is a general result for TEM transmission lines.

The characteristic impedance of the coaxial line is defined as

Z0 = Vo

Io
= Eρ ln b/a

2π Hφ

= η ln b/a

2π
=

√
µ

ε

ln b/a

2π
, (2.32)

where the forms for Eρ and Hφ from Example 2.1 have been used. The characteristic
impedance is geometry dependent and will be different for other transmission line config-
urations.

Finally, the power flow (in the z direction) on the coaxial line may be computed from
the Poynting vector as

P = 1

2

∫
s

Ē × H̄∗ · ds̄ = 1

2

∫ 2π

φ=0

∫ b

ρ=a

Vo I ∗
o

2πρ2 ln b/a
ρdρdφ = 1

2
Vo I ∗

o , (2.33)

a result that is in clear agreement with circuit theory. This shows that the flow of power
in a transmission line takes place entirely via the electric and magnetic fields between the
two conductors; power is not transmitted through the conductors themselves. As we will
see later, for the case of finite conductivity, power may enter the conductors, but this power
is then lost as heat and is not delivered to the load.

2.3 THE TERMINATED LOSSLESS TRANSMISSION LINE

Figure 2.4 shows a lossless transmission line terminated in an arbitrary load impedance ZL .
This problem will illustrate wave reflection on transmission lines, a fundamental property
of distributed systems.

Assume that an incident wave of the form V +
o e− jβz is generated from a source at

z < 0. We have seen that the ratio of voltage to current for such a traveling wave is Z0, the
characteristic impedance of the line. However, when the line is terminated in an arbitrary
load ZL �= Z0, the ratio of voltage to current at the load must be ZL . Thus, a reflected wave
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z
l 0

V(z), I(z)

Z0, � VL 

IL
+

–
ZL

FIGURE 2.4 A transmission line terminated in a load impedance ZL .

must be excited with the appropriate amplitude to satisfy this condition. The total voltage
on the line can then be written as in (2.14a), as a sum of incident and reflected waves:

V (z) = V +
o e− jβz + V −

o e jβz . (2.34a)

Similarly, the total current on the line is described by (2.14b):

I (z) = V +
o

Z0
e− jβz − V −

o

Z0
e jβz . (2.34b)

The total voltage and current at the load are related by the load impedance, so at z = 0 we
must have

ZL = V (0)

I (0)
= V +

o + V −
o

V +
o − V −

o
Z0.

Solving for V −
o gives

V −
o = ZL − Z0

ZL + Z0
V +

o .

The amplitude of the reflected voltage wave normalized to the amplitude of the incident
voltage wave is defined as the voltage reflection coefficient, �:

� = V −
o

V +
o

= ZL − Z0

ZL + Z0
. (2.35)

The total voltage and current waves on the line can then be written as

V (z) = V +
o

(
e− jβz + �e jβz), (2.36a)

I (z) = V +
o

Z0

(
e− jβz − �e jβz). (2.36b)

From these equations it is seen that the voltage and current on the line consist of a super-
position of an incident and a reflected wave; such waves are called standing waves. Only
when � = 0 is there no reflected wave. To obtain � = 0, the load impedance ZL must be
equal to the characteristic impedance Z0 of the transmission line, as seen from (2.35). Such
a load is said to be matched to the line since there is no reflection of the incident wave.

Now consider the time-average power flow along the line at the point z:

Pavg = 1

2
Re

{
V (z)I (z)∗

} = 1

2

|V +
o |2
Z0

Re
{
1 − �∗e−2 jβz + �e2 jβz − |�|2},

where (2.36) has been used. The middle two terms in the brackets are of the form A − A∗ =
2 j Im {A} and so are purely imaginary. This simplifies the result to

Pavg = 1

2

|V +
o |2
Z0

(
1 − |�|2), (2.37)
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which shows that the average power flow is constant at any point on the line and that the
total power delivered to the load (Pavg) is equal to the incident power (|V +

o |2/2Z0) minus
the reflected power (|Vo|2|�|2/2Z0). If � = 0, maximum power is delivered to the load,
while no power is delivered for |�| = 1. The above discussion assumes that the generator
is matched, so that there is no re-reflection of the reflected wave from z < 0.

When the load is mismatched, not all of the available power from the generator is
delivered to the load. This “loss” is called return loss (RL), and is defined (in dB) as

RL = −20 log |�| dB, (2.38)

so that a matched load (� = 0) has a return loss of ∞ dB (no reflected power), while a
total reflection (|�| = 1) has a return loss of 0 dB (all incident power is reflected). Note
that return loss is a nonnegative number for reflection from a passive network.

If the load is matched to the line, � = 0 and the magnitude of the voltage on the line is
|V (z)| = |V +

o |, which is a constant. Such a line is sometimes said to be flat. When the load
is mismatched, however, the presence of a reflected wave leads to standing waves, and the
magnitude of the voltage on the line is not constant. Thus, from (2.36a),

|V (z)| = |V +
o ||1 + �e2 jβz | = |V +

o ||1 + �e−2 jβ�|
= |V +

o ||1 + |�|e j (θ−2β�)|, (2.39)

where � = −z is the positive distance measured from the load at z = 0, and θ is the phase
of the reflection coefficient (� = |�|e jθ ). This result shows that the voltage magnitude
oscillates with position z along the line. The maximum value occurs when the phase term
e j (θ−2β�) = 1 and is given by

Vmax = |V +
o |(1 + |�|). (2.40a)

The minimum value occurs when the phase term e j (θ−2β�) = −1 and is given by

Vmin = |V +
o |(1 − |�|). (2.40b)

As |�| increases, the ratio of Vmax to Vmin increases, so a measure of the mismatch of a
line, called the standing wave ratio (SWR), can be defined as

SWR = Vmax

Vmin
= 1 + |�|

1 − |�| . (2.41)

This quantity is also known as the voltage standing wave ratio and is sometimes identified
as VSWR. From (2.41) it is seen that SWR is a real number such that 1 ≤ SWR ≤ ∞,
where SWR = 1 implies a matched load.

From (2.39), it is seen that the distance between two successive voltage maxima (or
minima) is � = 2π/2β = πλ/2π = λ/2, while the distance between a maximum and a
minimum is � = π/2β = λ/4, where λ is the wavelength on the transmission line.

The reflection coefficient of (2.35) was defined as the ratio of the reflected to the
incident voltage wave amplitudes at the load (� = 0), but this quantity can be generalized
to any point � along the line as follows. From (2.34a), with z = −�, the ratio of the reflected
component to the incident component is

�(�) = V −
o e− jβ�

V +
o e jβ�

= �(0)e−2 jβ�, (2.42)

where �(0) is the reflection coefficient at z = 0, as given by (2.35). This result is useful
when transforming the effect of a load mismatch down the line.
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We have seen that the real power flow on the line is a constant (for a lossless line) but
that the voltage amplitude, at least for a mismatched line, is oscillatory with position on the
line. The perceptive reader may therefore have concluded that the impedance seen looking
into the line must vary with position, and this is indeed the case. At a distance � = −z from
the load, the input impedance seen looking toward the load is

Z in = V (−�)

I (−�)
= V +

o

(
e jβ� + �e− jβ�

)
V +

o
(
e jβ� − �e− jβ�

) Z0 = 1 + �e−2 jβ�

1 − �e−2 jβ�
Z0, (2.43)

where (2.36a,b) have been used for V (z) and I (z). A more usable form may be obtained
by using (2.35) for � in (2.43):

Z in = Z0
(ZL + Z0)e jβ� + (ZL − Z0)e− jβ�

(ZL + Z0)e jβ� − (ZL − Z0)e− jβ�

= Z0
ZL cos β� + j Z0 sin β�

Z0 cos β� + j ZL sin β�

= Z0
ZL + j Z0 tan β�

Z0 + j ZL tan β�
. (2.44)

This is an important result giving the input impedance of a length of transmission line with
an arbitrary load impedance. We will refer to this result as the transmission line impedance
equation; some special cases will be considered next.

Special Cases of Lossless Terminated Lines

A number of special cases of lossless terminated transmission lines will frequently appear
in our work, so it is appropriate to consider the properties of such cases here.

Consider first the transmission line circuit shown in Figure 2.5, where a line is termi-
nated in a short circuit, ZL = 0. From (2.35) it is seen that the reflection coefficient for
a short circuit load is � = −1; it then follows from (2.41) that the standing wave ratio is
infinite. From (2.36) the voltage and current on the line are

V (z) = V +
o

(
e− jβz − e jβz) = −2 j V +

o sin βz, (2.45a)

I (z) = V +
o

Z0

(
e− jβz + e jβz) = 2V +

o

Z0
cos βz, (2.45b)

which shows that V = 0 at the load (as expected, for a short circuit), while the current is a
maximum there. From (2.44), or the ratio V (−�)/I (−�), the input impedance is

Z in = j Z0 tan β�, (2.45c)

which is seen to be purely imaginary for any length � and to take on all values between
+ j∞ and − j∞. For example, when � = 0 we have Zin = 0, but for � = λ/4 we have
Zin = ∞ (open circuit). Equation (2.45c) also shows that the impedance is periodic in �,

z–l 0

V(z), I(z)

Z0, � VL = 0 ZL = 0

IL
+

–

FIGURE 2.5 A transmission line terminated in a short circuit.
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FIGURE 2.6 (a) Voltage, (b) current, and (c) impedance (Rin = 0 or ∞) variation along a short-
circuited transmission line.

repeating for multiples of λ/2. The voltage, current, and input reactance for the short-
circuited line are plotted in Figure 2.6.

Next consider the open-circuited line shown in Figure 2.7, where ZL = ∞. Dividing
the numerator and denominator of (2.35) by ZL and allowing ZL → ∞ shows that the
reflection coefficient for this case is � = 1, and the standing wave ratio is again infinite.
From (2.36) the voltage and current on the line are

V (z) = V +
o

(
e− jβz + e jβz) = 2V +

o cos βz, (2.46a)

I (z) = V +
o

Z0

(
e− jβz − e jβz) = −2 j V +

o

Z0
sin βz, (2.46b)

z–l 0

V(z), I(z)

Z0, � VL ZL = ∞

IL = 0
+

–

FIGURE 2.7 A transmission line terminated in an open circuit.
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FIGURE 2.8 (a) Voltage, (b) current, and (c) impedance (Rin = 0 or ∞) variation along an open-
circuited transmission line.

which shows that now I = 0 at the load, as expected for an open circuit, while the voltage
is a maximum. The input impedance is

Zin = − j Z0 cot β�, (2.46c)

which is also purely imaginary for any length, �. The voltage, current, and input reactance
of the open-circuited line are plotted in Figure 2.8.

Now consider terminated transmission lines with some special lengths. If � = λ/2,
(2.44) shows that

Zin = ZL , (2.47)

meaning that a half-wavelength line (or any multiple of λ/2) does not alter or transform
the load impedance, regardless of its characteristic impedance.

If the line is a quarter-wavelength long or, more generally, � = λ/4 + nλ/2, for n =
1, 2, 3, . . . , (2.44) shows that the input impedance is given by

Zin = Z2
0

ZL
. (2.48)

Such a line is known as a quarter-wave transformer because it has the effect of transform-
ing the load impedance in an inverse manner, depending on the characteristic impedance
of the line. We will study this case more thoroughly in Section 2.5.
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1

Γ T

z0

Z1Z0

FIGURE 2.9 Reflection and transmission at the junction of two transmission lines with different
characteristic impedances.

Next consider a transmission line of characteristic impedance Z0 feeding a line of dif-
ferent characteristic impedance, Z1, as shown in Figure 2.9. If the load line is infinitely
long, or if it is terminated in its own characteristic impedance, so that there are no reflec-
tions from its far end, then the input impedance seen by the feed line is Z1, so that the
reflection coefficient � is

� = Z1 − Z0

Z1 + Z0
. (2.49)

Not all of the incident wave is reflected; some is transmitted onto the second line with a
voltage amplitude given by a transmission coefficient.

From (2.36a) the voltage for z < 0 is

V (z) = V +
o

(
e− jβz + �e jβz), z < 0, (2.50a)

where V +
o is the amplitude of the incident voltage wave on the feed line. The voltage wave

for z > 0, in the absence of reflections, is outgoing only and can be written as

V (z) = V +
o T e− jβz for z > 0. (2.50b)

Equating these voltages at z = 0 gives the transmission coefficient, T , as

T = 1 + � = 1 + Z1 − Z0

Z1 + Z0
= 2Z1

Z1 + Z0
. (2.51)

The transmission coefficient between two points in a circuit is often expressed in dB as the
insertion loss, IL,

IL = −20 log |T |dB. (2.52)

POINT OF INTEREST: Decibels and Nepers

Often the ratio of two power levels P1 and P2 in a microwave system is expressed in decibels
(dB) as

10 log
P1

P2
dB.

Thus, a power ratio of 2 is equivalent to 3 dB, while a power ratio of 0.1 is equivalent to −10 dB.
Using power ratios in dB makes it easy to calculate power loss or gain through a series of
components since multiplicative loss or gain factors can be accounted for by adding the loss or
gain in dB for each stage. For example, a signal passing through a 6 dB attenuator followed by
a 23 dB amplifier will have an overall gain of 23 − 6 = 17 dB.
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Decibels are used only to represent power ratios, but if P1 = V 2
1 /R1 and P2 = V 2

2 /R2,
then the resulting power ratio in terms of voltage ratios is

10 log
V 2

1 R2

V 2
2 R1

= 20 log
V1

V2

√
R2

R1
dB,

where R1, R2 are the load resistances and V1, V2 are the voltages appearing across these loads.
If the load resistances are equal, then this formula simplifies to

20 log
V1

V2
dB.

The ratio of voltages across equal load resistances can also be expressed in terms of nepers
(Np) as

ln
V1

V2
Np.

The corresponding expression in terms of powers is

1

2
ln

P1

P2
Np,

since voltage is proportional to the square root of power. Transmission line attenuation is some-
times expressed in nepers. Since 1 Np corresponds to a power ratio of e2, the conversion between
nepers and decibels is

1 Np = 10 log e2 = 8.686 dB.

Absolute power can also be expressed in decibel notation if a reference power level is
assumed. If we let P2 = 1 mW, then the power P1 can be expressed in dBm as

10 log
P1

1 mW
dBm

Thus a power of 1 mW is equivalent to 0 dBm, while a power of 1 W is equivalent to 30 dBm,
and so on.

2.4 THE SMITH CHART

The Smith chart, shown in Figure 2.10, is a graphical aid that can be very useful for solving
transmission line problems. Although there are a number of other impedance and reflec-
tion coefficient charts that can be used for such problems [3], the Smith chart is probably
the best known and most widely used. It was developed in 1939 by P. Smith at the Bell
Telephone Laboratories [4]. The reader might feel that, in this day of personal computers
and computer-aided design (CAD) tools, graphical solutions have no place in modern engi-
neering. The Smith chart, however, is more than just a graphical technique. Besides being
an integral part of much of the current CAD software and test equipment for microwave
design, the Smith chart provides a useful way of visualizing transmission line phenomenon
without the need for detailed numerical calculations. A microwave engineer can develop
a good intuition about transmission line and impedance-matching problems by learning to
think in terms of the Smith chart.

At first glance the Smith chart may seem intimidating, but the key to its understanding
is to realize that it is based on a polar plot of the voltage reflection coefficient, �. Let the
reflection coefficient be expressed in magnitude and phase (polar) form as � = |�|e jθ .
Then the magnitude |�| is plotted as a radius (|�| ≤ 1) from the center of the chart, and
the angle θ (−180◦ ≤ θ ≤ 180◦) is measured counterclockwise from the right-hand side of
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FIGURE 2.10 The Smith chart.

the horizontal diameter. Any passively realizable (|�| ≤ 1) reflection coefficient can then
be plotted as a unique point on the Smith chart.

The real utility of the Smith chart, however, lies in the fact that it can be used to
convert from reflection coefficients to normalized impedances (or admittances) and vice
versa by using the impedance (or admittance) circles printed on the chart. When dealing
with impedances on a Smith chart, normalized quantities are generally used, which we
will denote by lowercase letters. The normalization constant is usually the characteristic
impedance of the transmission line. Thus, z = Z/Z0 represents the normalized version of
the impedance Z .

If a lossless line of characteristic impedance Z0 is terminated with a load impedance
ZL , the reflection coefficient at the load can be written from (2.35) as

� = zL − 1

zL + 1
= |�|e jθ , (2.53)

where zL = ZL/Z0 is the normalized load impedance. This relation can be solved for zL

in terms of � to give [or, from (2.43) with � = 0]

zL = 1 + |�|e jθ

1 − |�|e jθ
. (2.54)
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This complex equation can be reduced to two real equations by writing � and zL in terms
of their real and imaginary parts, � = �r + j�i , and zL = rL + j xL , giving

rL + j xL = (1 + �r ) + j�i

(1 − �r ) − j�i
.

The real and imaginary parts of this equation can be separated by multiplying the numerator
and denominator by the complex conjugate of the denominator to give

rL = 1 − �2
r − �2

i

(1 − �r )2 + �2
i

, (2.55a)

xL = 2�i

(1 − �r )2 + �2
i

. (2.55b)

Rearranging (2.55) gives

(
�r − rL

1 + rL

)2

+ �2
i =

(
1

1 + rL

)2

, (2.56a)

(�r − 1)2 +
(

�i − 1

xL

)2

=
(

1

xL

)2

, (2.56b)

which are seen to represent two families of circles in the �r , �i plane. Resistance circles
are defined by (2.56a) and reactance circles are defined by (2.56b). For example, the rL = 1
circle has its center at �r = 0.5, �i = 0, and has a radius of 0.5, and so it passes through
the center of the Smith chart. All of the resistance circles of (2.56a) have centers on the
horizontal �i = 0 axis and pass through the � = 1 point on the right-hand side of the chart.
The centers of all of the reactance circles of (2.56b) lie on the vertical �r = 1 line (off the
chart), and these circles also pass through the � = 1 point. The resistance and reactance
circles are orthogonal.

The Smith chart can also be used to graphically solve the transmission line impedance
equation of (2.44) since this can be written in terms of the generalized reflection coefficient
as

Z in = Z0
1 + �e−2 jβ�

1 − �e−2 jβ�
, (2.57)

where � is the reflection coefficient at the load and � is the (positive) length of transmission
line. We then see that (2.57) is of the same form as (2.54), differing only by the phase angles
of the � terms. Thus, if we have plotted the reflection coefficient |�|e jθ at the load, the
normalized input impedance seen looking into a length � of transmission line terminated
with zL can be found by rotating the point clockwise by an amount 2β� (subtracting 2β�

from θ) around the center of the chart. The radius stays the same since the magnitude of �

does not change with position along the line (assuming a lossless line).
To facilitate such rotations, the Smith chart has scales around its periphery calibrated

in electrical wavelengths, toward and away from the “generator” (which simply means the
direction away from the load). These scales are relative, so only the difference in wave-
lengths between two points on the Smith chart is meaningful. The scales cover a range of
0 to 0.5 wavelength, which reflects the fact that the Smith chart automatically includes the
periodicity of transmission line phenomenon. Thus, a line of length λ/2 (or any multiple)
requires a rotation of 2β� = 2π around the center of the chart, bringing the point back to
its original position, showing that the input impedance of a load seen through a λ/2 line is
unchanged.
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We will now illustrate the use of the Smith chart for a variety of typical transmission
line problems through examples.

EXAMPLE 2.2 BASIC SMITH CHART OPERATIONS

A load impedance of 40 + j70 � terminates a 100 � transmission line that is
0.3λ long. Find the reflection coefficient at the load, the reflection coefficient at
the input to the line, the input impedance, the standing wave ratio on the line, and
the return loss.

Solution
The normalized load impedance is

zL = ZL

Z0
= 0.4 + j0.7,

which can be plotted on the Smith chart as shown in Figure 2.11. By using a
drawing compass and the voltage coefficient scale printed below the chart, one can
read off the reflection coefficient magnitude at the load as |�| = 0.59. This same
compass setting can then be applied to the standing wave ratio (SWR) scale to
read SWR = 3.87 and to the return loss (RL) (in dB) scale to read RL = 4.6 dB.

ZL

Zin

FIGURE 2.11 Smith chart for Example 2.2.
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Now draw a radial line through the load impedance point and read the angle of
the reflection coefficient at the load from the outer scale of the chart as 104◦.

Now draw an SWR circle through the load impedance point. Reading the
reference position of the load on the wavelengths-toward-generator (WTG) scale
gives a value of 0.106λ. Moving down the line 0.3λ toward the generator brings
us to 0.406λ on the WTG scale. Drawing a radial line at this position gives the
normalized input impedance at the intersection with SWR circle of zin = 0.365 −
j0.611. Then the input impedance of the line is

Zin = Z0zin = 36.5 − j61.1 �.

The reflection coefficient at the input still has a magnitude of |�| = 0.59; the
phase is read from the radial line at the phase scale as 248◦. ■

The Combined Impedance–Admittance Smith Chart

The Smith chart can be used for normalized admittance in the same way that it is used for
normalized impedances, and it can be used to convert between impedance and admittance.
The latter technique is based on the fact that, in normalized form, the input impedance of
a load zL connected to a λ/4 line is, from (2.44),

zin = 1/zL ,

which has the effect of converting a normalized impedance to a normalized admittance.
Since a complete revolution around the Smith chart corresponds to a line length of

λ/2, a λ/4 transformation is equivalent to a 180◦ rotation; this is also equivalent to imag-
ing a given impedance (or admittance) point across the center of the chart to obtain the
corresponding admittance (or impedance) point.

Thus, a Smith chart can be used for both impedance and admittance calculations dur-
ing the solution of a given problem. At different stages of the solution, then, the chart may
be either an impedance Smith chart or an admittance Smith chart. This procedure can be
made less confusing by using a Smith chart that has a superposition of the scales for a
regular Smith chart and the scales of a Smith chart that has been rotated by180◦, as shown
in Figure 2.12. Such a chart is referred to as an impedance and admittance Smith chart and
usually has different-colored scales for impedance and admittance.

EXAMPLE 2.3 SMITH CHART OPERATIONS USING ADMITTANCES

A load of ZL = 100 + j50 � terminates a 50 � line. What are the load admit-
tance and input admittance if the line is 0.15λ long?

Solution
The normalized load impedance is zL = 2 + j1. A standard Smith chart can be
used for this problem by initially considering it as an impedance chart and plotting
zL and the SWR circle. Conversion to admittance can be accomplished with a
λ/4 rotation of zL (easily obtained by drawing a straight line through zL and the
center of the chart to intersect the other side of the SWR circle). The chart can
now be considered as an admittance chart, and the input admittance can be found
by rotating 0.15λ from yL .

Alternatively, we can use the combined zy chart of Figure 2.12, where conver-
sion between impedance and admittance is accomplished merely by reading the
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FIGURE 2.12 ZY Smith chart with solution for Example 2.3.

appropriate scales. Plotting zL on the impedance scales and reading the
admittance scales at this same point gives yL = 0.40 − j0.20. The actual load
admittance is then

YL = yL Y0 = yL

Z0
= 0.0080 − j0.0040 S.

Then, on the WTG scale, the load admittance is seen to have a reference position
of 0.214λ. Moving 0.15λ past this point brings us to 0.364λ. A radial line at
this point on the WTG scale intersects the SWR circle at an admittance of y =
0.61 + j0.66. The actual input admittance is then Y = 0.0122 + j0.0132 S. ■

The Slotted Line

A slotted line is a transmission line configuration (usually a waveguide or coaxial line) that
allows the sampling of the electric field amplitude of a standing wave on a terminated line.
With this device the SWR and the distance of the first voltage minimum from the load can
be measured, and from these data the load impedance can be determined. Note that be-
cause the load impedance is, in general, a complex number (with two degrees of freedom),
two distinct quantities must be measured with the slotted line to uniquely determine this
impedance. A typical waveguide slotted line is shown in Figure 2.13.
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FIGURE 2.13 An X -band waveguide slotted line.

Although slotted lines used to be the principal way of measuring an unknown impedance
at microwave frequencies, they have largely been superseded by the modern vector network
analyzer in terms of accuracy, versatility, and convenience. The slotted line is still of some
use, however, in certain applications such as high millimeter wave frequencies or where
it is desired to avoid connector mismatches by connecting the unknown load directly to
the slotted line, thus avoiding the use of imperfect transitions. Another reason for studying
the slotted line is that it provides an unexcelled tool for learning the basic concepts of
standing waves and mismatched transmission lines. We will derive expressions for finding
the unknown load impedance from slotted line measurements and also show how the Smith
chart can be used for the same purpose.

Assume that, for a certain terminated line, we have measured the SWR on the line
and �min, the distance from the load to the first voltage minimum on the line. The load
impedance ZL can then be determined as follows. From (2.41) the magnitude of the reflec-
tion coefficient on the line is found from the standing wave ratio as

|�| = SWR − 1

SWR + 1
. (2.58)

From Section 2.3, we know that a voltage minimum occurs when e j (θ−2β�) = −1, where
θ is the phase angle of the reflection coefficient, � = |�|e jθ . The phase of the reflection
coefficient is then

θ = π + 2β�min, (2.59)

where �min is the distance from the load to the first voltage minimum. Actually, since the
voltage minima repeat every λ/2, where λ is the wavelength on the line, any multiple of
λ/2 can be added to �min without changing the result in (2.59) because this just amounts
to adding 2βnλ/2 = 2πn to θ , which will not change �. Thus, the two quantities SWR
and �min can be used to find the complex reflection coefficient � at the load. It is then
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straightforward to use (2.43) with � = 0 to find the load impedance from �:

ZL = Z0
1 + �

1 − �
. (2.60)

The use of the Smith chart in solving this problem is best illustrated by an example.

EXAMPLE 2.4 IMPEDANCE MEASUREMENT WITH A SLOTTED LINE

The following two-step procedure has been carried out with a 50 � coaxial slotted
line to determine an unknown load impedance:

1. A short circuit is placed at the load plane, resulting in a standing wave on
the line with infinite SWR and sharply defined voltage minima, as shown in
Figure 2.14a. On the arbitrarily positioned scale on the slotted line, voltage
minima are recorded at

z = 0.2 cm, 2.2 cm, 4.2 cm.

2. The short circuit is removed and replaced with the unknown load. The standing
wave ratio is measured as SWR = 1.5, and voltage minima, which are not as
sharply defined as those in step 1, are recorded at

z = 0.72 cm, 2.72 cm, 4.72 cm,

as shown in Figure 2.14b. Find the load impedance.

Solution
Knowing that voltage minima repeat every λ/2, we have from the data of step 1
that λ = 4.0 cm. In addition, because the reflection coefficient and input impedance
also repeat every λ/2, we can consider the load terminals to be effectively located
at any of the voltage minima locations listed in step 1. Thus, if we say the load
is at 4.2 cm, then the data from step 2 show that the next voltage minimum away
from the load occurs at 2.72 cm, giving �min = 4.2 − 2.72 = 1.48 cm = 0.37λ.

|V |

|V |

Short
circuit

Unknown
load

Vmax

Vmin

(a)

(b)

0 1 2 3 4 5

0 1 2 3 4 5

FIGURE 2.14 Voltage standing wave patterns for Example 2.4. (a) Standing wave for short-circuit
load. (b) Standing wave for unknown load.
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Applying (2.58)–(2.60) to these data gives

|�| = 1.5 − 1

1.5 + 1
= 0.2,

θ = π + 4π

4.0
(1.48) = 86.4◦,

so

� = 0.2e j86.4◦ = 0.0126 + j0.1996.

The load impedance is then

ZL = 50

(
1 + �

1 − �

)
= 47.3 + j19.7�.

For the Smith chart version of the solution, we begin by drawing the SWR
circle for SWR = 1.5, as shown in Figure 2.15; the unknown normalized load
impedance must lie on this circle. The reference that we have is that the load
is 0.37λ away from the first voltage minimum. On the Smith chart the position
of a voltage minimum corresponds to the minimum impedance point (minimum
voltage, maximum current), which is the horizontal axis (zero reactance) to the
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FIGURE 2.15 Smith chart for Example 2.4.
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left of the origin. Thus, we begin at the voltage minimum point and move 0.37λ

toward the load (counterclockwise), to the normalized load impedance point,
zL = 0.95 + j0.4, as shown in Figure 2.15. The actual load impedance is then
ZL = 47.5 + j20 �, in close agreement with the above result using equations.

Note that, in principle, voltage maxima locations could be used as well as
voltage minima positions, but voltage minima are more sharply defined than volt-
age maxima and so usually result in greater accuracy. ■

2.5 THE QUARTER-WAVE TRANSFORMER

The quarter-wave transformer is a useful and practical circuit for impedance matching and
also provides a simple transmission line circuit that further illustrates the properties of
standing waves on a mismatched line. Although we will study the design and performance
of quarter-wave matching transformers more extensively in Chapter 5, the main purpose
here is the application of the previously developed transmission line theory to a basic trans-
mission line circuit. We will first approach the problem from the impedance viewpoint and
then show how this result can also be interpreted in terms of an infinite set of multiple
reflections on the matching section.

The Impedance Viewpoint

Figure 2.16 shows a circuit employing a quarter-wave transformer. The load resistance RL

and the feedline characteristic impedance Z0 are both real and assumed to be known. These
two components are connected with a lossless piece of transmission line of (unknown)
characteristic impedance Z1 and length λ/4. It is desired to match the load to the Z0 line
by using the λ/4 section of line and so make � = 0 looking into the λ/4 matching section.
From (2.44) the input impedance Zin can be found as

Z in = Z1
RL + j Z1 tan β�

Z1 + j RL tan β�
. (2.61)

To evaluate this for β� = (2π/λ)(λ/4) = π/2, we can divide the numerator and denomi-
nator by tan β� and take the limit as β� → π/2 to get

Z in = Z2
1

RL
. (2.62)

In order for � = 0, we must have Zin = Z0, which yields the characteristic impedance Z1
as

Z1 = √
Z0 RL , (2.63)

�/4

Z0 Z1

Z in

RL

Γ

FIGURE 2.16 The quarter-wave matching transformer.
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which is the geometric mean of the load and source impedances. Then there will be no
standing waves on the feedline (SWR = 1), although there will be standing waves on the
λ/4 matching section. In addition, the above condition applies only when the length of the
matching section is λ/4 or an odd multiple of λ/4, long, so that a perfect match may be
achieved at one frequency, but impedance mismatch will occur at other frequencies.

EXAMPLE 2.5 FREQUENCY RESPONSE OF A QUARTER-WAVE
TRANSFORMER

Consider a load resistance RL = 100 � to be matched to a 50 � line with a
quarter-wave transformer. Find the characteristic impedance of the matching sec-
tion and plot the magnitude of the reflection coefficient versus normalized fre-
quency, f/ fo, where fo is the frequency at which the line is λ/4 long.

Solution
From (2.63), the necessary characteristic impedance is

Z1 = √
(50)(100) = 70.71 �.

The reflection coefficient magnitude is given as

|�| =
∣∣∣∣ Z in − Z0

Z in + Z0

∣∣∣∣ ,
where the input impedance Z in is a function of frequency as given by (2.44). The
frequency dependence in (2.44) comes from the β� term, which can be written in
terms of f/ fo as

β� =
(

2π

λ

) (
λ0

4

)
=

(
2π f

vp

) (
vp

4 fo

)
= π f

2 fo
,

where it is seen that β� = π/2 for f = fo, as expected. For higher frequen-
cies the matching section looks electrically longer, and for lower frequencies it
looks shorter. The magnitude of the reflection coefficient is plotted versus f/ fo in
Figure 2.17. ■

0.0 1.0 2.0 3.0 4.0
0.0

0.1

0.2

0.3

|Γ|

f/fo

FIGURE 2.17 Reflection coefficient versus normalized frequency for the quarter-wave trans-
former of Example 2.5.



c02TransmissionLineTheory Pozar July 26, 2011 17:33

74 Chapter 2: Transmission Line Theory

This method of impedance matching is limited to real load impedances, although a
complex load impedance can easily be made real, at a single frequency, by transformation
through an appropriate length of line.

The above analysis shows how useful the impedance concept can be when solving
transmission line problems, and this method is probably the preferred method in practice.
It may aid our understanding of the quarter-wave transformer (and other transmission line
circuits), however, if we now look at it from the viewpoint of multiple reflections.

The Multiple-Reflectio Viewpoint

Figure 2.18 shows the quarter-wave transformer circuit with reflection and transmission
coefficients defined as follows:

� = overall, or total, reflection coefficient of a wave incident on the λ/4 transformer
(same as � in Example 2.5).

�1 = partial reflection coefficient of a wave incident on a load Z1, from the Z0 line.
�2 = partial reflection coefficient of a wave incident on a load Z0, from the Z1 line.
�3 = partial reflection coefficient of a wave incident on a load RL , from the Z1 line.
T1 = partial transmission coefficient of a wave from the Z0 line into the Z1 line.
T2 = partial transmission coefficient of a wave from the Z1 line into the Z0 line.

These coefficients can be expressed as

�1 = Z1 − Z0

Z1 + Z0
, (2.64a)

�2 = Z0 − Z1

Z0 + Z1
= −�1, (2.64b)

�3 = RL − Z1

RL + Z1
, (2.64c)

�/4

Z0 Z1 RL

1

1

Γ1

Γ1

Γ

Γ3

Γ3Γ2

Γ3

Γ3

Γ2

Γ2

–T1T2Γ3

T1T2Γ3
2Γ2

T2

T1

T2

T1

T2

FIGURE 2.18 Multiple reflection analysis of the quarter-wave transformer.
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T1 = 2Z1

Z1 + Z0
, (2.64d)

T2 = 2Z0

Z1 + Z0
. (2.64e)

Now think of the quarter-wave transformer of Figure 2.18 in the time domain, and imagine
a wave traveling down the Z0 feedline toward the transformer. When the wave first hits
the junction with the Z1 line, it sees only an impedance Z1 since it has not yet traveled to
the load RL and cannot see that effect. Part of the wave is reflected with a coefficient �1,
and part is transmitted onto the Z1 line with a coefficient T1. The transmitted wave then
travels λ/4 to the load, is reflected with a coefficient �3, and travels another λ/4 back to
the junction with the Z0 line. Part of this wave is transmitted through (to the left) to the
Z0 line, with coefficient T2, and part is reflected back toward the load with coefficient �2.
Clearly, this process continues with an infinite number of bouncing waves, and the total
reflection coefficient, �, is the sum of all of these partial reflections. Since each round
trip path up and down the λ/4 transformer section results in a 180◦ phase shift, the total
reflection coefficient can be expressed as

� = �1 − T1T2�3 + T1T2�2�
2
3 − T1T2�

2
2�3

3 + · · ·

= �1 − T1T2�3

∞∑
n=0

(−�2�3)
n. (2.65)

Since |�3| < 1 and |�2| < 1, the infinite series in (2.65) can be summed using the
geometric series result that

∞∑
n=0

xn = 1

1 − x
, for |x | < 1,

to give

� = �1 − T1T2�3

1 + �2�3
= �1 + �1�2�3 − T1T2�3

1 + �2�3
. (2.66)

The numerator of this expression can be simplified using (2.64) to give

�1 − �3
(
�2

1 + T1T2
) = �1 − �3

[
(Z1 − Z0)

2

(Z1 + Z0)2
+ 4Z1 Z0

(Z1 + Z0)2

]

= �1 − �3 = (Z1 − Z0)(RL + Z1) − (RL − Z1)(Z1 + Z0)

(Z1 + Z0)(RL + Z1)

= 2
(
Z2

1 − Z0 RL
)

(Z1 + Z0)(RL + Z1)
,

which is seen to vanish if we choose Z1 = √
Z0 RL , as in (2.63). Then � of (2.66) is zero,

and the line is matched. This analysis shows that the matching property of the quarter-wave
transformer comes about by properly selecting the characteristic impedance and length of
the matching section so that the superposition of all of the partial reflections adds to zero.
Under steady-state conditions, an infinite sum of waves traveling in the same direction with
the same phase velocity can be combined into a single traveling wave. Thus, the infinite
set of waves traveling in the forward and reverse directions on the matching section can be
reduced to two waves traveling in opposite directions. See Problem 2.25.
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2.6 GENERATOR AND LOAD MISMATCHES

In Section 2.3 we treated the terminated (mismatched) transmission line assuming that
the generator was matched, so that no reflections occurred at the generator. In general,
however, both generator and load may present mismatched impedances to the transmission
line. We will study this case and also see that the condition for maximum power transfer
from the generator to the load may, in some situations, involve a standing wave on the line.

Figure 2.19 shows a transmission line circuit with arbitrary generator and load
impedances Zg and Z�, which may be complex. The transmission line is assumed to be
lossless, with a length � and characteristic impedance Z0. This circuit is general enough to
model most passive and active networks that occur in practice.

Because both the generator and load are mismatched, multiple reflections can occur on
the line, as in the problem of the quarter-wave transformer. The present circuit could thus
be analyzed using an infinite series to represent the multiple bounces, as in Section 2.5,
but we will use the easier and more useful method of impedance transformation. The input
impedance looking into the terminated transmission line from the generator end is, from
(2.43) and (2.44),

Z in = Z0
1 + ��e−2 jβ�

1 − ��e−2 jβ�
= Z0

Z� + j Z0 tan β�

Z0 + j Z� tan β�
, (2.67)

where �� is the reflection coefficient of the load:

�� = Z� − Z0

Z� + Z0
. (2.68)

The voltage on the line can be written as

V (z) = V +
o

(
e− jβz + ��e jβz), (2.69)

and we can find V +
o from the voltage at the generator end of the line, where z = −�:

V (−�) = Vg
Z in

Z in + Zg
= V +

o

(
e jβ� + ��e− jβ�

)
,

so that

V +
o = Vg

Z in

Z in + Zg

1(
e jβ� + ��e− jβ�

) . (2.70)

This can be rewritten, using (2.67), as

V +
o = Vg

Z0

Z0 + Zg

e− jβ�(
1 − ���ge−2 jβ�

) , (2.71)

z–l 0

Z0, � Zl

Zg

Vg Z in Vin

Iin
Γ Γl

+

–

FIGURE 2.19 Transmission line circuit for mismatched load and generator.
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where �g is the reflection coefficient seen looking into the generator:

�g = Zg − Z0

Zg + Z0
. (2.72)

The standing wave ratio on the line is then

SWR = 1 + |��|
1 − |��| . (2.73)

The power delivered to the load is

P = 1

2
Re{Vin I ∗

in} = 1

2
|Vin|2Re

{
1

Z in

}
= 1

2
|Vg|2

∣∣∣∣ Z in

Z in + Zg

∣∣∣∣
2

Re

{
1

Z in

}
. (2.74)

Now let Zin = Rin + j X in and Zg = Rg + j Xg; then (2.74) can be reduced to

P = 1

2
|Vg|2 Rin

(Rin + Rg)2 + (X in + Xg)2
. (2.75)

We now assume that the generator impedance, Zg , is fixed, and consider three cases of
load impedance.

Load Matched to Line

In this case we have Zl = Z0, so �� = 0, and SWR = 1, from (2.68) and (2.73). Then the
input impedance is Z in = Z0, and the power delivered to the load is, from (2.75),

P = 1

2
|Vg|2 Z0

(Z0 + Rg)2 + X2
g
. (2.76)

Generator Matched to Loaded Line

In this case the load impedance Z� and/or the transmission line parameters β�, Z0 are
chosen to make the input impedance Zin = Zg , so that the generator is matched to the load
presented by the terminated transmission line. Then the overall reflection coefficient, �, is
zero:

� = Z in − Zg

Z in + Zg
= 0. (2.77)

There may, however, be a standing wave on the line since �� may not be zero. The power
delivered to the load is

P = 1

2
|Vg|2 Rg

4
(
R2

g + X2
g

) . (2.78)

Observe that even though the loaded line is matched to the generator, the power deliv-
ered to the load may be less than that of (2.76), where the loaded line was not necessarily
matched to the generator. Thus, we are led to the question of what is the optimum load
impedance, or equivalently, what is the optimum input impedance, to achieve maximum
power transfer to the load for a given generator impedance.

Conjugate Matching

Assuming that the generator series impedance Zg is fixed, we may vary the input impedance
Z in until we achieve the maximum power delivered to the load. Knowing Z in, it is then
easy to find the corresponding load impedance Z� via an impedance transformation along
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the line. To maximize P , we differentiate with respect to the real and imaginary parts of
Z in. Using (2.75) gives

∂ P

∂ Rin
= 0 → 1

(Rin + Rg)2 + (X in + Xg)2
+ −2Rin(Rin + Rg)

[(Rin + Rg)2 + (X in + Xg)2]2
= 0,

or

R2
g − R2

in + (X in + Xg)
2 = 0, (2.79a)

and

∂ P

∂ X in
= 0 → −2Rin(X in + Xg)

[(Rin + Rg)2 + (X in + Xg)2]2
= 0,

or

X in(X in + Xg) = 0. (2.79b)

Solving (2.79a) and (2.79b) simultaneously for Rin and X in gives

Rin = Rg, X in = −Xg,

or

Z in = Z∗
g . (2.80)

This condition is known as conjugate matching, and it results in maximum power transfer
to the load for a fixed generator impedance. The power delivered is, from (2.75) and (2.80),

P = 1

2
|Vg|2 1

4Rg
, (2.81)

which is seen to be greater than or equal to the powers of (2.76) or (2.78). This is also the
maximum available power from the generator. Note that the reflection coefficients ��, �g ,
and � may be nonzero. Physically, this means that in some cases the power in the multiple
reflections on a mismatched line may add in phase to deliver more power to the load than
would be delivered if the line were flat (no reflections). If the generator impedance is real
(Xg = 0), then the last two cases reduce to the same result, which is that maximum power
is delivered to the load when the loaded line is matched to the generator (Rin = Rg , with
X in = Xg = 0).

Finally, note that neither matching for zero reflection (Z� = Z0) nor conjugate match-
ing (Z in = Z∗

g) necessarily yields a system with the best efficiency. For example, if Zg =
Z� = Z0 then both load and generator are matched (no reflections), but only half the power
produced by the generator is delivered to the load (the other half is lost in Zg), for a trans-
mission efficiency of 50%. This efficiency can only be improved by making Zg as small as
possible.

2.7 LOSSY TRANSMISSION LINES

In practice, transmission lines have losses due to finite conductivity and/or lossy dielectric,
but these losses are usually small. In many practical problems loss may be neglected, but at
other times the effect of loss may be very important, as when dealing with the attenuation
of a transmission line, noise introduced by a lossy line, or the Q of a resonator, for example.
In this section we will study the effects of loss on transmission line behavior and show how
the attenuation constant can be calculated.
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The Low-Loss Line

In most practical microwave and RF transmission lines the loss is small—if this were not
the case, the line would be of little practical value. When the loss is small, some approxima-
tions can be made to simplify the expressions for the general transmission line parameters
of γ = α + jβ and Z0.

The general expression for the complex propagation constant is, from (2.5),

γ = √
(R + jωL)(G + jωC), (2.82)

which can be rearranged as

γ =
√

( jωL)( jωC)

(
1 + R

jωL

)(
1 + G

jωC

)

= jω
√

LC

√
1 − j

(
R

ωL
+ G

ωC

)
− RG

ω2LC
. (2.83)

For a low-loss line both conductor and dielectric loss will be small, and we can assume
that R 
 ωL and G 
 ωC . Then, RG 
 ω2LC , and (2.83) reduces to

γ � jω
√

LC

√
1 − j

(
R

ωL
+ G

ωC

)
. (2.84)

If we were to ignore the (R/ωL + G/ωC) term we would obtain the result that γ was
purely imaginary (no loss), so we will instead use the first two terms of the Taylor series
expansion for

√
1 + x � 1 + x/2 + · · · to give the first higher order real term for γ :

γ � jω
√

LC

[
1 − j

2

(
R

ωL
+ G

ωC

)]
,

so that

α � 1

2

(
R

√
C

L
+ G

√
L

C

)
= 1

2

(
R

Z0
+ G Z0

)
, (2.85a)

β � ω
√

LC, (2.85b)

where Z0 = √
L/C is the characteristic impedance of the line in the absence of loss.

Note from (2.85b) that the propagation constant β is identical to that of the lossless case
of (2.12). By the same order of approximation, the characteristic impedance Z0 can be
approximated as a real quantity:

Z0 =
√

R + jωL

G + jωC
�

√
L

C
. (2.86)

Equations (2.85)–(2.86) are known as the high-frequency, low-loss approximations for
transmission lines, and they are important because they show that the propagation constant
and characteristic impedance for a low-loss line can be closely approximated by consider-
ing the line as lossless.
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EXAMPLE 2.6 ATTENUATION CONSTANT OF THE COAXIAL LINE

In Example 2.1 the L , C , R, and G parameters were derived for a lossy coaxial
line. Assuming the loss is small, derive the attenuation constant from (2.85a) with
the results from Example 2.1.

Solution
From (2.85a),

α = 1

2

(
R

√
C

L
+ G

√
L

C

)
.

Using the results for R and G derived in Example 2.1 gives

α = 1

2

[
Rs

η ln b/a

(
1

a
+ 1

b

)
+ ωε′′η

]
,

where η = √
µ/ε′ is the intrinsic impedance of the dielectric material filling the

coaxial line. In addition, β = ω
√

LC = ω
√

µε′ and Z0 = √
L/C = (η/2π)

ln b/a. ■

This method for the calculation of attenuation requires that the line parameters L, C, R,
and G be known. These can sometimes be derived using the formulas of (2.17)−(2.20), but a
more direct and versatile procedure is to use the perturbation method, to be discussed shortly.

The Distortionless Line

As can be seen from the exact equations (2.82)–(2.83) for the propagation constant of a
lossy line, the phase term β is generally a complicated function of frequency ω when loss is
present. In particular, we note that β is generally not exactly a linear function of frequency,
as in (2.85b), unless the line is lossless. If β is not a linear function of frequency (of the
form β = aω), then the phase velocity vp = ω/β will vary with frequency. The implication
of this is that the various frequency components of a wideband signal will travel with
different phase velocities and so arrive at the receiver end of the transmission line at slightly
different times. This will lead to dispersion, a distortion of the signal, and is generally an
undesirable effect. Granted, as we have argued, the departure of β from a linear function
may be quite small, but the effect can be significant if the line is very long. This effect
leads to the concept of group velocity, which we will address in detail in Section 3.10.

There is a special case, however, of a lossy line that has a linear phase factor as a
function of frequency. Such a line is called a distortionless line, and it is characterized by
line parameters that satisfy the relation

R

L
= G

C
. (2.87)

From (2.83) the exact complex propagation constant, under the condition specified by
(2.87), reduces to

γ = jω
√

LC

√
1 − 2 j

R

ωL
− R2

ω2L2

= jω
√

LC

(
1 − j

R

ωL

)

= R

√
C

L
+ jω

√
LC = α + jβ, (2.88)
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z–l 0

V(z), I(z)

Z0, �, � ZLZ in

FIGURE 2.20 A lossy transmission line terminated in the impedance ZL .

which shows that β = ω
√

LC is now a linear function of frequency. Equation (2.88) also
shows that the attenuation constant, α = R

√
C/L , does not depend on frequency, so that

all frequency components of a signal will be attenuated by the same amount (actually,
R is usually a weak function of frequency). Thus, the distortionless line is not loss free
but is capable of passing a pulse or modulation envelope without distortion. To obtain a
transmission line with parameters that satisfy (2.87) often requires that L be increased by
adding series loading coils spaced periodically along the line.

The above theory for the distortionless line was first developed by Oliver Heavi-
side (1850–1925), who solved many problems in transmission line theory and reworked
Maxwell’s original theory of electromagnetism into the modern version that we are famil-
iar with today [5].

The Terminated Lossy Line

Figure 2.20 shows a length � of a lossy transmission line terminated in a load impedance
ZL . Thus, γ = α + jβ is complex, but we assume the loss is small, so that Z0 is approxi-
mately real, as in (2.86).

In (2.36), expressions for the voltage and current wave on a lossless line are given.
The analogous expressions for the lossy case are

V (z) = V +
o

(
e−γ z + �eγ z), (2.89a)

I (z) = V +
o

Z0

(
e−γ z − �eγ z), (2.89b)

where � is the reflection coefficient of the load, as given in (2.35), and V +
o is the incident

voltage amplitude referenced at z = 0. From (2.42) the reflection coefficient at a distance
� from the load is

�(�) = �e−2 jβ�e−2α� = �e−2γ �. (2.90)

The input impedance Z in at a distance � from the load is then

Zin = V (−�)

I (−�)
= Z0

ZL + Z0 tanh γ �

Z0 + ZL tanh γ �
. (2.91)

We can compute the power delivered to the input of the terminated line at z = −� as

Pin = 1

2
Re

{
V (−�)I ∗(−�)

} = |V +
o |2

2Z0

(
e2α� − |�|2e−2α�

)

= |V +
o |2

2Z0

(
1 − |�(�)|2)e2α�, (2.92)
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where (2.89) has been used for V (−�) and I (−�). The power actually delivered to the
load is

PL = 1

2
Re{V (0)I ∗(0)} = |V +

o |2
2Z0

(1 − |�|2). (2.93)

The difference in these powers corresponds to the power lost in the line:

Ploss = Pin − PL = |V +
o |2

2Z0

[(
e2α� − 1

) + |�|2(1 − e−2α�
)]

. (2.94)

The first term in (2.94) accounts for the power loss of the incident wave, while the second
term accounts for the power loss of the reflected wave; note that both terms increase as α

increases.

The Perturbation Method for Calculating Attenuation

Here we derive a useful and standard technique for finding the attenuation constant of a
low-loss line. The method avoids the use of the transmission line parameters L , C , R, and
G and instead relies on the fields of the lossless line, with the assumption that the fields of
the lossy line are not greatly different from the fields of the lossless line—hence the term,
perturbation method.

We have seen that the power flow along a lossy transmission line, in the absence of
reflections, is of the form

P(z) = Poe−2αz, (2.95)

where Po is the power at the z = 0 plane and α is the attenuation constant we wish to
determine. Now define the power loss per unit length along the line as

P� = −∂ P

∂z
= 2αPoe−2αz = 2αP(z),

where the negative sign on the derivative was introduced so that P� would be a positive
quantity. From this, the attenuation constant can be determined as

α = P�(z)

2P(z)
= P�(z = 0)

2Po
. (2.96)

This equation states that α can be determined from Po, the power on the line, and P�, the
power loss per unit length of line. It is important to realize that P� can be computed from
the fields of the lossless line and can account for both conductor loss [using (1.131)] and
dielectric loss [using (1.92)].

EXAMPLE 2.7 USING THE PERTURBATION METHOD TO FIND
THE ATTENUATION CONSTANT

Use the perturbation method to find the attenuation constant of a coaxial line
having a lossy dielectric and lossy conductors.

Solution
From Example 2.1 and (2.32), the fields of the lossless coaxial line are, for a <

ρ < b,

Ē = Voρ̂

ρ ln b/a
e− jβz,

H̄ = Voφ̂

2πρZ0
e− jβz,
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where Z0 = (η/2π) ln b/a is the characteristic impedance of the coaxial line and
Vo is the voltage across the line at z = 0. The first step is to find Po, the power
flowing on the lossless line:

Po = 1

2
Re

∫
S

Ē × H̄∗ · ds̄ = |Vo|2
2Z0

∫ b

ρ=a

∫ 2π

φ=0

ρdρdφ

2πρ2 ln b/a
= |Vo|2

2Z0
,

as expected from basic circuit theory.
The loss per unit length, P�, comes from conductor loss (P�c) and dielectric

loss (P�d). From (1.131), the conductor loss in a 1 m length of line can be found
as

P�c = Rs

2

∫
S
|H̄t |2ds = Rs

2

∫ 1

z=0

{∫ 2π

φ=0
|Hφ(ρ = a)|2a dφ

+
∫ 2π

φ=0
|Hφ(ρ = b)|2b dφ

}
dz

= Rs |Vo|2
4π Z2

0

(
1

a
+ 1

b

)
.

The dielectric loss in a 1 m length of line is, from (1.92),

P�d = ωε′′

2

∫
V

|Ē |2ds = ωε′′

2

∫ b

ρ=a

∫ 2π

φ=0

∫ 1

z=0
|Eρ |2ρ dρ dφ dz = πωε′′

ln b/a
|Vo|2,

where ε′′ is the imaginary part of the complex permittivity, ε = ε′ − jε′′. Finally,
applying (2.96) gives

α = P�c + P�d

2Po
= Rs

4π Z0

(
1

a
+ 1

b

)
+ πωε′′Z0

ln b/a

= Rs

2ηln b/a

(
1

a
+ 1

b

)
+ ωε′′η

2
,

where η = √
µ/ε′. This result is seen to agree with that of Example 2.6. ■

The Wheeler Incremental Inductance Rule

Another useful technique for the practical evaluation of attenuation due to conductor loss
for TEM or quasi-TEM lines is the Wheeler incremental inductance rule [6]. This method
is based on the similarity of the equations for the inductance per unit length and resistance
per unit length of a transmission line, as given by (2.17) and (2.19), respectively. In other
words, the conductor loss of a line is due to current flow inside the conductor, which, as
was shown in Section 1.7, is directly related to the tangential magnetic field at the surface
of the conductor and thus to the inductance of the line.

From (1.131), the power loss into a cross section S of a good (but not perfect) conduc-
tor is

P� = Rs

2

∫
S
| J̄s |2ds = Rs

2

∫
S
|H̄t |2ds W/m2, (2.97)

so the power loss per unit length of a uniform transmission line is

P� = Rs

2

∫
C

|H̄t |2d� W/m, (2.98)
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where the line integral of (2.98) is over the cross-sectional contours of both conductors.
From (2.17), the inductance per unit length of the line is

L = µ

|I |2
∫

S
|H̄ |2ds, (2.99)

which is computed assuming the conductors are lossless. When the conductors have a
small loss, the H̄ field in the conductor is no longer zero, and this field contributes a small
additional “incremental” inductance, �L , to that of (2.99). As discussed in Chapter 1, the
fields inside the conductor decay exponentially, so that the integration into the conductor
dimension can be evaluated as

�L = µ0δs

2|I |2
∫

C
|H̄t |2d�, (2.100)

since
∫ ∞

0 e−2z/δs dz = δs/2. (The skin depth is δs = √
2/ωµσ .) Then P� from (2.98) can

be written in terms of �L as

P� = Rs |I |2�L

µ0δs
= |I |2�L

σµ0δ2
s

= |I |2ω�L

2
W/m, (2.101)

since Rs = √
ωµ0/2σ = 1/σδs . Then from (2.96) the attenuation due to conductor loss

can be evaluated as

αc = P�

2Po
= ω�L

2Z0
, (2.102)

since Po, the total power flow down the line, is Po = |I |2 Z0/2. In (2.102), �L is evaluated
as the change in inductance when all conductor walls recede by an amount δs/2.

Equation (2.102) can also be written in terms of the change in characteristic impedance
since

Z0 =
√

L

C
= L√

LC
= Lvp, (2.103)

so that

αc = β�Z0

2Z0
, (2.104)

where �Z0 is the change in characteristic impedance when all conductor walls recede by
an amount δs/2. Yet another form of the incremental inductance rule can be obtained by
using the first two terms of a Taylor series expansion for Z0. Thus,

Z0

(
δs

2

)
� Z0 + δs

2

d Z0

d�
, (2.105)

so that

�Z0 = Z0

(
δs

2

)
− Z0 = δs

2

d Z0

d�
,

where Z0 (δs/2) refers to the characteristic impedance of the line when the walls recede by
δs/2, and � refers to a distance into the conductors. Then (2.104) can be written as

αc = βδs

4Z0

d Z0

d�
= Rs

2Z0η

d Z0

d�
, (2.106)
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where η = √
µ0/ε is the intrinsic impedance of the dielectric and Rs is the surface resistiv-

ity of the conductor. Equation (2.106) is one of the most practical forms of the incremental
inductance rule because the characteristic impedance is known for a wide variety of trans-
mission lines.

EXAMPLE 2.8 USING THE WHEELER INCREMENTAL INDUCTANCE RULE
TO FIND THE ATTENUATION CONSTANT

Calculate the attenuation due to conductor loss of a coaxial line using the Wheeler
incremental inductance rule.

Solution
From (2.32) the characteristic impedance of the coaxial line is

Z0 = η

2π
ln

b

a
.

From the incremental inductance rule of the form given in (2.106), the attenuation
due to conductor loss is

αc = Rs

2Z0η

d Z0

d�
= Rs

4π Z0

(
d ln b/a

db
− d ln b/a

da

)
= Rs

4π Z0

(
1

b
+ 1

a

)
,

which is seen to be in agreement with the result of Example 2.7. The negative
sign on the second differentiation in this equation is because the derivative for the
inner conductor is in the −ρ direction (receding wall). ■

Regardless of how attenuation is calculated, measured attenuation values for practical
transmission lines are usually higher. One reason for this discrepancy is the fact that real-
istic transmission lines have metallic surfaces with a certain amount of roughness, which
increases loss, while our theoretical calculations assume perfectly smooth conductors. A
quasi-empirical formula that can be used to approximately account for surface roughness
for a transmission line is [7]

α′
c = αc

[
1 + 2

π
tan−1 1.4

(
�

δs

)2
]

, (2.107)

where αc is the attenuation due to perfectly smooth conductors, α′
c is the attenuation cor-

rected for surface roughness, � is the rms surface roughness, and δs is the skin depth of
the conductors.

2.8 TRANSIENTS ON TRANSMISSION LINES

So far we have concentrated on the behavior of transmission lines at a single frequency, and
in many cases of practical interest this viewpoint is entirely satisfactory. In some situations,
however, where short pulses or very wideband signals are propagating on a transmission
line, it is useful to consider wave propagation from a transient, or time domain, point of
view.
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In this section we will discuss the reflection of transient pulses from terminated trans-
mission lines, including the special cases of a matched line, a short-circuited line, and an
open-circuited line. We will conclude with a description of bounce diagrams, which can be
used to describe multiple reflections of pulses on transmission lines.

Reflectio of Pulses from a Terminated Transmission Line

A transient transmission line circuit is shown in Figure 2.21a, where a DC source is
switched on at t = 0. We first consider the case in which the line has a characteristic
impedance of Z0, the source impedance is Z0, and the load impedance is Z0. It is
assumed that the voltage on the line is initially zero: v (z, t) = 0 for all z, for t < 0. We
want to determine the voltage response on the transmission line as a function of time and
position.

Because of the finite transit time of the line, its input impedance will appear to be equal
to the characteristic impedance of the line for t < 2�/vp, where vp is the phase velocity of
the line. In other words, the line looks infinitely long until the pulse has time to reach the
load and (possibly) reflect back to the input. Therefore, when the switch closes at t = 0,
the circuit appears as a voltage divider consisting of the source impedance and the input
impedance, both being Z0. The initial voltage on the line is thus V0/2, and this voltage
waveform propagates toward the load with a velocity vp. The leading edge of the pulse
will be at position z on the line at time t = z/vp, as shown in Figure 2.21b.

The pulse reaches the load at time t = �/vp. Since the load is matched to the line, there
is no reflection of the pulse from the load. The circuit is now in a steady-state condition, and
voltage on the line is constant: v (z, t) = V0/2 for all t > �/vp, as shown in Figure 2.21c.
This is, of course, the DC value that we would expect for a voltage divider consisting of
equal source and input impedances.

Next consider the transmission line circuit of Figure 2.22a, where the line is now ter-
minated with a short circuit. Initially, the input impedance of the line again appears as Z0,
and the initial incident pulse again has an amplitude of V0/2, as shown in Figure 2.22b.

zl0

Z0
Z0

Z0

V0

+

–

t = 0

v(z, t)

zl0
0

v

2
V0

zl0
0

z = vpt

v

2
V0

(a)

(b) (c)

FIGURE 2.21 Transient response of a transmission line terminated with a matched load.
(a) Transmission line circuit with a step function voltage source. (b) Response
for 0 < t < �/vp . (c) Response for �/vp < t < 2�/vp; there is no reflection from
the load.
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zl0
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2
 V0–

(a)
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l

FIGURE 2.22 Transient response of a transmission line terminated with a short circuit.
(a) Transmission line circuit with a step function voltage source. (b) Response for
0 < t < �/vp . (c) Response for �/vp < t < 2�/vp; the incident pulse is reflected
with � = −1.

The short-circuit load has a reflection coefficient of � = −1, which has the effect of invert-
ing the reflected pulse as it travels back toward the source. The superposition of the forward
and reverse traveling pulses leads to cancellation, as shown in Figure 2.22c, for the period
where �/vp < t < 2�/vp. When the return pulse reaches the source, at t = 2�/vp, it will
not be re-reflected because the source is matched to the line. The circuit is then in steady
state, with zero voltage everywhere on the line. Again, this is consistent with DC circuit
analysis, as the shorted line has zero electrical length at DC and thus appears as a short at
its input, leading to a terminal voltage of zero. The voltage waveform at a fixed point z on
the line will consist of a rectangular pulse of amplitude V0/2 existing only over the time
period z/vp < t < (2� − z) /vp. This effect can be used in practice to generate pulses of
very short duration.

Finally, consider the effect of a transmission line with an open-circuit termination,
as shown in Figure 2.23a. As in previous cases, the input impedance of the line initially
appears as Z0, and the initial incident pulse has an amplitude of V0/2, as shown in
Figure 2.23b. The open-circuit load has a reflection coefficient of � = 1, which reflects
the incident waveform with the same polarity toward the source. The amplitudes of the for-
ward and reverse pulses add to create a wave with an amplitude of V0, as shown in Figure
2.23c. At t = 2�/vp the return pulse reaches the source, but it is not re-reflected since the
source is matched to the line. The circuit is then in steady state, with a constant voltage
of V0 on the line. By DC analysis, the open-circuited line presents an open circuit at its
terminals, leading to a terminal voltage equal to the source voltage.

Bounce Diagrams for Transient Propagation

The plots in Figures 2.21–2.23 show the voltage of a propagating pulse versus position
along the transmission line but do not directly show the time variable, nor do they show
very clearly the contribution of reflections on the waveform (especially when multiple
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zl0
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FIGURE 2.23 Transient response of a transmission line terminated with an open circuit.
(a) Transmission line circuit with a step function voltage source. (b) Response for
0 < t < �/vp . (c) Response for �/vp < t < 2�/vp; the incident pulse is reflected
with � = 1.

reflections are present). An alternative way of viewing the progress of a pulse propagating
in time and position along a transmission line is with a bounce diagram.

As an example, Figure 2.24 shows the bounce diagram for the transient circuit of
Figure 2.23a. The horizontal axis represents position on the line, while the vertical axis
represents time. The ray representing the incident wave begins at t = z = 0 and travels to
the right (increasing z) and up (for increasing t). This ray is labeled with the amplitude of
the incident wave, V0/2. At t = �/vp the incident wave reaches the open-circuit load and
is reflected to produce a wave of amplitude V0/2 traveling back to the source. The ray for
this reflected wave thus moves to the left and up, until it reaches the source at z = 0 and
t = 2�/vp, at which point steady state is reached. The total voltage at any position z and
time t can be easily found by drawing a vertical line through the point z and extending
up from t = 0 to t . The total voltage is found by adding the voltages of each forward or
reverse traveling wave component, as represented by the rays that intersect this vertical
line.

The next example shows how a bounce diagram can be applied to circuits that have
multiple reflections.

zl0
0

z

t

p

2l

l

2
V0

2
V0

p

FIGURE 2.24 Bounce diagram for the transient circuit of Figure 2.23a.
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zl0

Z0 = 100 Ω12 V
+

–

t = 0
ΓL

Γg

50 Ω

200 Ω 

FIGURE 2.25 Circuit for Example 2.9.

EXAMPLE 2.9 BOUNCE DIAGRAM FOR A TRANSIENT CIRCUIT
WITH MULTIPLE REFLECTIONS

Draw the bounce diagram for the transient circuit of Figure 2.25, including the
first three reflections.

Solution
The amplitude of the incident wave is given by a voltage divider as

v+ = 12
100

50 + 100
= 8.0 V

The incident ray can be plotted as a line from the origin to the point z = � and
t = �/vp. The reflection coefficients at the generator and load are

�g = 50 − 100

50 + 100
= −1/3 and �L = 200 − 100

200 + 100
= 1/3,

so the amplitude of the wave reflected from the load is 8/3 V. When this wave
reaches the source, it will be reflected to form a wave of amplitude –8/9 V. The
next reflection from the load will have an amplitude of –8/27 V. These four waves
are shown in the bounce diagram of Figure 2.26. ■
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FIGURE 2.26 Bounce diagram for Example 2.9.
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PROBLEMS

2.1 A 75 � coaxial line has a current i (t, z) = 1.8 cos(3.77 × 109 t − 18.13z) mA. Determine (a) the
frequency, (b) the phase velocity, (c) the wavelength, (d) the relative permittivity of the line, (e) the
phasor form of the current, and (f) the time domain voltage on the line.

2.2 A transmission line has the following per-unit-length parameters: L = 0.5 µH/m, C = 200 pF/m,
R = 4.0 �/m, and G = 0.02 S/m. Calculate the propagation constant and characteristic impedance
of this line at 800 MHz. If the line is 30 cm long, what is the attenuation in dB? Recalculate these
quantities in the absence of loss (R = G = 0).

2.3 RG-402U semirigid coaxial cable has an inner conductor diameter of 0.91 mm and a dielectric diam-
eter (equal to the inner diameter of the outer conductor) of 3.02 mm. Both conductors are copper, and
the dielectric material is Teflon. Compute the R, L , G, and C parameters of this line at 1 GHz, and
use these results to find the characteristic impedance and attenuation of the line at 1 GHz. Compare
your results to the manufacturer’s specifications of 50 � and 0.43 dB/m, and discuss reasons for the
difference.

2.4 Compute and plot the attenuation of the coaxial line of Problem 2.3, in dB/m, over a frequency range
of 1 MHz to 100 GHz. Use log-log graph paper.

2.5 For the parallel plate line shown in the accompanying figure, derive the R, L , G, and C parameters.
Assume W � d .

y

x

z

�r

�

d

W

2.6 For the parallel plate line of Problem 2.5, derive the telegrapher equations using the field theory
approach.

2.7 Show that the T -model of a transmission line shown in the accompanying figure also yields the
telegrapher equations derived in Section 2.1.
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i(z, t) R∆z
2

i(z + ∆z, t)

v(z, t) G∆z C∆z

∆z

v(z + ∆z, t)

R∆z
2

L∆z
2

L∆z
2

+

–

+

–

2.8 A lossless transmission line of electrical length � = 0.3λ is terminated with a complex load impedance
as shown in the accompanying figure. Find the reflection coefficient at the load, the SWR on the line,
the reflection coefficient at the input of the line, and the input impedance to the line.

Z0 = 75 Ω ZLZ in

l = 0.3�

ZL = 30 � j20 Ω

2.9 A 75 � coaxial transmission line has a length of 2.0 cm and is terminated with a load impedance
of 37.5 + j75 �. If the relative permittivity of the line is 2.56 and the frequency is 3.0 GHz, find
the input impedance to the line, the reflection coefficient at the load, the reflection coefficient at the
input, and the SWR on the line.

2.10 A terminated transmission line with Z0 = 60 � has a reflection coefficient at the load of � = 0.4� 60◦.
(a) What is the load impedance? (b) What is the reflection coefficient 0.3λ away from the load? (c)
What is the input impedance at this point?

2.11 A 100 � transmission line has an effective dielectric constant of 1.65. Find the shortest open-circuited
length of this line that appears at its input as a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance
of 5 nH.

2.12 A lossless transmission line is terminated with a 100 � load. If the SWR on the line is 1.5, find the
two possible values for the characteristic impedance of the line.

2.13 Let Zsc be the input impedance of a length of coaxial line when one end is short-circuited, and let
Zoc be the input impedance of the line when one end is open-circuited. Derive an expression for the
characteristic impedance of the cable in terms of Zsc and Zoc.

2.14 A radio transmitter is connected to an antenna having an impedance 80 + j40 � with a 50 � coaxial
cable. If the 50 � transmitter can deliver 30 W when connected to a 50 � load, how much power is
delivered to the antenna?

2.15 Calculate standing wave ratio, reflection coefficient magnitude, and return loss values to complete
the entries in the following table:

SWR |�| RL (dB)

1.00 0.00 ∞
1.01 — —

— 0.01 —

1.05 — —

— — 30.0

1.10 — —

1.20 — —

— 0.10 —

1.50 — —

— — 10.0

2.00 — —

2.50 — —
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2.16 The transmission line circuit in the accompanying figure has Vg = 15 V rms, Zg = 75 �, Z0 = 75 �,
ZL = 60 − j40 �, and � = 0.7λ. Compute the power delivered to the load using three different
techniques:

(a) Find � and compute

PL =
(

Vg

2

)2 1

Z0
(1 − |�|2);

(b) find Zin and compute

PL =
∣∣∣∣ Vg

Zg + Zin

∣∣∣∣
2

Re {Zin} ;

(c) find VL and compute

PL =
∣∣∣∣ VL

ZL

∣∣∣∣
2

Re {ZL } .

Discuss the rationale for each of these methods. Which of these methods can be used if the line is
not lossless?

2.17 For a purely reactive load impedance of the form ZL = j X , show that the reflection coefficient
magnitude |�| is always unity. Assume that the characteristic impedance Z0 is real.

2.18 Consider the transmission line circuit shown in the accompanying figure. Compute the incident
power, the reflected power, and the power transmitted into the infinite 75 � line. Show that power
conservation is satisfied.

Z0 = 50 Ω Z1 = 75 Ω

50 Ω �/2

10 V

Pinc
Pref

Ptrans

2.19 A generator is connected to a transmission line as shown in the accompanying figure. Find the voltage
as a function of z along the transmission line. Plot the magnitude of this voltage for −� ≤ z ≤ 0.

z–l 0

Z 0 = 100 Ω

100 Ω l = 1.5λ

ZL = 80 – j40 Ω10 V

2.20 Use the Smith chart to find the following quantities for the transmission line circuit shown in the
accompanying figure:

(a) The SWR on the line.
(b) The reflection coefficient at the load.
(c) The load admittance.
(d) The input impedance of the line.
(e) The distance from the load to the first voltage minimum.
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(f) The distance from the load to the first voltage maximum.

l = 0.4�

Zin Z0 = 50 Ω ZL = 60 + j50 Ω

2.21 Use the Smith chart to find the shortest lengths of a short-circuited 75 � line to give the following
input impedance:

(a) Zin = 0.

(b) Zin = ∞.

(c) Zin = j75 �.

(d) Zin = − j50 �.

(e) Zin = j10 �.

2.22 Repeat Problem 2.21 for an open-circuited length of 75 � line.

2.23 A slotted-line experiment is performed with the following results: distance between successive min-
ima = 2.1 cm; distance of first voltage minimum from load = 0.9 cm; SWR of load = 2.5. If
Z0 = 50 �, find the load impedance.

2.24 Design a quarter-wave matching transformer to match a 40 � load to a 75 � line. Plot the SWR for
0.5 ≤ f/ fo ≤ 2.0, where fo is the frequency at which the line is λ/4 long.

2.25 Consider the quarter-wave matching transformer circuit shown in the accompanying figure. Derive
expressions for V + and V −, the respective amplitudes of the forward and reverse traveling waves on
the quarter-wave line section, in terms of V i , the incident voltage amplitude.

z–l 0

�/4

Z0 Z0RL RL

V i V +

V –

2.26 Derive equation (2.71) from (2.70).

2.27 In Example 2.7, the attenuation of a coaxial line due to finite conductivity is

αc = Rs

2η ln b/a

(
1

a
+ 1

b

)
.

Show that αc is minimized for conductor radii such that x ln x = 1 + x , where x = b/a. Solve this
equation for x , and show that the corresponding characteristic impedance for εr = 1 is 77 �.

2.28 Compute and plot the factor by which attenuation is increased due to surface roughness, for rms
roughness ranging from 0 to 0.01 mm. Assume copper conductors at 10 GHz.

2.29 A 50 � transmission line is matched to a 10 V source and feeds a load ZL = 100 �. If the line is
2.3λ long and has an attenuation constant α = 0.5 dB/λ, find the powers that are delivered by the
source, lost in the line, and delivered to the load.

2.30 Consider a nonreciprocal transmission line having different propagation constants, β+ and β−, for
propagation in the forward and reverse directions, with corresponding characteristic impedances Z+

0
and Z−

0 . (An example of such a line could be a microstrip transmission line on a magnetized ferrite
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substrate.) If the line is terminated as shown in the accompanying figure, derive expressions for the
reflection coefficient and impedance seen at the input of the line.

2.31 Plot the bounce diagram for the transient circuit shown in the accompanying figure. Include at least
three reflections. What is the total voltage at the midpoint of the line (z = l/2), at time t = 3�/vp?

zl0

Z0 = 50 Ω 100 Ω 10 V
+

–

t = 0

25 Ω
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Transmission Lines and
Waveguides

One of the early milestones in microwave engineering was the development of waveguide
and other transmission lines for the low-loss transmission of power at high frequencies. Al-
though Heaviside considered the possibility of propagation of electromagnetic waves inside
a closed hollow tube in 1893, he rejected the idea because he believed that two conductors
were necessary for the transfer of electromagnetic energy [1]. In 1897, Lord Rayleigh (John
William Strutt) mathematically proved that wave propagation in waveguides was possible for
both circular and rectangular cross sections [2]. Rayleigh also noted the infinite set of wave-
guide modes of the TE and TM type that were possible and the existence of a cutoff frequency,
but no experimental verification was made at the time. The waveguide was then essentially for-
gotten until it was rediscovered independently in 1936 by two researchers [3]. After preliminary
experiments in 1932, George C. Southworth of the AT&T Company in New York presented a
paper on the waveguide in 1936. At the same meeting, W. L. Barrow of MIT presented a paper
on the circular waveguide, with experimental confirmation of propagation.

Early RF and microwave systems relied on waveguides, two-wire lines, and coaxial lines
for transmission. Waveguides have the advantage of high power-handling capability and low
loss but are bulky and expensive, especially at low frequencies. Two-wire lines are inexpensive
but lack shielding. Coaxial lines are shielded but are a difficult medium in which to fabricate
complex microwave components. Planar transmission lines provide an alternative, in the form
of stripline, microstrip lines, slotlines, coplanar waveguides, and several other types of related
geometries. Such transmission lines are compact, low in cost, and capable of being easily inte-
grated with active circuit devices, such as diodes and transistors, to form microwave integrated
circuits. The first planar transmission line may have been a flat-strip coaxial line, similar to
a stripline, used in a production power divider network in World War II [4], but planar lines
did not see intensive development until the 1950s. Microstrip lines were developed at ITT
laboratories [5] and were competitors of stripline. The first microstrip lines used a relatively
thick dielectric substrate, which accentuated the non-TEM mode behavior and frequency dis-
persion of the line. This characteristic made it less desirable than stripline until the 1960s,
when much thinner substrates began to be used. This reduced the frequency dependence of
the line, and now microstrip lines are often the preferred medium for microwave integrated
circuits.

95
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In this chapter we will study the properties of several types of transmission lines and
waveguides that are in common use. As we know from Chapter 2, a transmission line is char-
acterized by a propagation constant, an attenuation constant, and a characteristic impedance.
These quantities will be derived by field theory analysis for the various lines and waveguides
treated here.

We begin with a discussion of the different types of wave propagation and modes that can
exist on general transmission lines and waveguides. Transmission lines that consist of two or
more conductors may support transverse electromagnetic (TEM) waves, characterized by the
lack of longitudinal field components. Such lines have a uniquely defined voltage, current, and
characteristic impedance. Waveguides, often consisting of a single conductor, support trans-
verse electric (TE) and/or transverse magnetic (TM) waves, characterized by the presence of
longitudinal magnetic or electric field components. As we will see in Chapter 4, a unique def-
inition of characteristic impedance is not possible for such waves, although definitions can
be chosen so that the characteristic impedance concept can be extended to waveguides with
meaningful results.

3.1 GENERAL SOLUTIONS FOR TEM, TE, AND TM WAVES

In this section we will find general solutions to Maxwell’s equations for the specific cases
of TEM, TE, and TM wave propagation in cylindrical transmission lines or waveguides.
The geometry of an arbitrary transmission line or waveguide is shown in Figure 3.1 and
is characterized by conductor boundaries that are parallel to the z-axis. These structures
are assumed to be uniform in shape and dimension in the z direction and infinitely long.
The conductors will initially be assumed to be perfectly conducting, but attenuation can be
found by the perturbation method discussed in Chapter 2.

y

x

z

y

x

z

(a) (b)

FIGURE 3.1 (a) General two-conductor transmission line and (b) closed waveguide.
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We assume time-harmonic fields with an e jωt dependence and wave propagation along
the z-axis. The electric and magnetic fields can then be written as

Ē(x, y, z) = [ē(x, y) + ẑez(x, y)]e− jβz, (3.1a)

H̄(x, y, z) = [h̄(x, y) + ẑhz(x, y)]e− jβz, (3.1b)

where ē(x, y) and h̄(x, y) represent the transverse (x̂, ŷ) electric and magnetic field com-
ponents, and ez and hz are the longitudinal electric and magnetic field components. In (3.1)
the wave is propagating in the +z direction; −z propagation can be obtained by replacing
β with −β. In addition, if conductor or dielectric loss is present, the propagation constant
will be complex; jβ should then be replaced with γ = α + jβ.

Assuming that the transmission line or waveguide region is source free, we can write
Maxwell’s equations as

∇ × Ē = − jωµH̄ , (3.2a)

∇ × H̄ = jωε Ē . (3.2b)

With an e− jβz z dependence, the three components of each of these vector equations can
be reduced to the following:

∂ Ez

∂y
+ jβEy = − jωµHx , (3.3a)

− jβEx − ∂ Ez

∂x
= − jωµHy, (3.3b)

∂ Ey

∂x
− ∂ Ex

∂y
= − jωµHz, (3.3c)

∂ Hz

∂y
+ jβHy = jωεEx , (3.4a)

− jβHx − ∂ Hz

∂x
= jωεEy, (3.4b)

∂ Hy

∂x
− ∂ Hx

∂y
= jωεEz . (3.4c)

These six equations can be solved for the four transverse field components in terms of Ez

and Hz [e.g., Hx can be derived by eliminating Ey from (3.3a) and (3.4b)] as follows:

Hx = j

k2
c

(
ωε

∂ Ez

∂y
− β

∂ Hz

∂x

)
, (3.5a)

Hy = − j

k2
c

(
ωε

∂ Ez

∂x
+ β

∂ Hz

∂y

)
, (3.5b)

Ex = − j

k2
c

(
β

∂ Ez

∂x
+ ωµ

∂ Hz

∂y

)
, (3.5c)

Ey = j

k2
c

(
−β

∂ Ez

∂y
+ ωµ

∂ Hz

∂x

)
, (3.5d)

where

k2
c = k2 − β2 (3.6)
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is defined as the cutoff wave number; the reason for this terminology will become clear
later. As in previous chapters,

k = ω
√

µε = 2π/λ (3.7)

is the wave number of the material filling the transmission line or waveguide region. If
dielectric loss is present, ε can be made complex by using ε = εoεr (1 − j tan δ), where
tan δ is the loss tangent of the material.

Equations (3.5a)–(3.5d) are general results that can be applied to a variety of wave-
guiding systems. We will now specialize these results to specific wave types.

TEM Waves

Transverse electromagnetic (TEM) waves are characterized by Ez = Hz = 0. Observe
from (3.5) that if Ez = Hz = 0, then the transverse fields are also all zero, unless k2

c =
0(k2 = β2), in which case we have an indeterminate result. However, we can return to
(3.3)–(3.4) and apply the condition that Ez = Hz = 0. Then from (3.3a) and (3.4b), we
can eliminate Hx to obtain

β2 Ey = ω2µεEy,

or

β = ω
√

µε = k, (3.8)

as noted earlier. [This result can also be obtained from (3.3b) and (3.4a).] The cutoff wave
number, kc = √

k2 − β2, is thus zero for TEM waves.
The Helmholtz wave equation for Ex is, from (1.42),

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k2

)
Ex = 0, (3.9)

but for e− jβz dependence, (∂2/∂z2)Ex = −β2 Ex = −k2 Ex , so (3.9) reduces to
(

∂2

∂x2
+ ∂2

∂y2

)
Ex = 0. (3.10)

A similar result also applies to Ey , so using the form of Ē assumed in (3.1a), we can write

∇2
t ē(x, y) = 0, (3.11)

where ∇2
t = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator in the two transverse dimensions.

The result of (3.11) shows that the transverse electric fields, ē(x, y), of a TEM wave
satisfy Laplace’s equation. It is easy to show in the same way that the transverse magnetic
fields also satisfy Laplace’s equation:

∇2
t h̄(x, y) = 0. (3.12)

The transverse fields of a TEM wave are thus the same as the static fields that can exist
between the conductors. In the electrostatic case, we know that the electric field can be
expressed as the gradient of a scalar potential, 
(x, y):

ē(x, y) = −∇t
(x, y), (3.13)
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where ∇t = x̂(∂/∂x) + ŷ(∂/∂y) is the transverse gradient operator in two dimensions. For
the relation in (3.13) to be valid, the curl of ē must vanish, and this is indeed the case here
since

∇t × ē = − jωµhz ẑ = 0.

Using the fact that ∇ · D̄ = ε∇t · ē = 0 with (3.13) shows that 
(x, y) also satisfies
Laplace’s equation,

∇2
t 
(x, y) = 0, (3.14)

as expected from electrostatics. The voltage between two conductors can be found as

V12 = 
1 − 
2 =
∫ 2

1
Ē · d �̄, (3.15)

where 
1 and 
2 represent the potential at conductors 1 and 2, respectively. The current
flow on a given conductor can be found from Ampere’s law as

I =
∮

C
H̄ · d �̄, (3.16)

where C is the cross-sectional contour of the conductor.
TEM waves can exist when two or more conductors are present. Plane waves are also

examples of TEM waves since there are no field components in the direction of propaga-
tion; in this case the transmission line conductors may be considered to be two infinitely
large plates separated to infinity. The above results show that a closed conductor (such as a
rectangular waveguide) cannot support TEM waves since the corresponding static potential
in such a region would be zero (or possibly a constant), leading to ē = 0.

The wave impedance of a TEM mode can be found as the ratio of the transverse electric
and magnetic fields:

ZTEM = Ex

Hy
= ωµ

β
=

√
µ

ε
= η, (3.17a)

where (3.4a) was used. The other pair of transverse field components, from (3.3a), gives

ZTEM = −Ey

Hx
=

√
µ

ε
= η. (3.17b)

Combining the results of (3.17a) and (3.17b) gives a general expression for the transverse
fields as

h̄(x, y) = 1

ZTEM
ẑ × ē(x, y). (3.18)

Note that the wave impedance is the same as that for a plane wave in a lossless medium,
as derived in Chapter 1; the reader should not confuse this impedance with the character-
istic impedance, Z0, of a transmission line. The latter relates traveling voltage and current
and is a function of the line geometry as well as the material filling the line, while the
wave impedance relates transverse field components and is dependent only on the material
constants. From (2.32), the characteristic impedance of the TEM line is Z0 = V /I , where
V and I are the amplitudes of the incident voltage and current waves.

The procedure for analyzing a TEM line can be summarized as follows:

1. Solve Laplace’s equation, (3.14), for 
(x, y). The solution will contain several
unknown constants.
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2. Find these constants by applying the boundary conditions for the known voltages on the
conductors.

3. Compute ē and Ē from (3.13) and (3.1a). Compute h̄ and H̄ from (3.18) and (3.1b).
4. Compute V from (3.15) and I from (3.16).
5. The propagation constant is given by (3.8), and the characteristic impedance is given

by Z0 = V /I .

TE Waves

Transverse electric (TE) waves, (also referred to as H -waves) are characterized by Ez = 0
and Hz �= 0. Equations (3.5) then reduce to

Hx = − jβ

k2
c

∂ Hz

∂x
, (3.19a)

Hy = − jβ

k2
c

∂ Hz

∂y
, (3.19b)

Ex = − jωµ

k2
c

∂ Hz

∂y
, (3.19c)

Ey = jωµ

k2
c

∂ Hz

∂x
. (3.19d)

In this case kc �= 0, and the propagation constant β = √
k2 − k2

c is generally a function of
frequency and the geometry of the line or guide. To apply (3.19), one must first find Hz

from the Helmholtz wave equation,(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k2

)
Hz = 0, (3.20)

which, since Hz(x, y, z) = hz(x, y)e− jβz , can be reduced to a two-dimensional wave equa-
tion for hz : (

∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
hz = 0, (3.21)

since k2
c = k2 − β2. This equation must be solved subject to the boundary conditions of

the specific guide geometry.
The TE wave impedance can be found as

ZTE = Ex

Hy
= −Ey

Hx
= ωµ

β
= kη

β
, (3.22)

which is seen to be frequency dependent. TE waves can be supported inside closed con-
ductors, as well as between two or more conductors.

TM Waves

Transverse magnetic (TM) waves (also referred to as E-waves) are characterized by
Ez �= 0 and Hz = 0. Equations (3.5) then reduce to

Hx = jωε

k2
c

∂ Ez

∂y
, (3.23a)

Hy = − jωε

k2
c

∂ Ez

∂x
, (3.23b)
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Ex = − jβ

k2
c

∂ Ez

∂x
, (3.23c)

Ey = − jβ

k2
c

∂ Ez

∂y
. (3.23d)

As in the TE case, kc �= 0, and the propagation constant β = √
k2 − k2

c is a function of
frequency and the geometry of the line or guide. Ez is found from the Helmholtz wave
equation, (

∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
+ k2

)
Ez = 0, (3.24)

which, since Ez(x, y, z) = ez(x, y)e− jβz , can be reduced to a two-dimensional wave equa-
tion for ez : (

∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
ez = 0, (3.25)

since k2
c = k2 − β2. This equation must be solved subject to the boundary conditions of

the specific guide geometry.
The TM wave impedance can be found as

ZTM = Ex

Hy
= −Ey

Hx
= β

ωε
= βη

k
, (3.26)

which is frequency dependent. As for TE waves, TM waves can be supported inside closed
conductors, as well as between two or more conductors.

The procedure for analyzing TE and TM waveguides can be summarized as follows:

1. Solve the reduced Helmholtz equation, (3.21) or (3.25), for hz or ez . The solution
will contain several unknown constants and the unknown cutoff wave number, kc.

2. Use (3.19) or (3.23) to find the transverse fields from hz or ez .
3. Apply the boundary conditions to the appropriate field components to find the

unknown constants and kc.
4. The propagation constant is given by (3.6) and the wave impedance by (3.22) or (3.26).

Attenuation Due to Dielectric Loss

Attenuation in a transmission line or waveguide can be caused by either dielectric loss or
conductor loss. If αd is the attenuation constant due to dielectric loss and αc is the attenu-
ation constant due to conductor loss, then the total attenuation constant is α = αd + αc.

Attenuation caused by conductor loss can be calculated using the perturbation method
of Section 2.7; this loss depends on the field distribution in the guide and so must be
evaluated separately for each type of transmission line or waveguide. However, if the line
or guide is completely filled with a homogeneous dielectric, the attenuation due to a lossy
dielectric material can be calculated from the propagation constant, and this result will
apply to any guide or line with a homogeneous dielectric filling.

Thus, use of the complex permittivity allows the complex propagation constant to be
written as

γ = αd + jβ =
√

k2
c − k2

=
√

k2
c − ω2µ0ε0εr (1 − j tan δ). (3.27)
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In practice, most dielectric materials have small losses (tan δ � 1), and so this expression
can be simplified by using the first two terms of the Taylor expansion,

√
a2 + x2 � a + 1

2

(
x2

a

)
, for x � a.

Then (3.27) reduces to

γ =
√

k2
c − k2 + jk2 tan δ

�
√

k2
c − k2 + jk2 tan δ

2
√

k2
c − k2

= k2 tan δ

2β
+ jβ, (3.28)

since
√

k2
c − k2 = jβ. In these results, k = ω

√
µ0ε0εr is the (real) wave number in the

absence of loss. Equation (3.28) shows that when the loss is small the phase constant β is
unchanged, while the attenuation constant due to dielectric loss is given by

αd = k2 tan δ

2β
Np/m (TE or TM waves). (3.29)

This result applies to any TE or TM wave, as long as the guide is completely filled with
the dielectric material. It can also be used for TEM lines, where kc = 0, by letting β = k:

αd = k tan δ

2
Np/m (TEM waves). (3.30)

3.2 PARALLEL PLATE WAVEGUIDE

The parallel plate waveguide is the simplest type of guide that can support TM and TE
modes; it can also support a TEM mode since it is formed from two flat conducting plates,
or strips, as shown in Figure 3.2. Although it is an idealization, understanding the parallel
plate guide can be useful because its operation is similar to that of many other waveguides.
The parallel plate guide can also be useful for modeling the propagation of higher order
modes in stripline.

y

x

z

�, � d

W

FIGURE 3.2 Geometry of a parallel plate waveguide.
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In the geometry of the parallel plate waveguide of Figure 3.2, the strip width, W , is
assumed to be much greater than the separation, d, so that fringing fields and any x vari-
ation can be ignored. A material with permittivity ε and permeability µ is assumed to fill
the region between the two plates. We will derive solutions for TEM, TM, and TE waves.

TEM Modes

As discussed in Section 3.1, the TEM mode solution can be obtained by solving Laplace’s
equation, (3.14), for the electrostatic potential 
(x, y) between the two plates. Thus,

∇2
t 
(x, y) = 0, for 0 ≤ x ≤ W, 0 ≤ y ≤ d. (3.31)

If we assume that the bottom plate is at ground (zero) potential and the top plate at a
potential of Vo, then the boundary conditions for 
(x, y) are


(x, 0) = 0, (3.32a)


(x, d) = Vo. (3.32b)

Because there is no variation in x , the general solution to (3.31) for 
(x, y) is


(x, y) = A + By,

and the constants A, B can be evaluated from the boundary conditions of (3.32) to give the
final solution as


(x, y) = Vo y/d. (3.33)

The transverse electric field is, from (3.13),

ē(x, y) = −∇t
(x, y) = −ŷ
Vo

d
, (3.34)

so that the total electric field is

Ē(x, y, z) = ē(x, y)e− jkz = −ŷ
Vo

d
e− jkz, (3.35)

where k = ω
√

µε is the propagation constant of the TEM wave, as in (3.8). The magnetic
field, from (3.18), is

H̄(x, y, z) = h̄ (x, y) e− jkz = 1

η
ẑ × Ē(x, y, z) = x̂

Vo

ηd
e− jkz, (3.36)

where η = √
µ/ε is the intrinsic impedance of the medium between the parallel plates.

Note that Ez = Hz = 0 and that the fields are similar in form to a plane wave in a homo-
geneous region.

The voltage of the top plate with respect to the bottom plate can be calculated from
(3.15) and (3.35) as

V = −
∫ d

y=0
Ey dy = Voe− jkz, (3.37)
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as expected. The total current on the top plate can be found from Ampere’s law or the
surface current density:

I =
∫ W

x=0
J̄s · ẑ dx =

∫ W

x=0
(−ŷ × H̄) · ẑ dx =

∫ W

x=0
Hx dx = W Vo

ηd
e− jkz. (3.38)

Then the characteristic impedance is

Z0 = V

I
= ηd

W
, (3.39)

which is seen to be a constant dependent only on the geometry and material parameters of
the guide. The phase velocity is also a constant:

vp = ω

β
= 1√

µε
, (3.40)

which is the speed of light in the material medium.
Attenuation due to dielectric loss is given by (3.30). The formula for conductor atten-

uation will be derived in the next subsection as a special case of TM mode attenuation.

TM Modes

As discussed in Section 3.1, TM waves are characterized by Hz = 0 and a nonzero Ez field
that satisfies the reduced wave equation of (3.25), with ∂/∂x = 0:

(
∂2

∂y2
+ k2

c

)
ez(x, y) = 0, (3.41)

where kc = √
k2 − β2 is the cutoff wave number, and Ez(x, y, z) = ez(x, y)e− jβz . The

general solution to (3.41) is of the form

ez(x, y) = A sin kc y + B cos kc y, (3.42)

subject to the boundary conditions that

ez(x, y) = 0, at y = 0, d. (3.43)

This implies that B = 0 and kcd = nπ for n = 0, 1, 2, 3 . . . , or

kc = nπ

d
, n = 0, 1, 2, 3, . . . . (3.44)

Thus the cutoff wave number, kc, is constrained to discrete values as given by (3.44); this
implies that the propagation constant, β, is given by

β =
√

k2 − k2
c =

√
k2 − (nπ/d)2. (3.45)

The solution for ez(x, y) is then

ez(x, y) = An sin
nπy

d
, (3.46)

and thus,

Ez(x, y, z) = An sin
nπy

d
e− jβz . (3.47)
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The transverse field components can be found, using (3.23), to be

Hx = jωε

kc
An cos

nπy

d
e− jβz, (3.48a)

Ey = − jβ

kc
An cos

nπy

d
e− jβz, (3.48b)

Ex = Hy = 0. (3.48c)

Observe that for n = 0, β = k = ω
√

µε, and that Ez = 0. The Ey and Hx fields are
then constant in y, so that the TM0 mode is actually identical to the TEM mode. For n > 0,
however, the situation is different. Each value of n corresponds to a different TM mode,
denoted as the TMn mode, and each mode has its own propagation constant given by (3.45)
and field expressions given by (3.48).

From (3.45) it can be seen that β is real only when k > kc. Because k = ω
√

µε is pro-
portional to frequency, the TMn modes (for n > 0) exhibit a cutoff phenomenon, whereby
no propagation will occur until the frequency is such that k > kc. The cutoff frequency of
the TMn mode can be found as

fc = kc

2π
√

µε
= n

2d
√

µε
. (3.49)

Thus, the TM mode (for n > 0) that propagates at the lowest frequency is the TM1 mode,
with a cutoff frequency of fc = 1/2d

√
µε; the TM2 mode has a cutoff frequency equal to

twice this value, and so on. At frequencies below the cutoff frequency of a given mode,
the propagation constant is purely imaginary, corresponding to a rapid exponential decay
of the fields. Such modes are referred to as cutoff modes, or evanescent modes. Because of
the cutoff frequency, below which propagation cannot occur, waveguide mode propagation
is analogous to a high-pass filter response.

The wave impedance of a TM mode, from (3.26), is a function of frequency:

ZTM = −Ey

Hx
= β

ωε
= βη

k
, (3.50)

which we see is pure real when f > fc but pure imaginary when f < fc. The phase
velocity is also a function of frequency:

vp = ω

β
, (3.51)

and is seen to be greater than 1/
√

µε = ω/k, the speed of light in the medium, since β < k.
The guide wavelength is defined as

λg = 2π

β
, (3.52)

and is the distance between equiphase planes along the z-axis. Note that λg > λ = 2π /k,
the wavelength of a plane wave in the material. The phase velocity and guide wavelength
are defined only for a propagating mode, for which β is real. One may also define a cutoff
wavelength for the TMn mode as

λc = 2d

n
. (3.53)
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It is instructive to compute the Poynting vector to see how power propagates in the
TMn mode. From (1.91), the time-average power passing a transverse cross section of the
parallel plate guide is

Po = 1

2
Re

∫ W

x=0

∫ d

y=0
Ē × H̄∗ · ẑ dy dx = −1

2
Re

∫ W

x=0

∫ d

y=0
Ey H∗

x dy dx

= W Re(β)ωε

2k2
c

|An|2
∫ d

y=0
cos2 nπy

d
dy =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

W Re(β)ωεd

4k2
c

|An|2 for n > 0

W Re(β)ωεd

2k2
c

|An|2 for n = 0

(3.54)

where (3.48a, b) were used for Ey, Hx . Thus, Po is positive and nonzero when β is real,
which occurs when f > fc. When the mode is below cutoff, β is imaginary, and then
Po = 0.

TM (or TE) waveguide mode propagation has an interesting interpretation when
viewed as a pair of bouncing plane waves. For example, consider the dominant TM1 mode,
which has propagation constant

β1 =
√

k2 − (π/d)2, (3.55)

and Ez field

Ez = A1 sin
πy

d
e− jβ1z,

which can be rewritten as

Ez = A1

2 j

[
e j(πy/d−β1z) − e− j(πy/d+β1z)

]
. (3.56)

This result is in the form of two plane waves traveling obliquely in the −y,+z and +y,+z
directions, respectively, as shown in Figure 3.3. By comparison with the phase factor of
(1.132), the angle θ that each plane wave makes with the z-axis satisfies the relations

k sin θ = π

d
, (3.57a)

k cos θ = β1, (3.57b)

so that (π/d)2 + β2
1 = k2, as in (3.55). For f > fc, β is real and less than k1, so θ is some

angle between 0◦ and 90◦, and the mode can be thought of as two plane waves alternately
bouncing off of the top and bottom plates.

y

z

d
�

�

0

FIGURE 3.3 Bouncing plane wave interpretation of the TM1 parallel plate waveguide mode.
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The phase velocity of each plane wave along its direction of propagation (θ direction)
is ω/k = 1/

√
µε, which is the speed of light in the material filling the guide. However, the

phase velocity of the plane waves in the z direction is ω/β1 = 1/
√

µε cos θ , which is greater
than the speed of light in the material. (This situation is analogous to ocean waves hitting
a shoreline: the intersection point of the shore and an obliquely incident wave crest moves
faster than the wave crest itself.) The superposition of the two plane wave fields is such that
complete cancellation occurs at y = 0 and y = d, to satisfy the boundary condition that
Ez = 0 at these planes. As f decreases to fc, β1 approaches zero, so that, by (3.57b), θ

approaches 90◦. The two plane waves are then bouncing up and down, with no motion in
the +z direction, and no real power flow occurs in the z direction.

Attenuation due to dielectric loss can be found from (3.29). Conductor loss can be
treated using the perturbation method. Thus,

αc = P�

2Po
, (3.58)

where Po is the power flow down the guide in the absence of conductor loss, as given by
(3.54). P� is the power dissipated per unit length in the two lossy conductors and can be
found from (2.97) as

P� = 2

(
Rs

2

)∫ W

x=0
| J̄s |2 dx = ω2ε2 Rs W

k2
c

|An|2, (3.59)

where Rs is the surface resistivity of the conductors. Using (3.54) and (3.59) in (3.58) gives
the attenuation due to conductor loss as

αc = 2ωεRs

βd
= 2k Rs

βηd
Np/m, for n > 0. (3.60)

As discussed previously, the TEM mode is identical to the TM0 mode for the parallel
plate waveguide, so the above attenuation results for the TMn mode can be used to obtain
the TEM mode attenuation by letting n = 0. For this case, the n = 0 result of (3.54) must
be used in (3.58), to obtain

αc = Rs

ηd
Np/m. (3.61)

TE Modes

TE modes, characterized by Ez = 0, can also propagate in a parallel plate waveguide. From
(3.21), with ∂/∂x = 0, Hz must satisfy the reduced wave equation,

(
∂2

∂y2
+ k2

c

)
hz(x, y) = 0, (3.62)

where kc = √
k2 − β2 is the cutoff wave number and Hz(x, y, z) = hz(x, y)e− jβz . The

general solution to (3.62) is

hz(x, y) = A sin kc y + B cos kc y. (3.63)

The boundary conditions are that Ex = 0 at y = 0, d; Ez is identically zero for TE modes.
From (3.19c) we have

Ex = − jωµ

kc
(A cos kc y − B sin kc y) e− jβz, (3.64)
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and applying the boundary conditions shows that A = 0 and

kc = nπ

d
, n = 1, 2, 3 . . . , (3.65)

as for the TM case. The final solution for Hz is then

Hz(x, y) = Bn cos
nπy

d
e− jβz . (3.66)

The transverse fields can be computed from (3.19) as

Ex = jωµ

kc
Bn sin

nπy

d
e− jβz, (3.67a)

Hy = jβ

kc
Bn sin

nπy

d
e− jβz, (3.67b)

Ey = Hx = 0. (3.67c)

The propagation constant of the TEn mode is given as

β =
√

k2 −
(nπ

d

)2
, (3.68)

which is the same as the propagation constant of the TMn mode. The cutoff frequency of
the TEn mode is

fc = n

2d
√

µε
, (3.69)

which is also identical to that of the TMn mode. The wave impedance of the TEn mode is,
from (3.22),

ZTE = Ex

Hy
= ωµ

β
= kη

β
, (3.70)

which is seen to be real for propagating modes and imaginary for nonpropagating, or cutoff,
modes. The phase velocity, guide wavelength, and cutoff wavelength are similar to the
results obtained for the TM modes.

The power flow down the guide for a TEn mode can be calculated as

Po = 1

2
Re

∫ W

x=0

∫ d

y=0
Ē × H̄∗ · ẑ dy dx = 1

2
Re

∫ W

x=0

∫ d

y=0
Ex H∗

y dy dx

= ωµdW

4k2
c

|Bn|2Re(β), for n > 0, (3.71)

which is zero if the operating frequency is below the cutoff frequency (β imaginary).
Note that if n = 0, then Ex = Hy = 0 from (3.67), and thus Po = 0, implying that

there is no TE0 mode.
Attenuation can be calculated in the same way as for the TM modes. The attenuation

due to dielectric loss is given by (3.29). It is left as a problem to show that the attenuation
due to conductor loss for TE modes is given by

αc = 2k2
c Rs

ωµβd
= 2k2

c Rs

kβηd
Np/m. (3.72)
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FIGURE 3.4 Attenuation due to conductor loss for the TEM, TM1, and TE1 modes of a parallel
plate waveguide.

Figure 3.4 shows attenuation versus frequency due to conductor loss for the TEM, TM1,
and TE1 modes. Observe that αc → ∞ as cutoff is approached for the TM and TE
modes.

Table 3.1 summarizes a number of useful results for parallel plate waveguide modes.
Field lines for the TEM, TM1, and TE1 modes are shown in Figure 3.5.

TABLE 3.1 Summary of Results for Parallel Plate Waveguide

Quantity TEM Mode TMn Mode TEn Mode

k ω
√

µε ω
√

µε ω
√

µε

kc 0 nπ/d nπ/d

β k = ω
√

µε

√
k2 − k2

c

√
k2 − k2

c

λc ∞ 2π/kc = 2d/n 2π/kc = 2d/n

λg 2π/k 2π/β 2π/β

vp ω/k = 1/
√

µε ω/β ω/β

αd (k tan δ)/2 (k2 tan δ)/2β (k2 tan δ)/2β

αc Rs/ηd 2k Rs/βηd 2k2
c Rs/kβηd

Ez 0 A sin (nπy/d)e− jβz 0

Hz 0 0 B cos (nπy/d)e− jβz

Ex 0 0 ( jωµ/kc)B sin (nπy/d)e− jβz

Ey (−Vo/d)e− jβz (− jβ/kc)A cos (nπy/d)e− jβz 0

Hx (Vo/ηd)e− jβz ( jωε/kc)A cos (nπy/d)e− jβz 0

Hy 0 0 ( jβ/kc)Bn sin (nπy/d)e− jβz

Z ZTEM = ηd/W ZTM = βη/k ZTE = kη/β
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E
H

(b)

(c)

(a)

FIGURE 3.5 Field lines for the (a) TEM, (b) TM1, and (c) TE1 modes of a parallel plate wave-
guide. There is no variation across the width of the waveguide.

3.3 RECTANGULAR WAVEGUIDE

Rectangular waveguides were one of the earliest types of transmission lines used to transport
microwave signals, and they are still used for many applications. A large variety of components
such as couplers, detectors, isolators, attenuators, and slotted lines are commercially available
for various standard waveguide bands from 1 to 220 GHz. Figure 3.6 shows some of the
standard rectangular waveguide components that are available. Because of the trend toward
miniaturization and integration, most modern microwave circuitry is fabricated using planar
transmission lines such as microstrips and stripline rather than waveguides. There is, however,
still a need for waveguides in many cases, including high-power systems, millimeter wave
applications, satellite systems, and some precision test applications.

The hollow rectangular waveguide can propagate TM and TE modes but not TEM
waves since only one conductor is present. We will see that the TM and TE modes of a
rectangular waveguide have cutoff frequencies below which propagation is not possible,
similar to the TM and TE modes of the parallel plate guide.

TE Modes

The geometry of a rectangular waveguide is shown in Figure 3.7, where it is assumed
that the guide is filled with a material of permittivity ε and permeability µ. It is standard
convention to have the longest side of the waveguide along the x-axis, so that a > b.

TE waveguide modes are characterized by fields with Ez = 0, while Hz must satisfy
the reduced wave equation of (3.21):

(
∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
hz(x, y) = 0, (3.73)

with Hz(x, y, z) = hz(x, y)e− jβz ; here kc = √
k2 − β2 is the cutoff wave number. The

partial differential equation (3.73) can be solved by the method of separation of variables
by letting

hz(x, y) = X (x)Y (y) (3.74)
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FIGURE 3.6 Photograph of Ka-band (WR-28) rectangular waveguide components. Clockwise
from top: a variable attenuator, an E-H (magic) tee junction, a directional coupler,
an adaptor to ridge waveguide, an E-plane swept bend, an adjustable short, and a
sliding matched load.

and substituting into (3.73) to obtain

1

X

d2 X

dx2
+ 1

Y

d2Y

dy2
+ k2

c = 0. (3.75)

Then, by the usual separation-of-variables argument (see Section 1.5), each of the terms in
(3.75) must be equal to a constant, so we define separation constants kx and ky such that

d2 X

dx2
+ k2

x X = 0, (3.76a)

d2Y

dy2
+ k2

yY = 0, (3.76b)

y

x

z

�, �

b

0
a

FIGURE 3.7 Geometry of a rectangular waveguide.
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and

k2
x + k2

y = k2
c . (3.77)

The general solution for hz can then be written as

hz(x, y) = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y). (3.78)

To evaluate the constants in (3.78) we must apply the boundary conditions on the
electric field components tangential to the waveguide walls. That is,

ex (x, y) = 0, at y = 0, b, (3.79a)

ey(x, y) = 0, at x = 0, a. (3.79b)

We therefore cannot use hz of (3.78) directly but must first use (3.19c) and (3.19d) to find
ex and ey from hz :

ex = − jωµ

k2
c

ky(A cos kx x + B sin kx x)(−C sin ky y + D cos ky y), (3.80a)

ey = jωµ

k2
c

kx (−A sin kx x + B cos kx x)(C cos ky y + D sin ky y). (3.80b)

Then from (3.79a) and (3.80a) we see that D = 0, and ky = nπ /b for n = 0, 1, 2. . . .
From (3.79b) and (3.80b) we have that B = 0 and kx = mπ/a for m = 0, 1, 2. . . . The
final solution for Hz is then

Hz(x, y, z) = Amn cos
mπx

a
cos

nπy

b
e− jβz, (3.81)

where Amn is an arbitrary amplitude constant composed of the remaining constants A
and C of (3.78).

The transverse field components of the TEmn mode can be found using (3.19) and
(3.81):

Ex = jωµnπ

k2
c b

Amn cos
mπx

a
sin

nπy

b
e− jβz, (3.82a)

Ey = − jωµmπ

k2
c a

Amn sin
mπx

a
cos

nπy

b
e− jβz, (3.82b)

Hx = jβmπ

k2
c a

Amn sin
mπx

a
cos

nπy

b
e− jβz, (3.82c)

Hy = jβnπ

k2
c b

Amn cos
mπx

a
sin

nπy

b
e− jβz . (3.82d)

The propagation constant is

β =
√

k2 − k2
c =

√
k2 −

(mπ

a

)2 −
(nπ

b

)2
, (3.83)

which is seen to be real, corresponding to a propagating mode, when

k > kc =
√(mπ

a

)2 +
(nπ

b

)2
.
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Each mode (each combination of m and n) has a cutoff frequency fcmn given by

fcmn = kc

2π
√

µε
= 1

2π
√

µε

√(mπ

a

)2 +
(nπ

b

)2
. (3.84)

The mode with the lowest cutoff frequency is called the dominant mode; because we have
assumed a > b, the lowest cutoff frequency occurs for the TE10(m = 1, n = 0) mode:

fc10 = 1

2a
√

µε
. (3.85)

Thus the TE10 mode is the dominant TE mode and, as we will see, the overall dominant
mode of the rectangular waveguide. Observe that the field expressions for Ē and H̄ in
(3.82) are all zero if both m = n = 0; there is no TE00 mode.

At a given operating frequency f only those modes having f > fc will propagate;
modes with f < fc will lead to an imaginary β (or real α), meaning that all field compo-
nents will decay exponentially away from the source of excitation. Such modes are referred
to as cutoff modes, or evanescent modes. If more than one mode is propagating, the wave-
guide is said to be overmoded.

From (3.22) the wave impedance that relates the transverse electric and magnetic fields
is

ZTE = Ex

Hy
= −Ey

Hx
= kη

β
, (3.86)

where η = √
µ/ε is the intrinsic impedance of the material filling the waveguide. Note

that ZTE is real whenβ is real (a propagating mode) but is imaginary when β is imaginary
(a cutoff mode).

The guide wavelength is defined as the distance between two equal-phase planes along
the waveguide and is equal to

λg = 2π

β
>

2π

k
= λ, (3.87)

which is thus greater than λ, the wavelength of a plane wave in the medium filling the
guide. The phase velocity is

vp = ω

β
>

ω

k
= 1/

√
µε, (3.88)

which is greater than 1/
√

µε, the speed of light (plane wave) in the medium.
In the vast majority of waveguide applications the operating frequency and guide

dimensions are chosen so that only the dominant TE10 mode will propagate. Because of
the practical importance of the TE10 mode, we will list the field components and derive the
attenuation due to conductor loss for this case.

Specializing (3.81) and (3.82) to the m = 1, n = 0 case gives the following results
for the TE10 mode fields:

Hz = A10 cos
πx

a
e− jβz, (3.89a)

Ey = − jωµa

π
A10 sin

πx

a
e− jβz, (3.89b)

Hx = jβa

π
A10 sin

πx

a
e− jβz, (3.89c)

Ex = Ez = Hy = 0. (3.89d)
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The cutoff wave number and propagation constant for the TE10 mode are, respectively,

kc = π/a, (3.90)

β = √
k2 − (π/a)2. (3.91)

The power flow down the guide for the TE10 mode can be calculated as

P10 = 1

2
Re

∫ a

x=0

∫ b

y=0
Ē × H̄∗ · ẑ dy dx

= 1

2
Re

∫ a

x=0

∫ b

y=0
Ey H∗

x dy dx

= ωµa2

2π2
Re(β)|A10|2

∫ a

x=0

∫ b

y=0
sin2 πx

a
dy dx

= ωµa3|A10|2b

4π2
Re(β). (3.92)

Note that this result gives nonzero real power only when β is real, corresponding to a
propagating mode.

Attenuation in a rectangular waveguide may occur due to dielectric loss or conductor
loss. Dielectric loss can be treated by making ε complex and using the general result given
in (3.29). Conductor loss is best treated using the perturbation method. The power lost per
unit length due to finite wall conductivity is, from (1.131),

P� = Rs

2

∫
C

| J̄s |2d�, (3.93)

where Rs is the wall surface resistance, and the integration contour C encloses the inside
perimeter of the guide walls. There are surface currents on all four walls, but from sym-
metry the currents on the top and bottom walls are identical, as are the currents on the left
and right side walls. So we can compute the power lost in the walls at x = 0 and y = 0
and double their sum to obtain the total power loss. The surface current on the x = 0 (left)
wall is

J̄s = n̂ × H̄ |x=0 = x̂ × ẑHz |x=0 = −ŷ Hz |x=0 = −ŷ A10e− jβz, (3.94a)

and the surface current on the y = 0 (bottom) wall is

J̄s = n̂ × H̄ |y=0 = ŷ × (x̂ Hx |y=0 + ẑHz |y=0)

= −ẑ
jβa

π
A10 sin

πx

a
e− jβz + x̂ A10 cos

πx

a
e− jβz . (3.94b)

Substituting (3.94) into (3.93) gives

P� = Rs

∫ b

y=0
|Jsy |2dy + Rs

∫ a

x=0

[
|Jsx |2 + |Jsz |2

]
dx

= Rs |A10|2
(

b + a

2
+ β2a3

2π2

)
. (3.95)
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The attenuation due to conductor loss for the TE10 mode is then

αc = P�

2P10
= 2π2 Rs(b + a/2 + β2a3/2π2)

ωµa3bβ

= Rs

a3bβkη
(2bπ2 + a3k2) Np/m. (3.96)

TM Modes

TM modes are characterized by fields with Hz = 0, while Ez must satisfy the reduced
wave equation (3.25):

(
∂2

∂x2
+ ∂2

∂y2
+ k2

c

)
ez(x, y) = 0, (3.97)

with Ez(x, y, z) = ez(x, y)e− jβz and k2
c = k2 − β2. Equation (3.97) can be solved by the

separation-of-variables procedure that was used for TE modes. The general solution is

ez(x, y) = (A cos kx x + B sin kx x)(C cos ky y + D sin ky y). (3.98)

The boundary conditions can be applied directly to ez :

ez(x, y) = 0, at x = 0, a, (3.99a)

ez(x, y) = 0, at y = 0, b. (3.99b)

We will see that satisfaction of these conditions on ez will lead to satisfaction of the bound-
ary conditions by ex and ey .

Applying (3.99a) to (3.98) shows that A = 0 and kx = mπ /a for m = 1, 2, 3. . . .
Similarly, applying (3.99b) to (3.98) shows that C = 0 and ky = nπ /b for n = 1, 2, 3. . . .
The solution for Ez then reduces to

Ez(x, y, z) = Bmn sin
mπx

a
sin

nπy

b
e− jβz, (3.100)

where Bmn is an arbitrary amplitude constant.
The transverse field components for the TMmn mode can be computed from (3.23) and

(3.100) as

Ex = − jβmπ

ak2
c

Bmn cos
mπx

a
sin

nπy

b
e− jβz, (3.101a)

Ey = − jβnπ

bk2
c

Bmn sin
mπx

a
cos

nπy

b
e− jβz, (3.101b)

Hx = jωεnπ

bk2
c

Bmn sin
mπx

a
cos

nπy

b
e− jβz, (3.101c)

Hy = − jωεmπ

ak2
c

Bmn cos
mπx

a
sin

nπy

b
e− jβz . (3.101d)

As for the TE modes, the propagation constant is

β =
√

k2 − k2
c =

√
k2 −

(mπ

a

)2 −
(nπ

b

)2
(3.102)
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FIGURE 3.8 Attenuation of various modes in a rectangular brass waveguide with a = 2.0 cm.

and is real for propagating modes and imaginary for cutoff modes. The cutoff frequencies
for the TMmn modes are also the same as those of the TEmn modes, as given in (3.84).
The guide wavelength and phase velocity for TM modes are also the same as those for TE
modes.

Observe that the field expressions for Ē and H̄ in (3.101) are identically zero if either
m or n is zero. Thus there is no TM00, TM01, or TM10 mode, and the lowest order TM
mode to propagate (lowest fc) is the TM11 mode, having a cutoff frequency of

fc11 = 1

2π
√

µε

√(π

a

)2 +
(π

b

)2
, (3.103)

which is seen to be larger than fc10 , the cutoff frequency of the TE10 mode.
The wave impedance relating the transverse electric and magnetic fields for TM modes

is, from (3.26),

ZTM = Ex

Hy
= −Ey

Hx
= βη

k
. (3.104)

Attenuation due to dielectric loss is computed in the same way as for TE modes, with
the same result. The calculation of attenuation due to conductor loss is left as a problem;
Figure 3.8 shows attenuation versus frequency for some TE and TM modes in a rectangular
waveguide. Table 3.2 summarizes results for TE and TM wave propagation in rectangular
waveguides, and Figure 3.9 shows the field lines for several of the lowest order TE and TM
modes.

EXAMPLE 3.1 CHARACTERISTICS OF A RECTANGULAR WAVEGUIDE

Consider a length of Teflon-filled, copper K-band rectangular waveguide having
dimensions a = 1.07 cm and b = 0.43 cm. Find the cutoff frequencies of the first
five propagating modes. If the operating frequency is 15 GHz, find the attenuation
due to dielectric and conductor losses.
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TABLE 3.2 Summary of Results for Rectangular Waveguide

Quantity TEmn Mode TMmn Mode

k ω
√

µε ω
√

µε

kc
√

(mπ/a)2 + (nπ/b)2
√

(mπ/a)2 + (nπ/b)2

β

√
k2 − k2

c

√
k2 − k2

c

λc
2π

kc

2π

kc

λg
2π

β

2π

β

vp
ω

β

ω

β

αd
k2 tan δ

2β

k2 tan δ

2β

Ez 0 B sin
mπx

a
sin

nπy

b
e− jβz

Hz A cos
mπx

a
cos

nπy

b
e− jβz 0

Ex
jωµnπ

k2
c b

A cos
mπx

a
sin

nπy

b
e− jβz − jβmπ

k2
c a

B cos
mπx

a
sin

nπy

b
e− jβz

Ey
− jωµmπ

k2
c a

A sin
mπx

a
cos

nπy

b
e− jβz − jβnπ

k2
c b

B sin
mπx

a
cos

nπy

b
e− jβz

Hx
jβmπ

k2
c a

A sin
mπx

a
cos

nπy

b
e− jβz jωεnπ

k2
c b

B sin
mπx

a
cos

nπy

b
e− jβz

Hy
jβnπ

k2
c b

A cos
mπx

a
sin

nπy

b
e− jβz − jωεmπ

k2
c a

B cos
mπx

a
sin

nπy

b
e− jβz

Z ZTE = kη

β
ZTM = βη

k

Solution
From Appendix G, for Teflon, εr = 2.08 and tan δ = 0.0004. From (3.84) the
cutoff frequencies are given by

fcmn = c

2π
√

εr

√(mπ

a

)2 +
(nπ

b

)2
.

Computing fc for the first few values of m and n gives the following results:

Mode m n fc(GHz)

TE 1 0 9.72

TE 2 0 19.44

TE 0 1 24.19

TE, TM 1 1 26.07

TE, TM 2 1 31.03
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Thus the TE10, TE20, TE01, TE11, and TM11 modes will be the first five modes to
propagate.

At 15 GHz, k = 453.1 m−1, and the propagation constant for the TE10 mode
is

β =
√(

2π f
√

εr

c

)2

−
(π

a

)2 =
√

k2 −
(π

a

)2 = 345.1 m−1.

From (3.29), the attenuation due to dielectric loss is

αd = k2 tan δ

2β
= 0.119 Np/m = 1.03 dB/m.

The surface resistivity of the copper walls is (σ = 5.8 × 107 S/m)

Rs =
√

ωµ0

2σ
= 0.032 �,

and the attenuation due to conductor loss, from (3.96), is

αc = Rs

a3bβkη
(2bπ2 + a3k2) = 0.050 Np/m = 0.434 dB/m.

■

TEm0 Modes of a Partially Loaded Waveguide

The above results apply to an empty waveguide as well as one filled with a homogeneous
dielectric or magnetic material, but in some cases of practical interest (such as impedance
matching or phase-shifting sections) a waveguide is used with a partial dielectric filling.
In this case an additional set of boundary conditions are introduced at the material inter-
face, necessitating a new analysis. To illustrate the technique we will consider the TEm0
modes of a rectangular waveguide that is partially filled with a dielectric slab, as shown
in Figure 3.10. The analysis still follows the basic procedure outlined at the end of
Section 3.1.

Since the geometry is uniform in the y direction and n = 0, the TEm0 modes have no
y dependence. Then the wave equation of (3.21) for hz can be written separately for the
dielectric and air regions as

(
∂2

∂x2
+ k2

d

)
hz = 0, for 0 ≤ x ≤ t, (3.105a)

(
∂2

∂x2
+ k2

a

)
hz = 0, for t ≤ x ≤ a, (3.105b)

y

x

�r�0 �0

b

0
at

FIGURE 3.10 Geometry of a partially loaded rectangular waveguide.
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where kd and ka are the cutoff wave numbers for the dielectric and air regions, defined as
follows:

β =
√

εr k2
0 − k2

d , (3.106a)

β =
√

k2
0 − k2

a . (3.106b)

These relations incorporate the fact that the propagation constant, β, must be the same in
both regions to ensure phase matching (see Section 1.8) of the fields along the interface at
x = t. The solutions to (3.105) can be written as

hz =
{

A cos kd x + B sin kd x for 0 ≤ x ≤ t

C cos ka(a − x) + D sin ka(a − x) for t ≤ x ≤ a,
(3.107)

where the form of the solution for t < x < a was chosen to simplify the evaluation of
boundary conditions at x = a.

We need ŷ and ẑ electric and magnetic field components to apply the boundary condi-
tions at x = 0, t, and a. Ez = 0 for TE modes, and Hy = 0 since ∂/∂y = 0. Ey is found
from (3.19d) as

ey =

⎧⎪⎪⎨
⎪⎪⎩

jωµ0

kd
(−A sin kd x + B cos kd x) for 0 ≤ x ≤ t

jωµ0

ka
[C sin ka(a − x) − D cos ka(a − x)] for t ≤ x ≤ a.

(3.108)

To satisfy the boundary conditions that Ey = 0 at x = 0 and x = a requires that B =
D = 0. We next enforce continuity of tangential fields (Ey, Hz) at x = t . Equations (3.107)
and (3.108) then give the following:

−A

kd
sin kd t = C

ka
sin ka(a − t),

A cos kd t = C cos ka(a − t).

Because this is a homogeneous set of equations, the determinant must vanish in order to
have a nontrivial solution. Thus,

ka tan kd t + kd tan ka(a − t) = 0. (3.109)

Using (3.106) allows ka and kd to be expressed in terms of β, so (3.109) can be solved
numerically for β. There is an infinite number of solutions to (3.109), corresponding to the
propagation constants of the TEm0 modes.

This technique can be applied to many other waveguide geometries involving dielec-
tric or magnetic material inhomogeneities, such as the surface waveguide of Section 3.6 or
the ferrite-loaded waveguide of Section 9.3. In some cases, however, it will be impossible
to satisfy all the necessary boundary conditions with only TE- or TM-type modes, and a
hybrid combination of both types of modes may be required.

POINT OF INTEREST: Waveguide Flanges

There are two commonly used waveguide flanges: the cover flange and the choke flange. As
shown in the accompanying figure, two waveguides with cover-type flanges can be bolted to-
gether to form a contacting joint. To avoid reflections and resistive loss at this joint it is neces-
sary that the contacting surfaces be smooth, clean, and square because RF currents must flow
across this discontinuity. In high-power applications voltage breakdown may occur at an imper-
fect junction. Otherwise, the simplicity of the cover-to-cover connection makes it preferable for
general use. The SWR from such a joint is typically less than 1.03.
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An alternative waveguide connection uses a cover flange against a choke flange, as shown
in the figure. The choke flange is machined to form an effective radial transmission line in the
narrow gap between the two flanges; this line is approximately λg /4 in length between the guide
and the point of contact for the two flanges. Another λg /4 line is formed by a circular axial
groove in the choke flange. Then the short circuit at the right-hand end of this groove is trans-
formed into an open circuit at the contact point of the flanges. Any resistance in this contact is in
series with an infinite (or very high) impedance and thus has little effect. This high impedance
is transformed back into a short circuit (or very low impedance) at the edges of the waveguides
to provide an effective low-resistance path for current flow across the joint. Because there is
a negligible voltage drop across the ohmic contact between the flanges, voltage breakdown is
avoided. Thus, the cover-to-choke connection can be useful for high-power applications. The
SWR for this joint is typically less than 1.05 but is more frequency dependent than that of the
cover-to-cover joint.

ContactContact

Cover-to-cover
connection

Cover-to-choke
connection

�g/4

�g/4

Reference: C. G. Montgomery, R. H. Dicke, and E. M. Purcell, Principles of Microwave Circuits, McGraw-Hill,
New York, 1948.

3.4 CIRCULAR WAVEGUIDE

A hollow, round metal pipe also supports TE and TM waveguide modes. Figure 3.11 shows
the geometry of such a circular waveguide, with inner radius a. Because cylindrical geom-
etry is involved, it is appropriate to employ cylindrical coordinates. As in the rectangular

y

x

z

a �
	

FIGURE 3.11 Geometry of a circular waveguide.
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coordinate case, the transverse fields in cylindrical coordinates can be derived from Ez or
Hz field components for TM and TE modes, respectively. Paralleling the development of
Section 3.1, we can derive the cylindrical components of the transverse fields from the
longitudinal components as

Eρ = − j

k2
c

(
β

∂ Ez

∂ρ
+ ωµ

ρ

∂ Hz

∂φ

)
, (3.110a)

Eφ = − j

k2
c

(
β

ρ

∂ Ez

∂φ
− ωµ

∂ Hz

∂ρ

)
, (3.110b)

Hρ = j

k2
c

(
ωε

ρ

∂ Ez

∂φ
− β

∂ Hz

∂ρ

)
, (3.110c)

Hφ = − j

k2
c

(
ωε

∂ Ez

∂ρ
+ β

ρ

∂ Hz

∂φ

)
, (3.110d)

where k2
c = k2 − β2, and e− jβz propagation has been assumed. For e+ jβz propagation,

replace β with −β in all expressions.

TE Modes

For TE modes, Ez = 0, and Hz is a solution to the wave equation,

∇2 Hz + k2 Hz = 0. (3.111)

If Hz(ρ, φ, z) = hz(ρ, φ)e− jβz , (3.111) can be expressed in cylindrical coordinates as
(

∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ k2

c

)
hz(ρ, φ) = 0. (3.112)

As before, we apply the method of separation of variables. Thus, let

hz(ρ, φ) = R(ρ)P(φ), (3.113)

and substitute into (3.112) to obtain

1

R

d2 R

dρ2
+ 1

ρR

d R

dρ
+ 1

ρ2 P

d2 P

dφ2
+ k2

c = 0,

or

ρ2

R

d2 R

dρ2
+ ρ

R

d R

dρ
+ ρ2k2

c = −1

P

d2 P

dφ2
. (3.114)

The left side of this equation depends only on ρ (not φ), while the right side depends only
on φ. Thus, each side must be equal to a constant, which we will call k2

φ . Then,

−1

P

d2 P

dφ2
= k2

φ,

or

d2 P

dφ2
+ k2

φ P = 0. (3.115)
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In addition,

ρ2 d2 R

dρ2
+ ρ

d R

dρ
+

(
ρ2k2

c − k2
φ

)
R = 0. (3.116)

The general solution to (3.115) is

P(φ) = A sin kφφ + B cos kφφ. (3.117)

Because the solution to hz must be periodic in φ [i.e., hz(ρ, φ) = hz(ρ, φ ± 2mπ)], kφ

must be an integer, n. Thus (3.117) becomes

P(φ) = A sin nφ + B cos nφ, (3.118)

and (3.116) becomes

ρ2 d2 R

dρ2
+ ρ

d R

dρ
+

(
ρ2k2

c − n2
)

R = 0, (3.119)

which is recognized as Bessel’s differential equation. The solution is

R(ρ) = C Jn(kcρ) + DYn(kcρ), (3.120)

where Jn(x) and Yn(x) are the Bessel functions of first and second kinds, respectively.
Because Yn(kcρ) becomes infinite at ρ = 0, this term is physically unacceptable for a
circular waveguide, so D = 0. The solution for hz can then be simplified to

hz(ρ, φ) = (A sin nφ + B cos nφ)Jn(kcρ), (3.121)

where the constant C of (3.120) has been absorbed into the constants A and B of (3.121).
We must still determine the cutoff wave number kc, which we can do by enforcing the
boundary condition that Etan = 0 on the waveguide wall. Because Ez = 0, we must have
that

Eφ(ρ, φ) = 0 at ρ = a. (3.122)

From (3.110b), we find Eφ from Hz as

Eφ(ρ, φ, z) = jωµ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz, (3.123)

where the notation J ′
n(kcρ) refers to the derivative of Jn with respect to its argument. For

Eφ to vanish at ρ = a, we must have

J ′
n(kca) = 0. (3.124)

If the roots of J ′
n(x) are defined as p′

nm , so that J ′
n(p′

nm) = 0, where p′
nm is the mth root of

J ′
n , then kc must have the value

kcnm = p′
nm

a
. (3.125)

Values of p′
nm are given in mathematical tables; the first few values are listed in Table 3.3.

TABLE 3.3 Values of p′
nm for TE Modes of a Circular Waveguide

n p′
n1 p′

n2 p′
n3

0 3.832 7.016 10.174

1 1.841 5.331 8.536

2 3.054 6.706 9.970
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The TEnm modes are thus defined by the cutoff wave number kcnm = p′
nm /a, where n refers

to the number of circumferential (φ) variations and m refers to the number of radial (ρ)

variations. The propagation constant of the TEnm mode is

βnm =
√

k2 − k2
c =

√
k2 −

(
p′

nm

a

)2

, (3.126)

with a cutoff frequency of

fcnm = kc

2π
√

µε
= p′

nm

2πa
√

µε
. (3.127)

The first TE mode to propagate is the mode with the smallest p′
nm , which from Table 3.3 is

seen to be the TE11 mode. This mode is therefore the dominant circular waveguide mode
and the one most frequently used. Because m ≥ 1, there is no TE10 mode, but there is a
TE01 mode.

The transverse field components are, from (3.110) and (3.121),

Eρ = − jωµn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz, (3.128a)

Eφ = jωµ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz, (3.128b)

Hρ = − jβ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz, (3.128c)

Hφ = − jβn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz . (3.128d)

The wave impedance is

ZTE = Eρ

Hφ

= −Eφ

Hρ

= ηk

β
. (3.129)

In the above solutions there are two remaining arbitrary amplitude constants, A and B.
These constants control the amplitude of the sin nφ and cos nφ terms, which are indepen-
dent. That is, because of the azimuthal symmetry of the circular waveguide, both the sin nφ

and cos nφ terms represent valid solutions, and both may be present in a specific problem.
The actual amplitudes of these terms will depend on the excitation of the waveguide. From
a different viewpoint, the coordinate system can be rotated about the z-axis to obtain an hz

with either A = 0 or B = 0.
Now consider the dominant TE11 mode with an excitation such that B = 0. The fields

can be written as

Hz = A sin φ J1(kcρ)e− jβz, (3.130a)

Eρ = − jωµ

k2
c ρ

A cos φ J1(kcρ)e− jβz, (3.130b)

Eφ = jωµ

kc
A sin φ J ′

1(kcρ)e− jβz, (3.130c)

Hρ = − jβ

kc
A sin φ J ′

1(kcρ)e− jβz, (3.130d)

Hφ = − jβ

k2
c ρ

A cos φ J1(kcρ)e− jβz, (3.130e)

Ez = 0. (3.130f)
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The power flow down the guide can be computed as

Po = 1

2
Re

∫ a

ρ=0

∫ 2π

φ=0
Ē × H̄∗ · ẑρ dφ dρ

= 1

2
Re

∫ a

ρ=0

∫ 2π

φ=0

(
Eρ H∗

φ − Eφ H∗
ρ

)
ρ dφ dρ

= ωµ|A|2Re(β)

2k4
c

∫ a

ρ=0

∫ 2π

φ=0

[
1

ρ2
cos2 φ J 2

1 (kcρ) + k2
c sin2 φ J ′2

1 (kcρ)

]
ρ dφ dρ

= πωµ|A|2Re(β)

2k4
c

∫ a

ρ=0

[
1

ρ
J 2

1 (kcρ) + ρk2
c J ′2

1 (kcρ)

]
dρ

= πωµ|A|2Re(β)

4k4
c

(
p′2

11 − 1
)

J 2
1 (kca), (3.131)

which is seen to be nonzero only when β is real, corresponding to a propagating mode.
(The required integral for this result is given in Appendix C.)

Attenuation due to dielectric loss is given by (3.29). The attenuation due to a lossy
waveguide conductor can be found by computing the power loss per unit length of guide:

P� = Rs

2

∫ 2π

φ=0
| J̄s |2a dφ

= Rs

2

∫ 2π

φ=0

(
|Hφ |2 + |Hz |2

)
a dφ

= |A|2 Rs

2

∫ 2π

φ=0

(
β2

k4
c a2

cos2 φ + sin2 φ

)
J 2

1 (kca)a dφ

= π |A|2 Rsa

2

(
1 + β2

k4
c a2

)
J 2

1 (kca). (3.132)

The attenuation constant is then

αc = P�

2Po
= Rs

(
k4

c a2 + β2
)

ηkβa(p′2
11 − 1)

= Rs

akηβ

(
k2

c + k2

p′2
11 − 1

)
Np/m. (3.133)

TM Modes

For the TM modes of the circular waveguide, we must solve for Ez from the wave equation
in cylindrical coordinates:

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ k2

c

)
ez = 0, (3.134)

where Ez(ρ, φ, z) = ez(ρ, φ)e− jβz , and k2
c = k2 − β2. Because this equation is identical

to (3.107), the general solutions are the same. Thus, from (3.121),

ez(ρ, φ) = (A sin nφ + B cos nφ)Jn(kcρ). (3.135)
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TABLE 3.4 Values of pnm for TM Modes of a Circular Waveguide

n pn1 pn2 pn3

0 2.405 5.520 8.654

1 3.832 7.016 10.174

2 5.135 8.417 11.620

The difference between the TE solution and the present solution is that the boundary con-
ditions can now be applied directly to ez of (3.135) since

Ez(ρ, φ) = 0 at ρ = a. (3.136)

Thus, we must have

Jn(kca) = 0, (3.137)

or

kc = pnm /a, (3.138)

where pnm is the mth root of Jn(x), that is, Jn(pnm) = 0. Values of pnm are given in
mathematical tables; the first few values are listed in Table 3.4.

The propagation constant of the TMnm mode is

βnm =
√

k2 − k2
c =

√
k2 − (pnm /a)2, (3.139)

and the cutoff frequency is

fcnm = kc

2π
√

µε
= pnm

2πa
√

µε
. (3.140)

Thus, the first TM mode to propagate is the TM01 mode, with p01 = 2.405. Because this is
greater than p′

11 = 1.841 for the lowest order TE11 mode, the TE11 mode is the dominant
mode of the circular waveguide. As with the TE modes, m ≥ 1, so there is no TM10 mode.

From (3.110), the transverse fields can be derived as

Eρ = − jβ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz, (3.141a)

Eφ = − jβn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz, (3.141b)

Hρ = jωεn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz, (3.141c)

Hφ = − jωε

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz . (3.141d)

The wave impedance is

ZTM = Eρ

Hφ

= −Eφ

Hρ

= ηβ

k
. (3.142)

Calculation of the attenuation for TM modes is left as a problem. Figure 3.12 shows the
attenuation due to conductor loss versus frequency for various modes of a circular wave-
guide. Observe that the attenuation of the TE01 mode decreases to a very small value with
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FIGURE 3.12 Attenuation of various modes in a circular copper waveguide with a = 2.54 cm.
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FIGURE 3.13 Cutoff frequencies of the first few TE and TM modes of a circular waveguide
relative to the cutoff frequency of the dominant TE11 mode.

increasing frequency. This property makes the TE01 mode of interest for low-loss trans-
mission over long distances. Unfortunately, this mode is not the dominant mode of the
circular waveguide, so in practice power can be lost from the TE01 mode to lower order
propagating modes.

Figure 3.13 shows the relative cutoff frequencies of the TE and TM modes, and Table
3.5 summarizes results for wave propagation in circular waveguide. Field lines for some of
the lowest order TE and TM modes are shown in Figure 3.14.

EXAMPLE 3.2 CHARACTERISTICS OF A CIRCULAR WAVEGUIDE

Find the cutoff frequencies of the first two propagating modes of a Teflon-filled
circular waveguide with a = 0.5 cm. If the interior of the guide is gold plated,
calculate the overall loss in dB for a 30 cm length operating at 14 GHz.

Solution
From Figure 3.13, the first two propagating modes of a circular waveguide are the
TE11 and TM01 modes. The cutoff frequencies can be found using (3.127) and
(3.140):

TE11 : fc = p′
11c

2πa
√

εr
= 1.841(3 × 108)

2π(0.005)
√

2.08
= 12.19 GHz,

TM01 : fc = p01c

2πa
√

εr
= 2.405(3 × 108)

2π(0.005)
√

2.08
= 15.92 GHz.
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TABLE 3.5 Summary of Results for Circular Waveguide

Quantity TEnm Mode TMnm Mode

k ω
√

µε ω
√

µε

kc
p′

nm
a

pnm

a

β

√
k2 − k2

c

√
k2 − k2

c

λc
2π

kc

2π

kc

λg
2π

β

2π

β

vp
ω

β

ω

β

αd
k2 tan δ

2β

k2 tan δ

2β

Ez 0 (A sin nφ + B cos nφ)Jn(kcρ)e− jβz

Hz (A sin nφ + B cos nφ)Jn(kcρ)e− jβz 0

Eρ
− jωµn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz − jβ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz

Eφ
jωµ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz − jβn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz

Hρ
− jβ

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz jωεn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz

Hφ
− jβn

k2
c ρ

(A cos nφ − B sin nφ)Jn(kcρ)e− jβz − jωε

kc
(A sin nφ + B cos nφ)J ′

n(kcρ)e− jβz

Z ZTE = kη

β
ZTM = βη

k

So only the TE11 mode is propagating at 14 GHz. The wave number is

k = 2π f
√

εr

c
= 2π(14 × 109)

√
2.08

3 × 108
= 422.9 m−1,

and the propagation constant of the TE11 mode is

β =
√

k2 −
(

p′
11

a

)2

=
√

(422.9)2 −
(

1.841

0.005

)2

= 208.0 m−1.

The attenuation due to dielectric loss is calculated from (3.29) as

αd = k2 tan δ

2β
= (422.9)2(0.0004)

2(208.0)
= 0.172 Np/m = 1.49 dB/m.

The conductivity of gold is σ = 4.1 × 107 S/m, so the surface resistance is

Rs =
√

ωµ0

2σ
= 0.0367 �.
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Then from (3.133) the attenuation due to conductor loss is

αc = Rs

akηβ

(
k2

c + k2

p
′2
11 − 1

)
= 0.0672 Np/m = 0.583 dB/m.

The total attenuation is α = αd + αc = 2.07 dB/m, and the loss in the 30 cm
length of guide is

attenuation (dB) = α(dB/m) × L (m) = (2.07)(0.3) = 0.62 dB. ■

3.5 COAXIAL LINE

TEM Modes

Although we have already discussed TEM mode propagation on a coaxial line in Chapter 2,
we will briefly reconsider it here in the context of the general framework that is being used
in this chapter.

The coaxial transmission line geometry is shown in Figure 3.15, where the inner con-
ductor is at a potential of Vo volts and the outer conductor is at zero volts. From Section 3.1
we know that the fields can be derived from a scalar potential function, 
(ρ, φ), which is
a solution to Laplace’s equation (3.14). In cylindrical coordinates Laplace’s equation takes
the form

1

ρ

∂

∂ρ

(
ρ

∂
(ρ, φ)

∂ρ

)
+ 1

ρ2

∂2
(ρ, φ)

∂φ2
= 0. (3.143)

This equation must be solved for 
(ρ, φ) subject to the boundary conditions


(a, φ) = Vo, (3.144a)


(b, φ) = 0. (3.144b)

By the method of separation of variables, let 
(ρ, φ) be expressed in product form as


(ρ, φ) = R(ρ)P(φ). (3.145)

y

x

z

a
b

�

	

V = 0

V = Vo

FIGURE 3.15 Coaxial line geometry.
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Substituting (3.145) into (3.143) and dividing by R P gives

ρ

R

∂

∂ρ

(
ρ

d R

dρ

)
+ 1

P

d2 P

dφ2
= 0. (3.146)

By the usual separation-of-variables argument, the two terms in (3.146) must be equal to
constants, so that

ρ

R

∂

∂ρ

(
ρ

d R

dρ

)
= −k2

ρ, (3.147)

1

P

d2 P

dφ2
= −k2

φ, (3.148)

k2
ρ + k2

φ = 0. (3.149)

The general solution to (3.148) is

P(φ) = A cos nφ + B sin nφ, (3.150)

where kφ = n must be an integer since increasing φ by a multiple of 2π should not change
the result. Now, because the boundary conditions of (3.144) do not vary with φ, the poten-
tial 
(ρ, φ) should not vary with φ. Thus, n must be zero. By (3.149), this implies that kρ

must also be zero, so that the equation for R(ρ) in (3.147) reduces to

∂

∂ρ

(
ρ

d R

dρ

)
= 0.

The solution for R(ρ) is then

R(ρ) = C ln ρ + D,

and so


(ρ, φ) = C ln ρ + D. (3.151)

Applying the boundary conditions of (3.144) gives two equations for the constants C
and D:


(a, φ) = Vo = C ln a + D, (3.152a)


(b, φ) = 0 = C ln b + D. (3.152b)

After solving for C and D, we can write the final solution for 
(ρ, φ) as


(ρ, φ) = Vo ln b/ρ

ln b/a
. (3.153)

The Ē and H̄ fields can now be found using (3.13) and (3.18), and the voltage, current, and
characteristic impedance can be determined as in Chapter 2. Attenuation due to dielectric
or conductor loss has already been treated in Chapter 2.

Higher Order Modes

The coaxial line, like the parallel plate waveguide, can also support TE and TM waveguide
modes in addition to the TEM mode. In practice, these modes are usually cut off (evanes-
cent), and so have only a reactive effect near discontinuities or sources, where they may
be excited. It is important in practice, however, to be aware of the cutoff frequency of the
lowest order waveguide-type modes to avoid the propagation of these modes. Undesirable
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effects can occur if two or more modes with different propagation constants are propagat-
ing at the same time. Avoiding propagation of higher order modes sets an upper limit on
the size of a coaxial cable or, equivalently, an upper limit on the frequency of operation for
a given cable. This also affects the power handling capacity of a coaxial line (see the Point
of Interest on power capacity of transmission lines).

We will derive the solution for the TE modes of the coaxial line; the TE11 mode is the
dominant waveguide mode of the coaxial line and so is of primary importance.

For TE modes, Ez = 0, and Hz satisfies the wave equation of (3.112):(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
+ 1

ρ2

∂2

∂φ2
+ k2

c

)
hz(ρ, φ) = 0, (3.154)

where Hz(ρ, φ, z) = hz(ρ, φ)e− jβz , and k2
c = k2 − β2. The general solution to this equa-

tion, as derived in Section 3.4, is given by the product of (3.118) and (3.120):

hz(ρ, φ) = (A sin nφ + B cos nφ)(C Jn(kcρ) + DYn(kcρ)). (3.155)

In this case, a ≤ ρ ≤ b, so we have no reason to discard the Yn term. The boundary condi-
tions are

Eφ(ρ, φ, z) = 0 for ρ = a, b. (3.156)

Using (3.110b) to find Eφ from Hz gives

Eφ = jωµ

kc
(A sin nφ + B cos nφ)[C J ′

n(kcρ) + DY ′
n(kcρ)]e− jβz . (3.157)

Applying (3.156) to (3.157) gives two equations:

C J ′
n(kca) + DY ′

n(kca) = 0, (3.158a)

C J ′
n(kcb) + DY ′

n(kcb) = 0. (3.158b)

Because this is a homogeneous set of equations, the only nontrivial (C �= 0, D �= 0) solu-
tion occurs when the determinant is zero. Thus we must have

J ′
n(kca)Y ′

n(kcb) = J ′
n(kcb)Y ′

n(kca). (3.159)

This is a characteristic (or eigenvalue) equation for kc. The values of kc that satisfy (3.159)
then define the TEnm modes of the coaxial line.

Equation (3.159) is a transcendental equation, which must be solved numerically for
kc. Figure 3.16 shows the result of such a solution for n = 1 for various b/a ratios. An
approximate solution that is often used in practice is

kc = 2

a + b
.

Once kc is known, the propagation constant or cutoff frequency can be determined.
Solutions for the TM modes can be found in a similar manner; the required determinantal
equation is the same as (3.159), except for the derivatives. Field lines for the TEM and
TE11 modes of the coaxial line are shown in Figure 3.17.

EXAMPLE 3.3 HIGHER ORDER MODE OF A COAXIAL LINE

Consider a RG-401U semirigid coaxial cable, with inner and outer conductor
diameters of 0.0645 in. and 0.215 in., and a Teflon dielectric with εr = 2.2. What
is the highest usable frequency before the TE11 waveguide mode starts to
propagate?
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FIGURE 3.16 Normalized cutoff frequency of the dominant TE11 waveguide mode for a coaxial
line.

Solution
We have

b

a
= 2b

2a
= 0.215

0.0645
= 3.33.

From Figure 3.16 this value of b/a gives kca = 0.45 [the approximate result is
kca = 2/(1 + b/a) = 0.462]. Thus, kc = 549.4 m−1, and the cutoff frequency of
the TE11 mode is

fc = ckc

2π
√

εr
= 17.7 GHz.

In practice, a 5% safety margin is usually recommended, so

fmax = (0.95) (17.7 GHz) = 16.8 GHz. ■

(a) (b)

FIGURE 3.17 Field lines for the (a) TEM and (b) TE11 modes of a coaxial line.
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POINT OF INTEREST: Coaxial Connectors

Most coaxial cables and connectors in common use have a 50 � characteristic impedance,
with an exception being the 75 � cable used in television systems. The reasoning behind these
choices is that an air-filled coaxial line has minimum attenuation for a characteristic impedance
of about 77 � (Problem 2.27), while maximum power capacity occurs for a characteristic
impedance of about 30 � (Problem 3.28). A 50 � characteristic impedance thus represents a
compromise between minimum attenuation and maximum power capacity. Other requirements
for coaxial connectors include low SWR, higher-order-mode–free operation at a high frequency,
high repeatability after a connect–disconnect cycle, and mechanical strength. Connectors are
used in pairs, with a male end and a female end (or plug and jack). The accompanying photo
shows several types of commonly used coaxial connectors and adapters. From top left: Type-N,
TNC, SMA, APC-7, and 2.4 mm.

Type-N: This connector was developed in 1942 and is named after its inventor, P. Neil, of
Bell Labs. The outer diameter of the female end is about 0.625 in. The recommended upper
frequency limit ranges from 11 to 18 GHz, depending on cable size. This rugged but large
connector is often found on older equipment.

TNC: This is a threaded version of the very common BNC connector. Its use is limited to
frequencies below 1 GHz.

SMA: The need for smaller and lighter connectors led to the development of this connector in
the 1960s. The outer diameter of the female end is about 0.25 in. It can be used up to frequencies
in the range of 18–25 GHz and is probably the most commonly used microwave connector today.

APC-7: This is a precision connector (Amphenol Precision Connector) that can repeatedly
achieve SWR less than 1.04 at frequencies up to 18 GHz. The connectors are “sexless,” with butt
contact between both inner conductors and outer conductors. This connector is most commonly
used for measurement and instrumentation applications.
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2.4 mm: The need for connectors at millimeter wave frequencies led to the development of
several variations of the SMA connector. One of the most common is the 2.4 mm connector, which
is useful to about 50 GHz. The size of this connector is similar to that of the SMA connector.

3.6 SURFACE WAVES ON A GROUNDED DIELECTRIC SHEET

We briefly discussed surface waves in Chapter 1 in connection with the field of a plane
wave totally reflected from a dielectric interface, but surface waves can exist in a variety of
geometries involving dielectric interfaces. Here we consider the TM and TE surface waves
that can be excited along a grounded dielectric sheet. Other geometries that can be used as
surface waveguides include an ungrounded dielectric sheet, a dielectric rod, a corrugated
conductor, and a dielectric-coated conducting rod.

Surface waves are typified by a field that decays exponentially away from the dielectric
surface, with most of the field contained in or near the dielectric. At higher frequencies the field
generally becomes more tightly bound to the dielectric, making such waveguides practical.
Because of the presence of the dielectric, the phase velocity of a surface wave is less than the
velocity of light in a vacuum. Another reason for studying surface waves is that they may be
excited on some types of planar transmission lines, such as microstrip line and slotline.

TM Modes

Figure 3.18 shows the geometry of a grounded dielectric slab waveguide. The dielectric
sheet, of thickness d and relative permittivity εr , is assumed to be of infinite extent in the y
and z directions. We will assume propagation in the +z direction with an e− jβz propagation
factor and no variation in the y direction (∂/∂y = 0).

Because there are two distinct regions, with and without a dielectric, we must sepa-
rately consider the field in these regions and then match tangential fields across the inter-
face. Ez must satisfy the wave equation of (3.25) in each region:

(
∂2

∂x2
+ εr k2

0 − β2

)
ez(x, y) = 0, for 0 ≤ x ≤ d, (3.160a)

(
∂2

∂x2
+ k2

0 − β2

)
ez(x, y) = 0, for d ≤ x < ∞, (3.160b)

where Ez(x, y, z) = ez(x, y)e− jβz .
We define the cutoff wave numbers for the two regions as

k2
c = εr k2

0 − β2, (3.161a)

h2 = β2 − k2
0, (3.161b)

x

z

Dielectric

Ground plane

d

�0

�r�0

FIGURE 3.18 Geometry of a grounded dielectric sheet.
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where the sign on h2 has been selected in anticipation of an exponentially decaying result
for x > d . Observe that the same propagation constant, β, has been used for both regions.
This must be the case to achieve phase matching of the tangential fields at the x = d inter-
face for all values of z.

The general solutions to (3.160) are

ez(x, y) = A sin kcx + B cos kcx, for 0 ≤ x ≤ d (3.162a)

ez(x, y) = Cehx + De−hx , for d ≤ x < ∞ (3.162b)

Note that these solutions are valid for kc and h either real or imaginary; it will turn out that
both kc and h are real because of the choice of definitions in (3.161).

The boundary conditions that must be satisfied are

Ez(x, y, z) = 0, at x = 0, (3.163a)

Ez(x, y, z) < ∞, as x → ∞, (3.163b)

Ez(x, y, z) continuous at x = d, (3.163c)

Hy(x, y, z) continuous at x = d. (3.163d)

From (3.23), Hx = Ey = Hz = 0. Condition (3.163a) implies that B = 0 in (3.162a). Con-
dition (3.163b) is a result of a requirement for finite fields (and energy) infinitely far away
from a source and implies that C = 0. The continuity of Ez leads to

A sin kcd = De−hd , (3.164a)

while (3.23b) must be used to apply continuity to Hy , to obtain

εr A

kc
cos kcd = D

h
e−hd . (3.164b)

For a nontrivial solution, the determinant of the two equations of (3.164) must vanish,
leading to

kc tan kcd = εr h. (3.165)

Eliminating β from (3.161a) and (3.161b) gives

k2
c + h2 = (εr − 1)k2

0 . (3.166)

Equations (3.165) and (3.166) constitute a set of simultaneous transcendental equations
that must be solved for the propagation constants kc and h, given ko and εr . These equa-
tions are easily solved numerically, but Figure 3.19 shows a graphical representation of the
solutions. Multiplying both sides of (3.166) by d2 gives

(kcd)2 + (hd)2 = (εr − 1)(k0d)2,

which is the equation of a circle in the kcd, hd plane, as shown in Figure 3.19. The radius of
the circle is

√
εr − 1k0d , which is proportional to the electrical thickness of the dielectric

sheet. Multiplying (3.165) by d gives

kcd tan kcd = εr hd,

which is also plotted in Figure 3.19. The intersection of these curves implies a solution to
both (3.165) and (3.166). Observe that kc may be positive or negative; from (3.162a) this
is seen to merely change the sign of the constant A. As

√
εr − 1k0d becomes larger, the

circle may intersect more than one branch of the tangent function, implying that more than
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hd

�
2

� ��
2

–– kcd

Valid
solutions

FIGURE 3.19 Graphical solution of the transcendental equation for the cutoff frequency of a TM
surface wave mode of the grounded dielectric sheet.

one TM mode can propagate. Solutions for negative h, however, must be excluded since
we assumed h was positive real when applying boundary condition (3.163b).

For any nonzero-thickness sheet with a relative permittivity greater than unity, there is
at least one propagating TM mode, which we will call the TM0 mode. This is the dominant
mode of the dielectric slab waveguide, and it has a zero cutoff frequency. (Although for
k0 = 0, kc = h = 0, and all fields vanish.) From Figure 3.19 it can be seen that the next
TM mode, the TM1 mode, will not begin to propagate until the radius of the circle becomes
greater than π . The cutoff frequency of the TMn mode can then be derived as

fc = nc

2d
√

εr − 1
, n = 0, 1, 2, . . . . (3.167)

Once kc and h have been found for a particular surface wave mode, the field expres-
sions can be found as

Ez(x, y, z) =
{

A sin kcxe− jβz for 0 ≤ x ≤ d

A sin kcde−h(x−d)e− jβz for d ≤ x < ∞,
(3.168a)

Ex (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

− jβ

kc
A cos kcxe− jβz for 0 ≤ x ≤ d

− jβ

h
A sin kcde−h(x−d)e− jβz for d ≤ x < ∞,

(3.168b)

Hy(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

− jωε0εr

kc
A cos kcxe− jβz for 0 ≤ x ≤ d

− jωε0

h
A sin kcde−h(x−d)e− jβz for d ≤ x < ∞.

(3.168c)

TE Modes

TE modes can also be supported by the grounded dielectric sheet. The Hz field satisfies the
wave equations

(
∂2

∂x2
+ k2

c

)
hz(x, y) = 0, for 0 ≤ x ≤ d, (3.169a)

(
∂2

∂x2
− h2

)
hz(x, y) = 0, for d ≤ x < ∞, (3.169b)
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with Hz(x, y, z) = hz(x, y)e− jβz and k2
c and h2 defined in (3.161a) and (3.161b). As for

the TM modes, the general solutions to (3.169) are

hz(x, y) = A sin kcx + B cos kcx, (3.170a)

hz(x, y) = Cehx + De−hx . (3.170b)

To satisfy the radiation condition, C = 0. Using (3.19d) to find Ey from Hz leads to A = 0
for Ey = 0 at x = 0 and to the equation

−B

kc
sin kcd = D

h
e−hd (3.171a)

for continuity of Ey at x = d . Continuity of Hz at x = d gives

B cos kcd = De−hd . (3.171b)

Simultaneously solving (3.171a) and (3.171b) leads to the determinantal equation

−kc cot kcd = h. (3.172)

From (3.161a) and (3.161b) we also have that

k2
c + h2 = (εr − 1)k2

0 . (3.173)

Equations (3.172) and (3.173) must be solved simultaneously for the variables kc and
h. Equation (3.173) again represents circles in the kcd, hd plane, while (3.172) can be
rewritten as

−kcd cot kcd = hd,

and plotted as a family of curves in the kcd, hd plane, as shown in Figure 3.20. Because
negative values of h must be excluded, we see from Figure 3.20 that the first TE mode does
not start to propagate until the radius of the circle,

√
εr − 1k0d, becomes greater than π/2.

The cutoff frequency of the TEn modes can then be found as

fc = (2n − 1)c

4d
√

εr − 1
for n = 1, 2, 3, . . . . (3.174)

hd

�
2–�

�
2 �

–

kcd

Invalid
solutions

FIGURE 3.20 Graphical solution of the transcendental equation for the cutoff frequency of a TE
surface wave mode. The figure depicts a mode below cutoff.
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Comparing with (3.167) shows that the order of propagation for the TMn and TEn modes
is TM0, TE1, TM1, TE2, TM2, . . . .

After finding the constants kc and h, the field expressions can be derived as

Hz(x, y, z) =
{

B cos kcxe− jβz for 0 ≤ x ≤ d

B cos kcde−h(x−d)e− jβz for d ≤ x < ∞,
(3.175a)

Hx (x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

jβ

kc
B sin kcxe− jβz for 0 ≤ x ≤ d

− jβ

h
B cos kcde−h(x−d)e− jβz for d ≤ x < ∞,

(3.175b)

Ey(x, y, z) =

⎧⎪⎪⎨
⎪⎪⎩

− jωµ0

kc
B sin kcxe− jβz for 0 ≤ x ≤ d

jωµ0

h
B cos kcde−h(x−d)e− jβz for d ≤ x < ∞.

(3.175c)

EXAMPLE 3.4 SURFACE WAVE PROPAGATION CONSTANTS

Calculate and plot the propagation constants of the first three propagating surface
wave modes of a grounded dielectric sheet with εr = 2.55, for d/λ0 = 0 to 1.2.

Solution
The first three propagating surface wave modes are the TM0, TE1, and TM1
modes. The cutoff frequencies for these modes can be found from (3.167) and
(3.174) as

TM0: fc = 0 �⇒ d

λ0
= 0,

TE1: fc = c

4d
√

εr − 1
�⇒ d

λ0
= 1

(4
√

εr − 1)
,

TM1: fc = c

2d
√

εr − 1
�⇒ d

λ0
= 1

(2
√

εr − 1)
.

The propagation constants can be found from the numerical solution of (3.165)
and (3.166) for the TM modes and (3.172) and (3.173) for the TE modes. This can
be done with a relatively simple root-finding algorithm (see the Point of Interest
on root-finding algorithms); the results are shown in Figure 3.21. ■

POINT OF INTEREST: Root-Finding Algorithms

In several examples throughout this book we will need to numerically find the root of a tran-
scendental equation, so it may be useful to review two relatively simple but effective algorithms
for doing this. Both methods can be easily programmed.

In the interval-halving method the root of f (x) = 0 is first bracketed between the values
x1 and x2. These values can often be estimated from the problem under consideration. If a
single root lies between x1 and x2, then f (x1) f (x2) < 0. An estimate, x3, of the root is made
by halving the interval between x1 and x2. Thus,

x3 = x1 + x2

2
.
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FIGURE 3.21 Surface wave propagation constants for a grounded dielectric slab with εr = 2.55.

If f (x1) f (x3) < 0, then the root must lie in the interval x1 < x < x3; if f (x3) f (x2) < 0, the
root must be in the interval x3 < x < x2. A new estimate, x4, can be made by halving the
appropriate interval, and this process is repeated until the location of the root has been deter-
mined with the desired accuracy. The accompanying figure illustrates this algorithm for several
iterations.

The Newton–Raphson method begins with an estimate, x1, of the root of f (x) = 0. Then
a new estimate, x2, is obtained from the formula

x2 = x1 − f (x1)

f ′(x1)
,

where f ′(x1) is the derivative of f (x) at x1. This result is easily derived from a two-term
Taylor series expansion of f (x) near x = x1: f (x) = f (x1) + (x − x1) f ′(x1). It can also be
interpreted geometrically as fitting a straight line at x = x1 with the same slope as f (x) at
this point; this line then intercepts the x-axis at x = x2, as shown in the figure. Reapplying the
above formula gives improved estimates of the root. Convergence is generally much faster than
with the interval-halving method, but a disadvantage is that the derivative of f (x) is required;
this can often be computed numerically. The Newton–Raphson technique can easily be applied
to the case where the root is complex (a situation that occurs, for example, when finding the
propagation constant of a line or guide with loss).

xx1 x3

x5 x4 x2

f (x)

Interval halving

xx1 x3

x2

f (x)

Newton–Raphson

Reference: R. W. Hornbeck, Numerical Methods, Quantum Publishers, New York, 1975.
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FIGURE 3.22 Stripline transmission line. (a) Geometry. (b) Electric and magnetic field lines.

3.7 STRIPLINE

Stripline is a planar type of transmission line that lends itself well to microwave integrated
circuitry, miniaturization, and photolithographic fabrication. The geometry of stripline is
shown in Figure 3.22a. A thin conducting strip of width W is centered between two wide
conducting ground planes of separation b, and the region between the ground planes is
filled with a dielectric material. In practice stripline is usually constructed by etching the
center conductor on a grounded dielectric substrate of thickness b/2 and then covering
with another grounded substrate. Variations of the basic geometry of Figure 3.22a include
stripline with differing dielectric substrate thicknesses (asymmetric stripline) or different
dielectric constants (inhomogeneous stripline). Air dielectric is sometimes used when it is
necessary to minimize loss. An example of a stripline circuit is shown in Figure 3.23.

Because stripline has two conductors and a homogeneous dielectric, it supports a TEM
wave, and this is the usual mode of operation. Like parallel plate guide and coaxial line,
however, stripline can also support higher order waveguide modes. These can usually be
avoided in practice by restricting both the ground plane spacing and the sidewall width
to less than λd /2. Shorting vias between the ground planes are often used to enforce this
condition relative to the sidewall width. Shorting vias should also be used to eliminate
higher order modes that can be generated when an asymmetry is introduced between the
ground planes (e.g., when a surface-mounted coaxial transition is used).

Intuitively, one can think of stripline as a sort of “flattened-out” coax—both have a
center conductor completely enclosed by an outer conductor and are uniformly filled with
a dielectric medium. A sketch of the field lines for stripline is shown in Figure 3.22b.

The geometry of stripline does not lend itself to the simple analyses that were used
for previously treated transmission lines and waveguides. Because we will be concerned
primarily with the TEM mode of stripline, an electrostatic analysis is sufficient to give the
propagation constant and characteristic impedance. An exact solution of Laplace’s equa-
tion is possible by a conformal mapping approach [6], but the procedure and results are
cumbersome. Instead, we will present closed-form expressions that give good approxima-
tions to the exact results and then discuss an approximate numerical technique for solving
Laplace’s equation for a geometry similar to stripline.

Formulas for Propagation Constant, Characteristic Impedance,
and Attenuation

From Section 3.1 we know that the phase velocity of a TEM mode is given by

vp = 1/
√

µ0ε0εr = c/
√

εr , (3.176)
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FIGURE 3.23 Photograph of a stripline circuit assembly (cover removed), showing four quadra-
ture hybrids, open-circuit tuning stubs, and coaxial transitions.

and thus the propagation constant of stripline is

β = ω

vp
= ω

√
µ0ε0εr = √

εr k0. (3.177)

In (3.176), c = 3 × 108 m/sec is the speed of light in free-space. Using (2.13) and (2.16)
allows us to write the characteristic impedance of a transmission line as

Z0 =
√

L

C
=

√
LC

C
= 1

vpC
, (3.178)

where L and C are the inductance and capacitance per unit length of the line. Thus, we
can find Z0 if we know C . As mentioned previously, Laplace’s equation can be solved by
conformal mapping to find the capacitance per unit length of stripline, but the resulting
solution involves complicated special functions [6], so for practical computations simple
formulas have been developed by curve fitting to the exact solution [6, 7]. The resulting
formula for characteristic impedance is

Z0 = 30π√
εr

b

We + 0.441b
, (3.179a)
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where We is the effective width of the center conductor given by

We

b
= W

b
−

⎧⎪⎪⎨
⎪⎪⎩

0 for
W

b
> 0.35

(0.35 − W/b)2 for
W

b
< 0.35.

(3.179b)

These formulas assume a strip with zero thickness and are quoted as being accurate to
about 1% of the exact results. It is seen from (3.179) that the characteristic impedance
decreases as the strip width W increases.

When designing stripline circuits one usually needs to find the strip width, given the
characteristic impedance (and height b and relative permittivity εr ), which requires the
inverse of the formulas in (3.179). Such formulas have been derived as

W

b
=

{
x for

√
εr Z0 < 120 �

0.85 − √
0.6 − x for

√
εr Z0 > 120 �,

(3.180a)

where

x = 30π√
εr Z0

− 0.441. (3.180b)

Since stripline is a TEM line, the attenuation due to dielectric loss is of the same form
as that for other TEM lines and is given in (3.30). The attenuation due to conductor loss
can be found by the perturbation method or Wheeler’s incremental inductance rule. An
approximate result is

αc =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2.7 × 10−3 Rsεr Z0

30π(b − t)
A for

√
εr Z0 < 120 �

0.16Rs

Z0b
B for

√
εr Z0 > 120 �

Np/m, (3.181)

with

A = 1 + 2W

b − t
+ 1

π

b + t

b − t
ln

(
2b − t

t

)
,

B = 1 + b

(0.5W + 0.7t)

(
0.5 + 0.414t

W
+ 1

2π
ln

4πW

t

)
,

where t is the thickness of the strip.

EXAMPLE 3.5 STRIPLINE DESIGN

Find the width for a 50 � copper stripline conductor with b = 0.32 cm and
εr = 2.20. If the dielectric loss tangent is 0.001 and the operating frequency
is 10 GHz, calculate the attenuation in dB/λ. Assume a conductor thickness of
t = 0.01 mm.

Solution
Because

√
εr Z0 = √

2.2(50) = 74.2 < 120 and x = 30π /(
√

εr Z0) − 0.441 =
0.830, (3.180) gives the strip width as W = bx = (0.32)(0.830) = 0.266 cm.
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At 10 GHz, the wave number is

k = 2π f
√

εr

c
= 310.6 m−1.

From (3.30) the dielectric attenuation is

αd = k tan δ

2
= (310.6)(0.001)

2
= 0.155 Np/m.

The surface resistance of copper at 10 GHz is Rs = 0.026 �. Then from (3.181)
the conductor attenuation is

αc = 2.7 × 10−3 Rsεr Z0 A

30π(b − t)
= 0.122 Np/m,

since A = 4.74. The total attenuation constant is

α = αd + αc = 0.277 Np/m.

In dB,

α(dB) = 20 log eα = 2.41 dB/m.

At 10 GHz, the wavelength on the stripline is

λ = c√
εr f

= 2.02 cm,

so in terms of wavelength the attenuation is

α(dB) = (2.41)(0.0202) = 0.049 dB/λ. ■

An Approximate Electrostatic Solution

Many practical problems in microwave engineering are very complicated and do not lend
themselves to straightforward analytic solutions but require some sort of numerical
approach. Thus it is useful for the student to become aware of such techniques; we will
introduce such methods when appropriate throughout this book, beginning with a numeri-
cal solution for the characteristic impedance of stripline.

We know that the fields of the TEM mode on stripline must satisfy Laplace’s equation,
(3.11), in the region between the two parallel plates. The idealized stripline geometry of
Figure 3.22a extends to ±∞, which makes the analysis more difficult. Because we suspect,
from the field line drawing of Figure 3.22b, that the field lines do not extend very far away
from the center conductor, we can simplify the geometry by truncating the plates beyond
some distance, say |x | > a/2, and placing metal walls on the sides. Thus, the geometry we
will analyze is shown in Figure 3.24, where a � b, so that the fields around the center

εr

x

y

W
b

a
2

a
2

– 0

�r

FIGURE 3.24 Geometry of enclosed stripline.
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conductor are not perturbed by the sidewalls. We then have a closed finite region in which
the potential 
(x, y) satisfies Laplace’s equation,

∇2
t 
(x, y) = 0 for |x | ≤ a/2, 0 ≤ y ≤ b, (3.182)

with the boundary conditions


(x, y) = 0, at x = ±a/2, (3.183a)


(x, y) = 0, at y = 0, b. (3.183b)

Laplace’s equation can be solved by the method of separation of variables. Because
the center conductor at y = b/2 will contain a surface charge density, the potential 
(x, y)

will have a slope discontinuity there because D̄ = −ε0εr∇t
 is discontinuous at y = b/2.
Therefore, separate solutions for 
(x, y) must be found for 0 < y < b/2 and b/2 < y < b.
The general solutions for 
(x, y) in these two regions can be written as


(x, y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∞∑
n=1
odd

An cos
nπx

a
sinh

nπy

a
for 0 ≤ y ≤ b/2

∞∑
n=1
odd

Bn cos
nπx

a
sinh

nπ

a
(b − y) for b/2 ≤ y ≤ b.

(3.184)

Only the odd-n terms are needed in (3.184) because the solution is an even function of x .
The reader can verify by substitution that (3.184) satisfies Laplace’s equation in the two
regions and satisfies the boundary conditions of (3.183).

The potential must be continuous at y = b/2, which from (3.184) leads to

An = Bn . (3.185)

The remaining set of unknown coefficients, An , can be found by solving for the charge
density on the center strip. Because Ey = −∂
/∂y, we have

Ey =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−
∞∑

n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπy

a
for 0 ≤ y ≤ b/2

∞∑
n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπ

a
(b − y) for b/2 ≤ y ≤ b.

(3.186)

The surface charge density on the strip at y = b/2 is

ρs = Dy(x, y = b/2+) − Dy(x, y = b/2−)

= ε0εr [Ey(x, y = b/2+) − Ey(x, y = b/2−)]

= 2ε0εr

∞∑
n=1
odd

An

(nπ

a

)
cos

nπx

a
cosh

nπb

2a
, (3.187)

which is seen to be a Fourier series in x for the surface charge density, ρs , on the strip at
y = b/2. If we know the surface charge density we could easily find the unknown con-
stants, An , and then the capacitance. We do not know the exact surface charge density, but
we can make a good guess by approximating it as a constant over the width of the strip,

ρs(x) =
{ 1 for |x | < W/2

0 for |x | > W/2.
(3.188)
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Equating this to (3.187) and using the orthogonality properties of the cos(nπx /a) functions
gives the constants An as

An = 2a sin(nπW /2a)

(nπ)2ε0εr cosh(nπb/2a)
. (3.189)

The voltage of the strip conductor relative to the bottom conductor can be found by inte-
grating the vertical electric field from y = 0 to b/2. Because the solution is approximate,
this voltage is not constant over the width of the strip but varies with position, x . Rather
than choosing the voltage at an arbitrary position, we can obtain an improved result by
averaging the voltage over the width of the strip:

Vavg = 1

W

W/2∫

−W/2

∫ b/2

0
Ey(x, y) dy dx =

∞∑
n=1
odd

An

(
2a

nπW

)
sin

nπW

2a
sinh

nπb

2a
. (3.190)

The total charge per unit length on the center conductor is

Q =
∫ W/2

−W/2
ρs(x) dx = W Coul/m, (3.191)

so the capacitance per unit length of the stripline is

C = Q

Vavg
= W

∞∑
n=1
odd

An

(
2a

nπW

)
sin

nπW

2a
sinh

nπb

2a

F/m. (3.192)

Finally, the characteristic impedance is given by

Z0 =
√

L

C
=

√
LC

C
= 1

vpC
=

√
εr

cC
,

where c = 3 × 108 m/sec.

EXAMPLE 3.6 NUMERICAL CALCULATION OF STRIPLINE IMPEDANCE

Evaluate the above expressions for a stripline having εr = 2.55 and a = 100b to
find the characteristic impedance for W /b = 0.25 to 5.0. Compare with the results
from (3.179).

Solution
A computer program was written to evaluate (3.192). The series was truncated
after 500 terms, and the results for Z0 are as follows.

Z0, �

Numerical, Formula, Commercial

W /b Eq. (3.192) Eq. (3.179) CAD

0.25 90.9 86.6 85.3

0.50 66.4 62.7 61.7

1.0 43.6 41.0 40.2

2.0 25.5 24.2 24.4

5.0 11.1 10.8 11.9
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We see that the results are in reasonable agreement with the closed-form equa-
tions of (3.179) and the results from a commercial CAD package, particularly for
wider strips where the charge density is closer to uniform. Better results could be
obtained if more sophisticated estimates were used for the charge density. ■

3.8 MICROSTRIP LINE

Microstrip line is one of the most popular types of planar transmission lines primarily
because it can be fabricated by photolithographic processes and is easily miniaturized and
integrated with both passive and active microwave devices. The geometry of a microstrip
line is shown in Figure 3.25a. A conductor of width W is printed on a thin, grounded
dielectric substrate of thickness d and relative permittivity εr ; a sketch of the field lines is
shown in Figure 3.25b.

If the dielectric substrate were not present (εr = 1), we would have a two-wire line
consisting of a flat strip conductor over a ground plane, embedded in a homogeneous
medium (air). This would constitute a simple TEM transmission line with phase veloc-
ity vp = c and propagation constant β = k0.

The presence of the dielectric, particularly the fact that the dielectric does not fill the
region above the strip (y > d), complicates the behavior and analysis of microstrip line.
Unlike stripline, where all the fields are contained within a homogeneous dielectric region,
microstrip has some (usually most) of its field lines in the dielectric region between the strip
conductor and the ground plane and some fraction in the air region above the substrate. For
this reason microstrip line cannot support a pure TEM wave since the phase velocity of
TEM fields in the dielectric region would be c/

√
εr , while the phase velocity of TEM fields

in the air region would be c, so a phase-matching condition at the dielectric–air interface
would be impossible to enforce.

In actuality, the exact fields of a microstrip line constitute a hybrid TM-TE wave and
require more advanced analysis techniques than we are prepared to deal with here. In most
practical applications, however, the dielectric substrate is electrically very thin (d � λ),
and so the fields are quasi-TEM. In other words, the fields are essentially the same as those
of the static (DC) case. Thus, good approximations for the phase velocity, propagation con-
stant, and characteristic impedance can be obtained from static, or quasi-static, solutions.
Then the phase velocity and propagation constant can be expressed as

vp = c√
εe

, (3.193)

β = k0
√

εe, (3.194)
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FIGURE 3.25 Microstrip transmission line. (a) Geometry. (b) Electric and magnetic field lines.
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where εe is the effective dielectric constant of the microstrip line. Because some of the
field lines are in the dielectric region and some are in air, the effective dielectric constant
satisfies the relation

1 < εe < εr

and depends on the substrate dielectric constant, the substrate thickness, the conductor
width, and the frequency.

We will present approximate design formulas for the effective dielectric constant, charac-
teristic impedance, and attenuation of microstrip line; these results are curve-fit approximations
to rigorous quasi-static solutions [8, 9]. Then we will discuss additional aspects of microstrip
lines, including frequency-dependent effects, higher order modes, and parasitic effects.

Formulas for Effective Dielectric Constant, Characteristic
Impedance, and Attenuation

The effective dielectric constant of a microstrip line is given approximately by

εe = εr + 1

2
+ εr − 1

2

1√
1 + 12d/W

. (3.195)

The effective dielectric constant can be interpreted as the dielectric constant of a homo-
geneous medium that equivalently replaces the air and dielectric regions of the microstrip
line, as shown in Figure 3.26. The phase velocity and propagation constant are then given
by (3.193) and (3.194).

Given the dimensions of the microstrip line, the characteristic impedance can be cal-
culated as

Z0 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

60√
εe

ln

(
8d

W
+ W

4d

)
for W/d ≤ 1

120π√
εe [W/d + 1.393 + 0.667 ln (W/d + 1.444)]

for W/d ≥ 1.

(3.196)

For a given characteristic impedance Z0 and dielectric constant εr , the W /d ratio can be
found as

W

d
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8eA

e2A − 2
for W/d < 2

2

π

[
B − 1 − ln(2B − 1) + εr − 1

2εr

{
ln(B − 1) + 0.39 − 0.61

εr

}]
for W/d > 2,

(3.197)
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FIGURE 3.26 Equivalent geometry of a quasi-TEM microstrip line. (a) Original geometry.
(b) Equivalent geometry, where the dielectric substrate of relative permittivity εr
is replaced with a homogeneous medium of effective relative permittivity εe.
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where

A = Z0

60

√
εr + 1

2
+ εr − 1

εr + 1

(
0.23 + 0.11

εr

)

B = 377π

2Z0
√

εr
.

Considering a microstrip line as a quasi-TEM line, we can determine the attenuation
due to dielectric loss as

αd = k0εr (εe − 1) tan δ

2
√

εe(εr − 1)
Np/m, (3.198)

where tan δ is the loss tangent of the dielectric. This result is derived from (3.30) by multi-
plying by a “filling factor,”

εr (εe − 1)

εe(εr − 1)
,

which accounts for the fact that the fields around the microstrip line are partly in air (loss-
less) and partly in the dielectric (lossy). The attenuation due to conductor loss is given
approximately by [8]

αc = Rs

Z0W
Np/m, (3.199)

where Rs = √
ωµ0/2σ is the surface resistivity of the conductor. For most microstrip sub-

strates, conductor loss is more significant than dielectric loss; exceptions may occur, how-
ever, with some semiconductor substrates.

EXAMPLE 3.7 MICROSTRIP LINE DESIGN

Design a microstrip line on a 0.5 mm alumina substrate (εr = 9.9, tan δ = 0.001)
for a 50 � characteristic impedance. Find the length of this line required
to produce a phase delay of 270◦ at 10 GHz, and compute the total loss on this
line, assuming copper conductors. Compare the results obtained from the approx-
imate formulas of (3.195)–(3.199) with those from a microwave CAD package.

Solution
First find W/d for Z0 = 50 �, and initially guess that W/d < 2. From (3.197),

A = 2.142, W/d = 0.9654.

So the condition that W/d < 2 is satisfied; otherwise we would use the expression
for W/d > 2. Then the required line width is W = 0.9654d = 0.483 mm. From
(3.195) the effective dielectric constant is εe = 6.665. The line length, �, for a
270◦ phase shift is found as

φ = 270◦ = β� = √
εek0�,

k0 = 2π f

c
= 209.4 m−1,

� = 270◦(π/180◦)√
εek0

= 8.72 mm.



c03TransmissionLinesandWaveguides Pozar July 29, 2011 20:41

150 Chapter 3: Transmission Lines and Waveguides

Attenuation due to dielectric loss is found from (3.198) as αd = 0.255 Np/m =
0.022 dB/cm. The surface resistivity for copper at 10 GHz is 0.026 �, and the
attenuation due to conductor loss is, from (3.199), αc = 0.0108 Np/cm = 0.094
dB/cm. The total loss on the line is then 0.101 dB.

A commercial microwave CAD package gives the following results: W =
0.478 mm, εe = 6.83, � = 8.61 mm, αd = 0.022 dB/cm, and αc = 0.054 dB/cm.
The approximate formulas give results that are within a few percent of the CAD
data for linewidth, effective dielectric constant, line length, and dielectric attenu-
ation. The greatest discrepancy occurs for the attenuation constant for conductor
loss. ■

Frequency-Dependent Effects and Higher Order Modes

The results for the parameters of microstrip line presented in the previous section were
based on the quasi-static approximation and are strictly valid only at DC (or very low
frequencies). At higher frequencies a number of effects can occur that lead to variations
from the quasi-static results for effective dielectric constant, characteristic impedance, and
attenuation of microstrip line. In addition, new effects can arise, such as higher order modes
and parasitic reactances.

Because microstrip line is not a true TEM line, its propagation constant is not a linear
function of frequency, meaning that the effective dielectric constant varies with frequency.
The electromagnetic field that exists on microstrip line involves a hybrid coupling of TM
and TE modes, complicated by the boundary condition imposed by the air and dielectric
substrate interface. In addition, the current on the strip conductor is not uniform across
the width of the strip, and this distribution varies with frequency. The thickness of the strip
conductor also has an effect on the current distribution and hence affects the line parameters
(especially the conductor loss).

The variation with frequency of the parameters of a transmission line is important for
several reasons. First, if the variation is significant it becomes important to know and use
the parameters at the particular frequency of interest to avoid errors in design or analysis.
Typically, for microstrip line, the frequency variation of the effective dielectric constant is
more significant than the variation of characteristic impedance, both in terms of relative
change and the relative effect on performance. A change in the effective dielectric con-
stant may have a substantial effect on the phase delay through a long section of line, while
a small change in characteristic impedance has the primary effect of introducing a small
impedance mismatch. Second, a variation in line parameters with frequency means that
different frequency components of a broadband signal will propagate differently. A varia-
tion in phase velocity, for example, means that different frequency components will arrive
at the output of the line at different times, leading to signal dispersion and distortion of
the input signal. Third, because of the complexity of modeling these effects, approximate
formulas are generally useful only for a limited range of frequency and line parameters,
and numerical computer models are usually more accurate and useful.

There are a number of approximate formulas, developed from numerical computer
solutions and/or experimental data, that have been suggested for predicting the frequency
variation of microstrip line parameters [8, 9]. A popular frequency-dependent model for
the effective dielectric constant has a form similar to the following formula [8]:

εe( f ) = εr − εr − εe(0)

1 + G( f )
, (3.200)

where εe( f ) represents the frequency-dependent effective dielectric constant, εr is the rel-
ative permittivity of the substrate, and εe(0) is the effective dielectric constant of the line at
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DC, as given by (3.195). The function G( f ) can take various forms, but one suggested in
reference [8] is that G( f ) = g

(
f/ f p

)2, with g = 0.6 + 0.009 Z0 and f p = Z0/8πd (Z0 is
in ohms, f is in GHz, and d is in cm). It can be seen from the form of (3.200) that εe( f )

reduces to the DC value εe(0) when f = 0 and increases toward εr as frequency increases.
Approximate formulas like the above were primarily developed in the years before

computer-aided design tools for RF and microwave engineering became commonly avail-
able (see the Point of Interest on computer-aided design in Chapter 4). Such tools usually
give accurate results for a wide range of line parameters and today are usually preferred
over closed-form approximations.

Another potential difficulty with microstrip line is that it may support several types of
higher order modes, particularly at higher frequencies. Some of these are directly related
to the TM and TE surface waves modes that were discussed in Section 3.6, while others
are related to waveguide-type modes in the cross section of the line.

The TM0 surface wave mode for a grounded dielectric substrate has a zero cutoff
frequency, as we know from (3.167). Because some of the field lines of this mode are
aligned with the field lines of the quasi-TEM mode of a microstrip line, it is possible for
coupling to occur from the desired microstrip mode to a surface wave, leading to excess
power loss and possibly undesired coupling to adjacent microstrip elements. Because the
fields of the TM0 surface wave are zero at DC, there is little coupling to the quasi-TEM
microstrip mode until a critical frequency is reached. Studies have shown that this threshold
frequency is greater than zero and less than the cutoff frequency of theTM1 surface wave
mode. A commonly used approximation is [8]

fT 1 � c

2πd

√
2

εr − 1
tan−1 εr . (3.201)

For εr ranging from 1 to 10, (3.201) gives a frequency that is 35% to 66% of fc1, the cutoff
frequency of the TM1 surface wave mode.

When a microstrip circuit has transverse discontinuities (such as bends, junctions, or
even step changes in width), the transverse currents on the conductors that are generated
may allow coupling to TE surface wave modes. Most practical microstrip circuits involve
such discontinuities, so this type of coupling is often important. The minimum threshold
frequency where such coupling becomes important is given by the cutoff of the TE1 surface
wave, from (3.174):

fT 2 � c

4d
√

εr − 1
. (3.202)

For wide microstrip lines, it is possible to excite a transverse resonance along the x axis
of the microstrip line below the strip in the dielectric region because the sides below the
strip conductor appear approximately as magnetic walls. This condition occurs when the
width is about λ/2 in the dielectric, but because of field fringing the effective width of the
strip is somewhat larger than the physical width. A rough approximation for the effective
width is W + d/2, so the approximate threshold frequency for transverse resonance is

fT 3 � c√
εr (2W + d)

. (3.203)

It is rare that a microstrip line is wide enough to approach this limit in practice.
Finally, a parallel plate–type waveguide mode may propagate when the vertical spac-

ing between the strip conductor and ground plane approaches λ/2 in the dielectric. Thus, an
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approximation for the threshold frequency for this mode (valid for wide microstrip lines)
can be given as

fT 4 � c

2d
√

εr
. (3.204)

Thinner microstrip lines will have more fringing field that effectively lengthens the path
between the strip and ground plane, thus reducing the threshold frequency by as much as
50%.

The net effect of the threshold frequencies given in (3.201)–(3.204) is to impose an
upper frequency limit of operation for a given microstrip geometry. This limit is a function
of the substrate thickness, dielectric constant, and strip width.

EXAMPLE 3.8 FREQUENCY DEPENDENCE OF EFFECTIVE
DIELECTRIC CONSTANT

Use the approximate formula of (3.200) to plot the change in effective dielectric
constant over frequency for a 25 � microstrip line on a substrate having a rela-
tive permittivity of 10.0 and a thickness of 0.65 mm. Compare the approximate
data with results from a CAD model for frequencies up to 20 GHz. Compare the
calculated phase delay at 10 GHz through a 1.093 cm length of line when using
εe(0) versus εe(10 GHz).

Solution
The required linewidth for a 25 � impedance is w = 2.00 mm. The effective
dielectric constant for this line at low frequencies can be found from (3.195) to
be εe(0) = 7.53. A short computer program was used to calculate the effective
dielectric constant as a function of frequency using (3.200), and the result is
shown in Figure 3.27. Comparison with a commercial microwave CAD package
shows that the approximate model is reasonably accurate up to about 10 GHz but
gives an overestimate at higher frequencies.
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FIGURE 3.27 Effective dielectric constant versus frequency for the microstrip line of Example
3.8, comparing the approximate model of (3.200) with data from a computer-aided
design package.
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Using an effective dielectric constant of εe(0) = 7.53, we find the phase
delay through a 1.093 cm length of line to be φ0 = √

εe(0)k0� = 360◦. The
effective dielectric constant at 10 GHz is 8.120 (CAD), with a corresponding
phase delay of φ10 = √

εe(10 GHz)k0� = 374◦—an error of about 14◦. ■

3.9 THE TRANSVERSE RESONANCE TECHNIQUE

According to the general solutions of Maxwell’s equations for TE or TM waves given in
Section 3.1, a uniform waveguide structure always has a propagation constant of the form

β =
√

k2 − k2
c =

√
k2 − k2

x − k2
y, (3.205)

where kc =
√

k2
x + k2

y is the cutoff wave number of the guide and, for a given mode, is a

fixed function of the cross-sectional geometry of the guide. Thus, if we know kc we can
determine the propagation constant of the guide. In previous sections we determined kc

by solving the wave equation in the guide, subject to the appropriate boundary conditions.
Although this technique is very powerful and general, it can be complicated for complex
waveguides, especially if dielectric layers are present. In addition, the wave equation solu-
tion gives a complete field description inside the waveguide, which is often more informa-
tion than we really need if we are only interested in the propagation constant of the guide.
The transverse resonance technique employs a transmission line model of the transverse
cross section of the waveguide and gives a much simpler and more direct solution for the
cutoff frequency. This is another example where circuit and transmission line theory offers
a simplified alternative to a field theory solution.

The transverse resonance procedure is based on the fact that in a waveguide at cutoff,
the fields form standing waves in the transverse plane of the guide, as can be inferred from
the “bouncing plane wave” interpretation of waveguide modes discussed in Section 3.2.
This situation can be modeled with an equivalent transmission line circuit operating at
resonance. One of the conditions of such a resonant line is the fact that, at any point on the
line, the sum of the input impedances seen looking to either side must be zero. That is,

Zr
in(x) + Z�

in(x) = 0 for all x, (3.206)

where Zr
in(x) and Z�

in(x) are the input impedances seen looking to the right and left,
respectively, at any point x on the resonant line.

The transverse resonance technique only gives results for the cutoff frequency of the
guide. If fields or attenuation due to conductor loss are needed, the complete field theory
solution will be required. The procedure will now be illustrated with an example.

TE0n Modes of a Partially Loaded Rectangular Waveguide

The transverse resonance technique is particularly useful when the guide contains dielec-
tric layers because the boundary conditions at the dielectric interfaces, which require the
solution of simultaneous algebraic equations in the field theory approach, can be easily
handled as junctions of different transmission lines. As an example, consider a rectangu-
lar waveguide partially filled with dielectric, as shown in Figure 3.28. To find the cutoff
frequencies for the TE0n modes, the equivalent transverse resonance circuit shown in the
figure can be used. The line for 0 < y < t represents the dielectric-filled part of the guide
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FIGURE 3.28 A rectangular waveguide partially filled with dielectric and the transverse reso-
nance equivalent circuit.

and has a transverse propagation constant kyd and a characteristic impedance for TE modes
given by

Zd = kη

kyd
= k0η0

kyd
, (3.207a)

where k0 = ω
√

µ0ε0 and η0 = √
µ0/ε0. For t < y < b, the guide is air filled and has a

transverse propagation constant kya and an equivalent characteristic impedance given by

Za = k0η0

kya
. (3.207b)

Applying condition (3.206) yields

kya tan kyd t + kyd tan kya(b − t) = 0. (3.208)

This equation contains two unknowns, kya and kyd . An additional equation is obtained from
the fact that the longitudinal propagation constant, β, must be the same in both regions for
phase matching of the tangential fields at the dielectric interface. Thus, with kx = 0,

β =
√

εr k2
0 − k2

yd =
√

k2
0 − k2

ya,

or

εr k2
0 − k2

yd = k2
0 − k2

ya . (3.209)

Equations (3.208) and (3.209) can be solved (numerically or graphically) to obtain kyd

and kya . There will be an infinite number of solutions, corresponding to the n dependence
(number of variations in y) of the TE0n mode.

3.10 WAVE VELOCITIES AND DISPERSION

We have so far encountered two types of velocities related to the propagation of electro-
magnetic waves:

� The speed of light in a medium (1/
√

µε )
� The phase velocity (vp = ω/β)

The speed of light in a medium is the velocity at which a plane wave would propagate in
that medium, while the phase velocity is the speed at which a constant phase point travels.
For a TEM plane wave, these two velocities are identical, but for other types of guided
wave propagation the phase velocity may be greater or less than the speed of light.
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If the phase velocity and attenuation of a line or guide are constants that do not change
with frequency, then the phase of a signal that contains more than one frequency component
will not be distorted. If the phase velocity is different for different frequencies, then the
individual frequency components will not maintain their original phase relationships as
they propagate down the transmission line or waveguide, and signal distortion will occur.
Such an effect is called dispersion since different phase velocities allow the “faster” waves
to lead in phase relative to the “slower” waves, and the original phase relationships will
gradually be dispersed as the signal propagates down the line. In such a case, there is
no single phase velocity that can be attributed to the signal as a whole. However, if the
bandwidth of the signal is relatively small or if the dispersion is not too severe, a group
velocity can be defined in a meaningful way. This velocity can be used to describe the
speed at which the signal propagates.

Group Velocity

As discussed earlier, the physical interpretation of group velocity is the velocity at which a
narrowband signal propagates. We will derive the relation of group velocity to the propa-
gation constant by considering a signal f (t) in the time domain. The Fourier transform of
this signal is defined as

F(ω) =
∫ ∞

−∞
f (t)e− jωt dt, (3.210a)

and the inverse transform is

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωt dω. (3.210b)

Now consider the transmission line or waveguide on which the signal f (t) is propa-
gating as a linear system, with a transfer function Z(ω) that relates the output, Fo(ω), of
the line to the input, F(ω), of the line, as shown in Figure 3.29. Thus,

Fo(ω) = Z(ω)F(ω). (3.211)

For a lossless matched transmission line or waveguide, the transfer function Z(ω) can be
expressed as

Z(ω) = Ae− jβz = |Z(ω)|e− jψ, (3.212)

where A is a constant and β is the propagation constant of the line or guide.
The time domain representation of the output signal, fo(t), can then be written as

fo(t) = 1

2π

∫ ∞

−∞
F(ω)|Z(ω)|e j (ωt−ψ)dω. (3.213)

F(�) Z (�) Fo(�)

Fo(�) = Z (�)F(�)

FIGURE 3.29 A transmission line or waveguide represented as a linear system with transfer
function Z(ω).
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If | Z(ω)| = A is a constant and the phase ψ of Z(ω) is a linear function of ω, say ψ = aω,
the output can be expressed as

fo(t) = 1

2π

∫ ∞

−∞
AF(ω)e jω(t−a)dω = A f (t − a), (3.214)

which is seen to be a replica of f (t), except for an amplitude factorA and time shift a. Thus,
a transfer function of the form Z(ω) = Ae− jωa does not distort the input signal. A lossless
TEM wave has a propagation constant β = ω/c, which is of this form, so a TEM line is
dispersionless and does not lead to signal distortion. If the TEM line is lossy, however, the
attenuation may be a function of frequency, which could lead to signal distortion.

Now consider a narrowband input signal of the form

s(t) = f (t) cos ω0t = Re
{

f (t)e jωot
}

, (3.215)

which represents an amplitude-modulated carrier wave of frequency ωo. Assume that the
highest frequency component of f (t) is ωm , where ωm � ωo. The Fourier transform, S(ω),
of s(t), is

S(ω) =
∫ ∞

−∞
f (t)e− jωot e jωt dt = F(ω − ωo), (3.216)

where we have used the complex form of the input signal as expressed in (3.215). We will
need to take the real part of the output inverse transform to obtain the time domain output
signal. The spectra of F(ω) and S(ω) are depicted in Figure 3.30.

The output signal spectrum is

So(ω) = AF(ω − ωo)e
− jβz, (3.217)

and in the time domain,

so(t) = 1

2π
Re

∫ ∞

−∞
So(ω)e jωt dω

= 1

2π
Re

∫ ωo+ωm

ωo−ωm

AF(ω − ωo)e
j (ωt−βz)dω.

(3.218)

In general, the propagation constant β may be a complicated function of ω. However,
if F(ω) is narrowband (ωm � ωo), then β can often be linearized by using a Taylor series
expansion about ωo:

β(ω) = β(ωo) + dβ

dω

∣∣∣∣
ω=ωo

(ω − ωo) + 1

2

d2β

dω2

∣∣∣∣
ω=ωo

(ω − ωo)
2 + · · · . (3.219)

–�m �m �0

F(�)

(a)

–�o �o �0

S(�)

(b)

FIGURE 3.30 Fourier spectra of the signals (a) f (t) and (b) s(t).
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Retaining the first two terms gives

β(ω) � βo + β ′
o(ω − ωo), (3.220)

where

βo = β(ωo),

β ′
o = dβ

dω

∣∣∣∣
ω=ωo

.

After a change of variables to y = ω − ωo, the expression for so(t) becomes

so(t) = A

2π
Re

{
e j (ωot−βoz)

∫ ωm

−ωm

F(y)e j (t−β ′
oz)y dy

}

= A Re
{

f (t − β ′
oz)e j (ωot−βoz)

}

= A f (t − β ′
oz) cos(ωot − βoz), (3.221)

which is a time-shifted replica of the original modulation envelope, f (t), of (3.215). The
velocity of this envelope is the group velocity, vg:

vg = 1

β ′
o

=
(

dβ

dω

)−1 ∣∣∣∣
ω=ωo

. (3.222)

EXAMPLE 3.9 WAVEGUIDE WAVE VELOCITIES

Calculate the group velocity for a waveguide mode propagating in an air-filled
guide. Compare this velocity to the phase velocity and speed of light.

Solution
The propagation constant for a mode in an air-filled waveguide is

β =
√

k2
0 − k2

c =
√

(ω/c)2 − k2
c .

Taking the derivative with respect to frequency gives

dβ

dω
= ω/c2√

(ω/c)2 − k2
c

= ko

cβ
,

so from (3.234) the group velocity is

vg =
(

dβ

dω

)−1

= cβ

k0
.

The phase velocity is vp = ω/β = ck0/β. Since β < k0, we have that vg <

c < vp, which indicates that the phase velocity of a waveguide mode may be
greater than the speed of light, but the group velocity (the velocity of a narrow-
band signal) will be less than the speed of light. ■

3.11 SUMMARY OF TRANSMISSION LINES AND WAVEGUIDES

We have discussed a variety of transmission lines and waveguides in this chapter, and here
we will summarize some of the basic properties of these transmission media and their
relative advantages in a broader context.
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TABLE 3.6 Comparison of Common Transmission Lines and Waveguides

Characteristic Coax Waveguide Stripline Microstrip

Modes: Preferred TEM TE10 TEM Quasi-TEM

Other TM,TE TM,TE TM,TE Hybrid TM,TE

Dispersion None Medium None Low

Bandwidth High Low High High

Loss Medium Low High High

Power capacity Medium High Low Low

Physical size Large Large Medium Small

Ease of fabrication Medium Medium Easy Easy

Integration with Hard Hard Fair Easy

We made a distinction between TEM, TM, and TE waves and saw that transmission
lines and waveguides can be categorized according to which type of waves they can sup-
port. We saw that TEM waves are nondispersive, with no cutoff frequency, while TM and
TE waves exhibit dispersion and generally have nonzero cutoff frequencies. Other electri-
cal considerations include bandwidth, attenuation, and power-handling capacity. Mechan-
ical factors are also very important, however, and include such considerations as physical
size (volume and weight), ease of fabrication (cost), and the ability to be integrated with
other devices (active or passive). Table 3.6 compares several types of transmission media
with regard to these considerations; this table only gives general guidelines, as specific
cases may give better or worse results than those indicated.

Other Types of Lines and Guides

Although we have discussed the most common types of waveguides and transmission lines,
there are many other guides and lines (and many variations) that we are not able to present
in detail. A few of the more popular types are briefly mentioned here.

Ridge waveguide: The practical bandwidth of rectangular waveguide is slightly less than
an octave (a 2:1 frequency range). This is because the TE20 mode begins to propagate at
a frequency equal to twice the cutoff frequency of the TE10 mode. The ridge waveguide,
shown in Figure 3.31, consists of a rectangular waveguide loaded with conducting ridges
on the top and/or bottom walls. This loading tends to lower the cutoff frequency of the
dominant mode, leading to increased bandwidth and better (more constant) impedance
characteristics. Ridge waveguides are often used for impedance matching purposes, where

FIGURE 3.31 Cross section of a ridge waveguide.
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�r1

�r2

FIGURE 3.32 Dielectric waveguide geometry.

the ridge may be tapered along the length of the guide. The presence of the ridge, however,
reduces the power-handling capacity of the waveguide.

Dielectric waveguide: As we have seen from our study of surface waves, metallic con-
ductors are not necessary to confine and support a propagating electromagnetic field. The
dielectric waveguide shown in Figure 3.32 is another example of such a guide, where εr2,
the dielectric constant of the ridge, is usually greater than εr1, the dielectric constant of
the substrate. The fields are thus mostly confined to the ridge and the surrounding area.
This type of guide supports TM and TE modes, and is convenient for miniaturization and
integration with active devices. Its small size makes it useful for millimeter wave to optical
frequencies, although it can be very lossy at bends or junctions in the ridge line. Many
variations in this basic geometry are possible.

Slotline: Slotline is another one of the many possible types of planar transmission lines.
The geometry of a slotline is shown in Figure 3.33. It consists of a thin slot in the ground
plane on one side of a dielectric substrate. Thus, like microstrip line, the two conductors of
slotline lead to a quasi-TEM type of mode. The width of the slot controls the characteristic
impedance of the line.

Coplanar waveguide: The coplanar waveguide, shown in Figure 3.34, is similar to the slot-
line, and can be viewed as a slotline with a third conductor centered in the slot region.
Because of the presence of this additional conductor, this type of line can support even
or odd quasi-TEM modes, depending on whether the electric fields in the two slots are in
the opposite direction or the same direction. Coplanar waveguides are particularly useful
for fabricating active circuitry due to the presence of the center conductor and the close
proximity of the ground planes.

Covered microstrip: Many variations of the basic microstrip line geometry are possible,
but one of the more common is the covered microstrip, shown in Figure 3.35. The metallic
cover plate is often used for electrical shielding and physical protection of the microstrip
circuitry and is usually situated several substrate thicknesses away from the circuit. Its
presence, however, can perturb the operation of the circuit enough so that its effect must
be taken into account during design.

�r

FIGURE 3.33 Geometry of a printed slotline.
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�r

FIGURE 3.34 Coplanar waveguide geometry.

POINT OF INTEREST: Power Capacity of Transmission Lines

The power-handling capacity of an air-filled transmission line or waveguide is usually limited
by voltage breakdown, which occurs at a field strength of about Ed = 3 × 106 V/m for room
temperature air at sea level pressure. Thermal effects may also serve to limit the power capacity
of some types of lines.

In an air-filled coaxial line the electric field varies as Eρ = Vo/(ρ ln b/a), which has a
maximum at ρ = a (at the inner conductor). Thus the maximum voltage before breakdown is

Vmax = Ed a ln
b

a
(peak-to-peak),

and the maximum power capacity is then

Pmax = V 2
max

2Z0
= πa2 E2

d
η0

ln
b

a
.

As might be expected, this result shows that power capacity can be increased by using a larger
coaxial cable (larger a, b with fixed b/a for the same characteristic impedance). However, prop-
agation of higher order modes limits the maximum operating frequency for a given cable size.
Thus, there is an upper limit on the power capacity of a coaxial line for a given maximum
operating frequency, fmax, which can be shown to be given by

Pmax = 0.025

η0

(
cEd

fmax

)2
= 5.8 × 1012

(
Ed

fmax

)2
.

As an example, at 10 GHz the maximum peak power capacity of any coaxial line with no higher
order modes is about 520 kW.

In an air-filled rectangular waveguide the electric field varies as Ey = Eo sin(πx /a), which
has a maximum value of Eo at x = a/2 (the middle of the guide). Thus the maximum power
capacity before breakdown is

Pmax = abE2
o

4Zw
= abE2

d
4Zw

,

which shows that power capacity increases with guide size. For most standard waveguides,
b � 2a. To avoid propagation of the TE20 mode we must have a < c/ fmax, where fmax is the

�r

FIGURE 3.35 Covered microstrip line.
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maximum operating frequency. Then the maximum power capacity of the guide can be shown
to be

Pmax = 0.11

η0

(
cEd

fmax

)2
= 2.6 × 1013

(
Ed

fmax

)2
.

As an example, at 10 GHz the maximum peak power capacity of a rectangular waveguide oper-
ating in the TE10 mode is about 2300 kW, which is considerably higher than the power capacity
of a coaxial cable at the same frequency.

Because arcing and voltage breakdown are high-speed transient effects, these voltage and
power limits are peak values; average power capacity is lower. In addition, it is good engineering
practice to provide a safety factor of at least two, so the maximum powers that can be safely
transmitted should be limited to about half of the above values. If there are reflections on the
line or guide, the power capacity is further reduced. In the worst case, a reflection coefficient
magnitude of unity will double the maximum voltage on the line, so the power capacity will be
reduced by a factor of four.

The power capacity of a line can be increased by pressurizing the line with air or an inert
gas or by using a dielectric. The dielectric strength (Ed ) of most dielectric materials is greater
than that of air, but the power capacity may be further limited by the heating of the dielectric
due to ohmic loss.

Reference: P. A. Rizzi, Microwave Engineering—Passive Circuits, Prentice-Hall, Englewood Cliffs, N.J., 1988.
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PROBLEMS

3.1 Devise at least two variations of the basic coaxial transmission line geometry of Section 3.5, and
discuss the advantages and disadvantages of your proposed lines in terms of size, loss, cost, higher
order modes, dispersion, or other considerations. Repeat this exercise for the microstrip line geometry
of Section 3.8.

3.2 Derive equations (3.5a)–(3.5d) from equations (3.3) and (3.4).

3.3 Calculate the attenuation due to conductor loss for the TEn mode of a parallel plate waveguide.

3.4 Consider a section of air-filled K-band waveguide. From the dimensions given in Appendix I,
determine the cutoff frequencies of the first two propagating modes. From the recommended
operating range given in Appendix I for this guide, determine the percentage reduction in bandwidth
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that this operating range represents, relative to the theoretical bandwidth for a single propagating
mode.

3.5 A 10 cm length of a K-band copper waveguide is filled with a dielectric material with εr = 2.55 and
tan δ = 0.0015. If the operating frequency is 15 GHz, find the total loss through the guide and the
phase delay from the input to the output of the guide.

3.6 An attenuator can be made using a section of waveguide operating below cutoff, as shown in the
accompanying figure. If a = 2.286 cm and the operating frequency is 12 GHz, determine the required
length of the below-cutoff section of waveguide to achieve an attenuation of 100 dB between the input
and output guides. Ignore the effect of reflections at the step discontinuities.

a

a

l

a/2

Propagating
wave

Propagating
wave

Evanescent
waves

3.7 Find expressions for the electric surface current density on the walls of a rectangular waveguide for
a TE10 mode. Why can a narrow slot be cut along the centerline of the broad wall of a rectangular
waveguide without perturbing the operation of the guide? (Such a slot is often used in a slotted line
for a probe to sample the standing wave field inside the guide.)

3.8 Derive the expression for the attenuation of the TMmn mode of a rectangular waveguide due to
imperfectly conducting walls.

3.9 For the partially loaded rectangular waveguide shown in the accompanying figure, solve (3.109)
with β = 0 to find the cutoff frequency of the TE10 mode. Assume a = 2.286 cm, t = a/2, and
εr = 2.25.

a
2

y

x

b

0
a

�r = 2.25 �r = 1

3.10 Consider the partially filled parallel plate waveguide shown in the accompanying figure. Derive the
solution (fields and cutoff frequency) for the lowest order TE mode of this structure. Assume the
metal plates are infinitely wide. Can a TEM wave propagate on this structure?

x

y

d �0�0 �r�0

W

3.11 Derive equations (3.110a)–(3.110d) for the transverse field components in terms of longitudinal
fields, in cylindrical coordinates.



c03TransmissionLinesandWaveguides Pozar July 29, 2011 20:41

Problems 163

3.12 Derive the expression for the attenuation of the TMnm mode in a circular waveguide with finite
conductivity.

3.13 A circular copper waveguide has a radius of 0.4 cm and is filled with a dielectric material having
εr = 1.5 and tan δ = 0.0002. Identify the first four propagating modes and their cutoff frequencies.
For the dominant mode, calculate the total attenuation at 20 GHz.

3.14 Derive the Ē and H̄ fields of a coaxial line from the expression for the potential given in (3.153).
Also find expressions for the voltage and current on the line and the characteristic impedance.

3.15 Derive a transcendental equation for the cutoff frequency of the TM modes of a coaxial waveguide.
Using tables, obtain an approximate value of kca for the TM01 mode if b/a = 2.

3.16 Derive an expression for the attenuation of a TE surface wave on a grounded dielectric substrate
when the ground plane has finite conductivity.

3.17 Consider the grounded magnetic substrate shown in the accompanying figure. Derive a solution for
the TM surface waves that can propagate on this structure.

y

z

x

d �0, �0�r

�0, �0

3.18 Consider the partially filled coaxial line shown in the accompanying figure. Can a TEM wave propa-
gate on this line? Derive the solution for the TM0m (no azimuthal variation) modes of this geometry.

�0
�0�r

y

x
a

b

c

3.19 A copper stripline transmission line is to be designed for a 100 � characteristic impedance. The
ground plane separation is 1.02 mm and the dielectric constant is 2.20, with tan δ = 0.001. At
5 GHz, find the guide wavelength on the line and the total attenuation.

3.20 A copper microstrip transmission line is to be designed for a 100 � characteristic impedance. The
substrate is 0.51 mm thick, with εr = 2.20 and tan δ = 0.001. At 5 GHz, find the guide wavelength
on the line and the total attenuation. Compare these results with those for the similar stripline case of
the preceding problem.

3.21 A 100 � microstrip line is printed on a substrate of thickness 0.0762 cm with a dielectric constant of
2.2. Ignoring losses and fringing fields, find the shortest length of this line that appears at its input as
a capacitor of 5 pF at 2.5 GHz. Repeat for an inductance of 5 nH. Using a microwave CAD package
with a physical model for the microstrip line, compute the actual input impedance seen when losses
are included (assume copper conductors and tan δ = 0.001).

3.22 A microwave antenna feed network operating at 5 GHz requires a 50 � printed transmission line that
is 16 λ long. Possible choices are (1) copper microstrip, with d = 0.16 cm, εr = 2.20, and tan δ =
0.001, or (2) copper stripline, with b = 0.32 cm, εr = 2.20, t = 0.01 mm, and tan δ = 0.001. Which
line should be used if attenuation is to be minimized?
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3.23 Consider the TE modes of an arbitrary uniform waveguiding structure in which the transverse fields
are related to Hz as in (3.19). If Hz is of the form Hz(x, y, z) = hz(x, y)e− jβz , where hz(x, y) is
a real function, compute the Poynting vector and show that real power flow occurs only in the z
direction. Assume that β is real, corresponding to a propagating mode.

3.24 A piece of rectangular waveguide is air filled for z < 0 and dielectric filled for z > 0. Assume that
both regions can support only the dominant TE10 mode and that a TE10 mode is incident on the inter-
face from z < 0. Using a field analysis, write general expressions for the transverse field components
of the incident, reflected, and transmitted waves in the two regions and enforce the boundary con-
ditions at the dielectric interface to find the reflection and transmission coefficients. Compare these
results to those obtained with an impedance approach, using ZTE for each region.

3.25 Use the transverse resonance technique to derive a transcendental equation for the propagation con-
stant of the TM modes of a rectangular waveguide that is air filled for 0 < x < d and dielectric filled
for d < x < a.

3.26 Apply the transverse resonance technique to find the propagation constants for the TE surface waves
that can be supported by the structure of Problem 3.17.

3.27 An X-band waveguide filled with Rexolite is operating at 9.0 GHz. Calculate the speed of light in
this material and the phase and group velocities in the waveguide.

3.28 As discussed in the Point of Interest on the power-handling capacity of transmission lines, the maxi-
mum power capacity of a coaxial line is limited by voltage breakdown and is given by

Pmax = πa2 E2
d

η0
ln

b

a
,

where Ed is the field strength at breakdown. Find the value of b/a that maximizes the maximum
power capacity and show that the corresponding characteristic impedance is about 30 �.

3.29 A microstrip circuit is fabricated on an alumina substrate having a dielectric constant of 9.9, a thick-
ness of 2.0 mm, and a 50 � linewidth of 1.93 mm. Find the threshold frequencies of the four higher
order modes discussed in Section 3.8, and recommend the maximum operating frequency for this
microstrip circuit.
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Microwave Network Analysis

Circuits operating at low frequencies, for which the circuit dimensions are small relative to
the wavelength, can be treated as an interconnection of lumped passive or active components
with unique voltages and currents defined at any point in the circuit. In this situation the circuit
dimensions are small enough such that there is negligible phase delay from one point in the cir-
cuit to another. In addition, the fields can be considered as TEM fields supported by two or more
conductors. This leads to a quasi-static type of solution to Maxwell’s equations and to the well-
known Kirchhoff voltage and current laws and impedance concepts of circuit theory [1]. As the
reader is aware, there is a powerful and useful set of techniques for analyzing low-frequency
circuits. In general, these techniques cannot be directly applied to microwave circuits, but it
is the purpose of the present chapter to show how basic circuit and network concepts can be
extended to handle many microwave analysis and design problems of practical interest.

The main reason for doing this is that it is usually much easier to apply the simple and
intuitive ideas of circuit analysis to a microwave problem than it is to solve Maxwell’s equa-
tions for the same problem. In a way, field analysis gives us much more information about
the particular problem under consideration than we really want or need. That is, because the
solution to Maxwell’s equations for a given problem is complete, it gives the electric and mag-
netic fields at all points in space. However, usually we are only interested in the voltage or
current at a set of terminals, the power flow through a device, or some other type of “terminal”
quantity, as opposed to a minute description of the fields at all points in space. Another reason
for using circuit or network analysis is that it is then very easy to modify the original prob-
lem, or combine several elements together and find the response, without having to reanalyze
in detail the behavior of each element in combination with its neighbors. A field analysis us-
ing Maxwell’s equations for such problems would be hopelessly difficult. There are situations,
however, in which such circuit analysis techniques are an oversimplification and may lead to
erroneous results. In such cases one must resort to a field analysis approach, using Maxwell’s
equations. Fortunately, there are a number of commercially available computer-aided design
packages that can model RF and microwave problems using both field theory analysis and net-
work analysis. It is part of the education of a microwave engineer to be able to determine when
network analysis concepts apply and when they should be cast aside in favor of more rigorous
analysis.

165
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The basic procedure for microwave network analysis is as follows. We first treat a set of
basic, canonical problems rigorously, using field analysis and Maxwell’s equations (as we have
done in Chapters 2 and 3, for a variety of transmission line and waveguide problems). When
so doing, we try to obtain quantities that can be directly related to a circuit or transmission
line parameter. For example, when we treated various transmission lines and waveguides in
Chapter 3 we derived the propagation constant and characteristic impedance of the line. This
allowed the transmission line or waveguide to be treated as an idealized distributed component
characterized by its length, propagation constant, and characteristic impedance. At this point,
we can interconnect various components and use network and/or transmission line theory to
analyze the behavior of the entire system of components, including effects such as multiple
reflections, loss, impedance transformations, and transitions from one type of transmission
medium to another (e.g., coax to microstrip). As we will see, a transition between different
transmission lines, or a discontinuity on a transmission line, generally cannot be treated as a
simple junction between two transmission lines, but typically includes some type of equivalent
circuit to account for reactances associated with the transition or discontinuity.

Microwave network theory was originally developed in the service of radar system and
component development at the MIT Radiation Lab in the 1940s. This work was continued at
the Polytechnic Institute of Brooklyn and other locations by researchers such as E. Weber,
N. Marcuvitz, A. A. Oliner, L. B. Felsen, A. Hessel, and many others [2].

4.1 IMPEDANCE AND EQUIVALENT VOLTAGES AND CURRENTS

Equivalent Voltages and Currents

At microwave frequencies the measurement of voltage or current is difficult (or impossi-
ble), unless a clearly defined terminal pair is available. Such a terminal pair may be present
in the case of TEM-type lines (such as coaxial cable, microstrip line, or stripline), but does
not strictly exist for non-TEM lines (such as rectangular, circular, or surface waveguides).

Figure 4.1 shows the electric and magnetic field lines for an arbitrary two-conductor
TEM transmission line. As in Chapter 3, the voltage, V , of the + conductor relative to the
− conductor can be found as

V =
∫ −

+
Ē · d �̄, (4.1)

where the integration path begins on the + conductor and ends on the − conductor. It is
important to realize that, because of the electrostatic nature of the transverse fields between
the two conductors, the voltage defined in (4.1) is unique and does not depend on the shape
of the integration path. The total current flowing on the + conductor can be determined
from an application of Ampere’s law as

I =
∮

C+
H̄ · d �̄, (4.2)
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+

–

E

H

FIGURE 4.1 Electric and magnetic field lines for an arbitrary two-conductor TEM line.

where the integration contour is any closed path enclosing the + conductor (but not the
− conductor). A characteristic impedance Z0 can then be defined for traveling waves as

Z0 = V

I
. (4.3)

At this point, after having defined and determined a voltage, current, and characteristic
impedance (and assuming we know the propagation constant for the line), we can proceed
to apply the circuit theory for transmission lines developed in Chapter 2 to characterize this
line as a circuit element.

The situation is more difficult for waveguides. To see why, we will look at the case
of a rectangular waveguide, as shown in Figure 4.2. For the dominant TE10 mode, the
transverse fields can be written, from Table 3.2, as

Ey(x, y, z) = jωµa

π
A sin

πx

a
e− jβz = Aey(x, y)e− jβz, (4.4a)

Hx (x, y, z) = jβa

π
A sin

πx

a
e− jβz = Ahx (x, y)e− jβz . (4.4b)

b

y

xa0

FIGURE 4.2 Electric field lines for the TE10 mode of a rectangular waveguide.
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Applying (4.1) to the electric field of (4.4a) gives

V = − jωµa

π
A sin

πx

a
e− jβz

∫
y

dy. (4.5)

Thus it is seen that this voltage depends on the position, x , as well as the length of the
integration contour along the y direction. For example, integrating from y = 0 to b for
x = a/2 gives a voltage that is quite different from that obtained by integrating from y = 0
to b for x = 0. What, then, is the correct voltage? The answer is that there is no “correct”
voltage in the sense of being unique or pertinent for all applications. A similar problem
arises with current, and also impedance. We will now show how we can define equivalent
voltages, currents, and impedances that can be useful for non-TEM lines.

There are many ways to define equivalent voltage, current, and impedance for wave-
guides since these quantities are not unique for non-TEM lines, but the following consid-
erations usually lead to the most useful results [1, 3, 4]:

� Voltage and current are defined only for a particular waveguide mode, and are
defined so that the voltage is proportional to the transverse electric field and the
current is proportional to the transverse magnetic field.

� In order to be useful in a manner similar to voltages and currents of circuit theory,
the equivalent voltages and currents should be defined so that their product gives
the power flow of the waveguide mode.

� The ratio of the voltage to the current for a single traveling wave should be equal to
the characteristic impedance of the line. This impedance may be chosen arbitrarily,
but is usually selected as equal to the wave impedance of the line, or else normalized
to unity.

For an arbitrary waveguide mode with both positively and negatively traveling waves,
the transverse fields can be written as

Ēt (x, y, z) = ē(x, y)(A+e− jβz + A−e jβz) = ē(x, y)

C1

(
V +e− jβz + V −e jβz), (4.6a)

H̄t (x, y, z) = h̄(x, y)
(

A+e− jβz − A−e jβz) = h̄(x, y)

C2

(
I +e− jβz − I −e jβz), (4.6b)

where ē and h̄ are the transverse field variations of the mode, and A+, A− are the field
amplitudes of the traveling waves. Because Ēt and H̄t are related by the wave impedance,
Zw, according to (3.22) or (3.26), we also have that

h̄(x, y) = ẑ × ē(x, y)

Zw

. (4.7)

Equation (4.6) also defines equivalent voltage and current waves as

V (z) = V +e− jβz + V −e jβz, (4.8a)

I (z) = I +e− jβz − I −e jβz, (4.8b)

with V +/I + = V −/I − = Z0. This definition embodies the idea of making the equivalent
voltage and current proportional to the transverse electric and magnetic fields, respectively.
The proportionality constants for this relationship are C1 = V +/A+ = V −/A− and C2 =
I +/A+ = I −/A−, and can be determined from the remaining two conditions for power
and impedance.
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The complex power flow for the incident wave is given by

P+ = 1

2
|A+|2

∫

S

ē × h̄∗ · ẑds = V + I +∗

2C1C∗
2

∫

S

ē × h̄∗ · ẑds. (4.9)

Because we want this power to be equal to (1/2)V + I +∗, we have the result that

C1C∗
2 =

∫

S

ē × h̄∗ · ẑds, (4.10)

where the surface integration is over the cross section of the waveguide. The characteristic
impedance is

Z0 = V +

I + = V −

I − = C1

C2
, (4.11)

since V + = C1 A and I + = C2 A, from (4.6a) and (4.6b). If it is desired to have Z0 = Zw,
the wave impedance (ZTE or ZTM) of the mode, then

C1

C2
= Zw (ZTE or ZTM). (4.12a)

Alternatively, it may be desirable to normalize the characteristic impedance to unity
(Z0 = 1), in which case we have

C1

C2
= 1. (4.12b)

For a given waveguide mode, (4.10) and (4.12) can be solved for the constants C1 and
C2, and equivalent voltages and currents defined. Higher order modes can be treated in the
same way, so that a general field in a waveguide can be expressed in the following form:

Ēt (x, y, z) =
N∑

n=1

(
V +

n

C1n
e− jβn z + V −

n

C1n
e jβn z

)
ēn(x, y), (4.13a)

H̄t (x, y, z) =
N∑

n=1

(
I +
n

C2n
e− jβn z − I −

n

C2n
e jβn z

)
h̄n(x, y), (4.13b)

where V ±
n and I ±

n are the equivalent voltages and currents for the nth mode, and C1n and
C2n are the proportionality constants for each mode.

EXAMPLE 4.1 EQUIVALENT VOLTAGE AND CURRENT
FOR A RECTANGULAR WAVEGUIDE

Find the equivalent voltages and currents for a TE10 mode in a rectangular wave-
guide.

Solution
The transverse field components and power flow of the TE10 rectangular wave-
guide mode and the equivalent transmission line model of this mode can be written
as follows:
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Waveguide Fields Transmission Line Model

Ey =
(

A+e− jβz + A−e jβz
)

sin
πx

a
V (z) = V +e− jβz + V −e jβz

Hx = −1

ZTE

(
A+e− jβz − A−e jβz

)
sin

πx

a
I (z) = I+e− jβz − I−e jβz

= 1

Z0

(
V +e− jβz − V −e jβz

)

P+ = −1

2

∫
S

Ey H∗
x dxdy = ab

4ZTE
|A+|2 P+ = 1

2
V + I+∗

We now find the constants C1 = V +/A+ = V −/A− and C2 = I +/A+ = I −/A−
that relate the equivalent voltages V ± and currents I ± to the field amplitudes, A±.
Equating incident powers gives

ab
∣∣A+∣∣2

4ZTE
= 1

2
V + I +∗ = 1

2

∣∣A+∣∣2 C1C∗
2 .

If we choose Z0 = ZTE, then we also have that

V +

I + = C1

C2
= ZTE.

Solving for C1, C2 gives

C1 =
√

ab

2
,

C2 = 1

ZTE

√
ab

2
,

which completes the transmission line equivalence for the TE10 mode. ■

The Concept of Impedance

We have used the idea of impedance in several different ways, so it may be useful at this
point to summarize this important concept. The term impedance was first used by Oliver
Heaviside in the nineteenth century to describe the complex ratio V/I in AC circuits con-
sisting of resistors, inductors, and capacitors; the impedance concept quickly became indis-
pensable in the analysis of AC circuits. It was then applied to transmission lines, in terms
of lumped-element equivalent circuits and the distributed series impedance and shunt ad-
mittance of the line. In the 1930s, S. A. Schelkunoff recognized that the impedance concept
could be extended to electromagnetic fields in a systematic way, and noted that impedance
should be regarded as characteristic of the type of field, as well as of the medium [2].
In addition, in relation to the analogy between transmission lines and plane wave propa-
gation, impedance may even be dependent on direction. The concept of impedance, then,
forms an important link between field theory and transmission line or circuit theory.
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We summarize the various types of impedance we have used so far, and their notation:

� η = √
µ/ε = intrinsic impedance of the medium. This impedance is dependent only

on the material parameters of the medium, and is equal to the wave impedance for
plane waves.

� Zw = Et/Ht = 1/Yw = wave impedance. This impedance is a characteristic of
the particular type of wave. TEM, TM, and TE waves each have different wave
impedances (ZTEM, ZTM, ZTE), which may depend on the type of line or guide,
the material, and the operating frequency.

� Z0 = 1/Y0 = V +/I + = characteristic impedance. Characteristic impedance is the
ratio of voltage to current for a traveling wave on a transmission line. Because volt-
age and current are uniquely defined for TEM waves, the characteristic impedance
of a TEM wave is unique. TE and TM waves, however, do not have a uniquely
defined voltage and current, so the characteristic impedance for such waves may
be defined in different ways.

EXAMPLE 4.2 APPLICATION OF WAVEGUIDE IMPEDANCE

Consider a rectangular waveguide with a = 2.286 cm and b = 1.016 cm (X-band
guide), air filled for z < 0 and Rexolite filled (εr = 2.54) for z > 0, as shown in
Figure 4.3. If the operating frequency is 10 GHz, use an equivalent transmission
line model to compute the reflection coefficient of a TE10 wave incident on the
interface from z < 0.

Solution
The waveguide propagation constants in the air (z < 0) and the dielectric (z > 0)
regions are

βa =
√

k2
0 −

(π

a

)2 = 158.0 m−1,

βd =
√

εr k2
0 −

(π

a

)2 = 304.1 m−1,

where k0 = 209.4 m−1.
The reader may verify that the TE10 mode is the only propagating mode in ei-

ther waveguide region. We can set up an equivalent transmission line for the TE10
mode in each waveguide, and treat the problem as the reflection of an incident
voltage wave at the junction of two infinite transmission lines.

z = 0

z

z
Γ

�0�r�0

TE10

Z0a Z0d

FIGURE 4.3 Geometry of a partially filled waveguide and its transmission line equivalent for
Example 4.2.
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By Example 4.1 and Table 3.2, the equivalent characteristic impedances for
the two lines are

Z0a = k0η0

βa
= (209.4)(377)

158.0
= 500.0 �,

Z0d = kη

βd
= k0η0

βd
= (209.4)(377)

304.1
= 259.6 �.

The reflection coefficient seen looking into the dielectric filled region is then

� = Z0d − Z0a

Z0d + Z0a

= −0.316.

With this result, expressions for the incident, reflected, and transmitted waves can
be written in terms of fields, or in terms of equivalent voltages and currents. ■

We now consider the arbitrary one-port network shown in Figure 4.4 and derive a
general relation between its impedance properties and electromagnetic energy stored in,
and the power dissipated by, the network. The complex power delivered to this network is
given by (1.91):

P = 1

2

∮
S

Ē × H̄∗ · ds̄ = P� + 2 jω(Wm − We), (4.14)

where P� is real and represents the average power dissipated by the network, and Wm

and We represent the stored magnetic and electric energy, respectively. Note that the unit
normal vector in Figure 4.4 is pointing into the volume.

If we define real transverse modal fields ē and h̄ over the terminal plane of the network
such that

Ēt (x, y, z) = V (z)ē(x, y)e− jβz, (4.15a)

H̄t (x, y, z) = I (z)h̄(x, y)e− jβz, (4.15b)

with a normalization such that ∫
S

ē × h̄ · ds̄ = 1,

then we can express (4.14) in terms of the terminal voltage and current:

P = 1

2

∫
S

VI∗ē × h̄ · ds̄ = 1

2
VI∗. (4.16)

Zin

I

E, H

n

S
V

+

–

One-port
network

ˆ

FIGURE 4.4 An arbitrary one-port network.
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Then the input impedance is

Z in = R + j X = V

I
= VI∗

|I |2 = P
1
2 |I |2 = P� + 2 jω(Wm − We)

1
2 |I |2 . (4.17)

Thus we see that the real part, R, of the input impedance is related to the dissipated power,
while the imaginary part, X , is related to the net energy stored in the network. If the net-
work is lossless, then P� = 0 and R = 0. Then Zin is purely imaginary, with a reactance

X = 4ω(Wm − We)

|I |2 , (4.18)

which is positive for an inductive load (Wm > We), and negative for a capacitive load
(Wm < We).

Even and Odd Properties of Z(ω) and �(ω)

Consider the driving point impedance, Z(ω), at the input port of an electrical network. The
voltage and current at this port are related as V (ω) = Z(ω)I (ω). For an arbitrary frequency
dependence, we can find the time-domain voltage by taking the inverse Fourier transform
of V (ω):

v(t) = 1

2π

∫ ∞

−∞
V (ω)e jωt dω. (4.19)

Because v(t) must be real, we have that v(t) = v∗(t), or∫ ∞

−∞
V (ω)e jωt dω =

∫ ∞

−∞
V ∗(ω)e− jωt dω =

∫ ∞

−∞
V ∗(−ω)e jωt dω,

where the last term was obtained by a change of variable from ω to −ω. This shows that
V (ω) must satisfy the relation

V (−ω) = V ∗(ω), (4.20)

which means that Re{V (ω)} is even in ω, while Im{V (ω)} is odd in ω. Similar results hold
for I (ω), and for Z(ω) since

V ∗(−ω) = Z∗(−ω)I ∗(−ω) = Z∗(−ω)I (ω) = V (ω) = Z(ω)I (ω).

Thus, if Z(ω) = R(ω) + j X (ω), then R(ω) is even in ω and X (ω) is odd in ω. These
results can also be inferred from (4.17).

Now consider the reflection coefficient at the input port:

�(ω) = Z(ω) − Z0

Z(ω) + Z0
= R(ω) − Z0 + j X (ω)

R(ω) + Z0 + j X (ω)
. (4.21)

Then

�(−ω) = R(ω) − Z0 − j X (ω)

R(ω) + Z0 − j X (ω)
= �∗(ω), (4.22)

which shows that the real and imaginary parts of �(ω) are even and odd, respectively,
in ω. Finally, the magnitude of the reflection coefficient is

|�(ω)|2 = �(ω)�∗(ω) = �(ω)�(−ω) = |�(−ω)|2, (4.23)

which shows that |�(ω)|2 and |�(ω)| are even functions of ω. This result implies that only
even series of the form a + bω2 + cω4 + · · · can be used to represent |�(ω)| or |�(ω)|2.
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4.2 IMPEDANCE AND ADMITTANCE MATRICES

In the previous section we have seen how equivalent voltages and currents can be defined
for TEM and non-TEM waves. Once such voltages and currents have been defined at vari-
ous points in a microwave network, we can use the impedance and/or admittance matrices
of circuit theory to relate these terminal or port quantities to each other, and thus to essen-
tially arrive at a matrix description of the network. This type of representation lends itself
to the development of equivalent circuits of arbitrary networks, which will be quite useful
when we discuss the design of passive components such as couplers and filters. (The term
port was introduced by H. A. Wheeler in the 1950s to replace the less descriptive and more
cumbersome phrase “two-terminal pair” [2, 3].)

We begin by considering an arbitrary N -port microwave network, as depicted in
Figure 4.5. The ports in Figure 4.5 may be any type of transmission line or transmission
line equivalent of a single propagating waveguide mode. If one of the physical ports of the
network is a waveguide supporting more than one propagating mode, additional electri-
cal ports can be added to account for these modes. At a specific point on the nth port, a
terminal plane, tn , is defined along with equivalent voltages and currents for the incident
(V +

n , I +
n ) and reflected (V −

n , I −
n ) waves. The terminal planes are important in providing

a phase reference for the voltage and current phasors. Now, at the nth terminal plane, the
total voltage and current are given by

Vn = V +
n + V −

n , (4.24a )

In = I +
n − I −

n , (4.24b )

as seen from (4.8) when z = 0.
The impedance matrix [Z ] of the microwave network then relates these voltages and

currents:



V1
V2
...

VN


 =




Z11 Z12 · · · Z1N

Z21
...

...
...

Z N1 · · · · · · Z N N







I1
I2
...

IN


 ,

tN

t4

t3

S

t2

t1

VN, IN
+ + VN, – IN

– –

V4, – I4
– –

V4, I4
+ +

V3, I3
+ +

V3,– I3
– –

V2, – I2
– –

V2, I2
+ +

V1, I1
+ +

V1, – I1
– –

FIGURE 4.5 An arbitrary N -port microwave network.
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or in matrix form as

[V ] = [Z ][I ]. (4.25)

Similarly, we can define an admittance matrix [Y] as




I1
I2
...

IN


 =




Y11 Y12 · · · Y1N

Y21
...

...
...

YN1 · · · · · · YN N







V1
V2
...

VN


 ,

or in matrix form as

[I ] = [Y ][V ]. (4.26)

Of course, the [Z ] and [Y ] matrices are the inverses of each other:

[Y ] = [Z ]−1. (4.27)

Note that both the [Z ] and [Y ] matrices relate the total port voltages and currents.
From (4.25), we see that Zi j can be found as

Zi j = Vi

I j

∣∣∣∣
Ik=0 for k �= j

. (4.28)

In words, (4.28) states that Zi j can be found by driving port j with the current I j , open-
circuiting all other ports (so Ik = 0 for k �= j), and measuring the open-circuit voltage at
port i . Thus, Zii is the input impedance seen looking into port i when all other ports are
open-circuited, and Zi j is the transfer impedance between ports i and j when all other
ports are open-circuited.

Similarly, from (4.26), Yi j can be found as

Yi j = Ii

Vj

∣∣∣∣
Vk=0 for k �= j

, (4.29)

which states that Yi j can be determined by driving port j with the voltage Vj , short-
circuiting all other ports (so Vk = 0 for k �= j), and measuring the short-circuit current
at port i .

In general, each Zi j or Yi j element may be complex. For an arbitrary N -port network,
the impedance and admittance matrices are N × N in size, so there are 2N 2 independent
quantities or degrees of freedom. In practice, however, many networks are either recipro-
cal or lossless, or both. If the network is reciprocal (not containing any active devices or
nonreciprocal media, such as ferrites or plasmas), we will show that the impedance and
admittance matrices are symmetric, so that Zi j = Z ji , and Yi j = Y ji . If the network is
lossless, we can show that all the Zi j or Yi j elements are purely imaginary. Either of these
special cases serves to reduce the number of independent quantities or degrees of freedom
that an N -port network may have. We now derive the above characteristics for reciprocal
and lossless networks.

Reciprocal Networks

Consider the arbitrary network of Figure 4.5 to be reciprocal (no active devices, ferrites, or
plasmas), with short circuits placed at all terminal planes except those of ports 1 and 2. Let
Ēa, H̄a and Ēb, H̄b be the fields anywhere in the network due to two independent sources,
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a and b, located somewhere in the network. Then the reciprocity theorem of (1.156) states
that ∮

S
Ēa × H̄b · ds̄ =

∮
S

Ēb × H̄a · ds̄, (4.30)

where S is the closed surface along the boundaries of the network and through the terminal
planes of the ports. If the boundary walls of the network and transmission lines are metal,
then Ētan = 0 on these walls (assuming perfect conductors). If the network or the transmis-
sion lines are open structures, like microstrip line or slotline, the boundaries of the network
can be taken arbitrarily far from the lines so that Ētan is negligible. Then the only nonzero
contribution to the integrals of (4.30) come from the cross-sectional areas of ports 1 and 2.

From Section 4.1, the fields due to sources a and b can be evaluated at the terminal
planes t1 and t2 as

Ē1a = V1aē1, H̄1a = I1ah̄1, (4.31a)

Ē1b = V1bē1, H̄1b = I1bh̄1, (4.31b)

Ē2a = V2aē2, H̄2a = I2ah̄2, (4.31c)

Ē2b = V2bē2, H̄2b = I2bh̄2, (4.31d)

where ē1, h̄1 and ē2, h̄2 are the transverse modal fields of ports 1 and 2, respectively,
and the V s and I s are the equivalent total voltages and currents. (For instance, Ē1b is the
transverse electric field at terminal plane t1 of port 1 due to source b.) Substituting the
fields of (4.31) into (4.30) gives

(V1a I1b − V1b I1a)

∫
S1

ē1 × h̄1 · ds̄ + (V2a I2b − V2b I2a)

∫
S2

ē2 × h̄2 · ds̄ = 0, (4.32)

where S1 and S2 are the cross-sectional areas at the terminal planes of ports 1 and 2.
As in Section 4.1, the equivalent voltages and currents have been defined so that the

power through a given port can be expressed as VI∗/2; then, comparing (4.31) to (4.6)
implies that C1 = C2 = 1 for each port, so that∫

S1

ē1 × h̄1 · ds̄ =
∫

S2

ē2 × h̄2 · ds̄ = 1. (4.33)

This reduces (4.32) to

V1a I1b − V1b I1a + V2a I2b − V2b I2a = 0. (4.34)

Now use the 2 × 2 admittance matrix of the (effectively) two-port network to eliminate the
I s:

I1 = Y11V1 + Y12V2,

I2 = Y21V1 + Y22V2.

Substitution into (4.34) gives

(V1a V2b − V1bV2a)(Y12 − Y21) = 0. (4.35)

Because the sources a and b are independent, the voltages V1a, V1b, V2a , and V2b can take
on arbitrary values. So in order for (4.35) to be satisfied for any choice of sources, we must
have Y12 = Y21, and since the choice of which ports are labeled as 1 and 2 is arbitrary, we
have the general result that

Yi j = Y ji . (4.36)

Then if [Y ] is a symmetric matrix, its inverse, [Z ], is also symmetric.
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Lossless Networks

Now consider a reciprocal lossless N -port junction; we will show that the elements of the
impedance and admittance matrices must be pure imaginary. If the network is lossless, then
the net real power delivered to the network must be zero. Thus, Re{Pavg} = 0, where

Pavg = 1

2
[V ]t [I ]∗ = 1

2
([Z ][I ])t [I ]∗ = 1

2
[I ]t [Z ][I ]∗

= 1

2
(I1 Z11 I ∗

1 + I1 Z12 I ∗
2 + I2 Z21 I ∗

1 + · · ·)

= 1

2

N∑
n=1

N∑
m=1

Im Zmn I ∗
n . (4.37)

We have used the result from matrix algebra that ([A][B])t = [B]t [A]t . Because the In are
independent, we must have the real part of each self term (In Znn I ∗

n ) equal to zero, since
we could set all port currents equal to zero except for the nth current. So,

Re{In Znn I ∗
n } = |In|2 Re{Znn} = 0,

or

Re{Znn} = 0. (4.38)

Now let all port currents be zero except for Im and In . Then (4.37) reduces to

Re
{
(In I ∗

m + Im I ∗
n )Zmn

} = 0,

since Zmn = Znm . However, (In I ∗
m + Im I ∗

n ) is a purely real quantity that is, in general,
nonzero. Thus we must have that

Re {Zmn} = 0. (4.39)

Then (4.38) and (4.39) imply that Re {Zmn} = 0 for any m, n. The reader can verify that
this also leads to an imaginary [Y ] matrix.

EXAMPLE 4.3 EVALUATION OF IMPEDANCE PARAMETERS

Find the Z parameters of the two-port T-network shown in Figure 4.6.

Solution
From (4.28), Z11 can be found as the input impedance of port 1 when port 2 is
open-circuited:

Z11 = V1

I1

∣∣∣∣
I2=0

= Z A + ZC .

+

–

+

–

Port
1

Port
2

V1 V2

ZA

ZC

ZB

FIGURE 4.6 A two-port T-network.
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The transfer impedance Z12 can be found measuring the open-circuit voltage at
port 1 when a current I2 is applied at port 2. By voltage division,

Z12 = V1

I2

∣∣∣∣
I1=0

= V2

I2

ZC

Z B + ZC
= ZC .

The reader can verify that Z21 = Z12, indicating that the circuit is reciprocal.
Finally, Z22 is found as

Z22 = V2

I2

∣∣∣∣
I1=0

= Z B + ZC .
■

4.3 THE SCATTERING MATRIX

We have already discussed the difficulty in defining voltages and currents for non-TEM
lines. In addition, a practical problem exists when trying to measure voltages and currents
at microwave frequencies because direct measurements usually involve the magnitude
(inferred from power) and phase of a wave traveling in a given direction or of a standing
wave. Thus, equivalent voltages and currents, and the related impedance and admittance
matrices, become somewhat of an abstraction when dealing with high-frequency networks.
A representation more in accord with direct measurements, and with the ideas of incident,
reflected, and transmitted waves, is given by the scattering matrix.

Like the impedance or admittance matrix for an N -port network, the scattering matrix
provides a complete description of the network as seen at its N ports. While the impedance
and admittance matrices relate the total voltages and currents at the ports, the scattering
matrix relates the voltage waves incident on the ports to those reflected from the ports.
For some components and circuits, the scattering parameters can be calculated using net-
work analysis techniques. Otherwise, the scattering parameters can be measured directly
with a vector network analyzer; a photograph of a modern network analyzer is shown in
Figure 4.7. Once the scattering parameters of the network are known, conversion to other
matrix parameters can be performed, if needed.

Consider the N -port network shown in Figure 4.5, where V +
n is the amplitude of the

voltage wave incident on port n and V −
n is the amplitude of the voltage wave reflected

from port n. The scattering matrix, or [S] matrix, is defined in relation to these incident
and reflected voltage waves as




V −
1

V −
2

...

V −
N




=




S11 S12 · · · S1N

S21
...

SN1 · · · SN N

...







V +
1

V +
2

...

V +
N




,

or

[V −] = [S][V +]. (4.40)

A specific element of the scattering matrix can be determined as

Si j = V −
i

V +
j

∣∣∣∣∣
V +

k =0 for k �= j

. (4.41)

In words, (4.41) says that Si j is found by driving port j with an incident wave of voltage
V +

j and measuring the reflected wave amplitude V −
i coming out of port i . The incident
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FIGURE 4.7 Photograph of the Agilent N5247A Programmable Network Analyzer. This instru-
ment is used to measure the scattering parameters of RF and microwave networks
from 10 MHz to 67 GHz. The instrument is programmable, performs error correc-
tion, and has a wide variety of display formats and data conversions.

Courtesy of Agilent Technologies.

waves on all ports except the j th port are set to zero, which means that all ports should
be terminated in matched loads to avoid reflections. Thus, Sii is the reflection coefficient
seen looking into port i when all other ports are terminated in matched loads, and Si j is
the transmission coefficient from port j to port i when all other ports are terminated in
matched loads.

EXAMPLE 4.4 EVALUATION OF SCATTERING PARAMETERS

Find the scattering parameters of the 3 dB attenuator circuit shown in Figure 4.8.

Solution
From (4.41), S11 can be found as the reflection coefficient seen at port 1 when
port 2 is terminated in a matched load (Z0 = 50 �):

S11 = V −
1

V +
1

∣∣∣∣∣
V +

2 =0

= �(1)|V +
2 =0 = Z (1)

in − Z0

Z (1)
in + Z0

∣∣∣∣∣
Z0 on port 2

,

8.56 Ω 8.56 Ω

141.8 Ω Port
2

Port
1

FIGURE 4.8 A matched 3 dB attenuator with a 50 � characteristic impedance (Example 4.4).
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but Z (1)
in = 8.56 + [141.8(8.56 + 50)]/(141.8 + 8.56 + 50) = 50 �, so S11 = 0.

Because of the symmetry of the circuit, S22 = 0.
We can find S21 by applying an incident wave at port 1, V +

1 , and measuring
the outcoming wave at port 2, V −

2 . This is equivalent to the transmission coeffi-
cient from port 1 to port 2:

S21 = V −
2

V +
1

∣∣∣∣∣
V +

2 =0

.

From the fact that S11 = S22 = 0, we know that V −
1 = 0 when port 2 is terminated

in Z0 = 50 �, and that V +
2 = 0. In this case we have that V +

1 = V1 and V −
2 =

V2. By applying a voltage V1 at port 1 and using voltage division twice we find
V −

2 = V2 as the voltage across the 50 � load resistor at port 2:

V −
2 = V2 = V1

(
41.44

41.44 + 8.56

)(
50

50 + 8.56

)
= 0.707V1,

where 41.44 = 141.8(58.56)/(141.8 + 58.56) is the resistance of the parallel com-
bination of the 50 � load and the 8.56 � resistor with the 141.8 � resistor. Thus,
S12 = S21 = 0.707.

If the input power is |V +
1 |2/2Z0, then the output power is |V −

2 |2/2Z0 =
|S21V +

1 |2/2Z0 = |S21|2/2Z0|V +
1 |2 = |V +

1 |2/4Z0, which is one-half (−3 dB) of
the input power. ■

We now show how the scattering matrix can be determined from the [Z ] (or [Y ])
matrix and vice versa. First, we must assume that the characteristic impedances, Z0n , of
all the ports are identical. (This restriction will be removed when we discuss generalized
scattering parameters.) Then, for convenience, we can set Z0n = 1. From (4.24) the total
voltage and current at the nth port can be written as

Vn = V +
n + V −

n , (4.42a)

In = I +
n − I −

n = V +
n − V −

n . (4.42b)

Using the definition of [Z ] from (4.25) with (4.42) gives

[Z ][I ] = [Z ][V +] − [Z ][V −] = [V ] = [V +] + [V −],

which can be rewritten as

([Z ] + [U ]) [V −] = ([Z ] − [U ]) [V +], (4.43)

where [U ] is the unit, or identity, matrix defined as

[U ] =




1 0 · · · 0

0 1
...

...
. . .

0 · · · 1


 .
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Comparing (4.43) to (4.40) suggests that

[S] = ([Z ] + [U ])−1 ([Z ] − [U ]) , (4.44)

giving the scattering matrix in terms of the impedance matrix. Note that for a one-port
network (4.44) reduces to

S11 = z11 − 1

z11 + 1
,

in agreement with the result for the reflection coefficient seen looking into a load with a
normalized input impedance of z11.

To find [Z ] in terms of [S], rewrite (4.44) as [Z ][S] + [U ][S] = [Z ] − [U ], and solve
for [Z ] to give

[Z ] = ([U ] + [S]) ([U ] − [S])−1 . (4.45)

Reciprocal Networks and Lossless Networks

As we discussed in Section 4.2, the impedance and admittance matrices are symmetric
for reciprocal networks, and are purely imaginary for lossless networks. The scattering
matrices for these particular types of networks also have special properties. We will show
that the scattering matrix for a reciprocal network is symmetric, and that the scattering
matrix for a lossless network is unitary.

By adding (4.42a) and (4.42b) we obtain

V +
n = 1

2
(Vn + In),

or

[V +] = 1

2
([Z ] + [U ])[I ]. (4.46a)

By subtracting (4.42a) and (4.42b) we obtain

V −
n = 1

2
(Vn − In),

or

[V −] = 1

2
([Z ] − [U ])[I ]. (4.46b)

Eliminating [I ] from (4.46a) and (4.46b) gives

[V −] = ([Z ] − [U ])([Z ] + [U ])−1[V +],
so that

[S] = ([Z ] − [U ])([Z ] + [U ])−1. (4.47)

Taking the transpose of (4.47) gives

[S]t = {([Z ] + [U ])−1}t ([Z ] − [U ])t .

Now [U ] is diagonal, so [U ]t = [U ], and if the network is reciprocal, [Z ] is symmetric. so
that [Z ]t = [Z ]. The above equation then reduces to

[S]t = ([Z ] + [U ])−1([Z ] − [U ]),
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which is equivalent to (4.44). We have thus shown that

[S] = [S]t , (4.48)

so the scattering matrix is symmetric for reciprocal networks.
If the network is lossless, no real power can be delivered to the network. Thus, if the

characteristic impedances of all the ports are identical and assumed to be unity, the average
power delivered to the network is

Pavg = 1

2
Re{[V ]t [I ]∗} = 1

2
Re{([V +]t + [V −]t )([V +]∗ − [V −]∗)}

= 1

2
Re{[V +]t [V +]∗ − [V +]t [V −]∗ + [V −]t [V +]∗ − [V −]t [V −]∗}

= 1

2
[V +]t [V +]∗ − 1

2
[V −]t [V −]∗ = 0, (4.49)

since the terms −[V +]t [V −]∗ + [V −]t [V +]∗ are of the form A − A∗, and so are purely
imaginary. Of the remaining terms in (4.49), (1/2)[V +]t [V +]∗ represents the total inci-
dent power, while (1/2)[V −]t [V −]∗ represents the total reflected power. So, for a lossless
junction, we have the intuitive result that the incident and reflected powers are equal:

[V +]t [V +]∗ = [V −]t [V −]∗. (4.50)

Using [V −] = [S][V +] in (4.50) gives

[V +]t [V +]∗ = [V +]t [S]t [S]∗[V +]∗,
so that, for nonzero [V +],

[S]t [S]∗ = [U ], (4.51)

or [S]∗ = {[S]t }−1.

A matrix that satisfies the condition of (4.51) is called a unitary matrix.
The matrix equation of (4.51) can be written in summation form as

N∑
k=1

Ski S∗
k j = δi j , for all i, j, (4.52)

where δi j = 1 if i = j , and δi j = 0 if i �= j , is the Kronecker delta symbol. Thus, if i = j ,
(4.52) reduces to

N∑
k=1

Ski S∗
ki = 1, (4.53a)

while if i �= j , (4.52) reduces to

N∑
k=1

Ski S∗
k j = 0, for i �= j. (4.53b)

In words, (4.53a) states that the dot product of any column of [S] with the conjugate of that
same column gives unity, while (4.53b) states that the dot product of any column with the
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conjugate of a different column gives zero (the columns are orthonormal). From (4.51) we
also have that

[S] [S]∗t = [U ] ,

so the same statements can be made about the rows of the scattering matrix.

EXAMPLE 4.5 APPLICATION OF SCATTERING PARAMETERS

A two-port network is known to have the following scattering matrix:

[S] =
[

0.15� 0◦ 0.85� −45◦
0.85� 45◦ 0.2� 0◦

]

Determine if the network is reciprocal and lossless. If port 2 is terminated with a
matched load, what is the return loss seen at port 1? If port 2 is terminated with a
short circuit, what is the return loss seen at port 1?

Solution
Because [S] is not symmetric, the network is not reciprocal. To be lossless, the
scattering parameters must satisfy (4.53). Taking the first column [i = 1 in (4.53a)]
gives

|S11|2 + |S21|2 = (0.15)2 + (0.85)2 = 0.745 �= 1,

so the network is not lossless.
When port 2 is terminated with a matched load, the reflection coefficient seen

at port 1 is � = S11 = 0.15. So the return loss is

RL = −20 log |�| = −20 log(0.15) = 16.5 dB.

When port 2 is terminated with a short circuit, the reflection coefficient seen at
port 1 can be found as follows. From the definition of the scattering matrix and
the fact that V +

2 = −V −
2 (for a short circuit at port 2), we can write

V −
1 = S11V +

1 + S12V +
2 = S11V +

1 − S12V −
2 ,

V −
2 = S21V +

1 + S22V +
2 = S21V +

1 − S22V −
2 .

The second equation gives

V −
2 = S21

1 + S22
V +

1 .

Dividing the first equation by V +
1 and using the above result gives the reflection

coefficient seen at port 1 as

� = V −
1

V +
1

= S11 − S12
V −

2

V +
1

= S11 − S12S21

1 + S22

= 0.15 − (0.85� −45◦)(0.85� 45◦)
1 + 0.2

= −0.452.

So the return loss is RL = −20 log |�| = −20 log(0.452) = 6.9 dB. ■

An important point to understand about scattering parameters is that the reflection
coefficient looking into port n is not equal to Snn unless all other ports are matched (this
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is illustrated in the above example). Similarly, the transmission coefficient from port m to
port n is not equal to Snm unless all other ports are matched. The scattering parameters
of a network are properties only of the network itself (assuming the network is linear),
and are defined under the condition that all ports are matched. Changing the terminations
or excitations of a network does not change its scattering parameters, but may change the
reflection coefficient seen at a given port, or the transmission coefficient between two ports.

A Shift in Reference Planes

Because scattering parameters relate amplitudes (magnitude and phase) of traveling waves
incident on and reflected from a microwave network, phase reference planes must be speci-
fied for each port of the network. We now show how scattering parameters are transformed
when the reference planes are moved from their original locations.

Consider the N -port microwave network shown in Figure 4.9, where the original ter-
minal planes are assumed to be located at zn = 0 for the nth port, where zn is an arbitrary
coordinate measured along the transmission line feeding the nth port. The scattering matrix
for the network with this set of terminal planes is denoted by [S]. Now consider a new set
of reference planes defined at zn = �n for the nth port, and let the new scattering matrix be
denoted as [S′]. Then in terms of the incident and reflected port voltages we have that

[V −] = [S][V +], (4.54a)

[V ′−] = [S′][V ′+], (4.54b)

where the unprimed quantities are referenced to the original terminal planes at zn = 0, and
the primed quantities are referenced to the new terminal planes at zn = �n .

From the theory of traveling waves on lossless transmission lines we can relate the
new wave amplitudes to the original ones as

V ′+
n = V +

n e jθn , (4.55a)

V ′−
n = V −

n e− jθn , (4.55b)

zn = ln zn = 0

z1 = l1 z1 = 0

V'n
–

V'n
+

V'1
–

V'1
+

V n
–

V n
+

V 1
–

V 1
+

Port 1

N-port
network

[S ], [S ']

Port n

FIGURE 4.9 Shifting reference planes for an N -port network.
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where θn = βn�n is the electrical length of the outward shift of the reference plane of
port n. Writing (4.55) in matrix form and substituting into (4.54a) gives




e jθ1 0
e jθ2

. . .

0 e jθN


 [V ′−] = [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [V ′+].

Multiplying by the inverse of the first matrix on the left gives

[V ′−] =




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [V ′+].

Comparing with (4.54b) shows that

[S′] =




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 [S]




e− jθ1 0
e− jθ2

. . .

0 e− jθN


 , (4.56)

which is the desired result. Note that S′
nn = e−2 jθn Snn , meaning that the phase of Snn is

shifted by twice the electrical length of the shift in terminal plane n because the wave
travels twice over this length upon incidence and reflection. This result is consistent with
(2.42), which gives the change in the reflection coefficient on a transmission line due to a
shift in the reference plane.

Power Waves and Generalized Scattering Parameters

We previously expressed the total voltage and current on a transmission line in terms of the
incident and reflected voltage wave amplitudes, as in (2.34) or (4.42):

V = V +
0 + V −

0 , (4.57a)

I = 1

Z0

(
V +

0 − V −
0

)
, (4.57b)

with Z0 being the characteristic impedance of the line. Inverting (4.57) gives the incident
and reflected voltage wave amplitudes in terms of the total voltage and current:

V +
0 = V + Z0 I

2
, (4.58a)

V −
0 = V − Z0 I

2
. (4.58b)

The average power delivered to a load can be expressed as

PL = 1

2
Re

{
V I ∗} = 1

2Z0
Re

{∣∣V +
0

∣∣2 − V +
0 V −∗

0 + V +∗
0 V −

0 − ∣∣V −
0

∣∣2}

= 1

2Z0

(∣∣V +
0

∣∣2 − ∣∣V −
0

∣∣2) , (4.59)

where the last step follows because the quantity V +∗
0 V −

0 − V +
0 V −∗

0 is pure imaginary. This
is a physically satisfying result since it expresses the net power delivered to the load as the
difference between the incident and reflected powers. Unfortunately, this result is only
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Zg

ZLV0

I

V

+

–

FIGURE 4.10 A generator with impedance Zg connected to a load impedance ZL .

valid when the characteristic impedance is real; it does not apply when Z0 is complex, as
in the case of a lossy line. In addition, these results are not useful when no transmission
line is present between the generator and load, as in the circuit shown in Figure 4.10.

In the circuit of Figure 4.10 there is no defined characteristic impedance, nor is there a
voltage reflection coefficient, or incident and reflected voltage or current waves. It is possi-
ble, however, to define a new set of waves, called power waves, which have useful proper-
ties when dealing with power transfer between a generator and a load, and can be applied to
circuits like that of Figure 4.10, as well as to problems with lossless or lossy transmission
lines. We will also see how power waves lead to a generalization of scattering parameters.

The incident and reflected power wave amplitudes a and b are defined as the following
linear transformations of the total voltage and current:

a = V + Z R I

2
√

RR
, (4.60a)

b = V − Z∗
R I

2
√

RR
, (4.60b)

where Z R = RR + j X R is known as the reference impedance, and may be complex. Note
that the power wave amplitudes of (4.60) are similar in form to the voltage waves of (4.58),
but do not have units of power, voltage, or current.

Inverting (4.60) gives the total voltage and current in terms of the power wave ampli-
tudes:

V = Z∗
Ra + Z Rb√

RR
, (4.61a)

I = a − b√
RR

. (4.61b)

Then the power delivered to the load can be expressed as

PL = 1

2
Re

{
V I ∗} = 1

2RR
Re

{
Z∗

R |a|2 − Z∗
Rab∗ + Z Ra∗b − Z R |b|2

}

= 1

2
|a|2 − 1

2
|b|2 , (4.62)

since the quantity Z Ra∗b − Z∗
Rab∗is pure imaginary. Once again we have the satisfying

result that the load power is the difference between the powers of the incident and reflected
power waves. It is important to note that this result is valid for any reference impedance Z R .

The reflection coefficient, �p, for the reflected power wave can be found by using
(4.60) and the fact that V = ZL I at the load:

�p = b

a
= V − Z∗

R I

V + Z R I
= ZL − Z∗

R

ZL + Z R
. (4.63)

Observe that this reflection coefficient reduces to our usual voltage reflection coefficient
of (2.35) when Z R = Z0 is a real characteristic impedance. Equation (4.63) suggests that
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choosing the reference impedance as the conjugate of the load impedance [5],

Z R = Z∗
L , (4.64)

will have the useful effect of making the reflected power wave amplitude go to zero.1

From basic circuit theory, the voltage, current, and load power for the circuit of
Figure 4.10 are

V = V0
ZL

ZL + Zg
, I = V0

ZL + Zg
, PL = V 2

0

2

RL∣∣ZL + Zg
∣∣2 , (4.65a, b, c)

where ZL = RL + j X L . Then the power wave amplitudes can be found from (4.60), with
Z R = Z∗

L , as

a = V + Z R I

2
√

RR
= V0

ZL

ZL + Zg
+ Z∗

L

ZL + Zg

2
√

RR
= V0

√
RL

ZL + Zg
, (4.66a)

b = V − Z∗
R I

2
√

RR
= V0

ZL

ZL + Zg
− ZL

ZL + Zg

2
√

RR
= 0. (4.66b)

From (4.62) the power delivered to the load is

PL = 1

2
|a|2 = V 2

0

2

RL∣∣ZL + Zg
∣∣2 ,

in agreement with (4.65c).
When the load is conjugately matched to the generator, so that Zg = Z∗

L , we have
PL = V 2

0 /8RL . Note that selecting the reference impedance as Z R = Z∗
L results in the

condition that b = 0 (and �p = 0), but this does not necessarily mean that the load is
conjugately matched to the generator, nor that maximum power is delivered to the load.
The incident power wave amplitude of (4.66a) depends on ZL and Zg , and is maximum
only when Zg = Z∗

L .
To define the scattering matrix for power waves for an N -port network, we assume

the reference impedance for port i is Z Ri . Then, analogous to (4.60), we define the power
wave amplitude vectors in terms of the total voltage and current vectors:

[a] = [F] ([V ] + [Z R] [I ]) , (4.67a)

[b] = [F]
(
[V ] − [Z R]∗ [I ]

)
, (4.67b)

where [F] is a diagonal matrix with elements 1/2
√

Re {Z Ri } and [Z R] is a diagonal matrix
with elements Z Ri . By the impedance matrix relation that [V ] = [Z ] [I ], (4.67) can be
written as

[b] = [F]
(
[Z ] − [Z R]∗

)
([Z ] + [Z R])−1 [F]−1 [a].

Because the scattering matrix for power waves,
[
Sp
]
, should relate [b] to [a], we have

[
Sp
] = [F]

(
[Z ] − [Z R]∗

)
([Z ] + [Z R])−1 [F]−1 . (4.68)

1 Some authors choose the reference impedance equal to the generator impedance. This has the same effect as
(4.64) when the generator and load are conjugately matched, but the choice of (4.64) leads to a zero reflected
wave even when the conjugate matching condition is not satisfied, and so can be more useful in general.
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The ordinary scattering matrix for a network can first be converted to an impedance matrix,
using a relation similar to (4.45), then converted to the generalized power wave scattering
matrix using (4.68). The generalized scattering matrix has the useful property that the
diagonal elements can be made to be zero by proper selection of the reference impedances.

POINT OF INTEREST: The Vector Network Analyzer

The scattering parameters of passive and active networks can be measured with a vector network
analyzer, which is a two-channel (or four-channel) microwave receiver designed to process the
magnitude and phase of the transmitted and reflected waves from the network. A simplified
block diagram of a network analyzer is shown in the accompanying figure. In operation, the RF
source is usually set to sweep over a specified bandwidth. A four-port reflectometer samples the
incident, reflected, and transmitted RF waves; a switch allows the network to be driven from
either port 1 or port 2. Four dual-conversion channels convert these signals to 100-kHz IF fre-
quencies, which are then detected and converted to digital form. An internal computer is used to
calculate and display the magnitude and phase of the scattering parameters or other quantities
that can be derived from these data, such as SWR, return loss, group delay, impedance, etc. An
important feature of the network analyzer is the substantial improvement in accuracy made pos-
sible with error-correcting software. Errors caused by directional coupler mismatch, imperfect
directivity, loss, and variations in the frequency response of the analyzer system are accounted
for by using a 12-term error model and a calibration procedure. Another useful feature is the
ability to determine the time-domain response of the network by calculating the inverse Fourier
transform of the frequency-domain data.
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4.4 THE TRANSMISSION (ABCD) MATRIX

The Z , Y , and S parameter representations can be used to characterize a microwave net-
work with an arbitrary number of ports, but in practice many microwave networks consist
of a cascade connection of two or more two-port networks. In this case it is convenient
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FIGURE 4.11 (a) A two-port network; (b) a cascade connection of two-port networks.

to define a 2 × 2 transmission, or ABCD, matrix, for each two-port network. We will see
that the ABCD matrix of the cascade connection of two or more two-port networks can be
easily found by multiplying the ABCD matrices of the individual two-ports.

The ABCD matrix is defined for a two-port network in terms of the total voltages and
currents as shown in Figure 4.11a and the following:

V1 = AV2 + B I2,

I1 = CV2 + DI2,

or in matrix form as [
V1
I1

]
=
[

A B
C D

] [
V2
I2

]
. (4.69)

It is important to note from Figure 4.11a that a change in the sign convention of I2
has been made from our previous definitions, which had I2 as the current flowing into
port 2. The convention that I2 flows out of port 2 will be used when dealing with ABCD
matrices so that in a cascade network I2 will be the same current that flows into the adjacent
network, as shown in Figure 4.11b. Then the left-hand side of (4.69) represents the voltage
and current at port 1 of the network, while the column on the right-hand side of (4.69)
represents the voltage and current at port 2.

In the cascade connection of two two-port networks shown in Figure 4.11b we have
that [

V1
I1

]
=
[

A1 B1
C1 D1

] [
V2
I2

]
,

(4.70ab)[
V2
I2

]
=
[

A2 B2
C2 D2

] [
V3
I3

]
.

Substituting (4.70b) into (4.70a) gives
[

V1
I1

]
=
[

A1 B1
C1 C1

] [
A2 B2
C2 D2

] [
V3
I3

]
, (4.71)

which shows that the ABCD matrix of the cascade connection of the two networks is equal
to the product of the ABCD matrices representing the individual two-ports. Note that the
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TABLE 4.1 ABCD Parameters of Some Useful Two-Port Circuits

Circuit ABCD Parameters

Z A = 1

C = 0

B = Z

D = 1

Y
A = 1

C = Y

B = 0

D = 1

Z0, 

l

A = cos β�

C = jY0 sin β�

B = j Z0 sin β�

D = cos β�

N : 1

A = N

C = 0

B = 0

D = 1

N

Y1 Y2

Y3 A = 1 + Y2

Y3

C = Y1 + Y2 + Y1Y2

Y3

B = 1

Y3

D = 1 + Y1

Y3

Z1 Z2

Z3

A = 1 + Z1

Z3

C = 1

Z3

B = Z1 + Z2 + Z1 Z2

Z3

D = 1 + Z2

Z3

order of multiplication of the matrix must be the same as the order in which the networks
are arranged since matrix multiplication is not, in general, commutative.

The usefulness of the ABCD matrix representation lies in the fact that a library of
ABCD matrices for elementary two-port networks can be built up, and applied in building-
block fashion to more complicated microwave networks that consist of cascades of these
simpler two-ports. Table 4.1 lists a number of useful two-port networks and their ABCD
matrices.

EXAMPLE 4.6 EVALUATION OF ABCD PARAMETERS

Find the ABCD parameters of a two-port network consisting of a series impedance
Z between ports 1 and 2 (the first entry in Table 4.1).

Solution
From the defining relations of (4.69), we have that

A = V1

V2

∣∣∣∣
I2=0

,



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.4 The Transmission (ABCD) Matrix 191

which indicates that A is found by applying a voltage V1 at port 1, and measuring
the open-circuit voltage V2 at port 2. Thus, A = 1. Similarly,

B = V1

I2

∣∣∣∣
V2=0

= V1

V1/Z
= Z ,

C = I1

V2

∣∣∣∣
I2=0

= 0,

D = I1

I2

∣∣∣∣
V2=0

= I1

I1
= 1.

■

Relation to Impedance Matrix

The impedance parameters of a network can be easily converted to ABCD parameters.
Thus, from the definition of the ABCD parameters in (4.69), and from the defining relations
for the Z parameters of (4.25) for a two-port network with I2 to be consistent with the sign
convention used with ABCD parameters,

V1 = I1 Z11 − I2 Z12, (4.72a)

V2 = I1 Z21 − I2 Z22, (4.72b)

we have that

A = V1

V2

∣∣∣∣
I2=0

= I1 Z11

I1 Z21
= Z11/Z21, (4.73a)

B = V1

I2

∣∣∣∣
V2=0

= I1 Z11 − I2 Z12

I2

∣∣∣∣
V2=0

= Z11
I1

I2

∣∣∣∣
V2=0

− Z12

= Z11
I1 Z22

I1 Z21
− Z12 = Z11 Z22 − Z12 Z21

Z21
, (4.73b)

C = I1

V2

∣∣∣∣
I2=0

= I1

I1 Z21
= 1/Z21, (4.73c)

D = I1

I2

∣∣∣∣
V2=0

= I2 Z22/Z21

I2
= Z22/Z21. (4.73d)

If the network is reciprocal, then Z12 = Z21 and (4.73) can be used to show that AD −
BC = 1.

Equivalent Circuits for Two-Port Networks

The special case of a two-port microwave network occurs so frequently in practice that it
deserves further attention. Here we will discuss the use of equivalent circuits to represent
an arbitrary two-port network. Useful conversions between two-port network parameters
are given in Table 4.2.

Figure 4.12a shows a transition between a coaxial line and a microstrip line, and is
an example of a two-port network. Terminal planes can be defined at arbitrary points on
the two transmission lines; a convenient choice might be as shown in the figure. However,
because of the physical discontinuity in the transition from a coaxial line to a microstrip
line, electric and/or magnetic energy can be stored in the vicinity of the junction, leading
to reactive effects. Characterization of such effects can be obtained by measurement or
by numerical analysis (such analysis may be quite complicated), and represented by the
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FIGURE 4.12 A coax-to-microstrip transition and equivalent circuit representations. (a) Geom-
etry of the transition. (b) Representation of the transition by a “black box.”
(c) A possible equivalent circuit for the transition [6].

two-port “black box” shown in Figure 4.12b. The properties of the transition can then be
expressed in terms of the network parameters (Z , Y , S, or ABCD) of the two-port network.
This type of treatment can be applied to a variety of two-port junctions, such as transitions
from one type of transmission line to another, transmission line discontinuities such as
step changes in width or bends, etc. When modeling a microwave junction in this way, it
is often useful to replace the two-port “black box” with an equivalent circuit containing
a few idealized components, as shown in Figure 4.12c. This is particularly useful if the
component values can be related to some physical features of the actual junction. There
is an unlimited number of ways in which such equivalent circuits can be defined; we will
discuss some of the most common and useful types below.

As we have seen, an arbitrary two-port network can be described in terms of impedance
parameters as

V1 = Z11 I1 + Z12 I2,

V2 = Z21 I1 + Z22 I2,
(4.74a)

or in terms of admittance parameters as

I1 = Y11V1 + Y12V2,

I2 = Y21V1 + Y22V2.
(4.74b)

If the network is reciprocal, then Z12 = Z21 and Y12 = Y21. These representations lead
naturally to the T and π equivalent circuits shown in Figures 4.13a and 4.13b. The relations
in Table 4.2 can be used to relate the component values to other network parameters.

Other equivalent circuits can also be used to represent a two-port network. If the
network is reciprocal, there are six degrees of freedom (the real and imaginary parts of
three matrix elements), so the equivalent circuit should have six independent parameters.
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FIGURE 4.13 Equivalent circuits for a reciprocal two-port network. (a) T equivalent. (b) π equi-
valent.

A nonreciprocal network cannot be represented by a passive equivalent circuit using recip-
rocal elements.

If the network is lossless, which is a good approximation for many practical two-
port junctions, some simplifications can be made in the equivalent circuit. As was shown
in Section 4.2, the impedance or admittance matrix elements are purely imaginary for a
lossless network. This reduces the degrees of freedom for such a network to three, and
implies that the T and π equivalent circuits of Figure 4.13 can be constructed from purely
reactive elements.

4.5 SIGNAL FLOW GRAPHS

We have seen how transmitted and reflected waves can be represented by scattering
parameters, and how the interconnection of sources, networks, and loads can be treated
with various matrix representations. In this section we discuss the signal flow graph, which
is an additional technique that is very useful for the analysis of microwave networks in
terms of transmitted and reflected waves. We first discuss the features and the construction
of the flow graph itself, and then present a technique for the reduction, or solution, of the
flow graph.

The primary components of a signal flow graph are nodes and branches:

� Nodes: Each port i of a microwave network has two nodes, ai and bi. Node ai

is identified with a wave entering port i, while node bi is identified with a wave
reflected from port i. The voltage at a node is equal to the sum of all signals entering
that node.

� Branches: A branch is a directed path between two nodes representing signal flow
from one node to another. Every branch has an associated scattering parameter or
reflection coefficient.

At this point it is useful to consider the flow graph of an arbitrary two-port network, as
shown in Figure 4.14. Figure 4.14a shows a two-port network with incident and reflected
waves at each port, and Figure 4.14b shows the corresponding signal flow graph represen-
tation. The flow graph gives an intuitive graphical illustration of the network behavior.

For example, a wave of amplitude a1 incident at port 1 is split, with part going through
S11 and out port 1 as a reflected wave, and part transmitted through S21 to node b2.
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FIGURE 4.14 The signal flow graph representation of a two-port network. (a) Definition of inci-
dent and reflected waves. (b) Signal flow graph.

At node b2, the wave goes out port 2; if a load with nonzero reflection coefficient is con-
nected at port 2, this wave will be at least partly reflected and reenter the two-port network
at node a2. Part of this wave can be reflected back out port 2 via S22, and part can be
transmitted out port 1 through S12.

Two other special networks—a one-port network and a voltage source—are shown in
Figure 4.15, along with their signal flow graph representations. Once a microwave network
has been represented in signal flow graph form, it is a relatively easy matter to solve for the
ratio of any combination of wave amplitudes. We will discuss how this can be done using
four basic decomposition rules, but the same results can also be obtained using Mason’s
rule from control system theory.

Decomposition of Signal Flow Graphs

A signal flow graph can be reduced to a single branch between two nodes using the fol-
lowing four basic decomposition rules to obtain any desired wave amplitude ratio.

� Rule 1 (Series Rule). Two branches, whose common node has only one incoming
and one outgoing wave (branches in series), may be combined to form a single
branch whose coefficient is the product of the coefficients of the original branches.
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Zs

FIGURE 4.15 The signal flow graph representations of a one-port network and a source. (a) A
one-port network and its flow graph. (b) A source and its flow graph.
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FIGURE 4.16 Decomposition rules. (a) Series rule. (b) Parallel rule. (c) Self-loop rule. (d) Split-
ting rule.

Figure 4.16a shows the flow graphs for this rule. Its derivation follows from the
basic relation

V3 = S32V2 = S32S21V1. (4.75)

� Rule 2 (Parallel Rule). Two branches from one common node to another common
node (branches in parallel) may be combined into a single branch whose coefficient
is the sum of the coefficients of the original branches. Figure 4.16b shows the flow
graphs for this rule. The derivation follows from the obvious relation

V2 = Sa V1 + SbV1 = (Sa + Sb)V1. (4.76)

� Rule 3 (Self-Loop Rule). When a node has a self-loop (a branch that begins and ends
on the same node) of coefficient S, the self-loop can be eliminated by multiplying
coefficients of the branches feeding that node by 1/(1 − S). Figure 4.16c shows the
flow graphs for this rule, which can be derived as follows. From the original network
we have

V2 = S21V1 + S22V2, (4.77a)

V3 = S32V2. (4.77b)

Eliminating V2 gives

V3 = S32S21

1 − S22
V1, (4.78)

which is seen to be the transfer function for the reduced graph of Figure 4.16c.
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FIGURE 4.17 A terminated two-port network.

� Rule 4 (Splitting Rule). A node may be split into two separate nodes as long as the
resulting flow graph contains, once and only once, each combination of separate
(not self-loops) input and output branches that connect to the original node. This
rule is illustrated in Figure 4.16d and follows from the observation that

V4 = S42V2 = S21S42V1 (4.79)

in both the original flow graph and the flow graph with the split node.

We now illustrate the use of each of these rules with an example.

EXAMPLE 4.7 APPLICATION OF SIGNAL FLOW GRAPH

Use signal flow graphs to derive expressions for �in and �out for the microwave
network shown in Figure 4.17.

Solution
The signal flow graph for the circuit of Figure 4.17 is shown in Figure 4.18. In
terms of node voltages, �in is given by the ratio b1/a1. The first two steps of the
required decomposition of the flow graph are shown in Figures 4.19a and 4.19b,
from which the desired result follows by inspection:

�in = b1

a1
= S11 + S12S21��

1 − S22��

.

Next, �out is given by the ratio b2/a2. The first two steps for this decomposition
are shown in Figures 4.19c and 4.19d. The desired result is

�out = b2

a2
= S22 + S12S21�s

1 − S11�s ■

Application to Thru-Reflect-Lin Network Analyzer Calibration

As a further application of signal flow graphs we consider the calibration of a network
analyzer using the Thru-Reflect-Line (TRL) technique [7]. The general problem is shown in
Figure 4.20, where it is intended to measure the scattering parameters of a two-port device

Vs

S11 S22

S12

S21

b1 a2

a1 b2

Γ�

Γs

1

FIGURE 4.18 Signal flow graph for the two-port network with general source and load impe-
dances of Figure 4.17.
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FIGURE 4.19 Decompositions of the flow graph of Figure 4.18 to find �in = b1/a1 and �out =
b2/a2. (a) Using Rule 4 on node a2. (b) Using Rule 3 for the self-loop at node b2.
(c) Using Rule 4 on node b1. (d) Using Rule 3 for the self-loop at node a1.

at the indicated reference planes. As discussed in the previous Point of Interest, a network
analyzer measures scattering parameters as ratios of complex voltage amplitudes. The pri-
mary reference plane for such measurements is generally at some point within the analyzer
itself, so the measurement will include losses and phase delays caused by the effects of the
connectors, cables, and transitions that must be used to connect the device under test (DUT)
to the analyzer. In the block diagram of Figure 4.20 these effects are lumped together in a
two-port error box placed at each port between the actual measurement reference plane and
the desired reference plane for the two-port DUT. A calibration procedure is used to char-
acterize the error boxes before measurement of the DUT; then the actual error-corrected
scattering parameters of the DUT can be calculated from the measured data. Measurement
of a one-port network can be considered as a reduced version of the two-port case.

The simplest way to calibrate a network analyzer is to use three or more known loads,
such as shorts, opens, and matched loads. The problem with this approach is that such
standards are always imperfect to some degree, and therefore introduce errors into the
measurement. These errors become increasingly significant at higher frequencies and as
the quality of the measurement system improves. The TRL calibration scheme does not

FIGURE 4.20 Block diagram of a network analyzer measurement of a two-port device.
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rely on known standard loads, but uses three simple connections to allow the error boxes
to be characterized completely. These three connections are shown in Figure 4.21. The
Thru connection is made by directly connecting port 1 to port 2 at the desired reference
planes. The Reflect connection uses a load having a large reflection coefficient, �L , such
as a nominal open or short. It is not necessary to know the exact value of �L , as this will
be determined by the TRL calibration procedure. The Line connection involves connecting
ports 1 and 3 together through a length of matched transmission line. It is not necessary to
know the length of the line, and it is not required that the line be lossless; these parameters
will be determined by the TRL procedure.

We can use signal flow graphs to derive the set of equations necessary to find the scat-
tering parameters for the error boxes in the TRL calibration procedure. With reference to
Figure 4.20, we will apply the Thru, Reflect, and Line connections at the reference plane for
the DUT, and measure the scattering parameters for these three cases at the measurement
planes. For simplicity, we assume the same characteristic impedance for ports 1 and 2, and
that the error boxes are reciprocal and identical for both ports. The error boxes are charac-
terized by a scattering matrix [S] and, alternatively, by an ABCD matrix. Thus S21 = S12
for both error boxes. Also note that ports 1 and 2 of the error boxes are in opposite posi-
tions since they are symmetrically connected, as shown in the figure. To avoid confusion in
notation we will denote the measured scattering parameters for the Thru, Reflect, and Line
connections as the [T ], [R], and [L] matrices, respectively.

Figure 4.21a shows the arrangement for the Thru connection and the corresponding
signal flow graph. Observe that we have made use of the fact that S21 = S12 and that the
error boxes are identical and symmetrically arranged. The signal flow graph can be easily
reduced using the decomposition rules to give the measured scattering parameters at the
measurement planes in terms of the scattering parameters of the error boxes as

T11 = b1

a1

∣∣∣∣
a2=0

= S11 + S22S2
12

1 − S2
22

(4.80a)

T12 = b1

a2

∣∣∣∣
a1=0

= S2
12

1 − S2
22

(4.80b )

By symmetry we have T22 = T11, and by reciprocity we have T21 = T12.

FIGURE 4.21a Block diagram and signal flow graph for the Thru connection.
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FIGURE 4.21b Block diagram and signal flow graph for the Reflect connection.

The Reflect connection is shown in Figure 4.21b, with the corresponding signal flow
graph. Note that this arrangement effectively decouples the two measurement ports, so
R12 = R21 = 0. The signal flow graph can be easily reduced to show that

R11 = b1

a1

∣∣∣∣
a2=0

= S11 + S2
12�L

1 − S22�L
. (4.81)

By symmetry we have R22 = R11.
The Line connection is shown in Figure 4.21c, with its corresponding signal flow

graph. A reduction similar to that used for the Thru case gives

L11 = b1

a1

∣∣∣∣
a2=0

= S11 + S22S2
12e−2γ �

1 − S2
22e−2γ �

, (4.82a)

L12 = b1

a2

∣∣∣∣
a1=0

= S2
12e−γ �

1 − S2
22e−2γ �

. (4.82b)
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FIGURE 4.21c Block diagram and signal flow graph for the Line connection.



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

4.5 Signal Flow Graphs 201

By symmetry and reciprocity we have L22 = L11 and L21 = L12.
We now have five equations (4.80)–(4.82) for the five unknowns S11, S12, S22, �L ,

and eγ �; the solution is straightforward but lengthy. Because (4.81) is the only equation
that contains �L , we can first solve the four equations in (4.80) and (4.82) for the other
four unknowns. Equation (4.80b) can be used to eliminate S12 from (4.80a) and (4.82),
and then S11 can be eliminated from (4.80a) and (4.82a). This leaves two equations for S22
and eγ �:

L12e2γ � − L12S2
22 = T12eγ � − T12S2

22eγ �, (4.83a)

e2γ � (T11 − S22T12) − T11S2
22 = L11

(
e2γ � − S2

22

)− S22T12. (4.83b)

Equation (4.83a) can be solved for S22 and substituted into (4.83b) to give a quadratic
equation for eγ �. Application of the quadratic formula then gives the solution for eγ � in
terms of the measured TRL scattering parameters as

eγ � = L2
12 + T 2

12 − (T11 − L11)
2 ±

√[
L2

12 + T 2
12 − (T11 − L11)2

]2 − 4L2
12T 2

12

2L12T12
. (4.84)

The choice of sign can be determined by the requirement that the real and imaginary parts
of γ be positive, or by knowing the phase of �L [as determined from (4.83)] to within
180◦.

Now multiply (4.80b) by S22 and subtract from (4.80a) to get

T11 = S11 + S22T12, (4.85a)

and similarly multiply (4.82b) by S22e−γ � and subtract from (4.82a) to get

L11 = S11 + S22L12e−γ �. (4.85b)

Eliminating S11 from these two equations gives S22 in terms of e−γ � as

S22 = T11 − L11

T12 − L12e−γ �
. (4.86)

Solving (4.85a) for S11 gives

S11 = T11 − S22T12, (4.87)

and solving (4.80b) for S12 gives

S2
12 = T12(1 − S2

22). (4.88)

Finally, (4.81) can be solved for �L to give

�L = R11 − S11

S2
12 + S22 (R11 − S11)

. (4.89)

Equations (4.84) and (4.86)–(4.89) give the scattering parameters for the error boxes, as
well as the unknown reflection coefficient �L (to within the sign), and the propagation
factor e−γ �. This completes the calibration procedure for the TRL method.

The scattering parameters of the DUT can now be measured at the measurement refer-
ence planes shown in Figure 4.20, and corrected using the above TRL error box parameters
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to give the scattering parameters at the reference planes of the DUT. Because we are work-
ing with a cascade of three two-port networks, it is convenient to use ABCD parameters.
Thus, we convert the error box scattering parameters to the corresponding ABCD param-
eters, and convert the measured scattering parameters of the cascade to the corresponding
Am BmCm Dm parameters. If we use A′B ′C ′ D′ to denote the parameters for the DUT, then
we have

[
Am Bm

Cm Dm

]
=
[

A B
C D

] [
A′ B ′
C ′ D′

] [
D B
C A

]
,

where the change in the elements of the last matrix account for the reversal of ports for
the error box at port 2 of the DUT (see Problem 4.25). Then the ABCD parameters for the
DUT can be determined as

[
A′ B ′
C ′ D′

]
=
[

A B
C D

]−1 [
Am Bm

Cm Dm

] [
D B
C A

]−1

. (4.90)

POINT OF INTEREST: Computer-Aided Design for Microwave Circuits

Computer-aided design (CAD) software packages have become essential tools for the analysis,
design, and optimization of RF and microwave circuits and systems. Several microwave CAD
products are commercially available, including Microwave Office (Applied Wave Research),
ADS (Agilent Technologies), Microwave Studio (CST), Designer (Ansoft), and many others.
RF and microwave CAD packages can be divided into two types: those that use “physics-based”
solutions, where Maxwell’s equations are numerically solved for physical geometries such as
printed circuit geometries or waveguides, and “circuit-based” solutions, which use equivalent
circuits for various elements, including distributed elements, discontinuities, coupled lines, and
active devices. Some packages combine these two approaches. Both linear and nonlinear mod-
eling, as well as circuit optimization, are generally possible. Although such computer programs
can be fast, powerful, and accurate, they cannot serve as a substitute for engineering experience
and a good understanding of microwave principles.

A typical design process usually begins with specifications or design goals for the circuit or
system. Based on previous designs and his or her experience, an engineer can develop an initial
design, including specific components and a circuit layout. CAD can then be used to model and
analyze the design, using data for each of the components and including effects such as loss and
discontinuities. The software can be used to optimize the design by adjusting some of the circuit
parameters to achieve the best performance. If the specifications are not met, the design may
have to be revised. CAD tools can also be used to study the effects of component tolerances and
errors to improve circuit reliability and robustness. When the design meets the specifications, an
engineering prototype can be built and tested. If the measured results satisfy the specifications,
the design process is completed. Otherwise the design will need to be revised and the procedure
repeated.

Without CAD tools the design process would require the construction and measurement
of laboratory prototypes at each iteration, which is expensive and time consuming. Thus, CAD
can greatly decrease the time and cost of a design while enhancing its quality. The simulation
and optimization process is especially important for monolithic microwave integrated circuits
because these circuits cannot easily be tuned or trimmed after fabrication.

CAD techniques are not without limitations, however. Of primary importance is the fact
that any computer model is only an approximation to a “real-world” physical circuit and cannot
completely account for the inevitable differences due to component and fabrication tolerances,
surface roughness, spurious coupling, higher order modes, junction discontinuities, thermal
effects, and a number of other practical issues that can occur with a physical circuit or device.
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4.6 DISCONTINUITIES AND MODAL ANALYSIS

By either necessity or design, microwave circuits and networks often consist of transmis-
sion lines with various types of discontinuities. In some cases discontinuities are an un-
avoidable result of mechanical or electrical transitions from one medium to another (e.g.,
a junction between two waveguides, or a coax-to-microstrip transition), and the discon-
tinuity effect is unwanted but may be significant enough to warrant characterization. In
other cases discontinuities may be deliberately introduced into the circuit to perform a cer-
tain electrical function (e.g., reactive diaphragms in waveguide, or stubs on a microstrip
line for matching or filter circuits). In any event, a transmission line discontinuity can
be represented as an equivalent circuit at some point on the transmission line. Depend-
ing on the type of discontinuity, the equivalent circuit may be a simple shunt or series
element across the line or, in the more general case, a T- or π -equivalent circuit may be
required. The component values of an equivalent circuit depend on the parameters of the
line and the discontinuity, as well as on the frequency of operation. In some cases the
equivalent circuit involves a shift in the phase reference planes on the transmission lines.
Once the equivalent circuit of a given discontinuity is known, its effect can be incorporated
into the analysis or design of the network using the theory developed previously in this
chapter.

The purpose of the present section is to discuss how equivalent circuits are obtained
for transmission line discontinuities; we will see that one approach is to start with a field
theory solution to a canonical discontinuity problem and develop a circuit model with
component values. This is thus another example of our objective of replacing complicated
field analyses with circuit concepts. In other cases, it may be easier to measure the network
parameters of an isolated discontinuity.

Figures 4.22 and 4.23 show some common transmission line discontinuities and their
equivalent circuits. As shown in Figures 4.22a–4.22c, thin metallic diaphragms (or “irises”)
can be placed in the cross section of a waveguide to yield equivalent shunt inductance,
capacitance, or a resonant combination. Similar effects occur with step changes in the
height or width of the waveguide, as shown in Figures 4.22d and 4.22e. Similar disconti-
nuities can also be made in circular waveguide. The classic reference for waveguide dis-
continuities and their equivalent circuits is the Waveguide Handbook [8].

Some typical microstrip discontinuities and transitions are shown in Figure 4.23; sim-
ilar geometries exist for stripline and other printed transmission lines such as slotline, cov-
ered microstrip, coplanar waveguide, etc. Although approximate equivalent circuits have
been developed for some printed transmission line discontinuities [9], many do not lend
themselves to easy or accurate modeling, and must be treated by numerical analysis. Mod-
ern CAD tools are usually capable of accurately modeling such problems.

Modal Analysis of an H-Plane Step in Rectangular Waveguide

The field analysis of most transmission line discontinuity problems is difficult, and beyond
the scope of this book. The technique of waveguide modal analysis, however, is relatively
straightforward and similar in principle to the reflection/transmission problems that were
discussed in Chapters 1 and 2. In addition, modal analysis is a rigorous and versatile tech-
nique that can be applied to a number of waveguide and coax discontinuity problems, and
lends itself well to computer implementation. We will illustrate the technique by applying
it to the problem of finding the equivalent circuit of an H -plane step (change in width) in
a rectangular waveguide.
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FIGURE 4.22 Rectangular waveguide discontinuities.

The geometry of the H -plane waveguide step is shown in Figure 4.24. It is assumed
that only the dominant TE10 mode is propagating in guide 1 (z < 0) and is incident on the
junction from z < 0. It is also assumed that no modes are propagating in guide 2, although
the analysis to follow is still valid if propagation can occur in guide 2. From Section 3.3,
the transverse components of the incident TE10 mode can be written, for z < 0, as

Ei
y = sin

πx

a
e− jβa

1 z, (4.91a)

Hi
x = −1

Za
1

sin
πx

a
e− jβa

1 z, (4.91b)

where

βa
n =

√
k2

0 −
(nπ

a

)2
(4.92)
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FIGURE 4.23 Some common microstrip discontinuities. (a) Open-ended microstrip. (b) Gap in
microstrip. (c) Change in width. (d) T-junction. (e) Coax-to-microstrip junction.

is the propagation constant of the TEn0 mode in guide 1 (of width a), and

Za
n = k0η0

βa
n

(4.93)

is the wave impedance of the TEn0 mode in guide 1. Because of the discontinuity at z = 0
there will be reflected and transmitted waves in both guides, consisting of infinite sets of
TEn0 modes in guides 1 and 2. Only the TE10 mode will propagate in guide 1, but higher
order modes are also important in this problem because they account for stored energy,
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FIGURE 4.24 Geometry of an H -plane step (change in width) in a rectangular waveguide.

localized near z = 0. Because there is no y variation introduced by this discontinuity, TEnm

modes for m �= 0 are not excited, nor are any TM modes. A more general discontinuity,
however, may excite such modes.

The reflected modes in guide 1 may be written, for z < 0, as

Er
y =

∞∑
n=1

An sin
nπx

a
e jβa

n z, (4.94a)

Hr
x =

∞∑
n=1

An

Za
n

sin
nπx

a
e jβa

n z, (4.94b)

where An is the unknown amplitude coefficient of the reflected TEn0 mode in guide 1.
The reflection coefficient of the incident TE10 mode is then A1. Similarly, the transmitted
modes into guide 2 can be written, for z > 0, as

Et
y =

∞∑
n=1

Bn sin
nπx

c
e− jβc

n z, (4.95a)

Ht
x = −

∞∑
n=1

Bn

Zc
n

sin
nπx

c
e− jβc

n z, (4.95b)

where the propagation constant in guide 2 is

βc
n =

√
k2

0 −
(nπ

c

)2
, (4.96)

and the wave impedance in guide 2 is

Zc
n = k0η0

βc
n

. (4.97)
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At z = 0, the transverse fields (Ey, Hx ) must be continuous for 0 < x < c ; in addi-
tion, Ey must be zero for c < x < a because of the step. Enforcing these boundary condi-
tions leads to the following equations:

Ey = sin
πx

a
+

∞∑
n=1

An sin
nπx

a
=




∞∑
n=1

Bn sin
nπx

c
for 0 < x < c,

0 for c < x < a,

(4.98a)

Hx = −1

Za
1

sin
πx

a
+

∞∑
n=1

An

Za
n

sin
nπx

a
= −

∞∑
n=1

Bn

Zc
n

sin
nπx

c
for 0 < x < c. (4.98b)

Equations (4.98a) and (4.98b) constitute a doubly infinite set of linear equations for the
modal coefficients An and Bn . We will first eliminate the Bn and then truncate the resulting
equation to a finite number of terms and solve for the An .

Multiplying (4.98a) by sin(mπx/a), integrating from x = 0 to a, and using the or-
thogonality relations from Appendix D yields

a

2
δm1 + a

2
Am =

∞∑
n=1

Bn Imn =
∞∑

k=1

Bk Imk, (4.99)

where

Imn =
∫ c

x=0
sin

mπx

a
sin

nπx

c
dx (4.100)

is an integral that can be easily evaluated, and

δmn =
{

1 if m = n
0 if m �= n

(4.101)

is the Kronecker delta symbol. Now solve (4.98b) for Bk by multiplying (4.98b) by
sin(kπx/c) and integrating from x = 0 to c. After using orthogonality relations, we ob-
tain

−1

Za
1

Ik1 +
∞∑

n=1

An

Za
n

Ikn = −cBk

2Zc
k

. (4.102)

Substituting Bk from (4.102) into (4.99) gives an infinite set of linear equations for the An ,
where m = 1, 2, . . . ,

a

2
Am +

∞∑
n=1

∞∑
k=1

2Zc
k Imk Ikn An

cZa
n

=
∞∑

k=1

2Zc
k Imk Ik1

cZa
1

− a

2
δm1. (4.103)

For numerical calculation we can truncate these summations to N terms, which will result
in N linear equations for the first N coefficients, An . For example, let N = 1. Then (4.103)
reduces to

a

2
A1 + 2Zc

1 I 2
11

cZa
1

A1 = 2Zc
1 I 2

11

cZa
1

− a

2
. (4.104)

Solving for A1 (the reflection coefficient of the incident TE10 mode) gives

A1 = Z� − Za
1

Z� + Za
1

for N = 1, (4.105)
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where Z� = 4Zc
1 I 2

11/ac, which looks like an effective load impedance to guide 1. Accuracy
is improved by using larger values of N and leads to a set of equations that can be written
in matrix form as

[Q][A] = [P], (4.106)

where [Q] is a square N × N matrix of coefficients,

Qmn = a

2
δmn +

N∑
k=1

2Zc
k Imk Ikn

cZa
n

, (4.107)

[P] is an N × 1 column vector of coefficients given by

Pm =
N∑

k=1

2Zc
k Imk Ik1

cZa
1

− a

2
δm1, (4.108)

and [A] is an N × 1 column vector of the coefficients An . After the An are found, the Bn

can be calculated from (4.102), if desired. Equations (4.106)–(4.108) lend themselves well
to computer implementation, and Figure 4.25 shows the results of such a calculation for
various matrix sizes.

If the width c of guide 2 is such that all modes are cut off (evanescent), then no real
power can be transmitted into guide 2, and all the incident power is reflected back into
guide 1. The evanescent fields on both sides of the discontinuity store reactive power,
however, which implies that the step discontinuity and guide 2 beyond the discontinuity
look like a reactance (in this case an inductive reactance) to an incident TE10 mode in
guide 1. Thus the equivalent circuit of the H-plane step looks like a shunt inductor at the
z = 0 plane of guide 1, as shown in Figure 4.22e. The equivalent reactance can be found
from the reflection coefficient A1 [after solving (4.106)] as

X = − j Za
1

1 + A1

1 − A1
. (4.109)

Figure 4.25 shows the normalized equivalent inductance versus the ratio of the guide
widths c/a for a free-space wavelength λ = 1.4a and for N = 1, 2, and 10 equations. The
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FIGURE 4.25 Equivalent inductance of an H-plane asymmetric step.
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modal analysis results are compared to data from reference [8]. Note that the solution con-
verges very quickly (because of the fast exponential decay of the higher order evanescent
modes), and that the result using just two modes is very close to the data of reference [8].

The fact that the H-plane step appears inductive is a result of the actual value of the
reflection coefficient, A1, but we can verify the inductive nature of the discontinuity by
computing the complex power flow into the evanescent modes on either side of the discon-
tinuity. For example, the complex power flow into guide 2 can be found as

P =
∫ c

x=0

∫ b

y=0
Ē × H̄∗

∣∣∣∣
z=0+

· ẑdxdy

= −b
∫ c

x=0
Ey H∗

x dx

= −b
∫ c

x=0

[ ∞∑
n=1

Bn sin
nπx

c

][
−

∞∑
m=1

B∗
m

Zc∗
m

sin
mπx

c

]
dx

= bc

2

∞∑
n=1

|Bn|2
Zc∗

n

= jbc

2k0η0

∞∑
n=1

|Bn|2|βc
n |, (4.110)

where the orthogonality property of the sine functions was used, as well as (4.95)–(4.97).
Equation (4.110) shows that the complex power flow into guide 2 is positive imaginary,
implying stored magnetic energy and an inductive reactance. A similar result can be de-
rived for the evanescent modes in guide 1; this is left as a problem.

POINT OF INTEREST: Microstrip Discontinuity Compensation

Because a microstrip circuit is easy to fabricate and allows the convenient integration of pas-
sive and active components, many types of microwave circuits and subsystems are made in
microstrip form. One problem with microstrip circuits (and other planar circuits) is that the
inevitable discontinuities at bends, step changes in widths, and junctions can cause degrada-
tion in circuit performance. This is because such discontinuities introduce parasitic reactances
that can lead to phase and amplitude errors, input and output mismatch, and possibly spurious
coupling or radiation. One approach for eliminating such effects is to construct an equivalent
circuit for the discontinuity (perhaps by measurement), including it in the design of the circuit,
and compensating for its effect by adjusting other circuit parameters (such as line lengths and
characteristic impedances, or tuning stubs). Another approach is to minimize the effect of a
discontinuity by compensating the discontinuity directly, often by chamfering or mitering the
conductor.

Consider the case of a bend in a microstrip line. The straightforward right-angle bend
shown below has a parasitic discontinuity capacitance caused by the increased conductor area
at the corner of the bend. This effect could be eliminated by making a smooth, “swept” bend
with a radius r ≥ 3W , but this takes up more space. Alternatively, the right-angle bend can be
compensated by mitering the corner, which has the effect of reducing the excess capacitance at
the bend. As shown later, this technique can be applied to bends of arbitrary angle. The optimum
value of the miter length, a, depends on the characteristic impedance and the bend angle, but
a value of a = 1.8W is often used in practice. The technique of mitering can also be used to
compensate step and T-junction discontinuities, as shown on the next page.
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W

Right-angle
bend

W
a

Mitered bends

Mitered T-junction 

Mitered step 

W
a

W

Swept bend

r    3 W

Reference: T. C. Edwards, Foundations for Microwave Circuit Design, John Wiley & Sons, New York, 1981.

4.7 EXCITATION OF WAVEGUIDES—ELECTRIC
AND MAGNETIC CURRENTS

So far we have considered the propagation, reflection, and transmission of guided waves in
the absence of sources, but obviously the waveguide or transmission line must be coupled
to a generator or some other source of power. For TEM or quasi-TEM lines, there is usually
only one propagating mode that can be excited by a given source, although there may be
reactance (stored energy) associated with a given feed. In the waveguide case, it may be
possible for several propagating modes to be excited, along with evanescent modes that
store energy. In this section we will develop a formalism for determining the excitation
of a given waveguide mode due to an arbitrary electric or magnetic current source. This
theory can then be used to find the excitation and input impedance of probe and loop feeds
and, in the next section, to determine the excitation of waveguides by apertures.

Current Sheets That Excite Only One Waveguide Mode

Consider an infinitely long rectangular waveguide with a transverse sheet of electric surface
current density at z = 0, as shown in Figure 4.26. First assume that this current has x̂ and
ŷ components given as

J̄ TE
s (x, y) = −x̂

2A+
mnnπ

b
cos

mπx

a
sin

nπy

b
+ ŷ

2A+
mnmπ

a
sin

mπx

a
cos

nπy

b
. (4.111)

We will show that such a current excites a single TEmn waveguide mode traveling away
from the current source in both the +z and −z directions.

b

a

Js or Ms
z

x

y

FIGURE 4.26 An infinitely long rectangular waveguide with surface current densities at z = 0.
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From Table 3.2, the transverse fields for positive and negative traveling TEmn wave-
guide modes can be written as

E±
x = ZTE

(nπ

b

)
A±

mn cos
mπx

a
sin

nπy

b
e∓ jβz, (4.112a)

E±
y = −ZTE

(mπ

a

)
A±

mn sin
mπx

a
cos

nπy

b
e∓ jβz, (4.112b)

H±
x = ±

(mπ

a

)
A±

mn sin
mπx

a
cos

nπy

b
e∓ jβz, (4.112c)

H±
y = ±

(nπ

b

)
A±

mn cos
mπx

a
sin

nπy

b
e∓ jβz, (4.112d)

where the ± notation refers to waves traveling in the +z direction or −z direction with
amplitude coefficients A+

mn and A−
mn , respectively.

From (1.36) and (1.37), the following boundary conditions must be satisfied at z = 0:

(Ē+ − Ē−) × ẑ = 0, (4.113a)

ẑ × (H̄+ − H̄−) = J̄s . (4.113b)

Equation (4.112a) states that the transverse components of the electric field must be con-
tinuous at z = 0, which when applied to (4.112a) and (4.112b), gives

A+
mn = A−

mn . (4.114)

Equation (4.113b) states that the discontinuity in the transverse magnetic field is equal to
the electric surface current density. Thus, the surface current density at z = 0 must be

J̄s = ŷ
(
H+

x − H−
x

)− x̂
(
H+

y − H−
y

)

= −x̂
2A+

mnnπ

b
cos

mπx

a
sin

nπy

b
+ ŷ

2A+
mnmπ

a
sin

mπx

a
cos

nπy

b
, (4.115)

where (4.114) was used. This current is seen to be the same as the current of (4.111), which
shows, by the uniqueness theorem, that such a current will excite only the TEmn mode
propagating in each direction, since Maxwell’s equations and all boundary conditions are
satisfied.

The analogous electric current that excites only the TMmn mode can be shown to be

J̄ TM
s (x, y) = x̂

2B+
mnmπ

a
cos

mπx

a
sin

nπy

b
+ ŷ

2B+
mnnπ

b
sin

mπx

a
cos

nπy

b
. (4.116)

It is left as a problem to verify that this current excites TMmn modes that satisfy the appro-
priate boundary conditions.

Similar results can be derived for magnetic surface current sheets. From (1.36) and
(1.37) the appropriate boundary conditions are

(Ē+ − Ē−) × ẑ = M̄s, (4.117a)

ẑ × (H̄+ − H̄−) = 0. (4.117b)

For a magnetic current sheet at z = 0, the TEmn waveguide mode fields of (4.112) must
now have continuous Hx and Hy field components, due to (4.117b). This results in the
condition that

A+
mn = −A−

mn . (4.118)



c04MicrowaveNetworkAnalysis Pozar July 30, 2011 12:0

212 Chapter 4: Microwave Network Analysis

Then applying (4.117a) gives the source current as

M̄TE
s = −x̂2ZTE A+

mnmπ

a
sin

mπx

a
cos

nπy

b
− ŷ

2ZTE A+
mnnπ

b
cos

mπx

a
sin

nπy

b
.

(4.119)

The corresponding magnetic surface current that excites only the TMmn mode can be
shown to be

M̄TM
s = −x̂2B+

mnnπ

b
sin

mπx

a
cos

nπy

b
+ ŷ2B+

mnmπ

a
cos

mπx

a
sin

nπy

b
. (4.120)

These results show that a single waveguide mode can be selectively excited, to the exclu-
sion of all other modes, by either an electric or magnetic current sheet of the appropriate
form. In practice, however, such currents are difficult to generate and are usually only
approximated with one or two probes or loops. In this case many modes may be excited,
but usually most of these modes are evanescent.

Mode Excitation from an Arbitrary Electric
or Magnetic Current Source

We now consider the excitation of waveguide modes by an arbitrary electric or magnetic
current source [4]. With reference to Figure 4.27, first consider an electric current source
J̄ located between two transverse planes at z1 and z2, which generates the fields Ē+, H̄+
traveling in the +z direction, and the fields Ē−, H̄− traveling in the −z direction. These
fields can be expressed in terms of the waveguide modes as follows:

Ē+ =
∑

n

A+
n Ē+

n =
∑

n

A+
n (ēn + ẑezn)e− jβn z, z > z2, (4.121a)

H̄+ =
∑

n

A+
n H̄+

n =
∑

n

A+
n (h̄n + ẑhzn)e

− jβn z, z > z2, (4.121b)

Ē− =
∑

n

A−
n Ē−

n =
∑

n

A−
n (ēn − ẑezn)e jβn z, z < z1, (4.121c)

H̄− =
∑

n

A−
n H̄−

n =
∑

n

A−
n (−h̄n + ẑhzn)e jβn z, z < z1, (4.121d)

where the single index n is used to represent any possible TE or TM mode. For a given
current J̄ , we can determine the unknown amplitude A+

n by using the Lorentz reciprocity
theorem of (1.155) with M̄1 = M̄2 = 0 (since here we are only considering an electric
current source),

∮
S
(Ē1 × H̄2 − Ē2 × H̄1) · ds̄ =

∫
V
(Ē2 · J̄1 − Ē1 · J̄2)dv,

E–, H– E+, H+
J or M

z1 z2

V
z

FIGURE 4.27 An arbitrary electric or magnetic current source in an infinitely long waveguide.
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where S is a closed surface enclosing the volume V, and Ēi , H̄i are the fields due to the
current source J̄i (for i = 1 or 2).

To apply the reciprocity theorem to the present problem we let the volume V be the
region between the waveguide walls and the transverse cross-section planes at z1 and z2.
Then let Ē1 = Ē± and H̄1 = H̄±, depending on whether z ≥ z2 or z ≤ z1, and let Ē2, H̄2
be the nth waveguide mode traveling in the negative z direction:

Ē2 = Ē−
n = (ēn − ẑezn)e jβn z,

H̄2 = H̄−
n = (−h̄n + ẑhzn)e

jβn z .

Substitution into the above form of the reciprocity theorem gives, with J̄1 = J̄ and J̄2 = 0,∮
S
(Ē± × H̄−

n − Ē−
n × H̄±) · ds̄ =

∫
V

Ē−
n · J̄ dv. (4.122)

The portion of the surface integral over the waveguide walls vanishes because the tan-
gential electric field is zero there; that is, Ē × H̄ · ẑ = H̄ · (ẑ × Ē) = 0 on the waveguide
walls. This reduces the integration to the guide cross section, S0, at the planes z1 and z2. In
addition, the waveguide modes are orthogonal over the guide cross section:∫

S0

Ē±
m × H̄±

n · ds̄ =
∫

S0

(ēm ± ẑezn) × (±h̄n + ẑhzn) · ẑds

= ±
∫

S0

ēm × h̄n · ẑds = 0, for m �= n. (4.123)

Using (4.121) and (4.123) then reduces (4.122) to

A+
n

∫
z2

(Ē+
n × H̄−

n − Ē−
n × H̄+

n ) · ds̄ + A−
n

∫
z1

(Ē−
n × H̄−

n − Ē−
n × H̄−

n ) · ds̄

=
∫

V
Ē−

n · J̄ dv.

Because the second integral vanishes, this further reduces to

A+
n

∫
z2

[(ēn + ẑezn) × (−h̄n + ẑhzn) − (ēn − ẑezn) × (h̄n + ẑhzn)] · ẑds

= −2A+
n

∫
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ēn × h̄n · ẑds =
∫

V
Ē−

n · J̄ dv,

or

A+
n = −1

Pn

∫
V

Ē−
n · J̄ dv = −1

Pn

∫
V
(ēn − ẑezn) · J̄ e jβn zdv, (4.124)

where

Pn = 2
∫

S0

ēn × h̄n · ẑds (4.125)

is a normalization constant proportional to the power flow of the nth mode.
By repeating the above procedure with Ē2 = Ē+

n and H̄2 = H̄+
n , we can derive the

amplitude of the negatively traveling waves as

A−
n = −1

Pn

∫
V

Ē+
n · J̄ dv = −1

Pn

∫
V
(ēn + ẑezn) · J̄ e− jβn zdv. (4.126)
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These results are quite general, being applicable to any type of waveguide (includ-
ing planar lines such as stripline and microstrip), where modal fields can be defined. Ex-
ample 4.8 applies this theory to the problem of a probe-fed rectangular waveguide.

EXAMPLE 4.8 PROBE-FED RECTANGULAR WAVEGUIDE

For the probe-fed rectangular waveguide shown in Figure 4.28, determine the
amplitudes of the forward and backward traveling TE10 modes, and the input
resistance seen by the probe. Assume that the TE10 mode is the only propagating
mode.

Solution
If the current probe is assumed to have an infinitesimal diameter, the source vol-
ume current density J̄ can be written as

J̄ (x, y, z) = I0δ
(

x − a

2

)
δ(z)ŷ for 0 ≤ y ≤ b.

From Chapter 3 the TE10 modal fields can be written as

ē1 = ŷ sin
πx

a
,

h̄1 = −x̂

Z1
sin

πx

a
,

where Z1 = k0η0/β1 is the TE10 wave impedance. From (4.125) the normaliza-
tion constant P1 is

P1 = 2

Z1

∫ a

x=0

∫ b

y=0
sin2 πx

a
dxdy = ab

Z1
.

Then from (4.124) the amplitude A+
1 is

A+
1 = −1

P1

∫
V

sin
πx

a
e jβ1z I0δ

(
x − a

2

)
δ(z)dxdydz = −I0b

P1
= −Z1 I0

a
.

Similarly,

A−
1 = −Z1 I0

a
.

I0

xa

b

y

FIGURE 4.28 A uniform current probe in a rectangular waveguide.
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If the TE10 mode is the only propagating mode in the waveguide, then this mode
carries all of the average power, which can be calculated for real Z1 as

P = 1

2

∫
S0

Ē+ × H̄+∗ · ds̄ + 1

2

∫
S0

Ē− × H̄−∗ · ds̄

=
∫

S0

Ē+ × H̄+∗ · ds̄

=
∫ a

x=0

∫ b

y=0

|A+
1 |2

Z1
sin2 πx

a
dxdy

= ab|A+
1 |2

2Z1
.

If the input resistance seen looking into the probe is Rin, and the terminal current
is I0, then P = I 2

0 Rin/2, so that the input resistance is

Rin = 2P

I 2
0

= ab|A+
1 |2

I 2
0 Z1

= bZ1

a
,

which is real for real Z1 (corresponding to a propagating TE10 mode). ■

A similar derivation can be carried out for a magnetic current source M̄ (e.g., a small
loop). This source will also generate positively and negatively traveling waves, which can
be expressed as a superposition of waveguide modes, as in (4.121). For J̄1 = J̄2 = 0, the
reciprocity theorem of (1.155) reduces to

∮
S
(Ē1 × H̄2 − Ē2 × H̄1) · ds̄ =

∫
V
(H̄1 · M̄2 − H̄2 · M̄1)dv. (4.127)

By following the same procedure as for the electric current case, we can derive the excita-
tion coefficients of the nth waveguide mode as

A+
n = 1

Pn

∫
V

H̄−
n · M̄dv = 1

Pn

∫
V
(−h̄n + ẑhzn) · M̄e jβn zdv, (4.128)

A−
n = 1

Pn

∫
V

H̄+
n · M̄dv = 1

Pn

∫
V
(h̄n + ẑhzn) · M̄e− jβn zdv, (4.129)

where Pn is defined in (4.125).

4.8 EXCITATION OF WAVEGUIDES—APERTURE COUPLING

Besides the probe and loop feeds of the previous section, waveguides and other transmis-
sion lines can also be coupled through small apertures. One common application of such
coupling is in directional couplers and power dividers, where power from one guide is
coupled to another guide through small apertures in a common wall. Figure 4.29 shows
a variety of waveguide and other transmission line configurations in which aperture cou-
pling can be employed. We will first develop an intuitive explanation for the fact that a
small aperture can be represented as an infinitesimal electric and/or magnetic dipole, then
we will use the results of Section 4.7 to find the fields generated by these equivalent cur-
rents. Our analysis will be somewhat phenomenological [4, 10]; a more advanced theory
of aperture coupling based on the equivalence theorem can be found in reference [11].
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Coupling aperture

Coupling
aperture Ground

plane
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Waveguide
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Feed
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Waveguide
2
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(d)(c)
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FIGURE 4.29 Various waveguide and other transmission line configurations using aperture cou-
pling. (a) Coupling between two waveguides via an aperture in the common broad
wall. (b) Coupling to a waveguide cavity via an aperture in a transverse wall.
(c) Coupling between two microstrip lines via an aperture in the common ground
plane. (d) Coupling from a waveguide to a stripline via an aperture.

Consider Figure 4.30a, which shows the normal electric field lines near a conducting
wall (the tangential electric field is zero near the wall). If a small aperture is cut into the
conductor, the electric field lines will fringe through and around the aperture as shown
in Figure 4.30b. Now consider Figure 4.30c, which shows the fringing field lines around
two infinitesimal electric polarization currents, P̄e, normal to a conducting wall (without

(a)

(d)

H

n

(c)(b)

E Pe

Pm

(e) (f)

n

ˆ

ˆ

FIGURE 4.30 Illustrating the development of equivalent electric and magnetic polarization cur-
rents at an aperture in a conducting wall. (a) Normal electric field at a conducting
wall. (b) Electric field lines around an aperture in a conducting wall. (c) Elec-
tric field lines around electric polarization currents normal to a conducting wall.
(d) Magnetic field lines near a conducting wall. (e) Magnetic field lines near an
aperture in a conducting wall. (f) Magnetic field lines near magnetic polarization
currents parallel to a conducting wall.
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an aperture). The similarity of the field lines of Figures 4.30c and 4.30b suggests that an
aperture excited by a normal electric field can be represented by two oppositely directed
infinitesimal electric polarization currents, P̄e, normal to the closed conducting wall. The
strength of this polarization current is proportional to the normal electric field; thus,

P̄e = ε0αen̂Enδ(x − x0)δ(y − y0)δ(z − z0), (4.130)

where the proportionality constant αe is defined as the electric polarizability of the aper-
ture, and (x0, y0, z0) are the coordinates of the center of the aperture.

Similarly, Figure 4.30e shows the fringing of tangential magnetic field lines (the nor-
mal magnetic field is zero at the conductor) near a small aperture. Because these field lines
are similar to those produced by two magnetic polarization currents located parallel to
the conducting wall (as shown in Figure 4.30f), we can conclude that the aperture can be
replaced by two oppositely directed infinitesimal polarization currents, P̄m , where

P̄m = −αm H̄tδ(x − x0)δ(y − y0)δ(z − z0). (4.131)

In (4.131), αm is defined as the magnetic polarizability of the aperture.
The electric and magnetic polarizabilities are constants that depend on the size and

shape of the aperture and have been derived for a variety of simple shapes [3, 10, 11].
The polarizabilities for circular and rectangular apertures, which are probably the most
commonly used shapes, are given in Table 4.3.

We now show that the electric and magnetic polarization currents, P̄e and P̄m , can be
related to electric and magnetic current sources, J̄ and M̄ , respectively. From Maxwell’s
equations (1.27a) and (1.27b) we have


 × Ē = − jωµH̄ − M̄, (4.132a)


 × H̄ = jωε Ē + J̄. (4.132b )

Then using (1.15) and (1.23), which define P̄e and P̄m , we obtain


 × Ē = − jωµ0 H̄ − jωµ0 P̄m − M̄, (4.133a)


 × H̄ = jωε0 Ē + jω P̄e + J̄. (4.133b)

Thus, since M̄ has the same role in these equations as jωµ0 P̄m , and J̄ has the same role
as jω P̄e, we can define equivalent currents as

J̄ = jω P̄e, (4.134a)

M̄ = jωµ0 P̄m . (4.134b)

These results allow us to use the formulas of (4.124), (4.126), (4.128), and (4.129) to
compute the fields from these currents.

TABLE 4.3 Electric and Magnetic Polarizations

Aperture Shape αe αm

Round hole
2r3

0
3

4r3
0

3

Rectangular slot
π�d2

16

π�d2

16
(H̄ across slot)
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The above theory is approximate because of various assumptions involved in the evaluation
of the polarizabilities, but generally it gives reasonable results for apertures that are small (where
the term small implies small relative to an electrical wavelength), and not located too close to
edges or corners of the guide. In addition, it is important to realize that the equivalent dipoles
given by (4.130) and (4.131) radiate in the presence of the conducting wall to give the fields
transmitted through the aperture. The fields on the input side of the conducting wall are also
affected by the presence of the aperture, and this effect is accounted for by the equivalent dipoles
on the incident side of the conductor (which are the negative of those on the output side). In this
way, continuity of tangential fields is preserved across the aperture. In both cases, the presence
of the (closed) conducting wall can be accounted for by using image theory to remove the wall
and double the strength of the dipoles. These details will be clarified by applying this theory to
apertures in transverse and broad walls of waveguides.

Coupling Through an Aperture in a Transverse Waveguide Wall

Consider a small circular aperture centered in the transverse wall of a waveguide, as shown
in Figure 4.31a. Assume that only the TE10 mode propagates in the guide, and is incident
on the transverse wall from z < 0. Then, if the aperture is assumed to be closed, as in
Figure 4.31b, the standing wave fields in the region z < 0 can be written as

Ey = A
(
e− jβz − e jβz) sin

πx

a
, (4.135a)

Hx = −A

Z10

(
e− jβz + e jβz) sin

πx

a
, (4.135b)

where β and Z10 are the propagation constant and wave impedance of the TE10 mode. From
(4.130) and (4.131) we can determine the equivalent electric and magnetic polarization
currents from the above fields as

P̄e = ẑε0αe Ezδ
(

x − a

2

)
δ

(
y − b

2

)
δ(z) = 0, (4.136a)

P̄m = −x̂αm Hxδ
(

x − a

2

)
δ

(
y − b

2

)
δ(z)

= x̂
2Aαm

Z10
δ
(

x − a

2

)
δ

(
y − b

2

)
δ(z), (4.136b)

since Ez = 0 for a TE mode. Now, by (4.134b), the magnetic polarization current P̄m is
equivalent to the magnetic current density

M̄ = jωµ0 P̄m = x̂
2 jωµ0 Aαm

Z10
δ
(

x − a

2

)
δ

(
y − b

2

)
δ(z). (4.137)

As shown in Figure 4.31d, the fields scattered by the aperture are considered as being
produced by the equivalent currents P̄m and −P̄m on either side of the closed wall. The
presence of the conducting wall is easily accounted for using image theory, which has
the effect of doubling the dipole strengths and removing the wall, as depicted in Figure
4.31e (for z < 0) and Figure 4.31f (for z > 0). Thus the coefficients of the transmitted and
reflected waves caused by the equivalent aperture currents can be found by using (4.137)
in (4.128) and (4.129) to give

A+
10 = −1

P10

∫
h̄10 · (2 jωµ0 P̄m)dv = 4 j Aωµ0αm

abZ10
= 4 j Aβαm

ab
, (4.138a)

A−
10 = −1

P10

∫
h̄10 · (−2 jωµ0 P̄m)dv = 4 j Aωµ0αm

abZ10
= 4 j Aβαm

ab
, (4.138b)
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(e)

(d)

(c)

(b)

(a)

–2Pm

(f)

y

y

2Pm

Pm–Pm

y

z z

z

E–, H–

E–

H–

E+, H+

E+, H+

y

z

z

z xa

y
b

b/2

a/20

E + E–

H + H–

E, H

E+, H+

y

y

2r0

FIGURE 4.31 Applying small-hole coupling theory and image theory to the problem of an aper-
ture in the transverse wall of a waveguide. (a) Geometry of a circular aperture in
the transverse wall of a waveguide. (b) Fields with aperture closed. (c) Fields with
aperture open. (d) Fields with aperture closed and replaced with equivalent dipoles.
(e) Fields radiated by equivalent dipoles for z < 0; wall removed by image theory.
(f) Fields radiated by equivalent dipoles for z > 0; wall removed by image theory.

since h̄10 = (−x̂/Z10) sin(πx/a), and P10 = ab/Z10. The magnetic polarizability αm is
given in Table 4.3. The complete fields can now be written as

Ey = [
Ae− jβz + (A−

10 − A)e jβz] sin
πx

a
, for z < 0, (4.139a)

Hx = 1

Z10
[−Ae− jβz + (A−

10 − A)e jβz] sin
πx

a
, for z < 0, (4.139b)

and

Ey = A+
10e− jβz sin

πx

a
, for z > 0, (4.140a)

Hx = −A+
10

Z10
e− jβz sin

πx

a
, for z > 0. (4.140b)
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jB Z10Z10

z = 0 z

FIGURE 4.32 Equivalent circuit of the aperture in a transverse waveguide wall.

Then the reflection and transmission coefficients can be found as

� = A−
10 − A

A
= 4 jβαm

ab
− 1, (4.141a)

T = A+
10

A
= 4 jβαm

ab
, (4.141b )

since Z10 = k0η0/β. Note that |�| > 1; this physically unrealizable result (for a passive
network) is an artifact of the approximations used in the above theory. An equivalent circuit
for this problem can be obtained by comparing the reflection coefficient of (4.141a) with
that of the transmission line with a normalized shunt susceptance, jB, shown in Figure 4.32.
The reflection coefficient seen looking into this line is

� = 1 − yin

1 + yin
= 1 − (1 + jB)

1 + (1 + jB)
= −jB

2 + jB
.

If the shunt susceptance is very large (low impedance), � can be approximated as

� = −1

1 + (2/jB)
� −1 − j

2

B
.

Comparison with (4.141a) suggests that the aperture is equivalent to a normalized inductive
susceptance,

B = −ab

2βαm
.

Coupling Through an Aperture in the Broad Wall of a Waveguide

Another common configuration for aperture coupling is shown in Figure 4.33, where two
parallel waveguides share a common broad wall and are coupled with a small centered
aperture. We will assume a TE10 mode incident from z < 0 in the lower guide (guide 1),

4 3

21

xz a

zy

b

2b

a/20

FIGURE 4.33 Two parallel waveguides coupled through an aperture in a common broad wall.
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and compute the fields coupled to the upper guide. The incident fields can be written as

Ey = A sin
πx

a
e− jβz, (4.142a)

Hx = −A

Z10
sin

πx

a
e− jβz . (4.142b)

The excitation field at the center of the aperture at (x = a/2, y = b, z = 0) is

Ey = A, (4.143a)

Hx = −A

Z10
. (4.143b)

(If the aperture were not centered at x = a/2, the Hz field would be nonzero and would
have to be included.)

From (4.130), (4.131), and (4.134), the equivalent electric and magnetic dipoles for
coupling to the fields in the upper guide are

Jy = jωε0αe Aδ
(

x − a

2

)
δ(y − b)δ(z), (4.144a)

Mx = jωµ0αm A

Z10
δ
(

x − a

2

)
δ(y − b)δ(z). (4.144b)

Note that in this case we have excited both an electric and a magnetic dipole. Let the fields
in the upper guide be expressed as

E−
y = A− sin

πx

a
e+ jβz for z < 0, (4.145a)

H−
x = A−

Z10
sin

πx

a
e+ jβz for z < 0, (4.145b)

E+
y = A+ sin

πx

a
e− jβz for z > 0, (4.146a)

H+
x = −A+

Z10
sin

πx

a
e− jβz for z > 0, (4.146b)

where A+, A− are the unknown amplitudes of the forward and backward traveling waves
in the upper guide, respectively.

By superposition, the total fields in the upper guide due to the electric and magnetic
currents of (4.144) can be found from (4.124) and (4.128) for the forward wave as

A+ = −1

P10

∫
V

(
E−

y Jy − H−
x Mx

)
dv = − jωA

P10

(
ε0αe − µ0αm

Z2
10

)
, (4.147a)

and from (4.126) and (4.129) for the backward wave as

A− = −1

P10

∫
V

(
E+

y Jy − H+
x Mx

)
dv = − jωA

P10

(
ε0αe + µ0αm

Z2
10

)
, (4.147b)

where P10 = ab/Z10. Note that the electric dipole excites the same fields in both direc-
tions, but the magnetic dipole excites oppositely polarized fields in the forward and back-
ward directions.
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PROBLEMS

4.1 Consider the reflection of a TE10 mode, incident from z < 0, at a step change in the height of a
rectangular waveguide, as shown below. Show that if the method of Example 4.2 is used, the result
� = 0 is obtained. Do you think this is the correct solution? Why? (This problem shows that the
one-mode impedance viewpoint does not always provide a correct analysis.)

y

x

z

a

b

z = 0

b/2

4.2 Consider a series RLC circuit with a current I . Calculate the power lost and the stored electric and
magnetic energies, and show that the input impedance can be expressed as in (4.17).

4.3 Show that the input impedance Z of a parallel RLC circuit satisfies the condition that Z(−ω) =
Z∗(ω).

4.4 A two-port network is driven at both ports such that the port voltages and currents have the following
values (Z0 = 50 �):

V1 = 10� 90◦, I1 = 0.2� 90◦,
V2 = 8� 0◦, I2 = 0.16� −90◦.

Determine the input impedance seen at each port, and find the incident and reflected voltages at each
port.
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4.5 Show that the admittance matrix of a lossless N-port network has purely imaginary elements.

4.6 Does a nonreciprocal lossless network always have a purely imaginary impedance matrix?

4.7 Derive the [Z ] and [Y ] matrices for the two-port networks shown in the figure below.

(a) (b)

Port
1

Port
2

Port
1

Port
2ZA YB

YA YA

ZA

ZB

4.8 Consider a two-port network, and let Z (1)
SC , Z (2)

SC , Z (1)
OC, and Z (2)

OC be the input impedance seen
when port 2 is short-circuited, when port 1 is short-circuited, when port 2 is open-circuited, and
when port 1 is open-circuited, respectively. Show that the impedance matrix elements are given by

Z11 = Z (1)
OC, Z22 = Z (2)

OC, Z2
12 = Z2

21 =
(

Z (1)
OC − Z (1)

SC

)
Z (2)

OC.

4.9 Find the impedance parameters of a section of transmission line with length �, characteristic
impedance Z0, and propagation constant β.

4.10 Show that the admittance matrix of the two parallel-connected two-port π networks shown below
can be found by adding the admittance matrices of the individual two-ports. Apply this result to
find the admittance matrix of the bridged-T circuit shown. What is the corresponding result for the
impedance matrix of two series-connected T-networks?

4.11 Find the scattering parameters for the series and shunt loads shown below. Show that S12 = 1 − S11
for the series case, and that S12 = 1 + S11 for the shunt case. Assume a characteristic impedance
Z0.

Port
1

Port
2

Z
Port

1
Port

2Z

4.12 Consider two two-port networks with individual scattering matrices [S A] and [SB ]. Show that the
overall S21 parameter of the cascade of these networks is given by

S21 = S A
21SB

21

1 − S A
22SB

11

.

4.13 Consider a lossless two-port network. (a) If the network is reciprocal, show that |S21|2 = 1 − |S11|2.
(b) If the network is nonreciprocal, show that it is impossible to have unidirectional transmission,
where S12 = 0 and S21 �= 0.
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4.14 A four-port network has the scattering matrix shown as follows. (a) Is this network lossless? (b) Is
this network reciprocal? (c) What is the return loss at port 1 when all other ports are terminated with
matched loads? (d) What is the insertion loss and phase delay between ports 2 and 4 when all other
ports are terminated with matched loads? (e) What is the reflection coefficient seen at port 1 if a short
circuit is placed at the terminal plane of port 3 and all other ports are terminated with matched loads?

[S] =




0.178� 90◦ 0.6� 45◦ 0.4� 45◦ 0
0.6� 45◦ 0 0 0.3� −45◦
0.4� 45◦ 0 0 0.5� −45◦

0 0.3� −45◦ 0.5� −45◦ 0


.

4.15 Show that it is impossible to construct a three-port network that is lossless, reciprocal, and matched
at all ports. Is it possible to construct a nonreciprocal three-port network that is lossless and matched
at all ports?

4.16 Prove the following decoupling theorem: For any lossless reciprocal three-port network, one port (say
port 3) can be terminated in a reactance so that the other two ports (say ports 1 and 2) are decoupled
(no power flow from port 1 to port 2, or from port 2 to port 1).

4.17 A certain three-port network is lossless and reciprocal, and has S13 = S23 and S11 = S22. Show that
if port 2 is terminated with a matched load, then port 1 can be matched by placing an appropriate
reactance at port 3.

4.18 A four-port network has the scattering matrix shown as follows. If ports 3 and 4 are connected with
a lossless matched transmission line with an electrical length of 45◦, find the resulting insertion loss
and phase delay between ports 1 and 2.

[S] =




0.2� 50◦ 0 0 0.4 � −45◦
0 0.6� 45◦ 0.7� −45◦ 0
0 0.7 � −45◦ 0.6� 45◦ 0

0.4� −45◦ 0 0 0.5� 45◦


.

4.19 When normalized to a single characteristic impedance Z0, a certain two-port network has scatter-
ing parameters Si j . Find the generalized scattering parameters, S p

i j , in terms of the real reference
impedances, R01 and R02, at ports 1 and 2, respectively.

4.20 At reference plane A, for the circuit shown below, choose an appropriate reference impedance, find
the power wave amplitudes, and compute the power delivered to the load. Repeat this procedure for
reference plane B. Assume the transmission line is lossless.

Z0 = 70.7 Ω30 V

A B

100 Ω

100 Ω l = ��4

4.21 The ABCD parameters of the first entry in Table 4.1 were derived in Example 4.6. Verify the ABCD
parameters for the second, third, and fourth entries.

4.22 Derive expressions that give the impedance parameters in terms of the ABCD parameters.

4.23 Find the ABCD matrix for the circuit shown below by direct calculation using the definition of the
ABCD matrix, and compare with the ABCD matrix of the appropriate cascade of canonical circuits
from Table 4.1.
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4.24 Use ABCD matrices to find the voltage VL across the load resistor in the circuit shown below.

VLZ 0 = 50 Ω

50 Ω 90°

3 0° ZL = 25 Ω
�

�

1 : 2

V

4.25 A reciprocal two-port network with its ABCD matrix is shown below at left. Prove that the network
with ports 1 and 2 in reversed positions has the ABCD matrix shown below at right. Choose a simple
asymmetrical network to demonstrate this result.

Port
1

Port
2

D

C

B

A

2 1Port
1

Port
2

A

C

B

D

1 2

4.26 Derive the expressions for S parameters in terms of the ABCD parameters, as given in Table 4.2.

4.27 As shown in the figure below, a variable attenuator can be implemented using a four-port 90◦ hybrid
coupler by terminating ports 2 and 3 with equal but adjustable loads. (a) Using the given scattering
matrix for the coupler, show that the transmission coefficient between the input (port 1) and the
output (port 4) is given as T = j�, where � is the reflection coefficient of the mismatch at ports 2
and 3. Also show that the input port is matched for all values of �. (b) Plot the attenuation, in dB,
from the input to the output as a function of ZL/Z0, for 0 ≤ ZL/Z0 ≤ 10 (let ZL be real).

Port 1

Port 4

Port 2

Port 3

ZL

ZL
Γ

Γ

[S ]

[S ] = �1–
2

90°
Hybrid

In

Out
√–

0
j
1
0

j
0
0
1

1
0
0
j

0
1
j
0

4.28 Use signal flow graphs to find the power ratios P2/P1 and P3/P1 for the mismatched three-port
network shown in the accompanying figure.

Port
2

Port
1

Port
3

P1

P2

P3
Γ3

Γ2

[S ] =
0   S12   0

S12   0   S23
0   S23   0

4.29 The ABCD parameters are useful for treating cascades of two-port networks in terms of the total port
voltages and currents, but it is also possible to use incident and reflected voltages to treat cascades.
One way of doing this is with the transfer, or T-, parameters, defined as follows:

[
a1
b1

]
=
[

T11 T12
T21 T22

] [
b2
a2

]
,
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where a1, b1 and a2, b2 are the incident and reflected voltages at ports 1 and 2, respectively. Derive
the T-parameters in terms of the scattering parameters of a two-port network. Show how the
T-parameters can be used for a cascade of two two-port networks.

4.30 The end of an open-circuited microstrip line has fringing fields that can be modeled as a shunt capac-
itor, Cf , at the end of the line, as shown below. This capacitance can be replaced with an additional
length, �, of microstrip line. Derive an expression for the length extension in terms of the fringing
capacitance. Evaluate the length extension for a 50 � open-circuited microstrip line on a substrate
with d = 0.158 cm and εr = 2.2 (w = 0.487 cm, εe = 1.894), if the fringing capacitance is known to
be Cf = 0.075 pF. Compare your result with the approximation given by Hammerstad and Bekkadal:

� = 0.412d

(
εe + 0.3

εe − 0.258

) (
w + 0.262d

w + 0.813d

)
.

CfZ0 Z0 O.C.

�

4.31 For the H-plane step analysis of Section 4.6, compute the complex power flow in the reflected modes
in guide 1, and show that the reactive power is inductive.

4.32 Derive the modal analysis equations for the symmetric H-plane step shown below. (HINT: Because
of symmetry, only the TEn0 modes for n odd will be excited.)

z

x

y

0

y

b

ac x

4.33 Find the transverse Ē and H̄ fields excited by the current of (4.116) by postulating traveling TMmn
modes on either side of the source at z = 0 and applying the appropriate boundary conditions.

4.34 An infinitely long rectangular waveguide is fed with a probe of length d as shown below. The current
on this probe can be approximated as I (y) = I0 sin k(d − y)/ sin kd . If the TE10 mode is the only
propagating mode in the waveguide, compute the input resistance seen at the probe terminals.

y

b

a

d

a/2

x
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4.35 Consider the infinitely long waveguide fed with two probes driven 180◦ out of phase, as shown below.
What are the resulting excitation coefficients for the TE10 and TE20 modes? What other modes can
be excited by this feeding arrangement?

y

b

a

I I

a/4 a/4

x

4.36 Consider a small current loop on the sidewall of a rectangular waveguide, as shown below. Find the
TE10 fields excited by this loop if the loop is of radius r0.

y

b

I0r0

a x

4.37 A rectangular waveguide is shorted at z = 0 and has an electric current sheet, Jsy , located at z = d,
where

Jsy = 2π A

a
sin

πx

a

(see the accompanying figure). Find expressions for the fields generated by this current by assuming
standing wave fields for 0 < z < d, and traveling wave fields for z > d, and applying boundary
conditions at z = 0 and z = d. Now solve the problem using image theory, by placing a current
sheet −Jsy at z = −d, and removing the shorting wall at z = 0. Use the results of Section 4.7 and
superposition to find the fields radiated by these two currents, which should be the same as the first
results for z > 0.

y

0

Jsy

ad z
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C h a p t e r F i v e

Impedance Matching
and Tuning

This chapter marks a turning point, in that we now begin to apply the theory and tech-
niques of previous chapters to practical problems in microwave engineering. We start with the
topic of impedance matching, which is often an important part of a larger design process for
a microwave component or system. The basic idea of impedance matching is illustrated in
Figure 5.1, which shows an impedance matching network placed between a load impedance
and a transmission line. The matching network is ideally lossless, to avoid unnecessary loss of
power, and is usually designed so that the impedance seen looking into the matching network
is Z0. Then reflections will be eliminated on the transmission line to the left of the matching
network, although there will usually be multiple reflections between the matching network and
the load. This procedure is sometimes referred to as tuning. Impedance matching or tuning is
important for the following reasons:

� Maximum power is delivered when the load is matched to the line (assuming the gener-
ator is matched), and power loss in the feed line is minimized.

� Impedance matching sensitive receiver components (antenna, low-noise amplifier, etc.)
may improve the signal-to-noise ratio of the system.

� Impedance matching in a power distribution network (such as an antenna array feed
network) may reduce amplitude and phase errors.

As long as the load impedance, ZL , has a positive real part, a matching network can always
be found. Many choices are available, however, and we will discuss the design and performance
of several types of practical matching networks. Factors that may be important in the selection
of a particular matching network include the following:

� Complexity—As with most engineering solutions, the simplest design that satisfies the
required specifications is generally preferable. A simpler matching network is usually
cheaper, smaller, more reliable, and less lossy than a more complex design.

� Bandwidth—Any type of matching network can ideally give a perfect match (zero
reflection) at a single frequency. In many applications, however, it is desirable to match
a load over a band of frequencies. There are several ways of doing this, with, of course,
a corresponding increase in complexity.

228
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Z0
Matching
network

Load
ZL

FIGURE 5.1 A lossless network matching an arbitrary load impedance to a transmission line.

� Implementation—Depending on the type of transmission line or waveguide being used,
one type of matching network may be preferable to another. For example, tuning
stubs are much easier to implement in waveguide than are multisection quarter-wave
transformers.

� Adjustability—In some applications the matching network may require adjustment to
match a variable load impedance. Some types of matching networks are more amenable
than others in this regard.

5.1 MATCHING WITH LUMPED ELEMENTS (L NETWORKS)

Probably the simplest type of matching network is the L-section, which uses two reac-
tive elements to match an arbitrary load impedance to a transmission line. There are two
possible configurations for this network, as shown in Figure 5.2. If the normalized load
impedance, zL = ZL/Z0, is inside the 1 + j x circle on the Smith chart, then the circuit
of Figure 5.2a should be used. If the normalized load impedance is outside the 1 + j x cir-
cle on the Smith chart, the circuit of Figure 5.2b should be used. The 1 + j x circle is the
resistance circle on the impedance Smith chart for which r = 1.

In either of the configurations of Figure 5.2, the reactive elements may be either induc-
tors or capacitors, depending on the load impedance. Thus, there are eight distinct possibil-
ities for the matching circuit for various load impedances. If the frequency is low enough
and/or the circuit size is small enough, actual lumped-element capacitors and inductors can
be used. This may be feasible for frequencies up to about 1 GHz or so, although modern
microwave integrated circuits may be small enough such that lumped elements can be used
at higher frequencies as well. There is, however, a large range of frequencies and circuit
sizes where lumped elements may not be realizable. This is a limitation of the L-section

Z0

jX

ZL

(a) (b)

jB

jX

ZLjB

FIGURE 5.2 L-section matching networks. (a) Network for zL inside the 1 + j x circle. (b) Net-
work for zL outside the 1 + j x circle.
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matching technique. We will first derive analytic expressions for the matching network
elements of the two cases in Figure 5.2, and then illustrate an alternative design procedure
using the Smith chart.

Analytic Solutions

Although we will discuss a simple graphical solution using the Smith chart, it is also useful
to have simple expressions for the L-section matching network components. These expres-
sions can be used in a computer-aided design program for L-section matching, or when it
is necessary to have more accuracy than the Smith chart can provide.

Consider first the circuit of Figure 5.2a, and let ZL = RL + j X L . We stated that this
circuit would be used when zL = ZL/Z0 is inside the 1 + j x circle on the Smith chart,
which implies that RL > Z0 for this case. The impedance seen looking into the matching
network, followed by the load impedance, must be equal to Z0 for an impedance-matched
condition:

Z0 = j X + 1

j B + 1/(RL + j X L)
. (5.1)

Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B(X RL − X L Z0) = RL − Z0, (5.2a)

X (1 − B X L) = B Z0 RL − X L . (5.2b)

Solving (5.2a) for X and substituting into (5.2b) gives a quadratic equation for B. The
solution is

B =
X L ± √

RL/Z0

√
R2

L + X2
L − Z0 RL

R2
L + X2

L

. (5.3a)

Note that since RL > Z0, the argument of the second square root is always positive. Then
the series reactance can be found as

X = 1

B
+ X L Z0

RL
− Z0

B RL
. (5.3b)

Equation (5.3a) indicates that two solutions are possible for B and X . Both of these
solutions are physically realizable since both positive and negative values of B and X are
possible (positive X implies an inductor and negative X implies a capacitor, while positive
B implies a capacitor and negative B implies an inductor). One solution, however, may
result in significantly smaller values for the reactive components, or may be the preferred
solution if the bandwidth of the match is better, or if the SWR on the line between the
matching network and the load is smaller.

Next consider the circuit of Figure 5.2b. This circuit is used when zL is outside the
1 + j x circle on the Smith chart, which implies that RL < Z0. The admittance seen look-
ing into the matching network, followed by the load impedance, must be equal to 1/Z0 for
an impedance-matched condition:

1

Z0
= j B + 1

RL + j (X + X L)
. (5.4)
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Rearranging and separating into real and imaginary parts gives two equations for the two
unknowns, X and B:

B Z0(X + X L) = Z0 − RL , (5.5a)

(X + X L) = B Z0 RL . (5.5b)

Solving for X and B gives

X = ±√
RL(Z0 − RL) − X L , (5.6a)

B = ±
√

(Z0 − RL)/RL

Z0
. (5.6b)

Because RL < Z0, the arguments of the square roots are always positive. Again, note that
two solutions are possible.

In order to match an arbitrary complex load to a line of characteristic impedance Z0,
the real part of the input impedance to the matching network must be Z0, while the imag-
inary part must be zero. This implies that a general matching network must have at least
two degrees of freedom; in the L-section matching circuit these two degrees of freedom
are provided by the values of the two reactive components.

Smith Chart Solutions

Instead of the above formulas, the Smith chart can be used to quickly and accurately design
L-section matching networks. The procedure is best illustrated by an example.

EXAMPLE 5.1 L-SECTION IMPEDANCE MATCHING

Design an L-section matching network to match a series RC load with an impedance
ZL = 200 − j100 � to a 100 � line at a frequency of 500 MHz.

Solution
The normalized load impedance is zL = 2 − j1, which is plotted on the Smith
chart of Figure 5.3a. This point is inside the 1 + j x circle, so we use the match-
ing circuit of Figure 5.2a. Because the first element from the load is a shunt sus-
ceptance, it makes sense to convert to admittance by drawing the SWR circle
through the load, and a straight line from the load through the center of the chart,
as shown in Figure 5.3a. After we add the shunt susceptance and convert back
to impedance, we want to be on the 1 + j x circle so that we can add a series
reactance to cancel j x and match the load. This means that the shunt suscep-
tance must move us from yL to the 1 + j x circle on the admittance Smith chart.
Thus, we construct the rotated 1 + j x circle as shown in Figure 5.3a (center at
r = 0.333). (A combined ZY chart may be convenient to use here, if it is not too
confusing.) Then we see that adding a susceptance of jb = j0.3 will move us
along a constant-conductance circle to y = 0.4 + j0.5 (this choice is the short-
est distance from yL to the shifted 1 + j x circle). Converting back to impedance
leaves us at z = 1 − j1.2, indicating that a series reactance of x = j1.2 will bring
us to the center of the chart. For comparison, the formulas (5.3a) and (5.3b) give
the solution as b = 0.29, x = 1.22.
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This matching circuit consists of a shunt capacitor and a series inductor,
as shown in Figure 5.3b. For a matching frequency of 500 MHz, the capacitor
has a value of

C = b

2π f Z0
= 0.92 pF,

and the inductor has a value of

L = x Z0

2π f
= 38.8 nH.

It is also interesting to look at the second solution to this matching problem. If
instead of adding a shunt susceptance of b = 0.3, we use a shunt susceptance of
b = −0.7, we will move to a point on the lower half of the shifted 1 + j x circle,
to y = 0.4 − j0.5. Then converting to impedance and adding a series reactance of
x = −1.2 leads to a match as well. Formulas (5.3a) and (5.3b) give this solution as
b = −0.69, x = −1.22. This matching circuit is also shown in Figure 5.3b, and
is seen to have the positions of the inductor and capacitor reversed from the first
matching network. At a frequency of f = 500 MHz, the capacitor has a value of

C = −1

2π f x Z0
= 2.61 pF,
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FIGURE 5.3 Solution to Example 5.1. (a) Smith chart for the L-section matching networks.
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Z0 = 100 Ω ZL = 200 – j100 Ω0.92 pF

38.8 nH

Solution 1

(b)

(c)

Solution
2

Solution
1

f (GHz)

Z0 = 100 Ω ZL = 200 – j100 Ω46.1 nH

2.61pF

Solution 2

0
0

0.25

0.5

0.75

1

0.25 0.5 0.75 1

⎪Γ⎪

FIGURE 5.3 Continued. (b) The two possible L-section matching circuits. (c) Reflection coeffi-
cient magnitudes versus frequency for the matching circuits of (b).

while the inductor has a value of

L = −Z0

2π f b
= 46.1 nH.

Figure 5.3c shows the reflection coefficient magnitude versus frequency for these
two matching networks, assuming that the load impedance of ZL = 200 − j100 �

at 500 MHz consists of a 200 � resistor and a 3.18 pF capacitor in series. There
is not a substantial difference in bandwidth for these two solutions. ■

POINT OF INTEREST: Lumped Elements for Microwave Integrated Circuits

Lumped R, L , and C elements can be practically realized at microwave frequencies if the
length, �, of the component is very small relative to the operating wavelength. Over a limited
range of values, such components can be used in hybrid and monolithic microwave integrated
circuits at frequencies up to 60 GHz, or higher, if the condition that � < λ/10 is satisfied.
Usually, however, the characteristics of such an element are far from ideal, requiring that un-
desirable effects such as parasitic capacitance and/or inductance, spurious resonances, fringing
fields, loss, and perturbations caused by a ground plane be incorporated in the design via a CAD
model (see the Point of Interest concerning CAD).
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Lossy film

Lossy film

Planar resistor

Interdigital
gap capacitor

Chip resistor

Dielectric

Metal-insulator-
metal capacitor

Loop inductor Spiral inductor

Chip capacitor

εr εr

Air
bridge

Resistors are fabricated with thin films of lossy material such as nichrome, tantalum nitride,
or doped semiconductor material. In monolithic circuits such films can be deposited or grown,
whereas chip resistors made from a lossy film deposited on a ceramic chip can be bonded or
soldered in a hybrid circuit. Low resistances are hard to obtain.

Small values of inductance can be realized with a short length or loop of transmission
line, and larger values (up to about 10 nH) can be obtained with a spiral inductor, as shown
in the following figures. Larger inductance values generally incur more loss and more shunt
capacitance; this leads to a resonance that limits the maximum operating frequency.

Capacitors can be fabricated in several ways. A short transmission line stub can provide
a shunt capacitance in the range of 0–0.1 pF. A single gap, or an interdigital set of gaps, in
a transmission line can provide a series capacitance up to about 0.5 pF. Greater values (up to
about 25 pF) can be obtained using a metal-insulator-metal sandwich in either monolithic or
chip (hybrid) form.

5.2 SINGLE-STUB TUNING

Another popular matching technique uses a single open-circuited or short-circuited length
of transmission line (a stub) connected either in parallel or in series with the transmission
feed line at a certain distance from the load, as shown in Figure 5.4. Such a single-stub
tuning circuit is often very convenient because the stub can be fabricated as part of the
transmission line media of the circuit, and lumped elements are avoided. Shunt stubs are
preferred for microstrip line or stripline, while series stubs are preferred for slotline or
coplanar waveguide.

In single-stub tuning the two adjustable parameters are the distance, d, from the load
to the stub position, and the value of susceptance or reactance provided by the stub. For
the shunt-stub case, the basic idea is to select d so that the admittance, Y , seen looking
into the line at distance d from the load is of the form Y0 + j B. Then the stub susceptance
is chosen as − j B, resulting in a matched condition. For the series-stub case, the distance
d is selected so that the impedance, Z , seen looking into the line at a distance d from the
load is of the form Z0 + j X . Then the stub reactance is chosen as − j X , resulting in a
matched condition.

As discussed in Chapter 2, the proper length of an open or shorted transmission line
section can provide any desired value of reactance or susceptance. For a given suscep-
tance or reactance, the difference in lengths of an open- or short-circuited stub is λ/4.
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Y0 Y0

d
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Y0
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Z0
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d

l Z =

(a)

(b)

Open or
shorted

stub

1
Y

ZL

l

FIGURE 5.4 Single-stub tuning circuits. (a) Shunt stub. (b) Series stub.

For transmission line media such as microstrip or stripline, open-circuited stubs are easier
to fabricate since a via hole through the substrate to the ground plane is not needed. For
lines like coax or waveguide, however, short-circuited stubs are usually preferred because
the cross-sectional area of such an open-circuited line may be large enough (electrically)
to radiate, in which case the stub is no longer purely reactive.

We will discuss both Smith chart and analytic solutions for shunt- and series-stub tun-
ing. The Smith chart solutions are fast, intuitive, and usually accurate enough in practice.
The analytic expressions are more precise, and are useful for computer analysis.

Shunt Stubs

The single-stub shunt tuning circuit is shown in Figure 5.4a. We will first discuss an exam-
ple illustrating the Smith chart solution and then derive formulas for d and �.

EXAMPLE 5.2 SINGLE-STUB SHUNT TUNING

For a load impedance ZL = 60 − j80 �, design two single-stub (short circuit)
shunt tuning networks to match this load to a 50 � line. Assuming that the load is
matched at 2 GHz and that the load consists of a resistor and capacitor in series,
plot the reflection coefficient magnitude from 1 to 3 GHz for each solution.

Solution
The first step is to plot the normalized load impedance zL = 1.2 − j1.6, construct
the appropriate SWR circle, and convert to the load admittance, yL , as shown on
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the Smith chart in Figure 5.5a. For the remaining steps we consider the Smith
chart as an admittance chart. Notice that the SWR circle intersects the 1 + jb
circle at two points, denoted as y1 and y2 in Figure 5.5a. Thus the distance d from
the load to the stub is given by either of these two intersections. Reading the WTG
scale, we obtain

d1 = 0.176 − 0.065 = 0.110λ,

d2 = 0.325 − 0.065 = 0.260λ.

Actually, there is an infinite number of distances d around the SWR circle
that intersect the 1 + jb circle. Usually it is desired to keep the matching stub as
close as possible to the load to improve the bandwidth of the match and to reduce
losses caused by a possibly large standing wave ratio on the line between the stub
and the load.

At the two intersection points, the normalized admittances are

y1 = 1.00 + j1.47,

y2 = 1.00 − j1.47.

y2

yL

zL

d2

d1

y1

(a)

FIGURE 5.5 Solution to Example 5.2. (a) Smith chart for the shunt-stub tuners.
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FIGURE 5.5 Continued. (b) The two shunt-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

Thus, the first tuning solution requires a stub with a susceptance of − j1.47. The
length of a short-circuited stub that gives this susceptance can be found on the
Smith chart by starting at y = ∞ (the short circuit) and moving along the outer
edge of the chart (g = 0) toward the generator to the − j1.47 point. The stub
length is then

�1 = 0.095λ.

Similarly, the required short-circuit stub length for the second solution is

�2 = 0.405λ.

This completes the two tuner designs.
To analyze the frequency dependence of these two designs, we need to know

the load impedance as a function of frequency. The series-RC load impedance
is ZL = 60 − j80 � at 2 GHz, so R = 60 � and C = 0.995 pF. The two tun-
ing circuits are shown in Figure 5.5b. Figure 5.5c shows the calculated reflection
coefficient magnitudes for these two solutions. Observe that solution 1 has a sig-
nificantly better bandwidth than solution 2; this is because both d and � are shorter
for solution 1, which reduces the frequency variation of the match. ■
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To derive formulas for d and �, let the load impedance be written as ZL = 1/YL =
RL + j X L . Then the impedance Z down a length d of line from the load is

Z = Z0
(RL + j X L) + j Z0t

Z0 + j (RL + j X L)t
, (5.7)

where t = tan βd . The admittance at this point is

Y = G + j B = 1

Z
,

where

G = RL(1 + t2)

R2
L + (X L + Z0t)2

, (5.8a)

B = R2
L t − (Z0 − X Lt)(X L + Z0t)

Z0
[
R2

L + (X L + Z0t)2
] . (5.8b)

Now d (which implies t) is chosen so that G = Y0 = 1/Z0. From (5.8a), this results in a
quadratic equation for t :

Z0(RL − Z0)t
2 − 2X L Z0t + (

RL Z0 − R2
L − X2

L

) = 0.

Solving for t gives

t =
X L ±

√
RL

[
(Z0 − RL)2 + X2

L

]
/Z0

RL − Z0
for RL �= Z0. (5.9)

If RL = Z0, then t = −X L/2Z0. Thus, the two principal solutions for d are

d

λ
=

⎧⎪⎪⎨
⎪⎪⎩

1

2π
tan−1 t for t ≥ 0

1

2π
(π + tan−1 t) for t < 0.

(5.10)

To find the required stub lengths, first use t in (5.8b) to find the stub susceptance, Bs = −B.
Then, for an open-circuited stub,

�o

λ
= 1

2π
tan−1

(
Bs

Y0

)
= −1

2π
tan−1

(
B

Y0

)
, (5.11a)

and for a short-circuited stub,

�s

λ
= −1

2π
tan−1

(
Y0

Bs

)
= 1

2π
tan−1

(
Y0

B

)
. (5.11b)

If the length given by (5.11a) or (5.11b) is negative, λ/2 can be added to give a positive
result.

Series Stubs

The series-stub tuning circuit is shown in Figure 5.4b. We will illustrate the Smith chart
solution by an example, and then derive expressions for d and �.

EXAMPLE 5.3 SINGLE-STUB SERIES TUNING

Match a load impedance of ZL = 100 + j80 to a 50 � line using a single series
open-circuit stub. Assuming that the load is matched at 2 GHz and that the load
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consists of a resistor and inductor in series, plot the reflection coefficient magni-
tude from 1 to 3 GHz.

Solution
First plot the normalized load impedance, zL = 2 + j1.6, and draw the SWR
circle. For the series-stub design the chart is an impedance chart. Note that the
SWR circle intersects the 1 + j x circle at two points, denoted as z1 and z2 in
Figure 5.6a. The shortest distance, d1, from the load to the stub is, from the WTG
scale,

d1 = 0.328 − 0.208 = 0.120λ,

and the second distance is

d2 = (0.5 − 0.208) + 0.172 = 0.463λ.

As in the shunt-stub case, additional rotations around the SWR circle lead to ad-
ditional solutions, but these are usually not of practical interest.
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FIGURE 5.6 Solution to Example 5.3. (a) Smith chart for the series-stub tuners.



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

240 Chapter 5: Impedance Matching and Tuning

f (GHz)

1.0
0

0.25

0.5

0.75

1.0

1.5 2.0 2.5 3.0

Solution
2

Solution
1

50 Ω
100 Ω

6.37 nH

0.397�

0.120�

50 Ω

50 Ω

Solution 1

(c)

⎪Γ⎪

50 Ω
100 Ω

6.37 nH

0.103�

0.463�

50 Ω

50 Ω

Solution 2
(b)

FIGURE 5.6 Continued. (b) The two series-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

The normalized impedances at the two intersection points are

z1 = 1 − j1.33,

z2 = 1 + j1.33.

Thus, the first solution requires a stub with a reactance of j1.33. The length of
an open-circuited stub that gives this reactance can be found on the Smith chart
by starting at z = ∞ (open circuit), and moving along the outer edge of the chart
(r = 0) toward the generator to the j1.33 point. This gives a stub length of

�1 = 0.397λ.

Similarly, the required open-circuited stub length for the second solution is

�2 = 0.103λ.

This completes the tuner designs.
If the load is a series resistor and inductor with ZL = 100 + j80 � at 2 GHz,

then R = 100 � and L = 6.37 nH. The two matching circuits are shown in
Figure 5.6b. Figure 5.6c shows the calculated reflection coefficient magnitudes
versus frequency for the two solutions. ■
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To derive formulas for d and � for the series-stub tuner, let the load admittance be
written as YL = 1/ZL = GL + j BL . Then the admittance Y down a length d of line from
the load is

Y = Y0
(GL + j BL) + j tY0

Y0 + j t (GL + j BL)
, (5.12)

where t = tan βd and Y0 = 1/Z0. The impedance at this point is

Z = R + j X = 1

Y
,

where

R = GL(1 + t2)

G2
L + (BL + Y0t)2

, (5.13a)

X = G2
L t − (Y0 − t BL)(BL + tY0)

Y0
[
G2

L + (BL + Y0t)2
] . (5.13b)

Now d (which implies t) is chosen so that R = Z0 = 1/Y0. From (5.13a), this results in a
quadratic equation for t :

Y0(GL − Y0)t
2 − 2BL Y0t + (

GL Y0 − G2
L − B2

L

) = 0.

Solving for t gives

t =
BL ±

√
GL

[
(Y0 − GL)2 + B2

L

]
/Y0

GL − Y0
for GL �= Y0. (5.14)

If GL = Y0, then t = −BL/2Y0. Then the two principal solutions for d are

d/λ =

⎧⎪⎪⎨
⎪⎪⎩

1

2π
tan−1 t for t ≥ 0

1

2π
(π + tan−1 t) for t < 0.

(5.15)

The required stub lengths are determined by first using t in (5.13b) to find the reactance
X . This reactance is the negative of the necessary stub reactance, Xs . Thus, for a short-
circuited stub,

�s

λ
= 1

2π
tan−1

(
Xs

Z0

)
= −1

2π
tan−1

(
X

Z0

)
, (5.16a)

and for an open-circuited stub,

�o

λ
= −1

2π
tan−1

(
Z0

Xs

)
= 1

2π
tan−1

(
Z0

X

)
. (5.16b)

If the length given by (5.16a) or (5.16b) is negative, λ/2 can be added to give a positive
result.

5.3 DOUBLE-STUB TUNING

The single-stub tuner of the previous section is able to match any load impedance (having
a positive real part) to a transmission line, but suffers from the disadvantage of requiring
a variable length of line between the load and the stub. This may not be a problem for a
fixed matching circuit, but would probably pose some difficulty if an adjustable tuner was
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FIGURE 5.7 Double-stub tuning. (a) Original circuit with the load an arbitrary distance from the
first stub. (b) Equivalent circuit with the load transformed to the first stub.

desired. In this case, the double-stub tuner, which uses two tuning stubs in fixed positions,
can be used. Such tuners are often fabricated in coaxial line with adjustable stubs connected
in shunt to the main coaxial line. We will see, however, that a double-stub tuner cannot
match all load impedances.

The double-stub tuner circuit is shown in Figure 5.7a, where the load may be an ar-
bitrary distance from the first stub. Although this is more representative of a practical sit-
uation, the circuit of Figure 5.7b, where the load Y ′

L has been transformed back to the
position of the first stub, is easier to deal with and does not lose any generality. The shunt
stubs shown in Figure 5.7 can be conveniently implemented for some types of transmission
lines, while series stubs are more appropriate for other types of lines. In either case, the
stubs can be open-circuited or short-circuited.

Smith Chart Solution

The Smith chart of Figure 5.8 illustrates the basic operation of the double-stub tuner. As
in the case of the single-stub tuner, two solutions are possible. The susceptance of the first
stub, b1 (or b′

1, for the second solution), moves the load admittance to y1 (or y′
1). These

points lie on the rotated 1 + jb circle; the amount of rotation is d wavelengths toward the
load, where d is the electrical distance between the two stubs. Then transforming y1 (or
y′

1) toward the generator through a length d of line leaves us at the point y2 (or y′
2), which

must be on the 1 + jb circle. The second stub then adds a susceptance b2 (or b′
2), which

brings us to the center of the chart and completes the match.
Notice from Figure 5.8 that if the load admittance, yL , were inside the shaded region

of the g0 + jb circle, no value of stub susceptance b1 could ever bring the load point to
intersect the rotated 1 + jb circle. This shaded region thus forms a forbidden range of load
admittances that cannot be matched with this particular double-stub tuner. A simple way
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FIGURE 5.8 Smith chart diagram for the operation of a double-stub tuner.

of reducing the forbidden range is to reduce the distance d between the stubs. This has
the effect of swinging the rotated 1 + jb circle back toward the y = ∞ point, but d must
be kept large enough for the practical purpose of fabricating the two separate stubs. In
addition, stub spacings near 0 or λ/2 lead to matching networks that are very frequency
sensitive. In practice, stub spacings are usually chosen as λ/8 or 3λ/8. If the length of line
between the load and the first stub can be adjusted, then the load admittance yL can always
be moved out of the forbidden region.

EXAMPLE 5.4 DOUBLE-STUB TUNING

Design a double-stub shunt tuner to match a load impedance ZL = 60 − j80 �

to a 50 � line. The stubs are to be open-circuited stubs and are spaced λ/8 apart.
Assuming that this load consists of a series resistor and capacitor and that the
match frequency is 2 GHz, plot the reflection coefficient magnitude versus fre-
quency from 1 to 3 GHz.

Solution
The normalized load admittance is yL = 0.3 + j0.4, which is plotted on the Smith
chart of Figure 5.9a. Next we construct the rotated 1 + jb conductance circle by
moving every point on the g = 1 circle λ/8 toward the load. We then find the
susceptance of the first stub, which can be one of two possible values:

b1 = 1.314 or b′
1 = −0.114.

We now transform through the λ/8 section of line by rotating along a constant-
radius (SWR) circle λ/8 toward the generator. This brings the two solutions to the
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following points:

y2 = 1 − j3.38 or y′
2 = 1 + j1.38.

Then the susceptance of the second stub should be

b2 = 3.38 or b′
2 = −1.38.

The lengths of the open-circuited stubs are then found as

�1 = 0.146λ, �2 = 0.204λ or �′
1 = 0.482λ, �′

2 = 0.350λ.

This completes both solutions for the double-stub tuner design.
At f = 2 GHz the resistor-capacitor load of ZL = 60 − j80 � implies that

R = 60 � and C = 0.995 pF. The two tuning circuits are then as shown in
Figure 5.9b, and the reflection coefficient magnitudes are plotted versus frequency
in Figure 5.9c. Note that the first solution has a much narrower bandwidth than
the second (primed) solution due to the fact that both stubs for the first solution
are somewhat longer (and closer to λ/2) than the stubs of the second solution. ■
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FIGURE 5.9 Solution to Example 5.4. (a) Smith chart for the double-stub tuners.
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FIGURE 5.9 Continued. (b) The two double-stub tuning solutions. (c) Reflection coefficient mag-
nitudes versus frequency for the tuning circuits of (b).

Analytic Solution

The admittance just to the left of the first stub in Figure 5.7b is

Y1 = GL + j (BL + B1), (5.17)

where YL = GL + j BL is the load admittance, and B1 is the susceptance of the first stub.
After transforming through a length d of transmission line, we find that the admittance just
to the right of the second stub is

Y2 = Y0
GL + j (BL + B1 + Y0t)

Y0 + j t (GL + j BL + j B1)
, (5.18)

where t = tan βd and Y0 = 1/Z0. At this point the real part of Y2 must equal Y0, which
leads to the equation

G2
L − GL Y0

1 + t2

t2
+ (Y0 − BLt − B1t)2

t2
= 0. (5.19)

Solving for GL gives

GL = Y0
1 + t2

2t2

[
1 ±

√
1 − 4t2(Y0 − BLt − B1t)2

Y 2
0 (1 + t2)2

]
. (5.20)
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Because GL is real, the quantity within the square root must be nonnegative, and so

0 ≤ 4t2(Y0 − BLt − B1t)2

Y 2
0 (1 + t2)2

≤ 1.

This implies that

0 ≤ GL ≤ Y0
1 + t2

t2
= Y0

sin2 βd
, (5.21)

which gives the range on GL that can be matched for a given stub spacing d. After d has
been set, the first stub susceptance can be determined from (5.19) as

B1 = −BL +
Y0 ±

√
(1 + t2)GL Y0 − G2

L t2

t
. (5.22)

Then the second stub susceptance can be found from the negative of the imaginary part of
(5.18) to be

B2 =
±Y0

√
Y0GL(1 + t2) − G2

L t2 + GL Y0

GLt
. (5.23)

The upper and lower signs in (5.22) and (5.23) correspond to the same solutions. The
open-circuited stub length is found as

�o

λ
= 1

2π
tan−1

(
B

Y0

)
, (5.24a)

and the short-circuited stub length is found as

�s

λ
= −1

2π
tan−1

(
Y0

B

)
, (5.24b)

where B = B1 or B2.

5.4 THE QUARTER-WAVE TRANSFORMER

As introduced in Section 2.5, the quarter-wave transformer is a simple and useful circuit
for matching a real load impedance to a transmission line. An additional feature of the
quarter-wave transformer is that it can be extended to multisection designs in a methodical
manner to provide broader bandwidth. If only a narrow band impedance match is required,
a single-section transformer may suffice. However, as we will see in the next few sec-
tions, multisection quarter-wave transformer designs can be synthesized to yield optimum
matching characteristics over a desired frequency band. We will see in Chapter 8 that such
networks are closely related to bandpass filters.

One drawback of the quarter-wave transformer is that it can only match a real load
impedance. A complex load impedance can always be transformed into a real impedance,
however, by using an appropriate length of transmission line between the load and the
transformer, or an appropriate series or shunt reactive element. These techniques will usu-
ally alter the frequency dependence of the load, and this often has the effect of reducing
the bandwidth of the match.

In Section 2.5 we analyzed the operation of a quarter-wave transformer from both
an impedance viewpoint and a multiple reflection viewpoint. Here we will concentrate
on the bandwidth performance of the transformer as a function of the load mismatch; this



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

5.4 The Quarter-Wave Transformer 247

l

Z0 Z1 ZL (real)

FIGURE 5.10 A single-section quarter-wave matching transformer. � = λ0/4 at the design fre-
quency f0.

discussion will also serve as a prelude to the more general case of multisection transformers
in the sections to follow.

The single-section quarter-wave matching transformer circuit is shown in Figure 5.10,
with the characteristic impedance of the matching section given as

Z1 = √
Z0 ZL . (5.25)

At the design frequency, f0, the electrical length of the matching section is λ0/4, but at
other frequencies the length is different, so a perfect match is no longer obtained. We will
derive an approximate expression for the resulting impedance mismatch versus frequency.

The input impedance seen looking into the matching section is

Zin = Z1
ZL + j Z1t

Z1 + j ZL t
, (5.26)

where t = tan β� = tan θ , and β� = θ = π/2 at the design frequency f0. The resulting re-
flection coefficient is

� = Z in − Z0

Z in + Z0
= Z1(ZL − Z0) + j t

(
Z2

1 − Z0 ZL
)

Z1(ZL + Z0) + j t
(
Z2

1 + Z0 ZL
) . (5.27)

Because Z2
1 = Z0 ZL , this reduces to

� = ZL − Z0

ZL + Z0 + j2t
√

Z0 ZL
. (5.28)

The reflection coefficient magnitude is

|�| = |ZL − Z0|[
(ZL + Z0)2 + 4t2 Z0 ZL

]1/2

= 1{
(ZL + Z0)2/(ZL − Z0)2 + [4t2 Z0 ZL/(ZL − Z0)2]}1/2

= 1{
1 + [4Z0 ZL/(ZL − Z0)2] + [4Z0 ZLt2/(ZL − Z0)2]}1/2

= 1{
1 + [4Z0 ZL/(ZL − Z0)2] sec2 θ

}1/2
, (5.29)

since 1 + t2 = 1 + tan2 θ = sec2 θ .
If we assume that the operating frequency is near the design frequency f0, then � �

λ0/4 and θ � π/2. Then sec2 θ � 1, and (5.29) simplifies to

|�| � |ZL − Z0|
2
√

Z0 ZL
| cos θ | for θ near π/2. (5.30)
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FIGURE 5.11 Approximate behavior of the reflection coefficient magnitude for a single-section
quarter-wave transformer operating near its design frequency.

This result gives the approximate mismatch of the quarter-wave transformer near the design
frequency, as sketched in Figure 5.11.

If we set a maximum value, �m , for an acceptable reflection coefficient magnitude,
then the bandwidth of the matching transformer can be defined as

�θ = 2
(π

2
− θm

)
, (5.31)

since the response of (5.29) is symmetric about θ = π /2, and � = �m at θ = θm and at
θ = π − θm . Equating �m to the exact expression for the reflection coefficient magnitude
in (5.29) allows us to solve for θm :

1

�2
m

= 1 +
(

2
√

Z0 ZL

ZL − Z0
sec θm

)2

,

or

cos θm = �m√
1 − �2

m

2
√

Z0 ZL

|ZL − Z0| . (5.32)

If we assume TEM lines, then

θ = β� = 2π f

vp

vp

4 f0
= π f

2 f0
,

and so the frequency of the lower band edge at θ = θm is

fm = 2θm f0

π
,

and the fractional bandwidth is, using (5.32),

� f

f0
= 2( f0 − fm)

f0
= 2 − 2 fm

f0
= 2 − 4θm

π

= 2 − 4

π
cos−1

[
�m√

1 − �2
m

2
√

Z0 ZL

|ZL − Z0|

]
. (5.33)

Fractional bandwidth is usually expressed as a percentage, 100� f/ f0%. Note that the
bandwidth of the transformer increases as ZL becomes closer to Z0 (a less mismatched
load).

The above results are strictly valid only for TEM lines. When non-TEM lines (such as
waveguides) are used, the propagation constant is no longer a linear function of frequency,
and the wave impedance will be frequency dependent. These factors serve to complicate
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FIGURE 5.12 Reflection coefficient magnitude versus frequency for a single-section quarter-
wave matching transformer with various load mismatches.

the general behavior of quarter-wave transformers for non-TEM lines, but in practice the
bandwidth of the transformer is often small enough that these complications do not sub-
stantially affect the result. Another factor ignored in the above analysis is the effect of
reactances associated with discontinuities when there is a step change in the dimensions of
a transmission line. This can often be compensated by making a small adjustment in the
length of the matching section.

Figure 5.12 shows a plot of the reflection coefficient magnitude versus normalized
frequency for various mismatched loads. Note the trend of increased bandwidth for smaller
load mismatches.

EXAMPLE 5.5 QUARTER-WAVE TRANSFORMER BANDWIDTH

Design a single-section quarter-wave matching transformer to match a 10 � load
to a 50 � transmission line at f0 = 3 GHz. Determine the percent bandwidth for
which the SWR ≤ 1.5.

Solution
From (5.25), the characteristic impedance of the matching section is

Z1 = √
Z0 ZL = √

(50)(10) = 22.36 �,

and the length of the matching section is λ/4 at 3 GHz (the physical length de-
pends on the dielectric constant of the line). An SWR of 1.5 corresponds to a
reflection coefficient magnitude of

�m = SWR − 1

SWR + 1
= 1.5 − 1

1.5 + 1
= 0.2.

The fractional bandwidth is computed from (5.33) as

� f

f0
= 2 − 4

π
cos−1

[
�m√

1 − �2
m

2
√

Z0 ZL

|ZL − Z0|

]

= 2 − 4

π
cos−1

[
0.2√

1 − (0.2)2

2
√

(50)(10)

|10 − 50|

]

= 0.29, or 29%. ■



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

250 Chapter 5: Impedance Matching and Tuning

5.5 THE THEORY OF SMALL REFLECTIONS

The quarter-wave transformer provides a simple means of matching any real load imped-
ance to any transmission line impedance. For applications requiring more bandwidth than a
single quarter-wave section can provide, multisection transformers can be used. The design
of such transformers is the subject of the next two sections, but prior to that material we
need to derive some approximate results for the total reflection coefficient caused by the
partial reflections from several small discontinuities. This topic is generally referred to as
the theory of small reflections [1].

Single-Section Transformer

We will derive an approximate expression for the overall reflection coefficient, �, for
the single-section matching transformer shown in Figure 5.13. The partial reflection and
transmission coefficients are

�1 = Z2 − Z1

Z2 + Z1
, (5.34)

�2 = −�1, (5.35)

�3 = ZL − Z2

ZL + Z2
, (5.36)

T21 = 1 + �1 = 2Z2

Z1 + Z2
, (5.37)

T12 = 1 + �2 = 2Z1

Z1 + Z2
. (5.38)

We can compute the total reflection, �, seen by the feed line using either the impedance
method, or the multiple reflection method, as discussed in Section 2.5. For our present

T21

T12

T12

ZL
Z2Z1

T21

T12

Γ3Γ2Γ1

Γ

�l = θ

Γ3

Γ3

Γ3

Γ1

1
e–j�

e–j�

e–j�

e–j�

e–j�

FIGURE 5.13 Partial reflections and transmissions on a single-section matching transformer.



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

5.5 The Theory of Small Reflections 251

purpose the latter technique is preferred, so we express the total reflection as an infinite
sum of partial reflections and transmissions as follows:

� = �1 + T12T21�3e−2 jθ + T12T21�
2
3�2e−4 jθ + · · ·

= �1 + T12T21�3e−2 jθ
∞∑

n=0

�n
2�n

3 e−2 jnθ . (5.39)

The summation of the geometric series
∞∑

n=0

xn = 1

1 − x
for |x | < 1

allows us to express (5.39) in closed form as

� = �1 + T12T21�3e−2 jθ

1 − �2�3e−2 jθ
. (5.40)

From (5.35), (5.37), and (5.38), we use �2 = −�1, T21 = 1 + �1, and T12 = 1 − �1 in
(5.40) to give

� = �1 + �3e−2 jθ

1 + �1�3e−2 jθ
. (5.41)

If the discontinuities between the impedances Z1, Z2 and Z2, ZL are small, then |�1�3|=1,
so we can approximate (5.41) as

� � �1 + �3e−2 jθ . (5.42)

This result expresses the intuitive idea that the total reflection is dominated by the reflection
from the initial discontinuity between Z1 and Z2 (�1), and the first reflection from the
discontinuity between Z2 and ZL (�3e−2 jθ ). The e−2 jθ term accounts for the phase delay
when the incident wave travels up and down the line. The accuracy of this approximation
is illustrated in Problem 5.14.

Multisection Transformer

Now consider the multisection transformer shown in Figure 5.14, which consists of N
equal-length (commensurate) sections of transmission lines. We will derive an approximate
expression for the total reflection coefficient �.

Partial reflection coefficients can be defined at each junction, as follows:

�0 = Z1 − Z0

Z1 + Z0
, (5.43a)

�n = Zn+1 − Zn

Zn+1 + Zn
, (5.43b)

�N = ZL − Z N

ZL + Z N
. (5.43c)

Z0
Γ

Γ0 Γ1 Γ2 ΓN

Z1 Z2 ZN ZL

���

FIGURE 5.14 Partial reflection coefficients for a multisection matching transformer.
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We also assume that all Zn increase or decrease monotonically across the transformer
and that ZL is real. This implies that all �n will be real and of the same sign (�n > 0
if ZL > Z0; �n < 0 if ZL < Z0). Using the results of the previous section allows us to
approximate the overall reflection coefficient as

�(θ) = �0 + �1e−2 jθ + �2e−4 jθ + · · · + �N e−2 j Nθ . (5.44)

Further assume that the transformer can be made symmetrical, so that �0 = �N , �1 =
�N−1, �2 = �N−2, and so on. (Note that this does not imply that the Zn are symmetrical.)
Then (5.44) can be written as

�(θ) = e− j Nθ
{
�0[e j Nθ + e− j Nθ ] + �1[e j (N−2)θ + e− j (N−2)θ ] + · · ·

}
. (5.45)

If N is odd, the last term is �(N−1)/2(e jθ + e− jθ ), while if N is even, the last term is �N/2.

Equation (5.45) is seen to be of the form of a finite Fourier cosine series in θ , which can
be written as

�(θ) = 2e− j Nθ

[
�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ

+ · · · + 1

2
�N/2

]
for N even, (5.46a )

�(θ) = 2e− j Nθ [�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ

+ · · · + �(N−1)/2 cos θ ] for N odd. (5.46b)

The importance of these results lies in the fact that we can synthesize any desired
reflection coefficient response as a function of frequency (θ ) by properly choosing the �n

and using enough sections (N ). This should be clear from the realization that a Fourier se-
ries can approximate an arbitrary smooth function if enough terms are used. In the next two
sections we will show how to use this theory to design multisection transformers for two
of the most commonly used passband responses: the binomial (maximally flat) response,
and the Chebyshev (equal-ripple) response.

5.6 BINOMIAL MULTISECTION MATCHING TRANSFORMERS

The passband response (the frequency band where a good impedance match is achieved)
of a binomial matching transformer is optimum in the sense that, for a given number of
sections, the response is as flat as possible near the design frequency. This type of response,
which is also known as maximally flat, is determined for an N -section transformer by
setting the first N − 1 derivatives of |�(θ)| to zero at the center frequency, f0. Such a
response can be obtained with a reflection coefficient of the following form:

�(θ) = A(1 + e−2 jθ )N . (5.47)

Then the reflection coefficient magnitude is

|�(θ)| = |A||e− jθ |N |e jθ + e− jθ |N

= 2N |A|| cos θ |N (5.48)

Note that |�(θ)| = 0 for θ = π/2, and that dn|�(θ)|/dθn = 0 at θ = π/2 for n = 1, 2, . . . ,

N − 1. (θ = π/2 corresponds to the center frequency, f0, for which � = λ/4 and θ =
β� = π/2.)
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We can determine the constant A by letting f → 0. Then θ = β� = 0, and (5.47)
reduces to

�(0) = 2N A = ZL − Z0

ZL + Z0
,

since for f = 0 all sections are of zero electrical length. The constant A can then be written
as

A = 2−N ZL − Z0

ZL + Z0
. (5.49)

Next we expand �(θ) in (5.47) according to the binomial expansion:

�(θ) = A(1 + e−2 jθ )N = A
N∑

n=0

C N
n e−2 jnθ , (5.50)

where

C N
n = N !

(N − n)!n! (5.51)

are the binomial coefficients. Note that C N
n = C N

N−n, C N
0 = 1, and C N

1 = N = C N
N−1. The

key step is now to equate the desired passband response, given by (5.50), to the actual
response as given (approximately) by (5.44):

�(θ) = A
N∑

n=0

C N
n e−2 jnθ = �0 + �1e−2 jθ + �2e−4 jθ + · · · + �N e−2 j Nθ .

This shows that the �n must be chosen as

�n = AC N
n . (5.52)

where A is given by (5.49) and C N
n is a binomial coefficient.

At this point, the characteristic impedances, Zn , can be found via (5.43), but a simpler
solution can be obtained using the following approximation [1]. Because we assumed that
the �n are small, we can write

�n = Zn+1 − Zn

Zn+1 + Zn
� 1

2
ln

Zn+1

Zn
,

since ln x � 2(x − 1)/(x + 1) for x close to unity. Then, using (5.52) and (5.49) gives

ln
Zn+1

Zn
� 2�n = 2AC N

n = 2(2−N )
ZL − Z0

ZL + Z0
C N

n � 2−N C N
n ln

ZL

Z0
, (5.53)

which can be used to find Zn+1, starting with n = 0. This technique has the advantage of
ensuring self-consistency, in that Z N+1 computed from (5.53) will be equal to ZL , as it
should.

Exact design results, including the effect of multiple reflections in each section, can
be found by using the transmission line equations for each section and numerically solv-
ing for the characteristic impedances [2]. The results of such calculations are listed in
Table 5.1, which gives the exact line impedances for N = 2-, 3-, 4-, 5-, and 6-section
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binomial matching transformers for various ratios of load impedance, ZL , to feed line
impedance, Z0. The table gives results only for ZL/Z0 > 1; if ZL/Z0 < 1, the results for
Z0/ZL should be used but with Z1 starting at the load end. This is because the solution is
symmetric about ZL/Z0 = 1; the same transformer that matches ZL to Z0 can be reversed
and used to match Z0 to ZL . More extensive tables can be found in reference [2].

The bandwidth of the binomial transformer can be evaluated as follows. As in Section
5.4, let �m be the maximum value of reflection coefficient that can be tolerated over the
passband. Then from (5.48),

�m = 2N |A| cosN θm,

where θm < π/2 is the lower edge of the passband, as shown in Figure 5.11. Thus,

θm = cos−1

[
1

2

(
�m

|A|
)1/N

]
, (5.54)

and using (5.33) gives the fractional bandwidth as

� f

f0
= 2( f0 − fm)

f0
= 2 − 4θm

π

= 2 − 4

π
cos−1

[
1

2

(
�m

|A|
)1/N

]
. (5.55)

EXAMPLE 5.6 BINOMIAL TRANSFORMER DESIGN

Design a three-section binomial transformer to match a 50 � load to a 100 �

line and calculate the bandwidth for �m = 0.05. Plot the reflection coefficient
magnitude versus normalized frequency for the exact designs using 1, 2, 3, 4, and
5 sections.

Solution
For N = 3, ZL = 50 �, and Z0 = 100 � we have, from (5.49) and (5.53),

A = 2−N ZL − Z0

ZL + Z0
� 1

2N+1
ln

ZL

Z0
= −0.0433.

From (5.55) the bandwidth is

� f

f0
= 2 − 4

π
cos−1

[
1

2

(
�m

|A|
)1/N

]

= 2 − 4

π
cos−1

[
1

2

(
0.05

0.0433

)1/3
]

= 0.70, or 70%.

The necessary binomial coefficients are

C3
0 = 3!

3!0! = 1,

C3
1 = 3!

2!1! = 3,

C3
2 = 3!

1!2! = 3.
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f/f0

1/3
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0.1
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0.3

1 5/3

⎪Γ⎪ N = 1

2
3

4

5

FIGURE 5.15 Reflection coefficient magnitude versus frequency for multisection binomial
matching transformers of Example 5.6. ZL = 50 � and Z0 = 100 �.

Using (5.53) gives the required characteristic impedances as

n = 0 : ln Z1 = ln Z0 + 2−N C3
0 ln

ZL

Z0

= ln 100 + 2−3(1) ln
50

100
= 4.518,

Z1 = 91.7 �;
n = 1 : ln Z2 = ln Z1 + 2−N C3

1 ln
ZL

Z0

= ln 91.7 + 2−3(3) ln
50

100
= 4.26,

Z2 = 70.7 �;
n = 2 : ln Z3 = ln Z2 + 2−N C3

2 ln
ZL

Z0

= ln 70.7 + 2−3(3) ln
50

100
= 4.00,

Z3 = 54.5 �.

To use the data in Table 5.1 we reverse the source and load impedances and
consider the problem of matching a 100 � load to a 50 � line. Then ZL/Z0 = 2.0,
and we obtain the exact characteristic impedances as Z1 = 91.7 �, Z2 = 70.7 �,
and Z3 = 54.5 �, which agree with the approximate results to three significant
digits. Figure 5.15 shows the reflection coefficient magnitude versus frequency for
exact designs using N = 1, 2, 3, 4, and 5 sections. Observe that greater bandwidth
is obtained for transformers using more sections. ■

5.7 CHEBYSHEV MULTISECTION MATCHING TRANSFORMERS

In contrast with the binomial transformer, the multisection Chebyshev matching trans-
former optimizes bandwidth at the expense of passband ripple. Compromising on the flat-
ness of the passband response leads to a bandwidth that is substantially better than that of
the binomial transformer for a given number of sections. The Chebyshev transformer is
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designed by equating �(θ) to a Chebyshev polynomial, which has the optimum character-
istics needed for this type of transformer. We will first discuss the properties of Chebyshev
polynomials and then derive a design procedure for Chebyshev matching transformers us-
ing the small-reflection theory of Section 5.5.

Chebyshev Polynomials

The nth-order Chebyshev polynomial is a polynomial of degree n, denoted by Tn(x). The
first four Chebyshev polynomials are

T1(x) = x, (5.56a)

T2(x) = 2x2 − 1, (5.56b)

T3(x) = 4x3 − 3x, (5.56c)

T4(x) = 8x4 − 8x2 + 1. (5.56d)

Higher order polynomials can be found using the following recurrence formula:

Tn(x) = 2xTn−1(x) − Tn−2(x). (5.57)

The first four Chebyshev polynomials are plotted in Figure 5.16, from which the fol-
lowing very useful properties of Chebyshev polynomials can be noted:

� For −1 ≤ x ≤ 1, |Tn(x)| ≤ 1. In this range the Chebyshev polynomials oscillate
between ±1. This is the equal-ripple property, and this region will be mapped to
the passband of the matching transformer.

� For |x | >1, |Tn(x)| >1. This region will map to the frequency range outside the
passband.

� For |x | >1, the |Tn(x)| increases faster with x as n increases.

2

–2

–4

–6

4

6

Tn(x)

0.5–1.5 –1.0 1.5

4 3

2

n = 1

–0.5

x1.0

FIGURE 5.16 The first four Chebyshev polynomials, Tn(x).
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Now let x = cos θ for |x | < 1. Then it can be shown that the Chebyshev polynomials
can be expressed as

Tn(cos θ) = cos nθ,

or more generally as

Tn(x) = cos(n cos−1 x) for |x | < 1, (5.58a)

Tn(x) = cosh(n cosh−1 x) for x > 1. (5.58b)

We desire equal ripple for the passband response of the transformer, so it is necessary to
map θm to x = 1 and π − θm to x = −1, where θm and π − θm are the lower and upper
edges of the passband, respectively, as shown in Figure 5.11. This can be accomplished by
replacing cos θ in (5.58a) with cos θ/cos θm :

Tn

(
cos θ

cos θm

)
= Tn(sec θm cos θ) = cos n

[
cos−1

(
cos θ

cos θm

)]
. (5.59)

Then | sec θm cos θ | ≤ 1 for θm < θ < π − θm, so |Tn(sec θm cos θ)| ≤ 1 over this same
range.

Because cosn θ can be expanded into a sum of terms of the form cos(n − 2m)θ , the
Chebyshev polynomials of (5.56) can be rewritten in the following useful form:

T1(sec θm cos θ) = sec θm cos θ, (5.60a)

T2(sec θm cos θ) = sec2 θm(1 + cos 2θ) − 1, (5.60b)

T3(sec θm cos θ) = sec3 θm(cos 3θ + 3 cos θ) − 3 sec θm cos θ, (5.60c)

T4(sec θm cos θ) = sec4 θm(cos 4θ + 4 cos 2θ + 3)

−4 sec2 θm(cos 2θ + 1) + 1. (5.60d)

These results can be used to design matching transformers with up to four sections, and
will also be used in later chapters for the design of directional couplers and filters.

Design of Chebyshev Transformers

We can now synthesize a Chebyshev equal-ripple passband by making �(θ) proportional
to TN (sec θm cos θ), where N is the number of sections in the transformer. Thus, using
(5.46), we have

�(θ) = 2e− j Nθ [�0 cos Nθ + �1 cos(N − 2)θ + · · · + �n cos(N − 2n)θ + · · ·]
= Ae− j Nθ TN (sec θm cos θ), (5.61)

where the last term in the series of (5.61) is (1/2)�N/2 for N even and �(N−1)/2 cos θ for
N odd. As in the binomial transformer case, we can find the constant A by letting θ = 0,
corresponding to zero frequency. Thus,

�(0) = ZL − Z0

ZL + Z0
= ATN (sec θm),

so we have

A = ZL − Z0

ZL + Z0

1

TN (sec θm)
. (5.62)

If the maximum allowable reflection coefficient magnitude in the passband is �m , then
from (5.61) �m= |A| since the maximum value of Tn(sec θm cos θ) in the passband is unity.



c05ImpedanceMatchingandTuning Pozar July 29, 2011 20:34

5.7 Chebyshev Multisection Matching Transformers 259

Then (5.62) gives

TN (sec θm) = 1

�m

∣∣∣∣ ZL − Z0

ZL + Z0

∣∣∣∣,
which, after using (5.58b) and the approximations introduced in Section 5.6, allows us to
determine θm as

sec θm = cosh

[
1

N
cosh−1

(
1

�m

∣∣∣∣ ZL − Z0

ZL + Z0

∣∣∣∣
)]

� cosh

[
1

N
cosh−1

(∣∣∣∣ ln ZL/Z0

2�m

∣∣∣∣
)]

. (5.63)

Once θm is known, the fractional bandwidth can be calculated from (5.33) as

� f

f0
= 2 − 4θm

π
. (5.64)

From (5.61), the �n can be determined using the results of (5.60) to expand TN (sec θm cos θ)

and equating similar terms of the form cos(N − 2n)θ . The characteristic impedances Zn

can be found from (5.43), although, as in the case of the binomial transformer, accuracy
can be improved and self-consistency can be achieved by using the approximation that

�n � 1

2
ln

Zn+1

Zn
.

This procedure will be illustrated in Example 5.7.
The above results are approximate because of the reliance on small-reflection theory

but are general enough to design transformers with an arbitrary ripple level, �m . Table 5.2
gives exact results [2] for a few specific values of �m for N = 2, 3, and 4 sections; more
extensive tables can be found in reference [2].

EXAMPLE 5.7 CHEBYSHEV TRANSFORMER DESIGN

Design a three-section Chebyshev transformer to match a 100 � load to a 50 �

line with �m = 0.05, using the above theory. Plot the reflection coefficient mag-
nitude versus normalized frequency for exact designs using 1, 2, 3, and 4 sections.

Solution
From (5.61) with N = 3,

�(θ) = 2e− j3θ (�0 cos 3θ + �1 cos θ) = Ae− j3θ T3(sec θm cos θ).

Then A = �m = 0.05, and from (5.63),

sec θm = cosh

[
1

N
cosh−1

(
ln ZL/Z0

2�m

)]

= cosh

[
1

3
cosh−1

(
ln(100/50)

2(0.05)

)]

= 1.408,

so θm = 44.7◦.
Using (5.60c) for T3 gives

2 (�0 cos 3θ + �1 cos θ) = A sec3 θm(cos 3θ + 3 cos θ) − 3A sec θm cos θ.
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TABLE 5.2 Chebyshev Transformer Design

N = 2 N = 3

�m = 0.05 �m = 0.20 �m = 0.05 �m = 0.20

ZL/Z0 Z1/Z0 Z2/Z0 Z1/Z0 Z2/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z1/Z0 Z2/Z0 Z3/Z0

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.1347 1.3219 1.2247 1.2247 1.1029 1.2247 1.3601 1.2247 1.2247 1.2247

2.0 1.2193 1.6402 1.3161 1.5197 1.1475 1.4142 1.7429 1.2855 1.4142 1.5558

3.0 1.3494 2.2232 1.4565 2.0598 1.2171 1.7321 2.4649 1.3743 1.7321 2.1829

4.0 1.4500 2.7585 1.5651 2.5558 1.2662 2.0000 3.1591 1.4333 2.0000 2.7908

6.0 1.6047 3.7389 1.7321 3.4641 1.3383 2.4495 4.4833 1.5193 2.4495 3.9492

8.0 1.7244 4.6393 1.8612 4.2983 1.3944 2.8284 5.7372 1.5766 2.8284 5.0742

10.0 1.8233 5.4845 1.9680 5.0813 1.4385 3.1623 6.9517 1.6415 3.1623 6.0920

N = 4

�m = 0.05 �m = 0.20

ZL/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z4/Z0 Z1/Z0 Z2/Z0 Z3/Z0 Z4/Z0

1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.5 1.0892 1.1742 1.2775 1.3772 1.2247 1.2247 1.2247 1.2247

2.0 1.1201 1.2979 1.5409 1.7855 1.2727 1.3634 1.4669 1.5715

3.0 1.1586 1.4876 2.0167 2.5893 1.4879 1.5819 1.8965 2.0163

4.0 1.1906 1.6414 2.4369 3.3597 1.3692 1.7490 2.2870 2.9214

6.0 1.2290 1.8773 3.1961 4.8820 1.4415 2.0231 2.9657 4.1623

8.0 1.2583 2.0657 3.8728 6.3578 1.4914 2.2428 3.5670 5.3641

10.0 1.2832 2.2268 4.4907 7.7930 1.5163 2.4210 4.1305 6.5950

Equating similar terms in cos nθ gives the following results:

cos 3θ : 2�0 = A sec3 θm,

�0 = 0.0698;
cos θ : 2�1 = 3A(sec3 θm − sec θm),

�1 = 0.1037.

From symmetry we also have that

�3 = �0 = 0.0698,

�2 = �1 = 0.1037.

Then the characteristic impedances are:

n = 0: ln Z1 = ln Z0 + 2�0
= ln 50 + 2(0.0698) = 4.051

Z1 = 57.5 �;
n = 1: ln Z2 = ln Z1 + 2�1

= ln 57.5 + 2(0.1037) = 4.259
Z2 = 70.7 �;

n = 2: ln Z3 = ln Z2 + 2�2
= ln 70.7 + 2(0.1037) = 4.466

Z3 = 87.0 �.
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FIGURE 5.17 Reflection coefficient magnitude versus frequency for the multisection matching
transformers of Example 5.7.

These values can be compared to the exact values from Table 5.2 of Z1 = 57.37 �,
Z2 = 70.71 �, and Z3 = 87.15 �. The bandwidth, from (5.64), is

� f

f0
= 2 − 4θm

π
= 2 − 4

(
44.7◦

180◦

)
= 1.01,

or 101%. This is significantly greater than the bandwidth of the binomial trans-
former of Example 5.6 (70%), which involved the same impedance mismatch.
The trade-off, of course, is a nonzero ripple in the passband of the Chebyshev
transformer.

Figure 5.17 shows reflection coefficient magnitudes versus frequency for the
exact designs from Table 5.2 for N = 1, 2, 3, and 4 sections. ■

5.8 TAPERED LINES

In the preceding sections we discussed how an arbitrary real load impedance could be
matched to a line over a desired bandwidth by using multisection matching transformers.
As the number N of discrete transformer sections increases, the step changes in charac-
teristic impedance between the sections become smaller, and the transformer geometry
approaches a continuously tapered line. In practice, of course, a matching transformer
must be of finite length—often no more than a few sections long. This suggests that,
instead of discrete sections, the transformer can be continuously tapered, as shown in
Figure 5.18a. Different passband characteristics can be obtained by using different types of
taper.

In this section we will derive an approximate theory, again based on the theory of small
reflections, to predict the reflection coefficient response as a function of the impedance
taper versus position, Z(z). We will apply these results to a few common types of imped-
ance tapers.

Consider the continuously tapered line of Figure 5.18a as being made up of a num-
ber of incremental sections of length �z, with an impedance change �Z(z) from one
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z
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(a)

(b)
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ZL

Z(z)Z0

Z Z + ∆Z

∆Γ

FIGURE 5.18 A tapered transmission line matching section and the model for an incremen-
tal length of tapered line. (a) The tapered transmission line matching section.
(b) Model for an incremental step change in impedance of the tapered line.

section to the next, as shown in Figure 5.18b. The incremental reflection coefficient from
the impedance step at z is given by

�� = (Z + �Z) − Z

(Z + �Z) + Z
� �Z

2Z
. (5.65)

In the limit as �z → 0 we have an exact differential:

d� = d Z

2Z
= 1

2

d(ln Z/Z0)

dz
dz, (5.66)

since

d(ln f (z))

dz
= 1

f

d f (z)

dz
.

By using the theory of small reflections, we can find the total reflection coefficient at
z = 0 by summing all the partial reflections with their appropriate phase shifts:

�(θ) = 1

2

∫ L

z=0
e−2 jβz d

dz
ln

(
Z

Z0

)
dz, (5.67)

where θ = 2β�. If Z(z) is known, �(θ) can be found as a function of frequency. Alter-
natively, if �(θ) is specified, then in principle Z(z) can be found by inversion. This latter
procedure is difficult, and is generally avoided in practice; the reader is referred to refer-
ences [1] and [4] for further discussion of this topic. Here we will consider three special
cases of Z(z) impedance tapers, and evaluate the resulting responses.

Exponential Taper

Consider first an exponential taper, where

Z(z) = Z0eaz for 0 < z < L , (5.68)
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FIGURE 5.19 A matching section with an exponential impedance taper. (a) Variation of imped-
ance. (b) Resulting reflection coefficient magnitude response.

as indicated in Figure 5.19a. At z = 0, Z(0) = Z0, as desired. At z = L we wish to have
Z(L) = ZL = Z0eaL , which determines the constant a as

a = 1

L
ln

(
ZL

Z0

)
. (5.69)

We find �(θ) by using (5.68) and (5.69) in (5.67):

� = 1

2

∫ L

0
e−2 jβz d

dz
(ln eaz)dz

= ln ZL/Z0

2L

∫ L

0
e−2 jβzdz

= ln ZL/Z0

2
e− jβL sin βL

βL
. (5.70)

Observe that this derivation assumes that β, the propagation constant of the tapered line, is
not a function of z—an assumption generally valid only for TEM lines.

The magnitude of the reflection coefficient in (5.70) is sketched in Figure 5.19b; note
that the peaks in |�| decrease with increasing length, as one might expect, and that the
length should be greater than λ/2 (βL > π) to minimize the mismatch at low frequencies.

Triangular Taper

Next consider a triangular taper for d ln (Z/Z0) /dz, that is,

Z(z) =
{

Z0e2(z/L)2 ln ZL/Z0 for 0 ≤ z ≤ L/2

Z0e(4z/L−2z2/L2−1) ln ZL/Z0 for L/2 ≤ z ≤ L ,
(5.71)
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FIGURE 5.20 A matching section with a triangular taper for d(ln Z/Z0)/dz. (a) Variation of
impedance. (b) Resulting reflection coefficient magnitude response.

so that the derivative is triangular in form:

d(ln Z/Z0)

dz
=

{
4z/L2 ln ZL/Z0 for 0 ≤ z ≤ L/2

(4/L − 4z/L2) ln ZL/Z0 for L/2 ≤ z ≤ L .
(5.72)

Z(z) is plotted in Figure 5.20a. Evaluating � from (5.67) gives

�(θ) = 1

2
e− jβL ln

(
ZL

Z0

) [
sin(βL/2)

βL/2

]2

. (5.73)

The magnitude of this result is sketched in Figure 5.20b. Note that, for βL > 2π , the
peaks of the triangular taper are lower than the corresponding peaks of the exponential
case. However, the first null for the triangular taper occurs at βL = 2π , whereas for the
exponential taper it occurs at βL = π .

Klopfenstein Taper

Considering the fact that there is an infinite number of possibilities for choosing an
impedance matching taper, it is logical to ask if there is a design that is “best.” For a given
taper length (greater than some critical value), the Klopfenstein impedance taper [4, 5] has
been shown to be optimum in the sense that the reflection coefficient is minimum over the
passband. Alternatively, for a maximum reflection coefficient specification in the passband,
the Klopfenstein taper yields the shortest matching section.

The Klopfenstein taper is derived from a stepped Chebyshev transformer as the num-
ber of sections increases to infinity, and is analogous to the Taylor distribution of antenna
array theory. We will not present the details of this derivation, which can be found in
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references [1] and [4]; only the necessary results for the design of Klopfenstein tapers are
given in what follows.

The logarithm of the characteristic impedance variation for the Klopfenstein taper is
given by

ln Z(z) = 1

2
ln Z0 ZL + �0

cosh A
A2φ(2z/L − 1, A) for 0 ≤ z ≤ L , (5.74)

where the function φ(x, A) is defined as

φ(x, A) = −φ(−x, A) =
∫ x

0

I1(A
√

1 − y2)

A
√

1 − y2
dy for |x | ≤ 1, (5.75)

where I1(x) is the modified Bessel function. The function of (5.75) has the following spe-
cial values:

φ(0, A) = 0

φ(x, 0) = x

2

φ(1, A) = cosh A − 1

A2
,

but otherwise (5.75) must be calculated numerically. A simple and efficient method for
doing this is available [6].

The resulting reflection coefficient is given by

�(θ) = �0e− jβL cos
√

(βL)2 − A2

cosh A
for βL > A. (5.76)

If βL < A, the cos
√

(βL)2 − A2 term becomes cosh
√

A2 − (βL)2.
In (5.74) and (5.76), �0 is the reflection coefficient at zero frequency, given as

�0 = ZL − Z0

ZL + Z0
� 1

2
ln

(
ZL

Z0

)
. (5.77)

The passband is defined as βL ≥ A, and so the maximum ripple in the passband is

�m = �0

cosh A
(5.78)

because �(θ) oscillates between ±�0/ cosh A for βL > A.
It is interesting to note that the impedance taper of (5.74) has steps at z = 0 and

L (the ends of the tapered section) and so does not smoothly join the source and load
impedances. A typical Klopfenstein impedance taper and its response are given in the fol-
lowing example.

EXAMPLE 5.8 DESIGN OF TAPERED MATCHING SECTIONS

Design a triangular taper, an exponential taper, and a Klopfenstein taper (with
�m = 0.02) to match a 50 � load to a 100 � line. Plot the impedance variations
and resulting reflection coefficient magnitudes versus βL .

Solution
Triangular taper: From (5.71) the impedance variation is

Z(z) = Z0

{
e2(z/L)2 ln ZL/Z0 for 0 ≤ z ≤ L/2

e(4z/L−2z2/L2−1) ln ZL/Z0 for L/2 ≤ z ≤ L ,
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FIGURE 5.21 Solution to Example 5.8. (a) Impedance variations for the triangular, exponential,
and Klopfenstein tapers. (b) Resulting reflection coefficient magnitude versus fre-
quency for the tapers of (a).

with Z0 = 100 � and ZL = 50 �. The resulting reflection coefficient response is
given by (5.73):

|�(θ)| = 1

2
ln

(
ZL

Z0

)[
sin(βL/2)

βL/2

]2

.

Exponential taper: From (5.68) the impedance variation is

Z(z) = Z0eaz for 0 < z < L ,

with a = (1/L) ln ZL/Z0 = 0.693/L . The reflection coefficient response is, from
(5.70),

|�(θ)| = 1

2
ln

(
ZL

Z0

)
sin βL

βL
.

Klopfenstein taper: Using (5.77) gives �0 as

�0 = 1

2
ln

(
ZL

Z0

)
= 0.346,
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and (5.78) gives A as

A = cosh−1
(

�0

�m

)
= cosh−1

(
0.346

0.02

)
= 3.543.

The impedance taper must be numerically evaluated from (5.74). The reflection
coefficient magnitude is given by (5.76):

|�(θ)| = �0
cos

√
(βL)2 − A2

cosh A
.

The passband for the Klopfenstein taper is defined as βL > A = 3.543 = 1.13π .
Figure 5.21 shows the impedance variations (vs. z/L), and the resulting re-

flection coefficient magnitude (vs. βL) for the three types of tapers. The Klopfen-
stein taper gives the desired response of |�| ≤ �m = 0.02 for βL ≥ 1.13π , which
is smaller than the corresponding lengths of either the triangular or the expo-
nential taper transformer. Also note that, like the stepped-Chebyshev matching
transformer, the response of the Klopfenstein taper has equal-ripple lobes versus
frequency in its passband. ■

5.9 THE BODE–FANO CRITERION

In this chapter we discussed several techniques for matching an arbitrary load at a single
frequency, using lumped elements, tuning stubs, and single-section quarter-wave trans-
formers. We presented multisection matching transformers and tapered lines as a means of
obtaining broader bandwidths with various passband characteristics. We close our study of
impedance matching with a somewhat qualitative discussion of the theoretical limits that
constrain the performance of an impedance matching network.

We limit our discussion to the circuit of Figure 5.1, where a lossless network is used to
match an arbitrary complex load, generally over a nonzero bandwidth. From a very general
perspective, we might raise the following questions in regard to this problem:

� Can we achieve a perfect match (zero reflection) over a specified bandwidth?
� If not, how well can we do? What is the trade-off between �m , the maximum allow-

able reflection in the passband, and the bandwidth?
� How complex must the matching network be for a given specification?

These questions can be answered by the Bode–Fano criterion [7, 8] which gives, for
certain canonical types of load impedances, a theoretical limit on the minimum reflec-
tion coefficient magnitude that can be obtained with an arbitrary matching network. The
Bode–Fano criterion thus represents an optimum result that can be ideally achieved, even
though such a result may only be approximated in practice. Such optimal results are always
important, however, because they specify an upper limit of performance, and so provide a
benchmark against which a practical design can be compared.

Figure 5.22a shows a lossless network used to match a parallel RC load impedance.
The Bode–Fano criterion states that∫ ∞

0
ln

1

|�(ω)|dω ≤ π

RC
, (5.79)

where �(ω) is the reflection coefficient seen looking into the arbitrary lossless match-
ing network. The derivation of this result is beyond the scope of this text (the interested
reader is referred to references [7] and [8]); our goal here is to discuss the implications of
this result.
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Circuit Bode-Fano limit
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matching
network

(b)
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Γ(�) Lossless
matching
network

(c)
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Γ(�) Lossless

matching
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R

L

Γ(�) Lossless
matching
network

0
ln d� �<

RC
1
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FIGURE 5.22 The Bode–Fano limits for RC and RL loads matched with passive and lossless
networks (ω0 is the center frequency of the matching bandwidth). (a) Parallel RC.
(b) Series RC. (c) Parallel RL. (d) Series RL.

Assume that we desire to synthesize a matching network with a reflection coefficient
response like that shown in Figure 5.23a. Applying (5.79) to this function gives∫ ∞

0
ln

1

|�|dω =
∫

�ω

ln
1

�m
dω = �ω ln

1

�m
≤ π

RC
, (5.80)

which leads to the following conclusions:

� For a given load (a fixed RC product), a broader bandwidth (�ω) can be achieved
only at the expense of a higher reflection coefficient in the passband (�m).

� The passband reflection coefficient, �m , cannot be zero unless �ω = 0. Thus a
perfect match can be achieved only at a finite number of discrete frequencies, as
illustrated in Figure 5.23b.

� As R and/or C increases, the quality of the match (�ω and/or 1/�m) must decrease.
Thus, higher-Q circuits are intrinsically harder to match than are lower-Q circuits
(we will discussQ in Chapter 6).

Because ln (1/|�|) is proportional to the return loss (in dB) at the input of the matching
network, (5.79) can be interpreted as requiring that the area between the return loss curve
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FIGURE 5.23 Illustrating the Bode–Fano criterion. (a) A possible reflection coefficient response.
(b) Nonrealizable and realizable reflection coefficient responses.

and the |�| = 1 (RL = 0 dB) axis must be less than or equal to a particular constant.
Optimization then implies that the return loss curve be adjusted so that |�| = �m over
the passband and |�| = 1 elsewhere, as in Figure 5.23a. In this way, no area under the
return loss curve is wasted outside the passband, or lost in regions within the passband
for which |�| < �m . The square-shaped response of Figure 5.23a is therefore the optimum
response, but cannot be realized in practice because it would require an infinite number
of elements in the matching network. It can be approximated, however, with a reasonably
small number of elements, as described in reference [8]. Finally, note that the Chebyshev
matching transformer can be considered as a close approximation to the ideal passband of
Figure 5.23a when the ripple of the Chebyshev response is made equal to �m . Figure 5.22
lists the Bode–Fano limits for other types of RC and RL loads.
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PROBLEMS

5.1 Design two lossless L-section matching circuits to match each of the following loads to a 100 �

generator at 3 GHz. (a) ZL = 150 − j200 � and (b) ZL = 20 − j90 �.

5.2 We have seen that the matching of an arbitrary load impedance requires a network with at least two
degrees of freedom. Determine the types of load impedances/admittances that can be matched with
the two single-element networks shown below.

Z0 ZL

(a)

jX

Z0 YL

(b)

jB

5.3 A load impedance ZL = 100 + j80 � is to be matched to a 75 � line using a single shunt-stub tuner.
Find two designs using open-circuited stubs.

5.4 Repeat Problem 5.3 using short-circuited stubs.

5.5 A load impedance ZL = 90 + j60 � is to be matched to a 75 � line using a single series-stub tuner.
Find two designs using open-circuited stubs.

5.6 Repeat Problem 5.5 using short-circuited stubs.

5.7 In the circuit shown below a load ZL = 200 + j100 � is to be matched to a 40 � line, using a length
� of lossless transmission line of characteristic impedance Z1. Find � and Z1. Determine, in general,
what type of load impedances can be matched using such a circuit.

l

Z0 = 40 Ω Z1 ZL ZL = 200 + j100 Ω

5.8 An open-circuit tuning stub is to be made from a lossy transmission line with an attenuation con-
stant α. What is the maximum value of normalized reactance that can be obtained with this stub?
What is the maximum value of normalized reactance that can be obtained with a shorted stub of the
same type of transmission line? Assume α� is small.

5.9 Design a double-stub tuner using open-circuited stubs with a λ/8 spacing to match a load admittance
YL = (0.4 + j1.2)Y0.

5.10 Repeat Problem 5.9 using a double-stub tuner with short-circuited stubs and a 3λ/8 spacing.

5.11 Derive the design equations for a double-stub tuner using two series stubs spaced a distance d apart.
Assume the load impedance is ZL = RL + j X L .

5.12 Consider matching a load ZL = 200 � to a 100 � line, using single shunt-stub, single series stub,
and double shunt-stub tuners, with short-circuited stubs. Which tuner will give the best bandwidth?
Justify your answer by calculating the reflection coefficient for all six solutions at 1.1 f0, where f0 is
the match frequency, or use CAD to plot the reflection coefficient versus frequency.

5.13 Design a single-section quarter-wave matching transformer to match a 350 � load to a 100 � line.
What is the percent bandwidth of this transformer, for SWR ≤ 2? If the design frequency is 4 GHz,
sketch the layout of a microstrip circuit, including dimensions, to implement this matching trans-
former. Assume the substrate is 0.159 cm thick, with a relative permittivity of 2.2.

5.14 Consider the quarter-wave transformer of Figure 5.13 with Z1 = 100 �, Z2 = 150 �, and ZL =
225 �. Evaluate the worst-case percent error in computing |�| from the approximate expression
(5.42), compared to the exact result.
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5.15 A waveguide load with an equivalent TE10 wave impedance of 377 � must be matched to an air-filled
X-band rectangular guide at 10 GHz. A quarter-wave matching transformer is to be used, and is to
consist of a section of guide filled with dielectric. Find the required dielectric constant and physical
length of the matching section. What restrictions on the load impedance apply to this technique?

5.16 A four-section binomial matching transformer is to be used to match a 12.5 � load to a 50 �

line at a center frequency of 1 GHz. (a) Design the matching transformer, and compute the band-
width for �m = 0.05. Use CAD to plot the input reflection coefficient versus frequency. (b) Lay out
the microstrip implementation of this circuit on an FR4 substrate having εr = 4.2, d = 0.158 cm,
and tan δ = 0.02, with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus
frequency.

5.17 Derive the exact characteristic impedance for a two-section binomial matching transformer for a
normalized load impedance ZL/Z0 = 1.5. Check your results with Table 5.1.

5.18 Calculate and plot the percent bandwidth for an N = 1-, 2-, and 4-section binomial matching trans-
former versus ZL/Z0 = 1.5 to 6 for �m = 0.2.

5.19 Design a four-section Chebyshev matching transformer to match a 50 � line to a 30 � load. The
maximum permissible SWR over the passband is 1.25. What is the resulting bandwidth? Use the
approximate theory developed in the text, as opposed to the tables. Use CAD to plot the input SWR
versus frequency.

5.20 Derive the exact characteristic impedances for a two-section Chebyshev matching transformer for a
normalized load impedance ZL/Z0 = 1.5. Check your results with Table 5.2 for �m = 0.05.

5.21 A load of ZL/Z0 = 1.5 is to be matched to a feed line using a multisection transformer, and it is
desired to have a passband response with |�(θ)| = A(0.1 + cos2 θ) for 0 ≤ θ ≤ π . Use the approx-
imate theory for multisection transformers to design a two-section transformer.

5.22 A tapered matching section has d ln (Z/Z0) /dz = A sin π z/L . Find the constant A so that Z(0) =
Z0 and Z(L) = ZL . Compute �, and plot |�| versus βL .

5.23 Design an exponentially tapered matching transformer to match a 100 � load to a 50 � line. Plot |�|
versus βL , and find the length of the matching section (at the center frequency) required to obtain
|�| ≤ 0.05 over a 100% bandwidth. How many sections would be required if a Chebyshev matching
transformer were used to achieve the same specifications?

5.24 An ultra wideband (UWB) radio transmitter, operating from 3.1 to 10.6 GHz, drives a parallel RC
load with R = 75 � and C = 0.6 pF. What is the best return loss that can be obtained with an
optimum matching network?

5.25 Consider a series RL load with R = 80 � and L = 5 nH. Design a lumped-element L-section match-
ing network to match this load to a 50 � line at 2 GHz. Plot |�| versus frequency for this network
to determine the bandwidth for which |�| ≤ �m = 0.1. Compare this with the maximum possible
bandwidth for this load, as given by the Bode–Fano criterion. (Assume a square reflection coefficient
response like that of Figure 5.23a.)
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Microwave Resonators

Microwave resonators are used in a variety of applications, including filters, oscillators,
frequency meters, and tuned amplifiers. Because the operation of microwave resonators is very
similar to that of lumped-element resonators of circuit theory, we will begin by reviewing the
basic characteristics of series and parallel RLC resonant circuits. We will then discuss various
implementations of resonators at microwave frequencies using distributed elements such as
transmission lines, rectangular and circular waveguides, and dielectric cavities. We will also
discuss the excitation of resonators using apertures and current sheets.

6.1 SERIES AND PARALLEL RESONANT CIRCUITS

At frequencies near resonance, a microwave resonator can usually be modeled by either a
series or parallel RLC lumped-element equivalent circuit, and so we will now review some
of the basic properties of these circuits.

Series Resonant Circuit

A series RLC resonant circuit is shown in Figure 6.1a. The input impedance is

Z in = R + jωL − j
1

ωC
, (6.1)

and the complex power delivered to the resonator is

Pin = 1

2
VI ∗ = 1

2
Z in|I |2 = 1

2
Z in

∣∣∣∣ V

Z in

∣∣∣∣
2

= 1

2
|I |2

(
R + jωL − j

1

ωC

)
. (6.2)

272
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⎪Zin(�)⎪

R

R

�/�00 1

0.707

Zin

IV

+

–

C

LR

(a)

(b)

BW

FIGURE 6.1 A series RLC resonator and its response. (a) A series RLC resonator circuit. (b) Input
impedance magnitude versus frequency.

The power dissipated by the resistor R is

Ploss = 1

2
|I |2R, (6.3a)

the average magnetic energy stored in the inductor L is

Wm = 1

4
|I |2L , (6.3b)

and the average electric energy stored in the capacitor C is

We = 1

4
|Vc|2C = 1

4
|I |2 1

ω2C
, (6.3c)

where Vc is the voltage across the capacitor. Then the complex power of (6.2) can be
rewritten as

Pin = Ploss + 2 jω(Wm − We), (6.4)

and the input impedance of (6.1) can be rewritten as

Z in = 2Pin

|I |2 = Ploss + 2 jω(Wm − We)

1
2 |I |2 . (6.5)

Resonance occurs when the average stored magnetic and electric energies are equal, or
Wm = We. Then from (6.5) and (6.3a), the input impedance at resonance is

Z in = Ploss
1
2 |I |2 = R,
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which is purely real. From (6.3b,c), Wm = We implies that the resonant frequency, ω0, can
be defined as

ω0 = 1√
LC

. (6.6)

Another important parameter of a resonant circuit is its Q, or quality factor, which is
defined as

Q = ω
average energy stored

energy loss/second

= ω
Wm + We

Ploss
. (6.7)

Thus Q is a measure of the loss of a resonant circuit—lower loss implies a higher Q.
Resonator losses may be due to conductor loss, dielectric loss, or radiation loss, and are
represented by the resistance, R, of the equivalent circuit. An external connecting network
may introduce additional loss. Each of these loss mechanisms will have the effect of low-
ering the Q. The Q of the resonator itself, disregarding external loading effects, is called
the unloaded Q, denoted as Q0.

For the series resonant circuit of Figure 6.1a, the unloaded Q can be evaluated from
(6.7), using (6.3) and the fact that Wm = We at resonance, to give

Q0 = ω0
2Wm

Ploss
= ω0L

R
= 1

ω0RC
, (6.8)

which shows that Q increases as R decreases.
Next, consider the behavior of the input impedance of this resonator near its resonant

frequency [1]. Let ω = ω0 + �ω, where �ω is small. The input impedance can then be
rewritten from (6.1) as

Zin = R + jωL

(
1 − 1

ω2LC

)

= R + jωL

(
ω2 − ω2

0

ω2

)
,

since ω2
0 = 1/LC. Now ω2 − ω2

0 = (ω − ω0)(ω + ω0) = �ω(2ω − �ω) � 2ω�ω for
small �ω. Thus,

Zin � R + j2L�ω

� R + j
2RQ0�ω

ω0
. (6.9)

This form will be useful for identifying equivalent circuits with distributed element
resonators.

Alternatively, a resonator with loss can be modeled as a lossless resonator whose res-
onant frequency, ω0, has been replaced with a complex effective resonant frequency:

ω0 ← ω0

(
1 + j

2Q0

)
. (6.10)

This can be seen by considering the input impedance of a series resonator with no loss, as
given by (6.9) with R = 0:

Zin = j2L(ω − ω0).
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Then substituting the complex frequency of (6.10) for ω0 gives

Z in = j2L

(
ω − ω0 − j

ω0

2Q0

)

= ω0L

Q0
+ j2L(ω − ω0) = R + j2L�ω,

which is identical to (6.9). This is a useful procedure because for most practical resonators
the loss is very small, so the Q can be found using the perturbation method, beginning
with the solution for the lossless case. Then the effect of loss can be added to the input
impedance by replacing ω0 with the complex resonant frequency given in (6.10).

Finally, consider the half-power fractional bandwidth of the resonator. Figure 6.1b
shows the variation of the magnitude of the input impedance versus frequency. When the
frequency is such that |Z in|2 = 2R2, then by (6.2) the average (real) power delivered to
the circuit is one-half that delivered at resonance. If BW is the fractional bandwidth, then
�ω/ω0 = BW/2 at the upper band edge. Using (6.9) gives

|R + jRQ0(BW)|2 = 2R2,

or

BW = 1

Q0
. (6.11)

Parallel Resonant Circuit

The parallel RLC resonant circuit, shown in Figure 6.2a, is the dual of the series RLC
circuit. The input impedance is

Zin =
(

1

R
+ 1

jωL
+ jωC

)−1

, (6.12)

⎪Zin(�)⎪

R

�/�00 1

0.707R

Zin

C

I

LV

+

–

R

(a)

(b)

BW

FIGURE 6.2 A parallel RLC resonator and its response. (a) A parallel RLC circuit. (b) Input
impedance magnitude versus frequency.



c06MicrowaveResonators Pozar August 5, 2011 18:28

276 Chapter 6: Microwave Resonators

and the complex power delivered to the resonator is

Pin = 1

2
VI ∗ = 1

2
Z in|I |2 = 1

2
|V |2 1

Z∗
in

= 1

2
|V |2

(
1

R
+ j

ωL
− jωC

)
. (6.13)

The power dissipated by the resistor, R, is

Ploss = 1

2

|V |2
R

, (6.14a)

the average electric energy stored in the capacitor, C , is

We = 1

4
|V |2C, (6.14b)

and the average magnetic energy stored in the inductor, L , is

Wm = 1

4
|IL |2L = 1

4
|V |2 1

ω2L
, (6.14c)

where IL is the current through the inductor. Then the complex power of (6.13) can be
rewritten as

Pin = Ploss + 2 jω(Wm − We), (6.15)

which is identical to (6.4). Similarly, the input impedance can be expressed as

Z in = 2Pin

|I |2 = Ploss + 2 jω(Wm − We)

1
2 |I |2 , (6.16)

which is identical to (6.5).
As in the series case, resonance occurs when Wm = We. Then from (6.16) and (6.14a)

the input impedance at resonance is

Z in = Ploss
1
2 |I |2 = R,

which is a purely real impedance. From (6.14b) and (6.14c), Wm = We implies that the
resonant frequency, ω0, can be defined as

ω0 = 1√
LC

, (6.17)

which is identical to the series resonant circuit case. Resonance in the case of a parallel
RLC circuit is sometimes referred to as an antiresonance.

From the definition of (6.7), and the results in (6.14), the unloaded Q of the parallel
resonant circuit can be expressed as

Q0 = ω0
2Wm

Ploss
= R

ω0L
= ω0RC, (6.18)

since Wm = We at resonance. This result shows that the Q of the parallel resonant circuit
increases as R increases.
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Near resonance, the input impedance of (6.12) can be simplified using the series ex-
pansion result that

1

1 + x
� 1 − x + · · · .

Again letting ω = ω0 + �ω, where �ω is small, allows (6.12) to be rewritten as [1]

Zin �
(

1

R
+ 1 − �ω/ω0

jω0L
+ jω0C + j�ωC

)−1

�
(

1

R
+ j

�ω

ω2
0 L

+ j�ωC

)−1

�
(

1

R
+ 2 j�ωC

)−1

� R

1 + 2 j�ωRC
= R

1 + 2 j Q0�ω/ω0
, (6.19)

since ω2
0 = 1/LC. When R = ∞ (6.19) reduces to

Zin = 1

j2C(ω − ω0)
.

As in the series resonator case, the effect of loss can be accounted for by replacing ω0
in this expression with a complex effective resonant frequency:

ω0 ← ω0

(
1 + j

2Q0

)
. (6.20)

Figure 6.2b shows the behavior of the magnitude of the input impedance versus
frequency. The half-power bandwidth edges occur at frequencies (�ω/ω0 = BW/2)

such that

|Z in|2 = R2

2
,

which, from (6.19), implies that

BW = 1

Q0
, (6.21)

as in the series resonance case.

Loaded and Unloaded Q

The unloaded Q, Q0, defined in the preceding sections is a characteristic of the resonator it-
self, in the absence of any loading effects caused by external circuitry. In practice, however,
a resonator is invariably coupled to other circuitry, which will have the effect of lowering
the overall, or loaded Q, QL , of the circuit. Figure 6.3 depicts a resonator coupled to an

RL

Resonant
circuit

Q

FIGURE 6.3 A resonant circuit connected to an external load, RL .



c06MicrowaveResonators Pozar August 5, 2011 18:28

278 Chapter 6: Microwave Resonators

TABLE 6.1 Summary of Results for Series and Parallel Resonators

Quantity Series Resonator Parallel Resonator

Input impedance/admittance Zin = R + jωL − j
1

ωC
Yin = 1

R
+ jωC − j

1

ωL

� R + j
2RQ0�ω

ω0
� 1

R
+ j

2Q0�ω

Rω0

Power loss Ploss = 1

2
|I |2 R Ploss = 1

2

|V |2
R

Stored magnetic energy Wm = 1

4
|I |2L Wm = 1

4
|V |2 1

ω2L

Stored electric energy We = 1

4
|I |2 1

ω2C
We = 1

4
|V |2C

Resonant frequency ω0 = 1√
LC

ω0 = 1√
LC

Unloaded Q Q0 = ω0L

R
= 1

ω0RC
Q0 = ω0RC = R

ω0L

External Q Qe = ω0L

RL
Qe = RL

ω0L

external load resistor, RL . If the resonator is a series RLC circuit, the load resistor RL adds
in series with R, so the effective resistance in (6.8) is R + RL . If the resonator is a parallel
RLC circuit, the load resistor RL combines in parallel with R, so the effective resistance in
(6.18) is RRL/(R + RL). If we define an external Q, Qe, as

Qe =

⎧⎪⎪⎨
⎪⎪⎩

ω0L

RL
for series circuits

RL

ω0L
for parallel circuits,

(6.22)

then the loaded Q can be expressed as

1

QL
= 1

Qe
+ 1

Q0
. (6.23)

Table 6.1 summarizes the above results for series and parallel resonant circuits.

6.2 TRANSMISSION LINE RESONATORS

As we have seen, ideal lumped circuit elements are often unattainable at microwave fre-
quencies, so distributed elements are frequently used. In this section we will study the use
of transmission line sections with various lengths and terminations (usually open- or short-
circuited) to form resonators. Because we are interested in the Q of these resonators, we
must consider transmission lines with losses.

Short-Circuited λ/2 Line

A length of lossy transmission line, short circuited at one end, is shown in Figure 6.4.
The line has a characteristic impedance, Z0, propagation constant, β, and attenuation
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V

0

Z0, �, �Zin

n = 2

n = 1

FIGURE 6.4 A short-circuited length of lossy transmission line, and the voltage distributions for
n = 1 (� = λ/2) and n = 2 (� = λ) resonators.

constant, α. At the resonant frequency ω = ω0, the length of the line is � = λ/2.
From (2.91), the input impedance is

Z in = Z0 tanh(α + jβ)�.

Using an identity for the hyperbolic tangent gives

Z in = Z0
tanh α� + j tan β�

1 + j tan β� tanh α�
. (6.24)

Observe that Z in = jZ0 tan β� if α = 0 (a lossless line).
In practice it is usually desirable to use a low-loss transmission line, so we assume

that α� � 1, and then tanh α� � α�. Again let ω = ω0 + �ω, where �ω is small. Then,
assuming a TEM line, we have

β� = ω�

vp
= ω0�

vp
+ �ω�

vp
,

where vp is the phase velocity of the transmission line. Because � = λ/2 = πvp/ω0 for
ω = ω0, we have

β� = π + �ωπ

ω0
,

and then

tan β� = tan

(
π + �ωπ

ω0

)
= tan

�ωπ

ω0
� �ωπ

ω0
.

Using these results in (6.24) gives

Z in � Z0
α� + j (�ωπ/ω0)

1 + j (�ωπ/ω0)α�
� Z0

(
α� + j

�ωπ

ω0

)
, (6.25)

since �ωα�/ω0 � 1.
Equation (6.25) is of the form

Z in = R + 2 jL�ω,
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which is the input impedance of a series RLC resonant circuit, as given by (6.9). We can
identify the resistance of the equivalent circuit as

R = Z0α�, (6.26a)

and the inductance of the equivalent circuit as

L = Z0π

2ω0
. (6.26b)

The capacitance of the equivalent circuit can be found from (6.6) as

C = 1

ω2
0 L

. (6.26c)

The resonator of Figure 6.4 thus resonates for �ω = 0 (� = λ/2), and its input
impedance at resonance is Zin = R = Z0α�. Resonance also occurs for � = nλ/2, n =
1, 2, 3, . . . . The voltage distributions for the n = 1 and n = 2 resonant modes are shown
in Figure 6.4. The unloaded Q of this resonator can be found from (6.8) and (6.26) as

Q0 = ω0L

R
= π

2α�
= β

2α
, (6.27)

since β� = π at the first resonance. This result shows that the Q decreases as the attenua-
tion of the line increases, as expected.

EXAMPLE 6.1 Q OF HALF-WAVE COAXIAL LINE RESONATORS

A λ/2 resonator is made from a piece of copper coaxial line having an inner
conductor radius of 1 mm and an outer conductor radius of 4 mm. If the resonant
frequency is 5 GHz, compare the unloaded Q of an air-filled coaxial line resonator
to that of a Teflon-filled coaxial line resonator.

Solution
We first compute the attenuation of the coaxial line, using the results of Examples
2.6 or 2.7. From Appendix F, the conductivity of copper is σ = 5.813 × 107 S/m.
The surface resistivity at 5 GHz is

Rs =
√

ωµ0

2σ
= 1.84 × 10−2 	.

The attenuation due to conductor loss for the air-filled line is

αc = Rs

2η ln b/a

(
1

a
+ 1

b

)

= 1.84 × 10−2

2(377) ln (0.004/0.001)

(
1

0.001
+ 1

0.004

)
= 0.022 Np/m.
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For Teflon, εr = 2.08 and tan δ = 0.0004, so the attenuation due to conductor loss
for the Teflon-filled line is

αc = 1.84 × 10−2
√

2.08

2(377) ln (0.004/0.001)

(
1

0.001
+ 1

0.004

)
= 0.032 Np/m.

The dielectric loss of the air-filled line is zero, but the dielectric loss of the Teflon-
filled line is

αd = k0

√
εr

2
tan δ

= (104.7)
√

2.08(0.0004)

2
= 0.030 Np/m.

Finally, from (6.27), the unloaded Qs can be computed as

Qair = β

2α
= 104.7

2(0.022)
= 2380,

QTeflon = β

2α
= 104.7

√
2.08

2(0.032 + 0.030)
= 1218.

Thus it is seen that the Q of the air-filled line is almost twice that of the Teflon-
filled line. The Q can be further increased by using silver-plated conductors. ■

Short-Circuited λ/4 Line

A parallel type of resonance (antiresonance) can be achieved using a short-circuited trans-
mission line of length λ/4. The input impedance of a shorted line of length � is

Z in = Z0 tanh(α + jβ)�

= Z0
tanh α� + j tan β�

1 + j tan β� tanh α�

= Z0
1 − j tanh α� cot β�

tanh α� − j cot β�
, (6.28)

where the last result was obtained by multiplying both numerator and denominator by
− j cot β�. Now assume that � = λ/4 at ω = ω0, and let ω = ω0 + �ω. Then, for a TEM
line,

β� = ω0�

vp
+ �ω�

vp
= π

2
+ π�ω

2ω0
,

and so

cot β� = cot

(
π

2
+ π�ω

2ω0

)
= − tan

π�ω

2ω0
� −π�ω

2ω0
.

Also, as before, tanh α� � α� for small loss. Using these results in (6.28) gives

Z in = Z0
1 + jα�π�ω/2ω0

α� + jπ�ω/2ω0
� Z0

α� + jπ�ω/2ω0
, (6.29)

since α�π�ω/2ω0 � 1. This result is of the same form as the impedance of a parallel RLC
circuit, as given in (6.19):

Z in = 1

(1/R) + 2 j�ωC
.
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We can identify the resistance of the equivalent circuit as

R = Z0

α�
(6.30a)

and the capacitance of the equivalent circuit as

C = π

4ω0 Z0
. (6.30b)

The inductance of the equivalent circuit can be found as

L = 1

ω2
0C

. (6.30c)

The resonator of Figure 6.4 therefore has a parallel-type resonance for � = λ/4, with an
input impedance at resonance of Zin = R = Z0/α�. From (6.18) and (6.30) the unloaded
Q of this resonator is

Q0 = ω0RC = π

4α�
= β

2α
, (6.31)

since � = π/2β at resonance.

Open-Circuited λ/2 Line

A practical resonator that is often used in microstrip circuits consists of an open-circuited
length of transmission line, as shown in Figure 6.5. This resonator will behave as a parallel
resonant circuit when the length is λ/2, or multiples of λ/2.

The input impedance of an open-circuited lossy transmission line of length � is

Z in = Z0 coth(α + jβ)� = Z0
1 + j tan β� tanh α�

tanh α� + j tan β�
. (6.32)

As before, assume that � = λ/2 at ω = ω0, and let ω = ω0 + �ω. Then,

β� = π + π�ω

ω0
,

V

0

Z0, �, �Zin

n = 2

n = 1

FIGURE 6.5 An open-circuited length of lossy transmission line, and the voltage distributions for
n = 1 (� = λ/2) and n = 2 (� = λ) resonators.
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and so

tan β� = tan
�ωπ

ω
� �ωπ

ω0
,

and tanh α� � α�. Using these results in (6.32) gives

Zin = Z0

α� + j (�ωπ/ω0)
. (6.33)

Comparison with the input impedance of a parallel resonant circuit, as given by (6.19),
suggests that the resistance of the equivalent RLC circuit is

R = Z0

α�
, (6.34a)

and the capacitance of the equivalent circuit is

C = π

2ω0 Z0
. (6.34b)

The inductance of the equivalent circuit is

L = 1

ω2
0C

. (6.34c)

From (6.18) and (6.34) the unloaded Q is

Q0 = ω0RC = π

2α�
= β

2α
, (6.35)

since � = π/β at resonance.

EXAMPLE 6.2 A HALF-WAVE MICROSTRIP RESONATOR

Consider a microstrip resonator constructed from a λ/2 length of 50 	 open-
circuited microstrip line. The substrate is Teflon (εr = 2.08, tan δ = 0.0004), with
a thickness of 0.159 cm, and the conductors are copper. Compute the required
length of the line for resonance at 5 GHz, and the unloaded Q of the resonator.
Ignore fringing fields at the end of the line.

Solution
From (3.197), the width of a 50 	 microstrip line on this substrate is found to be
W = 0.508 cm, and the effective permittivity is εe = 1.80. The resonant length
can then be calculated as

� = λ

2
= vp

2 f
= c

2 f
√

εe
= 3 × 108

2(5 × 109)
√

1.80
= 2.24 cm.

The propagation constant is

β = 2π f

vp
= 2π f

√
εe

c
= 2π(5 × 109)

√
1.80

3 × 108
= 151.0 rad/m.

From (3.199), the attenuation due to conductor loss is

αc = Rs

Z0W
= 1.84 × 10−2

50(0.00508)
= 0.0724 Np/m,
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where we used Rs from Example 6.1. From (3.198), the attenuation due to dielec-
tric loss is

αd = k0εr (εe − 1) tan δ

2
√

εe(εr − 1)
= (104.7)(2.08)(0.80)(0.0004)

2
√

1.80(1.08)
= 0.024 Np/m.

Then from (6.35) the unloaded Q is

Q0 = β

2α
= 151.0

2(0.0724 + 0.024)
= 783. ■

6.3 RECTANGULAR WAVEGUIDE CAVITY RESONATORS

Microwave resonators can also be constructed from closed sections of waveguide. Because
radiation loss from an open-ended waveguide can be significant, waveguide resonators
are usually short circuited at both ends, thus forming a closed box, or cavity. Electric
and magnetic energy is stored within the cavity enclosure, and power is dissipated in the
metallic walls of the cavity as well as in the dielectric material that may fill the cavity.
Coupling to a cavity resonator may be by a small aperture, or a small probe or loop. We
will see that there are many possible resonant modes for a cavity resonator, corresponding
to field variations along the three dimensions of the structure.

We will first derive the resonant frequencies for a general TE or TM resonant mode of
a rectangular cavity, and then derive an expression for the unloaded Q of the TE10� mode.
A complete treatment of the unloaded Q for arbitrary TE and TM modes can be made
using the same procedure, but is not included here because of its length and complexity.

Resonant Frequencies

The geometry of a rectangular cavity is shown in Figure 6.6. It consists of a length,
d , of rectangular waveguide shorted at both ends (z = 0, d). We will find the resonant

xa

a x

y

Ey

b

d

d

 = 2
m = 1

z

z 0

 = 1

FIGURE 6.6 A rectangular cavity resonator, and the electric field variations for the TE101 and
TE102 resonant modes.
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frequencies of this cavity under the assumption that the cavity is lossless, then determine
the unloaded Q using the perturbation method outlined in Section 2.7. Although we could
begin with the Helmholtz wave equation and the method of separation of variables to solve
for the electric and magnetic fields that satisfy the boundary conditions of the cavity, it is
easier to start with the fields of the TE or TM waveguide modes since these already satisfy
the necessary boundary conditions on the side walls (x = 0, a and y = 0, b) of the cavity.
Then it is only necessary to enforce the boundary conditions that Ex = Ey = 0 on the end
walls at z = 0, d .

From Table 3.2 the transverse electric fields (Ex , Ey) of the TEmn or TMmn rectangu-
lar waveguide mode can be written as

Ēt (x, y, z) = ē(x, y)
(

A+e− jβmn z + A−e jβmn z
)
, (6.36)

where ē(x, y) is the transverse variation of the mode, and A+, A− are arbitrary amplitudes
of the forward and backward traveling waves. The propagation constant of the m, nth TE
or TM mode is

βmn =
√

k2 −
(mπ

a

)2 −
(nπ

b

)2
, (6.37)

where k = ω
√

µε, and µ and ε are the permeability and permittivity of the material filling
the cavity.

Applying the condition that Ēt = 0 at z = 0 to (6.36) implies that A+ = −A− (as
we should expect for reflection from a perfectly conducting wall). Then the condition that
Ēt = 0 at z = d leads to the equation

Ēt (x, y, d) = −ē(x, y)A+2 j sin βmnd = 0.

The only nontrivial (A+ �= 0) solution occurs for

βmnd = �π, � = 1, 2, 3, . . . , (6.38)

which implies that the cavity must be an integer multiple of a half-guide wavelength long
at the resonant frequency. No nontrivial solutions are possible for other lengths, or for
frequencies other than the resonant frequencies.

A resonance wave number for the rectangular cavity can be defined as

kmn� =
√(mπ

a

)2 +
(nπ

b

)2 +
(�π

d

)2
. (6.39)

Then we can refer to the TEmn� or TMmn� resonant mode of the cavity, where the in-
dices m, n, � indicate the number of variations in the standing wave pattern in the x, y, z
directions, respectively. The resonant frequency of the TEmn� or TMmn� mode is given by

fmn� = ckmn�

2π
√

µrεr
= c

2π
√

µrεr

√(mπ

a

)2 +
(nπ

b

)2 +
(�π

d

)2
. (6.40)

If b < a < d , the dominant resonant mode (lowest resonant frequency) will be the TE101
mode, corresponding to the TE10 dominant waveguide mode in a shorted guide of length
λg/2, and is similar to the short-circuited λ/2 transmission line resonator. The dominant
TM resonant mode is the TM110 mode.
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Unloaded Q of the TE10� Mode

From Table 3.2, (6.36), and the fact that A− = −A+, the total fields for the TE10� resonant
mode can be written as

Ey = A+ sin
πx

a

(
e− jβz − e jβz

)
, (6.41a)

Hx = −A+

ZTE
sin

πx

a

(
e− jβz + e jβz

)
, (6.41b)

Hz = jπA+

kηa
cos

πx

a

(
e− jβz − e jβz

)
. (6.41c)

Letting E0 = −2 j A+ and using (6.38) allows these expressions to be simplified to

Ey = E0 sin
πx

a
sin

�πz

d
, (6.42a)

Hx = − jE0

ZTE
sin

πx

a
cos

�πz

d
, (6.42b)

Hz = jπE0

kηa
cos

πx

a
sin

�πz

d
, (6.42c)

which clearly show that the fields form standing waves inside the cavity. We can now
compute the unloaded Q of this mode by finding the stored electric and magnetic energies,
and the power lost in the conducting walls and the dielectric filling.

The stored electric energy is, from (1.84),

We = ε

4

∫
V

Ey E∗
ydv = εabd

16
E2

0 , (6.43a)

while the stored magnetic energy is, from (1.86),

Wm = µ

4

∫
V
(Hx H∗

x + Hz H∗
z )dv

= µabd

16
E2

0

(
1

Z2
TE

+ π2

k2η2a2

)
. (6.43b)

Because ZTE = kη/β, with β = β10 = √
k2 − (π/a)2, the quantity in parentheses in

(6.43b) can be reduced to
(

1

Z2
TE

+ π2

k2η2a2

)
= β2 + (π/a)2

k2η2
= 1

η2
= ε

µ
,

showing that We = Wm at resonance. The condition of equal stored electric and magnetic
energies at resonance also applied to the RLC resonant circuits of Section 6.1.

For small losses we can find the power dissipated in the cavity walls using the per-
turbation method of Section 2.7. Thus, the power lost in the conducting walls is given by
(1.131) as

Pc = Rs

2

∫
walls

|Ht |2ds, (6.44)

where Rs = √
ωµ0/2σ is the surface resistivity of the metallic walls, and Ht is the

tangential magnetic field at the surface of the walls. Using (6.42b), (6.42c) in (6.44)
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gives

Pc = Rs

2

{
2
∫ b

y=0

∫ a

x=0
|Hx (z = 0)|2dxdy + 2

∫ d

z=0

∫ b

y=0
|Hz(x = 0)|2dydz

+ 2
∫ d

z=0

∫ a

x=0

[
|Hx (y = 0)|2 + |Hz(y = 0)|2

]
dxdz

}

= Rs E2
0λ2

8η2

(
�2ab

d2
+ bd

a2
+ �2a

2d
+ d

2a

)
, (6.45)

where use has been made of the symmetry of the cavity in doubling the contributions from
the walls at x = 0, y = 0, and z = 0 to account for the contributions from the walls at
x = a, y = b, and z = d , respectively. The relations k = 2π/λ and ZTE = kη/β = 2dη/�λ

were also used in simplifying (6.45). Then, from (6.7), the unloaded Q of the cavity with
lossy conducting walls but lossless dielectric can be found as

Qc = 2ω0We

Pc

= k3abdη

4π2 Rs

1

[(�2ab/d2) + (bd/a2) + (�2a/2d) + (d/2a)]

= (kad)3bη

2π2 Rs

1

(2�2a3b + 2bd3 + �2a3d + ad3)
. (6.46)

Next we compute the power lost in the dielectric material that may fill the cavity.
As discussed in Chapter 1, a lossy dielectric has an effective conductivity σ = ωε′′ =
ωεrε0 tan δ, where ε = ε′ − jε′′ = εrε0(1 − j tan δ), and tan δ is the loss tangent of the
material. The power dissipated in the dielectric is, from (1.92),

Pd = 1

2

∫
V

J̄ · Ē∗dv = ωε′′

2

∫
V

|Ē |2dv = abdωε′′|E0|2
8

, (6.47)

where Ē is given by (6.42a). Then from (6.7) the unloaded Q of the cavity with a lossy
dielectric filling, but with perfectly conducting walls, is

Qd = 2ωWe

Pd
= ε′

ε′′ = 1

tan δ
. (6.48)

The simplicity of this result is due to the fact that the integral in (6.43a) for We cancels with
the identical integral in (6.47) for Pd . This result therefore applies to Qd for an arbitrary
resonant cavity mode. When both wall losses and dielectric losses are present, the total
power loss is Pc + Pd , so (6.7) gives the total unloaded Q as

Q0 =
(

1

Qc
+ 1

Qd

)−1

. (6.49)

EXAMPLE 6.3 DESIGN OF A RECTANGULAR CAVITY RESONATOR

A rectangular waveguide cavity is made from a piece of copper WR-187 H-band
waveguide, with a = 4.755 cm and b = 2.215 cm. The cavity is filled with poly-
ethylene (εr = 2.25, tan δ = 0.0004). If resonance is to occur at f = 5 GHz, find
the required length, d , and the resulting unloaded Q for the � = 1 and � = 2
resonant modes.
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Solution
The wave number k is

k = 2π f
√

εr

c
= 157.08 m−1.

From (6.40) the required length for resonance can be found as (m = 1, n = 0)

d = �π√
k2 − (π/a)2

,

for � = 1, d = π√
(157.08)2 − (π/0.04755)2

= 2.20 cm,

for � = 2, d = 2(2.20) = 4.40 cm.

From Example 6.1, the surface resistivity of copper at 5 GHz is Rs = 1.84 ×
10−2 	. The intrinsic impedance is

η = 377√
εr

= 251.3 	.

Then from (6.46) the Q due to conductor loss only is

for � = 1, Qc = 8,403,

for � = 2, Qc = 11,898.

From (6.48) the Q due to dielectric loss only is, for both � = 1 and � = 2,

Qd = 1

tan δ
= 1

0.0004
= 2500.

Then total unloaded Qs are, from (6.49)

for � = 1, Q0 =
(

1

8403
+ 1

2500

)−1

= 1927,

for � = 2, Q0 =
(

1

11,898
+ 1

2500

)−1

= 2065.

Note that the dielectric loss has the dominant effect on the Q; higher Q could
be obtained using an air-filled cavity. These results can be compared to those
of Examples 6.1 and 6.2, which used similar types of materials at the same
frequency. ■

6.4 CIRCULAR WAVEGUIDE CAVITY RESONATORS

A cylindrical cavity resonator can be constructed from a section of circular waveguide
shorted at both ends, similar to rectangular cavities. Because the dominant circular wave-
guide mode is the TE11 mode, the dominant cylindrical cavity mode is the TE111 mode.
We will derive the resonant frequencies for the TEnm� and TMnm� circular cavity modes,
and an expression for the unloaded Q of the TEnm� mode.

Circular cavities are often used for microwave frequency meters. The cavity is con-
structed with a movable top wall to allow mechanical tuning of the resonant frequency,
and the cavity is loosely coupled to a waveguide through a small aperture. In operation,
power will be absorbed by the cavity as it is tuned to the operating frequency of the
system; this absorption can be monitored with a power meter elsewhere in the system. The
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FIGURE 6.7 Photograph of a W-band waveguide frequency meter. The knob rotates to change the
length of the circular cavity resonator; the scale gives a readout of the frequency.

Photograph courtesy of Millitech Inc., Northampton, Mass.

mechanical tuning dial is usually directly calibrated in frequency, as in the model shown
in Figure 6.7. Because frequency resolution is determined by the Q of the resonator, the
TE011 mode is often used for frequency meters because its Q is much higher than the Q
of the dominant circular cavity mode. This is also the reason for a loose coupling to the
cavity.

Resonant Frequencies

The geometry of a cylindrical cavity is shown in Figure 6.8. As in the case of the rectan-
gular cavity, the solution is simplified by beginning with the circular waveguide modes,
which already satisfy the necessary boundary conditions on the wall of the circular wave-
guide. From Table 3.5, the transverse electric fields (Eρ, Eφ) of the TEnm or TMnm circular
waveguide mode can be written as

Ēt (ρ, φ, z) = ē(ρ, φ)
(

A+e− jβnm z + A−e jβnm z), (6.50)

where ē(ρ, φ) represents the transverse variation of the mode, and A+ and A− are arbitrary
amplitudes of the forward and backward traveling waves. The propagation constant of the
TEnm mode is, from (3.126),

βnm =
√

k2 −
(

p′
nm

a

)2

, (6.51a)

z

d

E�, E�

z

x

 = 2

a

d

�
 = 1

FIGURE 6.8 A cylindrical resonant cavity, and the electric field distribution for resonant modes
with � = 1 or � = 2.
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while the propagation constant of the TMnm mode is, from (3.139),

βnm =
√

k2 −
( pnm

a

)2
, (6.51b)

where k = ω
√

µε.
In order to have Ēt = 0 at z = 0, d, we must choose A+ = −A−, and A+ sin βnm

d = 0,

or βnmd = �π, for � = 0, 1, 2, 3, . . . , (6.52)

which implies that the waveguide must be an integer number of half-guide wavelengths
long. Thus, the resonant frequency of the TEnm� mode is

fnm� = c

2π
√

µrεr

√(
p′

nm

a

)2

+
(

�π

d

)2

, (6.53a)

and the resonant frequency of the TMnm� mode is

fnm� = c

2π
√

µrεr

√( pnm

a

)2 +
(

�π

d

)2

. (6.53b)

Thus the dominant TE mode is the TE111 mode, while the dominant TM mode is the TM010
mode. Figure 6.9 shows a mode chart for the lower order resonant modes of a cylindrical
cavity. Such a chart is useful for the design of circular cavity resonators, as it shows what
modes can be excited at a given frequency for a given cavity size.

0

5 × 108

10 × 108

15 × 108

20 × 108

2 4
(2a/d)2

(2
a

f)
2 , (

M
H

z 
– 

cm
)2

6

TM010

TM110

TE 11
1

TM 01
1TE 21

1

T
E 11

2

T
M

01
2

T
E 21

2

T
M

11
2

TE 01
1
TM 11

1

FIGURE 6.9 Resonant mode chart for a cylindrical cavity.

Adapted from data from R. E. Collin, Foundations for Microwave Engineering, 2nd edition,
Wiley–IEEE Press, Hoboken, N.J., 2001. Used with permission.
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Unloaded Q of the TEnm� Mode

From Table 3.5, (6.50), and the fact that A+ = −A−, the fields of the TEnm� mode can be
written as

Hz = H0 Jn

(
p′

nmρ

a

)
cos nφ sin

�πz

d
, (6.54a)

Hρ = βaH0

p′
nm

J ′
n

(
p′

nmρ

a

)
cos nφ cos

�πz

d
, (6.54b)

Hφ = −βa2nH0

(p′
nm)2ρ

Jn

(
p′

nmρ

a

)
sin nφ cos

�πz

d
, (6.54c)

Eρ = jkηa2nH0

(p′
nm)2ρ

Jn

(
p′

nmρ

a

)
sin nφ sin

�πz

d
, (6.54d)

Eφ = jkηaH0

p′
nm

J ′
n

(
p′

nmρ

a

)
cos nφ sin

�πz

d
, (6.54e)

Ez = 0, (6.54f)

where η = √
µ/ε and H0 = −2 j A+.

Because the time-average stored electric and magnetic energies are equal, the total
stored energy is

W = 2We = ε

2

∫ d

z=0

∫ 2π

φ=0

∫ a

ρ=0

(
|Eρ |2 + |Eφ |2

)
ρdρdφdz

= εk2η2a2πd H2
0

4(p′
nm)2

∫ a

ρ=0

[
J

′2
n

(
p′

nmρ

a

)
+
(

na

p′
nmρ

)2

J 2
n

(
p′

nmρ

a

)]
ρdρ

= εk2η2a4 H2
0 πd

8(p′
nm)2

[
1 −

(
n

p′
nm

)2
]

J 2
n (p′

nm), (6.55)

where the integral identity of Appendix C.17 has been used. The power loss in the con-
ducting walls is

Pc = Rs

2

∫
S
|H̄tan|2ds

= Rs

2

{∫ d

z=0

∫ 2π

φ=0

[
|Hφ(ρ = a)|2 + |Hz(ρ = a)|2

]
adφdz

+ 2
∫ 2π

φ=0

∫ a

ρ=0

[
|Hρ(z = 0)|2 + |Hφ(z = 0)|2

]
ρdρdφ

}

= Rs

2
π H2

0 J 2
n (p′

nm)

⎧⎨
⎩

da

2

[
1 +

(
βan

(p′
nm)2

)2
]

+
(

βa2

p′
nm

)2 (
1 − n2

(p′
nm)2

)⎫⎬
⎭. (6.56)

Then, from (6.8), the unloaded Q of the cavity with imperfectly conducting walls but
lossless dielectric is

Qc = ω0W

Pc
= (ka)3ηad

4(p′
nm)2 Rs

1 −
(

n

p′
nm

)2

⎧⎨
⎩ad

2

⎡
⎣1+

(
βan

(p′
nm)2

)2
⎤
⎦+

(
βa2

p′
nm

)2(
1− n2

(p′
nm)2

)⎫⎬
⎭

. (6.57)
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FIGURE 6.10 Normalized unloaded Q for various cylindrical cavity modes (air filled).

Adapted from data from R. E. Collin, Foundations for Microwave Engineering, 2nd edition,
Wiley–IEEE Press, Hoboken, N.J., 2001. Used with permission.

From (6.52) and (6.51) we see that β = �π/d and (ka)2 are constants that do not vary with
frequency, for a cavity with fixed dimensions. Thus, the frequency dependence of Qc is
given by k/Rs , which varies as 1/

√
f ; this gives the variation in Qc for a given resonant

mode and cavity shape (fixed n, m, �, and a/d).
Figure 6.10 shows the normalized unloaded Q due to conductor loss for various res-

onant modes of a cylindrical cavity. Observe that the TE011 mode has an unloaded Q
significantly higher than that of the lower order TE111, TM010, or TM111 mode.

To compute the unloaded Q due to dielectric loss, we must compute the power dissi-
pated in the dielectric. Thus,

Pd = 1

2

∫
V

J̄ · Ē∗dv = ωε′′

2

∫
V

[
|Eρ |2 + |Eφ |2

]
dv

= ωε′′k2η2a2 H2
0 πd

4(p′
nm)2

∫ a

ρ=0

[(
na

p′
nmρ

)2

J 2
n

(
p′

nmρ

a

)
+ J

′2
n

(
p′

nmρ

a

)]
ρdρ

= ωε′′k2η2a4 H2
0

8(p′
nm)2

[
1 −

(
n

p′
nm

)2
]

J 2
n (p′

nm). (6.58)

Then (6.8) gives the unloaded Q due to dielectric loss as

Qd = ωW

Pd
= ε

ε′′ = 1

tan δ
, (6.59)

where tan δ is the loss tangent of the dielectric. This is the same as the result for Qd of
(6.48) for the rectangular cavity. When both conductor and dielectric losses are present,
the total unloaded cavity Q can be found from (6.49).

EXAMPLE 6.4 DESIGN OF A CIRCULAR CAVITY RESONATOR

A circular cavity resonator with d = 2a is to be designed to resonate at 5.0 GHz
in the TE011 mode. If the cavity is made from copper and is Teflon filled (εr =
2.08, tan δ = 0.0004), find its dimensions and unloaded Q.
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Solution

k = 2π f011
√

εr

c
= 2π(5 × 109)

√
2.08

3 × 108
= 151.0 m−1

From (6.53a) the resonant frequency of the TE011 mode is

f011 = c

2π
√

εr

√(
p′

01

a

)2

+
(π

d

)2
,

with p′
01 = 3.832. Then, since d = 2a

2π f011
√

εr

c
= k =

√(
p′

01

a

)2

+
(π

d

)2
.

Solving for a gives

a =
√

(p′
01)

2 + (π/2)2

k
=
√

(3.832)2 + (π/2)2

151.0
= 2.74 cm,

so we have d = 5.48 cm.
The surface resistivity of copper at 5 GHz is Rs = 0.0184 	. Then from

(6.57), with n = 0, m = � = 1, and d = 2a, the unloaded Q due to conductor
losses is

Qc = (ka)3ηad

4(p′
01)

2 Rs

1

[ad/2 + (βa2/p′
01)

2] = kaη

2Rs
= 29,390,

where (6.51a) was used to simplify the expression. From (6.59) the unloaded Q
due to dielectric loss is

Qd = 1

tan δ
= 1

0.0004
= 2500,

and the total unloaded Q of the cavity is

Q0 =
(

1

Qc
+ 1

Qd

)−1

= 2300.

This result can be compared with the rectangular cavity case of Example 6.3,
which had Q0 = 1927 for the TE101 mode and Q0 = 2065 for the TE102 mode.
If this cavity were air filled, the Q would increase to 42,400. ■

6.5 DIELECTRIC RESONATORS

A small disc or cube (or other shape) of dielectric material can also be used as a microwave
resonator. The operation of such a dielectric resonator is similar in principle to the rectan-
gular or cylindrical cavity resonators previously discussed. Dielectric resonators typically
use materials with low loss and a high dielectric constant, ensuring that most of the fields
will be contained within the dielectric. Unlike metallic cavities, however, there is some
field fringing or leakage from the sides and ends of a dielectric resonator (which are not
metalized), leading to a small radiation loss and consequent lowering of Q. A dielectric
resonator is generally smaller in size, cost, and weight than an equivalent metallic cavity,
and it can easily be incorporated into microwave integrated circuits and coupled to planar
transmission lines. Materials with dielectric constants in the range of 10–100 are generally
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used, with barium tetratitanate and titanium dioxide being typical examples. Conductor
losses are absent, but dielectric loss usually increases with dielectric constant; Qs of up
to several thousand can sometimes be achieved, however. By using an adjustable metal
plate above the resonator, the resonant frequency can be mechanically tuned. Because of
these desirable features, dielectric resonators have become key components for integrated
microwave filters and oscillators.

Below we present an approximate analysis for the resonant frequencies of the TE01δ

mode of a cylindrical dielectric resonator; this mode is the one most commonly used in
practice, and is analogous to the TE011 mode of a circular metallic cavity.

Resonant Frequencies of TE01δ Mode

The geometry of a cylindrical dielectric resonator is shown in Figure 6.11. The basic oper-
ation of the TE01δ mode can be explained as follows. The dielectric resonator is considered
as a short length, L , of dielectric waveguide open at both ends. The lowest order TE mode
of this guide is the TE01 mode, and is the dual of the TM01 mode of a circular metal-
lic waveguide. Because of the high permittivity of the resonator, propagation along the
z-axis can occur inside the dielectric at the resonant frequency, but the fields will be cut
off (evanescent) in the air regions around the dielectric. Thus the Hz field will look like
that sketched in Figure 6.12; higher order resonant modes will have more variations in the
z direction inside the resonator. Because the resonant length for the TE01δ mode is less
than λg/2 (where λg is the guide wavelength of the TE01 dielectric waveguide mode), the
symbol δ = 2L/λg < 1 is used to denote the z variation of the resonant mode. The equiv-
alent circuit of the resonator looks like a length of transmission line terminated in purely
reactive loads at both ends.

Our analysis follows that of reference [2], and involves the assumption that a magnetic
wall boundary condition can be imposed at ρ = a. This approximation is based on the fact
that the reflection coefficient of a wave in a high dielectric constant region incident on an
air-filled region approaches +1:

� = η0 − η

η0 + η
=

√
εr − 1√
εr + 1

→ 1 as εr → ∞.

This reflection coefficient is the same as that obtained at an ideal magnetic wall boundary
condition, or a perfect open circuit.

We begin by finding the fields of the TE01 dielectric waveguide mode with a magnetic
wall boundary condition at ρ = a. For TE modes, Ez = 0, and Hz must satisfy the wave

yz

x

L a

�r

2

L
2

–

FIGURE 6.11 Geometry of a cylindrical dielectric resonator.
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Ht = 0

Hz (� = 0)

z

�0

�0

�r > 1L

FIGURE 6.12 Magnetic wall boundary condition approximation and distribution of Hz versus z
for ρ = 0 of the first mode of a cylindrical dielectric resonator.

equation

(∇2 + k2)Hz = 0, (6.60)

where

k =
{√

εr k0 for |z| < L/2

k0 for |z| > L/2.
(6.61)

Because ∂/∂φ = 0, the transverse fields are given by (3.110) as follows:

Eφ = jωµ0

k2
c

∂ Hz

∂ρ
, (6.62a)

Hρ = − jβ

k2
c

∂ Hz

∂ρ
, (6.62b)

where k2
c = k2 − β2. Because Hz must be finite at ρ = 0 and zero at ρ = a (the magnetic

wall), we have

Hz = H0 J0(kcρ)e± jβz, (6.63)

where kc = p01/a, and J0(p01) = 0 (p01 = 2.405). Then from (6.62) the transverse fields
are

Eφ = jωµ0 H0

kc
J ′

0(kcρ)e± jβz, (6.64a)

Hρ = ∓ jβH0

kc
J ′

0(kcρ)e± jβz . (6.64b)
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In the dielectric region, for |z| < L/2, the propagation constant is real:

β =
√

εr k2
0 − k2

c =
√

εr k2
0 −

( p01

a

)2
, (6.65a)

and a wave impedance can be defined as

Zd = Eφ

Hρ

= ωµ0

β
. (6.65b)

In the air region, for |z| > L/2, the propagation constant will be imaginary, so it is conve-
nient to write

α =
√

k2
c − k2

0 =
√( p01

a

)2 − k2
0, (6.66a)

and to define a wave impedance in the air region as

Za = jωµ0

α
, (6.66b)

which is seen to be imaginary.
From symmetry, the Hz and Eφ field distributions for the lowest order mode will be

even functions about z = 0. Then the transverse fields for the TE01δ mode can be written
for |z| < L/2 as

Eφ = AJ ′
0(kcρ) cos βz, (6.67a)

Hρ = − jA

Zd
J ′

0(kcρ) sin βz, (6.67b)

and for |z| > L/2 as

Eφ = BJ ′
0(kcρ)e−α|z|, (6.68a)

Hρ = ±B

Za
J ′

0(kcρ)e−α|z|, (6.68b)

where A and B are unknown amplitude coefficients. In (6.68b), the ± sign is used for
z > L/2 or z < −L/2, respectively.

Matching tangential fields at z = L/2 (or z = −L/2) leads to the following two
equations:

A cos
βL

2
= Be−αL/2, (6.69a)

− jA

Zd
sin

βL

2
= B

Za
e−αL/2, (6.69b)

which can be reduced to a single transcendental equation:

− jZa sin
βL

2
= Zd cos

βL

2
.

Using (6.65b) and (6.66b) allows this to be simplified as

tan
βL

2
= α

β
, (6.70)

where β is given by (6.65a) and α is given by (6.66a). This equation can be solved numer-
ically for k0, which determines the resonant frequency.



c06MicrowaveResonators Pozar August 5, 2011 18:28

6.6 Excitation of Resonators 297

This solution is approximate since it ignores fringing fields at the sides of the res-
onator, and it yields accuracies only on the order of 10% (usually not accurate enough for
practical purposes), but it serves to illustrate the basic behavior of dielectric resonators.
More accurate solutions are available in the literature [3].

The unloaded Q of the resonator can be calculated by determining the stored energy
(inside and outside the dielectric cylinder), and the power dissipated in the dielectric and
possibly lost to radiation. If the latter is small, the unloaded Q can be approximated as
1/tan δ, as in the case of the metallic cavity resonators.

EXAMPLE 6.5 RESONANT FREQUENCY AND Q OF A DIELECTRIC
RESONATOR

Find the resonant frequency and approximate unloaded Q for the TE01δ mode
of a dielectric resonator made from titania, with εr = 95 and tan δ = 0.001. The
resonator dimensions are a = 0.413 cm and L = 0.8255 cm.

Solution
The transcendental equation of (6.70) must be solved for k0, with β and α given
by (6.65a) and (6.66a). Thus,

tan
βL

2
= α

β
,

where

α =
√

(2.405/a)2 − k2
0,

β =
√

εr k2
0 − (2.405/a)2,

and

k0 = 2π f

c
.

Because α and β must both be real, the possible frequency range is from f1 to f2,
where

f1 = ck0

2π
= c(2.405)

2π
√

εr a
= 2.853 GHz,

f2 = ck0

2π
= c(2.405)

2πa
= 27.804 GHz.

Using the interval-halving method (see the Point of Interest on root-finding
algorithms in Chapter 3) to find the root of the above equation gives a resonant
frequency of about 3.152 GHz. This compares with a measured value of about
3.4 GHz from reference [2], indicating a 10% error. The approximate unloaded
Q, due to dielectric loss, is

Qd = 1

tan δ
= 1000. ■

6.6 EXCITATION OF RESONATORS

Resonators are not useful unless they are coupled to external circuitry, so we now discuss
how resonators can be coupled to transmission lines and waveguides. In practice, the way
in which this is done depends on the type of resonator under consideration; some examples
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(a) (b)

(c) (d)

FIGURE 6.13 Coupling to microwave resonators. (a) A microstrip transmission line resonator
gap coupled to a microstrip feedline. (b) A rectangular cavity resonator fed by a
coaxial probe. (c) A circular cavity resonator aperture coupled to a rectangular
waveguide. (d) A dielectric resonator coupled to a microstrip line.

of resonator coupling techniques are shown in Figure 6.13. We will discuss the operation
of some of the more common coupling techniques, notably gap coupling and aperture
coupling. We begin by discussing the coupling coefficient for a resonator connected to a
feed line, and the subject of critical coupling. A related topic of practical interest is how
the unloaded Q of a resonator can be determined from the two-port response of a resonator
coupled to a transmission line.

The Coupling Coefficien and Critical Coupling

The level of coupling required between a resonator and its attached circuitry depends on the
application. A waveguide cavity used as a frequency meter, for example, is usually loosely
coupled to its feed guide in order to maintain high Q and good accuracy. A resonator used
in an oscillator or tuned amplifier, however, may be tightly coupled in order to achieve
maximum power transfer. A measure of the level of coupling between a resonator and
a feed is given by the coupling coefficient. To obtain maximum power transfer between
a resonator and a feed line, the resonator should be matched to the line at the resonant
frequency; the resonator is then said to be critically coupled to the feed. We will illustrate
these concepts by considering the series resonant circuit shown in Figure 6.14.

Zin

Z0 C

LR

FIGURE 6.14 A series resonant circuit coupled to a feedline.
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From (6.9), the input impedance near resonance of the series resonant circuit of
Figure 6.14 is given by

Z in = R + j2L�ω = R + j
2RQ0�ω

ω0
, (6.71)

and the unloaded Q is, from (6.8),

Q0 = ω0L

R
. (6.72)

At resonance, �ω = 0, so from (6.71) the input impedance is Z in = R. In order to match
the resonator to the line we must have

R = Z0. (6.73)

In this case the unloaded Q is

Q0 = ω0L

Z0
. (6.74)

From (6.22), the external Q is

Qe = ω0L

Z0
= Q0, (6.75)

which shows that the external and unloaded Qs are equal under the condition of critical
coupling. The loaded Q is half this value.

We can define the coupling coefficient, g, as

g = Q0

Qe
, (6.76)

which can be applied to both series (g = Z0/R) and parallel (g = R/Z0) resonant circuits,
when connected to a transmission line of characteristic impedance Z0. Three cases can be
distinguished:

1. g < 1: The resonator is said to be undercoupled to the feedline.
2. g = 1: The resonator is critically coupled to the feedline.
3. g > 1: The resonator is said to be overcoupled to the feedline.

Figure 6.15 shows a Smith chart sketch of the impedance loci for the series resonant
circuit, as given by (6.71), for various values of R corresponding to the above cases.

A Gap-Coupled Microstrip Resonator

Consider a λ/2 open-circuited microstrip resonator proximity coupled to the open end of
a microstrip transmission line, as shown in Figure 6.13a. The gap between the resonator
and the microstrip line can be modeled as a series capacitor, so the equivalent circuit can
be constructed as shown in Figure 6.16. The normalized input impedance seen by the
feedline is

z = Z

Z0
= − j

(1/ωC + Z0 cot β�)

Z0
= − j

(
tan β� + bc

bc tan β�

)
, (6.77)

where bc = Z0ωC is the normalized susceptance of the coupling capacitor, C . Resonance
occurs with z = 0, or when

tan β� + bc = 0. (6.78)
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Overcoupled

(R < Z0)

Critically coupled

(R = Z0)

Undercoupled
(R > Z0)

FIGURE 6.15 Smith chart illustrating coupling to a series RLC circuit.

The solutions to this transcendental equation are shown in the graph of Figure 6.17. In
practice, bc � 1, so the first resonant frequency, ω1, will be close to the frequency for
which β� = π (the first resonant frequency of the unloaded resonator). The coupling of
the resonator to the feedline has the effect of lowering its resonant frequency.

We now wish to simplify the driving point impedance of (6.77) to relate this resonator
to a series RLC equivalent circuit. This can be accomplished by expanding z(ω) in a Taylor
series about the resonant frequency, ω1, and assuming that bc is small. Thus,

z(ω) = z (ω1) + (ω − ω1)
dz(ω)

dω

∣∣∣∣
ω1

+ · · · = (ω − ω1)
dz(ω)

d(β�)

d(β�)

dω

∣∣∣∣
ω1

+ · · · , (6.79)

Z

Z0 Z0

C

Feed line Gap
capacitance

Open-circuit
�/2 resonator

FIGURE 6.16 Equivalent circuit of the gap-coupled microstrip resonator of Figure 6.13a.



c06MicrowaveResonators Pozar August 5, 2011 18:28

6.6 Excitation of Resonators 301

�   = � /vp

–bc = –�CZ0

2��

tan �

vp

�1
vp

�2

FIGURE 6.17 Solutions to (6.78) for the resonant frequencies of the gap-coupled microstrip
resonator.

since, from (6.77) and (6.78), z(ω1) = 0. Then,

dz

d(β�)

∣∣∣∣
ω1

= j
sec2 β�

tan2 β�
= j

1 + tan2 β�

tan2 β�
= j

1 + b2
c

b2
c

� j

b2
c
,

where we have used (6.78) and the assumption that bc � 1. Assuming a TEM line, we
have d(β�)/dω = �/vp, where vp is the phase velocity of the line. Because � � πvp/ω1, the
normalized impedance can be written as

z(ω) � j�(ω − ω1)

b2
cvp

� jπ(ω − ω1)

ω1b2
c

. (6.80)

So far we have ignored losses, but for a high-Q resonator loss can be included by re-
placing the resonant frequency, ω1, with the complex resonant frequency given by ω1(1 +
j/2Q0), which follows from (6.10). Applying this procedure to (6.80) gives the input
impedance of the gap-coupled lossy resonator as

z(ω) = π

2Q0b2
c

+ j
π(ω − ω1)

ω1b2
c

. (6.81)

Note that an uncoupled λ/2 open-circuited transmission line resonator looks like a parallel
RLC circuit near resonance, but the present case of a capacitive coupled λ/2 resonator looks
like a series RLC circuit near resonance. This is because the series coupling capacitor has
the effect of inverting the driving point impedance of the resonator (see the discussion of
impedance inverters in Section 8.5).

At resonance the input resistance is R = Z0π/2Q0b2
c . For critical coupling we must

have R = Z0, or

bc =
√

π

2Q0
. (6.82)

The coupling coefficient of (6.76) is found to be

g = Z0

R
= 2Q0b2

c

π
. (6.83)

If bc <
√

π/2Q, then g < 1 and the resonator is undercoupled; if bc >
√

π/2Q, then
g > 1 and the resonator is overcoupled.
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EXAMPLE 6.6 DESIGN OF A GAP-COUPLED MICROSTRIP RESONATOR

A resonator is made from an open-circuited 50 	 microstrip line and is gap cou-
pled to a 50 	 feedline, as in Figure 6.13a. The resonator has a length of 2.175 cm,
an effective dielectric constant of 1.9, and an attenuation of 0.01 dB/cm near its
resonance. Find the value of the coupling capacitor required for critical coupling,
and the resulting resonant frequency.

Solution
The first resonant frequency will occur when the resonator is about � = λg/2
in length. Ignoring fringing fields, we find that the approximate resonant fre-
quency is

f0 = vp

λg
= c

2�
√

εe
= 3 × 108

2(0.02175)
√

1.9
= 5.00 GHz.

This result does not include the effect of the coupling capacitor. From (6.35) the
unloaded Q of this resonator is

Q0 = β

2α
= π

λgα
= π

2�α
= π(8.7 dB/Np)

2(0.02175 m)(1dB/m)
= 628.

From (6.82) the normalized coupling capacitor susceptance is

bc =
√

π

2Q0
=
√

π

2(628)
= 0.05,

so the coupling capacitor has a value of

C = bc

ωZ0
= 0.05

2π(5 × 109)(50)
= 0.032 pF,

which should provide critical coupling of the resonator to the 50 	 feedline.
Now that C is determined, the exact resonant frequency can be found by solv-

ing the transcendental equation of (6.78). Because we know from the graphical so-
lution of Figure 6.17 that the actual resonant frequency is slightly lower than the
unloaded resonant frequency of 5.0 GHz, it is an easy matter to calculate (6.78)
for several frequencies in this vicinity, which leads to a value of about 4.918 GHz.
This is about 1.6% lower than the unloaded resonant frequency. Figure 6.18 shows
a Smith chart plot of the input impedance of the gap-coupled resonator for
coupling capacitor values that lead to undercoupled, critically coupled, and over-
coupled resonators. ■

An Aperture-Coupled Cavity

As a final example of resonator excitation, we consider the aperture coupled waveguide
cavity shown in Figure 6.19. As discussed in Section 4.8, a small aperture in the transverse
wall of a waveguide acts as a shunt inductance. If we consider the first resonant mode of
the cavity, which occurs for the cavity length � = λg/2, then the cavity can be considered
as a transmission line resonator shorted at one end. The aperture-coupled cavity can then
be modeled by the equivalent circuit shown in Figure 6.20. This circuit is basically the
dual of the equivalent circuit of Figure 6.16, for the gap-coupled microstrip resonator, so
we will approach the solution in the same manner.
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C= 0.06 pF

C=0.033 pF

C=0.02 pF

FIGURE 6.18 Smith chart plot of input impedance of the gap-coupled microstrip resonator of
Example 6.6 versus frequency for various values of the coupling capacitor.

z

x

a

y

b
Short
circuit

CavityWaveguide

Aperture

FIGURE 6.19 A rectangular waveguide aperture coupled to a rectangular cavity.

Y

LZ0 Z0, �

FIGURE 6.20 Equivalent circuit of an aperture-coupled cavity resonator.
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The normalized input admittance seen by the feedline is

y = Z0Y = − j

(
Z0

XL
+ cot β�

)
= − j

(
tan β� + xL

xL tan β�

)
, (6.84)

where xL = ωL/Z0 is the normalized reactance of the aperture. An antiresonance occurs
when the numerator of (6.84) vanishes, or when

tan β� + xL = 0, (6.85)

which is similar in form to (6.78), for the case of the gap-coupled microstrip resonator. In
practice, xL � 1, so the first resonant frequency, ω1, will be close to the resonant frequency
for which β� = π , similar to the solution illustrated in Figure 6.17.

Using the same procedure as in the previous section, we can expand the input admit-
tance of (6.84) in a Taylor series about the resonant frequency, ω1, assuming xL � 1, to
obtain

y(ω) = y(ω1) + (ω − ω1)
dy(ω)

dω

∣∣∣∣
ω1

+ · · · = (ω − ω1)
dy(ω)

d(β�)

d(β�)

dω

∣∣∣∣
ω1

+ · · · ,
(6.86)

since, from (6.84) and (6.85), y(ω1) = 0. Then,

dy(ω)

d(β�)
= j

sec2 β�

tan2 β�
= j

1 + tan2 β�

tan2 β�
= j

1 + x2
L

x2
L

� j

x2
L

.

For the rectangular waveguide,

dβ

dω
= d

dω

√
k2

0 − k2
c = k0

βc
,

where c is the speed of light. Then the normalized admittance of (6.86) can be reduced to

y(ω) � jk0�

x2
Lβc

(ω − ω1) � jπk0

x2
Lβ2c

(ω − ω1). (6.87)

In (6.87), k0, β, and xL should be evaluated at the resonant frequency, ω1.
Loss can now be included by assuming a high-Q cavity, and replacing ω1 in the numer-

ator of (6.87) with ω1(1 + j/2Q0), to obtain

y(ω) � πk0ω1

2Q0β2cx2
L

+ j
πk0(ω − ω1)

β2cx2
L

. (6.88)

At resonance the input resistance is R = 2Q0β
2cx2

L Z0/πk0ω1. To obtain critical cou-
pling we must have R = Z0, which yields the required aperture reactance as

XL = Z0

√
πk0ω1

2Q0β2c
. (6.89)

From XL , the necessary aperture size can be found.
The next resonant mode for the aperture-coupled cavity occurs when the input impe-

dance becomes zero, or Y → ∞. From (6.84) it is seen that this occurs at a frequency such
that tan β� = 0, or β� = π . In this case the cavity is exactly λg/2 long, so a null in the
transverse electric field exists at the aperture plane, and the aperture has no effect. This
mode is of little practical interest because of this negligible coupling.

The excitation of a cavity resonator by an electric current probe or loop can be ana-
lyzed by the method of modal analysis, similar to that discussed in Sections 4.7 and 4.8.
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Z0 Z0

CLR

1 2

FIGURE 6.21 A two-port network consisting of a series RLC resonator in series with a transmis-
sion line.

The procedure is complicated, however, by the fact that a complete modal expansion re-
quires fields having irrotational (zero curl) components. The interested reader is referred
to references [1] and [4].

Determining Unloaded Q from Two-Port Measurements

Direct measurement of the unloaded Q of a resonator is generally not possible because of
the loading effect of the measurement system, but it is possible to determine unloaded Q
from measurements of the frequency response of the loaded resonator when it is connected
to a transmission line. Both one-port (reflection measurement) and two-port (transmission
measurement) techniques are possible; we will describe how unloaded Q can be found
from a two-port measurement.

Figure 6.21 shows a series RLC resonator inserted in series in a transmission line
of characteristic impedance Z0, forming a two-port network. Maximum transmission oc-
curs at resonance since the impedance of the series resonator is minimum at resonance.
Off resonance, the resonator impedance increases, and the insertion loss increases. The
result is that the network of Figure 6.21 has a two-port transmission response (as given by
|S21|) of the form shown in Figure 6.22. The loaded Q can be determined from (6.21) as
QL = f0/BW, where f0 is the resonant frequency, and BW is the half-power bandwidth
(in Hz), where the transmission response is 3 dB lower than at resonance.

The unloaded Q can be expressed in terms of the loaded Q and the coupling coeffi-
cient, g. From (6.23),

1

QL
= 1

Qe
+ 1

Q0
= 1

Q0

(
1 + Q0

Qe

)
= 1

Q0
(1 + g), (6.90)
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FIGURE 6.22 Frequency response of the transmission characteristics of the resonator network of
Figure 6.21 for two values of unloaded Q and coupling coefficient.
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since g = Q0/Qe from (6.76). Rewriting (6.90) gives

Q0 = (1 + g)QL . (6.91)

Because Q0 = ω0L/R for the series resonator, and the external Q is Qe = ω0L/2Z0, as a
result of the line loading at each end of the resonator, the coupling coefficient is

g = 2Z0

R
. (6.92)

At resonance, the impedance of the series RLC resonator reduces to Z = R. The scattering
parameter S21 for the two-port network of Figure 6.21 can be found in terms of the series
resonator impedance using the results of Table 4.2 (or from Problem 4.11). At resonance,

S21(ω0) = 2Z0

2Z0 + Z(ω0)
= 2Z0

2Z0 + R
= g

1 + g
. (6.93)

Solving for g gives

g = S21(ω0)

1 − S21(ω0)
. (6.94)

The procedure for finding the unloaded Q from measured scattering parameter data (or
from data produced by computer modeling) is to first find the coupling coefficient using
(6.94), then find the loaded Q from the 3 dB bandwidth, and finally, using (6.91), find Q0.
Note that S21 should be a real number at resonance, assuming phase reference planes at the
resonator circuit. If the resonator appears as a parallel RLC circuit, it is easy to show that
the result for g in (6.94) should be inverted.

6.7 CAVITY PERTURBATIONS

In practical applications cavity resonators are often modified by making small changes in
their shape, or by introducing small pieces of dielectric or metallic materials. For exam-
ple, the resonant frequency of a cavity resonator can be easily tuned with a small screw
(dielectric or metallic) that enters the cavity volume, or by changing the size of the cavity
with a movable wall. Another application involves the determination of dielectric constant
by measuring the shift in resonant frequency when a small dielectric sample is introduced
into the cavity.

In some cases, the effect of such perturbations on the cavity performance can be cal-
culated exactly, but often approximations must be made. One useful technique for doing
this is the perturbational method, which assumes that the actual fields of a cavity with a
small shape or material perturbation are not greatly different from those of the unperturbed
cavity. Thus, this technique is similar in concept to the perturbational method introduced
in Section 2.7 for treating loss in good conductors, where it was assumed that there was
not a significant difference between the fields of a device with good conductors and one
with perfect conductors.

In this section we derive expressions for the approximate change in resonant frequency
when a resonant cavity is perturbed by small changes in the material filling the cavity, or
by small changes in its shape.

Material Perturbations

Figure 6.23 shows a cavity perturbed by a change in the permittivity (�ε), or permeability
(�µ), of all or part of the material filling the cavity. If Ē0, H̄0 are the fields of the original
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FIGURE 6.23 A resonant cavity perturbed by a change in the permittivity or permeability of the
material in the cavity. (a) Original cavity. (b) Perturbed cavity.

cavity, and Ē, H̄ are the fields of the perturbed cavity, then Maxwell’s curl equations can
be written for the two cases as

∇ × Ē0 = − jω0µH̄0, (6.95a)

∇ × H̄0 = jω0εĒ0, (6.95b)

∇ × Ē = − jω(µ + �µ)H̄ , (6.96a)

∇ × H̄ = jω(ε + �ε)Ē, (6.96b)

where ω0 is the resonant frequency of the original cavity, and ω is the resonant frequency
of the perturbed cavity.

Multiply the conjugate of (6.95a) by H̄ , and multiply (6.96b) by Ē∗
0 , to get

H̄ · ∇ × Ē∗
0 = jω0µH̄ · H̄∗

0 ,

Ē∗
0 · ∇ × H̄ = jω(ε + �ε)Ē∗

0 · Ē .

Subtracting these two equations and using the vector identity (B.8) that ∇ · ( Ā × B̄) =
B̄ · ∇ × Ā − Ā · ∇ × B̄ gives

∇ · (Ē∗
0 × H̄) = jω0µH̄ · H̄∗

0 − jω(ε + �ε)Ē∗
0 · Ē . (6.97a)

Similarly, multiply the conjugate of (6.95b) by Ē , and multiply (6.96a) by H̄∗
0 , to get

Ē · ∇ × H̄∗
0 = − jω0ε Ē∗

0 · Ē,

H̄∗
0 · ∇ × Ē = − jω(µ + �µ)H̄∗

0 · H̄ .

Subtracting these two equations and using vector identity (B.8) gives

∇ · (Ē × H̄∗
0 ) = − jω(µ + �µ)H̄∗

0 · H̄ + jω0εĒ
∗
0 · Ē . (6.97b)

Now add (6.97a) and (6.97b), integrate over the volume V0, and use the divergence theorem
to obtain

∫
V0

∇ · (Ē∗
0 × H̄ + Ē × H̄∗

0 )dv =
∮

S0

(Ē∗
0 × H̄ + Ē × H̄∗

0 ) · ds̄ = 0

= j
∫

V0

{[ω0ε − ω(ε + �ε)]Ē∗
0 · Ē + [ω0µ − ω(µ + �µ)]H̄∗

0 · H̄}dv, (6.98)
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where the surface integral is zero because n̂ × Ē = 0 on S0. Rewriting gives

ω − ω0

ω
= − ∫V0

(�εĒ · Ē∗
0 + �µH̄ · H̄∗

0 )dv∫
V0

(εĒ · Ē∗
0 + µH̄ · H̄∗

0 )dv
. (6.99)

This is an exact equation for the change in resonant frequency due to material pertur-
bations, but is not in a very usable form since we generally do not know Ē and H̄ , the
exact fields in the perturbed cavity. However, if we assume that �ε and �µ are small,
we can approximate the perturbed fields Ē, H̄ by the original fields Ē0, H̄0, and ω in
the denominator of (6.99) by ω0, to give the approximate fractional change in resonant
frequency as

ω − ω0

ω0
� − ∫V0

(�ε|Ē0|2 + �µ|H̄0|2)dv∫
V0

(ε|Ē0|2 + µ|H̄0|2)dv
. (6.100)

This result shows that any increase in ε or µ at any point in the cavity will decrease the
resonant frequency. The reader may also observe that the terms in (6.100) can be related
to the stored electric and magnetic energies in the original and perturbed cavities, so that
the decrease in resonant frequency can be related to the increase in stored energy of the
perturbed cavity.

EXAMPLE 6.7 MATERIAL PERTURBATION OF A RECTANGULAR CAVITY

A rectangular cavity operating in the TE101 mode is perturbed by the insertion
of a thin dielectric slab into the bottom of the cavity, as shown in Figure 6.24.
Use the perturbational result of (6.100) to derive an expression for the change in
resonant frequency.

Solution
From (6.42a)–(6.42c), the fields for the unperturbed TE101 cavity mode can be
written as

Ey = A sin
πx

a
sin

πz

d
,

Hx = − j A

ZTE
sin

πx

a
cos

πz

d
,

Hz = jπA

kηa
cos

πx

a
sin

πz

d
.

In the numerator of (6.100), �ε = (εr − 1)ε0 for 0 ≤ y ≤ t and zero elsewhere.

t

b a

x

zd

�r

y

FIGURE 6.24 A rectangular cavity perturbed by a thin dielectric slab.
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The integral can then be evaluated as

∫
V
(�ε|Ē0|2 + �µH̄0|2)dv = (εr − 1)ε0

∫ a

x=0

∫ t

y=0

∫ d

z=0
|Ey |2dzdydx

= (εr − 1)ε0 A2atd

4
.

The denominator of (6.100) is proportional to the total energy in the unperturbed
cavity, which was evaluated in (6.43); thus,

∫
V
(ε|Ē0|2 + µ|H̄0|2)dv = abdε0

2
A2.

Then (6.100) gives the fractional change (decrease) in resonant frequency as

ω − ω0

ω0
= −(εr − 1)t

2b
.

■

Shape Perturbations

Changing the size of a cavity, or inserting a tuning screw, can be considered as a change
in the shape of the cavity and, for small changes, can also be treated by the perturbation
technique. Figure 6.25 shows an arbitrary cavity with a perturbation in its shape; we will
derive an expression for the change in resonant frequency.

As in the case of material perturbations, let Ē0, H̄0, ω0 be the fields and resonant
frequency of the original cavity and let Ē, H̄, ω be the fields and resonant frequency of the
perturbed cavity. Then Maxwell’s curl equations can be written for the two cases as

∇ × Ē0 = − jω0µH̄0, (6.101a)

∇ × H̄0 = jω0εĒ0, (6.101b)

∇ × Ē = − jωµH̄ , (6.102a)

∇ × H̄ = jωεĒ . (6.102b)

Multiply the conjugate of (6.101a) by H̄ , and multiply (6.102b) by Ē∗
0 , to get

H̄ · ∇ × Ē∗
0 = jω0µH̄ · H̄∗

0 ,

Ē∗
0 · ∇ × H̄ = jωεĒ∗

0 · Ē .

ˆ

E0, H0
E, H

n
n̂

(a) (b)

�0
�V0

V
∆V
∆S

S0 S

FIGURE 6.25 A resonant cavity perturbed by a change in shape. (a) Original cavity. (b) Perturbed
cavity.
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Subtracting these two equations and using vector identity (B.8) gives

∇ · (Ē∗
0 × H̄) = jω0µH̄ · H̄∗

0 − jωεĒ∗
0 · Ē . (6.103a)

Similarly, multiply the conjugate of (6.101b) by Ē and (6.102a) by H̄∗
0 to get

Ē · ∇ × H̄∗
0 = − jω0ε Ē · Ē∗

0 ,

H̄∗
0 · ∇ × Ē = − jωµH̄∗

0 · H̄ .

Subtracting and applying vector identity (B.8) gives

∇ · (Ē × H̄∗
0 ) = − jωµH̄∗

0 · H̄ + jω0εĒ · Ē∗
0 (6.103b)

Now add (6.103a) and (6.103b), integrate over the volume V , and use the divergence the-
orem to obtain∫

V
∇ · (Ē × H̄∗

0 + Ē∗
0 × H̄)dv =

∮
S
(Ē × H̄∗

0 + Ē∗
0 × H̄) · ds̄

=
∮

S
Ē∗

0 × H̄ · ds̄ = − j (ω − ω0)

∫
V
(εĒ · Ē∗

0 + µH̄ · H̄∗
0 )dv, (6.104)

since n̂ × Ē = 0 on S.
Because the perturbed surface S = S0 − �S, we can write∮

S
Ē∗

0 × H̄ · ds̄ =
∮

S0

Ē∗
0 × H̄ · ds̄ −

∮
�S

Ē∗
0 × H̄ · ds̄ = −

∮
�S

Ē∗
0 × H̄ · ds,

because n̂ × Ē0 = 0 on S0. Using this result in (6.104) gives

ω − ω0 = − j
∮
�S Ē∗

0 × H̄ · ds̄∫
V (εĒ · Ē∗

0 + µH̄ · H̄∗
0 )dv

, (6.105)

which is an exact expression for the new resonant frequency, but not a very usable one since
we generally do not initially know Ē, H̄, or ω. If we assume �S is small, and approximate
Ē, H̄ by the unperturbed values of Ē0, H̄0, then the numerator of (6.105) can be reduced
as follows:∮

�S
Ē∗

0 × H̄ · ds̄ �
∮
�S

Ē∗
0 × H̄0 · ds̄ = − jω0

∫
�V

(ε|Ē0|2 − µ|H̄0|2)dv, (6.106)

where the last identity follows from conservation of power, as derived from the conjugate
of (1.87) with σ, J̄s , and M̄s set to zero. Using this result in (6.106) gives an expression for
the approximate fractional change in resonant frequency as

ω − ω0

ω0
�
∫
�V (µ|H̄0|2 − ε|Ē0|2)dv∫
V0

(µ|H̄0|2 + ε|Ē0|2)dv
, (6.107)

where we have also assumed that the denominator of (6.105), which represents the total
energy stored in the perturbed cavity, is approximately the same as that for the unperturbed
cavity.

Equation (6.107) can be written in terms of stored energies as follows:

ω − ω0

ω0
= �Wm − �We

Wm + We
, (6.108)

where �Wm and �We are the changes in the stored magnetic energy and electric energy,
respectively, after the shape perturbation, and Wm + We is the total stored energy in the
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cavity. These results show that the resonant frequency may either increase or decrease,
depending on where the perturbation is located and whether it increases or decreases the
cavity volume.

EXAMPLE 6.8 SHAPE PERTURBATION OF A RECTANGULAR CAVITY

A thin screw of radius r0 extends a distance � through the center of the top wall of
a rectangular cavity operating in the TE101 mode, as shown in Figure 6.26. If the
cavity is air filled, use (6.107) to derive an expression for the change in resonant
frequency from the unperturbed cavity.

Solution
From (6.42a)–(6.42c), the fields for the unperturbed TE101 cavity can be written
as

Ey = A sin
πx

a
sin

πz

d
,

Hx = − jA

ZTE
sin

πx

a
cos

πz

d
,

Hz = jπA

kηa
cos

πx

a
sin

πz

d
.

If the screw is thin, we can assume that the fields are constant over the cross
section of the screw and can be represented by the fields at x = a/2, z = d/2:

Ey

(
x = a

2
, y, z = d

2

)
= A,

Hx

(
x = a

2
, y, z = d

2

)
= 0,

Hz

(
x = a

2
, y, z = d

2

)
= 0.

Then the numerator of (6.107) can be evaluated as∫
�V

(µ|H̄0|2 − ε|Ē0|2)dv = −ε0

∫
�V

A2dv = −ε0 A2�V,

where �V = π�r2
0 is the volume of the screw. The denominator of (6.107) is,

from (6.43), ∫
V0

(µ|H̄0|2 + ε|Ē0|2)dv = abdε0 A2

2
= V0ε0 A2

2
,

b

2r0

x

zd0

y

FIGURE 6.26 A rectangular cavity perturbed by a tuning post in the center of the top wall.



c06MicrowaveResonators Pozar August 5, 2011 18:28

312 Chapter 6: Microwave Resonators

where V0 = abd is the volume of the unperturbed cavity. Then (6.107) gives

ω − ω0

ω0
= −2�πr2

0

abd
= −2�V

V0
,

which indicates a lowering of the resonant frequency. ■
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PROBLEMS

6.1 A series RLC resonator with an external load is shown below. Find the resonant frequency, the un-
loaded Q, and the loaded Q.

Resonator Load

2.5 Ω

2.5 Ω 50 nH 0.79 pF

6.2 Derive an expression for the unloaded Q of a transmission line resonator consisting of a short-
circuited transmission line 1λ long.

6.3 A transmission line resonator is fabricated from a λ/4 length of open-circuited line. Find the unloaded
Q of this resonator if the complex propagation constant of the line is α + jβ.

6.4 Consider the resonator shown below, consisting of a λ/2 length of lossless transmission line shorted
at both ends. At an arbitrary point, z, on the line, compute the impedances ZL and ZR seen looking
to the left and to the right, respectively, and show that ZL = Z∗

R . (This condition holds true for any
lossless transmission line resonator and is the basis for the transverse resonance technique discussed
in Section 3.9.)

0 zz  = �/2ZL ZR

Z0, �

6.5 A resonator is constructed from a 3.0 cm length of 100 	 air-filled coaxial line, shorted at one end
and terminated with a capacitor at the other end, as shown below. (a) Determine the capacitor value
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to achieve the lowest order resonance at 6.0 GHz. (b) Now assume that loss is introduced by placing
a 10,000 	 resistor in parallel with the capacitor. Calculate the unloaded Q.

R = 104 Ω Z0 = 100 ΩC

3.0 cm

6.6 A transmission line resonator is made from a length � of lossless transmission line of characteristic
impedance Z0 = 100 	. If the line is terminated at both ends as shown below, find �/λ for the first
resonance, and the unloaded Q of this resonator.

6.7 Write the expressions for the Ē and H̄ fields for a short-circuited λ/2 coaxial line resonator, and
show that the time-average stored electric and magnetic energies are equal.

6.8 A series RLC resonant circuit is connected to a length of transmission line that is λ/4 long at its
resonant frequency, as shown below. Show that, in the vicinity of resonance, the input impedance
behaves like that of a parallel RLC circuit.

Z0Zin

R L

C( f0, Q)

�/4
@ f0

6.9 A rectangular cavity resonator is constructed from a 2.0 cm length of aluminum X-band waveguide.
The cavity is air filled. Find the resonant frequency and unloaded Q of the TE101 and TE102 resonant
modes.

6.10 Derive the unloaded Q for the TM111 mode of a rectangular cavity, assuming lossy conducting walls
and lossless dielectric.

6.11 Consider the rectangular cavity resonator partially filled with dielectric as shown below. Derive a
transcendental equation for the resonant frequency of the dominant mode by writing the fields in
the air- and dielectric-filled regions in terms of TE10 waveguide modes, and enforcing boundary
conditions at z = 0, d – t , and d.

zd

t

b

y
x

a

�0
�r

0
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6.12 Determine the resonant frequencies of a rectangular cavity by carrying out a full separation-of-
variables solution to the wave equation for Ez (for TM modes) and Hz (for TE modes), subject to
the appropriate boundary conditions of the cavity. [Assume a solution of the form X (x)Y (y)Z(z).]

6.13 Find the unloaded Q for the TMnm0 resonant mode of a circular cavity. Consider both conductor and
dielectric losses.

6.14 Design a circular cavity resonator to operate in the TE111 mode with maximum unloaded Q at a
frequency of 6 GHz. The cavity is gold plated and filled with a dielectric material having εr = 1.5
and tan δ = 0.0005. Find the cavity dimensions and the resulting unloaded Q.

6.15 An air-filled rectangular cavity resonator has its first three resonant modes at the frequencies 5.2, 6.5,
and 7.2 GHz. Find the dimensions of the cavity.

6.16 Consider the microstrip ring resonator shown below. If the effective dielectric constant of the
microstrip line is εe, find an equation for the frequency of the first resonance. Suggest some methods
of coupling to this resonator.

d

W a

�r

6.17 A circular microstrip disk resonator is shown below. Solve the wave equation for TMnm0 modes for
this structure, using the magnetic wall approximation that Hϕ = 0 at ρ = a. If fringing fields are
neglected, show that the resonant frequency of the dominant mode is given by

f110 = 1.841c

2πa
√

εr

6.18 Compute the resonant frequency of a cylindrical dielectric resonator with εr = 36.2, 2a = 7.99 mm,
and L = 2.14 mm.

6.19 Extend the analysis of Section 6.5 to derive a transcendental equation for the resonant frequency of
the next resonant mode of the cylindrical dielectric resonator. (Hz odd in z.)

6.20 Consider the rectangular dielectric resonator shown below. Assume a magnetic wall boundary con-
dition around the edges of the cavity, and allow evanescent fields in the ±z directions away from the
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dielectric, similar to the analysis of Section 6.5. Derive a transcendental equation for the resonant
frequency.

c

b

a
x

z

y

6.21 A high-Q resonator useful at millimeter wave frequencies is the Fabry-Perot resonator, which con-
sists of two parallel metal plates (see figure below). A plane wave traveling at normal incidence
between the two plates will exhibit resonance when the plate separation is equal to a multiple of
λ/2. (a) Derive an expression for the resonant frequency of a Fabry-Perot resonator having a plate
separation d and mode number �. (b) If the plates have conductivity σ , derive an expression for
the unloaded Q of the resonator. (c) Use these results to find the resonant frequency and unloaded
Q of a Fabry-Perot resonator having d = 4.0 cm, with copper plates, and with a mode number
� = 25.

z

d

Ex
–

Ex
+

0

6.22 A parallel RLC circuit, with R = 1000 	, L = 1.26 nH, C = 0.804 pF, is coupled with a series
capacitor, C0, to a 50-	 transmission line, as shown below. Determine C0 for critical coupling to the
line. What is the resonant frequency?

Z0

C0

R L C

6.23 An aperture-coupled rectangular waveguide cavity has a resonant frequency of 9.0 GHz and an
unloaded Q of 11,000. If the waveguide dimensions are a = 2.5 cm and b = 1.25 cm, find the nor-
malized aperture reactance required for critical coupling.

6.24 A microwave resonator is connected as a one-port circuit, and its return loss is measured versus
frequency. At resonance the return loss is 14 dB, while at 2.9985 GHz and at 3.0015 GHz the return
loss is 11 dB (the half-power points). Determine the unloaded Q of the resonator. Do this for both
series and parallel resonators.

6.25 A microwave resonator is measured in a two-port configuration like that shown in Figure 6.21. The
minimum insertion loss is measured as 1.94 dB at 3.0000 GHz. The insertion loss is 4.95 dB at
2.9925 GHz and at 3.0075 GHz. What is the unloaded Q of the resonator?
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6.26 A thin slab of magnetic material is inserted next to the z = 0 wall of the rectangular cavity shown
below. If the cavity is operating in the TE101 mode, derive a perturbational expression for the change
in resonant frequency caused by the magnetic material.

zdt

b

y
x

a	r 	0

6.27 Derive an expression for the change in resonant frequency for the screw-tuned rectangular cavity of
Example 6.8 if the screw is located at x = a/2, z = 0, where Hx is maximum and Ey is minimum.
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C h a p t e r S e v e n

Power Dividers and
Directional Couplers

Power dividers and directional couplers are passive microwave components used for power
division or power combining, as illustrated in Figure 7.1. In power division, an input signal is
divided into two (or more) output signals of lesser power, while a power combiner accepts
two or more input signals and combines them at an output port. The coupler or divider may
have three ports, four ports, or more, and may be (ideally) lossless. Three-port networks take
the form of T-junctions and other power dividers, while four-port networks take the form of
directional couplers and hybrids. Power dividers usually provide in-phase output signals with
an equal power division ratio (3 dB), but unequal power division ratios are also possible. Di-
rectional couplers can be designed for arbitrary power division, while hybrid junctions usually
have equal power division. Hybrid junctions have either a 90◦ or a 180◦ phase shift between the
output ports.

A wide variety of waveguide couplers and power dividers were invented and characterized
at the MIT Radiation Laboratory in the 1940s. These included E- and H -plane waveguide
T-junctions, the Bethe hole coupler, multihole directional couplers, the Schwinger coupler,
the waveguide magic-T, and various types of couplers using coaxial probes. In the mid-1950s
through the 1960s, many of these couplers were reinvented to use stripline or microstrip tech-
nology. The increasing use of planar lines also led to the development of new types of couplers
and dividers, such as the Wilkinson divider, the branch line hybrid, and the coupled line direc-
tional coupler.

We will first discuss some of the general properties of three- and four-port networks, and
then treat the analysis and design of several of the most common types of power dividers,
couplers, and hybrids.

7.1 BASIC PROPERTIES OF DIVIDERS AND DOUPLERS

In this section we will use properties of the scattering matrix developed in Section 4.3 to de-
rive some of the basic characteristics of three- and four-port networks. We will also define

317
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Divider
or

coupler
P1

(a) (b)

P2 = �P1 P1 = P2 + P3

P3 = (1 – �)P1

Divider
or

coupler

P2

P3

FIGURE 7.1 Power division and combining. (a) Power division. (b) Power combining.

isolation, coupling, and directivity, which are important quantities for the characterization
of couplers and hybrids.

Three-Port Networks (T-Junctions)

The simplest type of power divider is a T-junction, which is a three-port network with two
inputs and one output. The scattering matrix of an arbitrary three-port network has nine
independent elements:

[S] =
[ S11 S12 S13

S21 S22 S23
S31 S32 S33

]
. (7.1)

If the device is passive and contains no anisotropic materials, then it must be reciprocal
and its scattering matrix will be symmetric (Si j = S ji ). Usually, to avoid power loss, we
would like to have a junction that is lossless and matched at all ports. We can easily show,
however, that it is impossible to construct such a three-port lossless reciprocal network that
is matched at all ports.

If all ports are matched, then Sii = 0, and if the network is reciprocal, the scattering
matrix of (7.1) reduces to

[S] =
[ 0 S12 S13

S12 0 S23
S13 S23 0

]
. (7.2)

If the network is also lossless, then energy conservation requires that the scattering matrix
satisfy the unitary properties of (4.53), which leads to the following conditions [1, 2]:

|S12|2 + |S13|2 = 1, (7.3a)

|S12|2 + |S23|2 = 1, (7.3b)

|S13|2 + |S23|2 = 1, (7.3c)

S∗
13S23 = 0, (7.3d)

S∗
23S12 = 0, (7.3e)

S∗
12S13 = 0. (7.3f)

Equations (7.3d)–(7.3f) show that at least two of the three parameters (S12, S13, S23) must
be zero. However, this condition will always be inconsistent with one of equations (7.3a)–
(7.3c), implying that a three-port network cannot be simultaneously lossless, reciprocal,
and matched at all ports. If any one of these three conditions is relaxed, then a physically
realizable device is possible.

If the three-port network is nonreciprocal, then Si j �= S ji , and the conditions of input
matching at all ports and energy conservation can be satisfied. Such a device is known as a
circulator, and generally relies on an anisotropic material, such as ferrite, to achieve non-
reciprocal behavior. Ferrite circulators will be discussed in more detail in Chapter 9, but
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we can demonstrate here that any matched lossless three-port network must be nonrecip-
rocal and, thus, a circulator. The scattering matrix of a matched three-port network has the
following form:

[S] =
[ 0 S12 S13

S21 0 S23
S31 S32 0

]
. (7.4)

If the network is lossless, [S] must be unitary, which implies the following conditions:

S∗
31S32 = 0, (7.5a)

S∗
21S23 = 0, (7.5b)

S∗
12S13 = 0, (7.5c)

|S12|2 + |S13|2 = 1, (7.5d)

|S21|2 + |S23|2 = 1, (7.5e)

|S31|2 + |S32|2 = 1. (7.5f)

These equations can be satisfied in one of two ways. Either

S12 = S23 = S31 = 0, |S21| = |S32| = |S13| = 1, (7.6a)

or

S21 = S32 = S13 = 0, |S12| = |S23| = |S31| = 1. (7.6b)

These results shows that Si j �= S ji for i �= j , which implies that the device must be non-
reciprocal. The scattering matrices for the two solutions of (7.6) are shown in Figure 7.2,
together with the symbols for the two possible types of circulators. The only difference
between the two cases is in the direction of power flow between the ports: solution (7.6a)
corresponds to a circulator that allows power flow only from port 1 to 2, or port 2 to 3, or
port 3 to 1, while solution (7.6b) corresponds to a circulator with the opposite direction of
power flow.

Alternatively, a lossless and reciprocal three-port network can be physically realized
if only two of its ports are matched [1]. If ports1and 2 are the matched ports, then the
scattering matrix can be written as

[S] =
[ 0 S12 S13

S12 0 S23
S13 S23 S33

]
. (7.7)

1

2

3

1

2

3

0 0 1
1[S] = 0 0
0 1 0

(a)

0 1 0
0[S] = 0 1
1 0 0

(b)

FIGURE 7.2 Two types of circulators and their scattering matrices. (a) Clockwise circulation.
(b) Counterclockwise circulation. The phase references for the ports are arbitrary.
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1 2

3

[S] =
0

e j�

0

e j�

0
0

0
0

e j�

S21 = e j�

S12 = e j�

S33 = e j�

FIGURE 7.3 A reciprocal lossless three-port network matched at ports 1 and 2.

To be lossless, the following unitarity conditions must be satisfied:

S∗
13S23 = 0, (7.8a)

S∗
12S13 + S∗

23S33 = 0, (7.8b)

S∗
23S12 + S∗

33S13 = 0, (7.8c)

|S12|2 + |S13|2 = 1, (7.8d)

|S12|2 + |S23|2 = 1, (7.8e)

|S13|2 + |S23|2 + |S33|2 = 1. (7.8f)

Equations (7.8d) and (7.8e) show that |S13| = |S23|, so (7.8a) leads to the result that S13 =
S23 = 0. Then, |S12| = |S33| = 1. The scattering matrix and corresponding signal flow
graph for this network are shown in Figure 7.3, where it is seen that the network actu-
ally degenerates into two separate components—one a matched two-port line and the other
a totally mismatched one-port.

Finally, if the three-port network is allowed to be lossy, it can be reciprocal and
matched at all ports; this is the case of the resistive divider, which will be discussed in
Section 7.2. In addition, a lossy three-port network can be made to have isolation between
its output ports (e.g., S23 = S32 = 0).

Four-Port Networks (Directional Couplers)

The scattering matrix of a reciprocal four-port network matched at all ports has the follow-
ing form:

[S] =
⎡
⎢⎣

0 S12 S13 S14
S12 0 S23 S24
S13 S23 0 S34
S14 S24 S34 0

⎤
⎥⎦. (7.9)

If the network is lossless, 10 equations result from the unitarity, or energy conservation,
condition [1, 2]. Consider the multiplication of row 1 and row 2, and the multiplication of
row 4 and row 3:

S∗
13S23 + S∗

14S24 = 0, (7.10a)

S∗
14S13 + S∗

24S23 = 0. (7.10b)
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Multiply (7.10a) by S∗
24, and (7.10b) by S∗

13, and subtract to obtain

S∗
14(|S13|2 − |S24|2) = 0. (7.11)

Similarly, the multiplication of row 1 and row 3, and the multiplication of row 4 and row
2, gives

S∗
12S23 + S∗

14S34 = 0, (7.12a)

S∗
14S12 + S∗

34S23 = 0. (7.12b)

Multiply (7.12a) by S12, and (7.12b) by S34, and subtract to obtain

S23(|S12|2 − |S34|2) = 0. (7.13)

One way for (7.11) and (7.13) to be satisfied is if S14 = S23 = 0, which results in a direc-
tional coupler. Then the self-products of the rows of the unitary scattering matrix of (7.9)
yield the following equations:

|S12|2 + |S13|2 = 1, (7.14a)

|S12|2 + |S24|2 = 1, (7.14b)

|S13|2 + |S34|2 = 1, (7.14c)

|S24|2 + |S34|2 = 1, (7.14d)

which imply that |S13| = |S24| [using (7.14a) and (7.14b)], and that |S12| = |S34| [using
(7.14b) and (7.14d)].

Further simplification can be made by choosing the phase references on three of the
four ports. Thus, we choose S12 = S34 = α, S13 = βe jθ , and S24 = βe jφ , where α and β

are real, and θ and φ are phase constants to be determined (one of which we are still free
to choose). The dot product of rows 2 and 3 gives

S∗
12S13 + S∗

24S34 = 0, (7.15)

which yields a relation between the remaining phase constants as

θ + φ = π ± 2nπ. (7.16)

If we ignore integer multiples of 2π, there are two particular choices that commonly occur
in practice:

1. A Symmetric Coupler: θ = φ = π/2. The phases of the terms having amplitudeβ

are chosen equal. Then the scattering matrix has the following form:

[S] =
⎡
⎢⎣

0 α jβ 0
α 0 0 jβ
jβ 0 0 α

0 jβ α 0

⎤
⎥⎦. (7.17)

2. An Antisymmetric Coupler: θ = 0, φ = π . The phases of the terms having ampli-
tude β are chosen to be 180◦ apart. Then the scattering matrix has the following
form:

[S] =
⎡
⎢⎣

0 α β 0
α 0 0 −β

β 0 0 α

0 −β α 0

⎤
⎥⎦. (7.18)
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1 2

4 3

Input

Isolated

Through

Coupled

1 2

4 3

Input

Isolated

Through

Coupled

FIGURE 7.4 Two commonly used symbols for directional couplers, and power flow conventions.

Note that these two couplers differ only in the choice of reference planes. In addition,
the amplitudes α and β are not independent, as (7.14a) requires that

α2 + β2 = 1. (7.19)

Thus, apart from phase references, an ideal four-port directional coupler has only one de-
gree of freedom, leading to two possible configurations.

Another way for (7.11) and (7.13) to be satisfied is if |S13| = |S24| and |S12| = |S34|.
If we choose phase references, however, such that S13 = S24 = α and S12 = S34 = jβ
[which satisfies (7.16)], then (7.10a) yields α(S23 + S∗

14) = 0, and (7.12a) yields β(S∗
14 −

S23) = 0. These two equations have two possible solutions. First, S14 = S23 = 0, which is
the same as the above solution for the directional coupler. The other solution occurs for
α = β = 0, which implies that S12 = S13 = S24 = S34 = 0. This is the degenerate case of
two decoupled two-port networks (between ports 1 and 4, and ports 2 and 3), which is of
trivial interest and will not be considered further. We are thus left with the conclusion that
any reciprocal, lossless, matched four-port network is a directional coupler.

The basic operation of a directional coupler can be illustrated with the aid of Figure 7.4,
which shows two commonly used symbols for a directional coupler and the port definitions.
Power supplied to port 1 is coupled to port 3 (the coupled port) with the coupling factor
|S13|2 = β2, while the remainder of the input power is delivered to port 2 (the through
port) with the coefficient |S12|2 = α2 = 1 − β2. In an ideal directional coupler, no power
is delivered to port 4 (the isolated port).

The following quantities are commonly used to characterize a directional coupler:

Coupling = C = 10 log
P1

P3
= −20 log β dB, (7.20a)

Directivity = D = 10 log
P3

P4
= 20 log

β

|S14| dB, (7.20b)

Isolation = I = 10 log
P1

P4
= −20 log |S14| dB, (7.20c)

Insertion loss = L = 10 log
P1

P2
= −20 log |S12| dB. (7.20d)

The coupling factor indicates the fraction of the input power that is coupled to the out-
put port. The directivity is a measure of the coupler’s ability to isolate forward and back-
ward waves (or the coupled and uncoupled ports). The isolation is a measure of the power
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delivered to the uncoupled port. These quantities are related as

I = D + C dB. (7.21)

The insertion loss accounts for the input power delivered to the through port, diminished by
power delivered to the coupled and isolated ports. The ideal coupler has infinite directivity
and isolation (S14 = 0). Then both α and β can be determined from the coupling factor, C .

Hybrid couplers are special cases of directional couplers, where the coupling factor is
3 dB, which implies that α = β = 1/

√
2. There are two types of hybrids. The quadrature

hybrid has a 90◦ phase shift between ports 2 and 3 (θ = φ = π/2) when fed at port 1, and
is an example of a symmetric coupler. Its scattering matrix has the following form:

[S] = 1√
2

⎡
⎢⎣

0 1 j 0
1 0 0 j
j 0 0 1
0 j 1 0

⎤
⎥⎦. (7.22)

The magic-T hybrid and the rat-race hybrid have a 180◦ phase difference between ports
2 and 3 when fed at port 4, and are examples of an antisymmetric coupler. Its scattering
matrix has the following form:

[S] = 1√
2

⎡
⎢⎣

0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

⎤
⎥⎦. (7.23)

POINT OF INTEREST: Measuring Coupler Directivity

The directivity of a directional coupler is a measure of the coupler’s ability to separate forward
and reverse wave components, and applications of directional couplers often require high (35 dB
or greater) directivity. Poor directivity will limit the accuracy of a reflectometer, and can cause
variations in the coupled power level from a coupler when there is even a small mismatch on
the through line.

The directivity of a coupler generally cannot be measured directly because it involves a
low-level signal that can be masked by coupled power from a reflected wave on the through
arm. For example, if a coupler has C = 20 dB and D = 35 dB, with a load having a return loss
RL = 30 dB, the signal level through the directivity path will be D + C = 55 dB below the
input power, but the reflected power through the coupled arm will only be RL + C = 50 dB
below the input power.

One way to measure coupler directivity uses a sliding matched load, as follows. First, the
coupler is connected to a source and a matched load, as shown in the accompanying left-hand
figure, and the coupled output power is measured. If we assume an input power Pi , this power
will be Pc = C2 Pi , where C = 10(−CdB)/20 is the numerical voltage coupling factor of the
coupler. Next, the position of the coupler is reversed, and the through line is terminated with a
sliding load, as shown in the right-hand figure.

Vi , Pi

C

Pc

Load

Vi , Pi

C

C
D

V0

Sliding
load

(Pmax, Pmin)

Γ

Changing the position of the sliding load introduces a variable phase shift in the signal re-
flected from the load and coupled to the output port. The voltage at the output port can be
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written as

V0 = Vi

(
C

D
+ C |�|e− jθ

)
,

where Vi is the input voltage, D = 10(D dB)/20 ≥ 1 is the numerical value of the directivity, |�|
is the reflection coefficient magnitude of the load, and θ is the path length difference between
the directivity and reflected signals. Moving the sliding load changes θ , so the two signals will
combine to trace out a circular locus, as shown in the following figure.

Im V0

0
ReV0

Vmax

CΓVi

Vmin

V0

Vi
C
D

�

The minimum and maximum output powers are given by

Pmin = Pi

(
C

D
− C |�|

)2
, Pmax = Pi

(
C

D
+ C |�|

)2
.

Let M and m be defined in terms of these powers as follows:

M = Pc

Pmax
=

(
D

1 + |�|D
)2

, m = Pmax

Pmin
=

(
1 + |�|D
1 − |�|D

)2
.

These ratios can be accurately measured directly by using a variable attenuator between the
source and coupler. The coupler directivity (numerical) can then be found as

D = M

(
2m

m + 1

)
.

This method requires that |�| < 1/D or, in dB, RL > D.

Reference: M. Sucher and J. Fox, eds., Handbook of Microwave Measurements, 3rd edition, Volume II, Polytech-
nic Press, New York, 1963.

7.2 THE T-JUNCTION POWER DIVIDER

The T-junction power divider is a simple three-port network that can be used for power
division or power combining, and it can be implemented in virtually any type of transmis-
sion line medium. Figure 7.5 shows some commonly used T-junctions in waveguide and
microstrip line or stripline form. The junctions shown here are, in the absence of transmis-
sion line loss, lossless junctions. Thus, as discussed in the preceding section, such junctions
cannot be matched simultaneously at all ports. We will analyze the T-junction divider be-
low, followed by a discussion of the resistive power divider, which can be matched at all
ports but is not lossless.

Lossless Divider

The lossless T-junction dividers of Figure 7.5 can all be modeled as a junction of three
transmission lines, as shown in Figure 7.6 [3]. In general, there may be fringing fields and
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(a)

(c)

(b)

FIGURE 7.5 Various T-junction power dividers. (a) E-plane waveguide T. (b) H -plane wave-
guide T. (c) Microstrip line T-junction divider.

higher order modes associated with the discontinuity at such a junction, leading to stored
energy that can be accounted for by a lumped susceptance, B. In order for the divider to be
matched to the input line of characteristic impedance Z0, we must have

Yin = j B + 1

Z1
+ 1

Z2
= 1

Z0
. (7.24)

If the transmission lines are assumed to be lossless (or of low loss), then the characteristic
impedances are real. If we also assume B = 0, then (7.24) reduces to

1

Z1
+ 1

Z2
= 1

Z0
. (7.25)

In practice, if B is not negligible, some type of discontinuity compensation or a reac-
tive tuning element can usually be used to cancel this susceptance, at least over a narrow
frequency range.

Yin

jBV0Z0

Z1

Z2

+

–

FIGURE 7.6 Transmission line model of a lossless T-junction divider.
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The output line impedances, Z1 and Z2, can be selected to provide various power
division ratios. Thus, for a 50 � input line, a 3 dB (equal split) power divider can be made
by using two 100 � output lines. If necessary, quarter-wave transformers can be used to
bring the output line impedances back to the desired levels. If the output lines are matched,
then the input line will be matched. There will be no isolation between the two output
ports, however, and there will be a mismatch looking into the output ports.

EXAMPLE 7.1 THE T-JUNCTION POWER DIVIDER

A lossless T-junction power divider has a source impedance of 50 �. Find the out-
put characteristic impedances so that the output powers are in a 2:1 ratio. Compute
the reflection coefficients seen looking into the output ports.

Solution
If the voltage at the junction is V0, as shown in Figure 7.6, the input power to the
matched divider is

Pin = 1

2

V 2
0

Z0
,

while the output powers are

P1 = 1

2

V 2
0

Z1
= 1

3
Pin,

P2 = 1

2

V 2
0

Z2
= 2

3
Pin.

These results yield the characteristic impedances as

Z1 = 3Z0 = 150 �,

Z2 = 3Z0

2
= 75 �.

The input impedance to the junction is

Z in = 75||150 = 50 �,

so that the input is matched to the 50 � source.
Looking into the 150 � output line, we see an impedance of 50 || 75 = 30 �,

while at the 75 � output line we see an impedance of 50 || 150 = 37.5 �. The
reflection coefficients seen looking into these ports are

�1 = 30 − 150

30 + 150
= −0.666,

�2 = 37.5 − 75

37.5 + 75
= −0.333.

■

Resistive Divider

If a three-port divider contains lossy components, it can be made to be matched at all ports,
although the two output ports may not be isolated [3]. The circuit for such a divider is
illustrated in Figure 7.7, using lumped-element resistors. An equal-split (−3 dB) divider is
shown, but unequal power division ratios are also possible.
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Zin

Port 1

Port 3

Port 2

Z0/3

V1Z0

Z0

Z0

P2

P3

P1

+

–
V Z
+

–

Z0/3

Z0/3

V 2
+

–

V
3

+

–

FIGURE 7.7 An equal-split three-port resistive power divider.

The resistive divider of Figure 7.7 can easily be analyzed using circuit theory. Assum-
ing that all ports are terminated in the characteristic impedance Z0, the impedance Z , seen
looking into the Z0/3 resistor followed by a terminated output line, is

Z = Z0

3
+ Z0 = 4Z0

3
. (7.26)

Then the input impedance of the divider is

Zin = Z0

3
+ 2Z0

3
= Z0, (7.27)

which shows that the input is matched to the feed line. Because the network is symmetric
from all three ports, the output ports are also matched. Thus, S11 = S22 = S33 = 0.

If the voltage at port 1 is V1, then by voltage division the voltage V at the center of the
junction is

V = V1
2Z0/3

Z0/3 + 2Z0/3
= 2

3
V1, (7.28)

and the output voltages are, again by voltage division,

V2 =V3 = V
Z0

Z0 + Z0/3
= 3

4
V = 1

2
V1. (7.29)

Thus, S21 = S31 = S23 = 1/2, so the output powers are 6 dB below the input power level.
The network is reciprocal, so the scattering matrix is symmetric, and it can be written as

[S] = 1

2

[ 0 1 1
1 0 1
1 1 0

]
. (7.30)

The reader may verify that this is not a unitary matrix.
The power delivered to the input of the divider is

Pin = 1

2

V 2
1

Z0
, (7.31)



c07PowerDividers Pozar August 24, 2011 15:53

328 Chapter 7: Power Dividers and Directional Couplers

while the output powers are

P2 = P3 = 1

2

(1/2V1)
2

Z0
= 1

8

V 2
1

Z0
= 1

4
Pin, (7.32)

which shows that half of the supplied power is dissipated in the resistors.

7.3 THE WILKINSON POWER DIVIDER

The lossless T-junction divider suffers from the disadvantage of not being matched at all
ports, and it does not have isolation between output ports. The resistive divider can be
matched at all ports, but even though it is not lossless, isolation is still not achieved. From
the discussion in Section 7.1, however, we know that a lossy three-port network can be
made having all ports matched, with isolation between output ports. The Wilkinson power
divider [4] is such a network, with the useful property of appearing lossless when the output
ports are matched; that is, only reflected power from the output ports is dissipated.

The Wilkinson power divider can be made with arbitrary power division, but we will
first consider the equal-split (3 dB) case. This divider is often made in microstrip line or
stripline form, as depicted in Figure 7.8a; the corresponding transmission line circuit is
given in Figure 7.8b. We will analyze this circuit by reducing it to two simpler circuits
driven by symmetric and antisymmetric sources at the output ports. This “even-odd” mode
analysis technique [5] will also be useful for other networks that we will study in later
sections.

Even-Odd Mode Analysis

For simplicity, we can normalize all impedances to the characteristic impedance Z0, and
redraw the circuit of Figure 7.8b with voltage generators at the output ports as shown in
Figure 7.9. This network has been drawn in a form that is symmetric across the midplane;
the two source resistors of normalized value 2 combine in parallel to give a resistor of
normalized value 1, representing the impedance of a matched source. The quarter-wave
lines have a normalized characteristic impedance Z , and the shunt resistor has a normalized
value of r ; we shall show that, for the equal-split power divider, these values should be
Z = √

2 and r = 2, as given in Figure 7.8.

�/4

�/4

�
4

Z0

2Z0

2Z0

Z0

Z0

Z0

2Z0

Z0

2Z 0

2Z
0

(a) (b)

FIGURE 7.8 The Wilkinson power divider. (a) An equal-split Wilkinson power divider in mi-
crostrip line form. (b) Equivalent transmission line circuit.
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Port 3

�/4

�/4

Port 2 1

2

2

1

Vg2

Vg3

r/2

r/2

+V3

+V2

+V1

Z

Z

Port
1

FIGURE 7.9 The Wilkinson power divider circuit in normalized and symmetric form.

Now define two separate modes of excitation for the circuit of Figure 7.9: the even
mode, where Vg2 = Vg3 = 2V0, and the odd mode, where Vg2 = −Vg3 = 2V0. Superpo-
sition of these two modes effectively produces an excitation of Vg2 = 4V0 and Vg3 = 0,
from which we can find the scattering parameters of the network. We now treat these two
modes separately.

Even mode: For even-mode excitation, Vg2 = Vg3 = 2V0, so V e
2 = V e

3 , and therefore no
current flows through the r/2 resistors or the short circuit between the inputs of the two
transmission lines at port 1. We can then bisect the network of Figure 7.9 with open circuits
at these points to obtain the network of Figure 7.10a (the grounded side of the λ/4 line is
not shown). Then, looking into port 2, we see an impedance

Ze
in = Z2

2
, (7.33)

FIGURE 7.10 Bisection of the circuit of Figure 7.9. (a) Even-mode excitation. (b) Odd-mode
excitation.
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since the transmission line looks like a quarter-wave transformer. Thus, if Z = √
2, port 2

will be matched for even-mode excitation; then V e
2 = V0 since Ze

in = 1. The r/2 resistor
is superfluous in this case since one end is open-circuited. Next, we find V e

1 from the
transmission line equations. If we let x = 0 at port 1 and x = −λ/4 at port 2, we can write
the voltage on the transmission line section as

V (x) = V +(e− jβx + �e jβx ).

Then

V e
2 = V (−λ/4) = j V +(1 − �) = V0, (7.34a)

V e
1 = V (0) = V +(1 + �) = j V0

� + 1

� − 1
. (7.34b)

The reflection coefficient � is that seen at port 1 looking toward the resistor of normalized
value 2, so

� = 2 − √
2

2 + √
2
,

and

V e
1 = − j V0

√
2. (7.35)

Odd mode: For odd-mode excitation, Vg2 = −Vg3 = 2V0, and so V o
2 = −V o

3 , and there is
a voltage null along the middle of the circuit in Figure 7.9. We can then bisect this circuit
by grounding it at two points on its midplane to give the network of Figure 7.10b. Looking
into port 2, we see an impedance of r/2 since the parallel-connected transmission line is
λ/4 long and shorted at port 1, and so looks like an open circuit at port 2. Thus, port 2 will
be matched for odd-mode excitation if we select r = 2. Then V o

2 = V0 and V o
1 = 0; for

this mode of excitation all power is delivered to the r/2 resistors, with none going to port 1.
Finally, we must find the input impedance at port 1 of the Wilkinson divider when

ports 2 and 3 are terminated in matched loads. The resulting circuit is shown in Figure
7.11a, where it is seen that this is similar to an even mode of excitation since V2 = V3.
No current flows through the resistor of normalized value 2, so it can be removed, leav-
ing the circuit of Figure 7.11b. We then have the parallel connection of two quarter-wave
transformers terminated in loads of unity (normalized). The input impedance is

Z in = 1

2

(√
2
)2 = 1. (7.36)

In summary, we can establish the following scattering parameters for the Wilkinson
divider:

S11 = 0 (Z in = 1 at port 1)

S22 = S33 = 0 (ports 2 and 3 matched for even and odd modes)

S12 = S21 = V e
1 + V o

1

V e
2 + V o

2
= − j/

√
2 (symmetry due to reciprocity)

S13 = S31 = − j/
√

2 (symmetry of ports 2 and 3)

S23 = S32 = 0 (due to short or open at bisection)



c07PowerDividers Pozar August 24, 2011 15:53

7.3 The Wilkinson Power Divider 331

�/4

�/41

1

1

Port 3

Port 2

2

Zin

2

1

1

1

Port 3

Port 2

2

Zin

2

2

(a)

(b)

Port 1

Port 1

FIGURE 7.11 Analysis of the Wilkinson divider to find S11. (a) The terminated Wilkinson di-
vider. (b) Bisection of the circuit in (a).

The preceding formula for S12 applies because all ports are matched when terminated
with matched loads. Note that when the divider is driven at port 1 and the outputs are
matched, no power is dissipated in the resistor. Thus the divider is lossless when the outputs
are matched; only reflected power from ports 2 or 3 is dissipated in the resistor. Because
S23 = S32 = 0, ports 2 and 3 are isolated.

EXAMPLE 7.2 DESIGN AND PERFORMANCE OF A WILKINSON DIVIDER

Design an equal-split Wilkinson power divider for a 50 � system impedance at
frequency f0, and plot the return loss (S11), insertion loss (S21 = S31), and isola-
tion (S23 = S32) versus frequency from 0.5 f0 to 1.5 f0.

Solution
From Figure 7.8 and the above derivation, we have that the quarter-wave trans-
mission lines in the divider should have a characteristic impedance of

Z = √
2Z0 = 70.7 �,

and the shunt resistor a value of

R = 2Z0 = 100 �.

The transmission lines are λ/4 long at the frequency f0. Using a computer-aided
design tool for the analysis of microwave circuits, the scattering parameter mag-
nitudes were calculated and plotted in Figure 7.12. ■
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0.5 f0 f0 1.5 f0
–40

–30

–20⎢Sij ⎢
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⎢S12 ⎢

⎢S11 ⎢

⎢S23 ⎢

FIGURE 7.12 Frequency response of an equal-split Wilkinson power divider. Port 1 is the input
port; ports 2 and 3 are the output ports.

Unequal Power Division and N-Way Wilkinson Dividers

Wilkinson-type power dividers can also be made with unequal power splits; a microstrip
line version is shown in Figure 7.13. If the power ratio between ports 2 and 3 is
K 2 = P3/P2, then the following design equations apply:

Z03 = Z0

√
1 + K 2

K 3
, (7.37a)

Z02 = K 2 Z03 = Z0

√
K (1 + K 2), (7.37b)

R = Z0

(
K + 1

K

)
. (7.37c)

Note that the above results reduce to the equal-split case for K =1. Also observe that the
output lines are matched to the impedances R2 = Z0 K and R3 = Z0/K , as opposed to the
impedance Z0; matching transformers can be used to transform these output impedances.

The Wilkinson divider can also be generalized to an N -way divider or combiner [4],
as shown in Figure 7.14. This circuit can be matched at all ports, with isolation between all
ports. A disadvantage, however, is the fact that the divider requires crossovers for the re-
sistors for N ≥ 3, which makes fabrication difficult in planar form. The Wilkinson divider
can also be made with stepped multiple sections, for increased bandwidth. A photograph
of a four-way Wilkinson divider network is shown in Figure 7.15.

1

2

3

Z0
Z03

Z02

R2 = Z0K

R3 = Z0/K

R

FIGURE 7.13 A Wilkinson power divider in microstrip form having unequal power division.
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FIGURE 7.14 An N -way, equal-split Wilkinson power divider.

7.4 WAVEGUIDE DIRECTIONAL COUPLERS

We now turn our attention to directional couplers, which are four-port devices with the
characteristics discussed in Section 7.1. To review the basic operation, consider the direc-
tional coupler schematic symbols shown in Figure 7.4. Power incident at port 1 will couple
to port 2 (the through port) and to port 3 (the coupled port), but not to port 4 (the isolated
port). Similarly, power incident in port 2 will couple to ports 1 and 4, but not 3. Thus,
ports 1 and 4 are decoupled, as are ports 2 and 3. The fraction of power coupled from port
1 to port 3 is given by C , the coupling coefficient, as defined in (7.20a), and the leakage
of power from port 1 to port 4 is given by I , the isolation, as defined in (7.20c). Another
quantity that characterizes a coupler is the directivity, D = I − C (dB), which is the ratio

FIGURE 7.15 Photograph of a four-way corporate power divider network using three microstrip
Wilkinson power dividers. Note the isolation chip resistors.

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.
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of the powers delivered to the coupled port and the isolated port. The ideal coupler is char-
acterized solely by the coupling factor, as the isolation and directivity are infinite. The ideal
coupler is also lossless and matched at all ports.

Directional couplers can be made in many different forms. We will first discuss wave-
guide couplers, followed by hybrid junctions. A hybrid junction is a special case of a
directional coupler, where the coupling factor is 3 dB (equal split), and the phase relation
between the output ports is either 90◦ (quadrature hybrid), or 180◦ (magic-T or rat-race
hybrid). Then we will discuss the implementation of directional couplers in coupled trans-
mission line form.

Bethe Hole Coupler

The directional property of all directional couplers is produced through the use of two sep-
arate waves or wave components, which add in phase at the coupled port and are canceled
at the isolated port. One of the simplest ways of doing this is to couple one waveguide
to another through a single small hole in the common broad wall between the two wave-
guides. Such a coupler is known as a Bethe hole coupler, two versions of which are shown
in Figure 7.16. From the small-aperture coupling theory of Section 4.8, we know that an
aperture can be replaced with equivalent sources consisting of electric and magnetic dipole
moments [6]. The normal electric dipole moment and the axial magnetic dipole moment
radiate with even symmetry in the coupled guide, while the transverse magnetic dipole mo-
ment radiates with odd symmetry. Thus, by adjusting the relative amplitudes of these two
equivalent sources, we can cancel the radiation in the direction of the isolated port, while
enhancing the radiation in the direction of the coupled port. Figure 7.16 shows two ways in
which these wave amplitudes can be controlled; in the coupler shown in Figure 7.16a, the

a
3

4

2

(Isolated)

(Through)

1(Input)

3(Coupled)

2

(Through)

4 (Isolated)

1

S b

b

y

x

z

(Coupled)

(Input)

(a)

(b)

�

FIGURE 7.16 Two versions of the Bethe hole directional coupler. (a) Parallel waveguides.
(b) Skewed waveguides.
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two waveguides are parallel and the coupling is controlled by s, the aperture offset from
the sidewall of the waveguide. For the coupler of Figure 7.16b, the wave amplitudes are
controlled by the angle, θ , between the two waveguides.

First consider the configuration of Figure 7.16a, with an incident TE10 mode into
port 1. These fields can be written as

Ey = A sin
πx

a
e− jβz, (7.38a)

Hx = −A

Z10
sin

πx

a
e− jβz, (7.38b)

Hz = jπ A

βaZ10
cos

πx

a
e− jβz, (7.38c)

where Z10 = k0η0/β is the wave impedance of the TE10 mode. Then, from (4.124) and
(4.125), this incident wave generates the following equivalent polarization currents at the
aperture at x = s, y = b, z = 0:

P̄e = ε0αe ŷ A sin
πs

a
δ(x − s)δ(y − b)δ(z), (7.39a)

P̄m = −αm A

[ −x̂

Z10
sin

πs

a
+ ẑ

jπ

βaZ10
cos

πs

a

]
δ(x − s)δ(y − b)δ(z). (7.39b)

Using (4.128a) and (4.128b) to relate P̄e and P̄m to the currents J̄ and M̄ , and then using
(4.118), (4.120), (4.122), and (4.123), gives the amplitudes of the forward and reverse
traveling waves in the top guide as

A+
10 = −1

P10

∫
v

Ē−
10 · J̄ dv + 1

P10

∫
v

H̄−
10 · M̄dv

= − jωA

P10

[
ε0αe sin2 πs

a
− µ0αm

Z2
10

(
sin2 πs

a
+ π2

β2a2
cos2 πs

a

)]
, (7.40a)

A−
10 = −1

P10

∫
v

Ē+
10 · J̄ dv + 1

P10

∫
v

H̄+
10 · M̄dv

= − jωA

P10

[
ε0αe sin2 πs

a
+ µ0αm

Z2
10

(
sin2 πs

a
− π2

β2a2
cos2 πs

a

)]
, (7.40b)

where P10 = ab/Z10 is the power normalization constant. Note from (7.40a) and (7.40b)
that the amplitude of the wave excited toward port 4 (A+

10) is generally different from that
excited toward port 3 (A−

10) (because H+
x = −H−

x ), so we can cancel the power delivered
to port 4 by setting A+

10 = 0. If we assume that the aperture is round, then Table 4.3 gives
the polarizabilities as αe = 2r3

0/3 and αm = 4r3
0/3, where r0 is the radius of the aperture.

Then from (7.40a) we obtain the following condition for A+
10 = 0:

(
2ε0 − 4µ0

Z2
10

)
sin2 πs

a
− 4π2µ0

β2a2 Z2
10

cos2 πs

a
= 0,

(
k2

0 − 2β2) sin2 πs

a
= 2π2

a2
cos2 πs

a
,

(
4π2

a2
− k2

0

)
sin2 πs

a
= 2π2

a2
,
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or

sin
πs

a
= π

√
2

4π2 − k2
0a2

= λ0√
2
(
λ2

0 − a2
) . (7.41)

The coupling factor is then given by

C = 20 log

∣∣∣∣ A

A−
10

∣∣∣∣ dB (7.42a)

and the directivity by

D = 20 log

∣∣∣∣ A−
10

A+
10

∣∣∣∣ dB. (7.42b)

Thus, a Bethe hole coupler of the type shown in Figure 7.16a can be designed by first
using (7.41) to find s, the position of the aperture, and then using (7.42a) to determine the
aperture size, r0, to give the required coupling factor.

For the skewed geometry of Figure 7.16b, the aperture may be centered at s = a/2,
and the skew angle θ adjusted for cancellation at port 4. In this case, the normal electric
field does not change with θ , but the transverse magnetic field components are reduced by
cos θ . We can account for the skew angle by replacing αm in the previous derivation by
αm cos θ . The wave amplitudes of (7.40a) and (7.40b) then become, for s = a/2,

A+
10 = − jωA

P10

(
ε0αe − µ0αm

Z2
10

cos θ

)
, (7.43a)

A−
10 = − jωA

P10

(
ε0αe + µ0αm

Z2
10

cos θ

)
. (7.43b)

Setting A+
10 = 0 results in the following condition for the angle θ :

2ε0 − 4µ0

Z2
10

cos θ = 0,

or

cos θ = k2
0

2β2
. (7.44)

The coupling factor then simplifies to

C = 20 log

∣∣∣∣ A

A−
10

∣∣∣∣ = −20 log
4k2

0r3
0

3abβ
dB. (7.45)

The angular geometry of the skewed Bethe hole coupler is often a disadvantage in
terms of fabrication and application. In addition, both coupler designs operate properly
only at the design frequency; deviation from this frequency will alter the coupling level
and the directivity, as shown in the following example.

EXAMPLE 7.3 BETHE HOLE COUPLER DESIGN AND PERFORMANCE

Design a Bethe hole coupler of the type shown in Figure 7.16a for an X-band
waveguide operating at 9 GHz, with a coupling of 20 dB. Calculate and plot the
coupling and directivity from 7 to 11 GHz. Assume a round aperture.
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Solution
For an X-band waveguide at 9 GHz, we have the following constants:

a = 0.02286 m,

b = 0.01016 m,

λ0 = 0.0333 m,

k0 = 188.5 m−1,

β = 129.0 m−1,

Z10 = 550.9 �,

P10 = 4.22 × 10−7 m2/�.

Equation (7.41) can be used to find the aperture position s:

sin
πs

a
= λ0√

2
(
λ2

0 − a2
) = 0.972,

s = a

π
sin−1 0.972 = 0.424a = 9.69 mm.

The coupling is 20 dB, so

C = 20 dB = 20 log

∣∣∣∣∣
A

A−
10

∣∣∣∣∣,
or ∣∣∣∣∣

A

A−
10

∣∣∣∣∣ = 1020/20 = 10;

thus, |A−
10/A| = 1/10. Now use (7.40b) to find r0:

∣∣∣∣∣
A−

10

A

∣∣∣∣∣ = 1

10
= ω

P10

[(
ε0αe + µ0αm

Z2
10

)
(0.944) − π2µ0αm

β2a2 Z2
10

(0.056)

]
.

Because αe = 2r3
0/3 and αm = 4r3

0/3, we obtain

0.1 = 1.44 × 106r3
0 ,

or

r0 = 4.15 mm.

This completes the design of the Bethe hole coupler. To compute the coupling
and directivity versus frequency, we evaluate (7.42a) and (7.42b), using the ex-
pressions for A−

10 and A+
10 given in (7.40a) and (7.40b). In these expressions the

aperture position and size are fixed at s = 9.69 mm and r0 = 4.15 mm, and the
frequency is varied. A short computer program was used to calculate the data
shown in Figure 7.17. Observe that the coupling varies by less than 1 dB over the
band. The directivity is very large (>60 dB) at the design frequency but decreases
to 15–20 dB at the band edges. The directivity is a more sensitive function of
frequency because it depends on the cancellation of two wave components. ■
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FIGURE 7.17 Coupling and directivity versus frequency for the Bethe hole coupler of Exam-
ple 7.3.

Design of Multihole Couplers

As seen from Example 7.3, a single-hole coupler has a relatively narrow bandwidth, at
least in terms of its directivity. However, if the coupler is designed with a series of coupling
holes, the extra degrees of freedom can be used to increase this bandwidth. The principle
of operation and design of such a multihole waveguide coupler is very similar to that of the
multisection matching transformer.

First let us consider the operation of the two-hole coupler shown in Figure 7.18. Two
parallel waveguides sharing a common broad wall are shown, although the same type of
structure could be made in microstrip line or stripline form. Two small apertures are spaced
λg/4 apart and couple the two guides. A wave entering at port 1 is mostly transmitted
through to port 2, but some power is coupled through the two apertures. If a phase reference
is taken at the first aperture, then the phase of the wave incident at the second aperture will
be −90◦. Each aperture will radiate a forward wave component and a backward wave
component into the upper guide; in general, the forward and backward amplitudes are
different. In the direction of port 3, both wave components are in phase because both have
traveled λg/4 to the second aperture. However, we obtain a cancellation in the direction of
port 4 because the wave coming through the second aperture travels λg/2 further than the
wave component coming through the first aperture. Clearly, this cancellation is frequency
sensitive, making the directivity a sensitive function of frequency. The coupling is less
frequency dependent since the path lengths from port 1 to port 3 are always the same.

4 3

1 2

�g /4

0° –90°

(Isolated)

(Out of phase) (In phase)

(Input)

(Coupled)

(Through)

FIGURE 7.18 Basic operation of a two-hole directional coupler.
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FIGURE 7.19 Geometry of an (N + 1)-hole waveguide directional coupler.

Thus, in the multihole coupler design, we synthesize the directivity response, as opposed
to the coupling response, as a function of frequency.

Now consider the general case of the multihole coupler shown in Figure 7.19, where
N + 1 equally spaced apertures couple two parallel waveguides. The amplitude of the inci-
dent wave in the lower left guide is A and, for small coupling, is essentially the same as the
amplitude of the through wave. For instance, a 20 dB coupler has a power coupling factor
of 10−20/10 = 0.01, so the power transmitted through waveguide A is 1 − 0.01 = 0.99 of
the incident power (1% coupled to the upper guide). The voltage (or field) drop in wave-
guide A is

√
0.99 = 0.995, or 0.5%. Thus, the assumption that the amplitude of the incident

field is identical at each aperture is a good one. Of course, the phase will change from one
aperture to the next.

As we saw in the previous section for the Bethe hole coupler, an aperture generally
excites forward and backward traveling waves with different amplitudes. Thus, let

Fn denote the coupling coefficient of the nth aperture in the forward direction.
Bn denote the coupling coefficient of the nth aperture in the backward direction.

Then the amplitude of the forward wave can be written as

F = Ae− jβNd
N∑

n=0

Fn, (7.46)

since all components travel the same path length. The amplitude of the backward wave is

B = A
N∑

n=0

Bne−2 jβnd , (7.47)

since the path length for the nth component is 2βnd, where d is the spacing between the
apertures. In (7.46) and (7.47) the phase reference is taken at the n = 0 aperture.

From the definitions in (7.20a) and (7.20b) the coupling and directivity can be com-
puted as

C = −20 log

∣∣∣∣ F

A

∣∣∣∣ = −20 log

∣∣∣∣
N∑

n=0

Fn

∣∣∣∣ dB, (7.48)

D = −20 log

∣∣∣∣ B

F

∣∣∣∣ = −20 log

∣∣∣∣∣
∑N

n=0 Bne−2 jβnd

∑N
n=0 Fn

∣∣∣∣∣

= −C − 20 log

∣∣∣∣
N∑

n=0

Bne−2 jβnd
∣∣∣∣ dB. (7.49)
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Now assume that the apertures are round holes with identical positions s relative to
the edge of the guide, with rn being the radius of the nth aperture. Then we know from
Section 4.8 and the preceding section that the coupling coefficients will be proportional
to the polarizabilities αe and αm of the aperture, and hence proportional to r3

n . So we can
write

Fn = Kf r3
n , (7.50a)

Bn = Kbr3
n , (7.50b)

where Kf and Kb are constants for the forward and backward coupling coefficients that are
the same for all apertures, but are functions of frequency. Then (7.48) and (7.49) reduce to

C = −20 log |Kf | − 20 log
N∑

n=0

r3
n dB, (7.51)

D = −C − 20 log |Kb| − 20 log

∣∣∣∣∣
N∑

n=0

r3
n e−2 jβnd

∣∣∣∣∣
= −C − 20 log |Kb| − 20 log S dB. (7.52)

In (7.51), the second term is constant with frequency. The first term is not affected
by the choice of rn, but is a relatively slowly varying function of frequency. Similarly,
in (7.52) the first two terms are slowly varying functions of frequency, representing the
directivity of a single aperture, but the last term (S) is a sensitive function of frequency due
to phase cancellation in the summation. Thus we can choose the rn to synthesize a desired
frequency response for the directivity, while the coupling should be relatively constant with
frequency.

Observe that the last term in (7.52),

S =
∣∣∣∣∣

N∑
n=0

r3
n e−2 jβnd

∣∣∣∣∣, (7.53)

is very similar in form to the expression obtained in Section 5.5 for multisection quarter-
wave matching transformers. As in that case, we can develop coupler designs that yield
either a binomial (maximally flat) or a Chebyshev (equal ripple) response for the directivity.
Another interpretation of (7.53) may be recognizable to the student familiar with basic
antenna theory, as this expression is identical to the array pattern factor of an (N + 1)-
element array with element weights r3

n . In that case, too, the pattern may be synthesized in
terms of binomial or Chebyshev polynomials.

Binomial response: As in the case of the multisection quarter-wave matching transformers,
we can obtain a binomial, or maximally flat, response for the directivity of the multihole
coupler by making the coupling coefficients proportional to the binomial coefficients. Thus,

r3
n = kC N

n , (7.54)

where k is a constant to be determined, and C N
n is a binomial coefficient given in (5.51).

To find k, we evaluate the coupling using (7.51) to give

C = −20 log |Kf | − 20 log k − 20 log
N∑

n=0

C N
n dB. (7.55)
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Because we know Kf, N , and C , we can solve for k and then find the required aperture
radii from (7.54). The spacing, d, should be λg/4 at the center frequency.

Chebyshev response: First assume that N is even (an odd number of holes), and that the
coupler is symmetric, so that r0 = rN , r1 = rN−1, etc. Then from (7.53) we can write S as

S =
∣∣∣∣∣

N∑
n=0

r3
n e−2 jnθ

∣∣∣∣∣ = 2
N/2∑
n=0

r3
n cos(N − 2n)θ,

where θ = βd . To achieve a Chebyshev response we equate this to the Chebyshev polyno-
mial of degree N :

S = 2
N/2∑
n=0

r3
n cos(N − 2n)θ = k|TN (sec θm cos θ)|, (7.56)

where k and θm are constants to be determined. From (7.53) and (7.56), we see that for
θ = 0, S = ∑N

n=0 r3
n = k|TN (sec θm)|. Using this result in (7.51) gives the coupling as

C = −20 log |Kf | − 20 log S
∣∣
θ=0

= −20 log |Kf | − 20 log k − 20 log |TN (sec θm)| dB. (7.57)

From (7.52) the directivity is

D = −C − 20 log |Kb| − 20 log S

= 20 log
Kf

Kb
+ 20 log

TN (sec θm)

TN (sec θm cos θ)
dB. (7.58)

The term log Kf/Kb is a function of frequency, so D will not have an exact Chebyshev
response. This error is usually small, however. We can assume that the smallest value of
D will occur when TN (sec θm cos θ) = 1, since |TN (sec θm)| ≥ |TN (sec θm cos θ)|. So if
Dmin is the specified minimum value of directivity in the passband, then θm can be found
from the relation

Dmin = 20 log TN (sec θm) dB. (7.59)

Alternatively, we could specify the bandwidth, which then dictates θm and Dmin. In either
case, (7.57) can then be used to find k, and then (7.56) solved for the radii, rn .

If N is odd (an even number of holes), the results for C, D, and Dmin in (7.57), (7.58),
and (7.59) still apply, but instead of (7.56), the following relation is used to find the aperture
radii:

S = 2
(N−1)/2∑

n=0

r3
n cos(N − 2n)θ = k|TN (sec θm cos θ)|. (7.60)

EXAMPLE 7.4 MULTIHOLE WAVEGUIDE COUPLER DESIGN

Design a four-hole Chebyshev coupler in an X-band waveguide using round aper-
tures located at s = a/4. The center frequency is 9 GHz, the coupling is 20 dB,
and the minimum directivity is 40 dB. Plot the coupling and directivity response
from 7 to 11 GHz.
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Solution
For an X-band waveguide at 9 GHz, we have the following constants:

a = 0.02286 m,

b = 0.01016 m,

λ0 = 0.0333 m,

k0 = 188.5 m−1,

β = 129.0 m−1,

Z10 = 550.9 �,

P10 = 4.22 × 10−7 m2/�.

From (7.40a) and (7.40b), we obtain for an aperture at s = a/4:

|Kf | = 2k0

3η0 P10

[
sin2 πs

a
− 2β2

k2
0

(
sin2 πs

a
+ π2

β2a2
cos2 πs

a

)]
= 3.953 ×105,

|Kb| = 2k0

3η0 P10

[
sin2 πs

a
+ 2β2

k2
0

(
sin2 πs

a
− π2

β2a2
cos2 πs

a

)]
= 3.454 ×105.

For a four-hole coupler, N = 3, so (7.59) gives

40 = 20 log T3(sec θm) dB,

100 = T3(sec θm) = cosh
[
3 cosh−1(sec θm)

]
,

sec θm = 3.01,

where (5.58b) was used. Thus θm = 70.6◦ and 109.4◦ at the band edges. Then
from (7.57) we can solve for k:

C = 20 = −20 log(3.953 × 105) − 20 log k − 40 dB,

20 log k = −171.94,

k = 2.53 × 10−9.

Finally, (7.60) and the expansion from (5.60c) for T3 allow us to solve for the radii
as follows:

S = 2
(
r3

0 cos 3θ + r3
1 cos θ

) = k
[

sec3 θm(cos 3θ + 3 cos θ) − 3 sec θm cos θ
]
,

2r3
0 = k sec3 θm ⇒ r0 = r3 = 3.26 mm,

2r3
1 = 3k(sec3 θm − sec θm) ⇒ r1 = r2 = 4.51 mm.

The resulting coupling and directivity are plotted in Figure 7.20; note the in-
creased directivity bandwidth compared to that of the Bethe hole coupler of
Example 7.3. ■
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FIGURE 7.20 Coupling and directivity versus frequency for the four-hole coupler of Exam-
ple 7.4.

7.5 THE QUADRATURE (90◦) HYBRID

Quadrature hybrids are 3 dB directional couplers with a 90◦ phase difference in the out-
puts of the through and coupled arms. This type of hybrid is often made in microstrip line
or stripline form as shown in Figure 7.21 and is also known as a branch-line hybrid. Other
3 dB couplers, such as coupled line couplers or Lange couplers, can also be used as quadra-
ture couplers; these components will be discussed in later sections. Here we will analyze
the operation of the quadrature hybrid using an even-odd mode decomposition technique
similar to that used for the Wilkinson power divider.

With reference to Figure 7.21, the basic operation of the branch-line coupler is as
follows. With all ports matched, power entering port 1 is evenly divided between ports 2
and 3, with a 90◦ phase shift between these outputs. No power is coupled to port 4 (the
isolated port). The scattering matrix has the following form:

[S] = −1√
2

⎡
⎢⎣

0 j 1 0
j 0 0 1
1 0 0 j
0 1 j 0

⎤
⎥⎦. (7.61)

Observe that the branch-line hybrid has a high degree of symmetry, as any port can be used
as the input port. The output ports will always be on the opposite side of the junction from
the input port, and the isolated port will be the remaining port on the same side as the input
port. This symmetry is reflected in the scattering matrix, as each row can be obtained as a
transposition of the first row.

�
4
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Z0 Z0

Z0/ 2

Z0/ 2

Z0

Z0 Z0

�
4

1

4

(Input)

(Isolated)

(Output)

(Output)

2

3

FIGURE 7.21 Geometry of a branch-line coupler.
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FIGURE 7.22 Circuit of the branch-line hybrid coupler in normalized form.

Even-Odd Mode Analysis

We first draw the schematic circuit of the branch-line coupler in normalized form, as in
Figure 7.22, where it is understood that each line represents a transmission line with in-
dicated characteristic impedance normalized to Z0. The common ground return for each
transmission line is not shown. We assume that a wave of unit amplitude A1 = 1 is incident
at port 1.

The circuit of Figure 7.22 can be decomposed into the superposition of an even-mode
excitation and an odd-mode excitation [5], as shown in Figure 7.23. Note that superimpos-
ing the two sets of excitations produces the original excitation of Figure 7.22, and since the
circuit is linear, the actual response (the scattered waves) can be obtained from the sum of
the responses to the even and odd excitations.

Because of the symmetry or antisymmetry of the excitation, the four-port network can
be decomposed into a set of two decoupled two-port networks, as shown in Figure 7.23.
Because the amplitudes of the incident waves for these two-ports are ±1/2, the amplitudes

1 2

4 3

+1/2

+1/2
1 1
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1 1 1
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1/ 2

             Line of symmetry
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V = max
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Open-circuited stubs
(2 separate 2-ports)

Γe

1 2
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FIGURE 7.23 Decomposition of the branch-line coupler into even- and odd-mode excitations.
(a) Even mode (e). (b) Odd mode (o).
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of the emerging wave at each port of the branch-line hybrid can be expressed as

B1 = 1

2
�e + 1

2
�o, (7.62a)

B2 = 1

2
Te + 1

2
To, (7.62b)

B3 = 1

2
Te − 1

2
To, (7.62c)

B4 = 1

2
�e − 1

2
�o, (7.62d)

where �e,o and Te,o are the even- and odd-mode reflection and transmission coefficients
for the two-port networks of Figure 7.23. First consider the calculation of �e and Te for
the even-mode two-port circuit. This can best be done by multiplying the ABCD matrices
of each cascade component in that circuit, to give

[
A B
C D

]
e

=
[

1 0
j 1

]
︸ ︷︷ ︸

Shunt
Y = j

[
0 j/

√
2

j
√

2 0

]
︸ ︷︷ ︸

λ/4
Transmission

line

[
1 0
j 1

]
︸ ︷︷ ︸

Shunt
Y = J

= 1√
2

[−1 j
j −1

]
,

(7.63)

where the individual matrices can be found from Table 4.1, and the admittance of the shunt
open-circuited λ/8 stubs is Y = j tan β = j . Then Table 4.2 can be used to convert from
ABCD parameters (defined here with Zo = 1) to S parameters, which are equivalent to the
reflection and transmission coefficients. Thus,

�e = A + B − C − D

A + B + C + D
= (−1 + j − j + 1)/

√
2

(−1 + j + j − 1)/
√

2
= 0, (7.64a)

Te = 2

A + B + C + D
= 2

(−1 + j + j − 1)/
√

2
= −1√

2
(1 + j). (7.64b)

Similarly, for the odd mode we obtain
[

A B
C D

]
o

= 1√
2

[
1 j
j 1

]
, (7.65)

which gives the reflection and transmission coefficients as

�o = 0, (7.66a)

To = 1√
2
(1 − j). (7.66b)

Using (7.64) and (7.66) in (7.62) gives the following results:

B1 = 0 (port 1 is matched), (7.67a)

B2 = − j√
2

(half-power,−90◦ phase shift from port 1 to 2), (7.67b)

B3 = − 1√
2

(half-power,−180◦ phase shift from port 1 to 3), (7.67c)

B4 = 0 (no power to port 4). (7.67d)

These results agree with the first row and column of the scattering matrix given in
(7.61); the remaining elements can easily be found by transposition.
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FIGURE 7.24 Photograph of an eight-way microstrip power divider for an array antenna feed net-
work at 1.26 GHz. The circuit uses six quadrature hybrids in a Bailey configuration
for unequal power division ratios (see Problem 7.33).

Courtesy of ProSensing, Inc., Amherst, Mass.

In practice, due to the quarter-wave length requirement, the bandwidth of a branch-line
hybrid is limited to 10%–20%. However, as with multisection matching transformers and
multihole directional couplers, the bandwidth of a branch-line hybrid can be increased to
a decade or more by using multiple sections in cascade. In addition, the basic design can
be modified for unequal power division and/or different characteristic impedances at the
output ports. Another practical point to be aware of is the fact that discontinuity effects at
the junctions of the branch-line coupler may require that the shunt arms be lengthened by
10◦–20◦. Figure 7.24 shows a photograph of a circuit using several quadrature hybrids.

EXAMPLE 7.5 DESIGN AND PERFORMANCE OF A QUADRATURE HYBRID

Design a 50 � branch-line quadrature hybrid junction, and plot the scattering
parameter magnitudes from 0.5 f0 to 1.5 f0, where f0 is the design frequency.

Solution
After the preceding analysis, the design of a quadrature hybrid is trivial. The lines
are λ/4 at the design frequency f0, and the branch-line impedances are

Z0√
2

= 50√
2

= 35.4 �.

The calculated frequency response is plotted in Figure 7.25. Note that we obtain
perfect 3 dB power division at ports 2 and 3, and perfect isolation and return loss
at ports 4 and 1, respectively, at the design frequency f0. All of these quantities,
however, degrade quickly as the frequency departs from f0. ■

0.5 f0 f0 1.5 f0
–40

–30

–20⎪Si j⎪

–10

0
S13

S14

S12S11

FIGURE 7.25 Scattering parameter magnitudes versus frequency for the branch-line coupler of
Example 7.5.
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FIGURE 7.26 Various coupled transmission line geometries. (a) Coupled stripline (planar, or
edge-coupled). (b) Coupled stripline (stacked, or broadside-coupled). (c) Coupled
microstrip lines.

7.6 COUPLED LINE DIRECTIONAL COUPLERS

When two unshielded transmission lines are in close proximity, power can be coupled from
one line to the other due to the interaction of the electromagnetic fields. Such lines are re-
ferred to as coupled transmission lines, and they usually consist of three conductors in close
proximity, although more conductors can be used. Figure 7.26 shows several examples of
coupled transmission lines. Coupled transmission lines are sometimes assumed to operate
in the TEM mode, which is rigorously valid for coaxial line and stripline structures, but
only approximately valid for microstrip line, coplanar waveguide, or slotline structures.
Coupled transmission lines can support two distinct propagating modes, and this feature
can be used to implement a variety of practical directional couplers, hybrids, and filters.

The coupled lines shown in Figure 7.26 are symmetric, meaning that the two conduct-
ing strips have the same width and position relative to ground; this simplifies the analysis
of their operation. We will first discuss the basic theory of coupled lines and present some
design data for coupled stripline and coupled microstrip line. We will then analyze the
operation of a single-section coupled line directional coupler and extend these results to
multisection coupled line coupler design.

Coupled Line Theory

The coupled lines of Figure 7.26, or other symmetric three-wire lines, can be represented
by the structure and equivalent circuit shown in Figure 7.27. If we assume TEM prop-
agation, then the electrical characteristics of the coupled lines can be completely deter-
mined from the effective capacitances between the lines and the velocity of propagation
on the line. As depicted in Figure 7.27, C12 represents the capacitance between the two
strip conductors, and C11 and C22 represent the capacitance between one strip conductor

C11 C22

C12

FIGURE 7.27 A three-wire coupled transmission line and its equivalent capacitance network.
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C11 C22

C11 C22

2C12 2C12

FIGURE 7.28 Even- and odd-mode excitations for a coupled line, and the resulting equivalent
capacitance networks. (a) Even-mode excitation. (b) Odd-mode excitation.

and ground. Because the strip conductors are identical in size and location relative to the
ground conductor, we have C11 = C22. Note that the designation of “ground” for the third
conductor has no special relevance beyond the fact that it is convenient, since in many
applications this conductor is the ground plane of a stripline or microstrip circuit.

Now consider two special types of excitations for the coupled line: the even mode,
where the currents in the strip conductors are equal in amplitude and in the same direction,
and the odd mode, where the currents in the strip conductors are equal in amplitude but in
opposite directions. The electric field lines for these two cases are sketched in Figure 7.28.
Because the line is TEM, the propagation constant and phase velocity are the same for
both of these modes: β = ω/vp and vp = c/

√
εr , where εr is the relative permittivity of

the TEM line.
For the even mode, the electric field has even symmetry about the center line, and no

current flows between the two strip conductors. This leads to the equivalent circuit shown,
where C12 is effectively open-circuited. The resulting capacitance of either line to ground
for the even mode is

Ce = C11 = C22, (7.68)

assuming that the two strip conductors are identical in size and location. Then the charac-
teristic impedance for the even mode is

Z0e =
√

Le

Ce
=

√
LeCe

Ce
= 1

vpCe
, (7.69)

where vp = c/
√

εr = 1/
√

LeCe = 1/
√

LoCo is the phase velocity of propagation on the
line.

For the odd mode, the electric field lines have an odd symmetry about the center line,
and a voltage null exists between the two strip conductors. We can imagine this as a ground
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plane through the middle of C12, which leads to the equivalent circuit shown. In this case
the effective capacitance between either strip conductor and ground is

Co = C11 + 2C12 = C22 + 2C12, (7.70)

and the characteristic impedance for the odd mode is

Z0o =
√

Lo

Co
=

√
LoCo

Co
= 1

vpCo
. (7.71)

In words, Z0e (Z0o) is the characteristic impedance of one of the strip conductors relative to
ground when the coupled line is operated in the even (odd) mode. An arbitrary excitation
of a coupled line can always be treated as a superposition of appropriate amplitudes of
even- and odd-mode excitations. This analysis assumes the lines are symmetric, and that
fringing capacitances are identical for even and odd modes.

If the coupled line supports a pure TEM mode, such as coaxial line, parallel plate
guide, or stripline, analytical techniques such as conformal mapping [7] can be used to
evaluate the capacitances per unit length of line, and the even- and odd-mode character-
istic impedances can then be determined. For quasi-TEM lines, such as microstrip line,
these results can be obtained numerically or by approximate quasi-static techniques [8]. In
either case, such calculations are generally too involved for our consideration, but many
commercial microwave CAD packages can provide design data for a variety of coupled
lines. Here we will present only graphical design data for two cases of coupled lines.

For a symmetric coupled stripline of the type shown in Figure 7.26a, the design graph
in Figure 7.29 can be used to determine the necessary strip widths and spacing for a given
set of characteristic impedances, Z0e and Z0o, and the dielectric constant. This graph
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FIGURE 7.29 Normalized even- and odd-mode characteristic impedance design data for sym-
metric edge-coupled striplines.
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FIGURE 7.30 Even- and odd-mode characteristic impedance design data for symmetric coupled
microstrip lines on a substrate with εr = 10.

should cover ranges of parameters for most practical applications, and can be used for
any dielectric constant, since the TEM mode of stripline allows scaling by the dielectric
constant.

For coupled microstrip lines, the results do not scale with dielectric constant, so design
graphs must be made for specific values of dielectric constant. Figure 7.30 shows such a
design graph for symmetric coupled microstrip lines on a substrate with εr = 10. Another
difficulty with coupled microstrip lines is the fact that the phase velocity is usually different
for the two modes of propagation because the two modes operate with different field con-
figurations in the vicinity of the air–dielectric interface. This can have a degrading effect
on coupler directivity.

EXAMPLE 7.6 IMPEDANCE OF A SIMPLE COUPLED LINE

For the broadside coupled stripline geometry of Figure 7.26b, assume W � S
and W � b, so that fringing fields can be ignored, and determine the even- and
odd-mode characteristic impedances.

Solution
We first find the equivalent network capacitances, C11 and C12 (because the line
is symmetric, C22 = C11). The capacitance per unit length of broadside parallel
lines with width W and separation d is

C̄ = εW

d
F/m,

where ε is the substrate permittivity. This formula ignores fringing fields.
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C11 is formed by the capacitance of one strip to the ground planes. Thus the
capacitance per unit length is

C̄11 = 2εrε0W

b − s
F/m.

The capacitance per unit length between the strips is

C̄12 = εrε0W

S
F/m.

Then from (7.68) and (7.70), the even- and odd-mode capacitances are

C̄e = C̄11 = 2εrε0W

b − S
F/m,

C̄o = C̄11 + 2C̄12 = 2εrε0W

(
1

b − S
+ 1

S

)
F/m.

The phase velocity on the line is vp = 1/
√

εrε0µ0 = c/
√

εr , so the characteristic
impedances are

Z0e = 1

vpC̄e
= η0

b − S

2W
√

εr
,

Z0o = 1

vpC̄o
= η0

1

2W
√

εr [1/(b − S) + 1/S] . ■

Design of Coupled Line Couplers

With the preceding definitions of the even- and odd-mode characteristic impedances, we
can apply an even-odd mode analysis to a length of coupled line to arrive at the design
equations for a single-section coupled line coupler. Such a line is shown in Figure 7.31.
This four-port network is terminated in the impedance Z0 at three of its ports, and driven
with a generator of voltage 2V0 and internal impedance Z0 at port 1. We will show that
a coupler can be designed with arbitrary coupling such that the input (port 1) is matched,
while port 4 is isolated. Port 2 is the through port, and port 3 is the coupled port. In Figure
7.31, a ground conductor is understood to be common to both strip conductors.

For this problem we will apply the even-odd mode analysis technique in conjunction
with the voltages and currents on the line, as opposed to the reflection and transmission
coefficients. So, by superposition, the excitation at port 1 in Figure 7.31 can be treated as
the sum of the even- and odd-mode excitations shown in Figure 7.32. From symmetry we
can see that I e

1 = I e
3 , I e

4 = I e
2 , V e

1 = V e
3 , and V e

4 = V e
2 for the even mode, while I o

1 = −I o
3 ,

I o
4 = −I o

2 , V o
1 = −V o

3 , and V o
4 = −V o

2 for the odd mode. The input impedance at port 1
of the coupler of Figure 7.31 can then be expressed as

Z in = V1

I1
= V e

1 + V o
1

I e
1 + I o

1
. (7.72)

If we let Ze
in be the input impedance at port 1 for the even mode, and Zo

in be the input
impedance for the odd mode, then we have

Ze
in = Z0e

Z0 + j Z0e tan θ

Z0e + j Z0 tan θ
, (7.73a)

Zo
in = Z0o

Z0 + j Z0o tan θ

Z0o + j Z0 tan θ
, (7.73b)
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FIGURE 7.31 A single-section coupled line coupler. (a) Geometry and port designations. (b) The
schematic circuit.

FIGURE 7.32 Decomposition of the coupled line coupler circuit of Figure 7.31 into even- and
odd-mode excitations. (a) Even mode. (b) Odd mode.
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since, for each mode, the line looks like a transmission line of characteristic impedance
Z0e or Z0o, terminated in a load impedance, Z0. Then by voltage division,

V o
1 = V0

Zo
in

Zo
in + Z0

, (7.74a)

V e
1 = V0

Ze
in

Ze
in + Z0

, (7.74b)

and

I o
1 = V0

Zo
in + Z0

, (7.75a)

I e
1 = V0

Ze
in + Z0

. (7.75b)

Using these results in (7.72) yields

Zin = Zo
in

(
Ze

in + Z0
) + Ze

in

(
Zo

in + Z0
)

Ze
in + Zo

in + 2Z0
= Z0 + 2

(
Zo

in Ze
in − Z2

0

)
Ze

in + Zo
in + 2Z0

. (7.76)

Now if we let

Z0 = √
Z0e Z0o, (7.77)

then (7.73a) and (7.73b) reduce to

Ze
in = Z0e

√
Z0o + j

√
Z0e tan θ√

Z0e + j
√

Z0o tan θ
,

Zo
in = Z0o

√
Z0e + j

√
Z0o tan θ√

Z0o + j
√

Z0e tan θ
,

so that Ze
in Zo

in = Z0e Z0o = Z2
0, and (7.76) reduces to

Z in = Z0. (7.78)

Thus, as long as (7.77) is satisfied, port 1 (and, by symmetry, all other ports) will be
matched.

Now if (7.77) is satisfied, so that Zin = Z0, we have that V1 = V0, by voltage division.
The voltage at port 3 is

V3 = V e
3 + V o

3 = V e
1 − V o

1 = V0

[
Ze

in

Ze
in + Z0

− Zo
in

Zo
in + Z0

]
, (7.79)

where (7.74) has been used. From (7.73) and (7.77), we can show that

Ze
in

Ze
in + Z0

= Z0 + j Z0e tan θ

2Z0 + j (Z0e + Z0o) tan θ
,

Zo
in

Zo
in + Z0

= Z0 + j Z0o tan θ

2Z0 + j (Z0e + Z0o) tan θ
,

so that (7.79) reduces to

V3 = V0
j (Z0e − Z0o) tan θ

2Z0 + j (Z0e + Z0o) tan θ
. (7.80)
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Now define the coupling coefficient, C , as

C = Z0e − Z0o

Z0e + Z0o
, (7.81)

which we will soon see is actually the midband voltage coupling coefficient, V3/V0. Then,

√
1 − C2 = 2Z0

Z0e + Z0o
,

so that

V3 = V0
jC tan θ√

1 − C2 + j tan θ
. (7.82)

Similarly, we can show that

V4 = V e
4 + V o

4 = V e
2 − V o

2 = 0, (7.83)

V2 = V e
2 + V o

2 = V0

√
1 − C2

√
1 − C2 cos θ + j sin θ

. (7.84)

Equations (7.82) and (7.84) can be used to plot the coupled and through port voltages
versus frequency, as shown in Figure 7.33. At very low frequencies (θ � π/2), virtually
all power is transmitted through port 2, with none being coupled to port 3. For θ = π/2, the
coupling to port 3 is at its first maximum; this is where the coupler is generally operated,
for small size and minimum line loss. Otherwise, the response is periodic, with maxima in
V3 for θ = π/2, 3π/2, . . .

For θ = π/2, the coupler is λ/4 long, and (7.82) and (7.84) reduce to

V3

V0
= C, (7.85)

V2

V0
= − j

√
1 − C2, (7.86)

which shows that C < 1 is the voltage coupling factor at the design frequency, θ = π/2.
Note that these results satisfy power conservation since Pin = (1/2)|V0|2/Z0, while the
output powers are P2 =(1/2)|V2|2/Z0 =(1/2)(1−C2)|V0|2/Z0, P3 =(1/2)|C |2|V0|2/Z0,
and P4 = 0,so that Pin = P2 + P3 + P4. Also observe that there is a 90◦ phase shift be-
tween the two output port voltages; thus this coupler can be used as a quadrature hybrid.
In addition, as long as (7.77) is satisfied, the coupler will be matched at the input and have
perfect isolation, at any frequency.

�0 �
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� 3� 2�
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C2
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V2
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2
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FIGURE 7.33 Coupled and through port voltages (squared) versus frequency for the coupled line
coupler of Figure 7.31.
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Finally, if the characteristic impedance, Z0, and the voltage coupling coefficient, C ,
are specified, then the following design equations for the required even- and odd-mode
characteristic impedances can be easily derived from (7.77) and (7.81):

Z0e = Z0

√
1 + C

1 − C
, (7.87a)

Z0o = Z0

√
1 − C

1 + C
. (7.87b)

In the above analysis it was assumed that the even and odd modes of the coupled line
structure have the same velocities of propagation, so that the line has the same electrical
length for both modes. For coupled microstrip lines, or other non-TEM lines, this condition
will generally not be satisfied exactly, and the coupler will have poor directivity. The fact
that coupled microstrip lines have unequal even- and odd-mode phase velocities can be
intuitively explained by considering the field line plots of Figure 7.28, which show that the
even mode has less fringing field in the air region than the odd mode. Thus its effective
dielectric constant should be higher, indicating a smaller phase velocity for the even mode.
Techniques for compensating coupled microstrip lines to achieve equal even- and odd-
mode phase velocities include the use of dielectric overlays and anisotropic substrates.

This type of coupler is best suited for weak coupling, as a large coupling factor requires
lines that are too close together to be practical, or a combination of even- and odd-mode
characteristic impedances that is nonrealizable.

EXAMPLE 7.7 SINGLE-SECTION COUPLER DESIGN AND PERFORMANCE

Design a 20 dB single-section coupled line coupler in stripline with a ground
plane spacing of 0.32 cm, a dielectric constant of 2.2, a characteristic impedance
of 50 �, and a center frequency of 3 GHz. Plot the coupling and directivity from
1 to 5 GHz. Include the effect of losses by assuming a loss tangent of 0.05 for the
dielectric material and copper conductors of 2 mil thickness.

Solution
The voltage coupling factor is C = 10−20/20 = 0.1. From (7.87), the even- and
odd-mode characteristic impedances are

Z0e = Z0

√
1 + C

1 − C
= 55.28 �,

Z0o = Z0

√
1 − C

1 + C
= 45.23 �.

To use Figure 7.29, we have that
√

εr Z0e = 82.0,
√

εr Z0o = 67.1,

and so W/b = 0.809 and S/b = 0.306. This gives a conductor width of W =
0.259 cm and a conductor separation of S = 0.098 cm (these values were actually
found using a commercial microwave CAD package).

Figure 7.34 shows the resulting coupling and directivity versus frequency,
including the effect of dielectric and conductor losses. Losses have the effect
of reducing the directivity, which is typically greater than 70 dB in the absence
of loss. ■
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FIGURE 7.34 Coupling versus frequency for the single-section coupler of Example 7.7.

Design of Multisection Coupled Line Couplers

As Figure 7.33 shows, the coupling of a single-section coupled line coupler is limited in
bandwidth due to the λ/4 length requirement. As in the case of matching transformers and
waveguide couplers, bandwidth can be increased by using multiple sections. In fact, there
is a very close relationship between multisection coupled line couplers and multisection
quarter-wave transformers [9].

Because the phase characteristics are usually better, multisection coupled line couplers
are generally made with an odd number of sections, as shown in Figure 7.35. Thus, we will
assume that N is odd. We will also assume that the coupling is weak (C ≥ 10 dB), and that
each section is λ/4 long (θ = π/2) at the center frequency.

For a single coupled line section, with C � 1, (7.82) and (7.84) simplify to

V3

V1
= jC tan θ√

1 − C2 + j tan θ
	 jC tan θ

1 + j tan θ
= jC sin θe− jθ , (7.88a)

V2

V1
=

√
1 − C2

√
1 − C2 cos θ + j sin θ

	 e− jθ . (7.88b)

Then for θ = π/2 we have that V3/V1 = C and V2/V1 = − j . The above approximation
is equivalent to assuming that no power is lost on the through path from one section to
the next, and is similar to the approximation used for the multisection waveguide coupler
analysis. It is a good assumption for small C , even though power conservation is violated.

V3 V4

V1 V2

C1 C2 CN – 1 CN

Coupled Isolated

Input Through

� �
� �

. . .

FIGURE 7.35 An N -section coupled line coupler.
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Using these results, we can express the total voltage at the coupled port (port 3) of the
cascaded coupler in Figure 7.35 as

V3 = (
jC1 sin θe− jθ )V1 + (

jC2 sin θe− jθ )V1e−2 jθ

+ · · · + (
jCN sin θe− jθ )V1e−2 j (N−1)θ, (7.89)

where Cn is the voltage coupling coefficient of the nth section. If we assume that the
coupler is symmetric, so that C1 = CN , C2 = CN−1, etc., we can simplify (7.89) to

V3 = j V1 sin θe− jθ
[
C1

(
1+e−2 j (N−1)θ

)+ C2
(
e−2 jθ + e−2 j (N−2)θ

) + · · · + CM e− j (N−1)θ
]

=2 j V1sin θe− j Nθ

[
C1 cos(N − 1)θ + C2 cos(N − 3)θ + · · · + 1

2
CM

]
, (7.90)

where M = (N + 1)/2.
At the center frequency, we define the voltage coupling factor C0:

C0 =
∣∣∣∣ V3

V1

∣∣∣∣
θ=π/2

. (7.91)

Equation (7.90) is in the form of a Fourier series for the coupling as a function of fre-
quency. Thus, we can synthesize a desired coupling response by choosing the coupling co-
efficients, Cn . Note that in this case we synthesize the coupling response, while in the case
of the multihole waveguide coupler we synthesized the directivity response. This is because
the path for the uncoupled arm of the multisection coupled line coupler is in the forward
direction, and so is less dependent on frequency than the coupled arm path, which is in the
reverse direction; this is the opposite situation from the multihole waveguide coupler.

Multisection couplers of this form can achieve decade bandwidths, but coupling lev-
els must be low. Because of the longer electrical length, it is more critical to have equal
even- and odd-mode phase velocities than it is for the single-section coupler. This usually
means that stripline is the preferred medium for such couplers. Mismatched phase veloci-
ties will degrade the coupler directivity, as will junction discontinuities, load mismatches,
and fabrication tolerances. A photograph of a coupled line coupler is shown in Figure 7.36.

FIGURE 7.36 Photograph of a single-section microstrip coupled line coupler.

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.
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EXAMPLE 7.8 MULTISECTION COUPLER DESIGN AND PERFORMANCE

Design a three-section 20 dB coupled line coupler with a binomial (maximally
flat) response, a system impedance of 50 �, and a center frequency of 3 GHz.
Plot the coupling and directivity from 1 to 5 GHz.

Solution
For a maximally flat response for a three-section (N = 3) coupler, we require that

dn

dθn
C(θ)

∣∣∣∣
θ=π/2

= 0 for n = 1, 2.

From (7.90),

C =
∣∣∣∣V3

V1

∣∣∣∣ = 2 sin θ

(
C1 cos 2θ + 1

2
C2

)

= C1(sin 3θ − sin θ) + C2 sin θ

= C1 sin 3θ + (C2 − C1) sin θ,

so

dC

dθ
= [3C1 cos 3θ + (C2 − C1) cos θ ]

∣∣∣
π/2

= 0,

d2C

dθ2
= [−9C1 sin 3θ − (C2 − C1) sin θ ]

∣∣∣
π/2

= 10C1 − C2 = 0.

At midband, θ = π/2 and C0 = 20 dB. Thus, C = 10−20/20 = 0.1 = C2 − 2C1.
Solving these two equations for C1 and C2 gives

C1 = C3 = 0.0125,

C2 = 0.125.

From (7.87) the even- and odd-mode characteristic impedances for each section
are

Z1
0e = Z3

0e = 50

√
1.0125

0.9875
= 50.63 �,

Z1
0o = Z3

0o = 50

√
0.9875

1.0125
= 49.38 �,

Z2
0e = 50

√
1.125

0.875
= 56.69 �,

Z2
0o = 50

√
0.875

1.125
= 44.10 �.

The coupling and directivity for this coupler are plotted in Figure 7.37. ■
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FIGURE 7.37 Coupling versus frequency for the three-section binomial coupler of Example 7.8.

7.7 THE LANGE COUPLER

Generally the coupling in a coupled line coupler is too loose to achieve coupling factors of
3 or 6 dB. One way to increase the coupling between edge-coupled lines is to use several
lines parallel to each other, so that the fringing fields at both edges of a line contribute to the
coupling. One of the most practical implementations of this idea is the Lange coupler [10],
shown in Figure 7.38a, where four parallel coupled lines are used with interconnections to
provide tight coupling. This coupler can easily achieve 3 dB coupling ratios, with an octave
or more bandwidth. The design tends to compensate for unequal even- and odd-mode phase
velocities, which also improves the bandwidth. There is a 90◦ phase difference between the
output lines (ports 2 and 3), so the Lange coupler is a type of quadrature hybrid. The main
disadvantage of the Lange coupler is probably practical, as the lines are very narrow and
close together, and the required bonding wires across the lines increases complexity. This
type of coupled line geometry is also referred to as interdigitated; such structures can also
be used for filter circuits.

The unfolded Lange coupler [11], shown in Figure 7.38b, operates in essentially the
same way as the original Lange coupler but is easier to model with an equivalent circuit.
Such an equivalent circuit consists of a four-wire coupled line structure, as shown in Fig-
ure 7.39a. All of the lines have the same width and spacing. If we make the reasonable
assumption that each line couples only to its nearest neighbor, and ignore more-distant
couplings, then we effectively have a two-wire coupled line circuit, as shown in Figure
7.39b. Then, if we can derive the even- and odd-mode characteristic impedances, Ze4 and
Zo4, of the four-wire circuit of Figure 7.39a in terms of Z0e and Z0o, the even- and odd-
mode characteristic impedances of any adjacent pair of lines, we can apply the coupled
line coupler results of Section 7.6 to analyze the Lange coupler.

Figure 7.40a shows the effective capacitances between the conductors of the four-wire
coupled line of Figure 7.39a. Unlike the two-line case of Section 7.6, the capacitances of
the four lines to ground are different depending on whether the line is on the outside (1 and
4), or on the inside (2 and 3). An approximate relation between these capacitances is [12]

Cin = Cex − CexCm

Cex + Cm
. (7.92)
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FIGURE 7.38 The Lange coupler. (a) Layout in microstrip form. (b) The unfolded Lange coupler.

For an even-mode excitation, all four conductors in Figure 7.40a are at the same po-
tential, so Cm , has no effect, and the total capacitance of any line to ground is

Ce4 = Cex + Cin. (7.93a)

For an odd-mode excitation, electric walls effectively exist through the middle of each Cm,
so the capacitance of any line to ground is

Co4 = Cex + Cin + 6Cm. (7.93b)

The even- and odd-mode characteristic impedances are then

Ze4 = 1

vpCe4
, (7.94a)

Zo4 = 1

vpCo4
, (7.94b)

where vp is the phase velocity of propagation on the line.
Now consider any isolated pair of adjacent conductors in the four-line model; the

effective capacitances are as shown in Figure 7.40b. The even- and odd-mode capacitances
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FIGURE 7.39 Equivalent circuits for the unfolded Lange coupler. (a) Four-wire coupled line
model. (b) Approximate two-wire coupled line model.

are

Ce = Cex, (7.95a)

Co = Cex + 2Cm . (7.95b)

Solving (7.95) for Cex and Cm , and substituting into (7.93) with the aid of (7.92) gives the
even-odd mode capacitances of the four-wire line in terms of a two-wire coupled line:

Ce4 = Ce(3Ce + Co)

Ce + Co
, (7.96a)

Co4 = Co(3Co + Ce)

Ce + Co
. (7.96b)

Because characteristic impedances are related to capacitance as Z0 = 1/vpC , we can
rewrite (7.96) to give the even/odd mode characteristic impedances of the Lange coupler in
terms of the characteristic impedances of a two-conductor line that is identical to any pair

1 2 3 4
Cm

Cex Cin Cin Cex

Cm Cm

(a)

1 2

CexCex

Cm

(b)

FIGURE 7.40 Effective capacitance networks for the unfolded Lange coupler equivalent cir-
cuits of Figure 7.39. (a) Effective capacitance network for the four-wire model.
(b) Effective capacitance network for the two-wire model.
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of adjacent lines in the coupler:

Ze4 = Z0o + Z0e

3Z0o + Z0e
Z0e, (7.97a)

Zo4 = Z0o + Z0e

3Z0e + Z0o
Z0o, (7.97b)

where Z0e and Z0o are the even- and odd-mode characteristic impedances of the two-
conductor pair.

Now we can apply the results of Section 7.6 to the coupler of Figure 7.39b. From
(7.77) the characteristic impedance is

Z0 = √
Ze4 Zo4 =

√
Z0e Z0o(Z0o + Z0e)2

(3Z0o + Z0e)(3Z0e + Z0o)
, (7.98)

and the voltage coupling coefficient is, from (7.81),

C = Ze4 − Zo4

Ze4 + Zo4
= 3

(
Z2

0e − Z2
0o

)
3
(
Z2

0e + Z2
0o

) + 2Z0e Z0o
, (7.99)

where (7.97) was used. For design purposes it is useful to invert these results to give the
necessary even- and odd-mode impedances in terms of a desired characteristic impedance
and coupling coefficient:

Z0e = 4C − 3 + √
9 − 8C2

2C
√

(1 − C)/(1 + C)
Z0, (7.100a)

Z0o = 4C + 3 − √
9 − 8C2

2C
√

(1 + C)/(1 − C)
Z0. (7.100b)

These results are approximate because of the simplifications involved with the appli-
cation of two-line characteristic impedances to the four-line circuit, and because of the
assumption of equal even- and odd-mode phase velocities. In practice, however, these re-
sults generally give sufficient accuracy. If necessary, a more complete analysis can be made
to directly determine Ze4 and Zo4 for the four-line circuit, as in reference [13].

7.8 THE 180◦ HYBRID

The 180◦ hybrid junction is a four-port network with a 180◦ phase shift between the two
output ports. It can also be operated so that the outputs are in phase. With reference to the
180◦ hybrid symbol shown in Figure 7.41, a signal applied to port 1 will be evenly split
into two in-phase components at ports 2 and 3, and port 4 will be isolated. If the input is
applied to port 4, it will be equally split into two components with a 180◦ phase difference
at ports 2 and 3, and port 1 will be isolated. When operated as a combiner, with input
signals applied at ports 2 and 3, the sum of the inputs will be formed at port 1, while the

1

4

2

3

180°
hybrid

(Σ)

(∆)

FIGURE 7.41 Symbol for a 180◦ hybrid junction.
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difference will be formed at port 4. Hence, ports 1 and 4 are referred to as the sum and
difference ports, respectively. The scattering matrix for the ideal 3 dB 180◦ hybrid thus has
the following form:

[S] = − j√
2

⎡
⎢⎣

0 1 1 0
1 0 0 −1
1 0 0 1
0 −1 1 0

⎤
⎥⎦. (7.101)

The reader may verify that this matrix is unitary and symmetric.
The 180◦ hybrid can be fabricated in several forms. The ring hybrid, or rat-race, shown

in Figures 7.42a and 7.43, can easily be constructed in planar (microstrip or stripline) form,
although waveguide versions are also possible. Another type of planar 180◦ hybrid uses
tapered matching sections and coupled lines, as shown in Figure 7.42b. Yet another type
is the hybrid waveguide junction, or magic-T, shown in Figure 7.42c. We will first analyze
the ring hybrid, using an even-odd mode analysis similar to that used for the branch-line
hybrid, and use a similar technique for the analysis of the tapered line hybrid. Then we will
qualitatively discuss the operation of the waveguide magic-T.

2

4

4

2

1

3

3

1 �/4

�/4

�/4

3�/42Z0

(Σ)

(∆)

Z0

Z0

Z0

Z0

(a) (b)

(c)

Output

Sum
input

Output
Difference

input

(Σ)

(∆)

FIGURE 7.42 Three types of hybrid junctions. (a) A ring hybrid, or rat-race, in microstrip line or
stripline form. (b) A tapered coupled line hybrid. (c) A waveguide hybrid junction,
or magic-T.
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FIGURE 7.43 Photograph of a microstrip power divider network using three ring hybrids.

Courtesy of M. D. Abouzahra, MIT Lincoln Laboratory, Lexington, Mass.

Even-Odd Mode Analysis of the Ring Hybrid

First consider a unit amplitude wave incident at port 1 (the sum port) of the ring hybrid of
Figure 7.42a. At the ring junction this wave will divide into two components, which both
arrive in phase at ports 2 and 3, and 180◦ out of phase at port 4. Using the even-odd mode
analysis technique [5], we can decompose this case into a superposition of the two simpler
circuits and excitations shown in Figure 7.44. The amplitudes of the scattered waves from
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1 2
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Γe
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2
2

2
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Γo
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FIGURE 7.44 Even- and odd-mode decomposition of the ring hybrid when port 1 is excited with
a unit amplitude incident wave. (a) Even mode. (b) Odd mode.
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the ring hybrid will be

B1 = 1

2
�e + 1

2
�o, (7.102a)

B2 = 1

2
Te + 1

2
To, (7.102b)

B3 = 1

2
�e − 1

2
�o, (7.102c)

B4 = 1

2
Te − 1

2
To. (7.102d)

We can evaluate the required reflection and transmission coefficients defined in Figure 7.44
using the ABCD matrix for the even- and odd-mode two-port circuits in Figure 7.44. The
results are

[
A B
C D

]
e

=
[

1 j
√

2
j
√

2 −1

]
, (7.103a)

[
A B
C D

]
o

=
[ −1 j

√
2

j
√

2 1

]
. (7.103b)

Then with the aid of Table 4.2 we have

�e = − j√
2
, (7.104a)

Te = − j√
2
, (7.104b)

�o = j√
2
, (7.104c)

To = − j√
2
. (7.104d)

Using these results in (7.102) gives

B1 = 0, (7.105a)

B2 = − j√
2
, (7.105b)

B3 = − j√
2
, (7.105c)

B4 = 0, (7.105d)

which shows that the input port is matched, port 4 is isolated, and the input power is evenly
divided and in phase between ports 2 and 3. These results form the first row and column of
the scattering matrix in (7.101).

Next consider a unit amplitude wave incident at port 4 (the difference port) of the
ring hybrid of Figure 7.42a. The two wave components on the ring will arrive in phase at
port 2 and at port 3, with a relative phase difference of 180◦ between these two ports. The
two wave components will be 180◦ out of phase at port 1. This case can be decomposed
into a superposition of the two simpler circuits and excitations shown in Figure 7.45. The
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FIGURE 7.45 Even- and odd-mode decomposition of the ring hybrid when port 4 is excited with
a unit amplitude incident wave. (a) Even mode. (b) Odd mode.

amplitudes of the scattered waves will be

B1 = 1

2
Te − 1

2
To, (7.106a)

B2 = 1

2
�e − 1

2
�o, (7.106b)

B3 = 1

2
Te + 1

2
To, (7.106c)

B4 = 1

2
�e + 1

2
�o. (7.106d)

The ABCD matrices for the even- and odd-mode circuits of Figure 7.45 are[
A B
C D

]
e

=
[ −1 j

√
2

j
√

2 1

]
, (7.107a)

[
A B
C D

]
o

=
[

1 j
√

2
j
√

2 −1

]
. (7.107b)

Then, from Table 4.2, the necessary reflection and transmission coefficients are

�e = j√
2
, (7.108a)

Te = − j√
2
, (7.108b)

�o = − j√
2
, (7.108c)

To = − j√
2
. (7.108d)
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Using these results in (7.106) gives

B1 = 0, (7.109a)

B2 = j√
2
, (7.109b)

B3 = − j√
2
, (7.109c)

B4 = 0, (7.109d)

which shows that the input port is matched, port 1 is isolated, and the input power is evenly
divided into ports 2 and 3 with a 180◦ phase difference. These results form the fourth row
and column of the scattering matrix of (7.101). The remaining elements in this matrix can
be found from symmetry considerations.

The bandwidth of the ring hybrid is limited by the frequency dependence of the ring
lengths, but is generally on the order of 20%–30%. Increased bandwidth can be obtained
by using additional sections, or a symmetric ring circuit as suggested in reference [14].

EXAMPLE 7.9 DESIGN AND PERFORMANCE OF A RING HYBRID

Design a 180◦ ring hybrid for a 50 � system impedance, and plot the magnitude
of the scattering parameters (S1 j ) from 0.5 f0 to 1.5 f0, where f0 is the design
frequency.

Solution
With reference to Figure 7.42a, the characteristic impedance of the ring transmis-
sion line is √

2Z0 = 70.7 �,

while the feedline impedances are 50 �. The scattering parameter magnitudes are
plotted versus frequency in Figure 7.46. ■

Even-Odd Mode Analysis of the Tapered Coupled Line Hybrid

The tapered coupled line 180◦ hybrid [15], shown in Figure 7.42b, can provide an arbitrary
power division ratio with a bandwidth of a decade or more. This hybrid is also referred to
as an asymmetric tapered coupled line coupler.

0.5 f0 f0 1.5 f0
–40

–30

–20

–10

0

⎪Sij⎪
dB S11

S12

S13

FIGURE 7.46 Scattering parameter magnitudes versus frequency for the ring hybrid of Exam-
ple 7.9.
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FIGURE 7.47 (a) Schematic diagram of the tapered coupled line hybrid. (b) The variation of
characteristic impedances.

The schematic circuit of this coupler is shown in Figure 7.47, with the ports numbered
to correspond functionally to the ports of the 180◦ hybrids in Figures 7.41 and 7.42. The
coupler consists of two coupled lines with tapering characteristic impedances over the
length 0 < z < L . At z = 0 the lines are very weakly coupled, so that Z0e(0) = Z0o(0) =
Z0, while at z = L the coupling is such that Z0e(L) = Z0/k and Z0o(L) = k Z0, where
0 ≤ k ≤ 1 is a coupling factor that will be related to the voltage coupling factor. The even
mode of the coupled line thus matches a load impedance of Z0/k (at z = L) to Z0, while
the odd mode matches a load of k Z0 to Z0; note that Z0e(z)Z0o(z) = Z2

0 for all z. The
Klopfenstein taper is generally used for these tapered matching lines. For L < z < 2L the
lines are uncoupled, and both have a characteristic impedance Z0; these lines are required
for phase compensation of the coupled line section. The length of each section, θ = βL ,
must be the same, and they should be electrically long to provide a good impedance match
over the desired bandwidth.

First consider an incident voltage wave of amplitude V0 applied to port 4, the differ-
ence input. This excitation can be reduced to the superposition of an even-mode excitation
and an odd-mode excitation, as shown in Figures 7.48a and 7.48b, respectively. At the
junctions of the coupled and uncoupled lines (z = L), the reflection coefficients seen by
the even or odd modes of the tapered lines are

�′
e = Z0 − Z0/k

Z0 + Z0/k
= k − 1

k + 1
, (7.110a)

�′
o = Z0 − k Z0

Z0 + k Z0
= 1 − k

1 + k
. (7.110b)

At z = 0 these coefficients are transformed to

�e = k − 1

k + 1
e−2 jθ , (7.111a)

�o = 1 − k

1 + k
e−2 jθ . (7.111b)
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FIGURE 7.48 Excitation of the tapered coupled line hybrid. (a) Even-mode excitation. (b) Odd-
mode excitation.

Then by superposition the scattering parameters of ports 2 and 4 are as follows:

S44 = 1

2
(�e + �o) = 0, (7.112a)

S24 = 1

2
(�e − �o) = k − 1

k + 1
e−2 jθ . (7.112b)

By symmetry, we also have that S22 = 0 and S42 = S24.
To evaluate the transmission coefficients into ports 1 and 3, we will use the ABCD

parameters for the equivalent circuits shown in Figure 7.49, where the tapered matching
sections have been assumed to be ideal, and replaced with transformers. The ABCD matrix

34

� �

Z0 Z0Z0 Z0

Te

k

k : 1

(a)

34

� �

Z0kZ0Z0 Z0

To

1 :    k

(b)

FIGURE 7.49 Equivalent circuits for the tapered coupled line hybrid, for transmission from port 4
to port 3. (a) Even-mode case. (b) Odd-mode case.
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of the transmission line–transformer–transmission line cascade can be found by multiply-
ing the three individual ABCD matrices for these components, but it is easier to use the fact
that the transmission line sections affect only the phase of the transmission coefficients.
The ABCD matrix of the transformer is, for the even mode,[√

k 0
0 1/

√
k

]
,

and for the odd mode is [
1/

√
k 0

0
√

k

]
.

Then the even- and odd-mode transmission coefficients are

Te = To = 2
√

k

k + 1
e−2 jθ, (7.113)

since T = 2/(A + B/Z0 + C Z0 + D) = 2
√

k/(k + 1) for both modes; the e−2 jθ factor
accounts for the phase delay of the two transmission line sections. We can then evaluate
the following scattering parameters:

S34 = 1

2
(Te + To) = 2

√
k

k + 1
e−2 jθ, (7.114a)

S14 = 1

2
(Te − To) = 0. (7.114b)

The voltage coupling factor from port 4 to port 3 is

β = |S34| = 2
√

k

k + 1
, 0 < β < 1, (7.115a)

while the voltage coupling factor from port 4 to port 2 is

α = |S24| = −k − 1

k + 1
, 0 < α < 1. (7.115b)

Power conservation is verified by the fact that

|S24|2 + |S34|2 = α2 + β2 = 1.

If we now apply even- and odd-mode excitations at ports 1 and 3, so that superpo-
sition yields an incident voltage wave at port 1, we can derive the remaining scattering
parameters. With a phase reference at the input ports, the even- and odd-mode reflection
coefficients at port 1 will be

�e = 1 − k

1 + k
e−2 jθ, (7.116a)

�o = k − 1

k + 1
e−2 jθ. (7.116b)

Then we can calculate the following scattering parameters:

S11 = 1

2
(�e + �o) = 0, (7.117a)

S31 = 1

2
(�e − �o) = 1 − k

1 + k
e−2 jθ = αe−2 jθ. (7.117b)
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From symmetry we have that S33 = 0, S13 = S31, and S14 = S32, S12 = S34. The ta-
pered coupled line 180◦ hybrid thus has the following scattering matrix:

[S] =

⎡
⎢⎢⎢⎣

0 β α 0

β 0 0 −α

α 0 0 β

0 −α β 0

⎤
⎥⎥⎥⎦ e−2 jθ . (7.118)

Waveguide Magic-T

The waveguide magic-T hybrid junction of Figure 7.42c has terminal properties similar
to those of the ring hybrid, and a scattering matrix similar in form to (7.101). A rigorous
analysis of this junction is too complicated to present here, but we can explain its operation
in a qualitative sense by considering the field lines for excitations at the sum and difference
ports.

First consider a TE10 mode incident at port 1. The resulting Ey field lines are illus-
trated in Figure 7.50a, where it is seen that there is an odd symmetry about guide 4. Because
the field lines of a TE10 mode in guide 4 would have even symmetry, there is no coupling
between ports 1 and 4. There is identical coupling to ports 2 and 3, however, resulting in
an in-phase, equal-split power division.

For a TE10 mode incident at port 4, the field lines are as shown in Figure 7.50b. Again
ports 1 and 4 are decoupled, due to symmetry (or reciprocity). Ports 2 and 3 are excited
equally by the incident wave, but with a 180◦ phase difference.

In practice, tuning posts or irises are often used for matching; such components must
be placed symmetrically to maintain proper operation of the hybrid.

2 3

4

(a)

2 3

4

(b)

FIGURE 7.50 Electric field lines for a waveguide hybrid junction. (a) Incident wave at port 1.
(b) Incident wave at port 4.
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Isolated

Input

Coupled

Through

FIGURE 7.51 The Moreno crossed-guide coupler.

7.9 OTHER COUPLERS

Although we have discussed the general properties of couplers and have analyzed and
derived design data for several of the most frequently used couplers, there are many other
types that we have not treated in detail. In this section we will briefly describe some of
these.

Moreno crossed-guide coupler: This is a waveguide directional coupler consisting of two
waveguides at right angles, with coupling provided by two apertures in the common broad
wall of the guides. See Figure 7.51. By proper design [16], the two wave components ex-
cited by these apertures can be made to cancel in the back direction. The apertures usually
consist of crossed slots, in order to couple tightly to the fields of both guides.

Schwinger reversed-phase coupler: This waveguide coupler is designed so that the path
lengths for the two coupling apertures are the same for the uncoupled port, so that the
directivity is essentially independent of frequency. Cancellation in the isolated port is ac-
complished by placing the slots on opposite sides of the centerline of the waveguide walls,
as shown in Figure 7.52, which couple to magnetic dipoles with a 180◦ phase difference.

�g/4

+M

–M

Isolated

Coupled Input

Through

FIGURE 7.52 The Schwinger reversed-phase coupler.
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Coupled Through

Isolated Input

FIGURE 7.53 The Riblet short-slot coupler.

The λg/4 slot spacing leads to in-phase combining at the coupled (backward) port, but
this coupling is very frequency sensitive. This is the opposite situation from that of the
multihole waveguide coupler discussed in Section 7.4.

Riblet short-slot coupler: This coupler, shown in Figure 7.53, consists of two waveguides
with a common sidewall. Coupling takes place in the region where part of the common
wall has been removed. In this region both the TE10 (even) and the TE20 (odd) modes are
excited, and by proper design can be made to cause cancellation at the isolated port and
addition at the coupled port. The width of the interaction region must be small enough to
prevent propagation of the undesired TE30 mode. This coupler can usually be made smaller
than other waveguide couplers.

Symmetric tapered coupled line coupler: We saw that a continuously tapered transmission
line matching transformer was the logical extension of the multisection matching trans-
former. Similarly, the multisection coupled line coupler can be extended to a continuous
taper, yielding a coupled line coupler with good bandwidth characteristics. Such a coupler
is shown in Figure 7.54. Generally, both the conductor width and separation can be adjusted
to provide a synthesized coupling or directivity response. One way to do this involves the
computer optimization of a stepped-section approximation to the continuous taper [17].
This coupler provides a 90◦ phase shift between the outputs.

Couplers with apertures in planar lines: Many of the above-mentioned waveguide couplers
can also be fabricated with planar lines such as microstrip line, stripline, dielectric image
lines, or various combinations of these. Some possibilities are illustrated in Figure 7.55.

FIGURE 7.54 A symmetric tapered coupled line coupler.
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�r �r

�r

�r

�r

FIGURE 7.55 Various aperture coupled planar line couplers. (a) Microstrip-to-microstrip cou-
pler. (b) Microstrip-to-waveguide coupler. (c) Microstrip-to-dielectric image line
coupler.

In principle, the design of such couplers can be carried out using the small-hole coupling
theory and analysis techniques used in this chapter. The evaluation of the fields of planar
lines, however, is usually much more complicated than for rectangular waveguides.

POINT OF INTEREST: The Reflectometer

A reflectometer is a circuit that uses a directional coupler to isolate and sample the incident and
reflected powers from a load. It is a key component in a scalar or vector network analyzer, as it
can be used to measure the reflection coefficient of a one-port network and, in a more general
configuration, the scattering parameters of a two-port network. It can also be used as an SWR
meter, or as a power monitor in systems applications.

The basic reflectometer circuit shown on the left in the accompanying figure can be used
to measure the reflection coefficient magnitude of an unknown load. If we assume a reasonably

matched coupler with loose coupling (C � 1), so that
√

1 − C2 	 1, then the circuit can be
represented by the signal flow graph shown on the right in the accompanying figure. In opera-
tion, the directional coupler provides a sample, Vi , of the incident wave, and a sample, Vr , of
the reflected wave. A ratio meter with an appropriately calibrated scale can then measure these
voltages and provide a reading in terms of reflection coefficient magnitude, or SWR.

1 2
1

4 3

2

4 3

Γ

Load

Vr Vi

Vr Vi

1

C
D

Γ

C
D

C C

C, D
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Realistic directional couplers, however, have finite directivity, which means that both inci-
dent and reflected powers will contribute to both Vi and Vr , leading to an error. If we assume
a unit incident wave from the source, inspection of the signal flow graph leads to the following
expressions for Vi and Vr :

Vi = C + C

D
�e jθ ,

Vr = C

D
+ C�e jφ,

where � is the reflection coefficient of the load, D = 10(D dB/20) is the numerical directivity of
the coupler, and θ, φ are the unknown phase delays through the circuit. Then the maximum and
minimum values of the magnitude of Vr/Vi can be written as

∣∣∣∣Vr

Vi

∣∣∣∣
max

min

=
|�| ± 1

D

1 ∓ |�|
D

.

For a coupler with infinite directivity this reduces to the desired result of |�|. Otherwise a
measurement uncertainty of approximately ±1/D is introduced. Good accuracy thus requires a
coupler with high directivity, preferably greater than 40 dB.
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PROBLEMS

7.1 Write the scattering matrix for a nonideal symmetric hybrid coupler in terms of the coupler param-
eters, C , D, I , and L , as defined in (7.20). Repeat for a nonideal antisymmetric hybrid coupler.
Assume that the couplers are matched at all ports.

7.2 A 20 dBm power source is connected to the input of a directional coupler having a coupling factor of
20 dB, a directivity of 35 dB, and an insertion loss of 0.5 dB. If all ports are matched, find the output
powers (in dBm) at the through, coupled, and isolated ports.

7.3 A directional coupler has the scattering matrix given below. Find the return loss, coupling factor,
directivity, and insertion loss. Assume that the ports are terminated in matched loads.

[S] =

⎡
⎢⎢⎢⎣

0.1 � 40◦ 0.944� 90◦ 0.178� 180◦ 0.0056� 90◦
0.944� 90◦ 0.1� 40◦ 0.0056� 90◦ 0.178� 180◦
0.178� 180◦ 0.0056� 90◦ 0.1� 40◦ 0.944� 90◦
0.0056� 90◦ 0.178� 180◦ 0.944� 90◦ 0.1� 40◦

⎤
⎥⎥⎥⎦

7.4 Two identical 90◦ couplers with C = 8.34 dB are connected as shown below. Find the resulting phase
and amplitudes at ports 2′ and 3′, relative to port 1.

4 3 4' 3'

1 2 1' 2'

7.5 Consider the T-junction of three lines with characteristic impedances Z1, Z2, and Z3, as shown
below. Demonstrate that it is impossible for all three lines to be matched when looking toward the
junction.

Z1

Z2

Z3

7.6 Design a lossless T-junction divider with a 30 � source impedance to give a 3:1 power split. Design
quarter-wave matching transformers to convert the impedances of the output lines to 30 �. Determine
the magnitude of the scattering parameters for this circuit, using a 30 � characteristic impedance.

7.7 Consider the T and π resistive attenuator circuits shown below. If the input and output are matched
to Z0, and the ratio of output voltage to input voltage is α, derive the design equations for R1 and R2
for each circuit. If Z0 = 50 �, compute R1 and R2 for 3, 10, and 20 dB attenuators of each type.
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7.8 Design a three-port resistive divider for an equal power split and a 100 � system impedance. If port 3
is matched, calculate the change in output power at port 3 (in dB) when port 2 is connected first to a
matched load, and then to a load having a mismatch of � = 0.3. See the figure below.

1

3

2

Γ = 0 or 0.3Pin

Po

7.9 Consider the general resistive divider shown below. For an arbitrary power division ratio α = P2/P3,
derive expressions for the resistors R1, R2, and R3, and the output characteristic impedances Zo2
and Zo3 so that all ports are matched, assuming the source impedance is Z0.

P1 Z0

R1

P2

R2
Z02

R3

Z03

P3

7.10 Design a Wilkinson power divider with a power division ratio of P3/P2 = 1/3 and a source imped-
ance of 50 �.

7.11 Derive the design equations in (7.37a)–(7.37c) for the unequal-split Wilkinson divider.

7.12 For the Bethe hole coupler of the type shown in Figure 7.16a, derive a design for s so that port 3 is
the isolated port.

7.13 Design a Bethe hole coupler of the type shown in Figure 7.16a for a Ku-band waveguide operating
at 11 GHz. The required coupling is 20 dB.

7.14 Design a Bethe hole coupler of the type shown in Figure 7.16b for a Ku-band waveguide operating
at 17 GHz. The required coupling is 30 dB.

7.15 Design a five-hole directional coupler in a Ku-band waveguide with a binomial directivity response.
The center frequency is 17.5 GHz, and the required coupling is 20 dB. Use round apertures centered
across the broad wall of the waveguides.

7.16 Repeat Problem 7.14 for a design with a Chebyshev response, having a minimum directivity of 30 dB.

7.17 Develop the necessary equations required to design a two-hole directional coupler using two wave-
guides with apertures in a common sidewall, as shown below.
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d

b

2r0

a

a

7.18 Consider the general branch-line coupler shown below, with shunt arm characteristic impedances
Za and series arm characteristic impedances Zb. Using an even-odd mode analysis, derive design
equations for a quadrature hybrid coupler with an arbitrary power division ratio of α = P2/P3, and
with the input port (port 1) matched. Assume all arms are λ/4 long. Is port 4 isolated, in general?

1 2

4 3

Z0P1 P2

P4 P3

Zb

Zb

Z0

Za Za

Z0

Z0

7.19 An edge-coupled stripline with a ground plane spacing of 2.0 mm and a dielectric constant of 4.2 has
strip widths of 0.6 mm and a separation of 0.2 mm between the edges of the strips. Use the graph of
Figure 7.29 to find the resulting even- and odd-mode characteristic impedances. If possible, compare
your results to those obtained from a microwave CAD tool.

7.20 A coupled microstrip line is to be designed for a substrate having a thickness of 2.0 mm and dielectric
constant of 10.0. The required even- and odd-mode characteristic impedances are 133 � and 71.5 �,
respectively. Use the graph of Figure 7.30 to find the required line widths and separation. If possible,
compare your results to those obtained from a microwave CAD tool.

7.21 Repeat the derivation in Section 7.6 for the design equations of a single-section coupled line coupler
using reflection and transmission coefficients instead of voltages and currents.

7.22 Design a single-section coupled line coupler with a coupling of 19.1 dB, a system impedance of
60 �, and a center frequency of 8 GHz. If the coupler is to be made in stripline (edge-coupled), with
εr = 2.2 and b = 0.32 cm, find the necessary strip widths and separation.

7.23 Repeat Problem 7.22 for a coupling factor of 5 dB. Is this a practical design?

7.24 Derive Equations (7.83) and (7.84).

7.25 A 20-dB three-section coupled line coupler is required to have a maximally flat coupling response
with a center frequency of 3 GHz and Z0 = 50 �. (a) Design the coupler and find Z0e and Z0o
for each section. Use CAD to plot the resulting coupling (in dB) from 1 to 5 GHz. (b) Lay out
the microstrip implementation of the coupler on an FR4 substrate having εr = 4.2, d = 0.158 cm,
and tan δ = 0.02, with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus
frequency.

7.26 Repeat Problem 7.25 for a coupler with an equal-ripple coupling response, where the ripple in the
coupling is 1 dB over the passband.

7.27 For the Lange coupler, derive the design equations (7.100) for Z0e and Z0o from (7.98) and (7.99).

7.28 Design a 3 dB Lange coupler for operation at 5 GHz. If the coupler is to be fabricated in microstrip
on an alumina substrate with εr = 10 and d = 1.0 mm, compute Z0e and Z0o for the two adjacent
lines, and find the necessary spacing and widths of the lines.

7.29 An input signal V1 is applied to the sum port of a 180◦ hybrid, and another signal V4 is applied to
the difference port. What are the output signals?
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7.30 Calculate the even- and odd-mode characteristic impedances for a tapered coupled line 180◦ hybrid
coupler with a 3 dB coupling ratio and a 50 � characteristic impedance.

7.31 Find the scattering parameters for the four-port Bagley polygon power divider shown below.

3

24 1

2Z0

3

Z0

Z0

Z0 Z0

�/2 �/2

�/4 �/4

7.32 For the symmetric hybrid shown below, calculate the output voltages if port 1 is fed with an incident
wave of 1 � 0 V. Assume that the outputs are matched.

�/2

�/4 �/4

�/4�/4

4 3

2

1

5

Z0 Z0

Z0 Z0

Z0

2Z0

7.33 The Bailey unequal-split power divider uses a 90◦ hybrid coupler and a T-junction, as shown below.
The power division ratio is controlled by adjusting the feed position, a, along the transmission line of
length b that connects ports 1 and 4 of the hybrid. A quarter-wave transformer of impedance Z0/

√
2

is used to match the input of the divider. (a) For b = λ/4, show that the output power division ratio
is given by P3/P2 = tan2(πa/2b). (b) Using a branch-line hybrid with Z0 = 50 �, design a power
divider with a division ratio of P3/P2 = 0.5, and plot the resulting input return loss and transmission
coefficients versus frequency.

21

3

P2

P3
Z0

Z0Pin

a
b

Z0/ 2

4
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Microwave Filters

A filter is a two-port network used to control the frequency response at a certain point
in an RF or microwave system by providing transmission at frequencies within the passband
of the filter and attenuation in the stopband of the filter. Typical frequency responses include
low-pass, high-pass, bandpass, and band-reject characteristics. Applications can be found in
virtually any type of RF or microwave communication, radar, or test and measurement system.

The development of filter theory and practice began in the years preceding World War II by
pioneers such as Mason, Sykes, Darlington, Fano, Lawson, and Richards. The image parame-
ter method of filter design was developed in the late 1930s and was useful for low-frequency
filters in radio and telephony. In the early 1950s a group at Stanford Research Institute, consist-
ing of G. Matthaei, L. Young, E. Jones, S. Cohn, and others, became very active in microwave
filter and coupler development. A voluminous handbook on filters and couplers resulted from
this work and remains a valuable reference [1]. Today, most microwave filter design is done
with sophisticated computer-aided design (CAD) packages based on the insertion loss method.
Because of continuing advances in network synthesis with distributed elements, the use of low-
temperature superconductors and other new materials, and the incorporation of active devices
in filter circuits, microwave filter design remains an active research area.

We begin our discussion of filter theory and design with the frequency characteristics of
periodic structures, which consist of a transmission line or waveguide periodically loaded with
reactive elements. These structures are of interest in themselves because of their application
to slow-wave components and traveling-wave amplifier design, and also because they exhibit
basic passband-stopband responses that lead to the image parameter method of filter design.

Filters designed using the image parameter method consist of a cascade of simpler two-
port filter sections to provide the desired cutoff frequencies and attenuation characteristics but
do not allow the specification of a particular frequency response over the complete operating
range. Thus, although the procedure is relatively simple, the design of filters by the image
parameter method often must be iterated many times to achieve the desired results.

A more modern procedure, called the insertion loss method, uses network synthesis tech-
niques to design filters with a completely specified frequency response. The design is simplified
by beginning with low-pass filter prototypes that are normalized in terms of impedance and

380
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frequency. Transformations are then applied to convert the prototype designs to the desired
frequency range and impedance level.

Both the image parameter and insertion loss methods of filter design lead to circuits using
lumped elements (capacitors and inductors). For microwave applications such designs usually
must be modified to employ distributed elements consisting of transmission line sections. The
Richards transformation and the Kuroda identities provide this step. We will also discuss trans-
mission line filters using stepped impedances and coupled lines; filters using coupled resonators
will also be briefly described.

The subject of microwave filters is quite extensive due to the importance of these compo-
nents in practical systems and the wide variety of possible implementations. Here we can treat
only the basic principles and some of the more common filter designs, and we refer the reader
to references such as [1–4] for further discussion.

8.1 PERIODIC STRUCTURES

An infinite transmission line or waveguide periodically loaded with reactive elements is
an example of a periodic structure. As shown in Figure 8.1, periodic structures can take
various forms, depending on the transmission line media being used. Often the loading
elements are formed as discontinuities in the line itself, but in any case they can be modeled
as lumped reactances in shunt (or series) on a transmission line, as shown in Figure 8.2.
Periodic structures support slow-wave propagation (slower than the phase velocity of the

(a)

(b)

FIGURE 8.1 Examples of periodic structures. (a) Periodic stubs on a microstrip line. (b) Periodic
diaphragms in a waveguide.
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FIGURE 8.2 Equivalent circuit of a periodically loaded transmission line. The unloaded line has
characteristic impedance Z0 and propagation constant k.

unloaded line), and have passband and stopband characteristics similar to those of filters;
they find application in traveling-wave tubes, masers, phase shifters, and antennas.

Analysis of Infinit Periodic Structures

We first consider the propagation characteristics of the infinite loaded line shown in Fig-
ure 8.2. Each unit cell of this line consists of a length, d, of transmission line with a shunt
susceptance across the midpoint of the line; the susceptance, b, is normalized to the char-
acteristic impedance, Z0. If we consider the infinite line as being composed of a cascade
of identical two-port networks, we can relate the voltages and currents on either side of the
nth unit cell using the ABCD matrix:

[
Vn

In

]
=
[

A B
C D

] [
Vn+1
In+1

]
, (8.1)

where A, B, C, and D are the matrix parameters for a cascade of a transmission line section
of length d/2, a shunt susceptance b, and another transmission line section of length d/2.
From Table 4.1 we then have, in normalized form,

[
A B
C D

]
=

⎡
⎢⎢⎣

cos
θ

2
j sin

θ

2

j sin
θ

2
cos

θ

2

⎤
⎥⎥⎦
[

1 0
jb 1

]
⎡
⎢⎢⎣

cos
θ

2
j sin

θ

2

j sin
θ

2
cos

θ

2

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

(
cos θ − b

2
sin θ

)
j

(
sin θ + b

2
cos θ − b

2

)

j

(
sin θ + b

2
cos θ + b

2

) (
cos θ − b

2
sin θ

)

⎤
⎥⎥⎥⎦, (8.2)

where θ = kd, and k is the propagation constant of the unloaded line. The reader can verify
that AD − BC = 1, as required for reciprocal networks.

For a wave propagating in the +z direction, we must have

V (z) = V (0)e−γ z, (8.3a)

I (z) = I (0)e−γ z, (8.3b)

for a phase reference at z = 0. Since the structure is infinitely long, the voltage and current
at the nth terminals can differ from the voltage and current at the n + 1 terminals only by
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the propagation factor, e−γ d . Thus,

Vn+1 = Vne−γ d , (8.4a)

In+1 = Ine−γ d . (8.4b)

Using this result in (8.1) gives the following:
[

Vn

In

]
=
[

A B
C D

] [
Vn+1
In+1

]
=
[

Vn+1eγ d

In+1eγ d

]
,

or [
A − eγ d B

C D − eγ d

] [
Vn+1
In+1

]
= 0. (8.5)

For a nontrivial solution, the determinant of the above matrix must vanish:

AD + e2γ d − (A + D)eγ d − BC = 0, (8.6)

or, since AD − BC = 1,

1 + e2γ d − (A + D)eγ d = 0,

e−γ d + eγ d = A + D,

cosh γ d = A + D

2
= cos θ − b

2
sin θ, (8.7)

where (8.2) was used for the values of A and D. Now, if γ = α + jβ, we have that

cosh γ d = cosh αd cos βd + j sinh αd sin βd = cos θ − b

2
sin θ. (8.8)

Since the right-hand side of (8.8) is purely real, we must have either α = 0 or β = 0.

Case 1: α = 0, β �= 0. This case corresponds to a nonattenuated propagating wave on the
periodic structure, and defines the passband of the structure. Equation (8.8) reduces to

cos βd = cos θ − b

2
sin θ, (8.9a)

which can be solved for β if the magnitude of the right-hand side is less than or equal to
unity. Note that there are an infinite number of values of β that can satisfy (8.9a).

Case 2: α �= 0, β = 0, π . In this case the wave does not propagate, but is attenuated along
the line; this defines the stopband of the structure. Because the line is lossless, power is not
dissipated, but is reflected back to the input of the line. The magnitude of (8.8) reduces to

cosh αd =
∣∣∣∣cos θ − b

2
sin θ

∣∣∣∣ ≥ 1, (8.9b)

which has only one solution (α > 0) for positively traveling waves; α < 0 applies for nega-
tively traveling waves. If cos θ − (b/2) sin θ ≤ −1, (8.9b) is obtained from (8.8) by letting
β = π ; then all the lumped loads on the line are λ/2 apart, yielding an input impedance
the same as if β = 0.

Thus, depending on the frequency and normalized susceptance values, the periodically
loaded line will exhibit either passbands or stopbands, and so can be considered as a type
of filter. It is important to note that the voltage and current waves defined in (8.3) and (8.4)
are meaningful only when measured at the terminals of the unit cells, and do not apply to
voltages and currents that may exist at points within a unit cell. These waves are similar to
the elastic waves (Bloch waves) that propagate through periodic crystal lattices.
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Besides the propagation constant of the waves on the periodically loaded line, we
will also be interested in the characteristic impedance for these waves. We can define a
characteristic impedance at the unit cell terminals as

Z B = Z0
Vn+1

In+1
, (8.10)

since Vn+1 and In+1 in the above derivation were normalized quantities. This impedance
is also referred to as the Bloch impedance. From (8.5) we have that

(A − eγ d)Vn+1 + B In+1 = 0,

so (8.10) yields

Z B = −B Z0

A − eγ d
.

From (8.6) we can solve for eγ d in terms of A and D as follows:

eγ d = (A + D) ±√(A + D)2 − 4

2
.

Then the Bloch impedance has two solutions given by

Z±
B = −2B Z0

A − D ∓√(A + D)2 − 4
. (8.11)

For symmetric unit cells (as assumed in Figure 8.2) we will always have A = D. In this
case (8.11) reduces to

Z±
B = ±B Z0√

A2 − 1
. (8.12)

The ± solutions correspond to the characteristic impedance for positively and negatively
traveling waves, respectively. For symmetric networks these impedances are the same ex-
cept for the sign; the characteristic impedance for a negatively traveling wave is negative
because we have defined In in Figure 8.2 as always being in the positive direction.

From (8.2) we see that B is always purely imaginary. If α = 0, β �= 0 (passband), then
(8.7) shows that cosh γ d = A ≤ 1 (for symmetric networks), and (8.12) shows that Z B will
be real. If α �= 0, β = 0 (stopband), then (8.7) shows that cosh γ d = A ≥ 1, and (8.12)
shows that Z B is imaginary. This situation is similar to that for the wave impedance of a
waveguide, which is real for propagating modes and imaginary for cutoff, or evanescent,
modes.

Terminated Periodic Structures

Next consider a truncated periodic structure terminated in a load impedance ZL , as shown
in Figure 8.3. At the terminals of an arbitrary unit cell, the incident and reflected voltages

Unit
cell

Unit
cell

Unit
cell

In

Vn

+

–

IN

VN ZL

+

–

FIGURE 8.3 A periodic structure terminated in a normalized load impedance ZL .
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and currents can be written as (assuming operation in the passband)

Vn = V +
0 e− jβnd + V −

0 e jβnd (8.13a)

In = I +
0 e− jβnd + I −

0 e jβnd = V +
0

Z+
B

e− jβnd + V −
0

Z−
B

e jβnd (8.13b)

where we have replaced γ z in (8.3) with jβnd since we are interested only in terminal
quantities.

Now define the following incident and reflected voltages at the nth unit cell:

V +
n = V +

0 e− jβnd (8.14a)

V −
n = V −

0 e jβnd (8.14b)

Then (8.13) can be written as

Vn = V +
n + V −

n , (8.15a)

In = V +
n

Z+
B

+ V −
n

Z−
B

. (8.15b)

At the load, where n = N , we have

VN = V +
N + V −

N = ZL IN = ZL

(
V +

N

Z+
B

+ V −
N

Z−
B

)
, (8.16)

and the reflection coefficient at the load can be found as

� = V −
N

V +
N

= − ZL/Z+
B − 1

ZL/Z−
B − 1

. (8.17)

If the unit cell network is symmetric (A = D), then Z+
B = −Z−

B = Z B , which reduces
(8.17) to the familiar result

� = ZL − Z B

ZL + Z B
. (8.18)

In order to avoid reflections on the terminated periodic structure we must have ZL =
Z B, which is real for a lossless structure operating in a passband. If necessary, a quarter-
wave transformer can be used between the periodically loaded line and the load.

k-β Diagrams and Wave Velocities

When studying the passband and stopband characteristics of a periodic structure, it is useful
to plot the propagation constant, β, versus the propagation constant of the unloaded line,
k (or ω). Such a graph is called a k-β diagram, or Brillouin diagram, after L. Brillouin, a
physicist who studied wave propagation in periodic crystal structures.

The k-β diagram can be plotted from (8.9a), which is the dispersion relation for a
general periodic structure. In fact, a k-β diagram can be used to study the dispersion char-
acteristics of many types of microwave components and transmission lines. For instance,
consider the dispersion relation for a waveguide mode:

β =
√

k2 − k2
c , or k =

√
β2 + k2

c , (8.19)

where kc is the cutoff wave number of the mode, k is the free-space wave number, and β

is the propagation constant of the mode. Relation (8.19) is plotted in the k-β diagram of
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k

�

Propagation

Operating
point

Cutoff

k = ��

kc

Slope = vg/c

Slope = vp/c

0

FIGURE 8.4 k-β diagram for a waveguide mode.

Figure 8.4. For values of k < kc there is no real solution for β, so the mode is nonpropa-
gating. For k > kc the mode propagates, and k approaches β for large values of β (TEM
propagation).

The k-β diagram is also useful for interpreting the various wave velocities associated
with a dispersive structure. The phase velocity is

vp = ω

β
= c

k

β
, (8.20)

which is seen to be equal to c (speed of light) times the slope of the line from the origin to
the operating point on the k-β diagram. The group velocity is

vg = dω

dβ
= c

dk

dβ
, (8.21)

which is the slope of the k-β curve at the operating point. Thus, referring to Figure 8.4,
we see that the phase velocity for a propagating waveguide mode is infinite at cutoff and
approaches c (from above) as k increases. The group velocity, however, is zero at cutoff and
approaches c (from below) as k increases. We finish our discussion of periodic structures
with a practical example of a capacitively loaded line.

EXAMPLE 8.1 ANALYSIS OF A PERIODIC STRUCTURE

Consider the periodic capacitively loaded line shown in Figure 8.5 (such a line
may be implemented as in Figure 8.1, with short capacitive stubs). If Z0 = 50 	,
d = 1.0 cm, and C0 = 2.666 pF, sketch the k-β diagram and compute the prop-
agation constant, phase velocity, and Bloch impedance at f = 3.0 GHz. Assume
k = k0.

d

C0 C0 C0 C0 C0

Z0, k

FIGURE 8.5 A capacitively loaded line.
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Solution
We can rewrite the dispersion relation of (8.9a) as

cos βd = cos k0d −
(

C0 Z0c

2d

)
k0d sin k0d.

Then

C0 Z0c

2d
= (2.666 × 10−12)(50)(3 × 108)

2(0.01)
= 2.0,

so we have

cos βd = cos k0d − 2k0d sin k0d.

The most straightforward way to proceed at this point is to numerically evaluate
the right-hand side of the above equation for a set of values of k0d starting at zero.
When the magnitude of the right-hand side is unity or less, we have a passband and
can solve for βd . Otherwise we have a stopband. Calculation shows that the first
passband exists for 0 ≤ k0d ≤ 0.96. The second passband does not begin until
the sin k0d term changes sign at k0d = π . As k0d increases, an infinite number
of passbands are possible, but they become narrower. Figure 8.6 shows the k-β
diagram for the first two passbands.

At 3.0 GHz, we have

k0d = 2π(3 × 109)

3 × 108
(0.01) = 0.6283 = 36◦,

so βd = 1.5 and the propagation constant is β = 150 rad/m. The phase velocity
is

vp = k0c

β
= 0.6283

1.5
c = 0.42c,

which is much less than the speed of light, indicating that this is a slow-wave

1

2

3

4

k0d

–3 –2 –1 0 1 2 3 �d

–� �
Passband

Passband

FIGURE 8.6 k-β diagram for Example 8.1.
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structure. To evaluate the Bloch impedance, we use (8.2) and (8.12):

b

2
= ωC0 Z0

2
= 1.256,

θ = k0d = 36◦,

A = cos θ − b

2
sin θ = 0.0707,

B = j

(
sin θ + b

2
cos θ − b

2

)
= j0.3479.

Then,

Z B = B Z0√
A2 − 1

= ( j0.3479)(50)

j
√

1 − (0.0707)2
= 17.4 	.

■

8.2 FILTER DESIGN BY THE IMAGE PARAMETER METHOD

The image parameter method of filter design involves the specification of passband and
stopband characteristics for a cascade of simple two-port networks, and so is related in con-
cept to the periodic structures of Section 8.1. The method is relatively simple but has the
disadvantage that an arbitrary frequency response cannot be incorporated into the design.
This is in contrast to the insertion loss method, which is the subject of the following section.
Nevertheless, the image parameter method is useful for simple filters, and it provides a link
between infinite periodic structures and practical filter design. The image parameter method
also finds application in solid-state traveling-wave amplifier design.

Image Impedances and Transfer Functions for Two-Port Networks

We begin with definitions of the image impedances and voltage transfer function for an
arbitrary reciprocal two-port network; these results are required for the analysis and design
of filters by the image parameter method.

Consider the arbitrary two-port network shown in Figure 8.7, where the network is
specified by its ABCD parameters. Note that the reference direction for the current at port 2
has been chosen according to the convention for ABCD parameters. The image impedances,
Zi1 and Zi2, are defined for this network as follows:

Zi1 = input impedance at port 1 when port 2 is terminated with Zi2

Zi2 = input impedance at port 2 when port 1 is terminated with Zi1.

Thus both ports are matched when terminated in their image impedances. We can derive
expressions for the image impedances in terms of the ABCD parameters of the network.

I2I1

V2 Zi2

+

–
V1Zi1

+

–

A
C

B
D

Z in 1 Z in 2

FIGURE 8.7 A two-port network terminated in its image impedances.
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The port voltages and currents are related as

V1 = AV2 + B I2, (8.22a)

I1 = CV2 + DI2. (8.22b)

The input impedance at port 1, with port 2 terminated in Zi2, is

Z in1 = V1

I1
= AV2 + B I2

CV2 + DI2
= AZi2 + B

C Zi2 + D
, (8.23)

since V2 = Zi2 I2.
Now solve (8.22) for V2, I2 by inverting the ABCD matrix. Since AD − BC = 1 for

a reciprocal network, we obtain

V2 = DV1 − B I1, (8.24a)

I2 = −CV1 + AI1. (8.24b)

Then the input impedance at port 2, with port 1 terminated in Zi1, can be found as

Z in2 = −V2

I2
= − DV1 − B I1

−CV1 + AI1
= DZi1 + B

C Zi1 + A
, (8.25)

since V1 = −Zi1 I1 (circuit of Figure 8.7).
We desire that Zin1 = Zi1 and Zin2 = Zi2, so (8.23) and (8.25) give two equations for

the image impedances:

Zi1(C Zi2 + D) = AZi2 + B, (8.26a)

Zi1 D − B = Zi2(A − C Zi1). (8.26b)

Solving for Zi1 and Zi2 gives

Zi1 =
√

AB

C D
, (8.27a)

Zi2 =
√

B D

AC
, (8.27b)

with Zi2 = DZi1/A. If the network is symmetric, then A = D and Zi1 = Zi2 as expected.
Now consider the voltage transfer function for a two-port network terminated in its

image impedances. With reference to Figure 8.8 and (8.24a), the output voltage at port 2
can be expressed as

V2 = DV1 − B I1 =
(

D − B

Zi1

)
V1 (8.28)

I2I1

V2 Zi2

+

–
V1

Zi1
+

–

A
C

B
D

Zi1 Zi2

2V1

FIGURE 8.8 A two-port network terminated in its image impedances and driven with a voltage
generator.
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(since we now have V1 = I1 Zi1), so the voltage ratio is

V2

V1
= D − B

Zi1
= D − B

√
C D

AB
=
√

D

A
(
√

AD − √
BC). (8.29a)

Similarly, the current ratio is

I2

I1
= −C

V1

I1
+ A = −C Zi1 + A =

√
A

D
(
√

AD − √
BC). (8.29b)

The factor
√

D/A occurs in reciprocal positions in (8.29a) and (8.29b), and so can be
interpreted as a transformer turns ratio. Apart from this factor, we can define a propagation
factor for the network as

e−γ = √
AD − √

BC, (8.30)

with γ = α + jβ as usual. Since

eγ = 1/(
√

AD − √
BC) = (AD − BC)/(

√
AD − √

BC) = √
AD + √

BC

and cosh γ = (eγ + e−γ )/2, we also have that

cosh γ = √
AD. (8.31)

Two important types of two-port networks are the T and π circuits, which can be
made in symmetric form. Table 8.1 lists the image impedances and propagation factors,
along with other useful parameters, for these two networks.

Constant-k Filter Sections

We can now develop low-pass and high-pass filter sections. First consider the T-network
shown in Figure 8.9. Intuitively, we can see that this is a low-pass filter network because
the series inductors and shunt capacitor tend to block high-frequency signals while passing
low-frequency signals. Comparing with the results given in Table 8.1, we have Z1 = jωL
and Z2 = 1/jωC, so the image impedance is

ZiT =
√

L

C

√
1 − ω2LC

4
. (8.32)

If we define a cutoff frequency, ωc, as

ωc = 2√
LC

(8.33)

L /2 L /2

C C/2 C/2

L

(a) (b)

FIGURE 8.9 Low-pass constant-k filter sections in T and π forms. (a) T-section. (b) π -section.
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and a nominal characteristic impedance, R0, as

R0 =
√

L

C
= k, (8.34)

where k is a constant, then we can rewrite (8.32) as

ZiT = R0

√
1 − ω2

ω2
c
. (8.35)

Then ZiT = R0 for ω = 0.
The propagation factor, also from Table 8.1, is

eγ = 1 − 2ω2

ω2
c

+ 2ω

ωc

√
ω2

ω2
c

− 1. (8.36)

Now consider two frequency regions:

1. For ω < ωc: This is the passband of the filter section. Equation (8.35) shows that
ZiT is real, and (8.36) shows that γ is imaginary, since ω2/ω2

c − 1 is negative and
|eγ | = 1:

|eγ |2 =
(

1 − 2ω2

ω2
c

)2

+ 4ω2

ω2
c

(
1 − ω2

ω2
c

)
= 1.

2. For ω > ωc: This is the stopband of the filter section. Equation (8.35) shows that ZiT

is imaginary, and (8.36) shows that eγ is real and −1 < eγ < 0 (as seen from the
limits as ω → ωc and ω → ∞). The attenuation rate for ω 	 ωc is 40 dB/decade.

Typical phase and attenuation constants are sketched in Figure 8.10. Observe that the
attenuation, α, is zero or relatively small near the cutoff frequency, although α → ∞ as

TABLE 8.1 Image Parameters for T- and π -Networks

Z1/2 Z1/2

Z2

Z1

2Z2 2Z2

T-Network π -Network

ABCD parameters: ABCD parameters:

A = 1 + Z1/2Z2 A = 1 + Z1/2Z2

B = Z1 + Z2
1/4Z2 B = Z1

C = 1/Z2 C = 1/Z2 + Z1/4Z2
2

D = 1 + Z1/2Z2 D = 1 + Z1/2Z2

Z parameters: Y parameters:

Z11 = Z22 = Z2 + Z1/2 Y11 = Y22 = 1/Z1 + 1/2Z2

Z12 = Z21 = Z2 Y12 = Y21 = 1/Z1

Image impedance: Image impedance:

ZiT =
√

Z1 Z2

√
1 + Z1/4Z2 Zi π =

√
Z1 Z2/

√
1 + Z1/4Z2 = Z1 Z2/ZiT

Propagation constant: Propagation constant:

eγ = 1 + Z1/2Z2 +
√

Z1/Z2 + Z2
1/4Z2

2 eγ = 1 + Z1/2Z2 +
√

Z1/Z2 + Z2
1/4Z2

2
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�0

Passband Stopband

�, �

�

�
�

�c

FIGURE 8.10 Typical passband and stopband characteristics of the low-pass constant-k sections
of Figure 8.9.

ω → ∞. This type of filter is known as a constant-k low-pass prototype. There are only
two parameters to choose (L and C), which are determined by ωc, the cutoff frequency,
and R0, the image impedance at zero frequency.

The above results are valid only when the filter section is terminated in its image
impedance at both ports. This is a major weakness of the design because the image imped-
ance is a function of frequency, and is not likely to match a given source or load impedance.
This disadvantage, as well as the fact that the attenuation is rather low near cutoff, can be
remedied with the modified m-derived sections to be discussed shortly.

For the low-pass π -network of Figure 8.9, we have that Z1 = jωL and Z2 = 1/jωC ,
so the propagation factor is the same as that for the low-pass T-network. The cutoff fre-
quency, ωc, and nominal characteristic impedance, R0, are the same as the correspond-
ing quantities for the T-network as given in (8.33) and (8.34). At ω = 0 we have that
ZiT = Ziπ = R0, where Ziπ is the image impedance of the low-pass π -network, but ZiT

and Ziπ are generally not equal at other frequencies.
High-pass constant-k sections are shown in Figure 8.11; we see that the positions of

the inductors and capacitors are reversed from those in the low-pass prototype. The design
equations are easily shown to be

R0 =
√

L

C
. (8.37)

ωc = 1

2
√

LC
. (8.38)

2C 2C

2L 2LL

C

(a) (b)

FIGURE 8.11 High-pass constant-k filter sections in T and π forms. (a) T-section. (b) π -section.
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1 – m2

4m

(a)

Z1/2 Z1/2

Z2

(c)

mZ1/2 mZ1/2

Z2/m

Z1

(b)

' '

'

Z1/2 Z1/2

Z2

FIGURE 8.12 Development of an m-derived filter section from a constant-k section. (a) Constant-
k section. (b) General m-derived section. (c) Final m-derived section.

m-Derived Filter Sections

We have seen that the constant-k filter section suffers from the disadvantages of a relatively
slow attenuation rate past cutoff, and a nonconstant image impedance. The m-derived filter
section is a modification of the constant-k section designed to overcome these problems. As
shown in Figure 8.12a, b the impedances Z1 and Z2 in a constant-k T-section are replaced
with Z ′

1 and Z ′
2, and we let

Z ′
1 = m Z1. (8.39)

Then we choose Z ′
2 to obtain the same value of ZiT as for the constant-k section. Thus,

from Table 8.1,

ZiT =
√

Z1 Z2 + Z2
1

4
=
√

Z ′
1 Z ′

2 + Z ′2
1

4
=
√

m Z1 Z ′
2 + m2 Z2

1

4
. (8.40)

Solving for Z ′
2 gives

Z ′
2 = Z2

m
+ Z1

4m
− m Z1

4
= Z2

m
+ (1 − m2)

4m
Z1. (8.41)

Because the impedances Z1 and Z2 represent reactive elements, Z ′
2 represents two el-

ements in series, as indicated in Figure 8.12c. Note that m = 1 reduces to the original
constant-k section.

For a low-pass filter, we have Z1 = jωL and Z2 = 1/jωC . Then (8.39) and (8.41)
give the m-derived components as

Z ′
1 = jωLm, (8.42a)

Z ′
2 = 1

jωCm
+ (1 − m2)

4m
jωL , (8.42b)

which results in the circuit of Figure 8.13. Now consider the propagation factor for the
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mL/2 mL/2

mC

(a) (b)

1 – m2

4m
L

1 – m2
4m

C

L/m

2C/m 2C/m

FIGURE 8.13 m-Derived filter sections. (a) Low-pass T-section. (b) High-pass T-section.

m-derived section. From Table 8.1,

eγ = 1 + Z ′
1

2Z ′
2

+
√

Z ′
1

Z ′
2

(
1 + Z ′

1

4Z ′
2

)
. (8.43)

For the low-pass m-derived filter,

Z ′
1

Z ′
2

= jωLm

(1/jωCm) + jωL(1 − m2)/4m
= −(2ωm/ωc)

2

1 − (1 − m2)(ω/ωc)2
,

where ωc = 2/
√

LC as before. Then,

1 + Z ′
1

4Z ′
2

= 1 − (ω/ωc)
2

1 − (1 − m2)(ω/ωc)2
.

If we restrict 0 < m < 1, then these results show that eγ is real and |eγ | > 1 for ω > ωc.
Thus the stopband begins at ω = ωc, as for the constant-k section. However, when ω =
ω∞, where

ω∞ = ωc√
1 − m2

, (8.44)

the denominators vanish and eγ becomes infinite, implying infinite attenuation. Physically,
this pole in the attenuation characteristic is caused by the resonance of the series LC res-
onator in the shunt arm of the T; this is easily verified by showing that the resonant fre-
quency of this LC resonator is ω∞. Note that (8.44) indicates that ω∞ > ωc, so infinite
attenuation occurs after the cutoff frequency, ωc, as illustrated in Figure 8.14. The position
of the pole at ω∞ can be controlled with the value of m.

�0

�

�c ��

m-derived
attenuation

Composite
response

Constant-k
attenuation

FIGURE 8.14 Typical attenuation responses for constant-k, m-derived, and composite filters.
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Z2/m Z2/m

(1 – m2)
4m

Z1
(1 – m2)

4m
Z1

mZ1/2 mZ1/2 mZ1/2 mZ1/2

(a)

(b)

2Z2
m

2(1 – m2)Z1

4m

mZ1

FIGURE 8.15 Development of an m-derived π -section. (a) Infinite cascade of m-derived
T-sections. (b) A de-embedded π -equivalent.

We now have a very sharp cutoff response, but one problem with the m-derived section
is that its attenuation decreases for ω > ω∞. Since it is often desirable to have infinite
attenuation as ω → ∞, the m-derived section can be cascaded with a constant-k section to
give the composite attenuation response shown in Figure 8.14.

The m-derived T-section was designed so that its image impedance was identical to
that of the constant-k section (independent of m), so we still have the problem of a non-
constant image impedance. However, the image impedance of the π -equivalent will depend
on m, and this extra degree of freedom can be used to design an optimum matching section.

The easiest way to obtain the corresponding π -section is to consider it as a piece
of an infinite cascade of m-derived T-sections, as shown in Figure 8.15. Then the image
impedance of this network is, using the results of Table 8.1 and (8.35),

Ziπ = Z ′
1 Z ′

2

ZiT
= Z1 Z2 + Z2

1(1 − m2)/4

R0
√

1 − (ω/ωc)2
. (8.45)

Now Z1 Z2 = L/C = R2
0 and Z2

1 = −ω2L2 = −4R2
0(ω/ωc)

2, so (8.45) reduces to

Ziπ = 1 − (1 − m2)(ω/ωc)
2√

1 − (ω/ωc)2
R0. (8.46)

Since this impedance is a function of m, we can choose m to minimize the variation of Ziπ

over the passband of the filter. Figure 8.16 shows this variation with frequency for several
values of m; a value of m = 0.6 generally gives the best results.

This type of m-derived section can then be used at the input and output of the filter to
provide a nearly constant impedance match to and from R0. However, the image impedance
of the constant-k and m-derived T-sections, ZiT, does not match Ziπ; this problem can be
surmounted by bisecting the π -sections, as shown in Figure 8.17. The image impedances
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�c �0

Zi�

R0

m = 0.3

m = 0.6

m = 1

FIGURE 8.16 Variation of Ziπ in the passband of a low-pass m-derived section for various values
of m.

of this circuit are Zi1 = ZiT and Zi2 = Ziπ , which can be shown by finding its ABCD
parameters:

A = 1 + Z ′
1

4Z ′
2
, (8.47a)

B = Z ′
1

2
, (8.47b)

C = 1

2Z ′
2
, (8.47c)

D = 1, (8.47d)

and then using (8.27) for Zi1 and Zi2:

Zi1 =
√

Z ′
1 Z ′

2 + Z ′2
1

4
= ZiT , (8.48a)

Zi2 =
√

Z ′
1 Z ′

2

1 + Z ′
1/4Z ′

2
= Z ′

1 Z ′
2

ZiT
= Ziπ, (8.48b)

where (8.40) has been used for ZiT .

Composite Filters

By combining in cascade the constant-k, m-derived sharp cutoff and the m-derived match-
ing sections we can realize a filter with the desired attenuation and matching properties.

Z1/2

Zi1 = ZiT Zi2 = Zi�2Z2

'

'

FIGURE 8.17 A bisected π -section used to match Ziπ to ZiT .
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High-f
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Sharp
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ZiT ZiT ZiT

FIGURE 8.18 The final four-stage composite filter.

This type of design is called a composite filter, and is shown in Figure 8.18. The sharp-
cutoff section, with m < 0.6, places an attenuation pole near the cutoff frequency to provide
a sharp attenuation response; the constant-k section provides high attenuation further into
the stopband. The bisected-π sections at the ends of the filter match the nominal source
and load impedance, R0, to the internal image impedances, ZiT , of the constant-k and
m-derived sections. Table 8.2 summarizes the design equations for low- and high-pass

TABLE 8.2 Summary of Composite Filter Design

Low-Pass High-Pass

(1 – m2)
2m

L
(1 – m2)

2m
L

mL/2mL/2

mC
2

L/m

2C/m 2C/m

L /2 L /2 2C 2C

mC

(1 – m2)
4m

L

mL/2mL/2

mC

2

R0R0

–

–

ZiT

(1 – m2)

2m
C

(1 – m2)

2m
C

(1 – m2)

4m
C

2L/m 2L/m

2C/m 2C/m

R0R0

–

–

ZiT

C L

Constant-k T section Constant-k T section

R0 =    L /C
ωc = 2/   LC

L = 2R0/ c
C = 2/ cR0

m-derived T section

L, C Same as constant-k section

m =
1 – ( c/ ∞)2 for sharp-cutoff

0.6                 for matching

Bisected-  matching section

L, C Same as constant-k section

m =
1 – ( ∞/ c)

2 for sharp-cutoff

0.6                 for matching

Bisected-  matching section

R0 =    L /C

c = 1/2   LC
L = R0/2 c
C = 1/2 cR0

m-derived T section
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composite filters; notice that once the cutoff frequency and impedance are specified, there
is only one degree of freedom (the value of m for the sharp-cutoff section) left to control
the filter response. The following example illustrates the design procedure.

EXAMPLE 8.2 LOW-PASS COMPOSITE FILTER DESIGN

Design a low-pass composite filter with a cutoff frequency of 2 MHz and imped-
ance of 75 	. Place the infinite attenuation pole at 2.05 MHz, and plot the fre-
quency response from 0 to 4 MHz.

Solution
All of the component values can be found from Table 8.2. For the constant-k
section

L = 2R0

ωc
= 11.94 µH, C = 2

R0ωc
= 2.122 nF.

For the m-derived sharp-cutoff section

m =
√

1 −
( fc

f∞

)2 = 0.2195,

mL

2
= 1.310 µH,

mC = 465.8 pF,

1 − m2

4m
L = 12.94 µH.

For the m = 0.6 matching sections

mL

2
= 3.582 µH,

mC

2
= 636.5 pF,

1 − m2

2m
L = 6.368 µH.

The completed filter circuit is shown in Figure 8.19; the series pairs of induc-
tors between the sections have been combined. Figure 8.20 shows the resulting
frequency response for |S12|. Note the sharp dip at f = 2.05 MHz due to the
m = 0.2195 section, and the pole at 2.50 MHz, which is due to the m = 0.6
matching sections. ■

3.582 �H 1.310 �H 1.310 �H 3.582 �H5.97 �H 5.97 �H

6.368 �H

636.5 pF

12.94 �H

465.8 pF

6.368 �H

636.5 pF

2122 pF

Matching Constant-k m-derived Matching

FIGURE 8.19 Low-pass composite filter for Example 8.2.
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FIGURE 8.20 Frequency response for the low-pass filter of Example 8.2.

8.3 FILTER DESIGN BY THE INSERTION LOSS METHOD

A perfect filter would have zero insertion loss in the passband, infinite attenuation in the
stopband, and a linear phase response (to avoid signal distortion) in the passband. Of course,
such filters do not exist in practice, so compromises must be made; herein lies the art of
filter design.

The image parameter method of the previous section may yield a usable filter response
for some applications, but there is no methodical way of improving the design. The inser-
tion loss method, however, allows a high degree of control over the passband and stop-
band amplitude and phase characteristics, with a systematic way to synthesize a desired
response. The necessary design trade-offs can be evaluated to best meet the application
requirements. If, for example, a minimum insertion loss is most important, a binomial re-
sponse could be used; a Chebyshev response would satisfy a requirement for the sharpest
cutoff. If it is possible to sacrifice the attenuation rate, a better phase response can be
obtained by using a linear phase filter design. In addition, in all cases, the insertion loss
method allows filter performance to be improved in a straightforward manner, at the ex-
pense of a higher order filter. For the filter prototypes to be discussed below, the order of
the filter is equal to the number of reactive elements.

Characterization by Power Loss Ratio

In the insertion loss method a filter response is defined by its insertion loss, or power loss
ratio, PLR:

PLR = Power available from source

Power delivered to load
= Pinc

Pload
= 1

1 − |�(ω)|2 . (8.49)

Observe that this quantity is the reciprocal of |S12|2 if both load and source are matched.
The insertion loss (IL) in dB is

IL = 10 log PLR. (8.50)
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From Section 4.1 we know that |�(ω)|2 is an even function of ω; therefore it can be
expressed as a polynomial in ω2. Thus we can write

|�(ω)|2 = M(ω2)

M(ω2) + N (ω2)
, (8.51)

where M and N are real polynomials in ω2. Substituting this form in (8.49) gives the
following:

PLR = 1 + M(ω2)

N (ω2)
. (8.52)

For a filter to be physically realizable its power loss ratio must be of the form in (8.52).
Notice that specifying the power loss ratio simultaneously constrains the magnitude of the
reflection coefficient, |�(ω)|. We now discuss some practical filter responses.

Maximally flat: This characteristic is also called the binomial or Butterworth response, and
is optimum in the sense that it provides the flattest possible passband response for a given
filter complexity, or order. For a low-pass filter, it is specified by

PLR = 1 + k2
(

ω

ωc

)2N

, (8.53)

where N is the order of the filter and ωc is the cutoff frequency. The passband extends
from ω = 0 to ω = ωc; at the band edge the power loss ratio is 1 + k2. If we choose this
as the −3 dB point, as is common, we have k = 1, which we will assume from now on.
For ω > ωc, the attenuation increases monotonically with frequency, as shown in Figure
8.21. For ω 	 ωc, PLR � k2(ω/ωc)

2N , which shows that the insertion loss increases at the
rate of 20N dB/decade. Like the binomial response for multisection quarter-wave matching
transformers, the first (2N − 1) derivatives of (8.53) are zero at ω = 0.

Equal ripple: If a Chebyshev polynomial is used to specify the insertion loss of an N th-
order low-pass filter as

PLR = 1 + k2T 2
N

(
ω

ωc

)
, (8.54)

then a sharper cutoff will result, although the passband response will have ripples of ampli-
tude 1 + k2, as shown in Figure 8.21, since TN (x) oscillates between ±1 for |x |21. Thus,

FIGURE 8.21 Maximally flat and equal-ripple low-pass filter responses (N = 3).
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FIGURE 8.22 Elliptic function low-pass filter response.

k2 determines the passband ripple level. For large x, TN (x) � 1
2 (2x)N, so for ω 	 ωc the

insertion loss becomes

PLR � k2

4

(
2ω

ωc

)2N

,

which also increases at the rate of 20N dB/decade. However, the insertion loss for the
Chebyshev case is (22N )/4 greater than the binomial response at any given frequency
where ω 	 ωc.

Elliptic function: The maximally flat and equal-ripple responses both have monotonically
increasing attenuation in the stopband. In many applications it is adequate to specify a min-
imum stopband attenuation, in which case a better cutoff rate can be obtained. Such filters
are called elliptic function filters [3], and they have equal-ripple responses in the passband
as well as in the stopband, as shown in Figure 8.22. The maximum attenuation in the pass-
band, Amax, can be specified, as well as the minimum attenuation in the stopband, Amin.
Elliptic function filters are difficult to synthesize, so we will not consider them further; the
interested reader is referred to reference [3].

Linear phase: The above filters specify the amplitude response, but in some applications
(such as multiplexing filters for communication systems) it is important to have a linear
phase response in the passband to avoid signal distortion. Since a sharp-cutoff response is
generally incompatible with a good phase response, the phase response of a filter must be
deliberately synthesized, usually resulting in an inferior attenuation characteristic. A linear
phase characteristic can be achieved with the following phase response:

φ(ω) = Aω

[
1 + p

(
ω

ωc

)2N
]
, (8.55)

where φ(ω) is the phase of the voltage transfer function of the filter, and p is a constant. A
related quantity is the group delay, defined as

τd = dφ

dω
= A

[
1 + p(2N + 1)

(
ω

ωc

)2N
]
, (8.56)

which shows that the group delay for a linear phase filter is a maximally flat function.
More general filter specifications can be obtained, but the above cases are the most

common. We will next discuss the design of low-pass filter prototypes that are normalized
in terms of impedance and frequency; this normalization simplifies the design of filters
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FIGURE 8.23 The process of filter design by the insertion loss method.

for arbitrary frequency, impedance, and type (low-pass, high-pass, bandpass, or bandstop).
The low-pass prototypes are then scaled to the desired frequency and impedance, and the
lumped-element components replaced with distributed circuit elements for implementation
at microwave frequencies. This design process is illustrated in Figure 8.23.

Maximally Flat Low-Pass Filter Prototype

Consider the two-element low-pass filter prototype shown in Figure 8.24; we will derive
the normalized element values, L and C , for a maximally flat response. We assume a source
impedance of 1 	, and a cutoff frequency ωc = 1 rad/sec. From (8.53), the desired power
loss ratio will be, for N = 2,

PLR = 1 + ω4. (8.57)

The input impedance of this filter is

Z in = jωL + R(1 − jωRC)

1 + ω2 R2C2
. (8.58)

Because

� = Z in − 1

Z in + 1
,

the power loss ratio can be written as

PLR = 1

1 − |�|2 = 1

1 − [(Zin − 1
)
/
(
Zin + 1

)][(
Z∗

in − 1
)
/
(
Z∗

in + 1
)]= |Z in + 1|2

2
(
Zin + Z∗

in

) .
(8.59)

Now

Z in + Z∗
in = 2R

1 + ω2 R2C2
,

|Z in + 1|2 =
(

R

1 + ω2 R2C2
+ 1

)2

+
(

ωL − ωC R2

1 + ω2 R2C2

)2

,

1 L

C R

Zin

FIGURE 8.24 Low-pass filter prototype, N = 2.
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so (8.59) becomes

PLR = 1 + ω2 R2C2

4R

⎡
⎣
(

R

1 + ω2 R2C2
+ 1

)2

+
(

ωL − ωC R2

1 + ω2 R2C2

)2
⎤
⎦

= 1

4R
(R2 + 2R + 1 + R2ω2C2 + ω2L2 + ω4L2C2 R2 − 2ω2LC R2)

= 1 + 1

4R
[(1 − R)2 + (R2C2 + L2 − 2LC R2)ω2 + L2C2 R2ω4]. (8.60)

Observe that this expression is a polynomial in ω2. Comparing to the desired response of
(8.57) shows that R = 1, since PLR = 1 for ω = 0. In addition, the coefficient of ω2 must
vanish, so

C2 + L2 − 2LC = (C − L)2 = 0,

or L = C . Then, for the coefficient of ω4 to be unity, we must have

1

4
L2C2 = 1

4
L4 = 1,

or

L = C = √
2.

In principle, this procedure can be extended to find the element values for filters with an ar-
bitrary number of elements, N , but clearly this is not practical for large N . For a normalized
low-pass design, where the source impedance is 1 	 and the cutoff frequency is ωc = 1
rad/sec, however, the element values for the ladder-type circuits of Figure 8.25 can be tabu-
lated [1]. Table 8.3 gives such element values for maximally flat low-pass filter prototypes
for N = 1 to 10. (Notice that the values for N = 2 agree with the above analytical so-
lution.) These data can be used with either of the ladder circuits of Figure 8.25 in the
following way. The element values are numbered from g0 at the generator impedance to
gN+1 at the load impedance for a filter having N reactive elements. The elements alternate

C3 = g3C1 = g1

C2 = g2G0 = g0 = 1

R0 = g0 = 1

L3 = g3L1 = g1

L2 = g2

gN+1

gN+1

(a)

(b)

FIGURE 8.25 Ladder circuits for low-pass filter prototypes and their element definitions. (a) Pro-
totype beginning with a shunt element. (b) Prototype beginning with a series
element.
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TABLE 8.3 Element Values for Maximally Flat Low-Pass Filter Prototypes (g0 = 1,

ωc = 1, N = 1 to 10)

N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.0000 1.0000

2 1.4142 1.4142 1.0000

3 1.0000 2.0000 1.0000 1.0000

4 0.7654 1.8478 1.8478 0.7654 1.0000

5 0.6180 1.6180 2.0000 1.6180 0.6180 1.0000

6 0.5176 1.4142 1.9318 1.9318 1.4142 0.5176 1.0000

7 0.4450 1.2470 1.8019 2.0000 1.8019 1.2470 0.4450 1.0000

8 0.3902 1.1111 1.6629 1.9615 1.9615 1.6629 1.1111 0.3902 1.0000

9 0.3473 1.0000 1.5321 1.8794 2.0000 1.8794 1.5321 1.0000 0.3473 1.0000

10 0.3129 0.9080 1.4142 1.7820 1.9754 1.9754 1.7820 1.4142 0.9080 0.3129 1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

between series and shunt connections, and gk has the following definition:

g0 =
{

generator resistance (network of Figure 8.25a)
generator conductance (network of Figure 8.25b)

gk

(k = 1 to N )
=

{
inductance for series inductors
capacitance for shunt capacitors

gN+1 =
{

load resistance if gN is a shunt capacitor
load conductance if gN is a series inductor

Then the circuits of Figure 8.25 can be considered as the dual of each other, and both will
give the same filter response.

Finally, as a matter of practical design procedure, it will be necessary to determine the
size, or order, of the filter. This is usually dictated by a specification on the insertion loss
at some frequency in the stopband of the filter. Figure 8.26 shows the attenuation charac-
teristics for various N versus normalized frequency. If a filter with N > 10 is required, a
good result can usually be obtained by cascading two designs of lower order.

Equal-Ripple Low-Pass Filter Prototype

For an equal-ripple low-pass filter with a cutoff frequency ωc = 1 rad/sec, the power loss
ratio from (8.54) is

PLR = 1 + k2T 2
N (ω), (8.61)

where 1 + k2 is the ripple level in the passband. Since the Chebyshev polynomials have
the property that

TN (0) =
{

0 for N odd,
1 for N even,

equation (8.61) shows that the filter will have a unity power loss ratio at ω = 0 for N odd,
but a power loss ratio of 1 + k2 at ω = 0 for N even. Thus, there are two cases to consider,
depending on N.
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FIGURE 8.26 Attenuation versus normalized frequency for maximally flat filter prototypes.

Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-
Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with
permission.

For the two-element filter of Figure 8.24, the power loss ratio is given in terms of the
component values in (8.60). From (5.56b), we see that T2(x) = 2x2 − 1, so equating (8.61)
to (8.60) gives

1+ k2(4ω4 − 4ω2 + 1)=1 + 1

4R
[(1 − R)2 + (R2C2+ L2 − 2LC R2) ω2+ L2C2 R2ω4],

(8.62)

which can be solved for R, L , and C if the ripple level (as determined by k2) is known.
Thus, at ω = 0 we have that

k2 = (1 − R)2

4R
,

or

R = 1 + 2k2 ± 2k
√

1 + k2 (for N even). (8.63)

Equating coefficients of ω2 and ω4 yields the additional relations

4k2 = 1

4R
L2C2 R2,

−4k2 = 1

4R

(
R2C2 + L2 − 2LC R2),

which can be used to find L and C . Note that (8.63) gives a value for R that is not unity, so
there will be an impedance mismatch if the load has a unity (normalized) impedance; this
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TABLE 8.4 Element Values for Equal-Ripple Low-Pass Filter Prototypes (g0 = 1, ωc =
1, N = 1 to 10, 0.5 dB and 3.0 dB ripple)

0.5 dB Ripple

N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 0.6986 1.0000

2 1.4029 0.7071 1.9841

3 1.5963 1.0967 1.5963 1.0000

4 1.6703 1.1926 2.3661 0.8419 1.9841

5 1.7058 1.2296 2.5408 1.2296 1.7058 1.0000

6 1.7254 1.2479 2.6064 1.3137 2.4758 0.8696 1.9841

7 1.7372 1.2583 2.6381 1.3444 2.6381 1.2583 1.7372 1.0000

8 1.7451 1.2647 2.6564 1.3590 2.6964 1.3389 2.5093 0.8796 1.9841

9 1.7504 1.2690 2.6678 1.3673 2.7239 1.3673 2.6678 1.2690 1.7504 1.0000

10 1.7543 1.2721 2.6754 1.3725 2.7392 1.3806 2.7231 1.3485 2.5239 0.8842 1.9841

3.0 dB Ripple

N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 1.9953 1.0000

2 3.1013 0.5339 5.8095

3 3.3487 0.7117 3.3487 1.0000

4 3.4389 0.7483 4.3471 0.5920 5.8095

5 3.4817 0.7618 4.5381 0.7618 3.4817 1.0000

6 3.5045 0.7685 4.6061 0.7929 4.4641 0.6033 5.8095

7 3.5182 0.7723 4.6386 0.8039 4.6386 0.7723 3.5182 1.0000

8 3.5277 0.7745 4.6575 0.8089 4.6990 0.8018 4.4990 0.6073 5.8095

9 3.5340 0.7760 4.6692 0.8118 4.7272 0.8118 4.6692 0.7760 3.5340 1.0000

10 3.5384 0.7771 4.6768 0.8136 4.7425 0.8164 4.7260 0.8051 4.5142 0.6091 5.8095

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham, Mass.,1980, with permission.

can be corrected with a quarter-wave transformer, or by using an additional filter element
to make N odd. For odd N , it can be shown that R = 1. (This is because there is a unity
power loss ratio at ω = 0 for N odd.)

Tables exist for designing equal-ripple low-pass filters with a normalized source im-
pedance and cutoff frequency (ω′

c = 1 rad/sec) [1], and these can be applied to either of
the ladder circuits of Figure 8.25. This design data depends on the specified passband ripple
level; Table 8.4 lists element values for normalized low-pass filter prototypes having 0.5 or
3.0 dB ripple for N = 1 to 10. Notice that the load impedance gN+1 �= 1 for even N . If the
stopband attenuation is specified, the curves in Figure 8.27 can be used to determine the
necessary value of N for these ripple values.

Linear Phase Low-Pass Filter Prototypes

Filters having a maximally flat time delay, or a linear phase response, can be designed in
the same way, but things are somewhat more complicated because the phase of the volt-
age transfer function is not as simply expressed as is its amplitude. Design values have
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FIGURE 8.27 Attenuation versus normalized frequency for equal-ripple filter prototypes.
(a) 0.5 dB ripple level. (b) 3.0 dB ripple level.

Adapted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-
Matching Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with
permission.
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TABLE 8.5 Element Values for Maximally Flat Time Delay Low-Pass Filter Prototypes
(g0 = 1, ωc = 1, N = 1 to 10)

N g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

1 2.0000 1.0000

2 1.5774 0.4226 1.0000

3 1.2550 0.5528 0.1922 1.0000

4 1.0598 0.5116 0.3181 0.1104 1.0000

5 0.9303 0.4577 0.3312 0.2090 0.0718 1.0000

6 0.8377 0.4116 0.3158 0.2364 0.1480 0.0505 1.0000

7 0.7677 0.3744 0.2944 0.2378 0.1778 0.1104 0.0375 1.0000

8 0.7125 0.3446 0.2735 0.2297 0.1867 0.1387 0.0855 0.0289 1.0000

9 0.6678 0.3203 0.2547 0.2184 0.1859 0.1506 0.1111 0.0682 0.0230 1.0000

10 0.6305 0.3002 0.2384 0.2066 0.1808 0.1539 0.1240 0.0911 0.0557 0.0187 1.0000

Source: Reprinted from G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching
Networks, and Coupling Structures, Artech House, Dedham, Mass., 1980, with permission.

been derived for such filters [1], however, again for the ladder circuits of Figure 8.25, and
they are given in Table 8.5 for a normalized source impedance and cutoff frequency
(ω′

c = 1 rad/sec). The resulting normalized group delay in the passband will be τd =
1/ω′

c = 1 sec.

8.4 FILTER TRANSFORMATIONS

The low-pass filter prototypes of the previous section were normalized designs having a
source impedance of Rs = 1 � and a cutoff frequency of ωc = 1 rad/sec. Here we show
how these designs can be scaled in terms of impedance and frequency, and converted to
give high-pass, bandpass, or bandstop characteristics. Several examples will be presented
to illustrate the design procedure.

Impedance and Frequency Scaling

Impedance scaling: In the prototype design, the source and load resistances are unity (ex-
cept for equal-ripple filters with even N , which have nonunity load resistance). A source
resistance of R0 can be obtained by multiplying all the impedances of the prototype design
by R0. Thus, if we let primes denote impedance scaled quantities, the new filter component
values are given by

L ′ = R0L , (8.64a)

C ′ = C

R0
, (8.64b)

R′
s = R0, (8.64c)

R′
L = R0 RL , (8.64d)

where L , C , and RL are the component values for the original prototype.
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Frequency scaling for low-pass filters: To change the cutoff frequency of a low-pass pro-
totype from unity to ωc requires that we scale the frequency dependence of the filter by the
factor 1/ωc, which is accomplished by replacing ω by ω/ωc:

ω ← ω

ωc
. (8.65)

Then the new power loss ratio will be

P ′
LR(ω) = PLR

(
ω

ωc

)
,

where ωc is the new cutoff frequency; cutoff occurs when ω/ωc = 1, or ω = ωc. This
transformation can be viewed as a stretching, or expansion, of the original passband, as
illustrated in Figure 8.28a, b.

The new element values are determined by applying the substitution of (8.65) to the
series reactances, jωLk , and shunt susceptances, jωCk , of the prototype filter. Thus,

j Xk = j
ω

ωc
Lk = jωL ′

k,

j Bk = j
ω

ωc
Ck = jωC ′

k,

which shows that the new element values are given by

L ′
k = Lk

ωc
, (8.66a)

C ′
k = Ck

ωc
. (8.66b)

When both impedance and frequency scaling are required, the results of (8.64) can be
combined with (8.66) to give

L ′
k = R0Lk

ωc
, (8.67a)

C ′
k = Ck

R0ωc
. (8.67b)

PLR

0–1 1 �

(a)

PLR

0–�c �c �

(b)

PLR

0–�c �c �

(c)

FIGURE 8.28 Frequency scaling for low-pass filters and transformation to a high-pass response.
(a) Low-pass filter prototype response for ωc = 1 rad/sec. (b) Frequency scaling
for low-pass response. (c) Transformation to high-pass response.
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Low-pass to high-pass transformation: The frequency substitution

ω ← −ωc

ω
(8.68)

can be used to convert a low-pass response to a high-pass response, as shown in
Figure 8.28c. This substitution maps ω = 0 to ω = ±∞, and vice versa; cutoff occurs
when ω = ±ωc. The negative sign is needed to convert inductors (and capacitors) to real-
izable capacitors (and inductors). Applying (8.68) to the series reactances, jωLk , and the
shunt susceptances, jωCk , of the prototype filter gives

j Xk = − j
ωc

ω
Lk = 1

jωC ′
k
,

j Bk = − j
ωc

ω
Ck = 1

jωL ′
k
,

which shows that series inductors Lk must be replaced with capacitors C ′
k , and shunt ca-

pacitors Ck must be replaced with inductors L ′
k . The new component values are given by

C ′
k = 1

ωc Lk
, (8.69a)

L ′
k = 1

ωcCk
. (8.69b)

Impedance scaling can be included by using (8.64) to give

C ′
k = 1

R0ωc Lk
, (8.70a)

L ′
k = R0

ωcCk
. (8.70b)

EXAMPLE 8.3 LOW-PASS FILTER DESIGN COMPARISON

Design a maximally flat low-pass filter with a cutoff frequency of 2 GHz, imped-
ance of 50 	, and at least 15 dB insertion loss at 3 GHz. Compute and plot the
amplitude response and group delay for f = 0 to 4 GHz, and compare with an
equal-ripple (3.0 dB ripple) and linear phase filter having the same order.

Solution
First find the required order of the maximally flat filter to satisfy the insertion loss
specification at 3 GHz. We have that |ω/ωc| − 1 = 0.5; from Figure 8.26 we see
that N = 5 will be sufficient. Then Table 8.3 gives the prototype element values as

g1 = 0.618,

g2 = 1.618,

g3 = 2.000,

g4 = 1.618,

g5 = 0.618.
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RS = 50 Ω L2' L4'

C1' C3' C5' RL = 50 Ω

FIGURE 8.29 Low-pass, maximally flat filter circuit for Example 8.3.

Then (8.67) can be used to obtain the scaled element values:

C ′
1 = 0.984 pF,

L ′
2 = 6.438 nH,

C ′
3 = 3.183 pF,

L ′
4 = 6.438 nH,

C ′
5 = 0.984 pF.

The final filter circuit is shown in Figure 8.29; the ladder circuit of Figure 8.25a
was used, but that of Figure 8.25b could have been used just as well.

The component values for the equal-ripple filter and the linear phase filter,
for N = 5, can be determined from Tables 8.4 and 8.5. The amplitude and group
delay results for these three filters are shown in Figure 8.30. These results clearly
show the trade-offs involved with the three types of filters. The equal-ripple re-
sponse has the sharpest cutoff but the worst group delay characteristics. The max-
imally flat response has a flatter attenuation characteristic in the passband but a
slightly lower cutoff rate. The linear phase filter has the worst cutoff rate but a
very good group delay characteristic. ■

Bandpass and Bandstop Transformations

Low-pass prototype filter designs can also be transformed to have the bandpass or bandstop
responses illustrated in Figure 8.31. If ω1 and ω2 denote the edges of the passband, then a
bandpass response can be obtained using the following frequency substitution:

ω ← ω0

ω2 − ω1

(
ω

ω0
− ω0

ω

)
= 1

�

(
ω

ω0
− ω0

ω

)
, (8.71)

where

� = ω2 − ω1

ω0
(8.72)

is the fractional bandwidth of the passband. The center frequency, ω0, could be chosen
as the arithmetic mean of ω1 and ω2, but the equations are simpler if it is chosen as the
geometric mean:

ω0 = √
ω1ω2. (8.73)

Then the transformation of (8.71) maps the bandpass characteristics of Figure 8.31b to the
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FIGURE 8.30 Frequency response of the filter design of Example 8.3. (a) Amplitude response.
(b) Group delay response.

FIGURE 8.31 Bandpass and bandstop frequency transformations. (a) Low-pass filter prototype
response for ωc = 1. (b) Transformation to bandpass response. (c) Transformation
to bandstop response.
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low-pass response of Figure 8.31a as follows:

When ω = ω0,
1

�

(
ω

ω0
− ω0

ω

)
= 0.

When ω = ω1,
1

�

(
ω

ω0
− ω0

ω

)
= 1

�

(
ω2

1 − ω2
0

ω0ω1

)
= −1.

When ω = ω2,
1

�

(
ω

ω0
− ω0

ω

)
= 1

�

(
ω2

2 − ω2
0

ω0ω2

)
= 1.

The new filter elements are determined by using (8.71) in the expressions for the series
reactance and shunt susceptances. Thus,

j Xk = j

�

(
ω

ω0
− ω0

ω

)
Lk = j

ωLk

�ω0
− j

ω0Lk

�ω
= jωL ′

k − j
1

ωC ′
k
,

which shows that a series inductor, Lk , is transformed to a series LC circuit with element
values

L ′
k = Lk

�ω0
, (8.74a)

C ′
k = �

ω0Lk
. (8.74b)

Similarly,

j Bk = j

�

(
ω

ω0
− ω0

ω

)
Ck = j

ωCk

�ω0
− j

ω0Ck

�ω
= jωC ′

k − j
1

ωL ′
k
,

which shows that a shunt capacitor, Ck , is transformed to a shunt LC circuit with element
values

L ′
k = �

ω0Ck
, (8.74c)

C ′
k = Ck

�ω0
. (8.74d)

The low-pass filter elements are thus converted to series resonant circuits (having a low
impedance at resonance) in the series arms, and to parallel resonant circuits (having a high
impedance at resonance) in the shunt arms. Notice that both series and parallel resonator
elements have a resonant frequency of ω0.

The inverse transformation can be used to obtain a bandstop response. Thus,

ω ← −�

(
ω

ω0
− ω0

ω

)−1

, (8.75)

where � and ω0 have the same definitions as in (8.72) and (8.73). Then series inductors of
the low-pass prototype are converted to parallel LC circuits having element values given by

L ′
k = �Lk

ω0
, (8.76a)

C ′
k = 1

ω0�Lk
. (8.76b)
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TABLE 8.6 Summary of Prototype Filter Transformations
(

� = ω2 − ω1
ω0

)

Low-pass High-pass Bandpass Bandstop

C

L

1

cC

1

cL

∆
0C

C

0∆

1

0C∆

C∆
0

∆
0L

L

0∆ 1

0L∆
L∆

0

The shunt capacitor of the low-pass prototype is converted to series LC circuits having
element values given by

L ′
k = 1

ω0�Ck
, (8.76c)

C ′
k = �Ck

ω0
. (8.76d)

The element transformations from a low-pass prototype to a high-pass, bandpass, or
bandstop filter are summarized in Table 8.6. These results do not include impedance scal-
ing, which can be made using (8.64).

EXAMPLE 8.4 BANDPASS FILTER DESIGN

Design a bandpass filter having a 0.5 dB equal-ripple response, with N = 3.
The center frequency is 1 GHz, the bandwidth is 10%, and the impedance
is 50 	.

50 Ω

L2' C 2'

L3'C1'L 1' C3'

50 Ω

FIGURE 8.32 Bandpass filter circuit for Example 8.4.
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FIGURE 8.33 Amplitude response for the bandpass filter of Example 8.4.

Solution
From Table 8.4 the element values for the low-pass prototype circuit of Figure
8.25b are given as

g1 = 1.5963 = L1,

g2 = 1.0967 = C2,

g3 = 1.5963 = L3,

g4 = 1.000 = RL .

Equations (8.64) and (8.74) give the impedance-scaled and frequency-transformed
element values for the circuit of Figure 8.32 as

L ′
1 = L1 R0

ω0�
= 127.0 nH,

C ′
1 = �

ω0L1 R0
= 0.199 pF,

L ′
2 = �R0

ω0C2
= 0.726 nH,

C ′
2 = C2

ω0�R0
= 34.91 pF,

L ′
3 = L3 R0

ω0�
= 127.0 nH,

C ′
3 = �

ω0L3 R0
= 0.199 pF.

The resulting amplitude response is shown in Figure 8.33. ■

8.5 FILTER IMPLEMENTATION

The lumped-element filter designs discussed in the previous sections generally work well
at low frequencies, but two problems arise at higher RF and microwave frequencies. First,
lumped-element inductors and capacitors are generally available only for a limited range of
values, and can be difficult to implement at microwave frequencies. Distributed elements,
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such as open-circuited or short-circuited transmission line stubs, are often used to approx-
imate ideal lumped elements. In addition, at microwave frequencies the distances between
filter components is not negligible. The first problem is treated with Richards’ transforma-
tion, which can be used to convert lumped elements to transmission line sections. Kuroda’s
identities can then be used to physically separate filter elements by using transmission
line sections. Because such additional transmission line sections do not affect the filter
response, this type of design is called redundant filter synthesis. It is possible to design
microwave filters that take advantage of these sections to improve the filter response [4];
such nonredundant synthesis does not have a lumped-element counterpart.

Richards’ Transformation

The transformation

	 = tan β = tan

(
ω

vp

)
(8.77)

maps the ω plane to the 	 plane, which repeats with a period of ω/vp = 2π . This trans-
formation was introduced by P. Richards [6] to synthesize an LC network using open- and
short-circuited transmission line stubs. Thus, if we replace the frequency variable ω with
	, we can write the reactance of an inductor as

j X L = j	L = j L tan β, (8.78a)

and the susceptance of a capacitor as

j BC = j	C = jC tan β. (8.78b)

These results indicate that an inductor can be replaced with a short-circuited stub of length
β and characteristic impedance L ,while a capacitor can be replaced with an open-circuited
stub of length β and characteristic impedance 1/C . A unity filter impedance is assumed.

Cutoff occurs at unity frequency for a low-pass filter prototype; to obtain the same
cutoff frequency for the Richards’-transformed filter, (8.77) shows that

	 = 1 = tan β,

which gives a stub length of  = λ/8, where λ is the wavelength of the line at the cutoff
frequency, ωc. At the frequency ω0 = 2ωc, the lines will be λ/4 long, and an attenuation
pole will occur. At frequencies away from ωc, the impedances of the stubs will no longer
match the original lumped-element impedances, and the filter response will differ from
the desired prototype response. In addition, the response will be periodic in frequency,
repeating every 4ωc.

In principle, then, Richards’ transformation allows the inductors and capacitors of a
lumped-element filter to be replaced with short-circuited and open-circuited transmission
line stubs, as illustrated in Figure 8.34. Since the electrical lengths of all the stubs are the
same (λ/8 at ωc), these lines are called commensurate lines.

Kuroda’s Identities

The four Kuroda identities use redundant transmission line sections to achieve a more
practical microwave filter implementation by performing any of the following operations:

� Physically separate transmission line stubs
� Transform series stubs into shunt stubs, or vice versa
� Change impractical characteristic impedances into more realizable values
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jXL
jXL

Z0 = L

�/8 at �c

S.C.

jBc

Z0 = 

jBc

�/8 at �c

O.C.

1
C

L

C

(a)

(b)

FIGURE 8.34 Richards’ transformation. (a) For an inductor to a short-circuited stub. (b) For a
capacitor to an open-circuited stub.

The additional transmission line sections are called unit elements and are λ/8 long at ωc;
the unit elements are thus commensurate with the stubs used to implement the inductors
and capacitors of the prototype design.

The four Kuroda identities are illustrated in Table 8.7, where each box represents a
unit element, or transmission line, of the indicated characteristic impedance and length
(λ/8 at ωc). The inductors and capacitors represent short-circuit and open-circuit stubs,

TABLE 8.7 The Four Kuroda Identities (n2 = 1 + Z2/Z1)

Z1

n2

Z1

n2

Z2

n2

Z2

n2

n2Z 2

n2Z 1

1 : n2

n2 : 1

1

Z 2

1

Z 2

1
n2Z 2

n2Z 1Z 1

Z 2

Z 2

Z 1

Z 1

Z 1

1

≡

(a)

≡

(b)

≡

(c)

≡

(d)
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Z2

≡ Z2/n2

Z1/n2

Unit
element

n2 = 1 + Z2/Z1

S.C.
series
stub

FIGURE 8.35 Equivalent circuits illustrating Kuroda identity (a) in Table 8.7.

respectively. We will prove the equivalence of the first case, and then show how to use
these identities in Example 8.5.

The two circuits of identity (a) in Table 8.7 can be redrawn as shown in Figure 8.35;
we will show that these two networks are equivalent by showing that their ABCD matrices
are identical. From Table 4.1, the ABCD matrix of a length  of transmission line with
characteristic impedance Z1 is

[
A B
C D

]
=
[ cos β j Z1 sin β

j

Z1
sin β cos β

]
= 1√

1 + 	2

[ 1 j	Z1

j	

Z1
1

]
, (8.79)

where 	 = tan β. The open-circuited shunt stub in the first circuit in Figure 8.35 has an
impedance of − j Z2 cot β = − j Z2/	, so the ABCD matrix of the entire circuit is

[
A B
C D

]
L

=
⎡
⎣ 1 0

j	

Z2
1

⎤
⎦
⎡
⎣ 1 j	Z1

j	

Z1
1

⎤
⎦ 1√

1 + 	2

= 1√
1 + 	2

⎡
⎣

1 j	Z1

j	

(
1

Z1
+ 1

Z2

)
1 − 	2 Z1

Z2

⎤
⎦. (8.80a)

The short-circuited series stub in the second circuit in Figure 8.35 has an impedance
of j (Z1/n2) tan β = j	Z1/n2, so the ABCD matrix of the entire circuit is

[
A B
C D

]
R

=
⎡
⎢⎣

1 j
	Z2

n2

j	n2

Z2
1

⎤
⎥⎦
⎡
⎣ 1

j	Z1

n2

0 1

⎤
⎦ 1√

1 + 	2

= 1√
1 + 	2

⎡
⎢⎣

1
j	

n2
(Z1 + Z2)

j	n2

Z2
1 − 	2 Z1

Z2

⎤
⎥⎦. (8.80b)
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The results in (8.80a) and (8.80b) are identical if we choose n2 = 1 + Z2/Z1. The other
identities in Table 8.7 can be proved in the same way.

EXAMPLE 8.5 LOW-PASS FILTER DESIGN USING STUBS

Design a low-pass filter for fabrication using microstrip lines. The specifications
include a cutoff frequency of 4 GHz, an impedance of 50 	, and a third-order
3 dB equal-ripple passband response.

Solution
From Table 8.4 the normalized low-pass prototype element values are

g1 = 3.3487 = L1,

g2 = 0.7117 = C2,

g3 = 3.3487 = L3,

g4 = 1.0000 = RL ,

with the lumped-element circuit shown in Figure 8.36a.

1

1

1

1

L1 = 3.3487

Z0 = 3.3487 Z0 = 3.3487

Z0 = 1.405

L3 = 3.3487

C2 = 0.7117

(a)

(b)

(c)

l = �/8 at � = 1

l l

l

1

1

Z0 = 3.3487 Z0 = 3.3487

Z0 = 1.405

Z0 = 1 Z0 = 1
l = �/8 at � = 1

l

l l

l

l

FIGURE 8.36 Filter design procedure for Example 8.5. (a) Lumped-element low-pass filter pro-
totype. (b) Using Richards’ transformations to convert inductors and capacitors to
series and shunt stubs. (c) Adding unit elements at the ends of the filter.



c08MicrowaveFilters Pozar August 25, 2011 18:16

420 Chapter 8: Microwave Filters

Z0 = 217.5 Ω Z0 = 217.5 Ω

Z0 =
64.9 Ω

Z0 =
70.3 Ω

Z0 =
64.9 Ω

(e)

(f)

l = �/8 at 4 GHz

l l

l l

l

50 Ω
217.5 Ω 217.5 Ω
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50 Ω

50 Ω

Z0 = 4.350 Z0 = 4.350

Z0 =
1.299

Z0 =
1.405

Z0 =
1.299

(d)
l = �/8 at � = 1

l l

l l

l

1

1

64.9 Ω 70.3 Ω 64.9 Ω

FIGURE 8.36 Continued. (d) Applying the second Kuroda identity. (e) After impedance and fre-
quency scaling. (f) Microstrip fabrication of the final filter.

We now use Richards’ transformations to convert series inductors to series
stubs, and shunt capacitors to shunt stubs, as shown in Figure 8.36b. According
to (8.78), the characteristic impedance of a series stub (inductor) is L , and the
characteristic impedance of a shunt stub (capacitor) is 1/C . For commensurate
line synthesis, all stubs are λ/8 long at ω = ωc. (It is usually most convenient to
work with normalized quantities until the last step in the design.)

The series stubs of Figure 8.36b would be very difficult to implement in mi-
crostrip line form, so we will use one of the Kuroda identities to convert these
to shunt stubs. First we add unit elements at either end of the filter, as shown
in Figure 8.36c. These redundant elements do not affect filter performance since
they are matched to the source and load (Z0 = 1). Then we can apply Kuroda
identity (b) from Table 8.7 to both ends of the filter. In both cases we have that

n2 = 1 + Z2

Z1
= 1 + 1

3.3487
= 1.299.

The result is shown in Figure 8.36d.
Finally, we impedance and frequency scale the circuit, which simply involves

multiplying the normalized characteristic impedances by 50 	 and choosing the
line and stub lengths to be λ/8 at 4 GHz. The final circuit is shown in Figure 8.36e,
with a microstrip layout in Figure 8.36f.
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FIGURE 8.37 Amplitude responses of lumped-element and distributed-element low-pass filter of
Example 8.5.

The calculated amplitude response of this filter is plotted in Figure 8.37,
along with the response of the lumped-element version. Note that the pass-
band characteristics are very similar up to 4 GHz, but the distributed-element
filter has a sharper cutoff. Also notice that the distributed-element filter has a re-
sponse that repeats every 16 GHz, as a result of the periodic nature of Richards’
transformation. ■

Similar procedures can be used for bandstop filters, but the Kuroda identities are not
useful for high-pass or bandpass filters.

Impedance and Admittance Inverters

As we have seen, it is often desirable to use only series, or only shunt, elements when
implementing a filter with a particular type of transmission line. The Kuroda identities
can be used for conversions of this form, but another possibility is to use impedance (K )
or admittance (J ) inverters [1, 4, 7]. Such inverters are especially useful for bandpass or
bandstop filters with narrow (<10%) bandwidths.

The conceptual operation of impedance and admittance inverters is illustrated in
Figure 8.38; since these inverters essentially form the inverse of the load impedance or
admittance, they can be used to transform series-connected elements to shunt-connected
elements, or vice versa. This procedure will be illustrated in later sections for bandpass
and bandstop filters.

In its simplest form, an impedance or admittance inverter can be constructed using a
quarter-wave transformer of the appropriate characteristic impedance, as shown in Figure
8.38b. This implementation also allows the ABCD matrix of the inverter to be easily found
from the ABCD parameters for a length of transmission line, as given in Table 4.1. Many
other types of circuits can also be used as impedance or admittance inverters, with one such
alternative being shown in Figure 8.38c. Inverters of this form turn out to be useful for
modeling the coupled resonator filters of Section 8.8. The lengths, θ/2, of the transmission
line sections are generally required to be negative for this type of inverter, but this poses no
problem if these lines can be absorbed into connecting transmission lines on either side.
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Impedance inverters

�/4

�/2 �/2

Yin = J 2/YL

Y0 = J

Y0 Y0
jB

J
± 90°

J = Y0 tan ⎜�/2⎜
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FIGURE 8.38 Impedance and admittance inverters. (a) Operation of impedance and admittance
inverters. (b) Implementation as quarter-wave transformers. (c) Implementation
using transmission lines and reactive elements. (d) Implementation using capacitor
networks.

8.6 STEPPED-IMPEDANCE LOW-PASS FILTERS

A relatively easy way to implement low-pass filters in microstrip or stripline is to use alter-
nating sections of very high and very low characteristic impedance lines. Such filters are
usually referred to as stepped-impedance, or hi-Z , low-Z filters, and are popular because
they are easier to design and take up less space than a similar low-pass filter using stubs.
Because of the approximations involved, however, their electrical performance is not as
good, so the use of such filters is usually limited to applications where a sharp cutoff is not
required (for instance, in rejecting out-of-band mixer products).

Approximate Equivalent Circuits for Short Transmission Line Sections

We begin by finding the approximate equivalent circuits for a short length of transmis-
sion line having either a very large or a very small characteristic impedance. The ABCD
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X = Z0�l

B = Y0�l

jB

j X
2

j X
2

(a) (b)

(c)

FIGURE 8.39 Approximate equivalent circuits for short sections of transmission lines. (a) T-
equivalent circuit for a transmission line section having β � π/2. (b) Equivalent
circuit for small β and large Z0. (c) Equivalent circuit for small β and small Z0.

parameters of a length  of line having characteristic impedance Z0 are given in Table 4.1;
the conversion in Table 4.2 can then be used to find the impedance parameters as

Z11 = Z22 = A

C
= − j Z0 cot β, (8.81a)

Z12 = Z21 = 1

C
= − j Z0 csc β. (8.81b)

The series elements of the T-equivalent circuit are

Z11 − Z12 = − j Z0

(
cos β − 1

sin β

)
= j Z0 tan

(
β

2

)
, (8.82)

while the shunt element of the T-equivalent is Z12. If β < π/2, the series elements have a
positive reactance (inductors), while the shunt element has a negative reactance (capacitor).
We thus have the equivalent circuit shown in Figure 8.39a, where

X

2
= Z0 tan

(
β

2

)
, (8.83a)

B = 1

Z0
sin β. (8.83b)

Now assume a short length of line (say β<π/4) and a large characteristic impedance.
Then (8.83) approximately reduces to

X � Z0β, (8.84a)

B � 0, (8.84b)

which implies the equivalent circuit of Figure 8.39b (a series inductor). For a short length
of line and a small characteristic impedance, (8.83) approximately reduces to

X � 0, (8.85a)

B � Y0β, (8.85b)

which implies the equivalent circuit of Figure 8.39c (a shunt capacitor). So the series induc-
tors of a low-pass prototype can be replaced with high-impedance line sections (Z0 = Zh),
and the shunt capacitors can be replaced with low-impedance line sections (Z0 = Z). The
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ratio Zh/Z should be as large as possible, so the actual values of Zh and Z are usually set
to the highest and lowest characteristic impedance that can be practically fabricated. The
lengths of the lines can then be determined from (8.84) and (8.85); to get the best response
near cutoff, these lengths should be evaluated at ω = ωc. Combining the results of (8.84)
and (8.85) with the scaling equations of (8.67) allows the electrical lengths of the inductor
sections to be calculated as

β = L R0

Zh
(inductor) (8.86a)

and the electrical length of the capacitor sections as

β = C Z

R0
(capacitor), (8.86b)

where R0 is the filter impedance and L and C are the normalized element values (the gk)

of the low-pass prototype.

EXAMPLE 8.6 STEPPED-IMPEDANCE FILTER DESIGN

Design a stepped-impedance low-pass filter having a maximally flat response and
a cutoff frequency of 2.5 GHz. It is desired to have more than 20 dB insertion
loss at 4 GHz. The filter impedance is 50 	; the highest practical line impedance
is 120 	, and the lowest is 20 	. Consider the effect of losses when this filter is
implemented with a microstrip substrate having d = 0.158 cm, εr = 4.2, tan δ =
0.02, and copper conductors of 0.5 mil thickness.

Solution
To use Figure 8.26 we calculate

ω

ωc
− 1 = 4.0

2.5
− 1 = 0.6;

(a)

(b)

(c)

C1 C3 C5

L2

Z0

l1 l2 l3 l4 l5 l6

Z0Zl Zh Zl Zh Zl Zh

L4 L6

FIGURE 8.40 Filter design for Example 8.6. (a) Low-pass filter prototype circuit. (b) Stepped-
impedance implementation. (c) Microstrip layout of final filter.
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then the figure indicates N = 6 should give the required attenuation at 4.0 GHz.
Table 8.3 gives the low-pass prototype values as

g1 = 0.517 = C1,

g2 = 1.414 = L2,

g3 = 1.932 = C3,

g4 = 1.932 = L4,

g5 = 1.414 = C5,

g6 = 0.517 = L6.

The low-pass prototype filter is shown in Figure 8.40a.
Next, (8.86a) and (8.86b) are used to replace the series inductors and shunt

capacitors with sections of low-impedance and high-impedance lines. The re-
quired electrical line lengths, βi , along with the physical microstrip line widths,
Wi , and lengths, i , are given in the table below.

Section Zi = Z or Zh(	) βi (deg) Wi (mm) i (mm)

1 20 11.8 11.3 2.05

2 120 33.8 0.428 6.63

3 20 44.3 11.3 7.69

4 120 46.1 0.428 9.04

5 20 32.4 11.3 5.63

6 120 12.3 0.428 2.41

The final filter circuit is shown in Figure 8.40b, with Z = 20 	 and Zh =
120 	. Note that β < 45◦ for all but one section. The microstrip layout of the
filter is shown in Figure 8.40c.

Figure 8.41 shows the calculated amplitude response of the filter, with and
without losses. The effect of loss is to increase the passband attenuation to about
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FIGURE 8.41 Amplitude response of the stepped-impedance low-pass filter of Example 8.6, with
(dotted line) and without (solid line) losses. The response of the corresponding
lumped-element filter is also shown.
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1 dB at 2 GHz. The response of the corresponding lumped-element filter is also
shown in Figure 8.41. The passband characteristic is similar to that of the stepped
impedance filter, but the lumped-element filter gives more attenuation at higher
frequencies. This is because the stepped-impedance filter elements depart sig-
nificantly from the lumped-element values at higher frequencies. The stepped-
impedance filter may have other passbands at higher frequencies, but the response
will not be perfectly periodic because the lines are not commensurate. ■

8.7 COUPLED LINE FILTERS

The parallel coupled transmission lines discussed in Section 7.6 (for directional couplers)
can be used to construct many types of filters. Fabrication of multisection bandpass or
bandstop coupled line filters is particularly easy in microstrip or stripline form for band-
widths less than about 20%. Wider bandwidth filters generally require very tightly coupled
lines, which are difficult to fabricate. We will first study the filter characteristics of a single
quarter-wave coupled line section, and then show how these sections can be used to design
a bandpass filter [7]. Other filter designs using coupled lines can be found in reference [1].

Filter Properties of a Coupled Line Section

A parallel coupled line section is shown in Figure 8.42a, with port voltage and current
definitions. We will derive the open-circuit impedance matrix for this four-port network by
considering the superposition of even- and odd-mode excitations [8], which are shown in
Figure 8.42b. Thus, the current sources i1 and i3 drive the line in the even mode, while i2
and i4 drive the line in the odd mode. By superposition, we see that the total port currents,
Ii , can be expressed in terms of the even- and odd-mode currents as

I1 = i1 + i2, (8.87a)

I2 = i1 − i2, (8.87b)

I3 = i3 − i4, (8.87c)

I4 = i3 + i4. (8.87d)

First consider the line as being driven in the even mode by the i1 current sources. If
the other ports are open-circuited, the impedance seen at port 1 or 2 is

Ze
in = − j Z0e cot β. (8.88)

The voltage on either conductor can be expressed as

v1
a(z) = v1

b(z) = V +
e [e− jβ(z−) + e jβ(z−)]

= 2V +
e cos β( − z), (8.89)

so the voltage at port 1 or 2 is

v1
a(0) = v1

b(0) = 2V +
e cos β = i1 Ze

in.

This result and (8.88) can be used to rewrite (8.89) in terms of i1 as

v1
a(z) = v1

b(z) = − j Z0e
cos β( − z)

sin β
i1. (8.90)
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FIGURE 8.42 Definitions pertaining to a coupled line filter section. (a) A parallel coupled line
section with port voltage and current definitions. (b) A parallel coupled line sec-
tion with even- and odd-mode current sources. (c) A two-port coupled line section
having a bandpass response.

Similarly, the voltages due to current sources i3 driving the line in the even mode are

v3
a(z) = v3

b(z) = − j Z0e
cos βz

sin β
i3. (8.91)

Now consider the line as being driven in the odd mode by current i2. If the other ports
are open-circuited, the impedance seen at port 1 or 2 is

Zo
in = − j Z0o cot β. (8.92)

The voltage on either conductor can be expressed as

v2
a(z) = −v2

b(z) = V +
0

[
e− jβ(z−) + e jβ(z−)

] = 2V +
0 cos β( − z). (8.93)

Then the voltage at port 1 or port 2 is

v2
a(0) = −v2

b(0) = 2V +
0 cos β = i2 Zo

in.
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This result and (8.92) can be used to rewrite (8.93) in terms of i2 as

v2
a(z) = −v2

b(z) = − j Z0o
cos β( − z)

sin β
i2. (8.94)

Similarly, the voltages due to current i4 driving the line in the odd mode are

v4
a(z) = −v4

b(z) = − j Z0o
cos βz

sin β
i4. (8.95)

The total voltage at port 1 is

V1 = v1
a(0) + v2

a(0) + v3
a(0) + v4

a(0)

= − j (Z0ei1 + Z0oi2) cot θ − j (Z0ei3 + Z0oi4) csc θ, (8.96)

where the results of (8.90), (8.91), (8.94), and (8.95) were used, and θ = β. Next, we
solve (8.87) for the i j in terms of the I s:

i1 = 1

2
(I1 + I2), (8.97a)

i2 = 1

2
(I1 − I2), (8.97b)

i3 = 1

2
(I3 + I4), (8.97c)

i4 = 1

2
(I4 − I3), (8.97d)

and use these results in (8.96):

V1 = − j

2
(Z0e I1 + Z0e I2 + Z0o I1 − Z0o I2) cot θ

− j

2
(Z0e I3 + Z0e I4 + Z0o I4 − Z0o I3) csc θ. (8.98)

This result yields the top row of the open-circuit impedance matrix [Z ] that describes the
coupled line section. From symmetry, all other matrix elements can be found once the first
row is known. The matrix elements are then

Z11 = Z22 = Z33 = Z44 = − j

2
(Z0e + Z0o) cot θ (8.99a)

Z12 = Z21 = Z34 = Z43 = − j

2
(Z0e − Z0o) cot θ (8.99b)

Z13 = Z31 = Z24 = Z42 = − j

2
(Z0e − Z0o) csc θ (8.99c)

Z14 = Z41 = Z23 = Z32 = − j

2
(Z0e + Z0o) csc θ (8.99d)

A two-port network can be formed from a coupled line section by terminating two
of the four ports with either open or short circuits, or by connecting two ends; there are
10 possible combinations, as illustrated in Table 8.8. As indicated in the table, the various
circuits have different frequency responses, including low-pass, bandpass, all pass, and all
stop. For bandpass filters, we are most interested in the case shown in Figure 8.42c, as open
circuits are easier to fabricate in microstrip than are short circuits. In this case, I2 = I4 = 0,
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TABLE 8.8 Ten Canonical Coupled Line Circuits

Circuit Image Impedance Response

Re(Zi1)

0Zi1 Zi2

Zi1

Zi1

Zi1

Zi2

Zi1

Zi1

Zi1

Zi1

Zi1 Zi1

Zi1

Zi2

Zi1

Zi1

Zi1 Zi1

Zi1

Zi1

2
3
2Low-pass

Re(Zi1)

0
2

3
2Bandpass

Re(Zi1)

0
2

3
2Bandpass

Re(Zi1)

0
2

3
2Bandpass

Zi1 =

Zi1
Zi2 =

2Z0eZ0o cos 

(Z0e + Z0o)2 cos 2  – (Z0e – Z0o)2

Z0eZ0o

Zi1 =
2Z0eZ0o sin 

(Z0e – Z0o)2 – (Z0e + Z0o)2 cos 2 

Zi1 =
2 sin 

(Z0e – Z0o)2 – (Z0e + Z0o)2 cos 2 

Zi1 =

Z0eZ0o

(Z0e – Z0o)2 – (Z0e + Z0o)2 cos 2 

(Z0e + Z0o) sin 

Z0e Z0o

Zi1
Zi2 =

Zi1 = –j

Z0eZ0o

Zi1

Zi2 =
Z0eZ0o

2
Zi1 =

Z0e + Z0o

Zi1 =

Zi1 =

Z0eZ0oZi1 = j

2Z0eZ0o

Z0e + Z0o

2Z0eZ0o

Z0e + Z0o
cot 

tan 

Z0eZ0oZi1 = –j cot 

All pass

All pass

All pass

All stop

All stop

All stop
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FIGURE 8.43 The real part of the image impedance of the bandpass network of Figure 8.42c.

so the four-port impedance matrix equations reduce to

V1 = Z11 I1 + Z13 I3, (8.100a)

V3 = Z31 I1 + Z33 I3, (8.100b)

where Zi j is given in (8.99).
We can analyze the filter characteristics of this circuit by calculating the image imped-

ance (which is the same at ports 1 and 3), and the propagation constant. From Table 8.1,
the image impedance in terms of the impedance parameters is

Zi =
√

Z2
11 − Z11 Z2

13

Z33

= 1

2

√
(Z0e − Z0o)2 csc2 θ − (Z0e + Z0o)2 cot2 θ. (8.101)

When the coupled line section is λ/4 long (θ = π/2), the image impedance reduces to

Zi = 1

2
(Z0e − Z0o), (8.102)

which is real and positive since Z0e > Z0o. However, when θ → 0 or π, Zi → ± j∞,
indicating a stopband. The real part of the image impedance is sketched in Figure 8.43,
where the cutoff frequencies can be found from (8.101) as

cos θ1 = − cos θ2 = Z0e − Z0o

Z0e + Z0o
.

The propagation constant can also be calculated from the results of Table 8.1 as

cos β =
√

Z11 Z33

Z2
13

= Z11

Z13
= Z0e + Z0o

Z0e − Z0o
cos θ, (8.103)

which shows β is real for θ1 < θ < θ2 = π − θ1, where cos θ1 = (Z0e − Z0o)/(Z0e +
Z0o).

Design of Coupled Line Bandpass Filters

Narrowband bandpass filters can be made with cascaded coupled line sections of the form
shown in Figure 8.42c. To derive the design equations for filters of this type, we first show
that a single coupled line section can be approximately modeled by the equivalent circuit
shown in Figure 8.44. We will do this by calculating the image impedance and propagation
constant of the equivalent circuit and showing that they are approximately equal to those
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��

J
–90°

Z0 Z0

FIGURE 8.44 Equivalent circuit of the coupled line section of Figure 8.42c.

of the coupled line section for θ = π/2, which will correspond to the center frequency of
the bandpass response.

The ABCD parameters of the equivalent circuit can be computed using the ABCD
matrices for transmission lines from Table 4.1:

[
A B
C D

]
=
⎡
⎢⎣

cos θ j Z0 sin θ

j sin θ

Z0
cos θ

⎤
⎥⎦
[

0 − j/J
− j J 0

]⎡⎢⎣
cos θ j Z0 sin θ

j sin θ

Z0
cos θ

⎤
⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

(
J Z0 + 1

J Z0

)
sin θ cos θ j

(
J Z2

0 sin2 θ − cos2 θ

J

)

j

(
1

J Z2
0

sin2 θ − J cos2 θ

) (
J Z0 + 1

J Z0

)
sin θ cos θ

⎤
⎥⎥⎥⎥⎥⎦

. (8.104)

The ABCD parameters of the admittance inverter were obtained by considering it as a
quarter-wave length of transmission of characteristic impedance, 1/J . From (8.27) the
image impedance of the equivalent circuit is

Zi =
√

B

C
=
√√√√ J Z2

0 sin2 θ − (1/J ) cos2 θ

(1/J Z2
0) sin2 θ − J cos2 θ

, (8.105)

which reduces to the following value at the center frequency, θ = π/2:

Zi = J Z2
0 . (8.106)

From (8.31) the propagation constant is

cos β = A =
(

J Z0 + 1

J Z0

)
sin θ cos θ. (8.107)

Equating the image impedances in (8.102) and (8.106), and the propagation constants of
(8.103) and (8.107), yields the following equations:

1

2
(Z0e − Z0o) = J Z2

0,

Z0e + Z0o

Z0e − Z0o
= J Z0 + 1

J Z0
,

where we have assumed sin θ � 1 for θ near π/2. These equations can be solved for the
even- and odd-mode line impedances to give

Z0e = Z0[1 + J Z0 + (J Z0)
2], (8.108a)

Z0o = Z0[1 − J Z0 + (J Z0)
2]. (8.108b)

Now consider a bandpass filter composed of a cascade of N + 1 coupled line sections,
as shown in Figure 8.45a. The sections are numbered from left to right, with the load on the
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FIGURE 8.45 Development of an equivalent circuit for derivation of design equations for a cou-
pled line bandpass filter. (a) Layout of an (N + 1)-section coupled line bandpass
filter. (b) Using the equivalent circuit of Figure 8.44 for each coupled line section.
(c) Equivalent circuit for transmission lines of length 2θ . (d) Equivalent circuit
of the admittance inverters. (e) Using results of (c) and (d) for the N = 2 case.
(f) Lumped-element circuit for a bandpass filter for N = 2.
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right, but the filter can be reversed without affecting the response. Since each coupled line
section has an equivalent circuit of the form shown in Figure 8.44, the equivalent circuit of
the cascade is as shown in Figure 8.45b. Between any two consecutive inverters we have
a transmission line section that is effectively 2θ in length. This line is approximately λ/2
long in the vicinity of the bandpass region of the filter, and has an approximate equivalent
circuit that consists of a shunt parallel LC resonator, as in Figure 8.45c.

The first step in establishing this equivalence is to find the parameters for the T-
equivalent and ideal transformer circuit of Figure 8.45c (an exact equivalent). The ABCD
matrix for this circuit can be calculated using the results in Table 4.1 for a T-circuit and an
ideal transformer:

[
A B
C D

]
=

⎡
⎢⎢⎣

Z11

Z12

Z2
11 − Z2

12

Z12

1

Z12

Z11

Z12

⎤
⎥⎥⎦
[−1 0

0 −1

]
=

⎡
⎢⎢⎣

−Z11

Z12

Z2
12 − Z2

11

Z12

−1

Z12

−Z11

Z12

⎤
⎥⎥⎦. (8.109)

Equating this result to the ABCD parameters for a transmission line of length 2θ and char-
acteristic impedance Z0 gives the parameters of the equivalent circuit as

Z12 = −1

C
= j Z0

sin 2θ
, (8.110a)

Z11 = Z22 = −Z12 A = − j Z0 cot 2θ. (8.110b)

Then the series arm impedance is

Z11 − Z12 = − j Z0
cos 2θ + 1

sin 2θ
= − j Z0 cot θ. (8.111)

The 1: −1 transformer provides a 180◦ phase shift, which cannot be obtained with the
T-network alone; since this does not affect the amplitude response of the filter, it can be
discarded. For θ ∼ π/2 the series arm impedances of (8.111) are near zero and can also be
ignored. The shunt impedance Z12, however, looks like the impedance of a parallel reso-
nant circuit for θ ∼ π/2. If we let ω = ω0 + �ω, where θ = π/2 at the center frequency
ω0, then we have 2θ = β = ω/vp = (ω0 + �ω)π/ω0 = π(1 + �ω/ω0), so (8.110a)
can be written for small �ω as

Z12 = j Z0

sin π(1 + �ω/ω0)
� − j Z0ω0

π(ω − ω0)
. (8.112)

From Section 6.1 the impedance near resonance of a parallel LC circuit is

Z = − j Lω2
0

2(ω − ω0)
, (8.113)

with ω2
0 = 1/LC . Equating this to (8.112) gives the equivalent inductor and capacitor val-

ues as

L = 2Z0

πω0
, (8.114a)

C = 1

ω2
0 L

= π

2Z0ω0
. (8.114b)

The end sections of the circuit of Figure 8.45b require a different treatment. The lines
of length θ on either end of the filter are matched to Z0 and so can be ignored. The end
inverters, J1 and JN+1, can each be represented as a transformer followed by a λ/4 section
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of line, as shown in Figure 8.45d. The ABCD matrix of a transformer with a turns ratio N
in cascade with a quarter-wave line is

[
A B
C D

]
=
[ 1

N
0

0 N

] [
0 − j Z0− j

Z0
0

]
=
⎡
⎣ 0

− j Z0

N− j N

Z0
0

⎤
⎦. (8.115)

Comparing this to the ABCD matrix of an admittance inverter [part of (8.104)] shows that
the necessary turns ratio is N = J Z0. The λ/4 line merely produces a phase shift and so
can be ignored.

Using these results for the interior and end sections allows the circuit of Figure 8.45b
to be transformed into the circuit of Figure 8.45e, which is specialized to the N = 2 case.
We see that each pair of coupled line sections leads to an equivalent shunt LC resonator,
and an admittance inverter occurs between each pair of LC resonators. Next, we show
that the admittance inverters have the effect of transforming a shunt LC resonator into
a series LC resonator, leading to the final equivalent circuit of Figure 8.45f (shown for
N = 2). This will then allow the admittance inverter constants, Jn , to be determined from
the element values of a low-pass prototype. We will demonstrate this for the N = 2 case.

With reference to Figure 8.45e, the admittance just to the right of the J2 inverter is

jωC2 + 1

jωL2
+ Z0 J 2

3 = j

√
C2

L2

(
ω

ω0
− ω0

ω

)
+ Z0 J 2

3 ,

since the transformer scales the load admittance by the square of the turns ratio. Then the
admittance seen at the input of the filter is

Y = 1

J 2
1 Z2

0

{
jωC1 + 1

jωL1
+ J 2

2

j
√

C2/L2 [(ω/ω0) − (ω0/ω)] + Z0 J 2
3

}

= 1

J 2
1 Z2

0

{
j

√
C1

L1

(
ω

ω0
− ω0

ω

)
+ J 2

2

j
√

C2/L2 [(ω/ω0) − (ω0/ω)] + Z0 J 2
3

}
. (8.116)

These results also use the fact, from (8.114), that LnCn = 1/ω2
0 for all LC resonators.

Now the admittance seen looking into the circuit of Figure 8.45f is

Y = jωC ′
1 + 1

jωL ′
1

+ 1

jωL ′
2 + 1/jωC ′

2 + Z0

= j

√
C ′

1

L ′
1

(
ω

ω0
− ω0

ω

)
+ 1

j
√

L ′
2/C ′

2 [(ω/ω0) − (ω0/ω)] + Z0

, (8.117)

which is identical in form to (8.116). Thus, the two circuits will be equivalent if the fol-
lowing conditions are met:

1

J 2
1 Z2

0

√
C1

L1
=
√

C ′
1

L ′
1
, (8.118a)

J 2
1 Z2

0

J 2
2

√
C2

L2
=
√

L ′
2

C ′
2
, (8.118b)

J 2
1 Z3

0 J 2
3

J 2
2

= Z0. (8.118c)
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We know Ln and Cn from (8.114); L ′
n and C ′

n are determined from the element values
of a lumped-element low-pass prototype that has been impedance scaled and frequency
transformed to a bandpass filter. Using the results in Table 8.6 and the impedance scaling
formulas of (8.64) allows the L ′

n and C ′
n values to be written as

L ′
1 = �Z0

ω0g1
, (8.119a)

C ′
1 = g1

�ω0 Z0
, (8.119b)

L ′
2 = g2 Z0

�ω0
, (8.119c)

C ′
2 = �

ω0g2 Z0
, (8.119d)

where � = (ω2 − ω1)/ω0 is the fractional bandwidth of the filter. Then (8.118) can be
solved for the inverter constants with the following results (for N = 2):

J1 Z0 =
(

C1L ′
1

L1C ′
1

)1/4

=
√

π�

2g1
, (8.120a)

J2 Z0 = J1 Z2
0

(
C2C ′

2

L2L ′
2

)1/4

= π�

2
√

g1g2
, (8.120b)

J3 Z0 = J2

J1
=
√

π�

2g2
. (8.120c)

After the Jn are found, Z0e and Z0o for each coupled line section can be calculated from
(8.108).

The above results were derived for the special case of N = 2 (three coupled line sec-
tions), but more general results can be derived for any number of sections, and for the case
where ZL �= Z0 (or gN+1 �= 1, as in the case of an equal-ripple response with N even).
Thus, the design equations for a bandpass filter with N + 1 coupled line sections are

Z0 J1 =
√

π�

2g1
, (8.121a)

Z0 Jn = π�

2
√

gn−1gn
for n = 2, 3, . . . , N , (8.121b)

Z0 JN+1 =
√

π�

2gN gN+1
. (8.121c)

The even- and odd-mode characteristic impedances for each section are found from (8.108).

EXAMPLE 8.7 COUPLED LINE BANDPASS FILTER DESIGN

Design a coupled line bandpass filter with N = 3 and a 0.5 dB equal-ripple re-
sponse. The center frequency is 2.0 GHz, the bandwidth is 10%, and Z0 = 50 	.
What is the attenuation at 1.8 GHz?
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Solution
The fractional bandwidth is � = 0.1. We can use Figure 8.27a to obtain the at-
tenuation at 1.8 GHz, but first we must use (8.71) to convert this frequency to the
normalized low-pass form (ωc = 1):

ω ← 1

�

(
ω

ω0
− ω0

ω

)
= 1

0.1

(
1.8

2.0
− 2.0

1.8

)
= −2.11.

Then the value on the horizontal scale of Figure 8.27a is∣∣∣∣ ω

ωc

∣∣∣∣− 1 = | −2.11| − 1 = 1.11,

which indicates an attenuation of about 20 dB for N = 3.
The low-pass prototype values, gn , are given in Table 8.4; then (8.121) can

be used to calculate the admittance inverter constants, Jn . Finally, the even- and
odd-mode characteristic impedances can be found from (8.108). These results are
summarized in the following table:

n gn Z0 Jn Z0e(	) Z0o(	)

1 1.5963 0.3137 70.61 39.24

2 1.0967 0.1187 56.64 44.77

3 1.5963 0.1187 56.64 44.77

4 1.0000 0.3137 70.61 39.24

Note that the filter sections are symmetric about the midpoint. The calculated
response of this filter is shown in Figure 8.46; passbands also occur at 6 GHz,
10 GHz, etc. ■

Many other types of filters can be constructed using coupled line sections; most of
these are of the bandpass or bandstop variety. One particularly compact design is the inter-
digitated filter, which can be obtained from a coupled line filter by folding the lines at their
midpoints; see references [1] and [3] for details.
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FIGURE 8.46 Amplitude response of the coupled line bandpass filter of Example 8.7.
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8.8 FILTERS USING COUPLED RESONATORS

We have seen that bandpass and bandstop filters require elements that behave as series or
parallel resonant circuits; the coupled line bandpass filters of the previous section were of
this type. Here we will consider several other types of microwave filters that use transmis-
sion line or cavity resonators.

Bandstop and Bandpass Filters Using Quarter-Wave Resonators

From Chapter 6 we know that quarter-wave open-circuited or short-circuited transmission
line stubs look like series or parallel resonant circuits, respectively. We can therefore use
such stubs in shunt along a transmission line to implement bandpass or bandstop filters,
as shown in Figure 8.47. Quarter-wavelength sections of line between the stubs act as
admittance inverters to effectively convert alternate shunt resonators to series resonators.
The stubs and the transmission line sections are λ/4 long at the center frequency, ω0.

For narrow bandwidths the response of such a filter using N stubs is essentially the
same as that of a coupled line filter using N + 1 sections. The internal impedance of the
stub filter is Z0, while in the case of the coupled line filter end sections are required to trans-
form the impedance level. This makes the stub filter more compact and easier to design.
A disadvantage, however, is that a filter using stub resonators often requires characteristic
impedances that are difficult to realize in practice.

We first consider a bandstop filter using N open-circuited stubs, as shown in Fig-
ure 8.47a. The design equations for the required stub characteristic impedances, Z0n , will
be derived in terms of the element values of a low-pass prototype through the use of an
equivalent circuit. The analysis of the bandpass version, using short-circuited stubs, fol-
lows the same procedure, so the design equations for this case are presented without de-
tailed derivation.

As indicated in Figure 8.48a, an open-circuited stub can be approximated as a se-
ries LC resonator when its length is near 90◦. The input impedance of an open-circuited

�

� �

Z0Z0

Z0N

Z0N – 1

�

� �

Z0 Z0

Z02 Z01

(a)

�

� �

Z0Z0

Z0N

Z0N – 1

�

� �

Z0 Z0

Z02 Z01

(b)

FIGURE 8.47 Bandstop and bandpass filters using shunt transmission line resonators (θ = π/2
at the center frequency). (a) Bandstop filter. (b) Bandpass filter.
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CN

J = 1/Z0
–90°
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�

FIGURE 8.48 Equivalent circuit for the bandstop filter of Figure 8.47a. (a) Equivalent circuit of
an open-circuited stub for θ near π/2. (b) Equivalent filter circuit using resonators
and admittance inverters. (c) Equivalent lumped-element bandstop filter.

transmission line of characteristic impedance Z0n is

Z = − j Z0n cot θ,

where θ = π/2 for ω = ω0. If we let ω = ω0 + �ω, where �ω � ω0, then θ = (π/2)

(1 + �ω/ω0), and this impedance can be approximated as

Z = j Z0n tan
π�ω

2ω0
� j Z0nπ(ω − ω0)

2ω0
(8.122)

for frequencies in the vicinity of the center frequency, ω0. The impedance of a series LC
circuit is

Z = jωLn + 1

jωCn
= j

√
Ln

Cn

(
ω

ω0
− ω0

ω

)
� 2 j

√
Ln

Cn

ω − ω0

ω0
� 2 j Ln(ω − ω0),

(8.123)

where LnCn = 1/ω2
0. Equating (8.122) and (8.123) gives the characteristic impedance of

the stub in terms of the resonator parameters:

Z0n = 4ω0Ln

π
. (8.124)
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Then, if we consider the quarter-wave sections of line between the stubs as ideal ad-
mittance inverters, the bandstop filter of Figure 8.47a can be represented by the equivalent
circuit of Figure 8.48b. Next, the circuit elements of this equivalent circuit can be related
to those of the lumped-element bandstop filter prototype of Figure 8.48c.

With reference to Figure 8.48b, the admittance Y seen looking toward the L2C2 res-
onator is

Y = 1

jωL2 + (1/jωC2)
+ 1

Z2
0

(
1

jωL1 + 1/jωC1
+ 1

Z0

)−1

= 1

j
√

L2/C2
[
(ω/ω0) − (ω0/ω)

]

+ 1

Z0

{
1

j
√

L1/C1
[
(ω/ω0) − (ω0/ω)

] + 1

Z0

}
. (8.125)

The admittance at the corresponding point in the circuit of Figure 8.48c is

Y = 1

jωL ′
2 + 1/jωC ′

2
+
(

1

jωC ′
1 + 1/jωL ′

1
+ Z0

)−1

= 1

j
√

L ′
2/C ′

2

[
(ω/ω0) − (ω0/ω)

]

+
⎧⎨
⎩

1

j
√

C ′
1/L ′

1

[
(ω/ω0) − (ω0/ω)

] + Z0

⎫⎬
⎭

−1

. (8.126)

These two results will be equivalent if the following conditions are satisfied:

1

Z2
0

√
L1

C1
=
√

C ′
1

L ′
1
, (8.127a)

√
L2

C2
=
√

L ′
2

C ′
2
. (8.127b)

Since LnCn = L ′
nC ′

n = 1/ω2
0, these results can be solved for Ln :

L1 = Z2
0

ω2
0 L ′

1

, (8.128a)

L2 = L ′
2. (8.128b)

Using (8.124) and the impedance-scaled bandstop filter elements from Table 8.6 gives the
stub characteristic impedances as

Z01 = 4Z2
0

πω0L ′
1

= 4Z0

πg1�
, (8.129a)

Z02 = 4ω0L ′
2

π
= 4Z0

πg2�
, (8.129b)

where � = (ω2 − ω1)/ω0 is the fractional bandwidth of the filter. It is easy to show that
the general result for the characteristic impedances of a bandstop filter is

Z0n = 4Z0

πgn�
. (8.130)
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For a bandpass filter using short-circuited stub resonators the corresponding result is

Z0n = π Z0�

4gn
. (8.131)

These results only apply to filters having input and output impedances of Z0 and so cannot
be used for equal-ripple designs with N even.

EXAMPLE 8.8 BANDSTOP FILTER DESIGN

Design a bandstop filter using three quarter-wave open-circuit stubs. The center
frequency is 2.0 GHz, the bandwidth is 15%, and the impedance is 50 	. Use an
equal-ripple response, with a 0.5 dB ripple level.

Solution
The fractional bandwidth is � = 0.15. Table 8.4 gives the low-pass prototype
values, gn , for N = 3. Then the characteristic impedances of the stubs can be
found from (8.130). The results are listed in the following table:

n gn Z0n(	)

1 1.5963 265.9

2 1.0967 387.0

3 1.5963 265.9

The filter circuit is shown in Figure 8.47a, with all stubs and transmission line
sections λ/4 long at 2.0 GHz. The calculated attenuation for this filter is shown in
Figure 8.49; the ripple in the passbands is somewhat greater than 0.5 dB as a result
of the approximations involved in the development of the design equations. ■

The performance of quarter-wave resonator filters can be improved by allowing the
characteristic impedances of the interconnecting lines to be variable; then an exact cor-
respondence with coupled line bandpass or bandstop filters can be demonstrated. Design
details for this case can be found in reference [1].

1.0 1.5 2.0 2.5 3.0
50

40

30

20

10

0

A
tte

nu
at

io
n 

(d
B

)

Frequency (GHz)

FIGURE 8.49 Amplitude response of the bandstop filter of Example 8.8.
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FIGURE 8.50 Development of the equivalence of a capacitive-gap coupled resonator bandpass
filter to the coupled line bandpass filter of Figure 8.45. (a) The capacitive-gap
coupled resonator bandpass filter. (b) Transmission line model. (c) Transmission
line model with negative-length sections forming admittance inverters (φi /2 < 0).
(d) Equivalent circuit using inverters and λ/2 resonators (φ = π at ω0). This cir-
cuit is identical in form with the coupled line bandpass filter equivalent circuit of
Figure 8.45b.

Bandpass Filters Using Capacitively Coupled Series Resonators

Another type of bandpass filter that can be conveniently fabricated in microstrip or stripline
form is the capacitive-gap coupled resonator filter shown in Figure 8.50. An N th-order
filter of this form will use N resonant series sections of transmission line with N + 1
capacitive gaps between them. These gaps can be approximated as series capacitors; design
data relating the capacitance to the gap size and transmission line parameters is given in
graphical form in reference [1]. The filter can then be modeled as shown in Figure 8.50b.
The resonators are approximately λ/2 long at the center frequency, ω0.

Next, we redraw the equivalent circuit of Figure 8.50b with negative-length transmis-
sion line sections on either side of the series capacitors. The lines of length φ will be λ/2
long at ω0, so the electrical length θi of the i th section in Figures 8.50a, b is

θi = π + 1

2
φi + 1

2
φi+1 for i = 1, 2, . . . , N , (8.132)

with φi < 0. The reason for doing this is that the combination of series capacitor and
negative-length transmission lines forms the equivalent circuit of an admittance inverter, as
seen from Figure 8.38c. In order for this equivalence to be valid, the following relationship
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must hold between the electrical length of the lines and the capacitive susceptance:

φi = − tan−1(2Z0 Bi ). (8.133)

Then the resulting inverter constant can be related to the capacitive susceptance as

Bi = Ji

1 − (Z0 Ji )2
. (8.134)

(These results are given in Figure 8.38, and their derivation is requested in Problem 8.14.)
The capacitive-gap coupled filter can then be modeled as shown in Figure 8.50d. Now

consider the equivalent circuit shown in Figure 8.45b for a coupled line bandpass filter.
Since these two circuits are identical (as φ = 2θ = π at the center frequency), we can use
the results from the coupled line filter analysis to complete the present problem. Thus,
we can use (8.121) to find the admittance inverter constants, Ji , from the low-pass proto-
type values, gi , and the fractional bandwidth, �. As in the case of the coupled line filter,
there will be N + 1 inverter constants for an N th-order filter. Then (8.134) can be used
to find the susceptance, Bi , for the i th coupling gap. Finally, the electrical length of the
resonator sections can be found from (8.132) and (8.133):

θi = π − 1

2
[tan−1(2Z0 Bi ) + tan−1(2Z0 Bi+1)]. (8.135)

EXAMPLE 8.9 CAPACITIVELY COUPLED SERIES RESONATOR BANDPASS
FILTER DESIGN

Design a bandpass filter using capacitive coupled series resonators, with a 0.5 dB
equal-ripple passband characteristic. The center frequency is 2.0 GHz, the band-
width is 10%, and the impedance is 50 	. At least 20 dB of attenuation is required
at 2.2 GHz.

Solution
We first determine the order of the filter to satisfy the attenuation specification at
2.2 GHz. Using (8.71) to convert to normalized frequency gives

ω ← 1

�

(
ω

ω0
− ω0

ω

)
= 1

0.1

(
2.2

2.0
− 2.0

2.2

)
= 1.91.

Then, ∣∣∣∣ ω

ωc

∣∣∣∣− 1 = 1.91 − 1.0 = 0.91.

From Figure 8.27a, we see that N = 3 should satisfy the attenuation specification
at 2.2 GHz. The low-pass prototype values are given in Table 8.4, from which the
inverter constants can be calculated using (8.121). Then the coupling susceptances
can be found from (8.134), and the coupling capacitor values as

Cn = Bn

ω0
.

Finally, the resonator lengths can be calculated from (8.135). The following table
summarizes these results.
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FIGURE 8.51 Amplitude response for the capacitive-gap coupled series resonator bandpass filter
of Example 8.9.

n gn Z0 Jn Bn Cn (pF) θn (deg)

1 1.5963 0.3137 6.96 × 10−3 0.554 155.8

2 1.0967 0.1187 2.41 × 10−3 0.192 166.5

3 1.5963 0.1187 2.41 × 10−3 0.192 155.8

4 1.0000 0.3137 6.96 × 10−3 0.554 —

The calculated amplitude response is plotted in Figure 8.51. The specifica-
tions of this filter are the same as the coupled line bandpass filter of Example 8.8,
and comparison of the results in Figures 8.51 and 8.46 shows that the responses
are identical near the passband region. ■

Bandpass Filters Using Capacitively Coupled Shunt Resonators

A related type of bandpass filter is shown in Figure 8.52, where short-circuited shunt res-
onators are capacitively coupled with series capacitors. An N th-order filter will use N
stubs, which are slightly shorter than λ/4 at the filter center frequency. The short-circuited
stub resonators can be made from sections of coaxial line using ceramic materials having
a very high dielectric constant and low loss, resulting in a very compact design even at
UHF frequencies [9]. Such filters are often referred to as ceramic resonator filters and are

FIGURE 8.52 A bandpass filter using capacitively coupled shunt stub resonators.
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among the most common types of RF bandpass filters used in portable wireless systems.
Most cellular telephones, GPS receivers, and other wireless devices employ two or more
filters of this type.

Operation and design of this filter can be understood by beginning with the general
bandpass filter circuit of Figure 8.53a, where shunt LC resonators alternate with admit-
tance inverters. As in the case of previous coupled resonator bandpass and bandstop filters,
the function of the admittance inverters is to convert alternate shunt resonators to series
resonators; the extra inverters at the ends serve to scale the impedance level of the filter to
a realistic level. Using an analysis similar to that used for the bandstop filter, we can derive
the admittance inverter constants as

Z0 J01 =
√

π�

4g1
, (8.136a)

Z0 Jn, n+1 = π�

4
√

gngn+1
, (8.136b)

Z0 JN , N+1 =
√

π�

4gN gN+1
. (8.136c)

Similarly, the coupling capacitor values can be found as

C01 = J01

ω0

√
1 − (Z0 J01)2

, (8.137a)

Cn, n+1 = Jn, n+1

ω0
, (8.137b)

CN , N+1 = JN , N+1

ω0
√

1 − (Z0 JN , N+1)2
. (8.137c)

Note that the end capacitors are treated differently than the internal elements.
Next, we replace the admittance inverters of Figure 8.53a with the equivalent π -

network of Figure 8.38d, to produce the equivalent lumped-element circuit shown in Figure
8.53b. Note that the shunt capacitors of the admittance inverter circuits are negative, but
these elements combine in parallel with the larger capacitor of the LC resonator to yield a
net capacitance value that is positive. The resulting circuit is shown in Figure 8.53c, where
the effective resonator capacitor values are given by

C ′
n = Cn + �Cn = Cn − Cn−1, n − Cn, n+1, (8.138)

where �Cn = −Cn−1,n − Cn,n+1 represents the change in the resonator capacitance
caused by the parallel addition of the inverter elements.

Finally, the shunt LC resonators of Figure 8.53c are replaced with short-circuited trans-
mission stubs, as in the circuit of Figure 8.52. Note that the resonant frequency of the stub
resonators is no longer ω0, since the resonator capacitor values have been modified by the
�Cn . This implies that the length of the resonator is less than λ/4 at ω0, the filter center
frequency. The transformation of the stub length to account for the change in capacitance
is illustrated in Figure 8.53d. A short-circuited length of line with a shunt capacitor at its
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input has an input admittance of

Y = YL + jω0C, (8.139a)

where

YL = − j cot β�

Z0
.

If the capacitor is replaced with a short length, ��, of transmission line, the input admit-
tance would be

Y = 1

Z0

YL + j 1
Z0

tan β��

1
Z0

+ jYL tan β��

∼= YL + j
β��

Z0
. (8.139b)

The last approximation follows for β�� � 1, which is true in practice for filters of this
type. Comparing (8.139b) with (8.139a) gives the change in stub length in terms of the
capacitor value:

�� = Z0ω0C

β
=

(
Z0ω0C

2π

)
λ. (8.140)

Note that if C < 0, then �� < 0, indicating a shortening of the stub length. Thus the overall
stub length is given by

�n = λ

4
+

(
Z0ω0�Cn

2π

)
λ, (8.141)

where �Cn is defined in (8.138). The characteristic impedance of the stub resonators is Z0.
Dielectric material properties play a critical role in the performance of ceramic res-

onator filters. Materials with high dielectric constants are required in order to provide
miniaturization at the frequencies typically used for wireless applications. Losses must
be low to provide resonators with high Q, leading to low passband insertion loss and
maximum attenuation in the stopbands. In addition, the dielectric constant must be stable
with changes in temperature to avoid drifting of the filter passband over normal operat-
ing conditions. Most materials that are commonly used in dielectric resonator filters are
ceramics, such as barium tetratitanate, zinc/strontium titanate, and various titanium oxide
compounds. For example, a zinc/strontium titanate ceramic material has a dielectric con-
stant of 36, a Q of 10,000 at 4 GHz, and a dielectric constant temperature coefficient of
−7 ppm/C◦.

EXAMPLE 8.10 CAPACITIVELY COUPLED SHUNT RESONATOR BANDPASS
FILTER DESIGN

Design a third-order bandpass filter with a 0.5 dB equal-ripple response using
capacitively coupled short-circuited shunt stub resonators. The center frequency is
2.5 GHz, and the bandwidth is 10%. The impedance is 50 �. What is the resulting
attenuation at 3.0 GHz?

Solution
We first calculate the attenuation at 3.0 GHz. Using (8.71) to convert 3.0 GHz to
normalized low-pass form gives

ω ← 1

�

(
ω

ω0
− ω0

ω

)
= 1

0.1

(
3.0

2.5
− 2.5

3.0

)
= 3.667.
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Then, to use Figure 8.27a, the value on the horizontal axis is∣∣∣∣ ω

ωc

∣∣∣∣− 1 = |−3.667| − 1 = 2.667,

from which we find the attenuation as 35 dB.
Next we calculate the admittance inverter constants and coupling capacitor

values using (8.136) and (8.137):

n gn Z0 Jn−1, n Cn−1, n (pF)

1 1.5963 Z0 J01 = 0.2218 C01 = 0.2896

2 1.0967 Z0 J12 = 0.0594 C12 = 0.0756

3 1.5963 Z0 J23 = 0.0594 C23 = 0.0756

4 1.0000 Z0 J34 = 0.2218 C34 = 0.2896

Then we use (8.138), (8.140), and (8.141) to find the required resonator lengths:

n �Cn (pF) �n(λ)  (deg)

1 −0.3652 −0.04565 73.6

2 −0.1512 −0.0189 83.2

3 −0.3652 −0.04565 73.6

Note that the resonator lengths are slightly less than 90◦ (λ/4). The calculated
amplitude response of this design is shown in Figure 8.54. The stopband rolloff at
high frequencies is less than at lower frequencies, and the attenuation at 3 GHz is
seen to be about 30 dB, while our calculated value for a canonical lumped-element
bandpass filter was 35 dB. ■

FIGURE 8.54 Amplitude response of the capacitively coupled shunt resonator bandpass filter of
Example 8.10.
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FIGURE 8.55 Photograph of a wideband down converter. Multiple PIN diode switches, filter
banks, amplifiers, and mixers are used to cover the range of 10 MHz to 27 GHz.
Several types of filters can be seen in this module, including stub filters, coupled
line filters, and stepped impedance filters. The microstrip stub filter at left is a low-
pass 21-pole filter with a cutoff frequency of 5.4 GHz and more than 75 dB of
rejection from 5.8 to 9.0 GHz.

Courtesy of LNX Corporation, Salem, N.H.

Figure 8.55 shows a wideband receiver downconverter module employing a variety of
different filter types.
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PROBLEMS

8.1 Sketch the k-β diagram for the infinite periodic structure shown below. Assume Z0 = 75 	, d =
1.0 cm, k = k0, and L0 = 1.25 nH.
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d

L0

Z0, k

L0 L0 L0

8.2 Verify the expression for the image impedance of a π -network given in Table 8.1.

8.3 Compute the image impedances and propagation factor for the network shown below.

L

L

C

Port
1

Port
2

8.4 Design a composite low-pass filter by the image parameter method with the following specifications:
R0 = 50 	, fc = 50 MHz, and f∞ = 52 MHz. Use CAD to plot the insertion loss versus frequency.

8.5 Design a composite high-pass filter by the image parameter method with the following specifications:
R0 = 75 	, fc = 50 MHz, and f∞ = 48 MHz. Use CAD to plot the insertion loss versus frequency.

8.6 Solve the design equations in Section 8.3 for the elements of an N = 2 equal-ripple filter if the ripple
specification is 1.0 dB.

8.7 Design a low-pass, maximally flat lumped-element filter having a passband of 0–2 GHz, and an
attenuation of at least 20 dB at 3.4 GHz. The characteristic impedance is 50 	. Use CAD to plot the
insertion loss versus frequency.

8.8 Design a high-pass lumped-element filter with a 3 dB equal-ripple response, a cutoff frequency of
3 GHz, and at least 30 dB insertion loss at 2.0 GHz. The characteristic impedance is 75 	. Use CAD
to plot the insertion loss versus frequency.

8.9 Design a four-section bandpass lumped-element filter having a maximally flat group delay response.
The bandwidth should be 5% with a center frequency of 2 GHz. The impedance is 50 	. Use CAD
to plot the insertion loss versus frequency.

8.10 Design a three-section bandstop lumped-element filter with a 0.5 dB equal-ripple response, a band-
width of 10% centered at 3 GHz, and an impedance of 75 	. What is the resulting attenuation at
3.1 GHz? Use CAD to plot the insertion loss versus frequency.

8.11 Verify the second Kuroda identity in Table 8.7 by calculating the ABCD matrices for both circuits.

8.12 Design a low-pass, third-order, maximally flat filter using only series stubs. The cutoff frequency is
6 GHz and the impedance is 50 	. Use CAD to plot the insertion loss versus frequency.

8.13 Design a low-pass, fourth-order, maximally flat filter using only shunt stubs. The cutoff frequency is
8 GHz and the impedance is 50 	. Use CAD to plot the insertion loss versus frequency.

8.14 Verify the operation of the admittance inverter of Figure 8.38c by calculating its ABCD matrix and
comparing it to the ABCD matrix of the admittance inverter made from a quarter-wave line.

8.15 Show that the π -equivalent circuit for a short length of transmission line leads to equivalent cir-
cuits identical to those in Figures 8.39b and 8.39c for large and small characteristic impedance,
respectively.

8.16 Design a stepped-impedance low-pass filter having a cutoff frequency of 3 GHz and a fifth-order
0.5 dB equal-ripple response. Assume R0 = 50 	, Z = 15 	, and Zh = 120 	. (a) Find the re-
quired electrical lengths of the five sections, and use CAD to plot the insertion loss from 0 to
6 GHz. (b) Lay out the microstrip implementation of the filter on an FR4 substrate having εr = 4.2,
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d = 0.079 cm, and tan δ = 0.02, and with copper conductors 0.5 mil thick. Use CAD to plot the
insertion loss versus frequency in the passband of the filter, and compare with the lossless case.

8.17 Design a stepped-impedance low-pass filter with fc = 2.0 GHz and R0 = 50 	, using the exact
transmission line equivalent circuit of Figure 8.39a. Assume a maximally flat N = 5 response, and
solve for the necessary line lengths and impedances if Z = 10 	 and Zh = 150 	. Use CAD to
plot the insertion loss versus frequency.

8.18 Design a four-section coupled line bandpass filter with a 0.5 dB equal ripple response. The center
frequency is 2.45 GHz, the bandwidth is 10%, and the impedance is 50 	. (a) Find the required
even- and odd-mode impedances of the coupled line sections, and calculate the expected attenuation
at 2.1 GHz. Use CAD to plot the insertion loss from 1.55 to 3.35 GHz. (b) Lay out the microstrip
implementation of the filter on an FR4 substrate having εr = 4.2, d = 0.158 cm, and tan δ = 0.01,
and with copper conductors 0.5 mil thick. Use CAD to plot the insertion loss versus frequency in the
passband of the filter, and compare with the lossless case.

8.19 The Schiffman phase shifter, shown below, can produce a 90◦ differential phase shift over a relatively
broad frequency range. It consists of a coupled line section of length θ , and a transmission line
section of length 3θ ; θ = π/2 at midband. The characteristic impedance of the transmission line is
Z0 = √

Z0e Z0o, where Z0e and Z0o are the even- and odd-mode impedances of the coupled line
section. Use the analysis of Section 8.7 to find the phase shift through the coupled line section, and
then find the differential phase shift between the two outputs. Plot the differential phase shift for
θ = 0 to π for Z0e/Z0o = 2.7 and determine the bandwidth for which the phase shift is 90◦ ± 2.5◦.

V0

3�

�

   	

Z0e
Z0o

�

8.20 Design a maximally flat bandstop filter using four open-circuited quarter-wave stub resonators. The
center frequency is 3 GHz, the bandwidth is 15%, and the impedance is 40 	. Use CAD to plot the
insertion loss versus frequency.

8.21 Design a bandpass filter using three quarter-wave short-circuited stub resonators. The filter should
have a 0.5 dB equal-ripple response, a center frequency of 3 GHz, a 20% bandwidth, and an
impedance of 100 	. (a) Find the required characteristic impedances of the resonators, and use CAD
to plot the insertion loss from 1 to 5 GHz. (b) Lay out the microstrip implementation of the filter
on an FR4 substrate having εr = 4.2, d = 0.079 cm, and tan δ = 0.02, and with copper conductors
0.5 mil thick. Use CAD to plot the insertion loss versus frequency in the passband of the filter, and
compare with the lossless case.

8.22 Derive the design equation of (8.131) for bandpass filters using quarter-wave shorted stub resonators.

8.23 Design a bandpass filter using capacitive-gap coupled resonators. The response should be maximally
flat, with a center frequency of 4 GHz, a bandwidth of 12%, and at least 12 dB attenuation at 3.6 GHz.
The characteristic impedance is 50 	. Find the electrical line lengths and the coupling capacitor
values. Use CAD to plot the insertion loss versus frequency.

8.24 A bandpass filter is to be used in a PCS receiver operating in the 824–849 MHz band, and must
provide at least 30 dB isolation at the lowest end of the transmit frequency band (869–894 MHz).
Design a 1 dB equal-ripple bandpass filter meeting these specifications using capacitively coupled
short-circuited shunt stub resonators. Assume an impedance of 50 	.

8.25 Derive the design equations of (8.136) and (8.137) for the capacitively coupled shunt stub resonator
bandpass filter.
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C h a p t e r N i n e

Theory and Design
of Ferrimagnetic Components

The components and networks discussed up to this point have all been reciprocal. That is,
the response between any two ports i and j of a component did not depend on the direction
of signal flow (thus, Si j = S ji ). This will always be the case when the component is passive
and consists of only isotropic materials, but if the component contains either active devices or
anisotropic material, nonreciprocal behavior can be obtained. In some cases nonreciprocity is a
useful property (e.g., circulators, isolators), while in other cases nonreciprocity is an ancillary
property (e.g., transistor amplifiers, ferrite phase shifters).

In Chapter 1 we discussed materials having electric anisotropy (tensor permittivity), and
magnetic anisotropy (tensor permeability). Some of the most practical anisotropic materials for
microwave applications are ferrimagnetic compounds, also known as ferrites, such as yttrium
iron garnet (YIG) and materials composed of iron oxides and various other elements such as
aluminum, cobalt, manganese, and nickel. In contrast to ferromagnetic materials (e.g., iron,
steel), ferrimagnetic compounds have high resistivity and a significant amount of anisotropy at
microwave frequencies. As we will see, the magnetic anisotropy of a ferrimagnetic material is
actually induced by applying a DC magnetic bias field. This field aligns the magnetic dipoles
in the ferrite material to produce a net (nonzero) magnetic dipole moment, and causes the mag-
netic dipoles to precess at a frequency controlled by the strength of the bias field. A microwave
signal circularly polarized in the same direction as this precession will interact strongly with
the dipole moments, while an oppositely polarized field will interact less strongly. Since, for
a given direction of rotation, the sense of polarization changes with the direction of propa-
gation, a microwave signal will propagate through a magnetically biased ferrite differently in
different directions. This effect can be utilized to fabricate directional devices such as isola-
tors, circulators, and gyrators. Another useful characteristic of ferrimagnetic materials is that
the interaction with an applied microwave signal can be controlled by adjusting the strength of
the bias field. This effect leads to a variety of control devices such as phase shifters, switches,
and tunable resonators and filters.

It is interesting to compare ferrimagnetic materials to paraelectric materials, which are
almost the dual of ferrimagnetic materials. Certain ceramic compounds, such as lithium nio-
bate and barium titanate, have the property that their dielectric permittivity can be controlled
with the application of a DC bias electric field. Paraelectric materials can therefore be used for

451
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variable phase shifters and other control components. Unlike ferrimagnetic materials, para-
electric materials are isotropic, and therefore paraelectric devices are reciprocal. Paraelectric
materials typically have very high dielectric constants and loss tangents when used in bulk
form, so modern applications generally use thin films of paraelectric material layered on a sub-
strate. An important advantage of paraelectric devices over ferrite devices is that the need for a
large and heavy magnet or biasing coil is eliminated.

We will begin by considering the microscopic behavior of a ferrimagnetic material and its
interaction with a microwave signal to derive the permeability tensor. This macroscopic de-
scription of the material can then be used with Maxwell’s equations to analyze wave propaga-
tion in an infinite ferrite medium and in a ferrite-loaded waveguide. These canonical problems
will illustrate the nonreciprocal propagation properties of ferrimagnetic materials, including
Faraday rotation and birefringence effects, and will be used in later sections when we discuss
the operation and design of waveguide phase shifters and isolators.

9.1 BASIC PROPERTIES OF FERRIMAGNETIC MATERIALS

In this section we will show how the permeability tensor for a ferrimagnetic material can
be deduced from a relatively simple microscopic view of the atom. We will also discuss
how loss affects the permeability tensor and the demagnetization field inside a finite-sized
piece of ferrite.

The Permeability Tensor

The magnetic properties of a material are due to the existence of magnetic dipole moments,
which arise primarily from electron spin. From quantum mechanical considerations [1], the
magnetic dipole moment of an electron due to its spin is given by

m = qh−

2me
= 9.27 × 10−24 A-m2, (9.1)

where h− is Planck’s constant divided by 2π , q is the electron charge, and me is the mass
of the electron. An electron in orbit around a nucleus gives rise to an effective current loop
and thus an additional magnetic moment, but this effect is generally insignificant compared
to the magnetic moment due to spin. The Landé g factor is a measure of the relative con-
tributions of the orbital moment and the spin moment to the total magnetic moment; g = 1
when the moment is due only to orbital motion, and g = 2 when the moment is due only to
spin. For most microwave ferrite materials, g is in the range 1.98–2.01, so g = 2 is a good
approximation.

In most solids, electron spins occur in pairs with opposite signs, so the overall mag-
netic moment is negligible. In a magnetic material, however, a large fraction of the electron
spins are unpaired (more left-hand spins than right-hand spins, or vice versa), but are gen-
erally oriented in random directions so that the net magnetic moment is still small. An
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FIGURE 9.1 Spin magnetic dipole moment and angular momentum vectors for a spinning
electron.

external magnetic field, however, can cause the dipole moments to align in the same di-
rection to produce a large overall magnetic moment. The existence of exchange forces can
keep adjacent electron spins aligned after the external field is removed; the material is then
said to be permanently magnetized.

An electron has a spin angular momentum given in terms of Planck’s constant as
[1, 2]

s = h−

2
. (9.2)

The vector direction of this momentum is opposite the direction of the spin magnetic dipole
moment, as indicated in Figure 9.1. The ratio of the spin magnetic moment to the spin an-
gular momentum is a constant called the gyromagnetic ratio:

γ = m

s
= q

me
= 1.759 × 1011 C/kg, (9.3)

where (9.1) and (9.2) have been used. Then we can write the following vector relation
between the magnetic moment and the angular momentum:

m̄ = −γ s̄, (9.4)

where the negative sign is due to the fact that these vectors are oppositely directed.
When a magnetic bias field H̄0 = ẑH0 is present, a torque will be exerted on the mag-

netic dipole:

T̄ = m̄ × B̄0 = µ0m̄ × H̄0 = −µ0γ s̄ × H̄0. (9.5)

Since torque is equal to the time rate of change of angular momentum, we have

ds̄

dt
= −1

γ

dm̄

dt
= T̄ = µ0m̄ × H̄0,
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or

dm̄

dt
= −µ0γ m̄ × H̄0. (9.6)

This is the equation of motion for the magnetic dipole moment, m̄. We will solve this
equation to show that the magnetic dipole precesses around the H0-field vector, similar to
a spinning top precessing around a vertical axis.

Writing (9.6) in terms of its three vector components gives

dmx

dt
= −µ0γ my H0, (9.7a)

dmy

dt
= µ0γ mx H0, (9.7b)

dmz

dt
= 0. (9.7c)

Now use (9.7a) and (9.7b) to obtain two equations for mx and my :

d2mx

dt2
+ ω2

0mx = 0, (9.8a)

d2my

dt2
+ ω2

0my = 0, (9.8b)

where

ω0 = µ0γ H0 (9.9)

is called the Larmor, or precession, frequency. One solution to (9.8) that is compatible with
(9.7a) and (9.7b) is given by

mx = A cos ω0t, (9.10a)

my = A sin ω0t. (9.10b)

Equation (9.7c) shows that mz is a constant, and (9.1) shows that the magnitude of m̄ is
also a constant, so we have the relation that

|m̄|2 =
(

qh−

2me

)2

= m2
x + m2

y + m2
z = A2 + m2

z . (9.11)

Thus the precession angle, θ , between m̄ and H̄0 (the z-axis) is given by

sin θ =
√

m2
x + m2

y

|m̄| = A

|m̄| . (9.12)

The projection of m̄ on the xy plane is given by (9.10), which shows that m̄ traces a circular
path in this plane. The position of this projection at time t is given by φ = ω0t , so the
angular rate of rotation is dφ/dt = ω0, the precession frequency. In the absence of any
damping forces, the actual precession angle will be determined by the initial position of
the magnetic dipole, and the dipole will precess about H̄0 at this angle indefinitely (free
precession). In reality, however, the existence of damping forces will cause the magnetic
dipole moment to spiral in from its initial angle until m̄ is aligned with H̄0 (θ = 0).
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FIGURE 9.2 Magnetic moment of a ferrimagnetic material versus bias field, H0.

Now assume that there are N unbalanced electron spins (magnetic dipoles) per unit
volume, so that the total magnetization is

M̄ = Nm̄, (9.13)

and the equation of motion in (9.6) becomes

d M̄

dt
= −µ0γ M̄ × H̄, (9.14)

where H̄ is the internal applied field. (Note: In Chapter 1 we used P̄m for magnetization
and M̄ for magnetic currents; here we use M̄ for magnetization, as this is common practice
in ferrimagnetics work. Since we will not be using magnetic currents in this chapter, there
should be no confusion.) As the strength of the bias field H0 is increased, more magnetic
dipole moments will align with H0 until all are aligned, and M̄ reaches an upper limit. See
Figure 9.2. The material is then said to be magnetically saturated, and Ms is denoted as
the saturation magnetization. Ms is thus a physical property of the ferrite material, and it
typically ranges from 4π Ms = 300–5000 G. (Appendix H lists the saturation magnetiza-
tion and other physical properties of several types of microwave ferrite materials.) Below
saturation, ferrite materials can be very lossy at microwave frequencies, and the RF inter-
action is reduced. For this reason ferrites are usually operated in the saturated state, and
this assumption is made for the remainder of this chapter.

The saturation magnetization of a material is a strong function of temperature, de-
creasing as temperature increases. This effect can be understood by noting that the vibra-
tional energy of an atom increases with temperature, making it more difficult to align all
the magnetic dipoles. At a high enough temperature the thermal energy is greater than the
energy supplied by the internal magnetic field, and a zero net magnetization results. This
temperature is called the Curie temperature, TC .

Now consider the interaction of a small AC (microwave) magnetic field with a mag-
netically saturated ferrite material. Such a field will cause a forced precession of the dipole
moments around the H̄0(ẑ) axis at the frequency of the applied AC field, much like the
operation of an AC synchronous motor. The small-signal approximation will apply to all
the ferrite components of interest to us, but there are applications where high-power signals
can be used to obtain useful nonlinear effects.

If H̄ is the applied AC field, the total magnetic field is

H̄t = H0 ẑ + H̄, (9.15)
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where we assume that |H̄ | � H0. This field produces a total magnetization in the ferrite
material given by

M̄t = Ms ẑ + M̄, (9.16)

where Ms is the (DC) saturation magnetization and M̄ is the additional (AC) magnetization
(in the xy plane) caused by H̄ . Substituting (9.16) and (9.15) into (9.14) gives the following
component equations of motion:

dMx

dt
= −µ0γ My(H0 + Hz) + µ0γ (Ms + Mz)Hy, (9.17a)

d My

dt
= µ0γ Mx (H0 + Hz) − µ0γ (Ms + Mz)Hx , (9.17b)

d Mz

dt
= −µ0γ Mx Hy + µ0γ My Hx , (9.17c)

since d Ms/dt = 0. Since |H̄ | � H0, we have |M̄ ||H̄ | � |M̄ |H0 and |M̄||H̄ | � Ms |H̄ |,
so we can ignore MH products. Then (9.17) reduces to

d Mx

dt
= −ω0 My + ωm Hy, (9.18a)

d My

dt
= ω0 Mx − ωm Hx , (9.18b)

d Mz

dt
= 0, (9.18c)

where ω0 = µ0γ H0 and ωm = µ0γ Ms . Solving (9.18a) and (9.18b) for Mx and My gives
the following equations:

d2 Mx

dt2
+ ω2

0 Mx = ωm
d Hy

dt
+ ω0ωm Hx , (9.19a)

d2 My

dt2
+ ω2

0 My = −ωm
d Hx

dt
+ ω0ωm Hy . (9.19b)

These are the equations of motion for the forced precession of the magnetic dipoles, as-
suming small-signal conditions. It is now an easy step to arrive at the permeability tensor
for ferrites; after doing this, we will try to gain some physical insight into the magnetic
interaction process by considering circularly polarized AC fields.

If the AC H̄ field has an e jωt time-harmonic dependence, the AC steady-state form of
(9.19) reduces to the following phasor equations:

(
ω2

0 − ω2)Mx = ω0ωm Hx + jωωm Hy, (9.20a)
(
ω2

0 − ω2)My = − jωωm Hx + ω0ωm Hy, (9.20b)

which shows the linear relationship between H̄ and M̄ . As in (1.24), (9.20) can be written
with a tensor susceptibility, [χ ], to relate H̄ and M̄ :

M̄ = [χ ]H̄ =
[

χxx χxy 0
χyx χyy 0
0 0 0

]
H̄ , (9.21)
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where the elements of [χ ] are given by

χxx = χyy = ω0ωm

ω2
0 − ω2

, (9.22a)

χxy = −χyx = jωωm

ω2
0 − ω2

. (9.22b)

The ẑ component of H̄ does not affect the magnetic moment of the material under the
above assumptions.

To relate B̄ and H̄ , we have from (1.23) that

B̄ = µ0(M̄ + H̄) = [µ]H̄ , (9.23)

where the tensor permeability [µ] is given by

[µ] = µ0([U ] + [χ ]) =
[

µ jκ 0
− jκ µ 0

0 0 µ0

]
(ẑ bias). (9.24)

The elements of the permeability tensor are then

µ = µ0(1 + χxx ) = µ0(1 + χyy) = µ0

(
1 + ω0ωm

ω2
0 − ω2

)
, (9.25a)

κ = − jµ0χxy = jµ0χyx = µ0
ωωm

ω2
0 − ω2

. (9.25b)

A material having a permeability tensor of this form is called gyrotropic; note that an x̂ (or
ŷ) component of H̄ gives rise to both x̂ and ŷ components of B̄, with a 90◦ phase shift
between them.

If the direction of bias is reversed, both H0 and Ms will change signs, so ω0 and ωm

will change signs. Equation (9.25) then shows that µ will be unchanged, but κ will change
sign. If the bias field is suddenly removed (H0 = 0), the ferrite will generally remain mag-
netized (0 < |M | < Ms); only by demagnetizing the ferrite (e.g., with a decreasing AC
bias field) can M = 0 be obtained. Since the results of (9.22) and (9.25) assume a satu-
rated ferrite sample, both Ms and H0 should be set to zero for the unbiased, demagnetized
case. Then ω0 = ωm = 0 and (9.25) show that µ = µ0 and κ = 0, as expected for a non-
magnetic material.

The tensor results of (9.24) assume magnetic bias in the ẑ direction. If the ferrite is
biased in a different direction, the permeability tensor will be transformed according to the
change in coordinates. Thus, if H̄0 = x̂ H0, the permeability tensor will be

[µ] =
[

µ0 0 0
0 µ jκ
0 − jκ µ

]
(x̂ bias), (9.26)

while if H̄0 = ŷ H0 the permeability tensor will be

[µ] =
[

µ 0 − jκ
0 µ0 0
jκ 0 µ

]
(ŷ bias). (9.27)

A comment must be made about units. By tradition most practical work in mag-
netics is done with CGS units, with magnetization measured in gauss (1 gauss [G] =
10−4 weber/m2), and field strength measured in oersteds (4π × 10−3 oersted [Oe] = 1
A/m). Thus, µ0 = 1 G/Oe in CGS units, implying that B and H have the same numerical
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values in a nonmagnetic material. Saturation magnetization is usually expressed as 4π Ms

gauss; the corresponding MKS value is then µ0 Ms weber/m2 = 10−4 (4π Ms gauss). In
CGS units, the Larmor frequency can be expressed as f0 = ω0/2π = µ0γ H0/2π = (2.8
MHz/Oe) × (H0 oersted), and fm = ωm/2π = µ0γ Ms/2π = (2.8 MHz/Oe) × (4π Ms

gauss). In practice, these units are convenient and easy to use.

Circularly Polarized Fields

To get a better physical understanding of the interaction of an AC signal with a saturated
ferrimagnetic material we will consider circularly polarized fields. As discussed in Section
1.5, a right-hand circularly polarized (RHCP) field can be expressed in phasor form as

H̄+ = H+(x̂ − j ŷ), (9.28a)

and in time domain form as

H̄+ = Re{H̄+e jωt } = H+(x̂ cos ωt + ŷ sin ωt), (9.28b)

where we have assumed the amplitude H+ as real. This latter form shows that H̄+ is a
vector that rotates with time, such that at time t it is oriented at the angle ωt from the
x-axis; thus its angular velocity is ω. (Also note that |H̄+| = H+ �= |H̄+|.) Applying the
RHCP field of (9.28a) to (9.20) gives the magnetization components as

M+
x = ωm

ω0 − ω
H+,

M+
y = − jωm

ω0 − ω
H+,

so the magnetization vector resulting from H̄+ can be written as

M̄+ = M+
x x̂ + M+

y ŷ = ωm

ω0 − ω
H+(x̂ − j ŷ), (9.29)

which shows that the magnetization is also RHCP, and so it rotates with angular veloc-
ity ω in synchronism with the driving field, H̄+. Since M̄+ and H̄+ are vectors in the
same direction, we can write B̄+ = µ0(M̄+ + H̄+) = µ+ H̄+, where µ+ is the effective
permeability for an RHCP wave given by

µ+ = µ0

(
1 + ωm

ω0 − ω

)
= µ + κ. (9.30)

The angle, θM , between M+ and the z-axis is given by

tan θM = |M+|
Ms

= ωm H+

(ω0 − ω)Ms
= ω0 H+

(ω0 − ω)H0
, (9.31)

while the angle, θH , between H̄+ and the z-axis, is given by

tan θH = |H+|
H0

= H+

H0
. (9.32)

For frequencies such that ω < 2ω0, (9.31) and (9.32) show that θM > θH , as illustrated in
Figure 9.3a. In this case the magnetic dipole is precessing in the same direction as it would
freely precess in the absence of H̄+.

Now consider a left-hand circularly polarized field (LHCP), expressed in phasor form
as

H̄− = H−(x̂ + j ŷ), (9.33a)
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FIGURE 9.3 Forced precession of a magnetic dipole with circularly polarized fields. (a) RHCP,
θM > θH . (b) LHCP, θM < θH .

and in time domain form as

H̄− = Re{H̄−e jωt } = H−(x̂ cos ωt − ŷ sin ωt). (9.33b)

Equation (9.33b) shows that H̄− is a vector rotating in the −ω (left-hand) direction. Ap-
plying the LHCP field of (9.33a) to (9.20) gives the magnetization components as

M−
x = ωm

ω0 + ω
H−,

M−
y = jωm

ω0 + ω
H−,

so the vector magnetization can be written as

M̄− = M−
x x̂ + M−

y ŷ = ωm

ω0 + ω
H−(x̂ + j ŷ), (9.34)

which shows that the magnetization is LHCP, rotating in synchronism with H̄−. Writing
B̄− = µ0(M̄− + H̄−) = µ− H̄− gives the effective permeability for an LHCP wave as

µ− = µ0

(
1 + ωm

ω0 + ω

)
= µ − κ. (9.35)

The angle, θM , between M̄− and the z-axis is given by

tan θM = |M̄−|
Ms

= ωm H−

(ω0 + ω)Ms
= ω0 H−

(ω0 + ω)H0
, (9.36)

which is seen to be less than θH of (9.32), as shown in Figure 9.3b. In this case the magnetic
dipole is precessing in the opposite direction of its free precession.

Thus we see that the interaction of a circularly polarized wave with a magnetically
biased ferrite depends on the sense of the polarization (RHCP or LHCP). This is because
the bias field sets up a preferential precession direction coinciding with the direction of
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forced precession for an RHCP wave, but opposite to that of an LHCP wave. As we will
see in Section 9.2, this effect leads to nonreciprocal propagation characteristics.

Effect of Loss

Equations (9.22) and (9.25) show that the elements of the susceptibility or permeability ten-
sors become infinite when the frequency, ω, equals the Larmor frequency, ω0. This effect
is known as gyromagnetic resonance, and it occurs when the forced precession frequency
is equal to the free precession frequency. In the absence of loss the response may be un-
bounded, in the same way that the response of an LC resonant circuit will be unbounded
when driven with an AC signal having a frequency equal to the resonant frequency of the
LC circuit. All real ferrite materials, however, have various magnetic loss mechanisms that
damp out such singularities.

As with other resonant systems, loss can be accounted for by making the resonant
frequency complex:

ω0 ← ω0 + jαω, (9.37)

where α is a damping factor. Substituting (9.37) into (9.22) makes the susceptibilities
complex:

χxx = χ ′
xx − jχ ′′

xx (9.38a)

χxy = χ ′′
xy + jχ ′

xy (9.38b)

where the real and imaginary parts are given by

χ ′
xx = ω0ωm

(
ω2

0 − ω2
) + ω0ωmω2α2

[
ω2

0 − ω2(1 + α2)
]2 + 4ω2

0ω
2α2

, (9.39a)

χ ′′
xx = αωωm

[
ω2

0 + ω2(1 + α2)
]

[
ω2

0 − ω2(1 + α2)
]2 + 4ω2

0ω
2α2

, (9.39b)

χ ′
xy = ωωm

[
ω2

0 − ω2(1 + α2)
]

[
ω2

0 − ω2(1 + α2)
]2 + 4ω2

0ω
2α2

, (9.39c)

χ ′′
xy = 2ω0ωmω2α[

ω2
0 − ω2(1 + α2)

]2 + 4ω2
0ω

2α2
. (9.39d)

Equation (9.37) can also be applied to (9.25) to give a complex µ = µ′ − jµ′′, and κ =
κ ′ − jκ ′′; this is why (9.38b) appears to define χ ′

xy and χ ′′
xy backward, as χxy = jκ/µ0.

For most ferrite materials the loss is small, so α � 1, and the (1 + α2) terms in (9.39) can
be approximated as unity. The real and imaginary parts of the susceptibilities of (9.39) are
sketched in Figure 9.4 for a typical ferrite.

The damping factor, α, is related to the linewidth, 	H , of the susceptibility curve near
resonance. Consider the plot of χ ′′

xx versus bias field, H0, shown in Figure 9.5. For a fixed
frequency ω, resonance occurs when H0 = Hr , such that ω0 = µ0γ Hr . The linewidth,
	H , is defined as the width of the curve of χ ′′

xx versus H0 where χ ′′
xx has decreased to half

its peak value. If we assume (1 + α2) � 1, (9.39b) shows that the maximum value of χ ′′
xx

is ωm/2αω, and occurs when ω = ω0. Now let ω02 be the Larmor frequency for which
H0 = H2, where χ ′′

xx has decreased to half its maximum value. Then we can solve (9.39b)
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FIGURE 9.4 Complex susceptibilities for a typical ferrite. (a) Real and imaginary parts of χxx .
(b) Real and imaginary parts of χxy .

for α in terms of ω02:

αωωm
(
ω2

02 + ω2
)

(
ω2

02 − ω2
)2 + 4ω2

02ω
2α2

= ωm

4αω
,

4α2ω4 =
(
ω2

02 − ω2
)2

,

ω02 = ω
√

1 + 2α � ω(1 + α).

Then 	ω0 = 2(ω02 − ω0) � 2[ω(1 + α) − ω] = 2αω, and using (9.9) gives the line-
width as

	H = 	ω0

µ0γ
= 2αω

µ0γ
. (9.40)

0

�xx"

�max

�max/2

H1 Hr H2 H0(�0/�)

H

FIGURE 9.5 Definition of the linewidth, 	H , of the gyromagnetic resonance.
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FIGURE 9.6 Internal and external fields for a thin ferrite plate. (a) Normal bias. (b) Tangential
bias.

Typical linewidths range from less than 100 Oe (for YIG) to 100–500 Oe (for ferrites);
single-crystal YIG can have a linewidth as low as 0.3 Oe. Also note that this loss is separate
from the dielectric loss that a ferrimagnetic material may have.

Demagnetization Factors

The DC bias field, H0, internal to a ferrite sample is generally different from the externally
applied field, Ha , because of the boundary conditions at the surface of the ferrite. To illus-
trate this effect, consider a thin ferrite plate, as shown in Figure 9.6. When the applied field
is normal to the plate, continuity of Bn at the surface of the plate gives

Bn = µ0 Ha = µ0(Ms + H0),

so the internal magnetic bias field is

H0 = Ha − Ms .

This shows that the internal field is less than the applied field by an amount equal to the
saturation magnetization. When the applied field is parallel to the ferrite plate, continuity
of Ht at the surfaces of the plate gives

Ht = Ha = H0.

In this case the internal field is not reduced. In general, the internal field (AC or DC), H̄ ,
is affected by the shape of the ferrite sample and its orientation with respect to the external
field, H̄e, and can be expressed as

H̄ = H̄e − N M̄, (9.41)

where N = Nx , Ny , or Nz is called the demagnetization factor for that direction of the
external field. Different shapes have different demagnetization factors, which depend on
the direction of the applied field. Table 9.1 lists the demagnetization factors for a few
simple shapes. The demagnetization factors are defined such that Nx + Ny + Nz = 1.

The demagnetization factors can also be used to relate the internal and external RF
fields near the boundary of a ferrite sample. For a z-biased ferrite with transverse RF fields,
(9.41) reduces to

Hx = Hxe − Nx Mx , (9.42a)

Hy = Hye − Ny My, (9.42b)

Hz = Ha − Nz Ms, (9.42c)
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TABLE 9.1 Demagnetization Factors for Some Simple Shapes

z

z

y

x

x

x

Shape

Thin disk or
plate

Thin rod

Sphere

0 0 1

1
2

1
3

1
3

1
3

1
2 0

Nx Ny Nz

z y

where Hxe, Hye are the RF fields external to the ferrite, and Ha is the externally applied
bias field. Equation (9.21) relates the internal transverse RF fields and magnetization as

Mx = χxx Hx + χxy Hy,

My = χyx Hx + χyy Hy .

Using (9.42a, b) to eliminate Hx and Hy gives

Mx = χxx Hxe + χxy Hye − χxx Nx Mx − χxy Ny My,

My = χyx Hxe + χyy Hye − χyx Nx Mx − χyy Ny My .

These equations can be solved for Mx , My to give

Mx = χxx (1 + χyy Ny) − χxyχyx Ny

D
Hxe + χxy

D
Hye, (9.43a)

My = χyx

D
Hxe + χyy(1 + χxx Nx ) − χyxχxy Nx

D
Hye, (9.43b)

where

D = (1 + χxx Nx )(1 + χyy Ny) − χyxχxy Nx Ny . (9.44)

This result is of the form M̄ = [χe]H̄ , where the coefficients of Hxe and Hye in (9.43)
can be defined as “external” susceptibilities since they relate magnetization to the external
RF fields.

For an infinite ferrite medium gyromagnetic resonance occurs when the denominator
of the susceptibilities of (9.22) vanishes, at the frequency ωr = ω = ω0. However, for a
finite-sized ferrite sample the gyromagnetic resonance frequency is altered by the demag-
netization factors, and is given by the condition that D = 0 in (9.43). Using the expressions
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in (9.22) for the susceptibilities in (9.44), and setting the result equal to zero, gives
(

1 + ω0ωm Nx

ω2
0 − ω2

) (
1 + ω0ωm Ny

ω2
0 − ω2

)
− ω2ω2

m(
ω2

0 − ω2
)2

Nx Ny = 0.

After some algebraic manipulations this result can be reduced to give the resonance fre-
quency, ωr , as

ωr = ω =
√

(ω0 + ωm Nx )(ω0 + ωm Ny). (9.45)

Since ω0 = µ0γ H0 = µ0γ (Ha − Nz Ms), and ωm = µ0γ Ms , (9.45) can be rewritten in
terms of the applied bias field strength and saturation magnetization as

ωr = µ0γ

√
[Ha + (Nx − Nz)Ms][Ha + (Ny − Nz)Ms]. (9.46)

This result is known as Kittel’s equation [4].

POINT OF INTEREST: Permanent Magnets

Since ferrite components such as isolators, gyrators, and circulators generally use permanent
magnets to supply the required DC bias field, it may be useful to discuss some of the important
characteristics of permanent magnets.

A permanent magnet is made by placing the magnetic material in a strong magnetic field,
and then removing the field to leave the material magnetized in a remanent state. Unless the
magnet shape forms a closed path (like a toroid), the demagnetization factors at the magnet
ends will cause a slightly negative H field to be induced in the magnet. Thus the “operating
point” of a permanent magnet will be in the second quadrant of the B–H hysteresis curve for
the magnet material. This portion of the curve is called the demagnetization curve. A typical
example is shown below.

0

Typical
permanent

magnet

(BH)max

B

Br

–Hc

–H

The residual magnetization, for H = 0, is called the remanence, Br , of the material. This
quantity characterizes the strength of the magnet, so generally a magnet material is chosen
to have a large remanence. Another important parameter is the coercivity, Hc, which is the
value of the negative H field required to reduce the magnetization to zero. A good permanent
magnet should have a high coercivity to reduce the effects of vibration, temperature changes,
and external fields, which can lead to a loss of magnetization. An overall figure of merit for a
permanent magnet is sometimes given as the maximum value of the BH product, (BH)max, on
the demagnetization curve. This quantity is essentially the maximum magnetic energy density
that can be stored by the magnet, and can be useful in electromechanical applications. The
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following table lists the remanence, coercivity, and (BH)max for some of the most common
permanent magnet materials.

Br Hc (B H)max
Material Composition (Oe) (G) (G-Oe) ×106

ALNICO 5 Al, Ni, Co, Cu 12,000 720 5.0
ALNICO 8 Al, Ni, Co, Cu, Ti 7100 2000 5.5
ALNICO 9 Al, Ni, Co, Cu, Ti 10,400 1600 8.5
Remalloy Mo, Co, Fe 10,500 250 1.1
Platinum cobalt Pt, Co 6450 4300 9.5
Ceramic BaO6Fe2O3 3950 2400 3.5
Cobalt samarium Co, Sm 8400 7000 16.0

9.2 PLANE WAVE PROPAGATION IN A FERRITE MEDIUM

The previous section gives an explanation of the microscopic phenomena that occur inside
a biased ferrite material to produce a tensor permeability of the form given in (9.24) [or
in (9.26) or (9.27), depending on the bias direction]. Once we have this macroscopic de-
scription of the ferrite material, we can solve Maxwell’s equations for wave propagation in
various geometries involving ferrite materials. We begin with plane wave propagation in
an infinite ferrite medium, for propagation either in the direction of bias, or transverse to
the bias field. These problems will illustrate the important effects of Faraday rotation and
birefringence.

Propagation in Direction of Bias (Faraday Rotation)

Consider an infinite ferrite-filled region with a DC magnetic bias field given by H̄0 = ẑH0,
and a tensor permittivity [µ] given by (9.24). Maxwell’s equations can be written as

∇ × Ē = − jω[µ]H̄ , (9.47a)

∇ × H̄ = jωε Ē, (9.47b)

∇ · D̄ = 0, (9.47c)

∇ · B̄ = 0. (9.47d)

Now assume plane wave propagation in the z direction, with ∂/∂x = ∂/∂y = 0. Then the
electric and magnetic fields will have the following form:

Ē = Ē0e− jβz, (9.48a)

H̄ = H̄0e− jβz . (9.48b)

The two curl equations of (9.47a) and (9.47b) reduce to the following, after using (9.24):

jβEy = − jω(µHx + jκ Hy), (9.49a)

− jβEx = − jω(− jκ Hx + µHy), (9.49b)

0 = − jωµ0 Hz, (9.49c)

jβHy = jωεEx , (9.49d)

− jβHx = jωεEy, (9.49e)

0 = jωεEz . (9.49f)
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Equations (9.49c) and (9.49f) show that Ez = Hz = 0, as expected for TEM plane waves.
We also have ∇ · D̄ = ∇ · B̄ = 0 since ∂/∂x = ∂/∂y = 0. Equations (9.49d) and (9.49e)
give relations between the transverse field components as

Y = Hy

Ex
= −Hx

Ey
= ωε

β
, (9.50)

where Y is the wave admittance. Using (9.50) in (9.49a) and (9.49b) to eliminate Hx and
Hy gives the following results:

jω2εκ Ex + (β2 − ω2µε)Ey = 0, (9.51a)

(β2 − ω2µε)Ex − jω2εκ Ey = 0. (9.51b)

For a nontrivial solution for Ex and Ey the determinant of this set of equations must vanish:

ω4ε2κ2 − (β2 − ω2µε)2 = 0,

or

β± = ω
√

ε(µ ± κ). (9.52)

There are two possible propagation constants, β+ and β−.
First consider the fields associated with β+, which can be found by substituting β+

into (9.51a) or (9.51b):

jω2εκ Ex + ω2εκ Ey = 0,

or

Ey = − j Ex .

Then the electric field of (9.48a) must have the following form:

Ē+ = E0(x̂ − j ŷ)e− jβ+z, (9.53a)

which is seen to be a right-hand circularly polarized plane wave. Using (9.50) gives the
associated magnetic field as

H̄+ = E0Y+( j x̂ + ŷ)e− jβ+z, (9.53b)

where Y+ is the wave admittance for this wave:

Y+ = ωε

β+
=

√
ε

µ + κ
. (9.53c)

Similarly, the fields associated with β− are left-hand circularly polarized:

Ē− = E0(x̂ + j ŷ)e− jβ−z, (9.54a)

H̄− = E0Y−(− j x̂ + ŷ)e− jβ−z, (9.54b)

where Y− is the wave admittance for this wave:

Y− = ωε

β−
=

√
ε

µ − κ
. (9.54c)

Thus we see that RHCP and LHCP plane waves are the source-free modes of the ẑ-
biased ferrite medium, and these waves propagate through the ferrite medium with different
propagation constants. As discussed in the previous section, the physical explanation for
this effect is that the magnetic bias field creates a preferred direction for magnetic dipole
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precession, and one sense of circular polarization causes precession in this preferred direc-
tion, while the other sense of polarization causes precession in the opposite direction. Also
note that for an RHCP wave, the ferrite material can be represented with an effective per-
meability of µ + κ , while for an LHCP wave the effective permeability is µ − κ . In math-
ematical terms, we can state that (µ + κ) and (µ − κ), or β+ and β−, are the eigenvalues
of the system of equations in (9.51), and that Ē+ and Ē− are the associated eigenvectors.
When losses are present, the attenuation constants for RHCP and LHCP waves will also be
different.

Now consider a linearly polarized electric field at z = 0, represented as the sum of an
RHCP and an LHCP wave:

Ē |z=0 = x̂ E0 = E0

2
(x̂ − j ŷ) + E0

2
(x̂ + j ŷ). (9.55)

The RHCP component will propagate in the z direction as e− jβ+z , and the LHCP compo-
nent will propagate as e− jβ−z , so the total field of (9.55) will propagate as

Ē = E0

2
(x̂ − j ŷ)e− jβ+z + E0

2
(x̂ + j ŷ)e− jβ−z

= E0

2
x̂(e− jβ+z + e− jβ−z) − j

E0

2
ŷ(e− jβ+z − e− jβ−z)

= E0

[
x̂ cos

(
β+ − β−

2

)
z − ŷ sin

(
β+ − β−

2

)
z

]
e− j (β++β−)z/2. (9.56)

This is still a linearly polarized wave, but one whose direction of polarization rotates as
the wave propagates along the z-axis. At a given point along the z-axis the polarization
direction measured from the x-axis is given by

φ = tan−1 Ey

Ex
= tan−1

[
− tan

(
β+ − β−

2

)
z

]
= −

(
β+ − β−

2

)
z. (9.57)

This effect is called Faraday rotation, after Michael Faraday, who first observed this phe-
nomenon during his study of the propagation of light through liquids that had magnetic
properties. Note that for a fixed position on the z-axis, the polarization angle is fixed, unlike
the case for a circularly polarized wave, where the polarization direction rotates with time.

For ω < ω0, µ and κ are positive and µ > κ . Then β+ > β−, and (9.57) shows that
φ becomes more negative as z increases, meaning that the polarization (direction of Ē)
rotates counterclockwise as we look in the +z direction. Reversing the bias direction (sign
of H0 and Ms) changes the sign of κ , which changes the direction of rotation to clockwise.
Similarly, for +z bias, a wave traveling in the −z direction will rotate its polarization
clockwise as we look in the direction of propagation (−z); if we were looking in the +z
direction, however, the direction of rotation would be counterclockwise (same as a wave
propagating in the +z direction). Thus, a wave that travels from z = 0 to z = L and back
again to z = 0 undergoes a total polarization rotation of 2φ, where φ is given in (9.57)
with z = L . So, unlike the situation of a screw being driven into a block of wood and
then backed out, the polarization does not “unwind” when the direction of propagation is
reversed. Faraday rotation is thus seen to be a nonreciprocal effect.

EXAMPLE 9.1 PLANE WAVE PROPAGATION IN A FERRITE MEDIUM

Consider an infinite ferrite medium with 4π Ms = 1800 G, 	H = 75 Oe, εr =
14, and tan δ = 0.001. If the bias field strength is H0 = 3570 Oe, calculate and
plot the phase and attenuation constants for RHCP and LHCP plane waves versus
frequency for f = 0 to 20 GHz.
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Solution
The Larmor precession frequency is

f0 = ω0

2π
= (2.8 MHz/Oe)(3570 Oe) = 10.0 GHz,

and

fm = ωm

2π
= (2.8 MHz/Oe) (1800 G) = 5.04 GHz.

At each frequency we can compute the complex propagation constant as

γ± = α± + jβ± = jω
√

ε(µ ± κ),

where ε = ε0εr (1 − j tan δ) is the complex permittivity, and µ, κ are given by
(9.25). The following substitution for ω0 is used to account for ferrimagnetic loss:

ω0 ← ω0 + j
µ0γ	H

2
,

or

f0 ← f0 + j
(2.8 MHz/Oe)(75 Oe)

2
= (10.0 + j0.105) GHz,

which is derived from (9.37) and (9.40). The quantities µ ± κ can be simplified
to the following, by using (9.25):

µ + κ = µ0

(
1 + ωm

ω0 − ω

)
,

µ − κ = µ0

(
1 + ωm

ω0 + ω

)
.

The phase and attenuation constants are plotted in Figure 9.7, normalized to the
free-space wave number, k0.
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FIGURE 9.7 Normalized phase and attenuation constants for circularly polarized plane waves in
the ferrite medium of Example 9.1.
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Observe that β+ and α+ (for an RHCP wave) show a resonance near f =
f0 = 10 GHz; β− and α− (for an LHCP wave) do not, however, because the
singularities in µ and κ cancel in the (µ − κ) term contained in γ−. Also note
from Figure 9.7 that a stopband (β+ near zero, large α+) exists for RHCP waves
for frequencies between f0 and f0 + fm (between ω0 and ω0 + ωm). For fre-
quencies in this range, the above expression for (µ + κ) shows that this quantity
is negative, and β+ = 0 (in the absence of loss), so an RHCP wave incident on
such a ferrite medium would be totally reflected. ■

Propagation Transverse to Bias (Birefringence)

Next consider the case where an infinite ferrite region is biased in the x̂ direction, transverse
to the direction of propagation; the permeability tensor is given in (9.26). For plane wave
fields of the form in (9.48), Maxwell’s curl equations reduce to

jβEy = − jωµ0 Hx , (9.58a)

− jβEx = − jω(µHy + jκ Hz), (9.58b)

0 = − jω(− jκ Hy + µHz), (9.58c)

jβHy = jωεEx , (9.58d)

− jβHx = jωεEy, (9.58e)

0 = jωεEz . (9.58f)

Then Ez = 0, and ∇ · D̄ = 0 since ∂/∂x = ∂/∂y = 0. Equations (9.58d) and (9.58e) give
an admittance relation between the transverse field components:

Y = Hy

Ex
= −Hx

Ey
= ωε

β
. (9.59)

Using (9.59) in (9.58a) and (9.58b) to eliminate Hx and Hy , and using (9.58c) in (9.58b)
to eliminate Hz , gives the following results:

β2 Ey = ω2µ0εEy, (9.60a)

µ(β2 − ω2µε)Ex = −ω2εκ2 Ex . (9.60b)

One solution to (9.60) occurs for

βo = ω
√

µ0ε, (9.61)

with Ex = 0. Then the complete fields are

Ēo = ŷE0e− jβoz, (9.62a)

H̄o = −x̂ E0Yoe− jβoz, (9.62b)

since (9.59) shows that Hy = 0 when Ex = 0, and (9.58c) shows that Hz = 0 when
Hy = 0. The admittance is

Yo = ωε

βo
=

√
ε

µ0
. (9.63)

This wave is called the ordinary wave because it is unaffected by the magnetic properties
of the ferrite. This happens whenever the magnetic field components transverse to the bias
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direction are zero (Hy = Hz = 0). The wave propagates in either the +z or −z direction
with the same propagation constant, which is independent of H0.

Another solution to (9.60) occurs for

βe = ω
√

µeε, (9.64)

with Ey = 0, where µe is an effective permeability given by

µe = µ2 − κ2

µ
. (9.65)

This wave is called the extraordinary wave and is affected by the ferrite magnetization.
Note that the effective permeability may be negative for certain values of ω, ω0. The elec-
tric field is

Ēe = x̂ E0e− jβez . (9.66a)

Since Ey = 0, (9.58e) shows that Hx = 0. Hy can be found from (9.58d), and Hz from
(9.58c), giving the complete magnetic field as

H̄e = E0Ye

(
ŷ + ẑ

jκ

µ

)
e− jβez, (9.66b)

where

Ye = ωε

βe
=

√
ε

µe
. (9.67)

These fields constitute a linearly polarized wave, but note that the magnetic field has a com-
ponent in the direction of propagation. Except for the existence of Hz , the extraordinary
wave has electric and magnetic fields that are perpendicular to the corresponding fields of
the ordinary wave. Thus, a wave polarized in the y direction will have a propagation con-
stant βo (ordinary wave), but a wave polarized in the x direction will have a propagation
constant βe (extraordinary wave). This effect, where the propagation constant depends on
the polarization direction, is called birefringence [2]. Birefringence often occurs in optics
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FIGURE 9.8 Effective permeability, µe, versus bias field, H0, for various saturation magnetiza-
tions and frequencies.
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work, where the index of refraction can have different values depending on the polariza-
tion. The double image seen through a calcite crystal is an example of this effect.

From (9.65) we can see that µe, the effective permeability for the extraordinary wave,
can be negative if κ2 > µ2. This condition depends on the values of ω,ω0, and ωm , or
f, H0, and Ms , but for a fixed frequency and saturation magnetization there will always
be some range of bias field for which µe < 0 (ignoring loss). When this occurs βe will
become imaginary, as seen from (9.64), which implies that the wave will be cut off, or
evanescent. An x̂-polarized plane wave incident at the interface of such a ferrite region
would be totally reflected. The effective permeability is plotted versus bias field strength
in Figure 9.8 for several values of frequency and saturation magnetization.

9.3 PROPAGATION IN A FERRITE-LOADED RECTANGULAR
WAVEGUIDE

In the previous section we introduced the effects of a ferrite material on electromagnetic
fields by considering the propagation of plane waves in an infinite ferrite medium. In prac-
tice, however, most ferrite components use waveguide or other types of transmission lines
loaded with ferrite material. Many of these geometries are very difficult to treat without
the use of complex numerical methods, but it is possible to analyze some of the simpler
cases involving ferrite-loaded rectangular waveguides. This will allow us to quantitatively
demonstrate the operation and design of several types of practical ferrite components.

TEm0 Modes of Waveguide with a Single Ferrite Slab

We first consider the geometry shown in Figure 9.9, where a rectangular waveguide is
loaded with a vertical slab of ferrite material biased in the ŷ direction. This geometry and
its analysis will be used in later sections to treat the operation and design of resonance
isolators, field displacement isolators, and remanent (nonreciprocal) phase shifters.

In the ferrite slab, Maxwell’s equations can be written as

∇ × Ē = − jω[µ]H̄ , (9.68a)

∇ × H̄ = jωε Ē, (9.68b)

where [µ] is the permeability tensor for ŷ bias, as given in (9.27). If we let Ē(x, y, z) =
[ē(x, y) + ẑez(x, y)]e− jβz and H̄(x, y, z) = [h̄(x, y) + ẑhz(x, y)]e− jβz , (9.68) reduces
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FIGURE 9.9 Geometry of a rectangular waveguide loaded with a transversely biased ferrite slab.
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to
∂ez

∂y
+ jβey = − jω(µhx − jκhz), (9.69a)

− jβex − ∂ez

∂x
= − jωµ0hy, (9.69b)

∂ey

∂x
− ∂ex

∂y
= − jω( jκhx + µhz), (9.69c)

∂hz

∂y
+ jβhy = jωεex , (9.69d)

− jβhx − ∂hz

∂x
= jωεey, (9.69e)

∂hy

∂x
− ∂hx

∂y
= jωεez . (9.69f)

For TEm0 modes, we know that Ez = 0 and ∂/∂y = 0. Then (9.69b) and (9.69d) imply
that ex = hy = 0 (since β2 �= ω2µ0ε for a waveguide mode) and so (9.69) reduces to three
equations:

jβey = − jω(µhx − jκhz), (9.70a)

∂ey

∂x
= − jω( jκhx + µhz), (9.70b)

jωεey = − jβhx − ∂hz

∂x
. (9.70c)

We can solve (9.70a) and (9.70b) for hx and hz as follows. Multiply (9.70a) by µ and
(9.70b) by jκ , then add to obtain

hx = 1

ωµµe

(
−µβey − κ

∂ey

∂x

)
. (9.71a)

Now multiply (9.70a) by jκ and (9.71a) by µ, then add to obtain

hz = j

ωµµe

(
κβey + µ

∂ey

∂x

)
, (9.71b)

where µe = (µ2 − κ2)/µ. Substituting (9.71) into (9.70c) gives a wave equation for ey :

jωεey = − jβ

ωµµe

(
−µβey − κ

∂ey

∂x

)
− j

ωµµe

(
κβ

∂ey

∂x
+ µ

∂2ey

∂x2

)
,

or (
∂2

∂x2
+ k2

f

)
ey = 0, (9.72)

where k f is defined as a cutoff wave number for the ferrite:

k2
f = ω2µeε − β2. (9.73)

We can obtain the corresponding results for the air regions by letting µ = µ0, κ = 0,
and εr = 1, to obtain (

∂2

∂x2
+ k2

a

)
ey = 0, (9.74)
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where ka is the cutoff wave number for the air regions:

k2
a = k2

0 − β2. (9.75)

The magnetic field in the air region is given by

hx = −β

ωµ0
ey = −1

Zw

ey, (9.76a)

hz = j

ωµ0

∂ey

∂x
. (9.76b)

The general solutions for ey in the air-ferrite-air regions of the waveguide are then

ey =

⎧⎪⎨
⎪⎩

A sin ka x for 0 < x < c,

B sin k f (x − c) + C sin k f (c + t − x) for c < x < c + t,

D sin ka(a − x) for c + t < x < a,

(9.77a)

which have been constructed to facilitate the enforcement of boundary conditions at x = 0,
c, c + t , and a [3]. We will also need hz , which can be found from (9.77a), (9.71b), and
(9.76b):

hz =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

( jka A/ωµ0) cos ka x for 0 < x < c,

( j/ωµµe){κβ[B sin k f (x − c) + C sin k f (c + t − x)]
+µk f [B cos k f (x − c) − C cos k f (c + t − x)]} for c < x < c + t,

(− jka D/ωµ0) cos ka(a − x) for c + t < x < a.

(9.77b)

Matching ey and hz at x = c and x = c + t = a − d gives four equations for the constants
A, B, C, D:

A sin kac = C sin k f t, (9.78a)

B sin k f t = D sin kad, (9.78b)

A
ka

µ0
cos kac = B

k f

µe
− C

1

µµe
(−κβ sin k f t + µk f cos k f t), (9.78c)

B
1

µµe
(κβ sin k f t + µk f cos k f t) − C

k f

µe
= −D

ka

µ0
cos kad. (9.78d)

Solving (9.78a) and (9.78b) for C and D, substituting into (9.78c) and (9.78d), and then
eliminating A or B gives the following transcendental equation for the propagation con-
stant, β:

(
k f

µe

)2

+
(

κβ

µµe

)2

− ka cot kac

(
k f

µ0µe
cot k f t + κβ

µ0µµe

)
−

(
ka

µ0

)2

× cot kac cot kad − ka cot kad

(
k f

µ0µe
cot k f t − κβ

µ0µµe

)
= 0. (9.79)

After using (9.73) and (9.75) to express the cutoff wave numbers k f and ka in terms of
β, we can solve (9.79) numerically. The fact that (9.79) contains terms that are odd in
κβ indicates that the resulting wave propagation will be nonreciprocal since changing the
direction of the bias field (which is equivalent to changing the direction of propagation)
changes the sign of κ , which leads to a different solution for β. We will identify these two
solutions as β+ and β− for positive bias and propagation in the +z direction (positive κ)
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and in the −z direction (negative κ), respectively. The effects of magnetic loss can easily
be included by allowing ωo to be complex, as in (9.37).

In later sections we will also need to evaluate the electric field in the guide, as given
in (9.77a). If we choose the arbitrary amplitude constant as A, then B, C, and D can be
found in terms of A by using (9.78a), (9.78b), and (9.78c). Note from (9.75) that if β > ko,
then ka will be imaginary. In this case, the sin ka x function of (9.77a) becomes j sinh |ka |x ,
indicating an almost exponential variation in the field distribution.

A useful approximate result can be obtained for the differential phase shift, β+ − β−,
by expanding β in (9.79) in a Taylor series about t = 0. This can be accomplished with
implicit differentiation after using (9.73) and (9.75) to express k f and ka in terms of β [4].
The result is

β+ − β− � 2kctκ

aµ
sin 2kcc = 2kc

κ

µ

	S

S
sin 2kcc, (9.80)

where kc = π/a is the cutoff frequency of the empty guide, and 	S/S = t/a is the filling
factor, or ratio of slab cross-sectional area to waveguide cross-sectional area. Thus, this
formula can be applied to other geometries, such as waveguides loaded with small ferrite
strips or rods, although the appropriate demagnetization factors may be required for some
ferrite shapes. The result in (9.80) is accurate, however, only for very small ferrite cross
sections, typically for 	S/S < 0.01.

This same technique can be used to obtain an approximate expression for the forward
and reverse attenuation constants in terms of the imaginary parts of the susceptibilities
defined in (9.39):

α± � 	S

Sβ0

(
β2

0χ ′′
xx sin2 kcx + k2

c χ ′′
zz cos2 kcx ∓ χ ′′

xykcβ0 sin 2kcx
)
, (9.81)

where β0 =
√

k2
0 − k2

c is the propagation constant of the empty guide. This result will be
useful in the design of resonance isolators. Both (9.80) and (9.81) can also be derived using
a perturbation method with the empty waveguide fields [4], and so are usually referred to
as the perturbation theory results.

TEm0 Modes of Waveguide with Two Symmetric Ferrite Slabs

A related geometry is a rectangular waveguide loaded with two symmetrically placed fer-
rite slabs, as shown in Figure 9.10. With equal but opposite ŷ-directed bias fields on the
ferrite slabs, this configuration provides a useful model for the nonreciprocal remanent

y
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xt td d

H0

c c
aa/2

z

H0

Magnetic
wall

0

FIGURE 9.10 Geometry of a rectangular waveguide loaded with two symmetric ferrite slabs.
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phase shifter, which will be discussed in Section 9.5. Its analysis is very similar to that of
the single-slab geometry.

Since the hy and hz fields (including the bias fields) are antisymmetric about the mid-
plane of the waveguide at x = a/2, a magnetic wall can be placed at this point. Then we
only need to consider the region for 0 < x < a/2. The electric field in this region can be
written as

ey =
⎧⎨
⎩

A sin ka x, 0 < x < c,
B sin k f (x − c) + C sin k f (c + t − x), c < x < c + t,
D cos ka(a/2 − x), c + t < x < a/2,

(9.82a)

which is similar in form to (9.77a), except that the expression for c + t < x < a/2 was
constructed to have a maximum at x = a/2 (since hz must be zero at x = a/2). The cutoff
wave numbers k f and ka are defined in (9.73) and (9.75).

Using (9.71) and (9.76) gives the hz field as

hz =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( jka A/ωµ0) cos ka x, 0 < x < c,

( j/ωµµe){−κβ[B sin k f (x − c) + C sin k f (c + t − x)]
+µk f [B cos k f (x − c) − C cos k f (c + t − x)]}, c < x < c + t,

( jka D/ωµ0) sin ka(a/2 − x), c + t < x < a/2.

(9.82b)

Matching ey and hz at x = c and x = c + t = a/2 − d gives four equations for the con-
stants A, B, C, D:

A sin kac = C sin k f t, (9.83a)

B sin k f t = D cos kad, (9.83b)

A
ka

µ0
cos kac = B

k f

µe
− C

1

µµe
(−κβ sin k f t + µk f cos k f t), (9.83c)

B

µµe
(κβ sin k f t + µk f cos k f t) − C

k f

µe
= D

ka

µ0
sin kad. (9.83d)

Reducing these results gives a transcendental equation for the propagation constant, β:
(

k f

µe

)2

+
(

κβ

µµe

)2

− ka cot kac

(
k f

µ0µe
cot k f t + κβ

µ0µµe

)
+

(
ka

µ0

)2

× cot kac tan kad + ka tan kad

(
k f

µ0µe
cot k f t − κβ

µ0µµe

)
= 0. (9.84)

This equation can be solved numerically for β. As in (9.79) for the single-slab case,
κ and β appear in (9.84) only as κβ, κ2, or β2, which implies nonreciprocal propagation
since changing the sign of κ (or bias fields) necessitates a change in sign for β (propagation
direction) for the same root. At first glance it may seem that, for the same waveguide and
slab dimensions and parameters, two slabs would give twice the phase shift of one slab,
but this is generally untrue because the fields are highly concentrated in the ferrite regions.

9.4 FERRITE ISOLATORS

One of the most useful microwave ferrite components is the isolator, which is a two-port
device having unidirectional transmission characteristics. The scattering matrix for an ideal
isolator has the form

[S] =
[

0 0
1 0

]
, (9.85)
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indicating that both ports are matched, but transmission occurs only in the direction from
port 1 to port 2. Since the scattering matrix is not unitary, the isolator must be lossy. And,
of course, [S] is not symmetric, since an isolator is a nonreciprocal component.

A common application uses an isolator between a high-power source and a load to
prevent possible reflections from damaging the source. An isolator can be used in place of
a matching or tuning network, but it should be realized that any power reflected from the
load will be absorbed by the isolator, as opposed to being reflected back to the load, which
is the case when a matching network is used.

Although there are several types of ferrite isolators, we will concentrate on the res-
onance isolator and the field displacement isolator. These devices are of practical impor-
tance, and can be analyzed and designed using the results for the ferrite slab-loaded wave-
guide of the previous section.

Resonance Isolators

We have seen that a circularly polarized plane wave rotating in the same direction as the
precessing magnetic dipoles of a ferrite medium will have a strong interaction with the
material, while a circularly polarized wave rotating in the opposite direction will have a
weaker interaction. Such a result was illustrated in Example 9.1, where the attenuation of
a circularly polarized wave was very large near the gyromagnetic resonance of the ferrite,
while the attenuation of a wave propagating in the opposite direction was very small. This
effect can be used to construct an isolator; such isolators must operate near gyromagnetic
resonance and so are called resonance isolators. Resonance isolators usually consist of a
ferrite slab or strip mounted at a certain point in a waveguide. We will discuss the two
isolator geometries shown in Figure 9.11.

Ideally, the RF fields inside the ferrite material should be circularly polarized. In an
empty rectangular waveguide the magnetic fields of the TE10 mode can be written as

Hx = jβ0

kc
A sin kcxe− jβ0z,

Hz = A cos kcxe− jβ0z,

where kc = π/a is the cutoff wave number and β0 =
√

k2
0 − k2

c is the propagation con-
stant of the empty guide. Since a circularly polarized wave must satisfy the condition that
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FIGURE 9.11 Two resonance isolator geometries. (a) E-plane, full-height slab. (b) H -plane,
partial-height slab.
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Hx/Hz = ± j , the location x of the point of circular polarization in the empty guide is
given by

tan kcx = ± kc

β0
. (9.86)

Ferrite loading, however, may perturb the fields so that (9.86) may not give the actual
optimum position, or it may prevent the internal fields from being circularly polarized for
any position.

First consider the full-height E-plane slab geometry of Figure 9.11a; we can analyze
this case using the exact results from the previous section. Alternatively, we could use the
perturbation result of (9.81), but this would require the use of a demagnetization factor for
hx , and would be less accurate than the exact results. Thus, for a given set of parameters,
(9.79) can be solved numerically for the complex propagation constants of the forward and
reverse waves of the ferrite-loaded guide. It is necessary to include the effect of magnetic
loss, which can be done by using (9.37) for the complex resonant frequency, ω0, in the
expressions for µ and κ . The imaginary part of ω0 can be related to the linewidth, 	H ,
of the ferrite through (9.40). Usually the waveguide width, a, frequency, ω, and ferrite
parameters, 4π Ms and εr , will be fixed, and the bias field and slab position and thickness
will be determined to give the optimum design.

Ideally, the forward attenuation constant (α+) would be zero, with a nonzero attenua-
tion constant (α−) in the reverse direction. However, for the E-plane ferrite slab there is no
position x = c where the fields are perfectly circularly polarized in the ferrite (this is be-
cause the demagnetization factor Nx � 1 [4]). Hence, the forward and reverse waves both
contain an RHCP component and an LHCP component, so ideal attenuation characteristics
cannot be obtained. The optimum design, then, generally minimizes the forward attenua-
tion, which determines the slab position. Alternatively, it may be desired to maximize the
ratio of the reverse to forward attenuations. Since the maximum reverse attenuation gener-
ally does not occur at the same slab position as the minimum forward attenuation, such a
design will involve a trade-off of the forward loss.

For a long, thin slab, the demagnetization factors are approximately those of a thin
disk: Nx � 1, Ny = Nz = 0. It can then be shown via the Kittel equation of (9.45) that the
gyromagnetic resonance frequency of the slab is given by

ω = √
ω0(ω0 + ωm), (9.87)

which determines H0, given the operating frequency and saturation magnetization. This is
an approximate result; the transcendental equation of (9.79) accounts for demagnetization
exactly, so the actual internal bias field, H0, can be found by numerically solving (9.79) for
the attenuation constants for values of H0 near the approximate value given by (9.87).

Once the slab position, c, and bias field, H0, have been found, the slab length, L ,
can be chosen to give the desired total reverse attenuation (or isolation) as (α−)L . The
slab thickness can also be used to adjust this value. Typical numerical results are given in
Example 9.2.

One advantage of this geometry is that the full-height slab is easy to bias with an
external C-shaped permanent magnet, with no demagnetization factor. However, it suffers
from several disadvantages:

� Zero forward attenuation cannot be obtained because the internal magnetic field is
not truly circularly polarized.

� The bandwidth of the isolator is relatively narrow, dictated essentially by the line-
width, 	H , of the ferrite.
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� The geometry is not well suited for high-power applications because of poor heat
transfer from the middle of the slab, and an increase in temperature will cause a
change in Ms , which will degrade performance.

The first two problems noted above can be remedied to a significant degree with the addi-
tion of a dielectric loading slab; see reference [5] for details.

EXAMPLE 9.2 FERRITE RESONANCE ISOLATOR DESIGN

Design an E-plane resonance isolator in an X-band waveguide to operate at
10 GHz with a minimum forward insertion loss and 30 dB reverse attenuation. Use
a 0.5 mm thick ferrite slab with 4π Ms = 1700 G,	H = 200 Oe, and εr = 13.
Determine the bandwidth for which the reverse attenuation is at least 27 dB.

Solution
The complex roots of (9.79) were found numerically using an interval-halving
routine followed by a Newton–Raphson iteration. The approximate bias field, H0,
given by (9.87) is 2820 Oe, but numerical results indicate the actual field to be
closer to 2840 Oe for resonance at 10 GHz. Figure 9.12a shows the calculated for-
ward (α+) and reverse (α−) attenuation constants at 10 GHz versus slab position,
and it can be seen that the minimum forward attenuation occurs for c/a = 0.125;
the reverse attenuation at this point is α− = 12.4 dB/cm. Figure 9.12b shows the
attenuation constants versus frequency for this slab position. For a total reverse
attenuation of 20 dB, the length of the slab must be

L = 30 dB

12.4 dB/cm
= 2.4 cm.
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FIGURE 9.12 Forward and reverse attenuation constants for the resonance isolator of Example
9.2. (a) Versus slab position. (b) Versus frequency.
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For the total reverse attenuation to be at least 27 dB, we must have

α− >
27 dB

2.4 cm
= 11.3 dB/cm.

The bandwidth according to the above definition is, from the data of Figure 9.12b,
less than 2%. This result could be improved by using a ferrite with a larger
linewidth, at the expense of a longer or thicker slab and a higher forward
attenuation. ■

Next we consider a resonance isolator using the H -plane slab geometry of Figure
9.11b. If the slab is much thinner than it is wide, the demagnetization factors will be ap-
proximately Nx = Nz = 0, Ny = 1. This means that a stronger applied bias field will be
required to produce the internal field H0 in the y direction. However, the RF magnetic field
components, hx and hz , will not be affected by the air–ferrite boundary since Nx = Nz =
0, and perfect circular polarized fields will exist in the ferrite when it is positioned at the
circular polarization point of the empty guide, as given by (9.86). Another advantage of
this geometry is that it has better thermal properties than the E-plane version since the
ferrite slab has a large surface area in contact with the waveguide wall for heat dissipation.

Unlike the full-height E-plane slab case, the H -plane geometry of Figure 9.11b cannot
be analyzed exactly. However, if the slab occupies only a very small fraction of the total
guide cross section (	S/S � 1, where 	S and S are the cross-sectional areas of the slab
and waveguide, respectively), the perturbational result for α+ in (9.81) can be used with
reasonable results. This expression is given in terms of the susceptibilities χxx = χ ′

xx −
jχ ′′

xx , χzz = χ ′
zz − jχ ′′

zz , and χxy = χ ′′
xy + jχ ′

xy , as defined for a ŷ-biased ferrite in a man-
ner similar to (9.22). For ferrite shapes other than a thin H -plane slab, these susceptibilities
would have to be modified with the appropriate demagnetization factors, as in (9.43) [4].

As seen from the susceptibility expressions of (9.22), gyromagnetic resonance for this
geometry will occur when ω = ω0, which determines the internal bias field, H0. The cen-
ter of the slab is positioned at the circular polarization point of the empty guide, as given
by (9.86). This should result in a near-zero forward attenuation constant. The total reverse
attenuation, or isolation, can be controlled with either the length, L , of the ferrite slab or
its cross section, 	S, since (9.81) shows α± is proportional to 	S/S. If 	S/S is too large,
however, the purity of circular polarization over the slab cross section will be degraded, and
forward loss will increase. One practical alternative is to use a second, identical ferrite slab
on the top wall of the guide to double 	S/S without significantly degrading polarization
purity.

The Field Displacement Isolator

Another type of isolator uses the fact that the electric field distributions of the forward
and reverse waves in a ferrite slab-loaded waveguide can be quite different. As illustrated
in Figure 9.13, the electric field for the forward wave can be made to vanish at the side
of the ferrite slab at x = c + t , while the electric field of the reverse wave can be quite
large at this same plane. If a thin resistive sheet is placed in this position the forward wave
will be essentially unaffected, but the reverse wave will be attenuated. Such an isolator
is called a field displacement isolator; high values of isolation with a relatively compact
device can be obtained with bandwidths on the order of 10%. Another advantage of the
field displacement isolator over the resonance isolator is that a much smaller bias field is
required since it operates well below gyromagnetic resonance.

The main problem in designing a field displacement isolator is to determine the design
parameters that produce field distributions like those shown in Figure 9.13. The general
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FIGURE 9.13 Geometry and electric fields of a field displacement isolator.

form of the electric field is given in (9.77a), from the analysis of the ferrite slab-loaded
waveguide. This shows that for the electric field of the forward wave to have a sinusoidal
dependence for c + t < x < a, and to vanish at x = c + t , the cutoff wave number k+

a
must be real and satisfy the condition that

k+
a = π

d
, (9.88)

where d = a − c − t . In addition, the electric field of the reverse wave should have a hy-
perbolic dependence for c + t < x < a, which implies that k−

a must be imaginary. Since
from (9.75), k2

a = k2
0 − β2, the above conditions imply that β+ < k0 and β− > k0, where

k0 = ω
√

µ0ε0. These conditions on β± depend critically on the slab position, which must
be determined by numerically solving (9.79) for the propagation constants. The slab thick-
ness also affects this result, but less critically; a typical value is t = a/10.

It also turns out that in order to satisfy (9.88), to force Ey = 0 at x = c + t, µe =
(µ2 − κ2)/µ must be negative. This requirement can be intuitively understood by think-
ing of the waveguide mode for c + t < x < a as a superposition of two obliquely traveling
plane waves. The magnetic field components Hx and Hz of these waves are both perpendic-
ular to the bias field, a situation that is similar to the extraordinary plane waves discussed
in Section 9.2, where it was seen that propagation would not occur for µe < 0. Applying
this cutoff condition to the ferrite-loaded waveguide will allow a null in Ey for the forward
wave to be formed at x = c + t .

The condition that µe be negative depends on the frequency, saturation magnetiza-
tion, and bias field. Figure 9.8 shows the dependence of µe versus bias field for several
frequencies and saturation magnetization. This type of data can be used to select the sat-
uration magnetization and bias field to give µe < 0 at the design frequency. Observe that
higher frequencies will require a ferrite with higher saturation magnetization and a higher
bias field, but µe < 0 always occurs before the resonance in µe at

√
ω0(ω0 + ωm). Further

design details will be given in the following example.

EXAMPLE 9.3 FIELD DISPLACEMENT ISOLATOR DESIGN

Design a field displacement isolator in an X-band waveguide to operate at 11 GHz.
The ferrite has 4π Ms = 3000 G and εr = 13. Ferrite loss can be ignored.
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FIGURE 9.14 Propagation constants and electric field distribution for the field displacement iso-
lator of Example 9.3. (a) Forward and reverse propagation constants versus slab
position. (b) Electric field amplitudes for the forward and reverse waves.

Solution
We first determine the internal bias field, H0, such that µe < 0. This can be found
from Figure 9.8, which shows µe/µo versus H0 for 4π Ms = 3000 G at 11 GHz.
We see that H0 = 1200 Oe should be sufficient. Also note from this figure that a
ferrite with a smaller saturation magnetization would require a much larger bias
field.

Next we determine the slab position, c/a, by numerically solving (9.79) for
the propagation constants, β±, as a function of c/a. The slab thickness was set
to t = 0.25 cm, which is approximately a/10. Figure 9.14a shows the resulting
propagation constants, as well as the locus of points where β+ and c/a satisfy the
condition of (9.88). The intersection of β+ with this locus will ensure that Ey = 0
at x = c + t for the forward wave; this intersection occurs for a slab position
of c/a = 0.028. The resulting propagation constants are β+ = 0.724k0 < k0 and
β− = 1.607k0 > k0.
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The electric fields are plotted in Figure 9.14b. Note that the forward wave
has a null at the face of the ferrite slab, while the reverse wave has a peak (the
relative amplitudes of these fields are arbitrary). A resistive sheet can be placed
at this point to attenuate the reverse wave. The actual isolation will depend on the
resistivity of this sheet; a value of 75 � per square is typical. ■

9.5 FERRITE PHASE SHIFTERS

Another important application of ferrite materials is in phase shifters, which are two-port
components that provide variable phase shift by changing the bias field of the ferrite. (Mi-
crowave diodes and FETs can also be used to implement phase shifters; see Section 10.3.)
Phase shifters find application in test and measurements systems, but the most significant
use is in phased array antennas where the antenna beam can be steered in space by elec-
tronically controlled phase shifters. Because of this demand, many different types of phase
shifters have been developed, both reciprocal (same phase shift in either direction) and
nonreciprocal [2, 6]. One of the most useful designs is the latching (or remanent) nonre-
ciprocal phase shifter using a ferrite toroid in a rectangular waveguide; we can analyze this
geometry with a reasonable degree of approximation using the double ferrite slab geometry
discussed in Section 9.3. Then we will qualitatively discuss the operation of a few other
types of phase shifters.

Nonreciprocal Latching Phase Shifter

The geometry of a latching phase shifter is shown in Figure 9.15; it consists of a toroidal
ferrite core symmetrically located in the waveguide with a bias wire passing through its
center. When the ferrite is magnetized, the magnetization of the sidewalls of the toroid
will be oppositely directed and perpendicular to the plane of circular polarization of the
RF fields. Since the sense of circular polarization is also opposite on opposite sides of the
waveguide, a strong interaction between the RF fields and the ferrite can be obtained. Of
course, the presence of the ferrite perturbs the waveguide fields (the fields tend to concen-
trate in the ferrite), so the circular polarization point does not occur at tan kcx = kc/β0, as
it does for an empty guide.

In principle, such a geometry can be used to provide a continuously variable (analog)
phase shift by varying the bias current. However, a more useful technique employs the
magnetic hysteresis of the ferrite to provide a phase shift that can be switched between two
values (digital). A typical hysteresis curve is shown in Figure 9.16, showing the variation
in magnetization, M , with bias field, H0. When the ferrite is initially demagnetized and the
bias field is off, both M and H0 are zero. As the bias field is increased, the magnetization

I

Bias
line

Toroidal
ferrite

FIGURE 9.15 Geometry of a nonreciprocal latching phase shifter using a ferrite toroid.
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FIGURE 9.16 A hysteresis curve for a ferrite toroid.

increases along the dashed-line path until the ferrite is magnetically saturated, and M =
Ms . If the bias field is now reduced to zero, the magnetization will decrease to a remanent
condition (like a permanent magnet), where M = Mr . A bias field in the opposite direction
will saturate the ferrite with M = −Ms , whereupon removal of the bias field will leave the
ferrite in a remanent state with M = −Mr . Thus we can “latch” the ferrite magnetization
in one of two states, where M = ±Mr , giving a digital phase shift. The amount of differ-
ential phase shift between these two states is controlled by the length of the ferrite toroid.
In practice, several sections having individual bias lines and decreasing lengths are used
in series to give binary differential phase shifts of 180◦, 90◦, 45◦, etc., to as fine a resolution
as desired (or can be afforded). An important advantage of the latching mode of operation
is that the bias current does not have to be continuously applied, but only pulsed with
one polarity or the other to change the polarity of the remanent magnetization; switching
speeds can be on the order of a few microseconds. The bias wire can be oriented perpen-
dicular to the electric field in the guide, with a negligible perturbing effect. The top and
bottom walls of the ferrite toroid have very little magnetic interaction with the RF fields
because the magnetization is not perpendicular to the plane of circular polarization, and
the top and bottom magnetizations are oppositely directed. These walls provide mainly a
dielectric loading effect, and the essential operating features of the remanent phase shifters
can be obtained by considering the simpler dual ferrite slab geometry of Section 9.3.

For a given operating frequency and waveguide size, the design of a remanent dual-
slab phase shifter mainly involves the determination of the slab thickness, t , the spacing
between the slabs, s = 2d = a − 2c − 2t (see Figure 9.10), and the length of the slabs
for the desired phase shift. This requires the propagation constants, β±, for the dual-slab
geometry, which can be numerically evaluated from the transcendental equation of (9.84).
This equation requires values for µ and κ , which can be determined from (9.25) for the
remanent state by setting H0 = 0 (ω0 = 0) and Ms = Mr (ωm = µ0γ Mr ):

µ = µ0, (9.89a)

κ = −µ0
ωm

ω
. (9.89b)

The differential phase shift, β+ − β−, is linearly proportional to κ for κ/µ0 up to about
0.5. Then, since κ is proportional to Mr , as seen by (9.89b), it follows that a shorter length
of ferrite can be used to provide a given phase shift if a ferrite with a higher remanent
magnetization is selected. The insertion loss of the phase shifter increases with length but
is a function of the ferrite linewidth, 	H . A figure of merit commonly used to characterize
phase shifters is the ratio of phase shift to insertion loss, measured in degrees/dB.
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EXAMPLE 9.4 REMANENT PHASE SHIFTER DESIGN

Design a two-slab remanent phase shifter at 10 GHz using an X-band waveguide
with ferrite having 4π Mr = 1786 G and εr = 13. Assume that the ferrite slabs
are spaced 1 mm apart. Determine the slab thickness for maximum differential
phase shift, and the lengths of the slabs for 180◦ and 90◦ phase shifter sections.

Solution
From (9.89) we have that

µ

µ0
= 1,

κ

µ0
= ±ωm

ω
= ± (2.8 MHz/Oe)(1786 G)

10,000 MHz
= ±0.5.

Using a numerical root-finding technique, such as interval halving, we can solve
(9.84) for the propagation constants β+ and β− by using positive and negative val-
ues of κ . Figure 9.17 shows the resulting differential phase shift, (β+ − β−)/k0,
versus slab thickness, t , for several slab spacings. Observe that the phase shift
increases as the spacing, s, between the slabs decreases and as the slab thickness
increases, for t/a up to about 0.12.

From the curve in Figure 9.17 for s = 1 mm, we see that the optimum slab
thickness for maximum phase shift is t/a = 0.12, or t = 2.74 mm, since a =
2.286 cm for an X-band guide. The corresponding normalized differential phase
shift is 0.40, so

β+ − β− = 0.4k0 = 0.4

(
2.09 rad

cm

)

= 0.836 rad/cm = 48◦/cm.
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FIGURE 9.17 Differential phase shift for the two-slab remanent phase shifter of Example 9.4.
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The ferrite length required for the 180◦ phase shift section is then

L = 180◦

48◦/cm
= 3.75 cm,

while the length required for a 90◦ section is

L = 90◦

48◦/cm
= 1.88 cm.

■

Other Types of Ferrite Phase Shifters

Many other types of ferrite phase shifters have been developed, with various combina-
tions of rectangular or circular waveguide, transverse or longitudinal biasing, latching or
continuous phase variation, and reciprocal or nonreciprocal operation. Phase shifters us-
ing printed transmission lines have also been proposed. Even though PIN diode and FET
circuits offer a less bulky and more integratable alternative to ferrite components, ferrite
phase shifters often have advantages in terms of cost, power-handling capacity, and power
requirements. However, there is still a great need for a low-cost, compact phase shifter,
primarily for phased array antenna systems.

Several waveguide phase shifter designs are derived from the nonreciprocal Faraday
rotation phase shifter shown in Figure 9.18. In operation, a rectangular waveguide TE10
mode entering at the left is converted to a TE11 circular waveguide mode with a short
transition section. Then a quarter-wave dielectric plate, oriented 45◦ from the electric field
vector, converts the wave to an RHCP wave by providing a 90◦ phase difference between
the field components that are parallel and perpendicular to the plate. In the ferrite-loaded
region the phase delay is β+z, which can be controlled with the bias field strength. A sec-
ond quarter-wave plate converts the wave back to a linearly polarized field. The operation
is similar for a wave entering at the right, except now the phase delay is β−z; the phase
shift is thus nonreciprocal. The ferrite rod is biased longitudinally, in the direction of prop-
agation, with a solenoid coil. This type of phase shifter can be made reciprocal by using
nonreciprocal quarter-wave plates to convert a linearly polarized wave to the same sense
of circular polarization for either propagation direction.

Ferrite rod

Quarter-wave plate

Quarter-wave plate

Bias coil

H 0

FIGURE 9.18 Nonreciprocal Faraday rotation phase shifter.
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FIGURE 9.19 Reggia-Spencer reciprocal phase shifter.

The Reggia-Spencer phase shifter, shown in Figure 9.19, is a popular reciprocal phase
shifter. In either rectangular or circular waveguide form, a longitudinally biased ferrite rod
is centered in the guide. When the diameter of the rod is greater than a certain critical size,
the fields become tightly bound to the ferrite and are circularly polarized. A large reciprocal
phase shift can be obtained over relatively short lengths, although the phase shift is rather
frequency sensitive.

The Gyrator

An important canonical nonreciprocal component is the gyrator, which is a two-port device
having a 180◦ differential phase shift. The schematic symbol for a gyrator is shown in
Figure 9.20, and the scattering matrix for an ideal gyrator is

[S] =
[

0 1
−1 0

]
, (9.90)

which shows that it is lossless, matched, and nonreciprocal. Use of the gyrator as a basic
nonreciprocal building block in combination with reciprocal dividers and couplers can lead
to useful equivalent circuits for nonreciprocal components such as isolators and circulators.
Figure 9.21, for example, shows an equivalent circuit for an isolator using a gyrator and
two quadrature hybrids.

�

FIGURE 9.20 Symbol for a gyrator, which has a differential phase shift of 180◦.

�

Z0

Z0

FIGURE 9.21 An isolator constructed with a gyrator and two quadrature hybrids. The forward
wave (→) is passed, while the reverse wave (←) is absorbed in the matched load
of the first hybrid.
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The gyrator can be implemented as a phase shifter with a 180◦ differential phase shift;
bias can be provided with a permanent magnet, making the gyrator a passive device.

9.6 FERRITE CIRCULATORS

As discussed in Section 7.1, a circulator is a three-port microwave device that can be
lossless and matched at all ports; by using the unitary properties of the scattering matrix
we were able to show that such a device must be nonreciprocal. The scattering matrix for
an ideal circulator thus has the following form:

[S] =
[ 0 0 1

1 0 0
0 1 0

]
, (9.91)

which shows that power can flow from port 1 to port 2, port 2 to port 3, and port 3 to port 1,
but not in the reverse directions. By transposing the port indices, the opposite circularity
can be obtained. For a ferrite circulator, this result can be produced by changing the polarity
of the magnetic bias field. Most circulators use permanent magnets for the bias field, but
if an electromagnet is used the circulator can operate in a latching (remanent) mode as a
single-pole double-throw (SPDT) switch. A circulator can also be used as an isolator by
terminating one of the ports with a matched load. A photograph of a disassembled stripline
circulator is shown in Figure 9.22.

FIGURE 9.22 Photograph of a disassembled ferrite junction circulator, showing the stripline con-
ductor, the ferrite disks, and the bias magnet. The middle port of the circulator is
terminated with a matched load, so this circulator is actually configured as an iso-
lator. Note the change in the width of the stripline conductors due to the different
dielectric constants of the ferrite and the surrounding plastic material.
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We will first discuss the properties of an imperfectly matched circulator in terms of its
scattering matrix, and then we will analyze the operation of the stripline junction circulator.
The operation of waveguide circulators is similar in principle.

Properties of a Mismatched Circulator

If we assume that a circulator has circular symmetry around its three ports and is lossless,
but not perfectly matched, we can write its scattering matrix as

[S] =
[

� β α

α � β

β α �

]
. (9.92)

Since the circulator is assumed lossless, the scattering matrix must be unitary, which im-
plies the following two conditions:

|�|2 + |β|2 + |α|2 = 1, (9.93a)

�β∗ + α�∗ + βα∗ = 0. (9.93b)

If the circulator were matched (� = 0), then (9.93) shows that either α = 0 and |β| = 1,
or β = 0 and |α| = 1; this describes the ideal circulator with its two possible circularity
states. Observe that this condition depends only on a lossless and matched device.

Now assume small imperfections, such that |�| � 1. To be specific, consider the cir-
cularity state where power flows primarily in the 1-2-3 direction, so that |α| is close to unity
and |β| is small. Then β � ∼ 0, and (9.93b) shows that α�∗ + βα∗ � 0, so |�| � |β|. Then
(9.93a) shows that |α|2 � 1 − 2|β|2 � 1 − 2|�|2, or |α| � 1 − |�|2. Then the scattering
matrix of (9.92) can be written as

[S] =
[

� � 1 − �2

1 − �2 � �

� 1 − �2 �

]
, (9.94)

ignoring phase factors. This result shows that circulator isolation, β � �, and transmission,
α � 1 − �2, both deteriorate as the input ports become mismatched.

Junction Circulator

The geometry of a stripline junction circulator is shown in Figure 9.23, and in the photo-
graph of Figure 9.22. Two ferrite disks fill the spaces between the center metallic disk and
the ground planes of the stripline. Three stripline conductors are attached to the periphery
of the center disk at 120◦ intervals, forming the three ports of the circulator. The DC bias
field is applied normal to the ground planes.

In operation, the ferrite disks form a dielectric resonator; in the absence of a bias field,
this resonator has a single lowest order resonant mode with a cos φ (or sin φ) dependence.
When the ferrite is magnetically biased this mode breaks into two resonant modes having
slightly different resonant frequencies. The operating frequency of the circulator can then
be chosen so that the superposition of these two modes adds at the output port and cancels
at the isolated port.

We can analyze the junction circulator by treating it as a thin cavity resonator with
electric walls on the top and bottom, and an approximate magnetic wall on the side. Then
Eρ = Eφ � 0, and ∂/∂z = 0, so we have TM modes. Since Ez on either side of the center
conducting disk is antisymmetric, we need only consider the solution for one of the ferrite
disks [7].
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FIGURE 9.23 A stripline junction circulator. (a) Pictorial view. (b) Geometry.

We first transform (9.23), B̄ = [µ]H̄ , from rectangular to cylindrical coordinates:

Bρ = Bx cos φ + By sin φ

= (µHx + jκ Hy) cos φ + (− jκ Hx + µHy) sin φ

= µHρ + jκ Hφ, (9.95a)

Bφ = −Bx sin φ + By cos φ

= −(µHx + jκ Hy) sin φ + (− jκ Hx + µHy) cos φ

= − jκ Hρ + µHφ. (9.95b)

So we have that [ Bρ

Bφ

Bz

]
= [µ]

[ Hρ

Hφ

Hz

]
, (9.96)

where [µ] is the same matrix as for rectangular coordinates, as given in (9.24).
In cylindrical coordinates, with ∂/∂z = 0, Maxwell’s curl equations reduce to the

following:
1

ρ

∂ Ez

∂φ
= − jω(µHρ + jκ Hφ), (9.97a)

−∂ Ez

∂ρ
= − jω(− jκ Hρ + µHφ), (9.97b)

1

ρ

[
∂(ρHφ)

∂ρ
− ∂ Hρ

∂φ

]
= jωεEz . (9.97c)

Solving (9.97a) and (9.97b) for Hρ and Hφ in terms of Ez gives

Hρ = jY

kµ

(
µ

ρ

∂ Ez

∂φ
+ jκ

∂ Ez

∂ρ

)
, (9.98a)

Hφ = − jY

kµ

(− jκ

ρ

∂ Ez

∂φ
+ µ

∂ Ez

∂ρ

)
, (9.98b)

where k2 = ω2ε(µ2 − κ2)/µ = ω2εµe is an effective wave number, and Y = √
ε/µe is an

effective admittance. Using (9.98) to eliminate Hρ and Hφ in (9.97c) gives a wave equation
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for Ez :

∂2 Ez

∂ρ2
+ 1

ρ

∂ Ez

∂ρ
+ 1

ρ2

∂2 Ez

∂φ2
+ k2 Ez = 0. (9.99)

This equation is identical in form to the equation for Ez for the TM mode of a circular
waveguide, so the general solution can be written as

Ezn =
[

A+ne jnφ + A−ne− jnφ
]

Jn(kρ), (9.100a)

where we have excluded the solution with Yn(kρ) because Ez must be finite at ρ = 0. We
will also need Hφn , which can be found using (9.98b):

Hφn = − jY

{
A+ne jnφ

[
J ′

n(kρ) + nκ

kρµ
Jn(kρ)

]

+ A−ne− jnφ

[
J ′

n(kρ) − nκ

kρµ
Jn(kρ)

]}
. (9.100b)

The resonant modes can now be found by enforcing the boundary condition that Hφ = 0
at ρ = a.

If the ferrite is not magnetized, then H0 = Ms = 0 and ω0 = ωm = 0, so that κ = 0
and µ = µe = µ0, and resonance occurs when

J ′
n(ka) = 0,

or ka = x0 = p′
11 = 1.841. Define this frequency as ω0 (not to be confused with ω0 =

γµ0 H0):

ω0 = x0

a
√

εµe
= 1.841

a
√

εµ0
. (9.101)

When the ferrite is magnetized there are two possible resonant modes for each value of
n, as associated with either a e jnφ variation or a e− jnφ variation. The resonance condition
for the two n = 1 modes is

κ

µx
J1(x) ± J ′

1(x) = 0, (9.102)

where x = ka. This result shows the nonreciprocal property of the circulator, since chang-
ing the sign of κ (the polarity of the bias field) in (9.102) leads to the other root and
propagation in the opposite direction in φ.

If we let x+ and x− be the two roots of (9.102), then we can express the resonant
frequencies for these two n = 1 modes as

ω± = x±
a
√

εµe
. (9.103)

We can develop an approximate result for ω± if we assume that κ/µ is small, so that
ω± will be close to ω0 of (9.101). Using a Taylor series about x0 for the two terms in
(9.102) gives the following results, since J ′

1(x0) = 0:

J1(x) � J1(x0) + (x − x0)J ′
1(x0) = J1(x0),

J ′
1(x) � J ′

1(x0) + (x − x0)J ′′
1 (x0)

= −(x − x0)

(
1 − 1

x2
0

)
J1(x0).
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Then (9.102) becomes

κ

µx0
∓ (x± − x0)

(
1 − 1

x2
0

)
= 0,

or

x± � x0

(
1 ± 0.418

κ

µ

)
, (9.104)

since x0 = 1.841. This result gives the resonant frequencies as

ω± � ω0

(
1 ± 0.418

κ

µ

)
. (9.105)

Note that ω± approaches ω0 as κ → 0, and that

ω− ≤ ω0 ≤ ω+.

We can use a superposition of these two modes to design a circulator. The amplitudes
of these modes give two degrees of freedom that can be used to provide coupling from the
input to the output port, and to provide cancellation at the isolated port. It will turn out that
ω0 will be the operating frequency, which will be between the resonances of the ω± modes.
Thus, Hφ �= 0 over the periphery of the ferrite disks since ω �= ω±. If we select port 1 as
the input port, port 2 as the output port, and port 3 as the isolated port, as in Figure 9.23,
we can assume the following Ez field at the ports at ρ = a:

Ez(ρ = a, φ) =
{ E0, for φ = 0 (port 1),

−E0, for φ = 120◦ (port 2),
0, for φ = 240◦ (port 3).

(9.106a)

If the feedlines are narrow, the Ez field will be relatively constant across their width. The
corresponding Hφ field should be

Hφ(ρ = a, φ) =
{

H0 for −ψ < φ < ψ,

H0 for 120◦ −ψ < φ < 120◦ + ψ,

0 elsewhere.
(9.106b)

Equating (9.106a) to Ez of (9.100a) gives the mode amplitude constants as

A+1 = E0(1 + j/
√

3)

2J1(ka)
, (9.107a)

A−1 = E0(1 − j/
√

3)

2J1(ka)
. (9.107b)

Then (9.100a) and (9.100b) can be reduced to give the electric and magnetic fields as

Ez1 = E0 J1(kρ)

2J1(ka)

[(
1 + j√

3

)
e jφ +

(
1 − j√

3

)
e− jφ

]

= E0 J1(kρ)

J1(ka)

(
cos φ − sin φ√

3

)
, (9.108a)

Hφ1 = − jY E0

2J1(ka)

{(
1 + j√

3

) [
J ′

1(kρ) + κ

kρµ
J1(kρ)

]
e jφ

+
(

1 − j√
3

) [
J ′

1(kρ) − κ

kρµ
J1(kρ)

]
e− jφ

}
. (9.108b)
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To approximately equate Hφ1 to Hφ in (9.106b) requires that Hφ be expanded in a Fourier
series:

Hφ(ρ = a, φ) =
∞∑

n=−∞
Cne jnφ = 2H0ψ

π

+ H0

π

∞∑
n=1

[
(1 + e− j2πn/3)e jnφ + (1 + e j2πn/3)e− jnφ

]

× sin nψ

n
. (9.109)

The n = 1 term of this result is

Hφ1(ρ = a, φ) = − j
√

3H0 sin ψ

2π

[(
1 + j√

3

)
e jφ −

(
1 − j√

3

)
e− jφ

]
,

which can be equated to (9.108b) for ρ = a. Equivalence can be obtained if two conditions
are met:

J ′
1(ka) = 0,

and

Y E0κ

kaµ
=

√
3H0 sin ψ

π
.

The first condition is identical to the condition for resonance in the absence of bias,
which implies that the operating frequency is ω0, as given by (9.101). For a given operating
frequency, (9.101) can then be used to find the disk radius, a. The second condition can be
related to the wave impedance at port 1 or 2:

Zw = E0

H0
=

√
3kaµ sin ψ

πYκ
� µ sin ψ

κY
, (9.110)

since
√

3ka/π = √
3(1.841)/π � 1.0. Thus, Zw can be controlled for impedance match-

ing by adjusting κ/µ via the bias field.
We can compute power flows at the three ports as follows:

Pin = P1 = −ρ̂ · Ē × H̄∗ = Ez Hφ

∣∣∣
φ=0

= E0 H0 sin ψ

π
= E2

0κY

πµ
, (9.111a)

Pout = P2 = ρ̂ · Ē × H̄∗ = −Ez Hφ

∣∣∣
φ=120◦ = E0 H0 sin ψ

π
= E2

0κY

πµ
, (9.111b)

Piso = P3 = ρ̂ · Ē × H̄∗ = −Ez Hφ

∣∣∣
φ=240◦ = 0. (9.111c)

These results show that power flow occurs from port 1 to port 2, but not from port 1 to port
3. By the azimuthal symmetry of the circulator, this also implies that power can be coupled
from port 2 to port 3, or from port 3 to port 1, but not in the reverse directions.

The electric field of (9.108a) is sketched in Figure 9.24 along the periphery of the
circulator, showing that the amplitudes and phases of the e± jφ modes are such that their
superposition gives a null at the isolated port, with equal voltages at the input and output
ports. This result ignores the loading effect of the input and output lines, which will distort
the field from that shown in Figure 9.24. This design is narrowband, but bandwidth can be
improved using dielectric loading; the analysis then requires consideration of higher order
modes.
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⎜Ez⎜

�–120° 0 120° 240° 360°

Input Output Isolated

FIGURE 9.24 Magnitude of the electric field around the periphery of the junction circulator.
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PROBLEMS

9.1 A LHCP RF magnetic field of H̄ = (
0.5x̂ + j0.5ŷ

)
A/m is applied to a calcium vanadium garnet

(CVG) ferrite medium having a saturation magnetization of 4π Ms = 900 G. Ignoring loss, calculate
the resulting magnetic flux density B̄ at f = 2 GHz for two cases: (a) no magnetic bias field and
ferrite demagnetized (Ms = H0 = 0), and (b) a z-directed magnetic bias field of 800 Oe.

9.2 Consider the following field transformations from linearly polarized to circular polarized compo-
nents:

B+ = (Bx + j By)/2, H+ = (Hx + j Hy)/2, (RHCP)

B− = (Bx − j By)/2, H− = (Hx − j Hy)/2, (LHCP)

Bz = Bz, Hz = Hz .

For a z-biased ferrite medium, show that the relation between B̄ and H̄ can be expressed in terms of
a diagonal tensor permeability as follows:⎡

⎣ B+
B−
Bz

⎤
⎦ =

⎡
⎣ (µ + κ) 0 0

0 (µ − κ) 0
0 0 µ0

⎤
⎦

⎡
⎣ H+

H−
Hz

⎤
⎦.

9.3 A tunable oscillator uses a YIG sphere with 4π Ms = 1780 G and requires an magnetic bias field
of 700 Oe internal to the sphere. What is the external applied magnetic field strength that must be
applied to produce this internal field?

9.4 A thin ferrite rod with 4π Ms = 800 G is magnetically biased along its axis. Find the external bias
field strength required to produce a gyromagnetic resonance at 2.52 GHz.
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9.5 An infinite lossless ferrite medium with a saturation magnetization of 4π Ms = 1200 G and a dielec-
tric constant of 10 is biased to a field strength of 500 Oe. At 8 GHz, calculate the differential phase
shift per meter between an RHCP and an LHCP plane wave propagating in the direction of bias. If
a linearly polarized wave is propagating in this material, what is the distance it must travel in order
that its polarization is rotated 90◦?

9.6 An infinite lossless ferrite medium with a saturation magnetization of 4π Ms = 1780 G and a dielec-
tric constant of 13 is biased in the x̂ direction with a field strength of 2000 Oe. At 5 GHz, two plane
waves propagate in the +z direction, one linearly polarized in x and the other linearly polarized in
y. What is the distance these two waves must travel so that the differential phase shift between them
is 180◦?

9.7 Consider a circularly polarized plane wave normally incident on an infinite ferrite medium, as shown
below. Calculate the reflection and transmission coefficients for an RHCP (�+, T +) and an LHCP
(�−, T −) incident wave. HINT: The transmitted wave will be polarized in the same sense as the
incident wave, but the reflected wave will be oppositely polarized.

�0, �0 [�r], �r�0

z

Ei

ΓEi
TEi

H0

0

9.8 An infinite lossless ferrite material with 4π Ms = 1200 G is biased in the x̂ direction with H̄0 = H0 x̂ .
Determine the range of H0, in oersteds, where an extraordinary wave (polarized in x̂ , propagating in
ẑ) will be cut off. The frequency is 4 GHz.

9.9 Find the forward and reverse propagation constants for a waveguide half-filled with a transversely
biased ferrite. (The geometry of Figure 9.9 with c = 0 and t = a/2.) Assume a = 1.0 cm, f =
10 GHz, 4π Ms = 1700 G, and εr = 13. Plot versus H0 = 0 to 1500 Oe. Ignore loss and the fact that
the ferrite may not be saturated for small H0.

9.10 Find the forward and reverse propagation constants for a waveguide filled with two pieces of oppo-
sitely biased ferrite. (The geometry of Figure 9.10 with c = 0 and t = a/2.) Assume a = 1.0 cm,
f = 10 GHz, 4π Ms = 1700 G, and εr = 13. Plot versus H0 = 0 to 1500 Oe. Ignore loss and the
fact that the ferrite may not be saturated for small H0.

9.11 Consider a wide, thin ferrite slab in a rectangular X-band waveguide, as shown in Figure 9.11b. If
f = 10 GHz, 4π Ms = 1700 G, c = a/4, and 	S = 2 mm2, use the perturbation formula of (9.80)
to plot the differential phase shift, (β+ − β−)/k0, versus the bias field for H0 = 0 to 1200 Oe. Ignore
loss.

9.12 An E-plane resonance isolator with the geometry of Figure 9.11a is to be designed to operate at
8 GHz, with a ferrite having a saturation magnetization of 4π Ms = 1500 G. (a) What is the ap-
proximate bias field, H0, required for resonance? (b) What is the required bias field if the H -plane
geometry of Figure 9.11b is used?

9.13 Design a resonance isolator using the H -plane ferrite slab geometry of Figure 9.11b in an X-band
waveguide. The isolator should have minimum forward insertion loss, and a reverse attenuation of
30 dB at 10 GHz. Use a ferrite slab having 	S/S = 0.01, 4π Ms = 1700 G, and 	H = 200 Oe.

9.14 Calculate and plot the two normalized positions, x/a, where the magnetic fields of the TE10 mode
of an empty rectangular waveguide are circularly polarized, for k0 = kc to 2kc .
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9.15 A conceptual latching ferrite phase shifter using the birefringence effect is shown below. In state 1,
the ferrite is magnetized so that H0 = 0 and M̄ = Mr x̂ . In state 2, the ferrite is magnetized so that
H0 = 0 and M̄ = Mr ŷ. If f = 10 GHz, εr = 12, and 4π Mr = 1500 G, find the required length L
to achieve a differential phase shift of 90◦. Assume the incident plane wave is x̂ polarized for both
states, and ignore reflections.

y

z

x

L

Mr1 = Mr x̂

Mr2 = Mr ŷ
Ferrite

H

E

9.16 Rework Example 9.4 with a slab spacing of s = 2 mm and a remanent magnetization of 1000 G.
(Assume all other parameters as unchanged and that the differential phase shift is linearly propor-
tional to κ .)

9.17 Consider a latching phase shifter constructed with a wide, thin H -plane ferrite slab in an X-band
waveguide, as shown in Figure 9.11b. If f = 9 GHz, 4π Mr = 1200 G, c = a/4, and 	S = 2 mm2,
use the perturbation formula of (9.80) to calculate the required length for a differential phase shift
of 22.5◦.

9.18 Design a gyrator using the twin H -plane ferrite slab geometry shown below. The frequency is
9.0 GHz, and the saturation magnetization is 4π Ms = 1700 G. The cross-sectional area of each
slab is 3.0 mm2 and the guide is X-band waveguide. The permanent magnet has a field strength of
Ha = 4000 Oe. Determine the internal field in the ferrite, H0, and use the perturbation formula of
(9.80) to determine the optimum location of the slabs and the length, L , to give the necessary 180◦
differential phase shift.

∆S

a

l

b

Ha

Permanent
magnet

9.19 Draw an equivalent circuit for a circulator using a gyrator and two couplers.

9.20 A certain lossless circulator has a return loss of 10 dB. What is the isolation? What is the isolation if
the return loss is 20 dB?
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C h a p t e r T e n

Noise and Nonlinear Distortion

The effect of noise is critical to the performance of most RF and microwave communica-
tions, radar, and remote sensing systems because noise ultimately determines the threshold for
the minimum signal that can be reliably detected by a receiver. Noise power in a receiver will
be introduced from the external environment through the receiving antenna, as well as gen-
erated internally by the receiver circuitry. Here we will study the sources of noise in RF and
microwave systems, and the characterization of components in terms of noise temperature and
noise figure, including the effect of impedance mismatch. The additional noise-related topics
of transistor amplifier noise figure, oscillator phase noise, and antenna noise temperature will
be discussed in later chapters.

We will also discuss the related topics of compression, harmonic distortion, intermodula-
tion distortion, and dynamic range. These can have important limiting effects when large signal
levels are present in mixers, amplifiers, and other components that use nonlinear devices such
as diodes and transistors.

10.1 NOISE IN MICROWAVE CIRCUITS

Noise power is a result of random processes such as the flow of charges or holes in an
electron tube or solid-state device, propagation through the ionosphere or other ionized
gas, or, most basic of all, the thermal vibrations in any component at a temperature above
absolute zero. Noise can be passed into a microwave system from external sources, or gen-
erated within the system itself. In either case the noise level of a system sets the lower
limit on the strength of a signal that can be detected in the presence of the noise. Thus,
it is generally desired to minimize the residual noise level of a radar or communications
receiver to achieve the best performance. In some cases, such as radiometers or radio as-
tronomy systems, the desired signal is actually the noise power received by an antenna,
and it is necessary to distinguish between the received noise power and the undesired noise
generated by the receiver system itself.

496
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FIGURE 10.1 Illustrating the dynamic range of a realistic amplifier.

Dynamic Range and Sources of Noise

In previous chapters we have implicitly assumed that all components were linear (meaning
that the output signal level is directly proportional to the input signal level), and determin-
istic (meaning that the output signal is predictable from the input signal). In reality no
component can perform in this way over an unlimited range of input/output signal levels.
In practice, however, there is usually a range of signal levels over which such assumptions
are approximately valid; this range is called the dynamic range of the component.

As an example, consider a realistic microwave transistor amplifier having a power gain
G, as shown in Figure 10.1. If the amplifier were ideal, the output power would be related
to the input power as Pout = GPin, and this relation would hold true for any value of Pin.
Thus, if Pin = 0, we would have Pout = 0, and if Pin = 106 W and G = 10 dB, we would
have Pout = 107 W. Neither of these results would actually occur in practice, however.
Because of noise generated by the amplifier itself, some nonzero noise power will always
be delivered by the amplifier, even when the input power is zero. At the other extreme,
very high input power will cause the amplifier to fail. Thus, the actual relation between the
output and input power will be as shown in Figure 10.1. At very low input power levels,
the output will be dominated by the noise generated by the amplifier. This level is often
called the noise floor of the component or system; typical values may range from −80
to −140 dBm over the bandwidth of the system, with the lowest values being obtained
with thermally cooled components. Above the noise floor, the amplifier will have a range
of input power for which Pout = GPin is closely approximated. This is the usable dynamic
range of the component. At the upper end of this range, the output will begin to saturate,
meaning that the output power no longer increases linearly as the input power increases.
Excessive input power will lead to failure of the amplifier.

Noise that is generated internally in a device or component is usually caused by ran-
dom motions of charges or charge carriers in devices and materials. Such motions may be
due to any of several mechanisms, leading to various types of noise:

� Thermal noise is the most basic type of noise, being caused by thermal vibration of
bound charges. It is also known as Johnson or Nyquist noise.

� Shot noise is due to random fluctuations of charge carriers in an electron tube or
solid-state device.

� Flicker noise occurs in solid-state components and vacuum tubes. Flicker noise
power varies inversely with frequency, and so is often called 1/ f -noise.
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� Plasma noise is caused by random motion of charges in an ionized gas, such as a
plasma, the ionosphere, or sparking electrical contacts.

� Quantum noise results from the quantized nature of charge carriers and photons; it
is often insignificant relative to other noise sources.

External noise may be introduced into a system either by a receiving antenna or by
electromagnetic coupling. Some sources of external RF noise include the following:

� Thermal noise from the ground
� Cosmic background noise from the sky
� Noise from stars (including the sun)
� Lightning
� Gas discharge lamps
� Radio, TV, and cellular stations
� Wireless devices
� Microwave ovens
� Deliberate jamming devices

The characterization of noise effects in RF and microwave systems in terms of noise
temperature and noise figure will apply to all types of noise, regardless of the source, as
long as the spectrum of the noise is relatively flat over the bandwidth of the system. Noise
with a flat frequency spectrum is called white noise.

Noise Power and Equivalent Noise Temperature

Consider a resistor at a physical temperature of T degrees kelvin (K), as depicted in Figure
10.2. The electrons in the resistor are in random motion, with a kinetic energy that is
proportional to the temperature. These random motions produce small, random voltage
fluctuations at the resistor terminals, as illustrated in Figure 10.2. This voltage has a zero
average value but a nonzero root mean square (rms) value given by Planck’s blackbody
radiation law,

Vn =
√

4h f BR

eh f/kT − 1
, (10.1)

where
h = 6.626 × 10−34 J-sec is Planck’s constant.
k = 1.380 × 10−23 J/K is Boltzmann’s constant.
T = the temperature in degrees kelvin (K).
B = the bandwidth of the system in Hz.
f = the center frequency of the bandwidth in Hz.
R = the resistance in �.

T°K

R v(t)

v(t)

t

FIGURE 10.2 A random voltage generated by a noisy resistor.
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R

R

Vn

Ideal
bandpass

filter

B

FIGURE 10.3 Equivalent circuit of a noisy resistor delivering maximum power to a load resistor
through an ideal bandpass filter.

This result comes from quantum mechanical considerations, and is valid for any frequency
f . At microwave frequencies the above result can be simplified by making use of the fact
that h f � kT . (As a worst-case example, let f = 100 GHz and T = 100 K. Then h f =
6.6 × 10−23 � kT = 1.4 × 10−21.) Using the first two terms of a Taylor series expansion
for the exponential in (10.1) gives

eh f/kt − 1 � h f

kT
,

so that (10.1) reduces to

Vn = √
4kTBR. (10.2)

This is the Rayleigh–Jeans approximation, and is the result that is most commonly used
in microwave work [1]. For very high frequencies or very low temperatures, however, this
approximation may be invalid, in which case (10.1) should be used.

The noisy resistor of Figure 10.2 can be replaced with a Thevenin equivalent circuit
consisting of a noiseless resistor and a generator with a voltage given by (10.2), as shown
in Figure 10.3. Connecting a load resistor R results in maximum power transfer from the
noisy resistor, with the result that power delivered to the load in a bandwidth B is

Pn =
(

Vn

2R

)2

R = V 2
n

4R
= kTB, (10.3)

since Vn is an rms voltage. This important result gives the maximum available noise power
from the noisy resistor at temperature T . Note that this noise power is independent of
frequency; such a noise source has a power spectral density that is constant with frequency,
and is an example of a white noise source. The noise power is directly proportional to the
bandwidth, which in practice is usually limited by the passband of the RF or microwave
system. Independent white noise sources can be treated as Gaussian-distributed random
variables, so the noise powers (variances) of independent noise sources are additive.

The following trends can be observed from (10.3):

� As B → 0, Pn → 0. This means that systems with smaller bandwidths collect less
noise power.

� As T → 0, Pn → 0. This means that cooler devices and components generate less
noise power.

� As B → ∞, Pn → ∞. This is the so-called ultraviolet catastrophe, which does not
occur in reality because (10.2)–(10.3) are not valid as f (or B) → ∞; (10.1) must
be used in this case.

If an arbitrary source of noise (thermal or nonthermal) is “white,” so that the noise
power is not a strong function of frequency over the bandwidth of interest, it can be mod-
eled as an equivalent thermal noise source, and characterized with an equivalent noise
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FIGURE 10.4 The equivalent noise temperature, Te, of an arbitrary white noise source.

temperature. Thus, consider the arbitrary white noise source of Figure 10.4, which has a
driving-point impedance of R and delivers a noise power No to a load resistor R. This
noise source can be replaced by a noisy resistor of value R at temperature Te, where Te is
an equivalent temperature selected so that the same noise power is delivered to the load.
That is,

Te = No

k B
. (10.4)

Components and systems can then be characterized by saying that they have an equiva-
lent noise temperature Te; this implies some fixed bandwidth B, which is generally the
operational bandwidth of the component or system.

For example, consider a noisy amplifier with a bandwidth B and gain G. Let the am-
plifier be matched to noiseless source and load resistors, as shown in Figure 10.5. If the
source resistor is at a (hypothetical) temperature of Ts = 0 K , then the input power to the
amplifier will be Ni = 0, and the output noise power No will be due only to the noise gen-
erated by the amplifier itself. We can obtain the same load noise power by driving an ideal
noiseless amplifier with a resistor at the temperature

Te = No

Gk B
, (10.5)

so that the output power in both cases is No = GkTe B. Then Te is the equivalent noise
temperature of the amplifier.

It is sometimes useful for measurement purposes to have a calibrated noise source. A
passive noise source may simply consist of a resistor held at a constant temperature, either

R R
Noisy

amplifier

R R
Noiseless
amplifier

Ts = 0 K

Ni = 0

Ni

No

No = GkTeB

No

G

G

Te

(a)

(b)

Te = GkB

FIGURE 10.5 Defining the equivalent noise temperature of a noisy amplifier. (a) Noisy amplifier.
(b) Noiseless amplifier.
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in a temperature-controlled oven, or in a cryogenic flask. Active noise sources may use a
diode, transistor, or tube to provide a calibrated noise power output. Noise generators can
be characterized by an equivalent noise temperature, but a more common measure of noise
power for such components is the excess noise ratio (ENR), defined as

ENR (dB) = 10 log
Ng − No

No
= 10 log

Tg − T0

T0
, (10.6)

where Ng and Tg are the noise power and equivalent noise temperature of the generator,
and No and T0 are the noise power and temperature associated with a room-temperature
(T0 = 290 K) passive source (a matched load). Solid-state noise generators typically have
ENRs ranging from 20 to 40 dB.

Measurement of Noise Temperature

In principle, the equivalent noise temperature of a component can be determined by mea-
suring the output power when a matched load at 0 K is connected at the input of the com-
ponent. In practice, of course, a 0 K source temperature cannot be obtained, so a different
method must be used. If two matched loads at significantly different temperatures are avail-
able, then the Y -factor method can be applied.

This technique is illustrated in Figure 10.6, where the amplifier (or other component)
under test is connected to one of two matched loads at different temperatures, and the
output power is measured for each case. Let T1 be the temperature of the hot load and
T2 the temperature of the cold load (T1 > T2), and let P1 and P2 be the respective powers
measured at the amplifier output. The output noise power consists of noise power generated
by the amplifier as well as noise power from the source resistor. Thus we have

N1 = GkT1 B + GkTe B, (10.7a)

N2 = GkT2 B + GkTe B, (10.7b)

which are two equations for the two unknowns, Te and GB (the gain–bandwidth product of
the amplifier). Define the Y -factor as

Y = N1

N2
= T1 + Te

T2 + Te
> 1, (10.8)

which is determined as the ratio of the output power measurements. Then (10.7) can be
solved for the equivalent noise temperature of the device under test as

Te = T1 − Y T2

Y − 1
, (10.9)

in terms of the load temperatures and the Y -factor.

R

R

T1(hot)

T2(cold)
G, B,

Te

N1,
N2

FIGURE 10.6 The Y -factor method for measuring the equivalent noise temperature of an
amplifier.
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Note that to obtain accurate results from this method, the two source temperatures
must not be too close together. If they are, N1 will be close to N2, Y will be close to unity,
and the evaluation of (10.9) will involve the subtractions of numbers close to each other,
resulting in a loss of accuracy. In practice, one noise source is usually a load resistor at
room temperature (T0 = 290 K), while the other noise source is either “hotter” or “colder,”
depending on whether Te is greater or less than T0. An active noise generator can be used
as a “hot” source, while a “cold” source can be obtained by immersing a load resistor in
liquid nitrogen (T = 77 K) or liquid helium (T = 4 K).

EXAMPLE 10.1 NOISE TEMPERATURE MEASUREMENT

An X-band amplifier has a gain of 20 dB and a 1 GHz bandwidth. Its equivalent
noise temperature is to be measured via the Y -factor method. The following data
are obtained:

For T1 = 290 K, N1 = −62.0 dBm.

For T2 = 77 K, N2 = −64.7 dBm.

Determine the equivalent noise temperature of the amplifier. If the amplifier is
used with a source having an equivalent noise temperature of Ts = 450 K, what
is the output noise power from the amplifier, in dBm?

Solution
From (10.8), the Y -factor in dB is

Y = (N1 − N2) dB = (−62.0) − (−64.7) = 2.7 dB,

which is a numeric value of Y = 1.86. Using (10.9) gives the equivalent noise
temperature as

Te = T1 − Y T2

Y − 1
= 290 − (1.86)(77)

1.86 − 1
= 170 K.

If a source with an equivalent noise temperature of Ts = 450 K drives the
amplifier, the noise power into the amplifier will be kTs B. The total noise power
out of the amplifier will be

No = GkTs B + GkTe B = 100(1.38 × 10−23)(109)(450 + 170)

= 8.56 × 10−10 W = −60.7 dBm. ■

10.2 NOISE FIGURE

Definitio of Noise Figure

We have seen that a noisy microwave component can be characterized by an equivalent
noise temperature. An alternative characterization is the noise figure of the component,
which is a measure of the degradation in the signal-to-noise ratio between the input and
output of the component. The signal-to-noise ratio is the ratio of desired signal power to
undesired noise power, and so is dependent on the signal power. When noise and a desired
signal are applied to the input of a noiseless network, both noise and signal will be atten-
uated or amplified by the same factor, so that the signal-to-noise ratio will be unchanged.
However, if the network is noisy, the output noise power will be increased more than the
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R

R

Pi = Si + Ni Po = So + No

Noisy
network
G, B, Te

T0 = 290 K

FIGURE 10.7 Determining the noise figure of a noisy network.

output signal power, so that the output signal-to-noise ratio will be reduced. The noise
figure, F , is a measure of this reduction in signal-to-noise ratio, and is defined as

F = Si/Ni

So/No
≥ 1, (10.10)

where Si , Ni are the input signal and noise powers, and So, No are the output signal and
noise powers. By definition, the input noise power is assumed to be the noise power result-
ing from a matched resistor at T0 = 290 K; that is, Ni = kT0 B.

Consider Figure 10.7, which shows noise power Ni and signal power Si being fed
into a noisy two-port network. The network is characterized by a gain, G, a bandwidth,
B, and an equivalent noise temperature, Te. The input noise power is Ni = kT0 B, and the
output noise power is a sum of the amplified input noise and the internally generated noise:
No = kGB(T0 + Te). The output signal power is So = GSi . Using these results in (10.10)
gives the noise figure as

F = Si

kT0 B

kGB(T0 + Te)

GSi
= 1 + Te

T0
≥ 1. (10.11)

In dB, F = 10 log(1 + Te/T0) dB ≥ 0. If the network were noiseless, Te would be zero,
giving F = 1, or 0 dB. Solving (10.11) for Te gives

Te = (F − 1)T0. (10.12)

It is important to keep in mind two things concerning the definition of noise figure: noise
figure is defined for a matched input source, and for a noise source equivalent to a matched
load at temperature T0 = 290 K. Noise figure and equivalent noise temperatures are inter-
changeable characterizations of the noise properties of a component.

An important special case occurs in practice for a two-port network consisting of a
passive, lossy component, such as an attenuator or lossy transmission line, held at a phys-
ical temperature T . Consider such a network with a matched source resistor that is also at
temperature T , as shown in Figure 10.8. The power gain, G, of a lossy network is less than
unity; the loss factor, L , can be defined as L = 1/G > 1. Because the entire system is in
thermal equilibrium at the temperature T , and has a driving point impedance of R, the out-
put noise power must be No = kTB. However, we can also think of this power as coming
from the source resistor (attenuated by the lossy line), and from the noise generated by the
line itself. Thus we also have that

No = kTB = GkTB + G Nadded, (10.13)

where Nadded is the noise generated by the line, as if it appeared at the input terminals of
the line. Solving (10.13) for this power gives

Nadded = 1 − G

G
kTB = (L − 1)kTB. (10.14)
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R
T

No = kTB
L, T, Zo = R

Ni = kTB

FIGURE 10.8 Determining the noise figure of a lossy line or attenuator with loss L and tempera-
ture T .

Then (10.4) shows that the lossy line has an equivalent noise temperature (referred to the
input) given by

Te = 1 − G

G
T = (L − 1)T . (10.15)

From (10.11) the noise figure is

F = 1 + (L − 1)
T

T0
. (10.16)

If the line is at temperature T0, then F = L . For instance, a 6 dB attenuator at room tem-
perature has a noise figure of F = 6 dB.

Noise Figure of a Cascaded System

In a typical microwave system the input signal travels through a cascade of many different
components, each of which may degrade the signal-to-noise ratio to some degree. If we
know the noise figure (or noise temperature) of the individual stages, we can determine the
noise figure (or noise temperature) of the cascade connection of stages. We will see that
the noise performance of the first stage is usually the most critical, an interesting result that
is very important in practice.

Consider the cascade of two components, having gains G1, G2, noise figures F1, F2,
and equivalent noise temperatures Te1, Te2, as shown in Figure 10.9. We wish to find the
overall noise figure and equivalent noise temperature of the cascade, as if it were a single
component. The overall gain of the cascade is G1G2.

Using noise temperatures, we can write the noise power at the output of the first
stage as

N1 = G1kT0 B + G1kTe1 B, (10.17)

G1
F1
Te1

G2
F2
Te2

G1G2
Fcas
Tecas

Ni No

No

T0

Ni

T0

N1

(a)

(b)

FIGURE 10.9 Noise figure and equivalent noise temperature of a cascaded system. (a) Two cas-
caded networks. (b) Equivalent network.
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since Ni = kT0 B for noise figure calculations. The noise power at the output of the second
stage is

No = G2 N1 + G2kTe2 B

= G1G2k B

(
T0 + Te1 + 1

G1
Te2

)
. (10.18)

For the equivalent system we have

No = G1G2k B(Tcas + T0), (10.19)

so comparison with (10.18) gives the noise temperature of the cascade system as

Tcas = Te1 + 1

G1
Te2. (10.20)

Using (10.12) to convert the temperatures in (10.20) to noise figures yields the noise figure
of the cascade system as

Fcas = F1 + 1

G1
(F2 − 1). (10.21)

Equations (10.20) and (10.21) show that the noise characteristics of a cascaded system
are dominated by the characteristics of the first stage since the effect of the second stage
is reduced by the gain of the first (assuming G1 > 1). Thus, for the best overall system
noise performance, the first stage should have a low noise figure and at least moderate
gain. Expense and effort should be devoted primarily to the first stage, as opposed to later
stages, since later stages have a diminished impact on the overall noise performance.

Equations (10.20) and (10.21) can be generalized to an arbitrary number of stages, as
follows:

Tcas = Te1 + Te2

G1
+ Te3

G1G2
+ · · · , (10.22)

Fcas = F1 + F2 − 1

G1
+ F3 − 1

G1G2
+ · · · . (10.23)

EXAMPLE 10.2 NOISE ANALYSIS OF A WIRELESS RECEIVER

The block diagram of a wireless receiver front-end is shown in Figure 10.10.
Compute the overall noise figure of this subsystem. If the input noise power from
a feeding antenna is Ni = kTA B, where TA = 150 K, find the output noise power
in dBm. If we require a minimum signal-to-noise ratio (SNR) of 20 dB at the
output of the receiver, what is the minimum signal voltage that should be applied

Low noise
amplifier

Bandpass
filter Mixer

Ga = 10 dB
Fa = 2 dB

Lm = 3 dB
Fm = 4 dB

Si, Ni So, No

Lf  = 1 dB

FIGURE 10.10 Block diagram of a wireless receiver front-end for Example 10.2.
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at the receiver input? Assume the system is at temperature T0, with a characteristic
impedance of 50 �, and an IF bandwidth of 10 MHz.

Solution
We first perform the required conversions from dB to numerical values:

Ga = 10 dB = 10 G f = −1.0 dB = 0.79 Gm = −3.0 dB = 0.5

Fa = 2 dB = 1.58 F f = 1 dB = 1.26 Fm = 4 dB = 2.51

Next, use (10.23) to find the overall noise figure of the system:

F = Fa + F f − 1

Ga
+ Fm − 1

GaG f
= 1.58 + (1.26 − 1)

10
+ (2.51 − 1)

(10)(0.79)

= 1.80 = 2.55 dB.

The best way to compute the output noise power is to use noise temperatures.
From (10.12), the equivalent noise temperature of the overall system is

Te = (F − 1)T0 = (1.80 − 1)(290) = 232 K.

The overall gain of the system is G = (10)(0.79)(0.5) = 3.95. Then we can find
the output noise power as

No = k(TA + Te)BG = (1.38 × 10−23)(150 + 232)(10 × 106)(3.95)

= 2.08 × 10−13 W = −96.8 dBm.

For an output SNR of 20 dB = 100, the input signal power must be

Si = So

G
= So

No

No

G
= 100

2.08 × 10−13

3.95
= 5.27 × 10−12 W = −82.8 dBm.

For a 50 � system impedance, this corresponds to an input signal voltage of

Vi = √
ZoSi =

√
(50)(5.27 × 10−12) = 1.62 × 10−5 V = 16.2 µV (rms).

Note: It may be tempting to compute the output noise power from the definition
of the noise figure, as

No = Ni F

(
So

Si

)
= Ni FG = kTA BFG

= (1.38 × 10−23)(150)(10 × 106)(1.8)(3.95) = 1.47 × 10−13 W.

This is an incorrect result! The reason for the disparity with the earlier result is
that the definition of noise figure assumes an input noise level of kT0 B, while
this problem involves an input noise of kTA B, with TA = 150 K �= T0. This is a
common error, and suggests that when computing absolute noise power it is often
safer to use noise temperatures to avoid this confusion. ■

Noise Figure of a Passive Two-Port Network

We previously derived the noise figure for a matched lossy line or attenuator by using a
thermodynamic argument. Here we generalize that technique to evaluate the noise figure
of general passive networks (networks that do not contain active devices such as diodes or
transistors, which generate nonthermal noise). In addition, this method will account for the
change in noise figure that occurs when a component is impedance mismatched at either its
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FIGURE 10.11 A passive two-port network with impedance mismatches. The network is at phys-
ical temperature T .

input or output port. Generally it is easier and more accurate to find the noise characteristics
of an active device, such as a diode or transistor, by direct measurement than by calculation
from first principles.

Figure 10.11 shows an arbitrary passive two-port network, with a generator at port 1
and a load at port 2. The network is characterized by its scattering matrix, [S]. In the general
case, impedance mismatches may exist at each port, and we define these mismatches in
terms of the following reflection coefficients:

�s = reflection coefficient looking toward generator,

�in = reflection coefficient looking toward port 1 of network,

�out = reflection coefficient looking toward port 2 of network,

�L = reflection coefficient looking toward load.

If we assume the network is at temperature T , and that an available input noise power of
N1 = kTB is applied to the input of the network, we can write the available output noise
power at port 2 as

N2 = G21kTB + G21 Nadded, (10.24)

where Nadded is the noise power generated internally by the network (referenced to port 1),
and G21 is the available power gain of the network from port 1 to port 2. The available
power gain can be expressed in terms of the scattering parameters of the network and the
port mismatches as (also see Section 12.1),

G21 = power available from network

power available from source
= |S21|2(1 − |�S|2)

|1 − S11�S|2(1 − |�out|2) . (10.25)

As derived in Example 4.7, the output port mismatch is given by

�out = S22 + S12S21�S

1 − S11�S
. (10.26)

Observe that when the network is matched to its external circuitry, so that �s = 0 and
S22 = 0, we have �out = 0 and G21 = |S21|2, which is the gain of the network when it is
matched. Also observe that the available gain of the network does not depend on the load
mismatch, �L. This is because available gain is defined in terms of the maximum power
that is available from the network, which occurs when the load impedance is conjugately
matched to the output impedance of the network.

Since the input noise power is kTB, and the network is passive and at temperature T ,
the network is in thermodynamic equilibrium, and so the available output noise power must
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be N2 = kTB. Then we can solve for Nadded from (10.24) to give

Nadded = 1 − G21

G21
kTB. (10.27)

Then the equivalent noise temperature of the network is

Te = Nadded

k B
= 1 − G21

G21
T, (10.28)

and the noise figure of the network is

F = 1 + Te

T0
= 1 + 1 − G21

G21

T

T0
. (10.29)

Note the similarity of (10.27)–(10.29) to the results in (10.14)–(10.16) for the lossy line—
the essential difference is that here we are using the available gain of the network, which
accounts for impedance mismatches between the network and the external circuit. We can
illustrate the use of this result with some applications to problems of practical interest.

Noise Figure of a Mismatched Lossy Line

Earlier we found the noise figure of a lossy transmission line under the assumption that
it was matched to its input and output circuits. Now we consider the case where the line
is mismatched to its input circuit. Figure 10.12 shows a transmission line of length � at
temperature T , with a power loss factor L = 1/G, and an impedance mismatch between
the line and the generator. Thus, Zg �= Z0, and the reflection coefficient looking toward the
generator is

�s = Zg − Z0

Zg + Z0
�= 0.

The scattering matrix of the lossy line of characteristic impedance Z0 can be written as

[S] =
[

0 1
1 0

]
e− jβ�

√
L

, (10.30)

where β is the propagation constant of the line. Using the elements of (10.30) in (10.26)
gives the reflection coefficient looking into port 2 of the line as

�out = S22 + S12S21�s

1 − S11�s
= �s

L
e−2 jβ�. (10.31)

�

FIGURE 10.12 A lossy transmission line at temperature T with an impedance mismatch at its
input port.
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Then the available gain, from (10.25), is

G21 =
1

L
(1 − |�s |2)

1 − |�out|2 = L(1 − |�s |2)
L2 − |�s |2 . (10.32)

We can verify two limiting cases of (10.32): when L = 1 we have G21 = 1, and when
�s = 0 we have G21 = 1/L . Using (10.32) in (10.28) gives the equivalent noise tempera-
ture of the mismatched lossy line as

Te = 1 − G21

G21
T = (L − 1)(L + |�s |2)

L(1 − |�s |2) T . (10.33)

The corresponding noise figure can then be evaluated using (10.11). Observe that when
the line is matched, �s = 0, and (10.33) reduces to Te = (L − 1)T , in agreement with the
result for the matched lossy line given by (10.15). If the line is lossless, then L = 1, and
(10.33) reduces to Te = 0 regardless of mismatch, as expected. However, when the line is
lossy and mismatched, so that L > 1 and |�s | > 0, then the noise temperature given by
(10.33) is greater than Te = (L − 1)T , the noise temperature of the matched lossy line.
The reason for this increase is that the lossy line actually delivers noise power out of both
its ports, but when the input port is mismatched some of the available noise power at port
1 is reflected from the source back into port 1 and appears at port 2. When the generator is
matched to port 1, none of the available power from port 1 is reflected back into the line,
so the noise power available at port 2 is a minimum. This result implies that impedance
matching is important in minimizing noise temperature and noise figure.

EXAMPLE 10.3 APPLICATION TO A WILKINSON POWER DIVIDER

Find the noise figure of a Wilkinson power divider when one of the output ports is
terminated in a matched load. Assume an insertion loss factor of L from the input
to either output port.

Solution
From Chapter 7 the scattering matrix of a Wilkinson divider is given as

[S] = − j√
2L

[ 0 1 1
1 0 0
1 0 0

]
,

where the factor L ≥ 1 accounts for the dissipative loss from port 1 to port 2 or
3 (note that dissipative loss is distinct from the −3 dB power division ratio). To
evaluate the noise figure of the Wilkinson divider, we first terminate port 3 with
a matched load; this converts the three-port device into a two-port device. If we
assume a matched source at port 1, we have �s = 0. Equation (10.26) then gives
�out = S22 = 0, and so the available gain can be calculated from (10.25) as

G21 = |S21|2 = 1

2L
.

The equivalent noise temperature of the Wilkinson divider is, from (10.28),

Te = 1 − G21

G21
T = (2L − 1)T,
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where T is the physical temperature of the divider. Using (10.11) gives the noise
figure as

F = 1 + Te

T0
= 1 + (2L − 1)

T

T0
.

Observe that if the divider is at room temperature, then T = T0 and the above
reduces to F = 2L . If the divider is at room temperature and lossless, this reduces
to F = 2 = 3 dB. In this case the source of the noise power is the isolation resistor
contained in the Wilkinson divider circuit.

Because the network is matched at its input and output, it is easy to obtain
these same results using the thermodynamic argument directly. Thus, if we apply
an input noise power of kTB to port 1 of the matched divider at temperature T , the
system will be in thermal equilibrium and the output noise power must be kTB.
We can also express the output noise power as the sum of the input power times
the gain of the divider, and Nadded, the noise power added by the divider itself
(referenced to the input to the divider):

kTB = kTB

2L
+ Nadded

2L
.

Solving for Nadded gives Nadded = kTB(2L − 1), so the equivalent noise temper-
ature is

Te = Nadded

k B
= (2L − 1)T,

in agreement with the above. ■

Noise Figure of a Mismatched Amplifie

Finally, consider the effect of an input impedance mismatch on the noise figure of an ampli-
fier. As shown in Figure 10.13, the amplifier, when matched, has a gain G, a noise figure F ,
and a bandwidth B. The amplifier output is matched, but there is an impedance mismatch
at the input represented by the reflection coefficient, �. Our previous results involving the
effect of mismatch on noise figure made use of (10.29), but that was derived for a passive
network and so cannot be directly used in this case. Instead we will use noise temperatures.

Since we are dealing with noise figure, let the input noise power to the amplifier be
Ni = kT0 B. Then the output noise power from the amplifier (referenced to the input) is
given by

No = kT0GB
(
1 − |�|2) + kT0 (F − 1) GB (10.34)

where the first term is due to the input noise power, decreased by the reflection at the input,
and the second term is the noise power due to the amplifier itself, based on the equivalent
noise temperature as given by (10.12). For an applied signal power Si , the output signal

So + NoSi + Ni

Z0

Z0 
G, F, 

B
�

FIGURE 10.13 A noisy amplifier with an impedance mismatch at its input.
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power is

So = G
(
1 − |�|2)Si . (10.35)

The overall noise figure, Fm , of the mismatched amplifier can be found from (10.10) as

Fm = Si No

So Ni
= 1 + F − 1

1 − |�|2 . (10.36)

Observe from (10.36) the limiting case that Fm = F when |�| = 0 (no mismatch), and
that this is the minimum noise figure that can be achieved since Fm increases as the mis-
match increases. This result demonstrates that good noise figure requires good impedance
matching. This problem would be more complicated if a mismatch also existed at the out-
put of the amplifier, particularly if the amplifier is not unilateral.

10.3 NONLINEAR DISTORTION

We have seen that thermal noise is generated by any lossy component. Since all realistic
components have at least a small loss, the ideal linear component does not exist in practice
because all realistic devices are nonlinear at very low signal levels due to noise effects.
In addition, practical components may also become nonlinear at high signal levels. In the
case of active devices, such as diodes and transistors, this may be due to effects such as
gain compression or the generation of spurious frequency components due to device non-
linearities, but all devices ultimately fail at very high power levels. In either case, these
effects set a minimum and maximum realistic power range, or dynamic range, over which
a given component or network will operate as desired. In this section we will study the re-
sponse of nonlinear devices in general, and two definitions of dynamic range. These results
will be useful for our later discussions of amplifiers (Chapter 12), mixers (Chapter 13), and
wireless receivers (Chapter 14).

Devices such as diodes and transistors have nonlinear characteristics, and it is this
nonlinearity that is of great utility for desirable functions such as amplification, detection,
and frequency conversion [2]. Nonlinear device characteristics, however, can also lead to
undesirable effects such as gain compression and the generation of spurious frequency
components. These effects may lead to increased losses, signal distortion, and possible
interference with other radio channels or services. Some of the many possible effects of
nonlinearity in RF and microwave circuits are listed below [3]:

� Harmonic generation (multiples of a fundamental signal)
� Saturation (gain reduction in an amplifier)
� Intermodulation distortion (products of a two-tone input signal)
� Cross-modulation (modulation transfer from one signal to another)
� AM-PM conversion (amplitude variation causes phase shift)
� Spectral regrowth (intermodulation with many closely spaced signals)

Figure 10.14 shows a general nonlinear network, having an input voltage vi and an
output voltage vo. In the most general sense, the output response of a nonlinear circuit can

FIGURE 10.14 A general nonlinear device or network.
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be modeled as a Taylor series in terms of the input signal voltage:

vo = a0 + a1vi + a2v
2
i + a3v

3
i + · · · , (10.37)

where the Taylor coefficients are defined as

a0 = vo(0) (DC output) (10.38a)

a1 = dvo

dvi

∣∣∣∣
vi=0

(linear output) (10.38b)

a2 = d2vo

dv2
i

∣∣∣∣∣
vi=0

(squared output) (10.38c)

and higher order terms. Different functions can be obtained from the nonlinear network
depending on the dominance of particular terms in the expansion. The constant term, with
coefficient a0, in (10.37) leads to rectification, converting an AC input signal to DC. The
linear term, with coefficient a1, models a linear attenuator (a1 < 1) or amplifier (a1 > 1).
The second-order term, with coefficient a2, can be used for mixing and other frequency
conversion functions. Practical nonlinear devices usually have a series expansion contain-
ing many nonzero terms, and a combination of several of the above effects will occur. We
will consider some important special cases below.

Gain Compression

First consider the case where a single-frequency sinusoid is applied to the input of a general
nonlinear network, such as an amplifier:

vi = V0 cos ω0t. (10.39)

Equation (10.37) gives the output voltage as

vo = a0 + a1V0 cos ω0t + a2V 2
0 cos2 ω0t + a3V 3

0 cos3 ω0t + · · ·

=
(

a0 + 1

2
a2V 2

0

)
+

(
a1V0 + 3

4
a3V 3

0

)
cos ω0t + 1

2
a2V 2

0 cos 2ω0t

+ 1

4
a3V 3

0 cos 3ω0t + · · · . (10.40)

This result leads to the voltage gain of the signal component at frequency ω0:

Gv = v
(ω0)
o

v
(ω0)
i

= a1V0 + 3
4a3V 3

0

V0
= a1 + 3

4
a3V 2

0 , (10.41)

where we have retained only terms through the third order.
The result of (10.41) shows that the voltage gain is equal to a1, the coefficient of the

linear term, as expected, but with an additional term proportional to the square of the input
voltage amplitude. In most practical amplifiers a3 typically has the opposite sign of a1, so
that the output of the amplifier tends to be reduced from the expected linear dependence
for large values of V0. This effect is called gain compression, or saturation. Physically, this
is usually due to the fact that the instantaneous output voltage of an amplifier is limited by
the power supply voltage used to bias the active device.
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FIGURE 10.15 Definition of the 1 dB compression point for a nonlinear amplifier.

A typical amplifier response is shown in Figure 10.15. For an ideal linear amplifier a
plot of the output power versus input power would be a straight line with a slope of unity,
and the power gain of the amplifier given by the ratio of the output power to the input power.
The amplifier response of Figure 10.15 tracks the ideal response over a limited range, then
begins to saturate, resulting in reduced gain. To quantify the linear operating range of the
amplifier, we define the 1 dB compression point as the power level for which the output
power has decreased by 1 dB from the ideal linear characteristic. This power level is usually
denoted by P1dB, and can be stated in terms of either input power (IP1dB) or output power
(OP1dB). The 1 dB compression point is typically given as the larger of these two options,
so for amplifiers P1dB is usually specified as an output power, while for mixers P1dB is usu-
ally specified in terms of input power. The relation between a compression point referenced
at the input versus the output is given as, in dB, OP1dB = IP1dB + G − 1 dB [4, 5].

Harmonic and Intermodulation Distortion

Observe from the expansion of (10.40) that a portion of the input signal at frequency ω0 is
converted to other frequency components. For example, the first term of (10.40) represents
a DC voltage, which would be a useful response in a rectifier application. The voltage
components at frequencies 2ω0 or 3ω0 can be useful for frequency multiplier circuits.
In amplifiers, however, the presence of other frequency components will lead to signal
distortion if those components are in the passband of the amplifier.

For a single input frequency, or tone, ω0, the output will in general consist of har-
monics of the input frequency of the form nω0, for n = 0, 1, 2, . . . . Often these harmonics
lie outside the passband of the amplifier and so do not interfere with the desired signal at
frequency ω0. The situation is different, however, when the input signal consists of two
closely spaced frequencies.

Consider a two-tone input voltage, consisting of two closely spaced frequencies ω1
and ω2:

vi = V0(cos ω1t + cos ω2t). (10.42)
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From (10.37) the output is

vo = a0 + a1V0(cos ω1t + cos ω2t) + a2V 2
0 (cos ω1t + cos ω2t)2

+ a3V 3
0 (cos ω1t + cos ω2t)3 + · · ·

= a0 + a1V0 cos ω1t + a1V0 cos ω2t + 1

2
a2V 2

0 (1 + cos 2ω1t) + 1

2
a2V 2

0 (1 + cos 2ω2t)

+ a2V 2
0 cos(ω1 − ω2)t + a2V 2

0 cos(ω1 + ω2)t

+ a3V 3
0

(
3

4
cos ω1t + 1

4
cos 3ω1t

)
+ a3V 3

0

(
3

4
cos ω2t + 1

4
cos 3ω2t

)

+ a3V 3
0

[
3

2
cos ω2t + 3

4
cos(2ω1 − ω2)t + 3

4
cos(2ω1 + ω2)t

]

+ a3V 3
0

[
3

2
cos ω1t + 3

4
cos(2ω2 − ω1)t + 3

4
cos(2ω2 + ω1)t

]
+ · · · . (10.43)

where standard trigonometric identities have been used to expand the initial expression.
We see that the output spectrum consists of harmonics of the form

mω1 + nω2, (10.44)

with m, n = 0,±1,±2,±3, . . . . These combinations of the two input frequencies are
called intermodulation products, and the order of a given product is defined as |m| + |n|.
For example, the squared term of (10.43) gives rise to the following four intermodulation
products of second order:

2ω1 (second harmonic of ω1) m = 2 n = 0 order = 2,

2ω2 (second harmonic of ω2) m = 0 n = 2 order = 2,

ω1 − ω2 (difference frequency) m = 1 n = −1 order = 2,

ω1 + ω2 (sum frequency) m = 1 n = 1 order = 2.

All of these second-order products are undesired in an amplifier, but in a mixer the sum or
difference frequencies form the desired outputs. In either case, if ω1 and ω2 are close, all
of the second-order products will be far from ω1 or ω2 and can easily be filtered (either
passed or rejected) from the output of the component. Note from (10.43) that the ratio of
the amplitude of the second-order intermodulation product ω1 − ω2 (or ω1 + ω2) to the
amplitude of a second harmonic 2ω1 (or 2ω2) is 2.0, so the second-order harmonic power
will be 6 dB less than the power in the second-order sum or difference terms.

The cubed term of (10.43) leads to six third-order intermodulation products: 3ω1, 3ω2,
2ω1 + ω2, 2ω2 + ω1, 2ω1 − ω2, and 2ω2 − ω1. The first four of these will again be located
far from ω1 or ω2, and will typically be outside the passband of the component. However,
the two difference terms produce products located near the original input signals at ω1 and
ω2, and so cannot be easily filtered from the passband of an amplifier. Figure 10.16 shows
a typical spectrum of the second- and third-order two-tone intermodulation products. For
an arbitrary input signal consisting of many frequencies of varying amplitude and phase,
the resulting in-band intermodulation products will cause distortion of the output signal.
This effect is called third-order intermodulation distortion.

It can be seen from (10.43) that the ratio of the amplitude of the third-order intermod-
ulation product 2ω1 − ω2 (or 2ω2 − ω1) to the amplitude of the third harmonic 3ω1 (or
3ω2) is 3.0, so the third-order harmonic power will be 9.54 dB less than the power in the
third-order intermodulation terms.
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FIGURE 10.16 Output spectrum of second- and third-order two-tone intermodulation products,
assuming ω1 < ω2.

Third-Order Intercept Point

Equation (10.43) shows that as the input voltage V0 increases, the voltage associated with
the third-order products increases as V 3

0 . Since power is proportional to the square of volt-
age, we can also say that the output power of third-order products must increase as the cube
of the input power. So for small input powers the third-order intermodulation products will
be very small, but will increase quickly as input power increases. We can view this effect
graphically by plotting the output power for the first- and third-order products versus input
power on log-log scales (or in dB), as shown in Figure 10.17.

The output power of the first-order, or linear, product is proportional to the input
power, and so the line describing this response has a slope of unity (before the onset of
compression). The line describing the response of the third-order products has a slope of 3.
(The second-order products would have a slope of 2, but since these products are generally
not in the passband of the component, we have not plotted their response in Figure 10.17.)
Both the linear and third-order responses will exhibit compression at high input powers, so
we show the extension of their idealized responses with dotted lines. Since these two lines
have different slopes, they will intersect, typically at a point above the onset of compres-
sion, as shown in the figure. This hypothetical intersection point where the first-order and
third-order powers would be equal is called the third-order intercept point, denoted as IP3;
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FIGURE 10.17 Third-order intercept diagram for a nonlinear component.
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it may be specified as either an input power level (IIP3), or an output power level (OIP3).
The relation between an intercept point referenced at the input versus the output is simply
OIP3 = G (IIP3). As with the 1 dB compression point, the reference for IP3 is typically
chosen to result in the largest value, so IP3 is usually referenced at the output for amplifiers
and at the input for mixers. As depicted in Figure 10.17, IP3 generally occurs at a higher
power level than P1dB, the 1 dB compression point. Many practical components follow
the approximate rule that IP3 is 10–15 dB greater than P1dB, assuming these powers are
referenced at the same point.

We can express IP3 in terms of the Taylor coefficients of the expansion of (10.43) as
follows. Define Pω1 as the output power of the desired signal at frequency ω1. Then from
(10.43) we have

Pω1 = 1

2
a2

1 V 2
0 . (10.45)

Similarly, define P2ω1−ω2 as the output power of the intermodulation product of frequency
2ω1 − ω2. Then from (10.43) we have

P2ω1−ω2 = 1

2

(
3

4
a3V 3

0

)2

= 9

32
a2

3 V 6
0 . (10.46)

By definition, these two powers are equal at the third-order intercept point. If we define the
input signal voltage at the intercept point as VIP, then equating (10.45) and (10.46) gives

1

2
a2

1 V 2
IP = 9

32
a2

3 V 6
IP.

Solving for VIP yields

VIP =
√

4a1

3a3
. (10.47)

Since OIP3 is equal to the linear response of Pω1 at the intercept point, we have from
(10.45) and (10.47) that

OIP3 = Pω1

∣∣
V0=VIP

= 1

2
a2

1 V 2
IP = 2a3

1

3a3
, (10.48)

where IP3 in this case is referred to the output port. These expressions will be useful in the
following sections.

Intercept Point of a Cascaded System

As in the case of noise figure, a cascade connection of components usually has the ef-
fect of degrading (lowering) the third-order intercept point. Unlike noise powers, however,
intermodulation products in a cascaded system are deterministic and may be in phase co-
herence, in which case we cannot simply add powers but must deal with voltages [5]. We
will first consider the coherent (in-phase) cascade case, then the noncoherent case.

With reference to Figure 10.18, G1 and OIP′
3 are the power gain and third-order inter-

cept point for the first stage, and G2 and OIP′′
3 are the corresponding values for the second

stage. Let P ′
ω1

be the first-stage output power of the desired signal at frequency ω1, and let
P ′

2ω1−ω2
be the first-stage output power at the third-order intermodulation product. From

(10.46), P ′
2ω1−ω2

can be rewritten in terms of P ′
ω1

and OIP′
3, using (10.45) and (10.48), as
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FIGURE 10.18 Third-order intercept point for a cascaded system. (a) Two cascaded networks.
(b) Equivalent network.

follows:

P ′
2ω1−ω2

= 9a2
3 V 6

0

32
=

1

8
a6

1 V 6
0

4a6
1

9a2
3

= (P ′
ω1

)3

(OIP′
3)

2
. (10.49)

The first-stage output voltage associated with this power is

V ′
2ω1−ω2

=
√

P ′
2ω1−ω2

Z0 =
√(

P ′
ω1

)3
Z0

OIP′
3

, (10.50)

where Z0 is the system impedance.
For coherent intermodulation products, the total third-order distortion voltage at the

output of the second stage is the sum of the above voltage times the voltage gain of the
second stage, and the distortion voltage generated by the second stage. This is because
these voltages are deterministic and phase related, unlike uncorrelated noise powers that
arise in cascaded components. Adding these voltages gives the worst-case result for the
overall distortion level because there may be phase delays within the stages that could
cause partial cancellation. Thus we can write the worst-case total distortion voltage at the
output of the second stage as

V ′′
2ω1−ω2

=
√

G2
(
P ′

ω1

)3
Z0

OIP′
3

+
√(

P ′′
ω1

)3
Z0

OIP′′
3

.

Since P ′′
ω1

= G2 P ′
ω1

, we have

V ′′
2ω1−ω2

=
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)√(
P ′′

ω1

)3
Z0. (10.51)

The total output distortion power is

P ′′
2ω1−ω2

=
(

V ′′
2ω1−ω2

)2

Z0
=

(
1

G2
(
OIP′

3

) + 1

OIP′′
3

)2(
P ′′

ω1

)3 =
(
P ′′

ω1

)3

(OIP3)
2
. (10.52)

Thus the third-order intercept point of the cascaded system with coherent products is

OIP3 =
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)−1

. (10.53)

Note that OIP3 = G2
(
OIP′

3

)
for OIP′′

3 → ∞, which is the limiting case when the second
stage has no third-order distortion.
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FIGURE 10.19 System for Example 10.4.

If the intermodulation products from each stage have relatively random phases, which
may occur when the intermodulation products are not very close to the fundamental signals,
it may be proper to treat the individual contributions as incoherent, allowing us to add
powers. It is straightforward to show that the overall intercept point in this case is given by

OIP3 =
(

1

G2
2

(
OIP′

3

)2
+ 1(

OIP′′
3

)2

)−1/2

. (10.54)

EXAMPLE 10.4 CALCULATION OF CASCADE INTERCEPT POINT

A low-noise amplifier and mixer are shown in Figure 10.19. The amplifier has a
gain of 20 dB and a third-order intercept point of 22 dBm (referenced at output),
and the mixer has a conversion loss of 6 dB and a third-order intercept point of
13 dBm (referenced at input). Find the intercept points of the cascade network for
both a phase coherence assumption and a random-phase (noncoherence) assump-
tion.

Solution
First we transfer the reference of IP3 for the mixer from its input to its output:

OIP′′
3 = (

IIP′′
3

)
G2 = 13 dBm − 6 dB = 7 dBm.

Converting the necessary dB values to numerical values yields:

OIP′
3 = 22 dBm = 158 mW (for amplifier),

OIP′′
3 = 7 dBm = 5 mW (for mixer),

G2 = −6 dB = 0.25 (for mixer).

Assuming coherence, equation (10.53) gives the intercept point of the cascade as

OIP3 =
(

1

G2
(
OIP′

3

) + 1

OIP′′
3

)−1

=
(

1

(0.25)(158)
+ 1

5

)−1

= 4.4 mW = 6.4 dBm,

which is seen to be lower than the minimum IP3 of the individual components.
Equation (10.54) gives the results for the noncoherent case as

OIP3 =
(

1

G2
2

(
OIP′

3

)2
+ 1(

OIP′′
3

)2

)−1/2

=
(

1

(0.25)2 (158)2
+ 1

(5)2

)−1/2

= 4.96 mW = 6.9 dBm.

As expected, the noncoherent case results in a slightly higher intercept point. ■
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Passive Intermodulation

The above discussion of intermodulation distortion was in the context of active circuits
involving diodes and transistors, but it is also possible for intermodulation products to
be generated by passive nonlinear effects in connectors, cables, antennas, or almost any
component where there is a metal-to-metal contact. This effect is called passive intermod-
ulation (PIM) and, as in the case of intermodulation in amplifiers and mixers, it occurs
when signals at two or more closely spaced frequencies mix to produce spurious products.

Passive intermodulation can be caused by a number of factors, such as poor mechan-
ical contact, oxidation of junctions between ferrous-based metals, contamination of con-
ducting surfaces at RF junctions, or the use of nonlinear materials such as carbon fiber
composites or ferromagnetic materials. In addition, when high powers are involved, ther-
mal effects may contribute to the overall nonlinearity of a junction. It is very difficult
to predict PIM levels from first principles, so measurement techniques must usually be
used.

Because of the third-power dependence of the third-order intermodulation products
with input power, passive intermodulation is usually only significant when input signal
powers are relatively large. This is frequently the case in cellular telephone base station
transmitters, which may operate with powers of 30–40 dBm, with many closely spaced
RF channels. It is often desired to maintain the PIM level below −125 dBm, with two
40 dBm transmit signals. This is a very wide dynamic range, and requires careful selec-
tion of components used in the high-power portions of the transmitter, including cables,
connectors, and antenna components. Because these components are often exposed to the
weather, deterioration due to oxidation, vibration, and sunlight must be offset by a careful
maintenance program. Communications satellites often face similar problems with passive
intermodulation. Passive intermodulation is generally not a problem in receiver systems
due to the much lower power levels.

10.4 DYNAMIC RANGE

Linear and Spurious Free Dynamic Range

We can define dynamic range in a general sense as the operating range for which a compo-
nent or system has desirable characteristics. For a power amplifier this may be the power
range that is limited at the low end by noise and at the high end by the compression point.
This is essentially the linear operating range for the amplifier, and is called the linear dy-
namic range (LDR). For low-noise amplifiers or mixers, operation may be limited by noise
at the low end and the maximum power level for which intermodulation distortion be-
comes unacceptable. This is effectively the operating range for which spurious responses
are minimal, and it is called the spurious-free dynamic range (SFDR).

We can find the linear dynamic range LDR as the ratio of P1dB, the 1 dB compression
point, to the noise level of the component, as shown in Figure 10.20. In dB, this can be
written in terms of output powers as

LDR (dB) = OP1dB − No, (10.55)

for OP1dB and No expressed in dBm. Note that some authors prefer to define the linear
dynamic range in terms of a minimum detectable power level. This definition is more ap-
propriate for a receiver system rather than an individual component, as it depends on factors
external to the component itself, such as the type of modulation used, the recommended
system SNR, effects of error-correcting coding, and related factors.
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FIGURE 10.20 Illustrating linear dynamic range (LDR) and spurious free dynamic range
(SFDR).

The spurious free dynamic range is defined as the maximum output signal power for
which the power of the third-order intermodulation product is equal to the noise level of
the component, divided by the output noise level. This situation is shown in Figure 10.20.
If Pω1 is the output power of the desired signal at frequency ω1, and P2ω1−ω2 is the output
power of the third-order intermodulation product, then the spurious free dynamic range can
be expressed as

SFDR = Pω1

P2ω1−ω2

, (10.56)

with P2ω1−ω2 taken equal to the noise level of the component. As in (10.49), P2ω1−ω2 can
be written in terms of OIP3 and Pω1 as

P2ω1−ω2 = (Pω1)
3

(OIP3)2
. (10.57)

Observe that this result clearly shows that the third-order intermodulation power increases
as the cube of the input signal power. Solving (10.57) for Pω1 and applying the result to
(10.56) gives the spurious free dynamic range in terms of OIP3 and No, the output noise
power of the component:

SFDR = Pω1

P2ω1−ω2

∣∣∣∣
P2ω1−ω2=No

=
(

OIP3

No

)2/3

. (10.58)

This result can be written in terms of dB as

SFDR (dB) = 2

3
(OIP3 − No), (10.59)

for OIP3 and No expressed in dBm. Although this result was derived for the 2ω1 − ω2
product, the same result applies for the 2ω2 − ω1 product.

In a receiver it may be required to have a minimum detectable signal level, or min-
imum SNR, in order to achieve a specified performance level. This requires an increase
in the input signal level, resulting in a corresponding decrease in dynamic range, since the
spurious power level is still equal to the noise power. In this case, the spurious free dynamic
range of (10.59) would be modified as [5, 6]:

SFDR (dB) = 2

3
(OIP3 − No) − SNR. (10.60)
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EXAMPLE 10.5 DYNAMIC RANGES

A receiver has a noise figure of 7 dB, a 1 dB compression point of 25 dBm (ref-
erenced to output), a gain of 40 dB, and a third-order intercept point of 35 dBm
(referenced to output). If the receiver is fed with an antenna having a noise tem-
perature of TA = 150 K, and the desired output SNR is 10 dB, find the linear and
spurious free dynamic ranges. Assume a receiver bandwidth of 100 MHz.

Solution
The noise power at the receiver output can be calculated using noise temperatures
as

No = Gk B[TA + (F − 1)T0] = 104(1.38 × 10−23)(108)[150 + (4.01)(290)]
= 1.8 × 10−8 W = −47.4 dBm.

The linear dynamic range is, from (10.55), in dB,

LDR = OP1dB − No = 25 dBm + 47.4 dBm = 72.4 dB.

Equation (10.60) gives the spurious free dynamic range as

SFDR = 2

3
(OIP3 − No) − SNR = 2

3
(35 + 47.4) − 10 = 44.9 dB.

Observe that SFDR � LDR. ■
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PROBLEMS

10.1 The noise figure of a microwave receiver front-end is measured using the Y -factor method. A noise
source having an ENR of 22 dB, and a liquid nitrogen cold load (77 K) are used, resulting in a
measured Y -factor ratio of 15.83 dB. What is the noise figure of the receiver?

10.2 Assume that measurement error introduces an uncertainty of �Y into the measurement of Y in a Y -
factor measurement. Derive an expression for the normalized error, �Te/Te, of the equivalent noise
temperature in terms of �Y/Y and the temperatures T1, T2, and Te. Minimize this result with respect
to Te to obtain an expression for Te in terms of T1 and T2 that will result in minimum error.

10.3 A lossy transmission line has a noise figure of F0 at temperature T0 = 290 K. Calculate and plot the
noise figure of this line as its physical temperature ranges from T = 0 K to 1000 K, for F0 = 1 dB
and for F0 = 3 dB.

10.4 An amplifier with a gain of 12 dB, a bandwidth of 150 MHz, and a noise figure of 4 dB feeds a
receiver with a noise temperature of 900 K. Find the noise figure of the overall system.
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10.5 A cellular telephone receiver front-end circuit is shown below. The operating frequency is 1805–
1880 MHz, and the physical temperature of the system is 300 K. A noise source with Ni = −95
dBm is applied to the receiver input. (a) What is the equivalent noise temperature of the source over
the operating bandwidth? (b) What is the noise figure (in dB) of the amplifier? (c) What is the noise
figure (in dB) of the cascaded transmission line and amplifier? (d) What is the total noise power
output (in dBm) of the receiver over the operating bandwidth?

Noise
source

Transmission
line Amplifier

Ni = �95 dBm G = 12 dB
Te = 180 K

No

L  = 1.5 dB

10.6 Consider the wireless local area network (WLAN) receiver front-end shown below, where the band-
width of the bandpass filter is 100 MHz centered at 2.4 GHz. If the system is at room temperature,
find the noise figure of the overall system. What is the resulting signal-to-noise ratio at the output if
the input signal power level is −90 dBm? Can the components be rearranged to give a better noise
figure?

IL = 1.5 dB G = 10 dB
F = 2 dB

G = 20 dB
F = 2 dB

10.7 A two-way power divider has one output port terminated in a matched load, as shown below. Find
the noise figure of the resulting two-port network if the divider is (a) an equal-split two-way resistive
divider, (b) a two-way Wilkinson divider, and (c) a 3 dB quadrature hybrid. Assume the divider in
each case is matched, and at room temperature.

Power
divider

Z0

10.8 Show that, for fixed loss L > 1, the equivalent noise temperature of a mismatched lossy line given in
(10.33) is minimized when |�s | = 0.

10.9 Consider the mismatched amplifier of Figure 10.13, having a noise figure F when matched at its
input. Calculate and plot the resulting noise figure as the input reflection coefficient magnitude, |�|,
varies from 0 to 0.9 for F = 1, 3, and 10 dB.

10.10 A lossy line at temperature T feeds an amplifier with noise figure F , as shown below. If an impedance
mismatch � is present at the input of the amplifier, find the overall noise figure of the system.

Z0, L, T � G, F

10.11 A balanced amplifier circuit is shown below. The two amplifiers are identical, each with power gain
G and noise figure F . The two quadrature hybrids are also identical, with an insertion loss from the
input to either output of L > 1 (not including the 3 dB power division factor). Derive an expression
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for the overall noise figure of the balanced amplifier. What does this result reduce to when the hybrids
are lossless?

Z0

So, No

Z0

Ni, Si

L LG, F

G, F

10.12 Show that the following relations involving the third-order intercept point of a two-port nonlinear
network are valid. P i

ω1
and Po

ω1
are the input and output power levels of an applied two-tone signal,

and P i
2ω1−ω2

and Po
2ω1−ω2

are the power levels of the third-order products referenced to the input
and output.

OIP3 − Po
ω1

IIP3 − P i
ω1

= 1,
OIP3 − Po

2ω1−ω2

IIP3 − P i
2ω1−ω2

= 3.

10.13 In practice, the third-order intercept point is extrapolated from measured data taken at input power
levels well below IP3. For the spectrum analyzer display shown below, where �P is the difference
in power between Pω1 and P2ω1−ω2 , show that the third-order intercept point is given by OIP3 =
Pω1 + (1/2)�P . Calculate the input and output third-order intercept points for the following data:
Pω1 = 5 dBm, P2ω1−ω2 = −27 dBm, Pin = −4 dBm.

10.14 A two-tone input with a 6 dB difference in the two signal levels is applied to a nonlinear component.
What is the relative power ratio of the resulting two third-order intermodulation products 2ω1 − ω2
and 2ω2 − ω1, if ω1 and ω2 are close together?

10.15 Find the third-order intercept points for the problem of Example 10.4 when the positions of the
amplifier and mixer are reversed.

10.16 It is possible to approximately relate the 1 dB compression point to the third-order intercept point.
For a single-tone input, use (10.40) to find the amplitudes of the fundamental and third harmonic
terms, and assume that a3 is of opposite sign to a1. Let V0 be the voltage where the third-order term
reduces the first-order power by 1 dB, and solve for |a3/a1|. For a two-tone input, use (10.43) to find
the amplitude of the third-order intermodulation product, then use (10.44) to relate OP1dB to OIP3.

10.17 An amplifier with a bandwidth of 1 GHz has a gain of 15 dB and a noise temperature of 250 K. If
the 1 dB compression point occurs for an output power level of 5 dBm, what is the linear dynamic
range of the amplifier?

10.18 A receiver subsystem has a noise figure of 6 dB, a 1 dB compression point of 21 dBm (referenced
to output), a gain of 30 dB, and a third-order intercept point of 33 dBm (referenced to output). If
the subsystem is fed with a noise source with Ni = −105 dBm and the desired output SNR is 8 dB,
find the linear and spurious free dynamic ranges of the subsystem. Assume a system bandwidth of
20 MHz.



c11ActiveRFAndMicrowaveDevices Pozar August 26, 2011 17:16

C h a p t e r E l e v e n

Active RF and Microwave
Devices

Active devices include diodes, transistors, and electron tubes, which can be used for signal
detection, mixing, amplification, frequency multiplication, and switching, and as sources of
RF and microwave signals. We will discuss some of the basic characteristics of such devices in
this chapter. We will avoid detailed discussion of the physics of active devices (see references
[1–5] for such material) since for our purposes it will be adequate to work with the termi-
nal characteristics of diodes and transistors using equivalent circuits or scattering parameters.
These results will be used to study some basic diode detector and control circuits, and in later
chapters for the design of amplifier, mixer, and oscillator circuits using diodes and transistors.
We will conclude this chapter with an overview of microwave integrated circuits (MICs) and a
brief discussion of some microwave tubes.

Historically, the development of useful RF and microwave active devices has been a long
and slow process. The first detector diode was probably the “cat-whisker” crystal detector used
in early radio work of the nineteenth century. The advent of electron tubes used as detectors and
amplifiers later eliminated this component in most radio systems, but crystal diodes were used
by Southworth in his 1930s experiments with waveguides since tube detectors could not oper-
ate at such high frequencies. Frequency conversion and heterodyning were also first developed
for radio applications in the 1920s. These same techniques were later applied to microwave
radars at the MIT Radiation Laboratory during World War II (using crystal diodes as mixers)
[1], but it was not until the 1960s that the subject of microwave semiconductor devices saw
significant progress. The invention of the transistor led to advances in the theory of solid-state
materials and devices, as well as the availability of new semiconductor materials. This led to
the development of many new types of diodes and transistors for high-frequency applications.
The invention of the gallium arsenide field effect transistor (FET) in the late 1960s [2] was one
of the most far-reaching developments in modern microwave engineering. RF and microwave
transistors are critical components in wireless systems, finding application as amplifiers, oscil-
lators, switches, phase shifters, mixers, and active filters.

Following the lead from integrated circuitry at lower frequencies, monolithic microwave
integrated circuits (MMICs) combine transmission lines, active devices, and other compo-
nents on a semiconductor substrate. The first single-function MMICs were developed in the
late 1960s, but more sophisticated circuits and subsystems, such as multistage FET amplifiers,

524
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transmit/receive radar modules, front ends for wireless products, and many other circuits, are
now being fabricated as MMICs [2]. The trend is toward MMICs having higher performance,
lower power requirements, greater complexity, and lower cost.

11.1 DIODES AND DIODE CIRCUITS

We begin our discussion of active devices with some of the major types of diodes used
in RF and microwave circuits. A diode is a two-terminal semiconductor device having
a nonlinear V –I relationship. This nonlinearity can be exploited for the useful functions
of signal detection, demodulation, switching, frequency multiplication, and oscillation [1].
RF and microwave diodes can be packaged as axial or beam lead components or as surface-
mountable chips, or be monolithically integrated with other components on a single semi-
conductor substrate. We first consider detector diodes and circuits, then discuss PIN diodes
and control circuits, varactor diodes, and a summary of other types of diodes.

Schottky Diodes and Detectors

The classical pn junction diode commonly used at low frequencies has a relatively large
junction capacitance that makes it unsuitable for high frequency application. The Schottky
barrier diode, however, relies on a semiconductor–metal junction that results in a much
lower junction capacitance [3, 4], allowing operation at higher frequencies. Commercially
available microwave Schottky diodes generally use n-type gallium arsenide (GaAs) ma-
terial, while lower frequency versions may use n-type silicon. Schottky diodes are often
biased with a small DC forward current, but can be used without bias.

The primary application of Schottky diodes is in frequency conversion of an input
signal. Figure 11.1 illustrates the three basic frequency conversion operations of rectifica-
tion (conversion to DC), detection (demodulation of an amplitude-modulated signal), and
mixing (frequency shifting).

A junction diode can be modeled as a nonlinear resistor, with a small-signal V –I
relationship expressed as

I (V ) = Is(e
αV − 1), (11.1)

where α = q/nkT , and q is the charge of an electron, k is Boltzmann’s constant, T is
temperature, n is the ideality factor, and Is is the saturation current [3–5]. Typically, Is is
between 10−6 and 10−15 A, and α = q/nkT is approximately 1/(25 mV) for T = 290 K.
The ideality factor, n, depends on the structure of the diode, and can vary from about 1.05
for Schottky barrier diodes to about 2.0 for point-contact silicon diodes. Figure 11.2 shows
a typical diode V –I characteristic for a Schottky diode.

Small-signal approximation: Let the diode voltage be expressed as

V = V0 + v, (11.2)
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FIGURE 11.1 Basic frequency conversion operations of rectification, detection, and mixing. (a)
Diode rectifier. (b) Diode detector. (c) Mixer.

where V0 is a DC bias voltage and v is a small AC signal voltage. Then (11.1) can be
expanded in a Taylor series about V0 as follows:

I (V ) = I0 + v
d I

dV

∣∣∣∣∣
V0

+ 1

2
v2 d2 I

dV 2

∣∣∣∣∣
V0

+ · · · , (11.3)

where I0 = I (V0) is the DC bias current. The first derivative can be evaluated as

d I

dV

∣∣∣∣
V0

= α IseαV0 = α(I0 + Is) = Gd = 1

R j
, (11.4)

I

V

+

–
V

I

Is

FIGURE 11.2 V –I characteristics of a Schottky diode.
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FIGURE 11.3 Equivalent AC circuit model for a Schottky diode.

which defines R j , the junction resistance of the diode, and Gd = 1/R j , which is called the
dynamic conductance of the diode. The second derivative is

d2 I

dV 2

∣∣∣∣∣
V0

= dGd

dV

∣∣∣∣
V0

= α2 IseαV0 = α2(I0 + Is) = αGd = G ′
d . (11.5)

Then (11.3) can be rewritten as the sum of the DC bias current, I0, and an AC current, i :

I (V ) = I0 + i = I0 + vGd + v2

2
G ′

d + · · · (11.6)

The three-term approximation for the diode current in (11.6) is called the small-signal
approximation, and will be adequate for most of our purposes.

The small-signal approximation is based on the DC voltage–current relationship of
(11.1), and shows that the equivalent circuit of a diode will involve a nonlinear resistance.
In practice, however, the AC characteristics of a diode also involve reactive effects due to
the structure and packaging of the diode. A typical equivalent circuit for an RF diode is
shown in Figure 11.3. The leads or contacts of the diode package are modeled as a series
inductance, Ls , and shunt capacitance, C p. The series resistor, Rs , accounts for contact
and current-spreading resistance. The junction capacitance, C j , and the junction resistance,
R j , are bias dependent. Table 11.1 lists some parameters for a few commercially available
Schottky diodes.

Diode rectifiers and detectors: In a rectifier application, a diode is used to convert a fraction
of an RF input signal to DC power. Rectification is a very common function and is used for
power monitors, automatic gain control circuits, and signal strength indicators. If the total
diode voltage consists of a DC bias voltage and a small-signal RF voltage,

V = V0 + v0 cos ω0t, (11.7)

then (11.6) shows that the diode current will be

I = I0 + v0Gd cos ω0t + v2
0

2
G ′

d cos2 ω0t

= I0 + v2
0

4
G ′

d + v0Gd cos ω0t + v2
0

4
G ′

d cos 2ω0t, (11.8 )

TABLE 11.1 Parameters for Some Commercial Schottky Diodes

Schottky Diode Is (A) Rs (�) C j (pF) Ls (nH) C p (pF)

Skyworks SMS1546 3 × 10−7 4 0.38 1.0 0.07

Skyworks SMS7630 5 × 10−6 20 0.14 0.05 0.005

Avago HSMS2800 3 × 10−8 30 1.6 — —

Macom MA4E2054 3 × 10−8 11 0.1 — 0.11
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where I0 is the bias current and v2
0G ′

d/4 is the DC rectified current. The output also con-
tains AC signals of frequency ω0, and 2ω0 (as well as higher order harmonics), which are
usually filtered out with a simple low-pass filter. A current sensitivity, βi , can be defined as
a measure of the change in the DC output current for a given RF input power. From (11.6)
the RF input power is v2

0Gd/2 (using only the first term), while (11.8) shows the change in
DC current is v2

0G ′
d/4. The current sensitivity is then

βi = �Idc

Pin
= G ′

d

2Gd
A/W. (11.9)

An open-circuit voltage sensitivity, βv , can be defined in terms of the voltage drop across
the junction resistance when the diode is open circuited. Thus,

βv = βi R j . (11.10)

Typical values for the voltage sensitivity of an RF diode range from 400 to 1500 mV/mW.
In a detector application the nonlinearity of a diode is used to demodulate an amplitude-

modulated (AM) RF carrier. In this case, the diode voltage can be expressed as

v(t) = v0(1 + m cos ωmt) cos ω0t, (11.11)

where ωm is the modulation frequency, ω0 is the RF carrier frequency (ω0 � ωm), and m
is defined as the modulation index (0 ≤ m ≤ 1). Using (11.11) in (11.6) gives the diode
current:

i(t) = v0Gd(1 + m cos ωmt) cos ω0t + v2
0

2
G ′

d(1 + m cos ωmt)2 cos2 ω0t

= v0Gd

[
cos ω0t + m

2
cos(ω0 + ωm)t + m

2
cos(ω0 − ωm)t

]

+ v2
0

4
G ′

d

[
1 + m2

2
+ 2m cos ωmt + m2

2
cos 2ωmt + cos 2ω0t

+ m cos(2ω0 + ωm)t + m cos(2ω0 − ωm)t + m2

2
cos 2ω0t

+ m2

4
cos 2(ω0 + ωm)t + m2

4
cos 2(ω0 − ωm)t

]
. (11.12)

The frequency spectrum of this output is shown in Figure 11.4. The output current terms
that are linear in the diode voltage (terms multiplying v0Gd) have frequencies of ω0 and

0 �
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FIGURE 11.4 Output spectrum of a detected AM signal.
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TABLE 11.2 Frequencies and Relative Amplitudes of the
Square-Law Output of a Detected AM Signal

Frequency Relative Amplitude

0 1 + m2/2

ωm 2m

2ωm m2/2

2ω0 1 + m2/2

2ω0 ± ωm m

2(ω0 ± ωm) m2/4

ω0 ± ωm , while the terms that are proportional to the square of the diode voltage (terms
multiplying v2

0G ′
d/2) include the frequencies and relative amplitudes listed in Table 11.2.

The desired demodulated output of frequency ωm is easily separated from the un-
desired frequency components with a low-pass filter. Observe that the amplitude of this
current is mv2

0G ′
d/2, which is proportional to the square of the input signal voltage, and

hence the input signal power. This square-law behavior is the usual operating condition for
detector diodes, but it can be obtained only over a restricted range of input power. If the
input power is too large, small-signal conditions will not apply, and the output will become
saturated and approach a linear, and then a constant, i versus P characteristic. At very low
signal levels the input signal will be lost in the noise floor of the device. Figure 11.5 shows
a typical vout versus Pin characteristic, where the output voltage can be considered as the
voltage drop across a resistor in series with the diode. Square-law operation is particu-
larly important for applications where power levels are inferred from detector voltage, as
in SWR indicators and signal level indicators. Detectors may be DC biased to an operating
point that provides the best sensitivity.

POINT OF INTEREST: The Spectrum Analyzer

A spectrum analyzer gives a frequency domain representation of a signal, displaying the average
power density versus frequency. Thus, its function is dual to that of an oscilloscope, which
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FIGURE 11.5 Square-law region for a typical diode detector.
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displays a time domain representation of a signal. A spectrum analyzer is basically a sensitive
receiver that tunes over a specified frequency band and gives a video output that is proportional
to the signal power in a narrow bandwidth. Spectrum analyzers are invaluable for measuring
modulation products, harmonic and intermodulation distortion, noise, and interference effects.

The diagram below shows a simplified block diagram of a spectrum analyzer. A microwave
spectrum analyzer can typically cover any frequency band in the range of several hundred mega-
hertz to tens of gigahertz. The frequency resolution is set by the IF bandwidth, and is typically
adjustable from about 100 Hz to 1 MHz. A sweep generator is used to repetitively scan the
receiver over the desired frequency band by adjusting the local oscillator frequency, and to pro-
vide horizontal deflection of the display. An important part of a modern spectrum analyzer is the
YIG-tuned bandpass filter at the input to the mixer. This filter is tuned along with the local oscil-
lator, and acts as a preselector to reduce spurious intermodulation products. An IF amplifier with
a logarithmic response is generally used to accommodate a wide dynamic range. Modern spec-
trum analyzers usually contain a computer to control the system and the measurement process.
This improves performance and makes the analyzer more versatile, but can be a disadvantage in
that the computer can sometimes remove the user from the physical reality of the measurement.

LP filter
Input

Variable
attenuator

YIG-tuned
filter

Tuning
control

Sweep
generator

YIG
oscillator

Mixer
IF Amp.

(log) Detector
Video
amp.

H

V

Display

PIN Diodes and Control Circuits

Switches are used extensively in microwave systems for directing signal or power flow
between components. Switches can also be used to construct other types of control circuits,
such as phase shifters and attenuators. Mechanical switches can be made in waveguide or
coaxial form, and can handle high powers but are bulky and slow. PIN diodes, however, can
be used to construct an electronic switching element easily integrated with planar circuitry
and capable of high-speed operation. Switching speeds typically range from 1 to 10 µs,
although speeds as fast as 20 ns are possible with careful design of the diode driving circuit.
PIN diodes can also be used as power limiters, modulators, and variable attenuators.

PIN diode characteristics: A PIN diode contains an intrinsic (lightly doped) layer between
the p and n semiconductor layers. When reverse biased, a small series junction capacitance
leads to a relatively high diode impedance, while a forward bias current removes the junc-
tion capacitance and leaves the diode in a low-impedance state [3, 4]. These characteristics
make the PIN diode a useful RF switching element. Equivalent circuits for the forward- and
reverse-biased states are shown in Figure 11.6. The parasitic inductance, Li , is typically
less than 1 nH. The reverse resistance, Rr , is usually small relative to the series reactance
due to the junction capacitance and is often ignored. The forward bias current is typi-
cally 10–30 mA, and the reverse bias voltage is typically 10–60 V. The bias voltages must
be applied to the diode with RF chokes and DC blocks for isolation from the RF signal.
Table 11.3 lists parameters for some commercially available PIN diodes.
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FIGURE 11.6 Equivalent circuits for the reverse- and forward-biased states of a PIN diode.
(a) Reverse bias state. (b) Forward bias state.

TABLE 11.3 Parameters for Some Commercial PIN
Diodes

PIN Diode R f (�) C j (pF)

ASI 8001 3.0 0.03

Skyworks DSG9500 4.0 0.025

Infineon BA592 0.36 1.4

Microsemi UM9605 1.5 0.5

Single-pole PIN diode switches: A PIN diode can be used in either a series or a shunt con-
figuration to form a single-pole, single-throw RF switch. These circuits are shown in Fig-
ure 11.7, along with the required bias networks. In the series configuration of Figure 11.7a,
the switch is ON when the diode is forward biased, while in the shunt configuration the
switch is ON when the diode is reverse biased. In both cases, input power is reflected when
the switch is in the OFF state. The DC blocking capacitors should have a relatively low
impedance at the RF operating frequency, while the RF choke inductors should have a
relatively high RF impedance. In some designs, high-impedance quarter-wavelength lines
can be used in place of the chokes, to provide RF blocking.

An ideal switch would have zero insertion loss in the ON state, and infinite attenuation
in the OFF state. Realistic switching elements, of course, result in some insertion loss for
the ON state and finite attenuation for the OFF state. Knowing the diode parameters for
the equivalent circuits of Figure 11.6 allows the insertion loss for the ON and OFF states
to be calculated for the series and shunt switches. With reference to the simplified switch

Z0 Z0 Z0 Z0

Bias

RF
choke DC

block

DC
block

Bias

RF
choke DC

block

DC
blockRF

choke Diode

Diode

(a) (b)

FIGURE 11.7 Single-pole PIN diode switches. (a) Series configuration. (b) Shunt configuration.
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FIGURE 11.8 Simplified equivalent circuits for the series and shunt single-pole PIN diode
switches. (a) Series switch. (b) Shunt switch.

circuits of Figure 11.8, we can define the insertion loss in terms of the actual load voltage,
VL , and V0, which is the load voltage that would appear if the switch (Zd) were absent:

IL = −20 log

∣∣∣∣ VL

V0

∣∣∣∣ . (11.13)

Simple circuit analysis applied to the two cases of Figure 11.8 gives the following
results:

IL = −20 log

∣∣∣∣ 2Z0

2Z0 + Zd

∣∣∣∣ (series switch), (11.14a)

IL = −20 log

∣∣∣∣ 2Zd

2Zd + Z0

∣∣∣∣ (shunt switch). (11.14b)

In both cases, Zd is the diode impedance for either the reverse or forward bias state. Thus,

Zd =
{

Zr = Rr + j (ωLi − 1/ωC j ) for reverse bias
Z f = R f + jωLi for forward bias. (11.15)

The ON-state or OFF-state insertion loss of a switch can usually be improved by adding
an external reactance in series or in parallel with the diode, to compensate for the diode
reactance. This technique usually reduces the bandwidth, however.

Several single-throw switches can be combined to form a variety of multiple-pole
and/or multiple-throw configurations. Figure 11.9 shows series and shunt circuits for a
single-pole, double-throw switch; such a switch requires at least two switching elements.
In operation, one diode is forward biased in the low-impedance state, with the other diode
reverse biased in the high-impedance state. The input signal is switched from one output
to the other by reversing the diode bias states. The quarter-wave lines of the shunt circuit
limit the bandwidth of this configuration. A photograph of a PIN SP3T switch is shown in
Figure 11.10.

EXAMPLE 11.1 SINGLE-POLE PIN DIODE SWITCH

A single-pole switch operating at 1.8 GHz is to be constructed using a Microsemi
UM 9605 PIN diode with C j = 0.5 pF and R f = 1.5 �. What switch circuit (se-
ries or shunt) should be used to obtain the greatest ratio of off-to-on attenuation?
Assume that Li = 0.5 nH , Rr = 2.0 �, and Z0 = 50 �,
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FIGURE 11.9 Circuits for single-pole, double-throw PIN diode switches. (a) Series. (b) Shunt.

FIGURE 11.10 Photograph of a SP3T GaAs PIN diode switch, operating from 6 to 27 GHz. The
diode chips are 15 mils square.

Courtesy of LNX Corporation, Salem, N.H.
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Solution
First use (11.15) to compute the diode impedance for the reverse and forward bias
states:

Zd =
{

Zr = Rr + j (ωLi − 1/ωC j ) = 2.0 − j171.2 �

Z f = R f + jωLi = 1.5 + j5.6 �.

Then (11.14) gives the insertion losses for the ON and OFF states of the series
and shunt switches as follows:

For the series circuit,

ILon = −20 log

∣∣∣∣ 2Z0

2Z0 + Z f

∣∣∣∣ = 0.14 dB,

ILoff = −20 log

∣∣∣∣ 2Z0

2Z0 + Zr

∣∣∣∣ = 6.0 dB.

For the shunt circuit,

ILon = −20 log

∣∣∣∣ 2Zr

2Zr + Z0

∣∣∣∣ = 0.11 dB,

ILoff = −20 log

∣∣∣∣ 2Z f

2Z f + Z0

∣∣∣∣ = 13.3 dB.

The shunt configuration has the greatest difference in attenuation between the ON
and OFF states and has the lowest ON insertion loss. ■

PIN diode phase shifters: Several types of microwave phase shifters can be constructed
with PIN diode switching elements. Compared with ferrite phase shifters, diode phase
shifters have the advantages of small size, integrability with planar circuitry, and high
speed. The power requirements for diode phase shifters, however, are generally greater
than those for a latching ferrite phase shifter (Section 9.5) because diodes require continu-
ous bias current, while a latching ferrite device requires only a pulsed current to change its
magnetic state. There are basically three types of PIN diode phase shifters: switched line,
loaded line, and reflection.

The switched-line phase shifter, shown in Figure 11.11, is the most straightforward
type, using two single-pole, double-throw switches to route the signal flow between one
of two transmission lines of different length. The differential phase shift between the two
paths is given by

�φ = β(�2 − �1), (11.16)

 2

In Out

 1

FIGURE 11.11 A switched-line phase shifter.
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where β is the propagation constant of the line. If the transmission lines are TEM (or quasi-
TEM, like microstrip), this phase shift is a linear function of frequency, which implies a
true time delay between the input and output ports. This is a useful feature in wideband
systems. This type of phase shifter is also inherently reciprocal, and so it can be used for
both receive and transmit functions. The insertion loss of the switched line phase shifter is
equal to the loss of the SPDT switches plus line losses.

Like many other types of phase shifters, the switched-line phase shifter is usually de-
signed for discrete binary phase shifts of �φ = 180◦, 90◦, 45◦, etc. One potential problem
with this type of phase shifter is that resonances can occur in the OFF line if its length is
near a multiple of λ/2. The resonant frequency will be slightly shifted due to the series
junction capacitances of the reversed biased diodes, so the lengths �1 and �2 should be
determined with this effect taken into account.

A design that is useful for small amounts of phase shift (generally 45◦, or less) is the
loaded-line phase shifter. The basic principle of this type of phase shifter can be illustrated
with the circuit of Figure 11.12a, which shows a transmission line loaded with a shunt
susceptance, jB. The reflection and transmission coefficients can be written as

	 = 1 − (1 + jb)

1 + (1 + jb)
= − jb

2 + jb
, (11.17a)

T = 1 + 	 = 2

2 + jb
, (11.17b)

where b = B Z0 is the normalized susceptance. Thus the phase shift in the transmitted wave
introduced by the load is

�φ = tan−1 b

2
, (11.18)

which can be made positive or negative, depending on the sign of b. A disadvantage is the
insertion loss that is inherently present due to the reflection from the shunt load. In addition,
increasing b to obtain a larger �φ entails a greater insertion loss, as seen from (11.17b).

The reflections from the shunt susceptance can be reduced by using the circuit of
Figure 11.12b, where two shunt loads are separated by a λ/4 length of line. Then the

jB

Z0 Z0
jB

Z0 Z0 Z0 Z0 Ze Z0
jB

(a)

(b)

�/4 �e

Γ

T

FIGURE 11.12 Loaded-line phase shifters. (a) Basic circuit. (b) Practical loaded-line phase
shifter and its equivalent circuit.
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partial reflection from the second load will be 180◦ out of phase with the partial reflection
from the first load, leading to cancellation. We can analyze this circuit by calculating its
ABCD matrix and comparing it to the ABCD matrix of an equivalent line having a length
θe and characteristic impedance Ze. Thus, for the loaded line,[

A B
C D

]
=

[
1 0
jB 1

] [
0 j Z0

j/Z0 0

] [
1 0
jB 1

]

=
[ −B Z0 j Z0

j (1/Z0 − B2 Z0) −B Z0

]
, (11.19a)

while the equivalent transmission line has an ABCD matrix given by[
A B
C D

]
=

[
cos θe j Ze sin θe

j sin θe/Ze cos θe

]
. (11.19b)

Then we have that

cos θe = −B Z0 = −b, (11.20a)

Ze = Z0 cos θe = Z0√
1 − b2

. (11.20b)

For small values of b, θe will be close to π/2, and these results will reduce to

θe � π

2
+ b, (11.21a)

Ze � Z0

(
1 + b

2

)
. (11.21b)

The susceptance, B, can be implemented with a lumped inductor or capacitor, or with a
stub, and switched between two states with an SPST diode switch.

The third type of PIN diode phase shifter is the reflection phase shifter, which uses an
SPST switch to control the path length of a reflected signal. Usually a quadrature hybrid
is used to provide a two-port circuit, although other types of hybrids, or even a circulator,
could be used for this purpose.

Figure 11.13 shows a reflection-type phase shifter using a quadrature hybrid. In oper-
ation, an input signal divides equally between the two right-hand ports of the hybrid. The
diodes are both biased in the same state (forward or reverse biased), so the waves reflected
from the two terminations will add in phase at the indicated output port. Turning the diodes
on or off changes the total path length for both reflected waves by �φ, producing a phase
shift of �φ at the output. Ideally, the diodes would look like short circuits in their ON
state, and open circuits in their OFF state, so that the reflection coefficients at the right
side of the hybrid can be written as 	 = e− j (φ+π) for the diodes in their ON state, and

∆�

2

�

2
90° HybridIn

Out
Γ

Γ

FIGURE 11.13 A reflection phase shifter using a quadrature hybrid.
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	 = e− j (φ+�φ) for the diodes in their OFF state. There is an infinite number of choices of
line lengths that give the desired �φ (i.e., the value of φ/2 is a degree of freedom), but it
can be shown that bandwidth is optimized if the reflection coefficients for the two states
are phase conjugates. Thus, if �φ = 90◦, the best bandwidth will be obtained for φ = 45◦.

A good input match for the reflection-type phase shifter requires that the diodes be
well matched. The insertion loss is limited by the loss of the hybrid, as well as by the
forward and reverse resistances of the diodes. Impedance transformation sections can be
used to improve performance in this regard.

Varactor Diodes

We have seen that a PIN diode has a junction capacitance that can be switched on or off
with bias voltage. This effect can be enhanced by tailoring the size and doping profile of the
intrinsic layer of the diode to provide a desired junction capacitance versus junction volt-
age (C vs. V ) behavior when reverse biased. Such a device is called a varactor diode, and
it produces a junction capacitance that varies smoothly with bias voltage, thus providing
an electrically adjustable reactive circuit element. One of the most common applications
of varactor diodes is to provide electronic frequency tuning of the local oscillator in a mul-
tichannel receiver, such as those used in cellular telephones, wireless local area network
radios, and television receivers. This is accomplished by using a varactor diode in the res-
onant circuit of a transistor oscillator, and controlling the DC reverse bias voltage applied
to the diode. The nonlinearity of varactor diodes also makes them useful for frequency
multipliers (discussed in Chapter 13). Varactor diodes are generally made from silicon for
RF applications, and gallium arsenide for microwave applications.

A simplified equivalent circuit for a reverse-biased varactor diode is shown in Figure
11.14. The junction capacitance is dependent on the (negative) junction bias voltage, V,
according to

C j (V ) = C0

(1 − V/V0)γ
, (11.22)

where C0 is the junction capacitance with no bias; V0 = 0.5 V for silicon diodes, and
V0 = 1.3 V for GaAs diodes. The exponent γ depends on the doping profile of the intrinsic
layer of the diode. An ideal hyperabrupt varactor diode has γ = 0.5; many practical diodes
have an exponent of about γ = 0.47, although the value can be as high as 1.5 or 2.0 for
some diodes. In the equivalent circuit, Rs is the series junction and contact resistance,
typically on the order of a few ohms. A typical GaAs varactor diode may have C0 = 0.5–
2.0 pF, and a junction capacitance that varies from about 0.1 to 2.0 pF as the bias voltage
ranges from −20 to 0 V. Parasitic reactances due to the diode package should be included
in a realistic design.

+

–

V Cj (V )

Rs

FIGURE 11.14 Equivalent circuit of a reverse-biased varactor diode.
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FIGURE 11.15 The DC I –V characteristic of a Gunn diode, showing the region of negative dif-
ferential resistance. Other negative resistance devices, such as impact avalanche
and transit time (IMPATT) and tunnel diodes, have similar I –V characteristics.

Other Diodes

Here we briefly summarize the characteristics of several other diode devices that are com-
monly used in microwave circuits. Historically, diode devices were developed long before
high-frequency three-terminal devices (e.g., junction and field effect transistors), and for
many years diodes provided the only means of microwave power generation and ampli-
fication without using electron tubes. Today, many of these devices are most useful at
millimeter wave frequencies, since there are now many types of transistors that offer better
performance and more design flexibility at RF and microwave frequencies. Further infor-
mation on diode devices can be found in the literature.

Gunn diodes: The operation of a Gunn diode is based on the transferred electron effect
(also known as the Gunn effect), which was discovered by J. B. Gunn in 1963. Practical
Gunn diodes typically use GaAs or InP materials in a specially doped bulk form, as op-
posed to a traditional pn junction. The Gunn diode has an I –V characteristic that exhibits
a negative differential resistance (negative slope) that can be used to generate RF power
directly from a DC source when properly biased. Figure 11.15 shows a DC I –V curve
that is characteristic of Gunn diodes, where the region of negative differential resistance
(negative slope) corresponds to the operating point of the device. Gunn diodes can produce
continuous power of up to several hundred milliwatts, at frequencies from 1 to 200 GHz,
with efficiencies ranging from 5% to 15%. Oscillator circuits using Gunn diodes require
a high-Q resonant circuit or cavity, which is often tuned mechanically. Electronic tuning
by bias adjustment is limited to 1% or less, but varactor diodes are sometimes included in
the resonant circuit to provide a greater range of electronic tuning. Gunn diode sources are
used extensively in low-cost applications such as traffic radars, motion detectors for door
openers and security alarms, and test and measurement systems.

FIGURE 11.16 A W-band Gunn diode oscillator. The output power is 16 dBm, and the source is
mechanically tunable over a frequency range of 4 GHz.

Courtesy of Millitech, Inc., Northampton, Mass.
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IMPATT diodes: An impact avalanche and transit time (IMPATT) diode has a physical
structure similar to a PIN diode, but is operated with a relatively high voltage (70–100 V)
to produce a reverse-biased avalanche breakdown current. It exhibits a negative resistance
over a broad frequency band that can extend into the submillimeter range, and it can be
used to directly convert DC to RF power. IMPATT sources are generally noisier than Gunn
diodes but are capable of higher powers and higher DC-to-RF conversion efficiencies.
IMPATTs also have better temperature stability than Gunn diodes. Typical IMPATTs op-
erate at frequencies from 10 to 300 GHz, with efficiencies ranging up to 15%. IMPATT
diodes are among the few practical solid-state devices that can provide fundamental fre-
quency power above 100 GHz. IMPATT devices can also be used for frequency multipli-
cation and amplification.

Silicon IMPATT diodes can provide CW power ranging from 10 W at 10 GHz to
1 W at 94 GHz, with efficiencies typically below 10%. GaAs IMPATTs can provide CW
power ranging from 20 W at 10 GHz to 5 mW at 130 GHz. Pulsed operation generally
results in higher powers and higher efficiencies. Because of the low efficiency of these
devices, thermal considerations are a limiting factor for both CW and pulsed operation.
IMPATT oscillators can be mechanically or electrically tuned. A disadvantage of IMPATT
oscillators is that their AM noise level is generally higher than that of other sources.

Tunnel diodes: The tunnel diode, invented by L. Esaki in 1957, is a pn junction diode with
a doping profile that allows electron tunneling through a narrow energy band gap, leading
to negative resistance at high frequencies. Tunnel diodes can be used for oscillators as well
as amplifiers. Before high-frequency transistors were available, tunnel diodes provided the
only means of high-frequency amplification with a solid-state device. Such an amplifier
employs the diode in a one-port reflection circuit, where the negative RF resistance of the
device produces a reflection coefficient with a magnitude greater than unity, and therefore
amplification of an incident signal. Such amplifiers have been made obsolete by modern
RF and microwave transistors, but tunnel diodes are still used in some applications today.

BARITT diodes: A barrier injection transit time (BARITT) diode has a structure similar
to a junction transistor without a base contact. Like the IMPATT diode, it is a transit time
device. It generally has a lower power capability than the IMPATT diode, but the advantage
of lower AM noise. This makes it useful for local oscillator applications at frequencies up
to 94 GHz. BARITT diodes are also useful for detector and mixer applications.

Power Combining

In many applications RF power requirement exceeds the power capacity of a single solid-
state source; this is especially common at millimeter wave frequencies. Because of the
many advantages offered by solid-state sources compared to electron tubes, substantial
effort has been directed toward increasing output power through the use of various power
combining techniques. Thus, the outputs of two or more sources are combined, effectively
multiplying the output power of a single source by the number of individual sources being
used. It is important that the individual sources to be combined are coherent and in phase. In
principle, an unlimited amount of RF power can be generated in this manner; in practice,
however, factors such as high-order modes and combiner losses limit the multiplication
factor to about 10–20 dB.

Power combining can be done by combining at the device level or at the circuit level.
In addition, in some applications power can be combined spatially by using an array of
antennas, where each radiating element is fed with a separate source (the sources must have
phase coherence, perhaps by using injection-locked oscillators). At the device level, several
diode (or transistor) junctions are essentially connected in parallel over an electrically small
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region and used as a single device. This technique is limited to a relatively few device
junctions. At the circuit level, the power output from N devices can be combined with
an N -way combiner. The combining circuit may be an N -way Wilkinson-type network or
a similar type of planar combining network. Resonant cavities can also be used for this
purpose; cavity combiners often have the advantage of providing self-locking of individual
oscillator phases. These various power combining techniques all have their own advantages
and disadvantages in terms of efficiency, bandwidth, isolation between sources, and circuit
complexity.

11.2 BIPOLAR JUNCTION TRANSISTORS

Transistors are three-terminal semiconductor devices, and can be categorized as either
junction transistors or field effect transistors [3–6]. Junction transistors include bipolar
junction transistors (BJTs) that use a single semiconductor material (usually silicon), and
heterojunction bipolar transistors (HBTs) that use compound semiconductors. Both npn
and pnp configurations are possible, but most RF junction transistors are usually of the npn
type due to higher electron mobility at higher frequencies

Bipolar Junction Transistor

RF bipolar junction transistors (BJTs) are usually made using silicon (Si), and this tran-
sistor is one of the oldest and most popular active RF devices in use today because of its
low cost and good operating performance in terms of frequency range, power capacity, and
noise characteristics. Silicon junction transistors are useful for amplifiers up to the range
of 2–10 GHz, and in oscillators up to about 20 GHz. Bipolar transistors typically have
very low 1/ f -noise characteristics, making them well suited for oscillators with low-phase
noise.

Bipolar junction transistors are sometimes preferred over FETs at frequencies below
about 2–4 GHz because of higher gain and lower cost, and the possibility of biasing with a
single power supply. Bipolar transistors are subject to shot noise as well as thermal noise
effects, so their noise figure is not as good as that of FETs. Figure 11.17 shows the con-
struction of a typical silicon bipolar transistor having multiple fingers for the base and
emitter electrodes. The BJT is current driven, with the base current modulating the collec-
tor current. The upper frequency limit of the bipolar transistor is controlled primarily by
the base length, which is typically on the order of 0.1 µm.

A small-signal equivalent circuit model for an RF bipolar transistor is shown in Figure
11.18 for a common emitter configuration. This model, known as the hybrid-π model, is
popular because of its similarity to the equivalent circuit of a FET, and because of its utility

Base

Emitter

(b)

˜150   mµ

EB EB

C

B

p-base

n-type collector

˜0.1   mµ

(a)

pnp pn

FIGURE 11.17 (a) Cross section of an interdigitated microwave bipolar junction transistor;
(b) top view, showing base and emitter contacts.
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FIGURE 11.18 Simplified hybrid-π equivalent circuit for a microwave bipolar junction transistor
in the common emitter configuration.

in circuit analysis. This model does not include parasitic resistances and inductances due
to the base and emitter leads. More sophisticated equivalent circuits may be advantageous
for computer-aided design and modeling over wide frequency ranges. The Gummel–Poon
model [6], for example, is used extensively in computer modeling with the SPICE circuit
analysis software package, and can include parasitic effects.

In many cases the capacitor, Cc, between the base and collector in the hybrid-π model,
has a relatively small value and may be ignored. This has the effect of making S12 = 0,
implying that power only flows in one direction through the device (from port 1 to port 2);
such a device is called unilateral. This approximation is often used to simplify analysis.

The hybrid-π model is roughly based on the physics of the junction transistor, and can
be useful under circumstances where the element values of the model are fairly constant
over a range of operating bias conditions, load conditions, and frequency. Otherwise, the el-
ement values become frequency, bias, or load dependent, in which case the hybrid-π model
(or any other equivalent circuit model) becomes much less useful. In this case, it is simpler
to treat the transistor as a two-port network, characterized by two-port parameters. In prac-
tice, scattering parameters, measured under typical operating conditions, are usually used
for this purpose and are supplied by the device manufacturer. Table 11.4 shows scattering
parameters for a typical RF silicon junction transistor in a common emitter configuration.
Note that there are relatively large mismatches at the base (port 1) and the collector (port
2), and that the gain (given roughly by |S21|) drops quickly with an increase in frequency.
Also note that |S12| is relatively small (particularly at low frequencies), making the device
approximately unilateral.

The equivalent circuit of Figure 11.18 can be used to estimate the upper frequency
limit, fT , defined as the threshold frequency where the short-circuit current gain of the
transistor is unity. If we assume an input current Iin at the base, and ignore the series base
resistance, Rb (typically small), and the shunt resistance, Rπ (typically large), then the volt-
age across the capacitor Cπ is Vπ = Iin/jωCπ . The output short-circuit current at the col-
lector is Iout = gm Vπ , so the short-circuit current gain is

Gsc
I =

∣∣∣∣ Iout

Iin

∣∣∣∣ = gm

ωCπ

.

TABLE 11.4 Scattering Parameters for an NPN Silicon BJT (NEC NE 58219,
Vce = 5.0 V, Ic = 5.0 mA, common emitter)

Frequency (GHz) S11 S12 S21 S22

0.1 0.78� −33◦ 0.03� 71◦ 12.7� 155◦ 0.93� −17◦
0.5 0.46� −113◦ 0.08� 52◦ 6.3� 104◦ 0.53� −38◦
1.0 0.38� −158◦ 0.11� 54◦ 3.5� 80◦ 0.40� −43◦
2.0 0.40 � 157◦ 0.19� 56◦ 1.9� 52◦ 0.33� −63◦
4.0 0.52 � 117◦ 0.38� 45◦ 1.1� 14◦ 0.33� −127◦
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FIGURE 11.19 (a) DC characteristics of an npn BJT; (b) biasing and decoupling circuit for an
npn BJT.

The current gain is seen to decrease with frequency, and is unity at the threshold frequency,

fT = gm

2πCπ

. (11.23)

Figure 11.19a shows typical DC operating characteristics for a BJT. The biasing point
for the transistor depends on the application and type of device, with low collector currents
generally giving the best noise figure, and higher collector currents giving the best power
gain. Figure 11.19b shows a typical bias and decoupling circuit for a bipolar transistor in a
common emitter configuration.

Heterojunction Bipolar Transistor

The operation of a heterojunction bipolar transistor (HBT) is essentially the same as that
of a BJT, but an HBT has a base-emitter junction made from a compound semiconduc-
tor material such as GaAs, indium phosphide (InP), or silicon germanium (SiGe), often
in conjunction with thin layers of other materials (e.g., aluminum). This structure offers
much improved performance at high frequencies. Some HBTs can operate at frequencies
exceeding 100 GHz, and recent developments with HBTs using SiGe have demonstrated
that these devices are useful in low-cost circuits operating at frequencies of 60 GHz or
higher.

Since the HBT is similar in structure and operation to the BJT, the equivalent circuit
model of Figure 11.18 can be used for both transistor types. As with BJTs, equivalent
circuit models may have limited applicability when attempting to model HBTs over a range
of operating conditions, so scattering parameter data, measured for a particular bias point,
may be more useful. Table 11.5 gives the scattering parameters at several frequencies for
a popular microwave HBT. Observe that |S21| decreases much less rapidly with frequency
when compared with the BJT of Table 11.4. The device also is seen to be approximately
unilateral, as |S12| is relatively small.
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TABLE 11.5 Scattering Parameters for a SiGe HBT (Infineon BFP640F,
Vce = 2.0 V, Ic = 1.2 mA, common emitter)

Frequency (GHz) S11 S12 S21 S22

1.0 0.91� −44◦ 0.06� 68◦ 3.92� 149◦ 0.93� −17◦
2.0 0.75� −86◦ 0.10� 46◦ 3.39� 120◦ 0.79� −31◦
4.0 0.59 � −144◦ 0.11� 29◦ 2.18� 82◦ 0.64� −43◦
6.0 0.54 � 176◦ 0.11� 34◦ 1.64� 57◦ 0.58� −53◦

High levels of monolithic integration are easy and inexpensive with SiGe HBTs, so
this technology is proving to be very useful for low-cost millimeter wave circuits for both
defense and commercial applications.

11.3 FIELD EFFECT TRANSISTORS

In contrast to BJTs, field effect transistors (FETs) are monopolar, with only one carrier
type (holes or electrons) providing current flow through the device: n-channel FETs em-
ploy electrons, while p-channel devices use holes. In addition, while a BJT is a current-
controlled device, an FET is a voltage-controlled device, having a source-to-drain charac-
teristic that is similar to that of a voltage-dependent variable resistor.

Field effect transistors can take many forms, including the MESFET (metal semicon-
ductor FET), the MOSFET (metal oxide semiconductor FET), the HEMT (high electron
mobility transistor), and the PHEMT (pseudomorphic HEMT). FET transistor technology
has been under continuous development for more than 50 years—the first junction FETs
were developed in the 1950s, while the HEMT was proposed in the early 1980s. GaAs
MESFETs are among the most commonly used transistors for microwave and millimeter
wave applications, being usable at frequencies up to 60 GHz or more. Even higher op-
erating frequencies can be obtained with GaAs HEMTs. GaAs MESFETs and HEMTs
are especially useful for low-noise amplifiers since these transistors have lower noise fig-
ures than any other active devices. Recently developed gallium nitride (GaN) HEMTs are
very useful for high power RF and microwave amplifiers. CMOS FETs are increasingly
being used for RF integrated circuits, offering high levels of integration at low cost and
low power requirements, for commercial wireless applications. Table 11.6 summarizes the
performance characteristics of some of the most popular microwave transistors.

TABLE 11.6 Performance Characteristics of Microwave Transistors

Device BJT HBT CMOS MESFET HEMT HEMT

Semiconductor Si SiGe Si GaAs GaAs GaN

Frequency range (GHz) 10 30 20 60 100 10

Typical gain (dB) 10–15 10–15 10–20 5–20 10–20 10–15

Noise figure (dB) 2.0 0.6 1.0 1.0 0.5 1.6

(frequency, GHz) (2) (8) (4) (10) (12) (6)

Power capacity High Medium Low Medium Medium High

Cost Low Medium Low Medium High Medium

Single-polarity supply Yes Yes Yes No No No
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FIGURE 11.20 Cross section of an n-channel GaAs MESFET.

Metal Semiconductor Field Effect Transistor

One of the most important developments in microwave technology has been the GaAs
metal semiconductor field effect transistor (MESFET), as this device permitted the first
practical solid-state implementation of amplifiers, oscillators, and mixers at microwave
frequencies, leading to key applications in radar, GPS, remote sensing, and wireless com-
munications. GaAs MESFETs can be used at frequencies well into the millimeter wave
range, with high gain and low noise figure, often making them the device of choice for
hybrid and monolithic integrated circuits at frequencies above 10 GHz.

Figure 11.20 shows the cross section of a typical n-channel GaAs MESFET. The gate
junction is formed as a Schottky barrier. The desirable gain and noise features of this tran-
sistor are a result of the higher electron mobility of GaAs compared to silicon, and the
absence of shot noise. The device is biased with a drain-to-source voltage, Vds , and a gate-
to-source voltage, Vgs . In operation, electrons are drawn from the source to the drain by
the positive Vds supply voltage. An applied signal voltage on the gate then modulates these
majority electron carriers, producing voltage amplification. The maximum frequency of
operation is limited by the gate length; present FETs have gate lengths on the order of
0.2–0.6 µm, with corresponding upper frequency limits of 100 to 50 GHz.

A small-signal equivalent circuit for a microwave MESFET is shown in Figure 11.21
for a common-source configuration. The components and some typical values for this
model are listed below:

Ri (series gate resistance) = 7 �

Rds (drain-to-source resistance) = 400 �

Cgs (gate-to-source capacitance) = 0.3 pF
Cds (drain-to-source capacitance) = 0.12 pF
Cgd (gate-to-drain capacitance) = 0.01 pF
gm (transconductance) = 40 mS

This model does not include package parasitics, which typically introduce small series
resistances and inductances at the three terminals due to ohmic contacts and bonding leads.
The dependent current generator gm Vc depends on the voltage across the gate-to-source
capacitor Cgs , leading to a value of |S21| > 1 under normal operating conditions (where

Gate

Source

DrainCgd

Ri

–
+

Rds Cds

Cgs
gmVcVc

FIGURE 11.21 Small-signal equivalent circuit for a microwave FET in the common-source
configuration.
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TABLE 11.7 Scattering Parameters for an n-Channel GaAs MESFET (NEC NE76184A,
VDS = 3.0 V, ID = 10.0 mA, common source)

Frequency (GHz) S11 S12 S21 S22

1.0 0.97� −28◦ 0.04� 72◦ 3.82� 154◦ 0.70� −19◦
2.0 0.90� −55◦ 0.08� 54◦ 3.56� 129◦ 0.65� −37◦
4.0 0.72� −103◦ 0.12� 28◦ 2.91� 86◦ 0.53� −68◦
8.0 0.52� 179◦ 0.14� −1◦ 2.0� 20◦ 0.42� −129◦

12.0 0.49 � 103◦ 0.17� −19◦ 1.5� −38◦ 0.44� 170◦

port 1 is at the gate, and port 2 is at the drain). The reverse signal path, given by S12, is due
solely to the capacitance Cgd . As seen from the above data, this is typically a very small
capacitor, which can often be ignored in practice. In this case, S12 = 0, and the device is
unilateral. The scattering parameters for a typical GaAs MESFET are given in Table 11.7.

As we did for the BJT, we can use the equivalent circuit model of Figure 11.21 to
determine the upper frequency of operation for a MESFET. For a FET, the short-circuit
current gain, Gsc

I , is defined as the ratio of drain current to gate current when the output is
short circuited. For the unilateral case, where Cgd = 0, the short circuit current gain is

Gsc
I =

∣∣∣∣ Id

Ig

∣∣∣∣ =
∣∣∣∣gm Vc

Ig

∣∣∣∣ = gm

ωCgs
.

The upper frequency threshold, fT , where the short-circuit current gain is unity, is then
given by

fT = gm

2πCgs
, (11.24)

a result that is equivalent to (11.23) for a bipolar junction transistor.
For proper operation, the transistor must be biased at an appropriate operating point.

This depends on the application (low noise, high gain, high power), the class of the ampli-
fier (class A, class AB, class B), and the transistor. Figure 11.22a shows a typical family
of DC Ids versus Vds curves for a GaAs MESFET. For low-noise design, the drain cur-
rent is generally chosen to be about 15% of Idss (the saturated drain-to-source current).
High-power circuits generally use higher values of drain current. DC bias voltage must be
applied to both the gate and drain, without disturbing the RF signal paths. This can be done
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FIGURE 11.22 (a) DC characteristics of an n-channel GaAs MESFET; (b) biasing and decou-
pling circuitry.
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FIGURE 11.23 Cross section of an n-channel MOSFET.

with biasing and decoupling circuitry for a dual-polarity supply, as shown in Figure 11.22b.
The RF chokes provide a very low DC resistance for biasing, and a very high impedance
at RF frequencies to isolate the signal from the bias supply. Similarly, the input and output
decoupling capacitors block DC from the input and output lines while allowing passage of
RF signals. More sophisticated bias circuits can provide compensation for temperature and
device variations, and may work with single-polarity power supplies.

Metal Oxide Semiconductor Field Effect Transistor

The silicon metal oxide semiconductor field effect transistor (MOSFET) is the most com-
mon type of FET, being used extensively in analog and digital integrated circuits. Figure
11.23 shows a cross section of an n-channel MOSFET. It consists of a lightly doped p
substrate, and differs from a MESFET by having a thin insulating layer (SiO2) between the
gate contact and the channel region. Because the gate is insulated, it does not conduct DC
bias current.

MOSFETs can be used at frequencies into the UHF range, and can provide powers of
several hundred watts when devices are packaged in parallel. Laterally diffused MOSFETs
(LDMOS) have direct grounding of the source, and can operate at low microwave frequen-
cies with high powers. These devices are commonly used for high-power transmitters for
cellular base stations at 900 and 1900 MHz.

High-density integrated circuits typically use complementary MOS (CMOS), where
both n-channel and p-channel devices are used. This technology is very mature, and has
the advantages of low power requirements and low unit cost. Most RF and microwave
MOSFETs use n-channel silicon devices, although GaN devices are possible.

The small-signal equivalent circuit for a MOSFET is the same as that of the MESFET,
given in Figure 11.21. Scattering parameters are available for most nMOS devices intended
for high-frequency applications.

High Electron Mobility Transistor

The high electron mobility transistor (HEMT) is a heterojunction FET, meaning that it
does not use a single semiconductor material, but instead is constructed with several lay-
ers of compound semiconductor materials. These may include transitions between gal-
lium aluminum arsenide (GaAlAs), GaAs, gallium indium arsenide (GaInAs), and similar
compounds. These structures result in high carrier mobility—about twice that found in a
standard MESFET. GaAs HEMTs can operate at frequencies above 100 GHz.

Figure 11.24 shows the cross section of a HEMT device. It consists of semi-insulating
GaAs substrate, followed by an undoped GaAs layer, and then a very thin undoped GaAlAs
layer. This is topped with an n-doped GaAlAs layer. To reduce thermal and mechanical
stress the layers usually have matched crystal lattices. Several variations on this device are
possible, including the use of different compound semiconductors, and the pseudomorphic
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FIGURE 11.24 Cross section of an n-channel HEMT.

TABLE 11.8 Scattering Parameters for a GaN HEMT (Cree CGH21120, VD D = 328 V,
ID = 500 mA, common source)

Frequency (GHz) S11 S12 S21 S22

0.5 0.96 � 180◦ 0.007� −16◦ 3.67� 68◦ 0.72� −174◦
1.0 0.95 � 172◦ 0.008� −35◦ 2.03� 44◦ 0.78� −172◦
2.0 0.78 � 153◦ 0.014� −83◦ 2.09� −17◦ 0.91� −174◦
4.0 0.88� −51◦ 0.008� 79◦ 0.84� 88◦ 0.88� 171◦

HEMT, which uses a lattice mismatch between the layers. The relatively complicated struc-
ture of the HEMT requires sophisticated fabrication techniques, leading to a relatively high
cost. The HEMT is also referred to in the literature as a MODFET (modulation-doped
FET), a TEGFET (two-dimensional electron gas FET), and an SDFET (selectively doped
FET).

A relatively new type of HEMT uses GaN and aluminum gallium nitride (AlGaN) on a
silicon or SiC substrate. GaN HEMTs operate with drain voltages in the range of 20–40 V,
and can deliver powers up to 100 W at frequencies in the low microwave range, making
these devices popular for high-power transmitters.

The equivalent circuit model of Figure 11.21 can also be used for HEMTs, and the DC
bias characteristics of a HEMT are similar to those of the MESFET. Table 11.8 gives the
scattering parameters for a medium power GaN HEMT.

11.4 MICROWAVE INTEGRATED CIRCUITS

The trend of any maturing electronic technology is toward smaller size, lighter weight,
lower power requirements, lower cost, and increased complexity. Microwave technology
has been moving in this direction for the last 10–30 years with the development of mi-
crowave integrated circuits (MICs) [2]. This technology strives to replace bulky and expen-
sive waveguide and coaxial components with small and inexpensive planar components,
and is analogous to the digital integrated circuitry that has led to the rapid increase in
sophistication of computer systems. Microwave integrated circuitry can incorporate trans-
mission lines, discrete resistors, capacitors, and inductors, as well as active devices such
as diodes and transistors. MIC technology has advanced to the point where complete mi-
crowave subsystems, such as receiver front ends and radar transmit/receive modules, can
be integrated on a chip that is only a few square millimeters in size.

There are two distinct types of microwave integrated circuits. Hybrid MICs have one
layer of metallization for conductors and transmission lines, with discrete components (re-
sistors, capacitors, integrated circuit chips, transistors, diodes, etc.) bonded to the substrate.
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In a thin-film hybrid MIC, some of the simpler components are deposited on the sub-
strate. Hybrid MICs were first developed in the 1960s, and still provide a very flexible and
cost-effective means for circuit implementation. Monolithic microwave integrated circuits
(MMICs) are a more recent development, where the active and passive circuit elements
are grown on the substrate. The substrate is a semiconductor material, and several layers
of metal, dielectric, and resistive films are used. Below we will briefly describe these two
types of MICs in terms of the materials and fabrication processes that are required and the
relative merits of each type of circuitry.

Hybrid Microwave Integrated Circuits

Material selection is an important consideration for a hybrid integrated circuit; character-
istics such as electrical conductivity, dielectric constant, loss tangent, thermal transfer, me-
chanical strength, and manufacturing compatibility must be evaluated. Generally the sub-
strate material is of primary importance. For hybrid circuits, alumina, quartz, and Teflon
fiber are commonly used for substrates. Alumina is a rigid, ceramic-like material with a
dielectric constant of about 9–10. A high dielectric constant is often desirable for lower
frequency circuits because it results in a smaller circuit size. At higher frequencies, how-
ever, the substrate thickness must be decreased to prevent radiation loss and other spurious
effects; then the transmission lines (typically microstrip, slotline, or coplanar waveguide)
can become too narrow to be practical. Quartz has a lower dielectric constant (∼4), which,
with its rigidity, makes it useful for higher frequency (>20 GHz) circuits. Teflon and sim-
ilar types of soft plastic substrates have dielectric constants ranging from 2 to 10, and can
provide a large substrate area at a low cost as long as rigidity and good thermal transfer
are not required. Transmission line conductors for hybrid integrated circuits are typically
copper or gold.

Computer-aided design (CAD) tools are used extensively for MIC design, optimiza-
tion, layout, and mask generation. Commonly used software packages include CADENCE
(Cadence Design Systems), ADS (Agilent Technologies), Microwave Office (Applied Wave
Research), and DESIGNER (Ansoft). The mask itself may be made on Rubylith (a soft
Mylar film), usually at a magnified scale (2×, 5×, 10×, etc.) for high accuracy. Then
an actual-size mask is made on a thin sheet of glass or quartz. The metallized substrate is
coated with photoresist, covered with the mask, and exposed to a light source. The substrate
can then be etched to remove the unwanted areas of metal. Plated-through, or via, holes can
be made by evaporating a layer of metal inside a hole that has been drilled in the substrate.
Finally, the discrete components are soldered or wire bonded to the conductors. This may
be done manually, but today the process is usually automated using computer-controlled
pick-and-place machines. The fabricated MIC can then be tested. Often provision is made
for variations in component values and other circuit tolerances by providing tuning or trim
stubs that can be manually trimmed for each circuit. This increases circuit yield but also
increases cost since trimming involves labor at a highly skilled level. A photograph of a
hybrid MIC module is shown in Figure 11.25.

Monolithic Microwave Integrated Circuits

Progress in GaAs and related semiconductor material processing and device development
since the late 1970s has led to the feasibility of the MMIC, where all passive and active
components required for a given circuit can be grown or implanted in the substrate. Po-
tentially, an MMIC can be made at low cost because the labor involved with fabricating
hybrid MICs is reduced. In addition, a single wafer can contain a large number of circuits,
all of which can be processed and fabricated simultaneously.
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FIGURE 11.25 Photograph of one of the 25,344 hybrid integrated T/R modules used in
Raytheon’s Ground Based Radar system. This X-band module contains phase
shifters, amplifiers, switches, couplers, a ferrite circulator, and associated control
and bias circuitry.

Courtesy of Raytheon Company, Waltham, Mass.

The substrate of an MMIC must be a semiconductor material to accommodate the
fabrication of active devices; the type of devices and the frequency range dictate the type
of substrate material. The GaAs MESFET is a very versatile device, finding applications in
low-noise amplifiers, high-gain amplifiers, broadband amplifiers, mixers, oscillators, phase
shifters, and switches. Thus, GaAs is one of the most common substrates for MMICs, but
silicon, silicon-on-sapphire (SoS), silicon carbide (SiC), and InP are also used.

Transmission lines and other conductors are usually made with gold metallization.
To improve adhesion of the gold to the substrate, a thin layer of chromium or titanium
may be deposited first. These metals are relatively lossy, so the gold layer must be made
at least several skin depths thick to reduce attenuation. Capacitors and overlaying lines
require insulating dielectric films, such as SiO, SiO2, Si2N4, and Ta2O5. These materials
have high dielectric constants and low loss, and are compatible with integrated circuit
processing. Resistors require the deposition of lossy films; NiCr, Ta, Ti, and doped GaAs
are commonly used.

Designing an MMIC requires extensive use of CAD software for circuit design and
optimization, as well as for mask generation. Careful consideration must be given to the
circuit design to allow for component variations and tolerances, and the fact that circuit
trimming after fabrication will be difficult or impossible (and defeats the goal of low-cost
production). Thus, effects such as transmission line discontinuities, bias networks, spurious
coupling, and package resonances must be taken into account.

After the circuit design has been finalized, the masks can be generated. One or more
masks are generally required for each processing step. Processing begins by forming an
active layer in the semiconductor substrate for the necessary active devices; this can be
done by ion implantation or by epitaxial techniques. Then, active areas are isolated by
etching or additional implantation, leaving mesas for the active devices. Next, ohmic con-
tacts are made to the active device areas by alloying a gold or gold/germanium layer onto
the substrate. FET gates are then formed with a titanium/platinum/gold compound de-
posited between the source and drain areas. At this time, the active device processing has
been essentially completed, and intermediate tests may be made to evaluate the wafer.
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FIGURE 11.26 Layout of a monolithic microwave integrated circuit.

If it meets specifications, the next step is to deposit the first layer of metallization for con-
tacts, transmission lines, inductors, and other conducting areas. Then, resistors are formed
by depositing resistive films, and the dielectric films required for capacitors and overlays
are deposited. A second layer of metallization completes the formation of capacitors and
any remaining interconnections. The final processing steps involve the bottom, or back, of
the substrate. First it is lapped to the required thickness, and then via holes are formed by
etching and plating. Via holes provide ground connections to the circuitry on the top side
of the substrate, and a heat dissipation path from the active devices to the ground plane.
After processing has been completed, the individual circuits can be cut from the wafer and
tested. Figure 11.26 shows the structure of a typical MMIC, and Figure 11.27 shows a
photograph of an X-band monolithic integrated GaAs FET amplifier.

Monolithic microwave integrated circuits are not without some disadvantages when
compared with hybrid MICs or other types of circuitry. First, MMICs tend to waste large
areas of relatively expensive semiconductor substrate for components such as transmis-
sion lines and hybrids. In addition, the processing steps and required tolerances for an
MMIC are very critical, often resulting in low yields. These factors tend to make MMICs
expensive, especially when made in small quantities (less than several hundred). MMICs
generally require a more thorough design procedure to include effects such as component
tolerances and discontinuities, and debugging, tuning, or trimming after fabrication is dif-
ficult. Because their small size limits heat dissipation, MMICs cannot be used for circuits
requiring more than moderate power levels. In addition, high-Q resonators and filters are
difficult to implement in MMIC form because of the inherent resistive losses in MMIC
materials.

Besides the obvious features of small size and weight, MMICs have some unique ad-
vantages over other types of circuits. Since it is very easy to fabricate additional FETs
in an MMIC design, circuit flexibility and performance can often be enhanced with little
additional cost. In addition, monolithically integrated devices have much less parasitic re-
actance than discrete packaged devices, so MMIC circuits can often be made with broader
bandwidth than hybrid circuits. MMICs generally give very reproducible results, especially
for circuits from the same wafer.



c11ActiveRFAndMicrowaveDevices Pozar August 26, 2011 17:16

11.4 Microwave Integrated Circuits 551

FIGURE 11.27 Photograph of a typical GaAs X-band MMIC incorporating a pair of two-stage
amplifiers.

Courtesy of M. Adlerstein, Raytheon Company, Waltham, Mass.

POINT OF INTEREST: RF MEMS Switch Technology

An exciting new field is the use of micromachining techniques to form suspended or mov-
able structures in a silicon substrate that can be used for microwave resonators, antennas, and
switches. A micromachined RF switch having a mechanically movable contact is an example of
a micro-electro-mechanical system (MEMS), where the unique properties of silicon can be used
to construct extremely small devices that employ miniaturized mechanical components such as
levers, gears, motors, and actuators.

RF MEMS switches are among the most promising applications of this new technology.
A MEMS switch can be made in several different configurations, depending on the signal path
(capacitive or direct contact), the actuation mechanism (electrostatic, magnetic, or thermal), the
pull-back mechanism (spring or active), and the type of structure (cantilever, bridge, lever arm,
or rotary). One popular configuration for microwave switches is shown below, where the capaci-
tance of the signal path is switched between a low-capacitance state and a high-capacitance state
by moving a flexible conductive membrane through the application of a DC control voltage.

Low-capacitance
(open circuit)

High-capacitance
(closed circuit)

Dielectric
layer

MEMS switches have very good loss characteristics, very low power consumption, and
wide bandwidth, and (unlike diode or transistor switches) they exhibit virtually no intermodula-
tion distortion or other nonlinear effects. The table below compares some of the key parameters
of MEMS switches with those of popular solid-state switch technology over the 10–20 GHz
band.
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Switch Insertion Switching Switching

Technology Loss (dB) Isolation (dB) Power DC Voltage (V) Speed

PIN diode 0.1–0.8 25–45 1–5 mW 1–10 1–5 ns

FET 0.5–1.0 20–50 1–5 mW 1–10 2–10 ns

MEMS 0.1–1.0 25–60 1 µW 10–20 >30 µs

Probably the most significant drawbacks of RF MEMS switches are the relatively slow
switching time and potential lifetime limitations; both of these are a result of the mechanical
nature of the device. One of the most important applications foreseen for MEMS switches is for
low-cost switched-line-length phase shifters, which are required in large numbers for phased
array antennas.

11.5 MICROWAVE TUBES

Although solid-state sources of RF and microwave power are preferred due to size, weight,
power, and cost considerations, electron tubes provided the first practical sources of high-
frequency power, and for several decades they were the only sources available at these
frequencies. Today, solid-state diode or transistor sources are used in the majority of RF or
microwave applications, and progress in solid-state technology is steadily improving the
power versus frequency performance of solid-state sources. There are, however, still some
systems that are best served by electron tubes. These are generally microwave or millimeter
wave applications that require very high powers and/or very high frequencies.

Radar systems generally require a relatively high-power source, sometimes as high as
1–10 kW, for the transmitter (in addition to one or more low-power sources for local oscil-
lator and down conversion functions in the receiver). Radar transmitters are often operated
in a pulsed mode, and peak powers that are much greater than the continuous power rating
of a given source can then be attained. Electronic warfare systems use sources with powers
in the range of 100 W to 1 kW, with the additional requirement for tunability over a wide
bandwidth. In addition, the microwave oven, that most common of all microwave systems,
requires a single-frequency, high-power source in the range of 700 W. Usually the most
practical way to meet the power requirements of these systems is with electron tubes.

As frequency increases into the millimeter and submillimeter ranges it becomes in-
creasingly difficult to produce even moderate power with solid-state devices, so tubes
become more useful at these frequencies. Generally, the division is between solid-state
sources for low to moderate powers at low to moderate frequencies, and tubes for high
powers and/or high frequencies. Figure 11.28 illustrates the power versus frequency per-
formance for solid state and tube sources. Solid-state sources have the advantages of small
size, ruggedness, low cost, and compatibility with microwave integrated circuits, and so
they are usually preferred whenever they can meet the necessary power and frequency
requirements. However, very high power applications are dominated by microwave tubes,
and even though the power and frequency performance of solid-state sources is steadily im-
proving, it appears that the need for microwave tubes will not be eliminated any time soon.

The first practical microwave source was the magnetron tube, developed in England in
the 1930s, which later provided the impetus for the development of microwave radar during
World War II. Since then, a large variety of microwave tubes have been designed for the
generation and amplification of microwave power. Although solid-state devices have been
progressively filling roles that once could only be met by microwave tubes, tubes are still
essential for the generation of very high powers (10 kW and higher), and at the higher
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FIGURE 11.28 Power versus frequency performance of solid-state sources and microwave tubes.

millimeter wave frequencies (100 GHz and higher). Here we will provide a brief overview
of some of the most common microwave tubes and their basic characteristics. Several of
these tubes are not actually sources by themselves but are high-power amplifiers. Such
tubes can used in conjunction with lower power sources (such as solid-state sources), and
the combination is referred to as a microwave power module (MPM).

There is a wide variety of microwave tube geometries, as well as a wide variety of
principles on which tube operation is based, but all tubes have several common features.
First, all tubes involve the interaction of an electron beam with an electromagnetic field,
inside a glass or metal vacuum envelope. Thus, a way must be provided for RF energy to
be coupled outside the envelope; this is usually accomplished with transparent windows or
coaxial coupling probes or loops. Next, a hot cathode is used to generate a stream of elec-
trons by thermionic emission. Cathodes are usually fabricated from a barium oxide–coated
metal surface, or an impregnated tungsten surface. The electron stream is then focused into
a narrow beam by a focusing anode with a high voltage bias. Alternatively, a solenoidal
electromagnet can be used to focus the electron beam. For pulsed operation, a beam modu-
lating electrode is used between the cathode and anode. A positive bias voltage will attract
electrons from the cathode and turn the beam on, while a negative bias will turn the beam
off. After the electron beam leaves the region of the tube where the desired interaction with
the RF field takes place, a collector element is used to provide a complete current path back
to the cathode power supply. The assembly of the cathode, focusing anode, and modulat-
ing electrode is called the electron gun. Because of the requirement for a high vacuum and
the need to dissipate large amounts of heat, microwave tubes are generally very large and
bulky. In addition, tubes often require large, heavy biasing magnets and high voltage power
supplies. Factors to consider when choosing a particular type of tube include power output,
frequency, bandwidth, tuning range, and noise.

Microwave tubes can be grouped into two categories, depending on the type of electron
beam–field interaction. In linear-beam, or “O,” type tubes the electron beam traverses the
length of the tube and is parallel to the electric field. In the crossed-field, or “m,” type tube
the focusing field is perpendicular to the accelerating electric field. Microwave tubes can
also be classified as either oscillators or amplifiers.

The klystron is a linear-beam tube that can be used as either an amplifier or an oscilla-
tor. In a klystron amplifier, the electron beam passes through two or more resonant cavities.
The first cavity accepts an RF input and modulates the electron beam by bunching it into
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high-density and low-density regions. The bunched beam then travels to the next cavity,
which accentuates the bunching effect. At the final cavity the RF power is extracted, at a
highly amplified level. Two cavities can produce up to about 20 dB of gain, while using
four cavities (about the practical limit) can give 80–90 dB of gain. Klystrons are capable of
peak powers in the megawatt range, with RF output/DC input power conversion efficien-
cies of 30%–50%.

The reflex klystron is a single-cavity klystron tube that operates as an oscillator by
using a reflector electrode after the cavity to provide positive feedback via the electron
beam. It can be tuned by mechanically adjusting the cavity size. The major disadvantage
of klystrons is their narrow bandwidth, which is a result of the high-Q cavities required for
electron bunching. Klystrons have very low AM and FM noise levels.

The narrow bandwidth of the klystron amplifier is overcome in the traveling wave tube
(TWT). The TWT is a linear-beam amplifier that uses an electron gun and a focusing mag-
net to accelerate a beam of electrons through an interaction region. Usually the interaction
region consists of a slow-wave helix structure, with an RF input at the electron gun end
and an RF output at the collector end. The helical structure slows down the propagating
RF wave so that it travels at the same velocity as the wave and beam travel along the inter-
action region, and amplification is achieved. Then the amplified signal is coupled from the
end of the helix. The TWT has the highest bandwidth of any amplifier tube, ranging from
30% to 120%; this makes it very useful for electronic warfare systems, which require high
power over broad bandwidths. It has a power rating of several hundred watts (typically),
but this can be increased to several kilowatts by using an interaction region consisting of
a set of coupled cavities; the bandwidth will be reduced, however. The efficiency of the
TWT is relatively small, typically ranging from 20% to 40%.

A variation of the TWT is the backward wave oscillator (BWO). The difference be-
tween a TWT and the BWO is that in a BWO, the RF wave travels along the helix from
the collector toward the electron gun. Thus the signal for amplification is provided by the
bunched electron beam itself, and oscillation occurs. A very useful feature of the BWO
is that its output frequency can be tuned by varying the DC voltage between the cathode
and the helix; tuning ranges of an octave or more can be achieved. The power output of
the BWO, however, is relatively low (typically less than 1 W), so these tubes are generally
being replaced with solid-state sources.

Another type of linear-beam oscillator tube is the extended interaction oscillator (EIO).
The EIO is very similar to a klystron, and uses an interaction region consisting of several
cavities coupled together, with positive feedback to support oscillation. It has a narrow tun-
ing bandwidth and a moderate efficiency, but it can supply high powers at frequencies up
to several hundred GHz. Only the gyratron can deliver more power.

Crossed-field tubes include the magnetron, the crossed-field amplifier, and the gyra-
tron. As previously mentioned, the magnetron was the first high-power microwave source.
It consists of a cylindrical cathode surrounded by a cylindrical anode with several cavity
resonators along the inside of its periphery. A magnetic bias field is applied parallel to the
cathode–anode axis. In operation, a cloud of electrons is formed that rotates around the
cathode in the interaction region. As with linear-beam devices, electron bunching occurs,
and energy is transferred from the electron beam to the RF wave. RF power can be coupled
out of the tube with a probe, loop, or aperture window.

Magnetrons are capable of very high power outputs, on the order of several kilowatts,
and with efficiencies of 80% or more. A significant disadvantage, however, is that they are
very noisy and cannot maintain frequency or phase coherence when operated in a pulsed
mode. These factors are important for high-performance pulsed radars, where processing
techniques operate on a sequence of returned pulses. (Modern radars of this type today
generally use a stable low-noise solid-state source, followed by a TWT for power amplifi-
cation.) The main application of magnetrons today is primarily for microwave cooking.
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FIGURE 11.29 Power versus frequency performance of microwave oscillator tubes.

The crossed-field amplifier (CFA) has a geometry similar to that of a TWT, but em-
ploys a crossed-field interaction region that is similar to that of the magnetron. The RF
input is applied to a slow-wave structure in the interaction region of the CFA, but the elec-
tron beam is deflected by a negatively biased electrode to force the beam perpendicular to
the slow-wave structure. In addition, a magnetic bias field is applied perpendicular to this
electric field, and perpendicular to the electron beam direction. The magnetic field exerts
a force on the electron beam that counteracts the field from the sole. In the absence of
an RF input, the electric and magnetic fields are adjusted so that their effects on the elec-
tron beam cancel, leaving the beam to travel parallel to the slow-wave structure. Applying
an RF field causes velocity modulation of the beam, and bunching occurs. The beam is
also periodically deflected toward the slow-wave circuit, producing an amplified signal.
Crossed-field amplifiers have very good efficiencies—up to 80%, but the gain is limited
to 10–15 dB. In addition, the CFA has a noisier output than either a klystron amplifier or
TWT. Its bandwidth can be up to 40%.

Another crossed-field tube is the gyratron, which can be used as an amplifier or an
oscillator. This tube consists of an electron gun with input and output cavities along the
axis of the electron beam, similar to a klystron amplifier. However, the gyratron also has a
solenoidal bias magnet that provides an axial magnetic field. This field forces the electrons
to travel in tight spirals down the length of the tube. The electron velocity is high enough
that relativistic effects are important. Bunching occurs, and energy from the transverse
component of the electron velocity is coupled to the RF field.

A significant feature of the gyratron is that the frequency of operation is determined
by the bias field strength and the electron velocity, as opposed to the dimensions of the tube
itself. This makes the gyratron especially useful for millimeter wave frequencies; it offers
the highest output power (10–100 kW) of any tube in this frequency range. It also has a
high efficiency for tubes in the millimeter wave range. The gyratron is a relatively new
type of tube, but it is rapidly replacing tubes such as reflex klystrons and EIOs as sources
of millimeter wave power.

Figures 11.29 and 11.30 summarize the power versus frequency performance of mi-
crowave tube oscillators and amplifiers.
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PROBLEMS

11.1 The Skyworks SMS1546 Schottky diode has the following parameters: C j = 0.38 pF, Rs = 4 �,
Is = 0.3 µA, and L p = C p � 0. Compute the open-circuit voltage sensitivity at 10 GHz for I0 =
0, 20, and 50 µA. Assume α = 1/(25 mV), and neglect the effect of bias current on the junction
capacitance.

11.2 A single-pole, single-throw switch uses an Infineon BA592 PIN diode in a shunt configuration.
The operating frequency is 4 GHz, Z0 = 50 �, and the diode parameters are C j = 1.4 pF, Rr =
0.5 �, R f = 0.36 �, and Li = 0.5 nH. Find the electrical length of an open-circuited shunt stub
placed across the diode to minimize the insertion loss for the ON state of the switch. Calculate the
resulting insertion losses for the ON and OFF states.

11.3 A single-pole, single-throw switch is constructed using two identical PIN diodes in the arrangement
shown below. In the ON state, the series diode is forward biased and the shunt diode is reversed
biased; and vice versa for the OFF state. If f = 6 GHz, Z0 = 50 �, C j = 0.1 pF, Rr = 0.5 �, R f =
0.3 �, and Li = 0.4 nH, determine the insertion losses for the ON and OFF states.
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Z0 Z0

11.4 Consider the loaded-line phase shifter shown below. If Z0 = 50 �, find the necessary stub lengths
for a differential phase shift of 45◦, and calculate the resulting insertion loss for both states of the
phase shifter. Assume all lines are lossless and that the diodes can be approximated as ideal shorts or
opens.

Z0Z0Z0 �

�/4

3Z0

�

3Z0

11.5 Use the equivalent circuit of Figure 11.17 to derive the expression for the short-circuit current gain
of a bipolar transistor. Assume a unilateral device, where Cc = 0.

11.6 Show that the scattering parameters for an FET can be expressed in terms of the parameters of the
equivalent circuit of Figure 11.21 as given below. Assume the device is unilateral.

S11 = Z11 − Z0

Z11 + Z0
, S12 = 0, S21 = 2 j Z0gm/ωCgs

(Z11 + Z0) (Z22 + Z0)
, S22 = Z22 − Z0

Z22 + Z0
,

where Z11 = Ri − j/ωCgs and Z22 = (1/Rds + jωCds)
−1.

11.7 Given the scattering parameters for an FET, derive expressions for the parameters of the equivalent
circuit model of Figure 11.21, assuming a unilateral device. Use these results to find the equivalent
circuit parameters for the HEMT device whose scattering parameters are given in Table 11.7, at a
frequency of 2.0 GHz. Ignore S12.
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Microwave Amplifier Design

Signal amplification is one of the most basic and prevalent circuit functions in modern
RF and microwave systems. Early microwave amplifiers relied on tubes, such as klystrons and
traveling-wave tubes, or solid-state reflection amplifiers based on the negative resistance char-
acteristics of tunnel or varactor diodes. However, due to the dramatic improvements and inno-
vations in solid-state technology that have occurred since the 1970s, most RF and microwave
amplifiers today use transistor devices such as Si BJTs, GaAs or SiGe HBTs, Si MOSFETs,
GaAs MESFETs, or GaAs or GaN HEMTs [1–5]. Microwave transistor amplifiers are rugged,
low-cost, and reliable and can be easily integrated in both hybrid and monolithic integrated
circuitry. Transistor amplifiers can be used at frequencies in excess of 100 GHz in a wide range
of applications requiring small size, low noise figure, broad bandwidth, and medium to high
power capacity. Although microwave tubes are still useful for very high power and/or very high
frequency applications, continuing improvement in the performance of microwave transistors
is steadily reducing the need for microwave tubes.

Our discussion of transistor amplifier design will primarily rely on the terminal character-
istics of the transistor, as represented by either scattering parameters or one of the equivalent
circuit models introduced in the previous chapter. We will begin with some general definitions
of two-port power gains that are useful for amplifier design and then discuss the subject of sta-
bility. These results will then be applied to single-stage transistor amplifiers, including designs
for maximum gain, specified gain, and low noise figure. Broadband balanced and distributed
amplifiers are discussed in Section 12.4. We conclude with a brief treatment of transistor power
amplifiers.

12.1 TWO-PORT POWER GAINS

In this section we develop several expressions for the gain and stability of a general two-
port amplifier circuit in terms of the scattering parameters of the transistor. These results

558
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FIGURE 12.1 A two-port network with arbitrary source and load impedances.

will be used in the following sections for amplifier design and in Chapter 13 for oscillator
design.

Definition of Two-Port Power Gains

Consider an arbitrary two-port network, characterized by its scattering matrix [S], con-
nected to source and load impedances ZS and ZL , respectively, as shown in Figure 12.1.
We will derive expressions for three types of power gain in terms of the scattering param-
eters of the two-port network and the reflection coefficients, �S and �L , of the source and
load.

� Power gain = G = PL/Pin is the ratio of power dissipated in the load ZL to the
power delivered to the input of the two-port network. This gain is independent of
ZS , although the characteristics of some active devices may be dependent on ZS .

� Available power gain = G A = Pavn/Pavs is the ratio of the power available from the
two-port network to the power available from the source. This assumes conjugate
matching of both the source and the load, and depends on ZS , but not ZL .

� Transducer power gain = GT = PL/Pavs is the ratio of the power delivered to the
load to the power available from the source. This depends on both ZS and ZL .

These definitions differ primarily in the way the source and load are matched to the two-
port device; if the input and output are both conjugately matched to the two-port device,
then the gain is maximized and G = G A = GT .

With reference to Figure 12.1, the reflection coefficient seen looking toward the load is

�L = ZL − Z0

ZL + Z0
, (12.1a)

while the reflection coefficient seen looking toward the source is

�S = ZS − Z0

ZS + Z0
, (12.1b)

where Z0 is the characteristic impedance reference for the scattering parameters of the
two-port network.

In general, the input impedance of the terminated two-port network will be mis-
matched with a reflection coefficient given by �in, which can be determined using a signal
flow graph (see Example 4.7) or by the following analysis. From the definition of the scat-
tering parameters, and the fact that V +

2 = �L V −
2 , we have

V −
1 = S11V +

1 + S12V +
2 = S11V +

1 + S12�L V −
2 , (12.2a)

V −
2 = S21V +

1 + S22V +
2 = S21V +

1 + S22�L V −
2 . (12.2b)
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Eliminating V −
2 from (12.2a) and solving for V −

1 /V +
1 gives

�in = V −
1

V +
1

= S11 + S12S21�L

1 − S22�L
= Z in − Z0

Z in + Z0
, (12.3a)

where Z in is the impedance seen looking into port 1 of the terminated network. Similarly,
the reflection coefficient seen looking into port 2 of the network when port 1 is terminated
by ZS is

�out = V −
2

V +
2

= S22 + S12S21�S

1 − S11�S
. (12.3b)

By voltage division,

V1 = VS
Z in

ZS + Z in
= V +

1 + V −
1 = V +

1 (1 + �in).

Using

Zin = Z0
1 + �in

1 − �in

from (12.3a) and solving for V +
1 in terms of VS gives

V +
1 = VS

2

(1 − �S)

(1 − �S�in)
. (12.4)

If peak values are assumed for all voltages, the average power delivered to the network is

Pin = 1

2Z0

∣∣V +
1

∣∣2 (
1 − |�in|2

) = |VS|2
8Z0

|1 − �S|2
|1 − �S�in|2

(
1 − |�in|2

)
, (12.5)

where (12.4) was used. The power delivered to the load is

PL =
∣∣V −

2

∣∣2

2Z0

(
1 − |�L |2). (12.6)

Solving for V −
2 from (12.2b), substituting into (12.6), and using (12.4) gives

PL =
∣∣V +

1

∣∣2

2Z0

|S21|2
(
1 − |�L |2)

|1 − S22�L |2 = |VS|2
8Z0

|S21|2
(
1 − |�L |2) |1 − �S|2

|1 − S22�L |2 |1 − �S�in|2
. (12.7)

The power gain can then be expressed as

G = PL

Pin
= |S21|2

(
1 − |�L |2)(

1 − |�in|2
) |1 − S22�L |2 . (12.8)

The power available from the source, Pavs, is the maximum power that can be delivered
to the network. This occurs when the input impedance of the terminated network is conju-
gately matched to the source impedance, as discussed in Section 2.6. Thus, from (12.5),

Pavs = Pin

∣∣∣∣
�in=�∗

S

= |VS|2
8Z0

|1 − �S|2(
1 − |�S|2

) . (12.9)
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Similarly, the power available from the network, Pavn, is the maximum power that can be
delivered to the load. Thus, from (12.7),

Pavn = PL

∣∣∣∣∣
�L=�∗

out

= |VS|2
8Z0

|S21|2
(
1 − |�out|2

) |1 − �S|2∣∣1 − S22�
∗
out

∣∣2 |1 − �S�in|2

∣∣∣∣∣
�L=�∗

out

. (12.10)

In (12.10), �in must be evaluated for �L = �∗
out. From (12.3a), it can be shown that

|1 − �S�in|2
∣∣∣∣∣
�L=�∗

out

= |1 − S11�S|2
(
1 − |�out|2

)2

∣∣1 − S22�
∗
out

∣∣2
,

which reduces (12.10) to

Pavn = |VS|2
8Z0

|S21|2 |1 − �S|2
|1 − S11�S|2

(
1 − |�out|2

) . (12.11)

Observe that Pavs and Pavn have been expressed in terms of the source voltage, VS , which is
independent of the input or load impedances. There would be confusion if these quantities
were expressed in terms of V +

1 since V +
1 is different for each of the calculations of PL ,

Pavs, and Pavn.
Using (12.11) and (12.9), we obtain the available power gain as

G A = Pavn

Pavs
= |S21|2

(
1 − |�S|2

)
|1 − S11�S|2

(
1 − |�out|2

) . (12.12)

From (12.7) and (12.9), the transducer power gain is

GT = PL

Pavs
= |S21|2

(
1 − |�S|2

) (
1 − |�L |2)

|1 − �S�in|2 |1 − S22�L |2 . (12.13)

A special case of the transducer power gain occurs when both the input and output are
matched for zero reflection (in contrast to conjugate matching). Then �L = �S = 0, and
(12.13) reduces to

GT = |S21|2. (12.14)

Another special case is the unilateral transducer power gain, GTU , where S12 = 0 (or is
negligibly small). This nonreciprocal characteristic is approximately true for many transis-
tors devices. From (12.3a), �in = S11 when S12 = 0, so (12.13) gives the unilateral trans-
ducer power gain as

GTU = |S21|2
(
1 − |�S|2

)(
1 − |�L |2)

|1 − S11�S|2 |1 − S22�L |2 . (12.15)

EXAMPLE 12.1 COMPARISON OF POWER GAIN DEFINITIONS

A silicon bipolar junction transistor has the following scattering parameters at
1.0 GHz, with a 50 � reference impedance:

S11 = 0.38� −158◦
S12 = 0.11� 54◦
S21 = 3.50� 80◦
S22 = 0.40� −43◦
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The source impedance is ZS = 25 � and the load impedance is ZL = 40 �.
Compute the power gain, the available power gain, and the transducer power gain.

Solution
From (12.1a) and (12.1b) the reflection coefficients at the source and load are

�S = ZS − Z0

ZS + Z0
= 25 − 50

25 + 50
= −0.333,

�L = ZL − Z0

ZL + Z0
= 40 − 50

40 + 50
= −0.111.

From (12.3a) and (12.3b) the reflection coefficients seen looking at the input and
output of the terminated network are

�in = S11 + S12S21�L

1 − S22�L
= 0.365� − 152◦,

�out = S22 + S12S21�S

1 − S11�S
= 0.545� − 43◦.

Then from (12.8) the power gain is

G = |S21|2
(
1 − |�L |2)(

1 − |�in|2
)|1 − S22�L |2 = 13.1.

From (12.12) the available power gain is

G A = |S21|2
(
1 − |�S|2

)
|1 − S11�S|2

(
1 − |�out|2

) = 19.8.

From (12.13) the transducer power gain is

GT = |S21|2
(
1 − |�S|2

)(
1 − |�L |2)

|1 − �S�in|2 |1 − S22�L |2 = 12.6.
■

Further Discussion of Two-Port Power Gains

A single-stage microwave transistor amplifier can be modeled by the circuit of Figure 12.2,
where matching networks are used on both sides of the transistor to transform the input and
output impedance Z0 to the source and load impedances ZS and ZL . The most useful gain
definition for amplifier design is the transducer power gain of (12.13), which accounts
for both source and load mismatch. From (12.13) we can define separate effective gain
factors for the input (source) matching network, the transistor itself, and the output (load)

ΓinΓs Γout ΓL

Input
matching

circuit
Gs

Transistor
[S]
G0

Output
matching

circuit
GL

Z0

Z0

FIGURE 12.2 The general transistor amplifier circuit.
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matching network as follows:

GS = 1 − |�S|2
|1 − �in�S|2

, (12.16a)

G0 = |S21|2, (12.16b)

GL = 1 − |�L |2
|1 − S22�L |2 . (12.16c)

The overall transducer gain is then GT = GSG0GL . The effective gains GS and GL of
the matching networks may be greater than unity. This is because the unmatched transistor
would incur power loss due to reflections at the input and output of the transistor, and the
matching sections can reduce these losses.

If the transistor is unilateral, so that S12 = 0 (or is small enough to be ignored),
then (12.3) reduces to �in = S11, �out = S22, and the unilateral transducer gain reduces
to GTU = GSG0GL , where

GS = 1 − |�S|2
|1 − S11�S|2

, (12.17a)

G0 = |S21|2, (12.17b)

GL = 1 − |�L |2
|1 − S22�L |2 . (12.17c)

The above results have been derived using the scattering parameters of the transistor,
but it is possible to obtain alternative expressions for gain in terms of the equivalent circuit
parameters of the transistor. As an example, consider the evaluation of the unilateral trans-
ducer gain for a conjugately matched FET using the equivalent circuit of Figure 11.21 (with
Cgd = 0). To conjugately match the transistor we choose source and load impedances as
shown in Figure 12.3. Setting the series source inductive reactance X = 1/ωCgs will make
Z in = Z∗

S , and setting the shunt load inductive susceptance B = −ωCds will make Zout =
Z∗

L ; this effectively eliminates the reactive elements from the transistor equivalent circuit.
Then by voltage division Vc = VS/2 jωRi Cgs , and the gain can be easily evaluated as

GTU = PL

Pavs
=

1

8
|gm Vc|2 Rds

1

8
|VS|2 /Ri

= g2
m Rds

4ω2 Ri C2
gs

= Rds

4Ri

(
fT

f

)2

. (12.18)

where the last step has been written in terms of the cutoff frequency, fT , from (11.24). This
shows the interesting result that the gain of a conjugately matched FET amplifier drops off
as 1/ f 2, or 6 dB per octave. A photograph of a low-noise MMIC amplifier is shown in
Figure 12.4.

+

–

Source

DrainGate

Z in

Ri

Ri

Cgs gmVcVc

Rds Rds
jBCds

Vs

jX

Z out

FIGURE 12.3 Unilateral FET equivalent circuit and source and load terminations for the calcula-
tion of unilateral transducer power gain.
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FIGURE 12.4 Photograph of a low-noise MMIC amplifier that is switchable between 2.4, 3.6,
and 5.8 GHz. The amplifier uses pHEMTs in a cascode configuration with source
inductance, followed by a common source stage with feedback. Gain is approxi-
mately 13 dB in each band. Chip dimensions are 1.85 mm by 1 mm.

Courtesy of J. Shatzman and R. W. Jackson of the University of Massachusetts at Amherst
and H. Yu of TriQuint, Lowell, Mass.

12.2 STABILITY

We now discuss the necessary conditions for a transistor amplifier to be stable. In the
circuit of Figure 12.2, oscillation is possible if either the input or output port impedance
has a negative real part; this would then imply that |�in| > 1 or |�out| > 1. Because �in
and �out depend on the source and load matching networks, the stability of the amplifier
depends on �S and �L as presented by the matching networks. Thus, we define two types
of stability:

� Unconditional stability: The network is unconditionally stable if |�in| < 1 and
|�out| < 1 for all passive source and load impedances (i.e., |�S| < 1 and |�L | < 1).

� Conditional stability: The network is conditionally stable if |�in| < 1 and |�out| < 1
only for a certain range of passive source and load impedances. This case is also
referred to as potentially unstable.

Note that the stability condition of an amplifier circuit is usually frequency depen-
dent since the input and output matching networks generally depend on frequency. It is
therefore possible for an amplifier to be stable at its design frequency but unstable at other
frequencies. Careful amplifier design should consider this possibility. We must also point
out that the following discussion of stability is limited to two-port amplifier circuits of the
type shown in Figure 12.2, and where the scattering parameters of the active device can
be measured without oscillations over the frequency band of interest. The rigorous gen-
eral treatment of stability requires that the network scattering parameters (or other network
parameters) have no poles in the right-half complex frequency plane, in addition to the
conditions that |�in| < 1 and |�out| < 1 [6]. This can be a difficult assessment in practice,
but for the special case considered here, where the scattering parameters are known to be
pole free (as confirmed by measurability), the following stability conditions are adequate.

Stability Circles

Applying the above requirements for unconditional stability to (12.3) gives the following
conditions that must be satisfied by �S and �L if the amplifier is to be unconditionally
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stable:

|�in| =
∣∣∣∣S11 + S12S21�L

1 − S22�L

∣∣∣∣ < 1, (12.19a)

|�out| =
∣∣∣∣S22 + S12S21�S

1 − S11�S

∣∣∣∣ < 1. (12.19b)

If the device is unilateral (S12 = 0), these conditions reduce to the simple results that
|S11| < 1 and |S22| < 1 are sufficient for unconditional stability. Otherwise, the inequali-
ties of (12.19) define a range of values for �S and �L where the amplifier will be stable.
Finding this range for �S and �L can be facilitated by using the Smith chart and plotting
the input and output stability circles. The stability circles are defined as the loci in the
�L (or �S) plane for which |�in| = 1 (or |�out| = 1). The stability circles then define the
boundaries between stable and potentially unstable regions of �S and �L . �S and �L must
lie on the Smith chart (|�S| < 1, |�L | < 1 for passive matching networks).

We can derive the equation for the output stability circle as follows. First use (12.19a)
to express the condition that |�in| = 1 as

∣∣∣∣S11 + S12S21�L

1 − S22�L

∣∣∣∣ = 1, (12.20)

or

|S11(1 − S22�L) + S12S21�L | = |1 − S22�L |.
Now define � as the determinant of the scattering matrix:

� = S11S22 − S12S21. (12.21)

Then we can write the above result as

|S11 − ��L | = |1 − S22�L |. (12.22)

Now square both sides and simplify to obtain

|S11|2 + |�|2|�L |2 − (
��L S∗

11 + �∗�∗
L S11

) = 1 + |S22|2|�L |2 − (
S∗

22�
∗
L + S22�L

)
(|S22|2 − |�|2)�L�∗

L − (
S22 − �S∗

11

)
�L − (

S∗
22 − �∗S11

)
�∗

L = |S11|2 − 1

�L�∗
L −

(
S22 − �S∗

11

)
�L + (

S∗
22 − �∗S11

)
�∗

L

|S22|2 − |�|2 = |S11|2 − 1

|S22|2 − |�|2 . (12.23)

Next, complete the square by adding
∣∣S22 − �S∗

11

∣∣2
/
(|S22|2 − |�|2)2

to both sides:

∣∣∣∣∣�L −
(
S22 − �S∗

11

)∗

|S22|2 − |�|2
∣∣∣∣∣
2

=
∣∣S2

11

∣∣ − 1

|S22|2 − |�|2 +
∣∣S22 − �S∗

11

∣∣2

(|S22|2 − |�|2)2
,

or ∣∣∣∣∣�L −
(
S22 − �S∗

11

)∗

|S22|2 − |�|2
∣∣∣∣∣ =

∣∣∣∣ S12S21

|S22|2 − |�|2
∣∣∣∣. (12.24)

In the complex � plane, an equation of the form |� − C | = R represents a circle having a
center at C (a complex number) and a radius R (a real number). Thus, (12.24) defines the
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output stability circle with a center CL and radius RL , where

CL =
(
S22 − �S∗

11

)∗

|S22|2 − |�|2 (center), (12.25a)

RL =
∣∣∣∣ S12S21

|S22|2 − |�|2
∣∣∣∣ (radius). (12.25b)

Similar results can be obtained for the input stability circle by interchanging S11 and S22:

CS =
(
S11 − �S∗

22

)∗

|S11|2 − |�|2 (center), (12.26a)

RS =
∣∣∣∣ S12S21

|S11|2 − |�|2
∣∣∣∣ (radius). (12.26b)

Given the scattering parameters of the transistor, we can plot the input and output
stability circles to define where |�in| = 1 and |�out| = 1. On one side of the input stability
circle we will have |�out| < 1, while on the other side we will have |�out| > 1. Similarly,
we will have |�in| < 1 on one side of the output stability circle, and |�in| > 1 on the other
side. We need to determine which areas on the Smith chart represent the stable region, for
which |�in| < 1 and |�out| < 1.

Consider the output stability circles plotted in the �L plane for |S11| < 1 and |S11| >

1, as shown in Figure 12.5. If we set ZL = Z0, then �L = 0, and (12.19a) shows that
|�in| = |S11|. Now if |S11| < 1, then |�in| < 1, so �L = 0 must be in a stable region. This
means that the center of the Smith chart (�L = 0) is in the stable region, so all of the Smith
chart (|�L | < 1) that is exterior to the stability circle defines the stable range for �L . This
region is shaded in Figure 12.5a. Alternatively, if we set ZL = Z0 but have |S11| > 1, then
|�in| > 1 for �L = 0, and the center of the Smith chart must be in an unstable region. In
this case the stable region is the inside region of the stability circle that intersects the Smith
chart, as illustrated in Figure 12.5b. Similar results apply to the input stability circle.

If the device is unconditionally stable, the stability circles must be completely outside
(or totally enclose) the Smith chart. We can state this result mathematically as

||CL | − RL | > 1 for |S11| < 1, (12.27a)

||CS| − RS| > 1 for |S22| < 1. (12.27b)

CL
RL

CL
RL

|Γin| < 1
(stable)

|Γin| < 1
(stable)

(a) (b)

FIGURE 12.5 Output stability circles for a conditionally stable device. (a) |S11| < 1.

(b) |S11| > 1.
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If |S11| > 1 or |S22| > 1, the amplifier cannot be unconditionally stable because we can
always have a source or load impedance of Z0 leading to �S = 0 or �L = 0, thus causing
|�in| > 1 or |�out| > 1. If the device is only conditionally stable, operating points for �S

and �L must be chosen in stable regions, and it is good practice to check stability at several
frequencies over the range where the device operates. Also note that the scattering param-
eters of a transistor depend on the bias conditions, and so stability will also depend on bias
conditions. If it is possible to accept a design with less than maximum gain, a transistor
can usually be made to be unconditionally stable by using resistive loading.

Tests for Unconditional Stability

The stability circles discussed above can be used to determine regions for �S and �L where
the amplifier circuit will be conditionally stable, but simpler tests can be used to determine
unconditional stability. One of these is the K − � test, where it can be shown that a device
will be unconditionally stable if Rollet’s condition, defined as

K = 1 − |S11|2 − |S22|2 + |�|2
2|S12S21| > 1, (12.28)

along with the auxiliary condition that

|�| = |S11S22 − S12S21| < 1, (12.29)

are simultaneously satisfied. These two conditions are necessary and sufficient for uncon-
ditional stability, and are easily evaluated. If the device scattering parameters do not satisfy
the K − � test, the device is not unconditionally stable, and stability circles must be used
to determine if there are values of �S and �L for which the device will be conditionally
stable. Also recall that we must have |S11| < 1 and |S22| < 1 if the device is to be uncon-
ditionally stable.

While the K − � test of (12.28)–(12.29) is a mathematically rigorous condition for
unconditional stability, it cannot be used to compare the relative stability of two or more
devices because it involves constraints on two separate parameters. Recently, however,
a new criterion has been proposed [7] that combines the scattering parameters in a test
involving only a single parameter, µ, defined as

µ = 1 − |S11|2∣∣S22 − �S∗
11

∣∣ + |S12S21| > 1. (12.30)

Thus, if µ > 1, the device is unconditionally stable. In addition, it can be said that larger
values of µ imply greater stability.

We can derive the µ-test of (12.30) by starting with the expression from (12.3b) for
�out:

�out = S22 + S12S21�S

1 − S11�S
= S22 − ��S

1 − S11�S
, (12.31)

where � is the determinant of the scattering matrix defined in (12.21). Unconditional sta-
bility implies that |�out| < 1 for any passive source termination, �S . The reflection coeffi-
cient for a passive source impedance must lie within the unit circle on a Smith chart, and the
outer boundary of this circle can be written as �S = e jφ . The expression given in (12.31)
maps this circle into another circle in the �out plane. We can show this by substituting
�S = e jφ into (12.31) and solving for e jφ :

e jφ = S22 − �out

� − S11�out
.
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Taking the magnitude of both sides gives∣∣∣∣ S22 − �out

� − S11�out

∣∣∣∣ = 1.

Squaring both sides and expanding gives

|�out|2
(
1 − |S11|2

) + �out
(
�∗S11 − S∗

22

) + �∗
out

(
�S∗

11 − S22
) = |�|2 − |S22|2.

Now divide by 1 − |S11|2 to obtain

|�out|2 +
(
�∗S11 − S∗

22

)
�out + (

�S∗
11 − S22

)
�∗

out

1 − |S11|2 = |�|2 − |S22|2
1 − |S11|2 .

Complete the square by adding

∣∣�∗S11 − S∗
22

∣∣2

(
1 − |S11|2

)2
to both sides:

∣∣∣∣�out + �S∗
11 − S22

1 − |S11|2
∣∣∣∣
2

= |�|2 − |S22|2
1 − |S11|2 +

∣∣�∗S11 − S∗
22

∣∣2

(
1 − |S11|2

)2
= |S12S21|2(

1 − |S11|2
)2

. (12.32)

This equation is of the form |�out − C | = R, representing a circle with center C and radius
R in the �out plane. Thus the center and radius of the mapped |�S| = 1 circle are given by

C = S22 − �S∗
11

1 − |S11|2 , (12.33a)

R = |S12S21|
1 − |S11|2 . (12.33b)

If points within this circular region are to satisfy |�out| < 1, then we must have that

|C | + R < 1. (12.34)

Substituting (12.33) into (12.34) gives∣∣S22 − �S∗
11

∣∣ + |S12S21| < 1 − |S11|2,
which after rearranging yields the µ-test of (12.30):

1 − |S11|2∣∣S22 − �S∗
11

∣∣ + |S12S21| > 1.

The K − � test of (12.28)–(12.29) can be derived from a similar starting point, or
more simply from the µ-test of (12.30). Rearranging (12.30) and squaring gives

∣∣S22 − �S∗
11

∣∣2
<

(
1 − |S11|2 − |S12S21|

)2
. (12.35)

It can be verified by direct expansion that
∣∣S22 − �S∗

11

∣∣2 = |S12S21|2 + (
1 − |S11|2

)(|S22|2 − |�|2),
so (12.35) expands to

|S12S21|2 + (
1 − |S11|2

)(|S22|2−|�|2)<
(
1−|S11|2

)(
1−|S11|2−2|S12S21|

) + |S12S21|2.
Simplifying gives

|S22|2 − |�|2 < 1 − |S11|2 − 2|S12S21|,
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which yields Rollet’s condition of (12.28) after rearranging:

1 − |S11|2 − |S22|2 + |�|2
2|S12S21| = K > 1.

In addition to (12.28), the K − � test also requires the auxiliary condition of (12.29) to
guarantee unconditional stability. Although we derived Rollet’s condition from the neces-
sary and sufficient result of the µ-test, the squaring step used in (12.35) introduces an ambi-
guity in the sign of the right-hand side, thus requiring the additional condition. This can be
derived by requiring that the right-hand side of (12.35) be positive before squaring. Thus,

|S12S21| < 1 − |S11|2.
Because similar conditions can be derived for the input side of the circuit, we can inter-
change S11 and S22 to obtain the analogous condition that

|S12S21| < 1 − |S22|2.
Adding these two inequalities gives

2|S12S21| < 2 − |S11|2 − |S22|2.
From the triangle inequality we know that

|�| = |S11S22 − S12S21| ≤ |S11S22| + |S12S21|,
so we have that

|�| < |S11||S22| + 1 − 1

2
|S11|2 − 1

2
|S22|2 < 1 − 1

2

(|S11|2 − |S22|2
)

< 1,

which is identical to (12.29).

EXAMPLE 12.2 TRANSISTOR STABILITY

The Triquint T1G6000528 GaN HEMT has the following scattering parameters
at 1.9 GHz (Z0 = 50 �):

S11 = 0.869� −159◦,
S12 = 0.031� −9◦,
S21 = 4.250� 61◦,
S22 = 0.507� −117◦.

Determine the stability of this transistor by using the K − � test and the µ-test,
and plot the stability circles on a Smith chart.

Solution
From (12.28) and (12.29) we compute K and |�| as

|�| = |S11S22 − S12S21| = 0.336,

K = 1 − |S11|2 − |S22|2 + |�|2
2|S12S21| = 0.383.

Thus we have |�| < 1 but not K > 1, so the unconditional stability criteria of
(12.28)–(12.29) are not satisfied, and the device is potentially unstable. The sta-
bility of this device can also be evaluated using the µ-test, for which (12.30) gives
µ = 0.678, again indicating potential instability.
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The centers and radii of the stability circles are given by (12.25) and (12.26):

CL =
(
S22 − �S∗

11

)∗

|S22|2 − |�|2 = 1.59� 132◦,

RL = |S12S21|
|S22|2 − |�|2 = 0.915,

CS =
(
S11 − �S∗

22

)∗

|S11|2 − |�|2 = 1.09� 162◦,

RS = |S12S21|
|S11|2 − |�|2 = 0.205.

These data can be used to plot the input and output stability circles, as shown
in Figure 12.6. Since |S11| < 1 and |S22| < 1, the central part of the Smith chart
represents the stable operating region for �S and �L . The unstable regions are
shaded. ■
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12.3 SINGLE-STAGE TRANSISTOR AMPLIFIER DESIGN

Design for Maximum Gain (Conjugate Matching)

After the stability of the transistor has been determined and the stable regions for �S and
�L have been located on the Smith chart, the input and output matching sections can be
designed. Since G0 of (12.16b) is fixed for a given transistor, the overall transducer gain
of the amplifier will be controlled by the gains, GS and GL , of the matching sections.
Maximum gain will be realized when these sections provide a conjugate match between
the amplifier source or load impedance and the transistor. Because most transistors exhibit
a significant impedance mismatch (large |S11| and |S22|), the resulting frequency response
may be narrowband. In the following section we will discuss how to design for less than
maximum gain, with a corresponding improvement in bandwidth. Broadband amplifier
design will be discussed in Section 12.4.

With reference to Figure 12.2 and our discussion in Section 2.6 on conjugate imped-
ance matching, we know that maximum power transfer from the input matching network
to the transistor will occur when

�in = �∗
S, (12.36a)

and that maximum power transfer from the transistor to the output matching network will
occur when

�out = �∗
L . (12.36b)

With the assumption of lossless matching sections, these conditions will maximize the
overall transducer gain. From (12.13), this maximum gain will be given by

GTmax = 1

1 − |�S|2 |S21|2 1 − |�L |2
|1 − S22�L |2 . (12.37)

In addition, with conjugate matching and lossless matching sections, the input and output
ports of the amplifier will be matched to Z0.

In the general case with a bilateral (S12 �= 0) transistor, �in is affected by �out and vice
versa, so the input and output sections must be matched simultaneously. Using (12.36) in
(12.3) gives the necessary equations:

�∗
S = S11 + S12S21�L

1 − S22�L
, (12.38a)

�∗
L = S22 + S12S21�S

1 − S11�S
. (12.38b)

We can solve for �S by first rewriting these equations as follows:

�S = S∗
11 + S∗

12S∗
21

1/�∗
L − S∗

22
,

�∗
L = S22 − ��S

1 − S11�S
,

where � = S11S22 − S12S21. Substituting the expression for �∗
L into the expression for �S

and expanding gives

�S
(
1 − |S22|2

) + �2
S

(
�S∗

22 − S11
) = �S

(
�S∗

11S∗
22 − |S11|2 − �S∗

12S∗
21

)
+ S∗

11

(
1 − |S22|2

) + S∗
12S∗

21S22.
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Using the result that �
(
S∗

11S∗
22 − S∗

12S∗
21

) = |�|2 allows this to be rewritten as a quadratic
equation for �S :

(
S11 − �S∗

22

)
�2

S + (|�|2 − |S11|2 + |S22|2 − 1
)
�S + (

S∗
11 − �∗S22

) = 0. (12.39)

The solution is

�S =
B1 ±

√
B2

1 − 4|C1|2
2C1

. (12.40a)

Similarly, the solution for �L can be written as

�L =
B2 ±

√
B2

2 − 4|C2|2
2C2

. (12.40b)

The variables B1, C1, B2, C2 are defined as

B1 = 1 + |S11|2 − |S22|2 − |�|2, (12.41a)

B2 = 1 + |S22|2 − |S11|2 − |�|2, (12.41b)

C1 = S11 − �S∗
22, (12.41c)

C2 = S22 − �S∗
11. (12.41d)

Solutions to (12.40) are only possible if the quantity within the square root is positive, and
it can be shown that this is equivalent to requiring K > 1. Thus, unconditionally stable
devices can always be conjugately matched for maximum gain, and potentially unstable
devices can be conjugately matched if K > 1 and |�| < 1. The results are much simpler
for the unilateral case. When S12 = 0, (12.38) shows that �S = S∗

11 and �L = S∗
22, and

then maximum transducer gain of (12.37) reduces to

GT Umax = 1

1 − |S11|2 |S21|2 1

1 − |S22|2 . (12.42)

The maximum transducer power gain given by (12.37) occurs when the source and load are
conjugately matched to the transistor, as given by the conditions of (12.36). If the transistor
is unconditionally stable, so that K > 1, the maximum transducer power gain of (12.37)
can be simply rewritten as follows:

GTmax = |S21|
|S12|

(
K −

√
K 2 − 1

)
. (12.43)

This result can be obtained by substituting (12.40) and (12.41) for �S and �L into (12.37)
and simplifying. The maximum transducer power gain is also sometimes referred to as the
matched gain. The maximum gain does not provide a meaningful result if the device is only
conditionally stable since simultaneous conjugate matching of the source and load is not
possible if K < 1 (see Problem 12.8). In this case a useful figure of merit is the maximum
stable gain, defined as the maximum transducer power gain of (12.43) with K = 1. Thus,

Gmsg = |S21|
|S12| . (12.44)

The maximum stable gain is easy to compute and offers a convenient way to compare the
gain of various devices under stable operating conditions.
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EXAMPLE 12.3 CONJUGATELY MATCHED AMPLIFIER DESIGN

Design an amplifier for maximum gain at 4 GHz using single-stub matching sec-
tions. Calculate and plot the input return loss and the gain from 3 to 5 GHz. The
transistor is a GaAs MESFET with the following scattering parameters (Z0 =
50 �):

f (GHz) S11 S12 S21 S22

3.0 0.80 � −89◦ 0.03� 56◦ 2.86� 99◦ 0.76� −41◦
4.0 0.72 � −116◦ 0.03� 57◦ 2.60� 76◦ 0.73� −54◦
5.0 0.66 � −142◦ 0.03� 62◦ 2.39� 54◦ 0.72� −68◦

Solution
In practice, scattering parameters are usually provided by the manufacturer over
a wide frequency range, and it is prudent to check stability over the entire range.
Here we have limited the data to three frequencies to illustrate the point with-
out undue computational burden. Using (12.28) and (12.29) to calculate K and
� from the scattering parameters at each frequency in the above table gives the
following results:

f (GHz) K �

3.0 0.77 0.592

4.0 1.19 0.487

5.0 1.53 0.418

We see that K > 1 and |�| < 1 at 4 and 5 GHz, so the transistor is unconditionally
stable at these frequencies, but it is only conditionally stable at 3 GHz. We can
proceed with the design at 4 GHz, but should check stability at 3 GHz after we
find the matching networks (which determine �S and �L).

For maximum gain, we should design the matching sections for a conjugate
match to the transistor. Thus, �S = �∗

in and �L = �∗
out, and �S, �L can be deter-

mined from (12.40):

�S =
B1 ±

√
B2

1 − 4|C1|2
2C1

= 0.872� 123◦,

�L =
B2 ±

√
B2

2 − 4|C2|2
2C2

= 0.876� 61◦.

The effective gain factors of (12.16) can be calculated as

GS = 1

1 − |�S|2 = 4.17 = 6.20 dB,

G0 = |S21|2 = 6.76 = 8.30 dB,

GL = 1 − |�L |2
|1 − S22�L |2 = 1.67 = 2.22 dB.
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Then the overall transducer gain is

GTmax = 6.20 + 8.30 + 2.22 = 16.7 dB.

The matching networks can easily be determined using the Smith chart. For
the input matching section, first plot �S , as shown in Figure 12.7a. The impedance,
ZS , represented by this reflection coefficient is the impedance seen looking into
the matching section toward the source impedance, Z0. Thus, the matching sec-
tion must transform Z0 to the impedance ZS . There are several ways of doing
this, but we will use an open-circuited shunt stub followed by a length of line. We
convert to the normalized admittance ys , and work backward (toward the load on
the Smith chart) to find that a line of length 0.120λ will bring us to the 1 + jb cir-
cle. Then we see that the required stub admittance is + j3.5, for an open-circuited
stub length of 0.206λ. A similar procedure gives a line length of 0.206λ and a
stub length of 0.206λ for the output matching circuit.

The final amplifier circuit is shown in Figure 12.7b. This circuit only shows
the RF components; the amplifier will also require bias circuitry. The return loss
and gain were calculated using a CAD package, interpolating the necessary
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FIGURE 12.7 Circuit design and frequency response for the transistor amplifier of Example 12.3.
(a) Smith chart for the design of the input matching network.



c12MicrowaveAmplifier Pozar September 16, 2011 14:56

12.3 Single-Stage Transistor Amplifier Design 575

3.0 3.5 4.0 4.5 5.0
–20

–10

0

10

20

50 Ω
0.120 �

0.206 �

0.206 �

0.206 �

50 Ω
50 Ω

50 Ω

50
 Ω

50
 Ω

GT 

–RL

G
T
, –

R
L
 (

dB
)

Frequency (GHz)

(c)

(b)

FIGURE 12.7 Continued. (b) RF circuit. (c) Frequency response.

scattering parameters from the data given above. The results are plotted in Figure
12.7c, and show the expected gain of 16.7 dB at 4 GHz, with a very good return
loss. The bandwidth where the gain drops by 1 dB is about 2.5%.

With regard to the potential instability at 3 GHz, we leave it to the reader
to show that the designed matching sections present source and load impedances
that lie within the stable regions of the appropriate stability circles. Note that
the matching sections are frequency dependent, so the impedances and reflec-
tion coefficients are different at 3 GHz than their design values at 4 GHz. The
fact that CAD simulation did not show any indication of instability over the fre-
quency range of 3–5 GHz is evidence that the circuit is stable over this frequency
range. ■

Constant-Gain Circles and Design for Specifie Gain

In many cases it is preferable to design for less than the maximum obtainable gain, to
improve bandwidth or to obtain a specific value of amplifier gain. This can be done by
designing the input and output matching sections to have less than maximum gains; in
other words, mismatches are purposely introduced to reduce the overall gain. The de-
sign procedure is facilitated by plotting constant-gain circles on the Smith chart to rep-
resent loci of �S and �L that give fixed values of gain (GS and GL ). To simplify our
discussion, we will only treat the case of a unilateral device; the more general case of a
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bilateral device must sometimes be considered in practice, and is discussed in detail in
references [1–2].

For many transistors |S12| is small enough to be ignored, and the device can be as-
sumed to be unilateral. This greatly simplifies the design procedure. The error in the trans-
ducer gain caused by approximating |S12| as zero is given by the ratio GT/GTU . It can be
shown that this ratio is bounded by

1

(1 + U )2
<

GT

GTU
<

1

(1 − U )2
, (12.45)

where U is defined as the unilateral figure of merit,

U = |S12||S21||S11||S22|(
1 − |S11|2

) (
1 − |S22|2

) . (12.46)

Usually an error of a few tenths of a dB or less justifies the unilateral assumption.
The expression for GS and GL for the unilateral case are given by (12.17a) and

(12.17c):

GS = 1 − |�S|2
|1 − S11�S|2 ,

GL = 1 − |�L |2
|1 − S22�L |2 .

These gains are maximized when �S = S∗
11 and �L = S∗

22, resulting in the maximum val-
ues given by

GSmax = 1

1 − |S11|2 , (12.47a)

GLmax = 1

1 − |S22|2 . (12.47b)

Define normalized gain factors gS and gL as

gS = GS

GSmax

= 1 − |�S|2
|1 − S11�S|2

(
1 − |S11|2

)
, (12.48a)

gL = GL

GLmax

= 1 − |�L |2
|1 − S22�L |2

(
1 − |S22|2

)
. (12.48b)

Then we have that 0 ≤ gS ≤ 1 and 0 ≤ gL ≤ 1.
For fixed values of gS and gL , (12.48) represents circles in the �S or �L plane. To

show this, consider (12.48a), which can be expanded to give

gS|1 − S11�S|2 = (
1 − |�S|2

)(
1 − |S11|2

)
,

(
gS|S11|2 + 1 − |S11|2

)|�S|2 − gS
(
S11�S + S∗

11�
∗
S

) = 1 − |S11|2 − gS,

�S�
∗
S − gS

(
S11�S + S∗

11�
∗
S

)
1 − (1 − gS)|S11|2 = 1 − |S11|2 − gS

1 − (1 − gS)|S11|2 . (12.49)
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Now add
(
g2

S|S11|2
)
/
[
1 − (1 − gS)|S11|2

]2
to both sides to complete the square:

∣∣∣∣�S − gS S∗
11

1 − (1 − gS)|S11|2
∣∣∣∣
2

=
(
1 − |S11|2 − gS

) [
1 − (1 − gS)|S11|2

] + g2
S|S11|2[

1 − (1 − gS)|S11|2
]2

.

Simplifying gives
∣∣∣∣�S − gS S∗

11

1 − (1 − gS)|S11|2
∣∣∣∣ =

√
1 − gS

(
1 − |S11|2

)
1 − (1 − gS)|S11|2 , (12.50)

which is the equation of a circle with its center and radius given by

CS = gS S∗
11

1 − (1 − gS)|S11|2 , (12.51a)

RS =
√

1 − gS
(
1 − |S11|2

)
1 − (1 − gS)|S11|2 . (12.51b)

The results for the constant gain circles of the output section can be shown to be

CL = gL S∗
22

1 − (1 − gL)|S22|2 , (12.52a)

RL =
√

1 − gL
(
1 − |S22|2

)
1 − (1 − gL)|S22|2 . (12.52b)

The centers of each family of circles lie along straight lines given by the angle of S∗
11 or S∗

22.
Note that when gS (or gL ) = 1 (maximum gain), the radius RS (or RL) = 0, and the center
reduces to S∗

11 (or S∗
22), as expected. In addition, it can be shown that the 0 dB gain circles

(GS = 1 or GL = 1) will always pass through the center of the Smith chart. These results
can be used to plot a family of circles of constant gain for the input and output sections.
Then �S and �L can be chosen along these circles to provide the desired gains. The choices
for �S and �L are not unique, but it makes sense to choose points close to the center of
the Smith chart to minimize mismatch, and thus maximize bandwidth. Alternatively, as
we will see in the next section, the input network mismatch can be chosen to provide a
low-noise design.

EXAMPLE 12.4 AMPLIFIER DESIGN FOR SPECIFIED GAIN

Design an amplifier to have a gain of 11 dB at 4.0 GHz. Plot constant-gain circles
for GS = 2 and 3 dB, and GL = 0 and 1 dB. Calculate and plot the input return
loss and overall amplifier gain from 3 to 5 GHz. The transistor has the following
scattering parameters (Z0 = 50 �):

f (GHz) S11 S12 S21 S22

3 0.80 � −90◦ 0 2.8� 100◦ 0.66� −50◦
4 0.75 � −120◦ 0 2.5� 80◦ 0.60� −70◦
5 0.71 � −140◦ 0 2.3� 60◦ 0.58� −85◦

Solution
Since S12 = 0 and |S11| < 1 and |S22| < 1, the transistor is unilateral and uncon-
ditionally stable at each frequency in the above table. From (12.47) we calculate
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the maximum matching section gains as

GSmax = 1

1 − |S11|2 = 2.29 = 3.6 dB,

GLmax = 1

1 − |S22|2 = 1.56 = 1.9 dB.

The gain of the mismatched transistor is

G0 = |S21|2 = 6.25 = 8.0 dB,

so the maximum unilateral transducer gain is

GT Umax = 3.6 + 1.9 + 8.0 = 13.5 dB.

We therefore have 2.5 dB more available gain than is required by the specifica-
tions.

Next, use (12.48), (12.51), and (12.52) to calculate the following data for the
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FIGURE 12.8 Circuit design and frequency response for the transistor amplifier of Example 12.4.
(a) Constant-gain circles.
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FIGURE 12.8 Continued. (b) RF circuit. (c) Transducer gain and return loss.

constant-gain circles:

GS = 3 dB gS = 0.875 CS = 0.706� 120◦ RS = 0.166
GS = 2 dB gS = 0.691 CS = 0.627� 120◦ RS = 0.294
GL = 1 dB gL = 0.806 CL = 0.520� 70◦ RL = 0.303
GL = 0 dB gL = 0.640 CL = 0.440� 70◦ RL = 0.440

The constant-gain circles are shown in Figure 12.8a. We choose GS = 2 dB and
GL = 1 dB, for an overall amplifier gain of 11 dB. Then we select �S and �L

along these circles as shown, to minimize the distance from the center of the
chart (this places �S and �L along the radial lines at 120◦ and 70◦, respectively).
Thus, �S = 0.33� 120◦ and �L = 0.22� 70◦, and the matching networks can be
designed using shunt stubs as in Example 12.3.

The final amplifier circuit is shown in Figure 12.8b. The response was cal-
culated using CAD software, with interpolation of the given scattering parameter
data. The results are shown in Figure 12.8c, where it is seen the desired gain
of 11 dB is achieved at 4.0 GHz. The bandwidth over which the gain varies by
±1 dB or less is about 25%, which is considerably better than the bandwidth of
the maximum gain design in Example 12.3. The return loss, however, is not very
good, being only about 5 dB at the design frequency. This is due to the deliberate
mismatch introduced into the matching sections to achieve the specified gain. ■



c12MicrowaveAmplifier Pozar September 16, 2011 14:56

580 Chapter 12: Microwave Amplifier Design

Low-Noise Amplifie Design

Besides stability and gain, another important design consideration for a microwave am-
plifier is its noise figure. In receiver applications especially it is often required to have a
preamplifier with as low a noise figure as possible since, as we saw in Chapter 10, the first
stage of a receiver front end has the dominant effect on the noise performance of the over-
all system. Generally it is not possible to obtain both minimum noise figure and maximum
gain for an amplifier, so some sort of compromise must be made. This can be done by
using constant-gain circles and circles of constant noise figure to select a usable trade-off
between noise figure and gain. Here we will derive the equations for constant–noise figure
circles and show how they are used in transistor amplifier design.

As shown in references [1] and [2], the noise figure of a two-port amplifier can be
expressed as

F = Fmin + RN

GS
|YS − Yopt|2, (12.53)

where the following definitions apply:

YS = GS + j BS = source admittance presented to transistor.
Yopt = optimum source admittance that results in minimum noise figure.
Fmin = minimum noise figure of transistor, attained when YS = Yopt.

RN = equivalent noise resistance of transistor.
GS = real part of source admittance.

Instead of the admittance YS and Yopt, we can use the reflection coefficients �S and �opt,
where

YS = 1

Z0

1 − �S

1 + �S
, (12.54a)

Yopt = 1

Z0

1 − �opt

1 + �opt
. (12.54b)

�S is the source reflection coefficient defined in Figure 12.1. The quantities Fmin, �opt,
and RN are characteristics of the particular transistor being used, and are called the noise
parameters of the device; they may be given by the manufacturer or measured.

Using (12.54), we can express the quantity |YS − Yopt|2 in terms of �S and �opt:

|YS − Yopt|2 = 4

Z2
0

|�S − �opt|2
|1 + �S|2|1 + �opt|2 . (12.55)

In addition,

GS = Re{YS} = 1

2Z0

(
1 − �S

1 + �S
+ 1 − �∗

S

1 + �∗
S

)
= 1

Z0

1 − |�S|2
|1 + �S|2 . (12.56)

Using these results in (12.53) gives the noise figure as

F = Fmin + 4RN

Z0

|�S − �opt|2(
1 − |�S|2

)|1 + �opt|2 . (12.57)

For a fixed noise figure F we can show that this result defines a circle in the �S plane.
First define the noise figure parameter, N , as

N = |�S − �opt|2
1 − |�S|2 = F − Fmin

4RN /Z0
|1 + �opt|2, (12.58)
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which is a constant for a given noise figure and set of noise parameters. Then rewrite
(12.58) as

(�S − �opt)
(
�∗

S − �∗
opt

) = N
(
1 − |�S|2

)
,

�S�
∗
S − (

�S�
∗
opt + �∗

S�opt
) + �opt�

∗
opt = N − N |�S|2,

�S�
∗
S −

(
�S�

∗
opt + �∗

S�opt
)

N + 1
= N − |�opt|2

N + 1
.

Add |�opt|2/(N + 1)2 to both sides to complete the square to obtain

∣∣∣∣�S − �opt

N + 1

∣∣∣∣ =
√

N
(
N + 1 − |�opt|2

)
(N + 1)

. (12.59)

This result defines circles of constant noise figure with centers at

CF = �opt

N + 1
, (12.60a)

and radii of

RF =
√

N
(
N + 1 − |�opt|2

)
N + 1

. (12.60b)

EXAMPLE 12.5 LOW-NOISE AMPLIFIER DESIGN

A GaAs MESFET is biased for minimum noise figure, with the following scat-
tering parameters and noise parameters at 4 GHz (Z0 = 50 �): S11 = 0.6� −60◦,
S12 = 0.05� 26◦, S21 = 1.9� 81◦, S22 = 0.5� −60◦, Fmin = 1.6 dB, �opt =
0.62� 100◦, and RN = 20 �. For design purposes, assume the device is unilat-
eral, and calculate the maximum error in GT resulting from this assumption. Then
design an amplifier having a 2.0 dB noise figure with the maximum gain that is
compatible with this noise figure.

Solution
We first calculate that K = 2.78 and � = 0.37, so the device is unconditionally
stable even without the approximation of a unilateral device. Next, compute the
unilateral figure of merit from (12.46):

U = |S12S21S11S22|(
1 − |S11|2

)(
1 − |S22|2

) = 0.059.

From (12.45) the ratio GT/GTU is bounded as

1

(1 + U )2
<

GT

GTU
<

1

(1 − U )2
,

or

0.891 <
GT

GTU
< 1.130.

In dB, this is

−0.50 < GT − GTU < 0.53 dB,
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where GT and GTU are now in dB. Thus, we should expect less than about
±0.5 dB error in gain.

Now use (12.58) and (12.60) to compute the center and radius of the 2 dB
noise figure circle:

N = F − Fmin

4RN /Z0
|1 + �opt|2 = 1.58 − 1.445

4(20/50)
|1 + 0.62� 100◦|2

= 0.0986,

CF = �opt

N + 1
= 0.56� 100◦,

RF =
√

N
(
N + 1 − |�opt|2

)
N + 1

= 0.24.

This noise figure circle is plotted in Figure 12.9a. Minimum noise figure (Fmin =
1.6 dB) occurs for �S = �opt = 0.62� 100◦.

Next we calculate data for several input section constant-gain circles. From
(12.51), we have the following results:

GS (dB) gS CS RS

1.0 0.805 0.52 � 60◦ 0.300

1.5 0.904 0.56 � 60◦ 0.205

1.7 0.946 0.58 � 60◦ 0.150

These circles are plotted in Figure 12.9a. We see that the GS = 1.7 dB gain circle
just intersects the F = 2 dB noise figure circle, and that any higher gain will
result in a worse noise figure. From the Smith chart the optimum solution is �S =
0.53� 75◦, yielding GS = 1.7 dB and F = 2.0 dB.

For the output section we choose �L = S∗
22 = 0.5� 60◦ for a maximum GL of

GL = 1

1 − |S22|2 = 1.33 = 1.25 dB.

The transistor gain is

G0 = |S21|2 = 3.61 = 5.58 dB,

so the overall transducer gain will be

GTU = GS + G0 + GL = 8.53 dB.

A complete AC circuit for the amplifier, using open-circuited shunt stubs in the
matching sections, is shown in Figure 12.9b. A computer analysis of the circuit
gives a gain of 8.36 dB. ■

Low-Noise MOSFET Amplifie

MOSFETs have a relatively low AC input resistance, making them difficult to impedance
match. An external series resistance can be added to the gate, but this approach increases
noise power and degrades efficiency. By using a series inductor at the source of a MOSFET,
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FIGURE 12.9 Circuit design for the transistor amplifier of Example 12.5. (a) Constant-gain and
constant–noise figure circles. (b) RF circuit.

however, it is possible to create a resistive input impedance without adding noisy resistors.
This technique is called inductive source degeneration; similar methods can be used with
MESFETs and other transistors. The conceptual circuit is shown in Figure 12.10a, where
the inductor Ls is placed in series with the source of the device.

The equivalent circuit of the amplifier is shown in Figure 12.10b, where we have
simplified the model by assuming the transistor is unilateral, and that Ri , Rds , and Cds

can be ignored. For an input current I at the gate of the transistor, the capacitor voltage is
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FIGURE 12.10 Low-noise MOSFET amplifier. (a) Basic AC circuit. (b) Equivalent circuit using
a simplified unilateral FET model.

Vc = I/jωCgs . The gate voltage, relative to ground, is then

V = I

jωCgs
+ jωLs (I + gm Vc)

= I

(
1

jωCgs
+ jωLs + gm Ls

Cgs

)
. (12.61)

The input impedance at the gate is

Z = V

I
= gm Ls

Cgs
+ j

(
ωLs − 1

ωCgs

)
, (12.62)

showing that the circuit has produced an input resistance of gm Ls/Cgs . The series inductor,
Ls , can be chosen to match the input resistance of the amplifier to a source impedance, Z0.
The inductor at the gate, Lg , can then be chosen to cancel the residual input reactance,
which is usually capacitive. The combination of the series matching inductor, the gate
capacitance, and the effective input resistance forms a series RLC resonator. The Q of this
resonator is

Q = ωLgCgs

gm Ls
. (12.63)

The bandwidth of this circuit may be relatively narrow if this Q is high.

EXAMPLE 12.6 LOW-NOISE MOSFET AMPLIFIER DESIGN

An Infineon BF1005 n-channel MOSFET transistor having Cgs = 2.1 pF and
gm = 24 mS is used in a 900 MHz low-noise amplifier with inductive source
degeneration, as shown in Figure 12.10. Determine the source and gate induc-
tors, and estimate the bandwidth of the amplifier. Assume a source impedance of
Z0 = 50 �.

Solution
From (12.62), matching the input resistance to Z0 determines the source inductor
as

Ls = Z0Cgs

gm
= (50)(2.1 × 10−12)

0.024
= 4.37 nH.
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The net reactance at the input is j X = j

(
ωLs − 1

ωCgs

)
= − j59.5 �, so the

required series inductance for matching is

Lg = −X

ω
= 59.5

2π
(
900 × 106

) = 10.5 nH.

From (12.63) we can estimate the Q as

Q = ωLgCgs

gm Ls
= 1.2,

so the bandwidth of the amplifier could be as high as 80%. This value is probably
higher than what would be obtained in practice, due to the approximations that
have been made in our analysis. ■

12.4 BROADBAND TRANSISTOR AMPLIFIER DESIGN

The ideal amplifier would have constant gain and good input matching over the desired
frequency bandwidth. As the examples of the last section have shown, conjugate match-
ing will give maximum gain only over a relatively narrow bandwidth, while designing for
less than maximum gain will improve the gain bandwidth, but the input and output ports
of the amplifier will be poorly matched. These problems are primarily a result of the fact
that microwave transistors typically are not well matched to 50 �, and large impedance
mismatches are governed by the Bode–Fano gain–bandwidth criterion discussed in Chap-
ter 5. Another consideration, as shown earlier in this chapter, is that |S21| decreases with
frequency at the rate of 6 dB/octave. For these reasons, special consideration must be given
to the problem of designing broadband amplifiers. Some of the common approaches to this
problem are listed below; note in each case that an improvement in bandwidth is achieved
only at the expense of gain, complexity, or similar factors.

� Compensated matching networks: Input and output matching sections can be de-
signed to compensate for the gain rolloff in |S21|, but generally at the expense of the
input and output matching.

� Resistive matching networks: Good input and output matching can be obtained by
using resistive matching networks, with a corresponding loss in gain and increase
in noise figure.

� Negative feedback: Negative feedback can be used to flatten the gain response of
the transistor, improve the input and output match, and improve the stability of the
device. Amplifier bandwidths in excess of a decade are possible with this method,
at the expense of gain and noise figure.

� Balanced amplifiers: Two amplifiers having 90◦ couplers at their input and output
can provide good matching over an octave bandwidth, or more. The gain is equal to
that of a single amplifier, however, and the design requires two transistors and twice
the DC power.

� Distributed amplifiers: Several transistors are cascaded together along a transmis-
sion line, giving good gain, matching, and noise figure over a wide bandwidth. The
circuit is large, and does not give as much gain as a cascade amplifier with the same
number of stages.

� Differential amplifiers: Driving two devices in a differential mode, with input sig-
nals of opposite polarity, results in an effective series connection of device capac-
itance, thus roughly doubling fT . Differential amplifiers can also provide a larger
output voltage swing than a single device, and common mode noise rejection.
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FIGURE 12.11 A balanced amplifier using 90◦ hybrid couplers.

Below we discuss in detail the operation of balanced, differential, and distributed
amplifiers.

Balanced Amplifie s

As we saw in Example 12.4, a fairly flat gain response can be obtained if the amplifier is
designed for less than maximum gain, but the input and output matching will be poor. The
balanced amplifier circuit solves this problem by using two 90◦ couplers to cancel input and
output reflections from two identical amplifiers. The basic circuit of a balanced amplifier
is shown in Figure 12.11. The first 90◦ hybrid coupler divides the input signal into two
equal-amplitude components, with a 90◦ phase difference, which drive the two amplifiers.
The second coupler recombines the amplifier outputs. Because of the phasing properties of
the hybrid coupler, reflections from the amplifier inputs cancel at the input to the hybrid,
resulting in an improved impedance match; a similar effect occurs at the output of the
balanced amplifier. The gain bandwidth is not improved over that of the single amplifier
sections. This type of circuit is more complex than a single-stage amplifier since it requires
two hybrid couplers and two separate amplifier sections, but it has a number of interesting
advantages:

� The individual amplifier stages can be optimized for gain flatness or noise figure,
without concern for input and output matching.

� Reflections are absorbed in the coupler terminations, improving input/output match-
ing, as well as the stability of the individual amplifiers.

� The circuit provides a graceful degradation of a 6 dB loss in gain if a single amplifier
section fails.

� Bandwidth can be an octave or more, primarily limited by the bandwidth of the
couplers.

In practice, balanced MMIC amplifiers often use Lange couplers, which are broadband and
very compact, but quadrature hybrids and Wilkinson power dividers (with an extra 90◦ line
on one arm) can also be used.

If we assume ideal hybrid couplers, then, with reference to Figure 12.11, the voltages
incident at the amplifiers can be written as

V +
A1 = 1√

2
V +

1 , (12.64a)

V +
B1 = − j√

2
V +

1 , (12.64b)
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where V +
1 is the incident input voltage. The output voltage can be found as

V −
2 = − j√

2
V +

A2 + 1√
2

V +
B2 = − j√

2
G AV +

A1 + 1√
2

G B V +
B1 = − j

2
V +

1 (G A + G B), (12.65)

where G A and G B are the voltage gains of the amplifiers. Then we can write S21 as

S21 = V −
2

V +
1

= − j

2
(G A + G B), (12.66)

which shows that the overall gain of the balanced amplifier is the average of the individual
amplifier voltage gains.

The total reflected voltage at the input can be expressed as

V −
1 = 1√

2
V −

A1 + − j√
2

V −
B1 = 1√

2
�AV +

A1 + − j√
2
�B V +

B1 = 1

2
V +

1 (�A − �B). (12.67)

Then we can write S11 as

S11 = V −
1

V +
1

= 1

2
(�A − �B). (12.68)

If the amplifiers are identical, then G A = G B and �A = �B , and (12.68) shows that S11 =
0, and (12.66) shows that the gain of the balanced amplifier will be the same as the gain of
an individual amplifier. If one amplifier fails, the overall gain will drop by 6 dB, with the
remaining power lost in the coupler terminations. It can also be shown that the noise figure
of the balanced amplifier is F = (FA + FB)/2, where FA and FB are the noise figures of
the individual amplifiers.

EXAMPLE 12.7 PERFORMANCE AND OPTIMIZATION OF A BALANCED
AMPLIFIER

Use the amplifier of Example 12.4 in a balanced configuration operating from 3
to 5 GHz. Use quadrature hybrids, and plot the gain and return loss over this fre-
quency range. Using microwave CAD software, optimize the amplifier matching
networks to give 10 dB gain over this band.

Solution
The amplifier of Example 12.4 was designed for a gain of 11 dB at 4 GHz. As seen
from Figure 12.8c, the gain varies by a few dB from 3 to 5 GHz, and the return
loss is no better than 5 dB. We can design a quadrature hybrid, according to the
discussion in Chapter 7, to have a center frequency of 4 GHz. Then the balanced
amplifier configuration of Figure 12.11 can be modeled using a microwave CAD
package, with the results shown in Figure 12.12. Note the dramatic improvement
in return loss over the band as compared with the result for the original amplifier
in Figure 12.8c. The input matching is best at 4 GHz since this was the design
frequency of the coupler; a coupler with better bandwidth will give improved
results at the band edges. Also observe that the gain at 4 GHz is still 11 dB, and
that it drops by a few dB at the band edges.

Most modern microwave CAD software packages have an optimization fea-
ture with which a small set of design variables can be adjusted to optimize a
particular performance variable. In the present example, we will reduce the gain
specification to 10 dB, and allow the CAD software to adjust the four transmission
line stub and line lengths in the amplifier circuit of Figure 12.8b to give the best
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FIGURE 12.12 Gain and return loss, before and after optimization, for the balanced amplifier of
Example 12.7.

fit to this gain over the frequency range 3–5 GHz. Both amplifiers in the balanced
circuit remain identical, so we should still see the improved input matching.

The results of this optimization are shown in Figure 12.12, where it can be
seen that the gain response is much flatter over the operating band. The input
match is still very good in the vicinity of the center frequency, with a slightly
worse result at the low-frequency end. The optimized stub and line lengths for the
amplifier matching networks are listed below:

Matching Network Before After
Parameter Optimization Optimization

Input section stub length 0.100λ 0.109λ

Input section line length 0.179λ 0.113λ

Output section line length 0.045λ 0.134λ

Output section stub length 0.432λ 0.461λ

These represent fairly small deviations from the lengths in the original matching
networks. ■

Distributed Amplifie s

The concept of the distributed amplifier dates back to the 1940s, when it was used in the de-
sign of broadband vacuum tube amplifiers. With recent advances in microwave integrated
circuit and device processing technology, the distributed amplifier has found new applica-
tions in broadband microwave amplifiers. Bandwidths in excess of a decade are possible,
with good input and output matching. Distributed amplifiers are not capable of very high
gains or very low noise figure, however, and generally are larger than an amplifier having
comparable gain over a narrower bandwidth.

The basic configuration of a microwave distributed amplifier is shown in Figure 12.13.
A cascade of N identical FETs have their gates connected to a transmission line having a
characteristic impedance Zg , with a spacing of �g , while the drains are connected to a
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FIGURE 12.13 Configuration of an N -stage distributed amplifier.

transmission line of characteristic impedance Zd , with a spacing �d . The operation of the
distributed amplifier is very similar to that of the multihole waveguide coupler discussed
in Section 7.4. The input signal propagates down the gate line, with each FET tapping
off some of the input power. The amplified output signals from the FETs form a traveling
wave on the drain line. The propagation constants and lengths of the gate and drain lines
are chosen for constructive phasing of the output signals, and the termination impedances
on the lines serve to absorb waves traveling in the reverse directions. The gate and drain
capacitances of the FET effectively become part of the gate and drain transmission lines,
while the gate and drain resistances introduce loss on these lines. This type of circuit is
also known as a traveling wave amplifier.

Here we will analyze the distributed amplifier in terms of the loaded gate and drain
transmission lines [8], although it is also possible to apply the concept of image parameters
[9], or to simply model using CAD software. An analytical treatment has the advantage of
illustrating the underlying principles of operation of the amplifier, while the numerical
CAD approach is recommended for better accuracy and optimization capabilities.

The first step in the analysis of the distributed amplifier is to employ the unilateral
(Cgd = 0) version of the FET equivalent circuit to decompose the circuit of Figure 12.13
into separate loaded transmission lines for the gate and drain terminals. These are shown in
Figures 12.14 and 12.15. The gate and drain transmission lines are typically microstrip; the
ground conductors are not shown in Figure 12.13, but they are in Figures 12.14 and 12.15.

(a)

(b)

Ri

Vi

Input

Unit cell

Zg , lg Zg , lg Zg , lg

Cgs VC1

Ri

Cgs VC2

+

–

+

–

+

–

+

–

Ri

Cgs VC3

Ri
• • •

Cgs VC4

Zg
Ri

Cgs VCN

+

–

Cg

Lg

Rilg

Cgs /lg

FIGURE 12.14 (a) Transmission line circuit for the gate line of the distributed amplifier;
(b) equivalent circuit of a single unit cell of the gate line.
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FIGURE 12.15 (a) Transmission line circuit for the drain line of the distributed amplifier;
(b) equivalent circuit of a single unit cell of the drain line.

The gate and drain lines are isolated except for the coupling through the dependent current
sources, where Idn = gm Vcn , and are matched at both ends. Figures 12.14b and 12.15b
show the equivalent circuits for a single unit cell from the gate and drain lines, respectively.
Lg and Cg are the inductance and capacitance per unit length of the gate transmission line,
while Ri�g and Cgs/�g represent the equivalent per-unit-length loading due to the FET
input resistance Ri and gate-to-source capacitance Cgs . Similar definitions apply to the
quantities Ld , Cd , Rds�d , and Cds/�d for the drain line. Thus we have taken the lumped
loading of each FET and distributed its circuit parameters over the transmission lines of
each unit cell. This approximation is generally valid when the electrical lengths of the unit
cells are small.

We can now use basic transmission line theory to find the effective characteristic
impedance and propagation constants of the gate and drain lines. For the gate line, the
series impedance and shunt admittance per unit length can be written as

Z = jωLg, (12.69a)

Y = jωCg + jωCgs/�g

1 + jωRi Cgs
. (12.69b)

If we assume that loss can be neglected for the calculation of characteristic impedance, as
discussed in Section 2.7, then we have

Zg =
√

Z

Y
=

√
Lg

Cg + Cgs/�g
. (12.70)

For the calculation of the propagation constant we retain the resistive term since this will
lead to attenuation:

γg = αg + jβg = √
ZY =

√
jωLg

(
jωCg + jωCgs/�g

1 + jωRi Cgs

)
.

If we assume small loss, so that ωRi Cgs � 1, then the above result can be simplified as
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follows:

γg = αg + jβg ∼=
√

−ω2Lg[Cg + Cgs(1 − jωRi Cgs)/�g]

∼= ω2 Ri C2
gs Zg

2�g
+ jω

√
Lg(Cg + Cgs/�g). (12.71)

For the drain line, the series impedance and shunt admittance per unit length are

Z = jωLd , (12.72a)

Y = 1

Rds�d
+ jω(Cd + Cds/�d). (12.72b)

The characteristic impedance of the drain line can be written as

Zd =
√

Z

Y
=

√
Ld

Cd + Cds/�d
, (12.73)

and the propagation constant can be simplified using the small-loss approximation as

γd = αd + jβd = √
ZY =

√
jωLd

[
1

Rds�d
+ jω (Cd + Cds/�d)

]

∼= Zd

2Rds�d
+ jω

√
Ld (Cd + Cds/�d). (12.74)

For an incident input voltage, Vi , the voltage on the gate-to-source capacitance of the nth
FET can be written as

Vcn = Vi e
−(n−1)γg�g

(
1

1 + jωRi Cgs

)
, (12.75)

for a phase reference at the first transistor. The factor in parentheses in (12.75) accounts
for voltage division between Ri and Cgs ; for typical FET parameters ωRi Cgs � 1, so this
factor can be approximated as unity over the bandwidth of the amplifier. The output current
on the drain line can be found by recognizing that each current generator contributes waves
of the form (−1/2)Idne±γd z in each direction. Since Idn = gm Vcn , the total output current
at the N th terminal of the drain line is

Io = −1

2

n∑
n=1

Idne−(N−n)γd�d = −gm Vi

2
e−Nγd�d eγg�g

N∑
n=1

e−n(γg�g−γd�d). (12.76)

The terms in the summation will add in phase only when βg�g = βd�d , so that the phase
delays on the gate and drain lines are synchronized. There is also a backward traveling
wave component on the drain line, but the individual contributions to this wave will not be
in phase, and therefore they at least partially cancel; the residual will be absorbed in the
termination Zd . Use of the summation formula

N∑
n=1

xn = x N+1 − x

x − 1

allows (12.76) to be simplified as follows:

Io = −gm Vi

2

eγd�d
(
e−Nγg�g − e−Nγd�d

)
e−(γg�g−γd�d) − 1

= −gm Vi

2

e−Nγg�g − e−Nγd�d

e−γg�g − e−γd�d
. (12.77)
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For matched input and output ports, the amplifier gain can be calculated as

G = Pout

Pin
=

1

2
|Io|2 Zd

1

2
|Vi |2/Zg

= g2
m Zd Zg

4

∣∣∣∣e−Nγg�g − e−Nγd�d

e−γg�g − e−γd�d

∣∣∣∣
2

. (12.78)

Applying the synchronization condition that βg�g = βd�d allows this result to be further
simplified to

G = g2
m Zd Zg

4

(e−Nαg�g − e−Nαd�d )2

(e−αg�g − e−αd�d )2
. (12.79)

If the losses are small, the denominator in (12.79) can be approximated as (αg�g − αd�d).
Several interesting aspects of the distributed amplifier can be deduced from the gain

expression of (12.79). For the ideal case of a lossless amplifier (αg = αd = 0), the gain
reduces to

G = g2
m Zd Zg N 2

4
,

showing that gain increases as N 2. This is in contrast to the gain of a cascade of N amplifier
stages, which increases as (G0)

N . When loss is present, (12.79) shows that the gain of a
distributed amplifier approaches zero as N → ∞. This surprising behavior is explained
by the fact that the input voltage on the gate line decays exponentially, so the FETs at the
end of the amplifier receive no input signal; similarly, the amplified signals from the FETs
near the beginning of the amplifier are attenuated along the drain line. The multiplicative
increase in gain with N is not enough to compensate for an exponential decay for large N .
This implies that, for a given set of transistor parameters, there will be an optimum value of
N that maximizes the gain of a distributed amplifier. This can be found by differentiating
(12.79) with respect to N and setting the result to zero to obtain

Nopt = ln(αg�g/αd�d)

αg�g − αd�d
. (12.80)

This result depends on frequency, the device parameters, and the line lengths through the
attenuation constants given in (12.71) and (12.74).

EXAMPLE 12.8 DISTRIBUTED AMPLIFIER PERFORMANCE

Use (12.79) to calculate the gain of a distributed amplifier from 1 to 18 GHz
for N = 2, 4, 8, and 16 stages. Assume Zd = Zg = Z0 = 50 � and the follow-
ing FET parameters: Ri = 5 �, Rds = 250 �, Cgs = 0.30 pF, and gm = 30 mS.
Find the optimum value of N that will give maximum gain at 16 GHz.

Solution
We use (12.71) and (12.74) to evaluate the attenuation constants αg and αd , and
then compute the gain versus frequency and N using (12.79). Note that the prod-
ucts αg�g and αd�d are independent of �g and �d :

αg�g = ω2 Ri C2
gs Z0

2
,

αd�d = Z0

2Rds
.
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FIGURE 12.16 Gain versus frequency for the distributed amplifier of Example 12.8.

The results are shown in Figure 12.16. Observe that the gain drops off with fre-
quency faster for larger N , and that at high frequencies the gain for N = 16 is less
than the gain for smaller N . The optimum size for maximum gain at 16 GHz can
be calculated using (12.80). At 16 GHz we have αg�g = 0.100 and αd�d = 0.114.
The optimum size is then

Nopt = ln(αg�g/αd�d)

αg�g − αd�d
= ln(0.100/0.114)

0.100 − 0.114
= 9.4,

or about nine stages. Finally, note that ωRi Cgs = 0.17 at 18 GHz, justifying the
approximation of unity for the voltage divider factor of (12.75). ■

Differential Amplifie s

The amplifiers considered above are single-ended circuits, meaning that the input and out-
put signals are referenced to a common ground. In contrast, a differential amplifier uses
balanced inputs and outputs, meaning that there are two signal lines, with opposite po-
larities, at each port. Figure 12.17 shows the symbols commonly used for single-ended
and differential amplifiers. Differential circuits have several advantages over single-ended

(a) (b)

+

–

+

–

FIGURE 12.17 (a) Single-ended amplifier, with symbols denoting unbalanced input and output
lines. (b) Differential amplifier, having balanced input and output lines.
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(a) (b)

+

+
λ/4 λ/4

–

–

unbalanced

unbalanced

balanced

balanced

FIGURE 12.18 Balun circuits. (a) A transformer balun. (b) The Marchand balun.

circuits, including cancellation of interference that is common to both signal lines. Such
common mode interference is frequently a problem with sensitive receiver circuitry on
highly integrated monolithic circuits, and for this reason many of the circuits used in mod-
ern RFICs use differential topologies. Another advantage of differential amplifiers is that
they can provide output voltage swings that are approximately double that obtained with
a single-ended amplifier. A disadvantage of differential circuits is that they use roughly
twice the device count as the single-ended equivalents, and more associated bias power.

A differential amplifier can be constructed using two single-ended amplifiers and 180◦
hybrids at the input and output to split and then recombine the signals (similar to the bal-
anced amplifier of Section 12.4 that used 90◦ hybrids). In this case the initial input and
final output signals at the hybrids would be single ended (referenced to ground). Such am-
plifiers are sometimes referred to as pseudo-differential [5], in contrast to fully differential
amplifiers, which have balanced input and output signals. In general, a balun (balanced-to-
unbalanced) circuit is used to transition from an unbalanced signal to a balanced signal (or
vice versa). At low frequencies a simple transformer can be used as a balun, as shown in
Figure 12.18a. At higher frequencies, a 180◦ hybrid coupler can be used as a balun, with
the unbalanced port at the difference input port of the hybrid, and the two output ports
providing the balanced port. Various types of coupled line circuits can also provide a balun
function, with one of the most popular being the Marchand balun, shown in Figure 12.18b.

Figure 12.19 shows the AC circuit of a differential amplifier using two FETs. The
balanced input signal is applied to the gates of the devices, and the balanced output signal
is formed across the drains. In practice, an additional transistor is often used at the device

RD

Rs

VDD

RD

Vo
+

Vi
+

Vo
–

Vi
–

FIGURE 12.19 Differential amplifier circuit using two FETs. The source resistance Rs may
model a current source.
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+
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+

Rds RdsRD RD

(a)

Vi
+

Vo
+

Vi
–

Vo
–Ri Ri

+

–

+

–
Vc

+ Vc
–Cgs Cgs

Id
+

Rds

2Rs 2Rs

RdsRD RD

(b)

Cgs

Id 
–

Id 
–

FIGURE 12.20 Equivalent circuits for the differential amplifier. (a) Equivalent circuit model for
the differential (odd) mode. (b) Equivalent circuit model for the common (even)
mode.

sources to provide a current source; this is modeled by the resistor Rs . Usually, the desired
input to a differential amplifier consists of equal-amplitude signals with opposite polarities
at the two gates, forming an odd-mode excitation. An interference signal, however, will
usually appear as equal-amplitude signals with the same polarity at the inputs, forming an
even-mode excitation. These modes are also referred to as the differential mode and the
common mode, respectively. We can analyze the differential amplifier by decomposing an
arbitrary input into the superposition of an odd mode and an even mode, similar to the
analysis we used previously for the quadrature hybrid and other symmetric circuits.

First consider differential (odd) mode excitation, which corresponds to the usual mode
of operation for the amplifier. The equivalent circuit is shown in Figure 12.20a, where
the unilateral FET model has been used. The input signals in this case are V +

i = Vi and
V −

i = −Vi ; this antisymmetry establishes a zero potential at the midplane of the circuit, so
there is a virtual ground at the sources, and the resistor Rs can be removed. The voltages
on the capacitors are

V ±
c = ±Vi

1 + jωRi Cgs
, (12.81)

and the output voltages on the drains are

V ±
o = −I ±

d
RD Rds

RD + Rds
= ∓Vi

gm RD Rds

(1 + jωRi Cgs) (RD + Rds)
. (12.82)
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The voltage gain for the differential (odd) mode is then

Ad = V +
o − V −

o

V +
i − V −

i

= −gm RD Rds

(1 + jωRi Cds) (RD + Rds)
. (12.83)

For the common (even) mode, the input signals are V +
i = V −

i = Vi , and the equivalent
circuit is as shown in Figure 12.20b. Due to the symmetry of the excitation, no current flows
between the sources of the two devices, so the circuit can be bisected as shown, with the
original resistor Rs being split into two resistors of 2Rs . The voltages on the capacitors
are

V ±
c = Vi

1 + jωCgs (Ri + 2Rs)
. (12.84)

The voltage across either current source is

VI = −Id
Rds (RD + 2Rs)

Rds + RD + 2Rs
,

so the output voltages on the drains are

V ±
o = VI

RD

RD + 2Rs
= −Id

Rds RD

Rds + RD + 2Rs

= −Vi
gm Rds RD

[1 + jωCgs (Ri + 2Rs)] (Rds + RD + 2Rs)
. (12.85)

The voltage gain for the common (even) mode is then

Ac = V +
o + V −

o

V +
i + V −

i

= −gm Rds RD

[1 + jωCgs (Ri + 2Rs)] (Rds + RD + 2Rs)
. (12.86)

The common mode rejection ratio (CMRR) of an amplifier is defined as the ratio of the
differential voltage gain to the common mode voltage gain, and is a measure of how well a
differential amplifier can provide cancellation of a common mode interference signal. For
the differential amplifier considered here, the common mode rejection ratio is

CMRR = Ad

Ac
= (Rds + RD + 2Rs)

(Rds + RD)

1 + jωCgs (Ri + 2Rs)

1 + jωCgs Ri

=
(

1 + 2Rs

Rds + RD

)(
1 + 2 jωCgs Rs

1 + jωCgs Ri

)
. (12.87)

From this result we see that if Rs = 0 we have CMRR = 1, which provides no common
mode rejection. This is because the two circuits of Figure 12. 20 are identical when Rs = 0.
When Rs → ∞, however (which is the case for an ideal current source feeding the FET
sources), we have CMRR → ∞, providing cancellation of the common mode signal.

12.5 POWER AMPLIFIERS

Power amplifiers are used in the final stages of radar and radio transmitters to increase
the radiated power level. Typical output powers may be on the order of 100–500 mW for
mobile voice or data communications systems, or in the range of 1–100 W for radar or
fixed point radio systems. Important considerations for RF and microwave power ampli-
fiers are efficiency, gain, intermodulation distortion, and thermal effects. Single transistors
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can provide output powers of 10–100 W at UHF frequencies, while devices at higher fre-
quencies are generally limited to output powers less than 10 W. Various power-combining
techniques can be used in conjunction with multiple transistors if higher output powers are
required.

So far we have considered only small-signal amplifiers, where the input signal power
is low enough that the transistor can be assumed to operate as a linear device. The scattering
parameters of linear devices are well defined and do not depend on the input power level
or output load impedance, a fact that greatly simplifies the design of fixed-gain and low-
noise amplifiers. For high input powers (e.g., in the range of the 1 dB compression point or
third-order intercept point), transistors do not behave linearly. In this case the impedances
seen at the input and output of the transistor will depend on the input power level, and this
greatly complicates the design of power amplifiers.

Characteristics of Power Amplifie s and Amplifie Classes

The power amplifier is usually the primary consumer of DC power in most hand-held
wireless devices, so amplifier efficiency is an important consideration. One measure of
amplifier efficiency is the ratio of RF output power to DC input power:

η = Pout

PDC
. (12.88)

This quantity is sometimes referred to as drain efficiency (or collector efficiency). One
drawback of this definition is that it does not account for the RF power delivered at the
input to the amplifier. Since most power amplifiers have relatively low gains, the efficiency
of (12.88) tends to overrate the actual efficiency. A better measure that includes the effect
of input power is the power added efficiency, defined as

ηPAE = PAE = Pout − Pin

PDC
=

(
1 − 1

G

)
Pout

PDC
=

(
1 − 1

G

)
η, (12.89)

where G is the power gain of the amplifier. Silicon bipolar junction transistor amplifiers in
the cellular telephone band of 800–900 MHz band have power added efficiencies on the
order of 80%, but efficiency drops quickly with increasing frequency. Power amplifiers are
often designed to provide the best efficiency, even if this means that the resulting gain is
less than the maximum possible.

Another useful parameter for power amplifiers is the compressed gain, G1, defined
as the gain of the amplifier at the 1 dB compression point. Thus, if G0 is the small-signal
(linear) power gain, we have

G1(dB) = G0(dB) − 1. (12.90)

As we have seen in Chapter 10, nonlinearities can lead to the generation of spurious fre-
quencies and intermodulation distortion. This can be a serious issue in wireless transmit-
ters, especially in a multicarrier system, where spurious signals may appear in adjacent
channels. Linearity is also critical for nonconstant envelope modulations, such as ampli-
tude shift keying and higher order quadrature amplitude modulation methods.

Class A amplifiers are inherently linear circuits, where the transistor is biased to con-
duct over the entire range of the input signal cycle. Because of this, class A amplifiers have
a theoretical maximum efficiency of 50%. Most small-signal and low-noise amplifiers op-
erate as class A circuits. In contrast, the transistor in a class B amplifier is biased to conduct
only during one-half of the input signal cycle. Usually two complementary transistors are
operated in a class B push-pull amplifier to provide amplification over the entire cycle.
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The theoretical efficiency of a class B amplifier is 78%. Class C amplifiers are operated
with the transistor near cutoff for more than half of the input signal cycle, and generally
use a resonant circuit in the output stage to recover the fundamental. Class C amplifiers can
achieve efficiencies near 100% but can only be used with constant envelope modulations.
Higher classes, such as class D, E, F, and S, use the transistor as a switch to pump a highly
resonant tank circuit, and may achieve very high efficiencies. The majority of communica-
tions transmitters operating at UHF frequencies or above rely on class A, AB, or B power
amplifiers because of the need for low distortion products.

Large-Signal Characterization of Transistors

A transistor behaves linearly for signal powers well below the 1 dB compression point
(IP1 dB), and so the small-signal scattering parameters should not depend on either the in-
put power level or the output termination impedance. However, for power levels compara-
ble to or greater than IP1 dB, where the nonlinearity of the transistor becomes apparent, the
measured scattering parameters will depend on input power level and the output termina-
tion impedance (as well as frequency, bias conditions, and temperature). Thus large-signal
scattering parameters are not uniquely defined and do not satisfy linearity, and cannot be
used in place of small-signal parameters. (For device stability calculations, however, small-
signal scattering parameters can generally be used with good results.)

A more useful way to characterize transistors under large-signal operating conditions
is to measure the gain and output power as a function of source and load impedances. One
way of doing this is to determine the large-signal source and load reflection coefficients,
�SP and �LP, (or impedances, ZSP and ZLP) that maximize power gain for a particular
output power (often chosen as OP1 dB), and versus frequency. Table 12.1 shows typical
large-signal source and load reflection coefficients for an npn silicon bipolar power tran-
sistor, along with the small-signal scattering parameters.

Another way of characterizing the large-signal behavior of a transistor is to plot con-
tours of constant power output on a Smith chart as a function of the load reflection coeffi-
cient, �L P , with the transistor conjugately matched at its input. These are called load-pull
contours, and they can be obtained using an automated measurement set-up with computer-
controlled electromechanical stub tuners. A typical set of load-pull contours is shown in
Figure 12.21. Load-pull contours are similar in function to the constant-gain contours of
Section 12.3, but are not perfect circles due to the nonlinearities of the device.

Nonlinear equivalent circuit models can also be developed and used to predict the
large-signal performance of FETs and BJTs [10]. The dominant nonlinear parameters for a
microwave FET are Cgs , gm , Cgd , and Rds . An important consideration in modeling large-
signal transistors is the fact that most parameters are dependent on temperature, which of
course increases with output power. Equivalent circuit models can be very useful when
combined with computer-aided design software.

TABLE 12.1 Small-Signal Scattering Parameters and Large-Signal Reflection Coefficients
(Silicon Bipolar Junction Power Transistor)

f (MHz) S11 S12 S21 S22 �S P �L P G (dB)

800 0.76 � 176◦ 4.10 � 76◦ 0.065 � 49◦ 0.35 � −163◦ 0.856 � −167◦ 0.455 � 129◦ 13.5

900 0.76 � 172◦ 3.42 � 72◦ 0.073 � 52◦ 0.35 � −167◦ 0.747 � −177◦ 0.478 � 161◦ 12.0

1000 0.76 � 169◦ 3.08 � 69◦ 0.079 � 53◦ 0.36 � −169◦ 0.797 � −187◦ 0.491 � 185◦ 10.0
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FIGURE 12.21 Constant–output power contours versus load impedance for a typical power FET.

Design of Class A Power Amplifie s

In this section we will discuss the use of large-signal parameters for the design of class A
amplifiers. Since class A amplifiers are ideally linear, it is sometimes possible to use small-
signal scattering parameters for design, but better results are usually obtained if large-
signal parameters are available. As with small-signal amplifier design, the first step is to
check the stability of the device. Since instabilities begin at low signal levels, small-signal
scattering parameters can be used for this purpose. Stability is especially important for
power amplifiers, as high-power oscillations can easily damage active devices and related
circuitry.

The transistor should be chosen on the basis of frequency range and power output,
ideally with about 20% more power capacity than is required by the design. Silicon bipolar
transistors have higher power outputs than GaAs FETs at frequencies up to a few GHz,
and are generally cheaper; GaN HBTs are becoming very popular for high-power applica-
tions at RF and low microwave frequencies. Good thermal contact of the transistor package
to a heat sink is essential for any amplifier with more than a few tenths of a watt power
output. Input matching networks may be designed for maximum power transfer (conju-
gate matching), while output matching networks are designed for maximum output power
(as derived from �L P ). The optimum values of source and load reflection coefficients
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FIGURE 12.22 Photograph of a three-stage Ku-band GaN MMIC amplifier.

Courtesy of Raytheon Company, Waltham, Mass.

are different from those obtained from small-signal scattering parameters via (12.40).
Low-loss matching elements are important for good efficiency, particularly in the output
stage, where currents are highest. Internally matched chip transistors are sometimes avail-
able and have the advantage of reducing the effect of parasitic package reactances, thus im-
proving efficiency and bandwidth. A photograph of a GaN power amplifier chip is shown in
Figure 12.22.

EXAMPLE 12.9 DESIGN OF A CLASS A POWER AMPLIFIER

Design a power amplifier at 2.3 GHz using a Nitronex NPT25100 GaN HEMT
transistor, with an output power of 10 W. The scattering parameters of the transis-
tor for VDS = 28 V and ID = 600 mA are as follows: S11 = 0.593� 178◦, S12 =
0.009� −127◦, S21 = 1.77� −106◦, and S22 = 0.958� 175◦, and the optimum large-
signal source and load impedances are ZS P = 10 − j3 � and ZL P = 2.5 −
j2.3 �. For an output power of 10 W, the power gain is 16.4 dB and the drain
efficiency is 26%. Design input and output impedance matching sections for the
transistor, and find the required input power, the required DC drain current, and
the power added efficiency.

Solution
First establish the stability of the device. Using the small-signal scattering param-
eters in (12.28) and (12.29) gives

|�| = |S11S22 − S12S21| = 0.579 < 1,

K = 1 − |S11|2 − |S22|2 + |�|2
2|S12S21| = 2.08 > 1,

showing that the device is unconditionally stable.
Converting the large-signal source and load impedances to reflection coeffi-

cients gives

�S P = 0.668� 187◦,
�L P = 0.905� −175◦.
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FIGURE 12.23 RF circuit for the amplifier of Example 12.9.

For comparison, using the small-signal scattering parameters in (12.40) to find the
source and load reflection coefficients for conjugate matching gives

�S =
B1 ±

√
B2

1 − 4|C1|2
2C1

= 0.508� 166◦,

�L =
B2 ±

√
B2

2 − 4|C2|2
2C2

= 0.954� −176◦.

Note that these values are approximately equal to the large-signal values �S P

and �L P , but not exactly, due to the fact that the scattering parameters used to
calculate �S and �L do not apply for large power levels. We should use the large-
signal reflection coefficients to design the input and output matching networks.
The AC amplifier circuit is shown in Figure 12.23.

For an output power of 10 W, the required input drive power is

Pin = Pout(dBm) − G(dB) = 10 log(10,000) − 16.4 = 23.6 dBm = 229 mW.

The DC input power can be found from the drain efficiency as PDC = Pout/η =
38.5 W, so the DC drain current is ID = PDC/VDS = 1.37 A. The power added
efficiency of the amplifier can be found from (12.89) to be

ηPAE = Pout − Pin

PDC
= 10.0 − 0.229

38.5
= 25%.

■
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PROBLEMS

12.1 Consider the microwave network shown below, consisting of a 50 � source, a 50 �, 3 dB matched
attenuator, and a 50 � load. (a) Compute the power gain, the available power gain, and the transducer
power gain. (b) How do these gains change if the load is changed to 25 �? (c) How do these gains
change if the source impedance is changed to 25 �?

Zs = 50 Ω

ZL = 50 Ω, 25 Ω
Attenuator

3 dB
50 Ω

12.2 The Infineon BFP640F SiGe HBT has the following scattering parameters at 1.0 GHz (Z0 = 50 �):
S11 = 0.91� −44◦, S12 = 0.06� 68◦, S21 = 3.92� 149◦, and S22 = 0.93� −17◦. For the transistor in
the configuration of Figure 12.1, with no matching networks: (a) Compute the power gain, available
power gain, and transducer gain for ZS = ZL = 50 �. (b) Can you find ZS and ZL (or �S and �L )

to maximize each of these gains (for this case, assume the device is unilateral, with S12 = 0)?

12.3 An amplifier uses a GaAs HBT device having the following scattering parameters (Z0 = 50 �):
S11 = 0.61� −170◦, S12 = 0.06� 70◦, S21 = 2.3� 80◦, and S22 = 0.72� −25◦. The input of the tran-
sistor is connected to a source with Vs = 2 V (peak) and ZS = 25 �, and the output of the transistor
is connected to a load of ZL = 100 �. (a) What are the power gain, the available power gain, the
transducer power gain, and the unilateral transducer power gain? (b) Compute the available power
from the source, and the power delivered to the load.

12.4 A SiGe HBT device has the following scattering parameters at 2.0 GHz: S11 = 0.880� −115◦, S12 =
0.029 � 31◦, S21 = 9.40� 110◦, and S22 = 0.328� −67◦. Determine the stability of the device, and
plot the stability circles if the device is potentially unstable.

12.5 The scattering parameters of a GaN HEMT device are given at four frequencies in Table 11.8. Use
the K − � test to determine the stability of this transistor at each frequency.

12.6 Use the µ-parameter test to determine which of the following devices are unconditionally stable and,
of those, which has the greatest stability:

Device S11 S12 S21 S22

A 0.34 � −170◦ 0.06 � 70◦ 4.3 � 80◦ 0.45 � −25◦
B 0.75 � −60◦ 0.2 � 70◦ 5.0 � 90◦ 0.51 � 60◦
C 0.65 � −140◦ 0.04 � 60◦ 2.4 � 50◦ 0.70 � −65◦

12.7 Show that for a unilateral device, where S12 = 0, the µ-parameter test of (12.30) implies that |S11| <

1 and |S22| < 1 for unconditional stability.

12.8 Prove that the condition for a positive discriminant in (12.40a), that is, B2
1 > 4|C1|2, is equivalent to

the condition that K 2 > 1.
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12.9 Using the scattering parameter data for the GaAs MESFET given in Table 11.7, design an amplifier
for maximum gain at 8.0 GHz. Design matching sections using open-circuited shunt stubs, and com-
pute the gain. Check the stability of the resulting design using CAD modeling over the frequency
range of 1–12 GHz, or by using stability circles at a few frequencies.

12.10 Consider the impedance matching network shown at left below, where a load ZL (�L ) at port 2 is
matched to a source impedance Z0 at port 1. Show that the same network will present the impedance
Z = Z∗

L at port 2 when port 1 is terminated with Z0, as shown in the figure below at right. As-
sume the matching network is reciprocal and lossless. This relationship allows the impedance tuning
techniques of Chapter 5 to be used to design the input and output matching networks for an amplifier.

1 2[S]

L�

ZL Z0

Z0

1 2[S]

Z, �

12.11 Design an amplifier with maximum GTU using a transistor with the following scattering parameters
(Z0 = 50 �) at 6.0 GHz: S11 = 0.61� −170◦, S12 = 0, S21 = 2.24� 32◦, and S22 = 0.72� −83◦.
Design L-section matching sections using lumped elements.

12.12 Design an amplifier to have a gain of 10 dB at 6.0 GHz, using a transistor with the following scattering
parameters (Z0 = 50 �): S11 = 0.61� −170◦, S12 = 0, S21 = 2.24� 32◦, and S22 = 0.72� −83◦.
Plot (and use) constant-gain circles for GS = 1 dB and GL = 2 dB. Use matching sections with
open-circuited shunt stubs.

12.13 Compute the unilateral figure of merit for the transistor of Problem 12.4. What is the maximum error
in the transducer gain if an amplifier is designed assuming the device is unilateral?

12.14 Show that the 0 dB gain circle for GS (GS = 1), defined by (12.51), will pass through the center of
the Smith chart.

12.15 A GaAs FET has the following scattering and noise parameters at 8 GHz (Z0 = 50 �):
S11 = 0.7� −110◦, S12 = 0.02� 60◦, S21 = 3.5� 60◦, S22 = 0.8� −70◦, Fmin = 2.5 dB, �opt =
0.70 � 120◦, and RN = 15 �. Design an amplifier with minimum noise figure and maximum pos-
sible gain. Use open-circuited shunt stubs in the matching sections.

12.16 A GaAs FET has the following scattering and noise parameters at 6 GHz (Z0 = 50 �): S11 =
0.6 � −60◦, S12 = 0, S21 = 2.0� 81◦, S22 = 0.7� −60◦, Fmin = 2.0 dB, �opt = 0.62� 100◦, and
RN = 20 �. Design an amplifier to have a gain of 6 dB and the minimum noise figure possible
with this gain. Use open-circuited shunt stubs in the matching sections.

12.17 Repeat Problem 12.16, but design the amplifier for a noise figure of 2.5 dB and the maximum possible
gain that can be achieved with this noise figure.

12.18 Repeat the analysis of the balanced amplifier of Example 12.7 using a 3 dB coupled line hybrid
coupler. Use CAD software to optimize the input and output matching networks of the amplifiers to
obtain a flat 10 dB gain response from 3 to 5 GHz, and compare the results with those obtained using
the quadrature hybrid.

12.19 If the individual amplifier stages in a balanced amplifier have mismatches of �A and �B at their
output ports, show that the output mismatch of the balanced amplifier is S22 = (�A − �B)/2.

12.20 Derive the result for the optimum size of a distributed amplifier given in (12.80).

12.21 Consider a distributed amplifier using GaAs MESFETs with the following parameters: Ri = 5 �,

Rds = 200 �, Cgs = 0.3 pF, and gm = 40 mS. Calculate and plot the gain from 0 to 20 GHz for
N = 4, 8, and 16 sections. Find the optimum value of N that will give maximum gain at 16 GHz.
Assume Zd = Zg = Z0 = 50 �.

12.22 Use the transistor data given in Table 12.1 to design a power amplifier at 1 GHz with a power output of
1 W. Design the input and output matching circuits using the given large-signal reflection coefficients.
Compute the required input power level.
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Oscillators and Mixers

RF and microwave oscillators are found in all modern wireless communications, radar,
and remote sensing systems to provide signal sources for frequency conversion and carrier
generation. A solid-state oscillator uses an active nonlinear device, such as a diode or tran-
sistor, in conjunction with a passive circuit to convert DC to a sinusoidal steady-state RF
signal. Basic transistor oscillator circuits can generally be used at low frequencies, often with
crystal resonators to provide improved frequency stability and low noise performance. At
higher frequencies, diodes or transistors biased to a negative resistance operating point can
be used with cavity, transmission line, or dielectric resonators to produce fundamental fre-
quency oscillations up to 100 GHz. Alternatively, frequency multipliers, in conjunction with
a lower frequency source, can be used to produce power at millimeter wave frequencies.
Because of the requirement of a nonlinear active device, the rigorous analysis and design of
oscillator circuits can be difficult, and is usually carried out today with sophisticated CAD
tools.

In this chapter we begin with an overview of low-frequency transistor oscillator circuits,
including the well-known Hartley and Colpitts configurations, as well as crystal-controlled os-
cillators. Next we consider oscillators for use at microwave frequencies, which differ from their
lower frequency counterparts primarily due to different transistor characteristics and the ability
to make practical use of negative resistance devices and high-Q microwave resonators. We also
discuss the important topic of oscillator phase noise. Finally, an introduction to frequency mul-
tiplication techniques is given. A related topic is that of frequency conversion, or mixing, so we
also discuss in this chapter the fundamental operations of frequency up-conversion and down-
conversion. Detectors and single-ended mixers using both diodes and transistors are discussed,
along with some specialized mixer circuits.

Important considerations for oscillators used in RF and microwave systems include the
following:

� Tuning range (specified in MHz/V for voltage-tuned oscillators)
� Frequency stability (specified in PPM/◦C)
� AM and FM noise (specified in dBc/Hz below carrier, offset from carrier)
� Harmonics (specified in dBc below carrier)

604
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Typical frequency stability requirements can range from 2 to 0.5 PPM/◦C, while phase
noise requirements may range from −80 to −110 dBc/Hz at a 10 kHz offset from the
carrier.

Transistor oscillators generally have lower frequency and power capabilities than diode
sources (e.g., tunnel, Gunn, or IMPATT diodes), but offer several advantages over diodes. First,
oscillators using transistors are readily compatible with monolithic integrated circuitry, allow-
ing easy integration with transistor amplifiers and mixers, while diode devices are often less
compatible. In addition, a transistor oscillator circuit is much more flexible than a diode source.
This is because the negative resistance oscillation mechanism of a diode is determined and lim-
ited by the physical characteristics of the device itself, while the operating characteristics of a
transistor can be adjusted to a greater degree by the bias point, as well as the source or load
impedances presented to the device. Transistor oscillators usually allow more control of the
frequency of oscillation, temperature stability, and output noise than do diode sources. Transis-
tor oscillator circuits also lend themselves well to frequency tuning, phase or injection locking,
and various modulation requirements. Transistor sources are relatively efficient but usually are
not capable of very high power outputs.

Tunable sources are necessary in many types of electronic warfare systems, frequency-
hopping radar and communications systems, and test systems. Transistor oscillators can be
made tunable by using an adjustable element in the resonant load, such as a varactor diode or
a magnetically biased YIG sphere. Thus, a voltage-controlled oscillator (VCO) can be made
by using a reverse-biased varactor diode in the tank circuit of a transistor oscillator. In a YIG-
tuned oscillator (YTO), a single-crystal YIG sphere is used to control the inductance of a coil in
the tank circuit of the oscillator. Since YIG is a ferrimagnetic material, its effective permeabil-
ity can be controlled with an external DC magnetic bias field, thus controlling the oscillator
frequency. YIG oscillators can be made to tune over a decade or more of bandwidth, while
varactor-tuned oscillators are limited to a tuning range of about an octave. YIG-tuned oscilla-
tors, however, cannot be tuned as fast as varactor oscillators.

13.1 RF OSCILLATORS

In the most general sense, an oscillator is a nonlinear circuit that converts DC power to an
AC waveform. Most RF oscillators provide sinusoidal outputs, which minimizes undesired
harmonics and noise sidebands. The basic conceptual operation of a sinusoidal oscilla-
tor can be described with the linear feedback circuit shown in Figure 13.1. An amplifier
with voltage gain A has an output voltage Vo. This voltage passes through a feedback net-
work with a frequency-dependent transfer function H(ω), and is added to the input Vi of
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FIGURE 13.1 Block diagram of a sinusoidal oscillator using an amplifier with a frequency-
dependent feedback path.

the circuit. The output voltage can be expressed as

Vo(ω) = AVi (ω) + H(ω)AVo(ω), (13.1)

which can be solved to yield the output voltage in terms of the input voltage as

Vo(ω) = A

1 − AH(ω)
Vi (ω). (13.2)

If the denominator of (13.2) becomes zero at a particular frequency, it is possible to achieve
a nonzero output voltage for a zero input voltage, thus forming an oscillator. This is
known as the Nyquist criterion, or the Barkhausen criterion. In contrast to the design of
an amplifier, where we design to achieve at least conditional stability, oscillator design
depends on an unstable circuit.

The oscillator circuit of Figure 13.1 is useful conceptually but provides little help-
ful information for the design of practical transistor oscillators. Thus we consider next a
general analysis of transistor oscillator circuits.

General Analysis

There are a large number of possible RF oscillator circuits using bipolar or field effect
transistors in either common emitter/source, base/gate, or collector/drain configurations.
Various types of feedback networks lead to the well-known Hartley, Colpitts, Clapp, and
Pierce oscillator circuits [1–3]. All of these variations can be represented by the general
oscillator circuit shown in Figure 13.2.

The equivalent circuit on the right-hand side of Figure 13.2 is used to model either
a bipolar or a field effect transistor. As discussed in Chapter 10, we have assumed here a
unilateral transistor, which is usually a good approximation in practice. We can simplify the
analysis by assuming real input and output admittances of the transistor, defined as Gi and
Go, respectively, with a transistor transconductance gm . The feedback network on the left
side of the circuit is formed from three admittances in a bridged-T configuration. These
components are usually reactive elements (capacitors or inductors) in order to provide a
frequency-selective transfer function with high Q. A common emitter/source configuration
can be obtained by setting V2 = 0, while common base/gate or common collector/drain
configurations can be modeled by setting either V1 = 0 or V4 = 0, respectively. As shown,
the circuit of Figure 13.2 does not include a completed feedback path—this can be achieved
by connecting node V3 to node V4.

Writing Kirchhoff’s equation for the four voltage nodes of the circuit of Figure 13.2
gives the following matrix equation:
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FIGURE 13.2 General circuit for a transistor oscillator. The transistor may be either a bipolar
junction transistor or a field effect transistor. This circuit can be used for common
emitter/source, base/gate, or collector/drain configurations by grounding V2, V1,
or V4, respectively. Feedback is provided by connecting node V3 to V4.

⎡
⎢⎢⎢⎣

(Y1 + Y3 + Gi ) −(Y1 + Gi ) −Y3 0

−(Y1 + Gi + gm) (Y1 + Y2 + Gi + Go + gm) −Y2 −Go

−Y3 −Y2 (Y2 + Y3) 0

gm −(Go + gm) 0 Go

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

V1

V2

V3

V4

⎤
⎥⎥⎥⎦ = 0

(13.3)

Recall from circuit analysis that if the i th node of the circuit is grounded, so that Vi = 0,
the matrix of (13.3) will be modified by eliminating the i th row and column, reducing the
order of the matrix by one. In addition, if two nodes are connected together, the matrix is
modified by adding the corresponding rows and columns.

Oscillators Using a Common Emitter BJT

As a specific example, consider an oscillator using a bipolar junction transistor in a com-
mon emitter configuration. In this case we have V2 = 0, with feedback provided from the
collector, so that V3 = V4. In addition, the output admittance of the transistor is negligible,
so we set Go = 0. These conditions serve to reduce the matrix of (13.3) to the following:

[
(Y1 + Y3 + Gi ) −Y3

(gm − Y3) (Y2 + Y3)

] [
V1
V

]
= 0, (13.4)

where V = V3 = V4.
If the circuit is to operate as an oscillator, then (13.4) must be satisfied for nonzero

values of V1 and V , so the determinant of the matrix must be zero. If the feedback net-
work consists only of lossless capacitors and inductors, then Y1, Y2, and Y3 must be
imaginary, so we let Y1 = jB1, Y2 = jB2, and Y3 = jB3. Also recall that the transcon-
ductance gm , and transistor input conductance Gi , are real. The determinant of (13.4) then
simplifies to

∣∣∣∣ Gi + j(B1 + B3) − jB3
gm − jB3 j(B2 + B3)

∣∣∣∣ = 0. (13.5)
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Separately equating the real and imaginary parts of the determinant to zero gives two
equations:

1

B1
+ 1

B2
+ 1

B3
= 0, (13.6a)

1

B3
+

(
1 + gm

Gi

)
1

B2
= 0. (13.6b)

If we convert susceptances to reactances, and let X1 = 1/B1, X2 = 1/B2, and X3 = 1/B3,
then we can write (13.6a) as

X1 + X2 + X3 = 0. (13.7a)

Using (13.6a) to eliminate B3 from (13.6b) reduces that equation to the following:

X1 = gm

Gi
X2. (13.7b)

Since gm and Gi are positive, (13.7b) implies that X1 and X2 have the same sign, and
therefore are either both capacitors or both inductors. Equation (13.7a) then shows that
X3 must be opposite in sign from X1 and X2, and therefore the opposite type of reactive
component. This conclusion leads to two of the most commonly used oscillator circuits.

If X1 and X2 are capacitors and X3 is an inductor, we have a Colpitts oscillator. Let
X1 = −1/ω0C1, X2 = −1/ω0C2, and X3 = ω0L3. Then (13.7a) becomes

−1

ω0

(
1

C1
+ 1

C2

)
+ ω0L3 = 0,

which can be solved for the frequency of oscillation, ω0, as

ω0 =
√

1

L3

(
C1 + C2

C1C2

)
. (13.8)

Using these same substitutions in (13.7b) gives a necessary condition for oscillation of the
Colpitts circuit as

C2

C1
= gm

Gi
. (13.9)

The resulting common emitter Colpitts oscillator circuit is shown in Figure 13.3a.
Alternatively, if we choose X1 and X2 to be inductors and X3 to be a capacitor, then we

have a Hartley oscillator. Let X1 = ω0L1, X2 = ω0L2, and X3 = −1/ω0C3. Then (13.7a)
becomes

ω0(L1 + L2) − 1

ω0C3
= 0,

which can be solved for ω0 to give

ω0 =
√

1

C3(L1 + L2)
. (13.10)
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FIGURE 13.3 Transistor oscillator circuits using a common emitter BJT. (a) Colpitts oscillator.
(b) Hartley oscillator.

These same substitutions used in (13.7b) gives a necessary condition for oscillation of the
Hartley circuit as

L1

L2
= gm

Gi
. (13.11)

The resulting common emitter Hartley oscillator circuit is shown in Figure 13.3b.

Oscillators Using a Common Gate FET

Next consider an oscillator using an FET in a common gate configuration. In this case
V1 = 0, and again V3 = V4 provides the feedback path. For an FET the input admittance
can be neglected, so we set Gi = 0. Then the matrix of (13.3) reduces to

[
(Y1 + Y2 + gm + Go) −(Y2 + Go)

−(Go + gm + Y2) (Y2 + Y3 + Go)

] [
V2
V

]
= 0, (13.12)

where V = V3 = V4. Again we assume the feedback network is composed of lossless re-
active elements, so that Y1, Y2, and Y3 can be replaced with their susceptances. Setting the
determinant of (13.12) to zero then gives

∣∣∣∣(gm + Go) + j(B1 + B2) −Go − jB2
−(Go + gm) − jB2 Go + j(B2 + B3)

∣∣∣∣ = 0. (13.13)

Equating the real and imaginary parts to zero gives two equations:

1

B1
+ 1

B2
+ 1

B3
= 0, (13.14a)

Go

B3
+ gm

B1
+ Go

B1
= 0. (13.14b)

As before, let X1, X2, and X3 be the reciprocals of the corresponding susceptances. Then
(13.14a) can be rewritten as

X1 + X2 + X3 = 0. (13.15a)
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Using (13.14a) to eliminate B3 from (13.14b) reduces that equation to

X2

X1
= gm

Go
. (13.15b)

Since gm and Go are positive, (13.15b) shows that X1 and X2 must have the same sign,
while (13.15a) indicates that X3 must have the opposite sign. If X1 and X2 are chosen to be
negative, then these elements will be capacitive and X3 will be inductive. This corresponds
to a Colpitts oscillator. Since (13.15a) is identical to (13.7a), its solution gives the result
for the resonant frequency for the common gate Colpitts oscillator as

ω0 =
√

1

L3

(
C1 + C2

C1C2

)
, (13.16)

which is identical to the result obtained in (13.8) for the common emitter Colpitts oscillator.
This is because the resonant frequency is determined by the feedback network, which is
identical in both cases. The further condition for oscillation given by (13.15b) reduces to

C1

C2
= gm

Go
. (13.17)

If we choose X1 and X2 to be positive (inductive), then X3 will be capacitive, and we have
a Hartley oscillator. The resonant frequency of the common gate Hartley oscillator is given
by

ω0 =
√

1

C3(L1 + L2)
, (13.18)

which is identical to the result of (13.10) for the common emitter Hartley oscillator. Equa-
tion (13.15b) reduces to

L2

L1
= gm

Go
. (13.19)

The circuits for common gate Colpitts and Hartley oscillators are similar to the circuits
shown in Figure 13.3 if the BJT is replaced with an FET device.

Practical Considerations

It must be emphasized that the above analysis is based on very idealized assumptions, and
in practice successful oscillator design requires attention to factors such as the reactances
associated with the input and output transistor ports, the variation of transistor properties
with temperature, transistor bias and decoupling circuitry, and the effect of inductor losses.
For these purposes computer-aided design software can be very helpful.

The above analysis can be extended to account for more realistic feedback network in-
ductors having series resistance, which invariably occurs in practice. For example, consider
the case of a common emitter BJT Colpitts oscillator, with the impedance of the inductor
given by Z3 = 1/Y3 = R + jωL3. Substituting into (13.4) and setting the real and imagi-
nary parts of the determinant to zero gives the following result for resonant frequency:

ω0 =
√

1

L3

(
1

C1
+ 1

C2
+ GiR

C1

)
=

√
1

L3

(
1

C ′
1

+ 1

C2

)
. (13.20)
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This equation is similar to the result of (13.8) for the lossless inductor, except that C ′
1 is

defined as

C ′
1 = C1

1 + RGi
. (13.21)

The corresponding condition for oscillation is

R

Gi
= 1 + gm/Gi

ω2
0C1C2

− L3

C1
. (13.22)

This result sets the maximum value of the series resistance R; the left-hand side of (13.22)
should generally be chosen to be less than the right-hand side to ensure oscillation.

EXAMPLE 13.1 COLPITTS OSCILLATOR DESIGN

Design a 50 MHz Colpitts oscillator using a bipolar junction transistor in a com-
mon emitter configuration with β = gm/Gi = 30, and a transistor input resistance
of Ri = 1/Gi = 1200 �. Use an inductor with L3 = 0.10 µH and an unloaded Q
of 100. What is the minimum Q of the inductor for which oscillation will be
sustained?

Solution
From (13.20) the series combination of C ′

1 and C2 is found to be

C ′
1C2

C ′
1 + C2

= 1

ω2
0 L3

= 1

(2π)2(50 × 106)2(0.1 × 10−6)
= 100 pF.

This value can be obtained in several ways, but here we will choose C ′
1 = C2 =

200 pF.
From Chapter 6 we know that the unloaded Q of an inductor is related to its

series resistance by Q0 = ωL/R, so the series resistance of the 0.1 µH inductor
is

R = ω0L3

Q0
= (2π)(50 × 106)(0.1 × 10−6)

100
= 0.31 �.

Then (13.21) gives C1 as

C1 = C ′
1(1 + RGi ) = (200 pF)

(
1 + 0.31

1200

)
= 200 pF,

which we see is essentially unchanged from the value found by neglecting the
inductor loss. Using (13.22) with the above values gives

R

Gi
= 1 + β

ω2
0C1C2

− L3

C1

(0.31)(1200) <
1 + 30

(2π)2(50 × 106)2(200 × 10−12)2
− 0.1 × 10−6

200 × 10−12

372 < 7852 − 500 = 7352

which indicates that the condition for oscillation will be satisfied. This condition
can be used to find the minimum unloaded inductor Q by first solving for the
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maximum value of series resistance R:

Rmax = 1

Ri

(
1 + β

ω2
0C1C2

− L3

C1

)
= 7352

1200
= 6.13 �.

So the minimum unloaded Q is

Qmin = ω0L3

Rmax
= (2π)(50 × 106)(0.1 × 10−6)

6.13
= 5.1.

■

Crystal Oscillators

As we have seen from the above analysis, the resonant frequency of an oscillator is deter-
mined from the condition that a 180◦ phase shift occurs between the input and output of the
transistor. If the resonant feedback circuit has a high Q, so that there is a very rapid change
in the phase shift with frequency, the oscillator will have good frequency stability. Quartz
crystals are useful for this purpose, especially at frequencies below a few hundred MHz,
where LC resonators seldom have unloaded Qs greater than a few hundred. Quartz crys-
tals may have unloaded Qs as high as 100,000 and temperature drift less than 0.001%/C◦.
Crystal-controlled oscillators therefore find extensive use as stable frequency sources in
RF systems; further stability can be obtained by controlling the temperature of the quartz
crystal.

A quartz crystal resonator consists of a small, thin sheet of quartz mounted between
two metallic plates. Mechanical oscillations can be excited in the crystal through the piezo-
electric effect. The equivalent circuit of a quartz crystal near its lowest resonant mode is
shown in Figure 13.4a. This circuit has series and parallel resonant frequencies, ωs and ωp,
given by

ωs = 1√
LC

, (13.23a)

ωp = 1√
L

(
C0C

C0 + C

) . (13.23b)

The reactance of the circuit of Figure 13.4a is plotted in Figure 13.4b, where we see that the
reactance is inductive in the frequency range between the series and parallel resonances.
This is the usual operating point of the crystal, so that the crystal may be used in place of
the inductor in a Colpitts or Pierce oscillator. A typical crystal oscillator circuit is shown
in Figure 13.5.

C0

FIGURE 13.4 (a) Equivalent circuit of a crystal resonator. (b) Input reactance of a crystal
resonator.
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FIGURE 13.5 Pierce crystal oscillator circuit.

13.2 MICROWAVE OSCILLATORS

In this section we focus on oscillator circuits that are useful at microwave frequencies,
primarily employing negative resistance diodes or transistors.

Figure 13.6 shows the canonical RF circuit for a one-port negative resistance oscil-
lator, where Z in = Rin + j X in is the input impedance of the active device (e.g., a bi-
ased diode or transistor). In general, this impedance is current (or voltage) dependent,
as well as frequency dependent, which we indicate by writing Z in(I, jω) = Rin(I, jω) +
j X in(I, jω). The device is terminated with a passive load impedance, ZL = RL + j X L .
Applying Kirchhoff’s voltage law gives

(ZL + Z in)I = 0. (13.24)

If oscillation is occurring, such that the RF current I is nonzero, then the following two
conditions must be satisfied:

RL + Rin = 0, (13.25a)

X L + X in = 0. (13.25b)

Since the load is passive, RL > 0, and (13.25a) implies that Rin < 0. Thus, while a positive
resistance implies energy dissipation, a negative resistance implies an energy source. The
condition of (13.25b) controls the frequency of oscillation. The condition in (13.24), that

Negative
resistance

device

I
X in

RinRin

Γin
(Zin)

ZL = RL + j XL

ΓL
(ZL)

FIGURE 13.6 Circuit for a one-port negative resistance oscillator.
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ZL = −Zin for steady-state oscillation, implies that the reflection coefficients �L and �in
are related as

�L = ZL − Z0

ZL + Z0
= −Z in − Z0

−Z in + Z0
= Z in + Z0

Z in − Z0
= 1

�in
. (13.26)

The process of oscillation is critically dependent on the nonlinear behavior of Zin, as
follows. Initially, it is necessary for the overall circuit to be unstable at a certain frequency,
that is, Rin(I, jω) + RL< 0. Then any transient excitation or noise will cause an oscillation
to build up at the frequency ω. As I increases, Rin(I, jω) must become less negative until
the current I0 is reached such that Rin(I0, jω0) + RL = 0, and X in(I0, jω0) + X L( jω0) =
0. At this point the oscillator can run in a stable state. The final frequency, ω0, generally
differs from the startup frequency because X in is current dependent, so that X in(I, jω) �=
X in(I0, jω0).

Thus we see that the conditions of (13.25) are not enough to guarantee a stable state
of oscillation. In particular, stability requires that any perturbation in current or frequency
will be damped out, allowing the oscillator to return to its original state. This condition can
be quantified by considering the effect of a small change, δ I , in the current, and a small
change, δs, in the complex frequency s = α + jω. If we let ZT (I, s) = Zin(I, s) + ZL(s),
then we can write a Taylor series for ZT (I, s) about the stable operating point I0, ω0 as

ZT (I, s) = ZT (I0, s0) + ∂ ZT

∂s

∣∣∣∣
s0,I0

δs + ∂ ZT

∂ I

∣∣∣∣
s0,I0

δ I = 0, (13.27)

since ZT (I, s) must still equal zero if oscillation is occurring. In (13.27), s0 = jω0 is the
complex frequency at the original operating point. Now use the fact that ZT (I0, s0) = 0,
and that ∂ ZT /∂s = − j (∂ ZT /∂ω), to solve (13.27) for δs = δα + jδω:

δs = δα + jδω = −∂ ZT/∂ I

∂ ZT/∂s

∣∣∣∣
s0, I0

δ I = − j(∂ ZT/∂ I )
(
∂ Z∗

T/∂ω
)

|∂ ZT/∂ω|2 δ I. (13.28)

If the transient caused by δ I and δω is to decay, we must have δα < 0 when δ I > 0. Equa-
tion (13.28) then implies that

Im

{
∂ ZT

∂ I

∂ Z∗
T

∂ω

}
< 0,

or

∂ RT

∂ I

∂ XT

∂ω
− ∂ XT

∂ I

∂ RT

∂ω
> 0. (13.29)

This relation is sometimes known as Kurokawa’s condition. For a passive load, ∂ RL/∂ I =
∂ X L/∂ I = ∂ RL/∂ω = 0, so (13.29) reduces to

∂ Rin

∂ I

∂

∂ω
(X L + X in) − ∂ X in

∂ I

∂ Rin

∂ω
> 0. (13.30)

As discussed above, we usually have that ∂ Rin/∂ I > 0, so (13.30) can be satisfied if
∂(X L + X in)/∂ω � 0. This implies that a high-Q circuit will result in maximum oscil-
lator stability. Cavity and dielectric resonators are often used for this purpose.

Effective oscillator design requires the consideration of several other issues, such as
the selection of an operating point for stable operation and maximum power output, fre-
quency pulling, large-signal effects, and noise characteristics. We leave these topics to
more advanced texts [4, 5].
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Diode

0.254 �

0.308 � 50 Ω

ΓL
(ZL)

Γin
(Zin)

FIGURE 13.7 Load matching circuit for the one-port oscillator of Example 13.2.

EXAMPLE 13.2 NEGATIVE RESISTANCE OSCILLATOR DESIGN

A one-port oscillator uses a negative resistance diode having �in = 1.25� 40◦
(Z0 = 50 �) at its desired operating point, for f = 6 GHz. Design a load match-
ing network for a 50 � load impedance.

Solution
From either the Smith chart (see Problem 13.5) or by direct calculation, we find
the input impedance of the diode as

Z in = Z0
1 + �in

1 − �in
= −44 + j123 �.

Then, by (13.25), the load impedance must be

ZL = −Zin = 44 − j123 �.

A shunt stub and series section of line can be used to convert 50 � to ZL , as
shown in the circuit of Figure 13.7. ■

Transistor Oscillators

In a transistor oscillator, a negative resistance one-port network is effectively created by ter-
minating a potentially unstable transistor with an impedance designed to drive the device
in an unstable region. The circuit model of a transistor oscillator is shown in Figure 13.8.
In this circuit, the RF output port is part of the load network on the output side of the
transistor, but it is also possible to use the terminating network to the left of the transistor
as the output port. In the case of an amplifier, we preferred a device with a high degree

Γin
(Zin)

ΓS
(ZS)

Γout
(Zout)

ΓL
(ZL)

Transistor
[S]

Load
network

Terminating
network

FIGURE 13.8 Circuit for a two-port transistor oscillator.
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of stability—ideally, an unconditionally stable device. For an oscillator, we require a de-
vice with a high degree of instability. Typically, common source or common gate FET
configurations are used (common emitter or common base for bipolar junction devices),
often with positive feedback to enhance the instability of the device. After the transistor
configuration is selected, the output stability circle can be drawn in the �L plane, and �L

selected to produce a large value of negative resistance at the input to the transistor. Then
the terminating impedance ZS = RS + j X S can be chosen to match Z in. Because such a
design often relies on the small-signal scattering parameters, and because Rin will become
less negative as the oscillator power builds up, it is often necessary to choose RS so that
RS + Rin < 0. Otherwise, oscillation may cease if increasing RF power increases Rin to
the point where RS + Rin > 0. In practice, a value of

RS = −Rin

3
(13.31a)

is often used. The reactive part of ZS is chosen to resonate the circuit,

X S = −X in. (13.31b)

When oscillation occurs between the termination network and the transistor, oscil-
lation will simultaneously occur at the output port, which we can show as follows. For
steady-state oscillation at the input port, we must have �S�in = 1, analogous to the condi-
tion of (13.26). Then from (12.3a) we have

1

�S
= �in = S11 + S12S21�L

1 − S22�L
= S11 − 	�L

1 − S22�L
, (13.32)

where 	 = S11S22 − S12S21. Solving for �L gives

�L = 1 − S11�S

S22 − 	�S
. (13.33)

From (12.3b) we have that

�out = S22 + S12S21�S

1 − S11�S
= S22 − 	�S

1 − S11�S
, (13.34)

which shows that �L�out = 1, and hence ZL = −Zout. Thus, the condition for oscillation
at the load network is satisfied. Note that it is preferable to use the large-signal scatter-
ing parameters of the transistor in the above development.

EXAMPLE 13.3 TRANSISTOR OSCILLATOR DESIGN

Design a transistor oscillator at 4 GHz using a GaAs MESFET in a common
gate configuration, with a 5 nH inductor in series with the gate to increase the
instability. Choose a load network to match to a 50 � load, and an appropriate
terminating network at the input to the transistor. The scattering parameters of the
transistor in a common source configuration are (Z0 = 50 �) S11 = 0.72� −116◦,
S12 = 0.03� 57◦, S21 = 2.60� 76◦, and S22 = 0.73� −54◦.

Solution
The first step is to convert the common source scattering parameters to the scat-
tering parameters that apply to the transistor in a common gate configuration with
a series inductor. (See Figure 13.9a.) This is most easily done using a microwave
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CAD package. The new scattering parameters are

S′
11 = 2.18� −35◦,

S′
12 = 1.26� 18◦,

S′
21 = 2.75� 96◦,

S′
22 = 0.52� 155◦.

Note that |S′
11| is significantly greater than |S11|, which suggests that the config-

uration of Figure 13.9a is more unstable than the common source configuration.
Calculating the output stability circle (�L plane) parameters from (11.25) gives

CL =
(
S′

22 − 	′S′
11
∗)∗

∣∣S′
22

∣∣2 − |	′|2
= 1.08� 33◦,

RL =
∣∣∣∣∣

S′
12S′

21∣∣S′
22

∣∣2 − |	′|2

∣∣∣∣∣ = 0.665.

Since
∣∣S′

11

∣∣ = 2.18 > 1, the stable region is inside this circle, as shown in the
Smith chart in Figure 13.9b.

There is a great amount of freedom in our choice for �L , but one objective is
to make |�in| large. We therefore try several values of �L located on the opposite
side of the chart from the stability circle, and select �L = 0.59� −104◦. Then
we can design a single-stub matching network to convert a 50 � load to ZL =
20 − j35 �, as shown in Figure 13.9a.

For the given value of �L , we calculate �in as

�in = S′
11 + S′

12S′
21�L

1 − S′
22�L

= 3.96� −2.4◦

or Z in = −84 − j1.9 �. Then, from (13.31), we find ZS as

ZS = −Rin

3
− j X in = 28 + j1.9 �.

Using Rin/3 should ensure enough instability for the startup of oscillation. The
easiest way to implement the impedance ZS is to use a 90 � load with a short
length of line, as shown in the figure. It is likely that the steady-state oscillation
frequency will differ from 4 GHz because of the nonlinearity of the transistor
parameters. ■

Dielectric Resonator Oscillators

As we saw from the result of (13.30), oscillator stability is enhanced with the use of a
high-Q tuning network. The unloaded Q of a resonant network using lumped elements
or microstrip lines and stubs is typically limited to a few hundred (see Chapter 6), and
while waveguide cavity resonators can have unloaded Qs of 104 or more, they are not well
suited for integration in miniature microwave integrated circuitry. Another disadvantage of
metal cavities is the significant frequency drift caused by dimensional expansion due to
temperature variations. The dielectric cavity resonator discussed in Section 6.5 overcomes
most of these disadvantages, as it can have an unloaded Q as high as several thousand, it
is compact and easily integrated with planar circuitry, and it can be made from ceramic
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FIGURE 13.9 Circuit design for the transistor oscillator of Example 13.3. (a) Oscillator circuit.
(b) Smith chart for determining �L .

materials that have excellent temperature stability. For these reasons, transistor dielectric
resonator oscillators (DROs) are in common use over the entire microwave, and lower
millimeter wave, frequency range.

A dielectric resonator is usually coupled to an oscillator circuit by positioning it in
close proximity to a microstrip line, as shown in Figure 13.10a. The resonator operates
in the TE01δ mode, and couples to the fringing magnetic field of the microstrip line. The



c13OscillatorsAndMixers Pozar September 16, 2011 15:44

13.2 Microwave Oscillators 619

L

1

N

C

R

Zd

(a)

Dielectric
resonator

Microstrip
line

(b)

Z0 Z0Γ

FIGURE 13.10 (a) Geometry of a dielectric resonator coupled to a microstrip line; (b) equivalent
circuit.

strength of coupling is determined by the spacing, d, between the resonator and microstrip
line. Because coupling is via the magnetic field, the resonator appears as a series load on
the microstrip line, as shown in the equivalent circuit of Figure 13.10b. The resonator is
modeled as a parallel RLC circuit, and the coupling to the feedline is modeled by the turns
ratio, N , of the transformer. Using the result of (6.19) for the impedance of a parallel RLC
resonator, we can express the equivalent series impedance, Z , seen by the microstrip line
as

Z = N 2 R

1 + j2Q0	ω/ω0
, (13.35)

where Q0 = R/ω0L is the unloaded resonator Q, ω0 = 1/
√

LC is the resonant frequency,
and 	ω = ω − ω0. The coupling factor, defined in (6.76), between the resonator and the
feedline is the ratio of the unloaded to external Q, and can be found as

g = Q0

Qe
= R/ω0L

RL/N 2ω0L
= N 2 R

2Z0
, (13.36)

where RL = 2Z0 is the load resistance for a feedline with source and termination resis-
tances Z0. In some cases the feedline is terminated with an open-circuit λ/4 from the res-
onator to maximize the magnetic field at that point; in this case RL = Z0, and the coupling
factor is twice the value given in (13.36).

The reflection coefficient seen on the terminated microstrip line looking toward the
resonator can be written as

� =
(
Z0 + N 2 R

) − Z0(
Z0 + N 2 R

) + Z0
= N 2 R

2Z0 + N 2 R
= g

1 + g
. (13.37)

This allows the coupling coefficient to be found from g = �/(1 − �) after the simple pro-
cedure of measuring � at resonance; the resonant frequency and Q can also be found by
measurement. Alternatively, these quantities can be calculated using approximate analyt-
ical solutions [6]. Note that this procedure leaves a degree of freedom between N and R
since only the product N 2 R is uniquely determined.

There are many oscillator configurations using common source (emitter), common
gate (base), or common drain (collector) connections of either BJTs or FETs, in addition to
the optional use of series or shunt elements to increase the instability of the device [4, 5].
A dielectric resonator can be incorporated into the circuit to provide frequency stability
using either the parallel feedback arrangement of Figure 13.11a, or the series feedback
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FIGURE 13.11 (a) Dielectric resonator oscillator using parallel feedback; (b) dielectric resonator
oscillator using series feedback.

technique shown in Figure 13.11b. The parallel configuration uses a resonator coupled to
two microstrip lines, functioning as a high-Q bandpass filter that couples a portion of the
transistor output back to its input. The amount of coupling is controlled by the spacing
between the resonator and the lines, and the phase is controlled by the length of the lines.
The series feedback configuration is simpler, using only a single microstrip feedline, but
typically does not have a tuning range as wide as that obtained with parallel feedback.
Design of an oscillator using parallel feedback is most conveniently done using microwave
CAD software, but a dielectric resonator oscillator using series feedback can be designed
using the same procedure that was discussed in the previous section on two-port oscillators.

EXAMPLE 13.4 DIELECTRIC RESONATOR OSCILLATOR DESIGN

A wireless local area network application requires a local oscillator operating at
2.4 GHz. Design a dielectric resonator oscillator using the series feedback cir-
cuit of Figure 13.11b with a bipolar transistor having the following scattering
parameters (Z0 = 50 �): S11 = 1.8� 130◦, S12 = 0.4� 45◦, S21 = 3.8� 36◦, and
S22 = 0.7� −63◦. Determine the required coupling coefficient for the dielectric
resonator, and the required microstrip matching network for the load. Plot the
magnitude of �out versus 	 f/f0 for small variations in frequency about the de-
sign value, assuming an unloaded resonator Q of 1000.

Solution
The DRO circuit is shown in Figure 13.12a. The dielectric resonator is placed
λ/4 from the open end of the microstrip line; the line length �r can be adjusted

Dielectric
resonator

λ
4

�r

�t

�s Z0

Γin
(Zin)

(    )
ΓS

(ZS)

Γout
(Zout)

ΓL
(ZL)

ΓS′

ZS′    

FIGURE 13.12 (a) Circuit for the dielectric resonator of Example 13.4.
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FIGURE 13.12 Continued. (b) |�out| vs. frequency in Example 13.4.

to match the phase of the required value of �S . In contrast to the oscillator of
the previous example, the output load impedance for this circuit is part of the
terminating network.

The stability circles for the transistor can be plotted if desired, but are not
necessary for the design since we can begin by choosing �S to provide a large
value of |�out|. From (13.34) we have

�out = S22 + S12S21�S

1 − S11�S
,

which indicates that we can maximize �out by making 1 − S11�S close to zero.
Thus we choose �S = 0.6� −130◦, which gives �out = 10.7� 132◦. This corre-
sponds to an impedance

Zout = Z0
1 + �out

1 − �out
= 50

1 + 10.7� 132◦

1 − 10.7� 132◦ = −43.7 + j6.1 �.

Applying the analogous startup condition of (13.31) for the output side gives the
required termination impedance as

ZL = −Rout

3
− j Xout = 5.5 − j6.1 �.

The matching network can now be designed using a Smith chart. The short-
est transmission line length for matching ZL to the load impedance Z0 is �t =
0.481λ, and the required open-circuit stub length is �s = 0.307λ.

Next we match �S to the resonator network. From (13.35) we know that the
equivalent impedance of the resonator seen by the microstrip line is real at the
resonant frequency, so the phase angle of the reflection coefficient at this point,
�′

S , must be either zero or 180◦. For an undercoupled parallel RLC resonator,
R < Z0, so the proper phase will be 180◦, which can be achieved by transfor-
mation through the line length �r . The magnitude of the reflection coefficient is
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unchanged, so we have the relation

�′
S = �Se2 jβ�r = (0.6� −130◦)e2 jβ�r = 0.6� 180◦,

which gives �r = 0.431λ. The equivalent impedance of the resonator at resonance
is then

Z ′
S = Z0

1 + �′
S

1 − �′
S

= 12.5 �.

The coupling coefficient can be found using (13.36), with a factor of two to ac-
count for the λ/4 stub termination, as

g = N 2 R

Z0
= 12.5

50
= 0.25.

The variation of |�out| with frequency will give an indication of the frequency
stability of the oscillator. We can calculate �out from (13.34), after first using
(13.35) to compute Z ′

S , �′
S , and then transforming down the line of length �r

to obtain �S . The electrical line length can be approximated as constant for the
small changes in frequency associated with this calculation. A short computer
program, or microwave CAD software, can be used to generate data for −0.01 <

	 f/ f0 < 0.01, which is shown in the graph of Figure 13.12b. Observe that |�out|
decreases rapidly with a change in frequency as small as a few hundredths of a
percent, demonstrating the sharp selectivity that can be obtained with a dielectric
resonator. ■

13.3 OSCILLATOR PHASE NOISE

The noise produced by an oscillator or other signal source is important in practice because
it may severely degrade the performance of a communications or radar receiver system.
Besides adding to the noise level of the receiver, a noisy local oscillator will lead to down-
conversion of undesired nearby signals, thus limiting the selectivity of the receiver and
how closely adjacent channels may be spaced. Phase noise refers to the short-term random
fluctuation in the frequency (or phase) of an oscillator signal. Phase noise also introduces
uncertainty during the detection of digitally modulated signals.

An ideal oscillator would have a frequency spectrum consisting of a single delta func-
tion at its operating frequency, but a realistic oscillator will have a spectrum more like that
shown in Figure 13.13. Spurious signals due to oscillator harmonics or intermodulation
products appear as discrete spikes in the spectrum. Phase noise, due to random fluctuations
caused by thermal and other noise sources, appears as a broad, continuous distribution

f0

FIGURE 13.13 Output spectrum of a typical RF oscillator.
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localized about the output signal. Phase noise is defined as the ratio of power in one phase
modulation sideband to the total signal power per unit bandwidth (1 Hz) at a particular
offset, fm , from the signal frequency, and is denoted as L ( fm). It is usually expressed in
decibels relative to the carrier power per hertz of bandwidth (dBc/Hz). A typical oscillator
phase noise specification for a cellular radio, for example, may be −110 dBc/Hz at 25 kHz
from the carrier. In the following sections we show how phase noise may be represented,
and present a widely used model for characterizing the phase noise of an oscillator.

Representation of Phase Noise

In general, the output voltage of an oscillator or synthesizer can be written as

vo(t) = Vo[1 + A(t)] cos[ωot + θ(t)], (13.38)

where A(t) represents the amplitude fluctuations of the output, and θ(t) represents the
phase variation of the output waveform. Of these, amplitude variations can usually be well
controlled, and generally have less impact on system performance. Phase variations may be
discrete (due to deterministic spurious mixer products or harmonics), or random in nature
(due to thermal or other random noise sources). Note from (13.38) that an instantaneous
phase variation is indistinguishable from a variation in frequency.

Small changes in the oscillator frequency can be represented as a frequency modula-
tion of the carrier by letting

θ(t) = 	 f

fm
sin ωmt = θp sin ωmt, (13.39)

where fm = ωm/2π is the modulating frequency. The peak phase deviation is θp = 	 f/ fm

(also called the modulation index). Substituting (13.39) into (13.38) and expanding gives

vo(t) = Vo[cos ωot cos(θp sin ωmt)− sin ωot sin(θp sin ωmt)], (13.40)

where we set A(t) = 0 to ignore amplitude fluctuations. Assuming the phase deviations
are small, so that θp � 1, we can use the small-argument expressions that sin x � x and
cos x � 1 to simplify (13.40) to

vo(t) = Vo
(
cos ωot − θp sin ωmt sin ωot

)

= Vo

{
cos ωot − θp

2
[cos(ωo + ωm)t − cos(ωo − ωm)t]

}
. (13.41)

This expression shows that small phase or frequency deviations in the output of an oscilla-
tor result in modulation sidebands at ωo ± ωm, located on either side of the carrier signal
at ωo. When these deviations are due to random changes in temperature or device noise,
the output spectrum of the oscillator will take the form shown in Figure 13.13.

According to the definition of phase noise as the ratio of noise power in a single
sideband to the carrier power, the waveform of (13.41) has a corresponding phase noise of

L ( f ) = Pn

Pc
=

1

2

(
Voθp

2

)2

1

2
V 2

o

= θ2
p

4
= θ2

rms

2
, (13.42)

where θrms = θp/
√

2 is the rms value of the phase deviation. The two-sided power spectral
density associated with phase noise includes power in both sidebands:

Sθ ( fm) = 2L ( fm) = θ2
p

2
= θ2

rms. (13.43)
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White noise generated by passive or active devices can be interpreted in terms of phase
noise by using the same definition. From Chapter 10 we know that the noise power at the
output of a noisy two-port network is kT0BFG, where T0 = 290 K, B is the measurement
bandwidth, F is the noise figure of the network, and G is the gain of the network. For a
1 Hz bandwidth, the ratio of output noise power density to output signal power gives the
power spectral density as

Sθ ( fm) = kT0 F

Pc
, (13.44)

where Pc is the input signal (carrier) power. Note that the gain of the network cancels in
this expression.

Leeson’s Model for Oscillator Phase Noise

In this section we present Leeson’s model for characterizing the power spectral density of
oscillator phase noise [2, 7]. As in Section 13.1, we will model the oscillator as an amplifier
with a feedback path, as shown in Figure 13.14. If the voltage gain of the amplifier is
included in the feedback transfer function H(ω), then the voltage transfer function for the
oscillator circuit is

Vo(ω) = Vi (ω)

1 − H(ω)
. (13.45)

If we consider oscillators that use a high-Q resonant circuit in the feedback loop (e.g., Col-
pitts, Hartley, Clapp, and similar oscillators), then H(ω) can be represented as the voltage
transfer function of a parallel RLC resonator:

H(ω) = 1

1 + jQ0

(
ω

ω0
− ω0

ω

) = 1

1 + 2 jQ0	ω/ω0
, (13.46)

where ω0 is the resonant frequency of the oscillator, and 	ω = ω − ω0 is the frequency
offset relative to the resonant frequency.

Since the input and output power spectral densities are related by the square of the
magnitude of the voltage transfer function [8], we can use (13.45)–(13.46) to write

Sφ(ω) =
∣∣∣∣ 1

1 − H(ω)

∣∣∣∣
2

Sθ (ω) = 1 + 4Q2
0	ω2/ω2

0

4Q2
0	ω2/ω2

0

Sθ (ω)

=
(

1 + ω2
0

4Q2
0	ω2

0

)
Sθ (ω) =

(
1 + ω2

h

	ω2
0

)
Sθ (ω), (13.47)

where Sθ (ω) is the input power spectral density, and Sφ(ω) is the output power spectral
density. In (13.47) we have also defined ωh = ω0/2Q0 as the half-power (3 dB) bandwidth
of the resonator.

FIGURE 13.14 Feedback amplifier model for characterizing oscillator phase noise.
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FIGURE 13.15 Noise power versus frequency for an amplifier with an applied input signal.

The noise spectrum of a typical transistor amplifier with an applied sinusoidal signal
at f0 is shown in Figure 13.15. Besides kTB thermal noise, transistors generate additional
noise that varies as 1/ f at frequencies below the frequency fα . This 1/ f , or flicker, noise
is likely caused by random fluctuations of the carrier density in the active device. Due to
the nonlinearity of the transistor, the 1/ f noise will modulate the applied signal at f0, and
appear as 1/ f noise sidebands around f0. Since the 1/ f noise component dominates the
phase noise power at frequencies close to the carrier, it is important to include it in our
model. Thus we consider an input power spectral density as shown in Figure 13.16, where
K/	 f represents the 1/ f noise component around the carrier, and kT0 F/P0 represents the
thermal noise. Thus the power spectral density applied to the input of the oscillator can be
written as

Sθ (ω) = kTF

P0

(
1 + Kωα

	ω

)
, (13.48)

where K is a constant accounting for the strength of the 1/ f noise, and ωα = 2π fα is the
corner frequency of the 1/ f noise. The corner frequency depends primarily on the type of
transistor used in the oscillator. Silicon junction FETs, for example, typically have corner
frequencies ranging from 50 to 100 Hz, while GaAs MESFETs have corner frequencies
ranging from 2 to 10 MHz, or higher. Silicon bipolar junction transistors have corner fre-
quencies that range from 5 to 50 kHz.

Using (13.48) in (13.47) gives the power spectral density of the output phase noise as

Sφ(ω) = kT0 F

P0

(
Kω2

0ωα

4Q2
0	ω3

+ ω2
0

4Q2
0	ω2

+ Kωα

	ω
+ 1

)

= kT0 F

P0

(
Kωαω2

h

	ω3
+ ω2

h

	ω2
+ Kωα

	ω
+ 1

)
. (13.49)

FIGURE 13.16 Idealized power spectral density of amplifier noise, including 1/ f and thermal
components.
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f0 f0

FIGURE 13.17 Power spectral density of phase noise at the output of an oscillator. (a) Response
for fh > fα (low Q). (b) Response for fh > fα (high Q).

This result is sketched in Figure 13.17. There are two cases, depending on which of the
middle two terms of (13.49) is more significant. In either case, for frequencies close to the
carrier at f0, the noise power decreases as 1/ f 3, or −18 dB/octave. If the resonator has a
relatively low Q, so that its 3 dB bandwidth fh > fα , then for frequencies between fα and
fh the noise power drops as 1/ f 2, or −12 dB/octave. If the resonator has a relatively high
Q, so that fh < fα , then for frequencies between fh and fα the noise power drops as 1/ f ,
or −6 dB/octave.

At higher frequencies the noise is predominantly thermal, constant with frequency,
and proportional to the noise figure of the amplifier. A noiseless amplifier with F = 1 (0
dB) would produce the minimum noise floor of kT0 = −174 dBm/Hz. In accordance with
Figure 13.13, the noise power is greatest at frequencies closest to the carrier frequency, but
(13.49) shows that the 1/ f 3 component is proportional to 1/Q2

0, so that better phase noise
characteristics close to the carrier are achieved with a high-Q resonator. Finally, recall
from (13.43) that the single-sideband phase noise will be one-half of the power spectral
density of (13.49). These results give a reasonably good model for oscillator phase noise,
and quantitatively explain the roll-off of noise power with frequency offset from the carrier.

The effect of phase noise in a receiver is to degrade both the signal-to-noise ratio
(or bit error rate) and the selectivity [9]. Of these, the impact on selectivity is usually
the most severe. Phase noise degrades receiver selectivity by causing down conversion of
signals located nearby the desired signal frequency. The process is shown in Figure 13.18.
A local oscillator at frequency f0 is used to down convert a desired signal to an intermediate

IF

IF

IF
IF

LO

FIGURE 13.18 Illustrating how local oscillator phase noise can lead to the reception of undesired
signals adjacent to the desired signal.
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frequency (IF). Due to phase noise, however, an adjacent undesired signal can be down
converted to the same IF frequency due to the phase noise spectrum of the local oscillator.
The phase noise that leads to this conversion is located at an offset from the carrier equal to
the IF frequency from the undesired signal. This process is called reciprocal mixing. From
this diagram, it is easy to see that the maximum allowable phase noise in order to achieve
an adjacent channel rejection (or selectivity) of S dB (S ≥ 0) is given by

L ( fm) = C (dBm) − S (dB) − I (dBm) − 10 log(B), (dBc/Hz), (13.50)

where C is the desired signal level (in dBm), I is the undesired (interference) signal level
(in dBm), and B is the bandwidth of the IF filter (in Hz).

EXAMPLE 13.5 GSM RECEIVER PHASE NOISE REQUIREMENTS

The GSM cellular telephone standard requires a minimum of 9 dB rejection of
interfering signal levels of −23 dBm at 3 MHz from the carrier, −33 dBm at
1.6 MHz from the carrier, and −43 dBm at 0.6 MHz from the carrier, for a carrier
level of −99 dBm. Determine the required local oscillator phase noise at these
carrier frequency offsets. The channel bandwidth is 200 kHz.

Solution
From (13.50) we have

L ( fm) = C (dBm) − S (dB) − I (dBm) − 10 log(B)

= −99 dBm − 9 dB − I (dBm) − 10 log(2 × 105).

The table below lists the required LO phase noise as computed from the above
expression:

Frequency Offset Interfering Signal L ( fm)

fm (MHz) Level (dBm) (dBc/Hz)

3.0 −23 −138

1.6 −33 −128

0.6 −43 −118

This level of phase noise requires a phase-locked synthesizer. Bit errors in GSM
systems are usually dominated by the reciprocal mixing effect, while errors due
to thermal antenna and receiver noise are generally negligible. ■

13.4 FREQUENCY MULTIPLIERS

As frequency increases into the millimeter wave range it becomes increasingly difficult to
build fundamental frequency oscillators with good power, stability, and noise character-
istics. An alternative approach is to produce a harmonic of a lower frequency oscillator
through the use of a frequency multiplier. As we saw in Section 10.3, a nonlinear element
may generate many harmonics of an input sinusoidal signal, so frequency multiplication is
a natural occurrence in circuits containing diodes and transistors. Designing a good-quality
frequency multiplier, however, is a difficult task that generally requires nonlinear analysis,
matching at multiple frequencies, stability analysis, and thermal considerations. We will
discuss some of the general operational principles and properties of diode and transistor
frequency multipliers, and refer the reader to the literature for more practical details [5].
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Frequency multiplier circuits can be categorized as reactive diode multipliers, resis-
tive diode multipliers, or transistor multipliers. A reactive diode multiplier uses either a
varactor or a step-recovery diode biased to present a nonlinear junction capacitance. Since
losses in such diodes are small, conversion efficiencies (the fraction of RF input power that
is converted to the desired harmonic) can be relatively high. In fact, as we will show, ideal
(lossless) reactive multipliers can achieve a theoretical conversion efficiency of 100%. Var-
actor multipliers are most useful for low harmonic conversion (multiplier factors of 2–4),
while step-recovery diodes are able to generate more power at higher harmonics. Resistive
multipliers exploit the nonlinear I –V characteristic of a forward-biased Schottky barrier
diode. We will show that resistive multipliers have conversion efficiencies that decrease as
the square of the harmonic number, and so these multipliers are only useful for low multi-
plication factors. Transistor multipliers can use both bipolar junction and FET devices, and
can provide conversion gains. Transistor multipliers are limited by their cutoff frequency,
however, and therefore are generally not useful at very high frequencies.

A disadvantage of frequency multipliers is that noise levels are increased by the multi-
plication factor. This is because frequency multiplication is effectively a phase multiplica-
tion process as well, so phase noise variations get multiplied in the same way that frequency
is multiplied. The increase in noise power is given by 20 log n, where n is the multiplica-
tion factor. Thus a frequency doubler will increase the fundamental oscillator noise level
by at least 6 dB, while a frequency tripler will lead to an increase of at least 9.5 dB. Reac-
tive diode multipliers typically add little additional noise of their own since varactors and
step-recovery diodes have very low series resistances, but resistive diode multipliers can
generate significant additional noise power.

Reactive Diode Multipliers (Manley–Rowe Relations)

We begin our discussion with the Manley–Rowe relations, which result from a very general
analysis of power conservation associated with frequency conversion in a nonlinear reac-
tive element [10]. Consider the circuit of Figure 13.19, where two sources at frequencies
ω1 and ω2 drive a nonlinear capacitor, C . The circuit also shows ideal bandpass filters to
conceptually isolate powers in all harmonics of the form nω1 + mω2. Since the capacitor
is nonlinear, its charge Q can be expressed as a power series in terms of the capacitor
voltage, v:

Q = a0 + a1v + a2v
2 + a3v

3 + · · ·
As in Section 10.3, this nonlinear relationship implies the generation of all frequency prod-
ucts of the form nω1 + mω2. Thus we can write the capacitor voltage as a Fourier series of

�1

�1 + �2 �1 – �2

�2

2�1 2�2

�1 �2

v (t)

i(t)

+

C –

...

FIGURE 13.19 Conceptual circuit for the derivation of the Manley–Rowe relations.
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the form

v(t) =
∞∑

n=−∞

∞∑
m=−∞

Vnme j(nω1 + mω2)t. (13.51)

Similarly, the capacitor charge and current can be written as

Q(t) =
∞∑

n=−∞

∞∑
m=−∞

Qnme j (nω1 + mω2)t , (13.52)

i(t) = d Q

dt
=

∞∑
n=−∞

∞∑
m=−∞

j(nω1 + mω2)Qnme j(nω1+mω2)t =
∞∑

n=−∞

∞∑
m=−∞

Inme j(nω1+mω2)t .

(13.53)

Since v(t) and i(t) are real functions, we must have that V−n,−m = V ∗
nm and Q−n,−m =

Q∗
nm .

No real power can be dissipated in the lossless capacitor. If ω1 and ω2 are not multiples
of each other, there is no average power due to interacting harmonics. Then the average
power (ignoring a factor of 4) at frequency ± |nω1 + mω2| is given as

Pnm = 2 Re
{

Vnm I ∗
nm

} = Vnm I ∗
nm + V ∗

nm Inm = Vnm I ∗
nm + V−n,−m I ∗−n,−m = P−n,−m .

(13.54)

Conservation of power can then be expressed as

∞∑
n=−∞

∞∑
m=−∞

Pnm = 0. (13.55)

Now multiply (13.55) by
nω1 + mω2

nω1 + mω2
to obtain

ω1

∞∑
n=−∞

∞∑
m=−∞

n Pnm

nω1 + mω2
+ ω2

∞∑
n=−∞

∞∑
m=−∞

m Pnm

nω1 + mω2
= 0. (13.56)

Using (13.54) and the fact that Inm = j (nω1 + mω2)Qnm gives

ω1

∞∑
n=−∞

∞∑
m=−∞

n
(− j Vnm Q∗

nm − j V−n,−m Q∗−n,−m

)

+ ω2

∞∑
n=−∞

∞∑
m=−∞

m
(− j Vnm Q∗

nm − j V−n,−m Q∗−n,−m

) = 0 (13.57)

The double summation terms in (13.57) do not depend on ω1 or ω2 since we can always ad-
just the external circuitry so that all Vnm remain constant, and the Qnm will remain constant
as well since the capacitor charge depends directly on the voltage. Thus each summation
in (13.56) must be identically zero:

∞∑
n=−∞

∞∑
m=−∞

n Pnm

nω1 + mω2
= 0, (13.58a)

∞∑
n=−∞

∞∑
m=−∞

m Pnm

nω1 + mω2
= 0. (13.58b)
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Some simplification can be carried out by eliminating the negative indices of one summa-
tion by using the fact that P−n,−m = Pnm . For example, from (13.58a),

∞∑
n=−∞

∞∑
m=−∞

n Pnm

nω1 + mω2
=

∞∑
n=0

∞∑
m=−∞

n Pnm

nω1 + mω2
+

∞∑
n=0

∞∑
m=−∞

−n P−n,−m

−nω1 − mω2

= 2
∞∑

n=0

∞∑
m=−∞

n Pnm

nω1 + mω2
= 0.

This results in the usual form for the Manley–Rowe relations:
∞∑

n=0

∞∑
m=−∞

n Pnm

nω1 + mω2
= 0, (13.59a)

∞∑
n=−∞

∞∑
m=0

m Pnm

nω1 + mω2
= 0. (13.59b)

The Manley–Rowe relations express power conservation for any lossless nonlinear reac-
tance, and can be useful for harmonic generation, parametric amplifiers, and frequency
converters at RF, microwave, and optical frequencies to predict the maximum possible
power gain and conversion efficiency.

Reactive frequency multipliers involve a special case of the Manley–Rowe relations
since only a single source is used. If we assume a source at frequency ω1, then setting
m = 0 in (13.59a) gives

∞∑
n=1

Pn0 = 0,

or
∞∑

n=2

Pn0 = −P10, (13.60)

where Pn0 represents the power associated with the nth harmonic (the DC term for n = 0 is
zero). In practice, P10 > 0 because this represents power delivered by the source, while the
summation in (13.60) represents the total power contained in all the harmonics of the input
signal, as generated by the nonlinear capacitor. If all harmonics but the nth are terminated
with lossless reactive loads, the power balance of (13.60) reduces to∣∣∣∣ Pn0

P10

∣∣∣∣ = 1, (13.61)

indicating that it is theoretically possible to achieve 100% conversion efficiency for any
harmonic. Of course, in practice, losses in the diode and matching circuitry serve to reduce
the achievable efficiency substantially.

A block diagram of a diode frequency multiplier is shown in Figure 13.20. An input
signal of frequency f0 is applied to the diode, which is terminated with reactive loads at
all frequencies except n f0, the desired harmonic. If the diode junction capacitance has a
square-law I –V characteristic, it is often necessary to terminate unwanted harmonics with
short circuits if harmonics higher than the second are to be generated. This is because volt-
ages at higher harmonics may not be generated unless lower harmonic currents are allowed
to flow. These currents are commonly referred to as idler currents. For example, a varactor
tripler will generally require terminations to allow idler currents at 2 f0. Typical conversion
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f0

f0
input  n f0

n f0
output

Low-pass
filter

Diode Bandpass
filter

FIGURE 13.20 Block diagram of a diode frequency multiplier.

efficiencies for varactor multipliers range from 50 to 80% for doublers and triplers at
50 GHz. The upper frequency limit is controlled mainly by fc, the cutoff frequency of the
diode, which depends on the series resistance and dynamic junction capacitance. Typical
varactor cutoff frequencies can exceed 1000 GHz, but efficient frequency multiplication
requires that n f0 � fc.

Resistive Diode Multipliers

Resistive multipliers generally use forward-biased Schottky-barrier diodes to provide a
nonlinear I –V characteristic. Resistive multipliers are less popular than reactive multipli-
ers because their efficiencies are lower, especially for higher harmonic numbers. However,
resistive multipliers offer better bandwidths, and more stable operation, than reactive multi-
pliers. In addition, at high millimeter wave frequencies even the best varactor diodes begin
to exhibit resistive properties. Since a resistive frequency multiplier is not lossless, the
Manley–Rowe relations do not strictly apply. However, we can derive a similar set of rela-
tions for a nonlinear resistor, and demonstrate an important result for frequency conversion
using nonlinear resistors.

Consider the resistive multiplier circuit shown in Figure 13.21. We have simplified
the analysis by specializing to the frequency multiplier case by considering only a single
source frequency—the more general case of two frequency sources is treated in reference
[11]. For a source frequency ω, the nonlinear resistor generates harmonics of the form nω,
so the resistor voltage and current can be written as a Fourier series:

v(t) =
∞∑

m=−∞
Vme jmωt, (13.62a)

i(t) =
∞∑

m=−∞
Ime jmωt. (13.62b)

� 2� 3�

v (t)

i(t)

+

DCR
–

...

�

FIGURE 13.21 Conceptual circuit for the derivation of power relations in a resistive frequency
multiplier.
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The Fourier coefficients are determined as

Vm = 1

T

T∫

t=0

v(t)e− jmωt dt, (13.63a)

Im = 1

T

T∫

t=0

i(t)e− jmωt dt. (13.63b)

Since v(t) and i(t) are real functions, we must have Vm = V ∗−m and Im = I ∗−m . The power
associated with the mth harmonic is (ignoring a factor of 4)

Pm = 2 Re
{

Vm I ∗
m

} = Vm I ∗
m + V ∗

m Im . (13.64)

Multiplying Vm of (13.63a) by −m2 I ∗
m and summing gives

−
∞∑

m=−∞
m2Vm I ∗

m = −1

T

T∫

t=0

v(t)
∞∑

m=−∞
m2 I ∗

me− jmωt dt. (13.65)

Next, use the result that

∂2i(t)

∂t2
= −

∞∑
m=−∞

m2ω2 Ime jmωt = −
∞∑

m=−∞
m2ω2 I ∗

me− jmωt

to write (13.65) as

−
∞∑

m=−∞
m2Vm I ∗

m = 1

ω2T

T∫

t=0

v(t)
∂2i(t)

∂t2
dt

= 1

2πω
v(t)

∂i(t)

∂t

∣∣∣∣
T

t=0
− 1

2πω

T∫

t=0

∂v(t)

∂t

∂i(t)

∂t
dt. (13.66)

Since v(t) and i(t) are periodic functions (period T ), we have v(0) = v(T ) and i(0) =
i(T ). Derivatives of i(t) have the same periodicity, so the second to last term in (13.66)
vanishes. In addition, we can write

∂v(t)

∂t

∂i(t)

∂t
= ∂v(t)

∂t

∂i

∂v

∂v(t)

∂t
= ∂i

∂v

(
∂v(t)

∂t

)2

.

Equation (13.66) then reduces to

∞∑
m=−∞

m2Vm I ∗
m = 1

2πω

T∫

t=0

∂i

∂v

(
∂v(t)

∂t

)2

dt =
∞∑

m=0

m2 (
Vm I ∗

m + V ∗
m Im

) =
∞∑

m=0

m2 Pm,

or

∞∑
m=0

m2 Pm = 1

2πω

T∫

t=0

∂i

∂v

(
∂v(t)

∂t

)2

dt. (13.67)

For positive nonlinear resistors (defined as having an I –V curve whose slope is always
positive), the integrand of (13.67) will always be positive. Thus (13.67) can be reduced to

∞∑
m=0

m2 Pm ≥ 0. (13.68)
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If all harmonics are terminated in reactive loads except for ω (the fundamental) and mω

(the desired harmonic), then (13.68) reduces to P1 + m2 Pm > 0. The power P1 > 0 is de-
livered by the source, while Pm < 0 represents harmonic power supplied by the device. The
maximum theoretical conversion efficiency is then given as∣∣∣∣ Pm

P1

∣∣∣∣ ≤ 1

m2
. (13.69)

This result indicates that the efficiency of a resistive frequency multiplier drops as the
square of the multiplication factor.

The performance of diode frequency multipliers can often be improved by using two
diodes in a balanced configuration. This can lead to increased output power, improved in-
put impedance characteristics, and the rejection of certain (all even or all odd) harmonics.
Two diodes can be fed using a quadrature hybrid, or two diodes can be configured in an
antiparallel arrangement (back-to-back with reversed polarities). The antiparallel configu-
ration will reject all even harmonics of the input frequency.

Transistor Multipliers
Compared to diode frequency multipliers, transistor multipliers offer better bandwidth and
the possibility of conversion efficiencies greater than 100% (conversion gain). FET multi-
pliers also require less input and DC power than diode multipliers. In the past, before solid-
state amplifiers were available at millimeter wave frequencies, high-power diode multipli-
ers were one of the few ways of generating millimeter wave power. Today, however, it is
possible to generate the required frequency at low power, then amplify that signal to the de-
sired power level using transistor amplifiers. This approach results in better efficiency and
lower DC power requirements, and it allows the separate optimization of signal generation
and amplification functions. Transistor multipliers are well suited for this application.

There are several nonlinearities that exist in a FET device that can be used for har-
monic generation: the transconductance near pinch-off, the output conductance near pinch-
off, the rectifying properties of the Schottky gate, and the varactor-like capacitances at the
gate and drain. For frequency doubler operation, the most useful of these is the rectifi-
cation property, where the FET is biased to conduct only during the positive half of the
input signal waveform. This results in operation similar to that of a class B amplifier,
and provides a multiplier circuit that is useful for low-power output (typically less than
10 dBm) at frequencies up to 60–100 GHz. Bipolar transistors can also be used for fre-
quency multiplication, with the capacitance of the collector-base junction providing the
necessary nonlinearity.

The basic circuit of a class B FET frequency multiplier is shown in Figure 13.22. A
unilateral device is assumed here to simplify the analysis. The source is a generator of
frequency ω0, with period T = 2π/ω0, and matched to the FET with the source impedance

+

–

S S

DG IdRs

Ri

Cgs gmVcVc

Vgg

Vg

Rds

RL
jXLCds

�o

jXs

�Vdd

FIGURE 13.22 Circuit diagram of an FET frequency multiplier. The transistor is modeled using
a unilateral equivalent circuit.
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FIGURE 13.23 Voltage and currents in the FET multiplier (doubler) circuit of Figure 13.22.
(a) Gate voltage when the transistor is biased just below pinch-off. (b) Drain
current, which conducts when the gate voltage is above the threshold voltage.
(c) Drain voltage when the load resonator is tuned to the second harmonic.

Rs + j Xs . The drain of the FET is terminated with a load impedance RL + j X L , which is
chosen to form a parallel RLC resonator with Cds at the desired harmonic frequency, nω0.
The gate is biased at a DC voltage of Vgg < 0, while the drain is biased at Vdd > 0.

The operation of the FET multiplier can be understood with the help of the waveforms
shown in Figure 13.23. As seen in Figure 13.23a, the FET is biased below the turn-on
voltage, Vt , so the transistor does not conduct until the gate voltage exceeds Vt . The re-
sulting drain current is shown in Figure 13.23b, and is seen to be similar in form to a
half-wave rectified version of the gate voltage. This waveform is rich in harmonics, so the
drain resonator can be designed to present a short circuit at the fundamental and all unde-
sired harmonics, and an open circuit at the desired harmonic frequency. The resulting drain
voltage for n = 2 is shown in Figure 13.23c.

We can make an approximate analysis of the FET multiplier by representing the drain
current in terms of a Fourier series. If we assume that the drain current waveform is a
half-cosine function of the form

id(t) =
{

Imax cos
π t

τ
for |t | < τ/2

0 for τ/2 < |t | < T/2,
(13.70)

where τ is the duration of the drain current pulse, we can find the Fourier series as

id(t) =
∞∑

n=0

In cos
2πnt

T
, (13.71)
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with the Fourier coefficients given by

I0 = Imax
2τ

πT
, (13.72a)

In = Imax
4τ

πT

cos(nπτ/T )

1 − (2nτ/T )2
for n > 0. (13.72b)

The coefficient In represents the drain current of harmonic frequency nω0, so maximizing
multiplier efficiency involves maximizing In . Since (13.72b) clearly shows that the maxi-
mum value of In decreases with n, circuits of this type are generally limited to frequency
doublers or triplers. For a given value of n, the maximum value of In/Imax depends on
the ratio τ/T : for n = 2 the optimum occurs at τ/T = 0.35, while for n = 3 the optimum
occurs at τ/T = 0.22. Because of device and biasing constraints, however, the designer
usually has very little control of the pulse width τ , and practical values of τ/T are usu-
ally greater than optimum. Examination of Figure 13.23a shows that the normalized pulse
duration is related to the gate voltages Vt , Vgmin, and Vgmax as

cos
πτ

T
= 2Vt − Vgmax − Vgmin

Vgmax − Vgmin
. (13.73)

The gate bias voltage satisfies the relation that

Vgg = (Vgmax − Vgmin)/2, (13.74)

and the peak value of the AC component of the gate voltage (frequency ω0) is given by

Vg = Vgmax − Vgg. (13.75)

Then the input power delivered to the FET can be expressed as

Pin = 1

2
|Ig|2 Ri = |Vg|2 Ri

2|Ri − j/ω0Cgs |2 . (13.76)

If the source is conjugately matched to the transistor, the input power will be equal to the
available power, Pavail.

On the load side, the peak value of the AC component of the drain voltage (frequency
nω0) is given by

VL = In RL = (Vdmax − Vdmin)/2, (13.77)

assuming resonance of X L and Cds . This gives the optimal load resistance as

RL = Vdmax − Vdmin

2In
. (13.78)

Then the output power at the harmonic nω0 is

Pn = 1

2
|In|2 RL . (13.79)

Finally, the conversion gain is given as

Gc = Pn

Pavail
. (13.80)
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EXAMPLE 13.6 FET FREQUENCY DOUBLER DESIGN

A 12–24 GHz frequency doubler is designed using a GaAs MESFET with the
following parameters: Vt = −2.0 V, Ri = 10 �, Cgs = 0.20 pF, Cds = 0.15 pF,
and Rds = 40 �. Assume the operating point of the transistor is chosen so that
Vgmax = 0.2 V, Vgmin = −6.0 V, Vdmax = 5.0 V, Vdmin = 1.0 V, and Imax =
80 mA. Find the conversion gain of the multiplier.

Solution
We first use (13.74) and (13.75) to find the peak value of the AC input voltage.
The gate bias voltage is

Vgg = (Vgmax − Vgmin)/2 = (0.2 − 6.0)/2 = −2.9 V,

and the peak AC input voltage is

Vg = Vgmax − Vgg = 0.2 + 2.9 = 3.1 V.

Then the input power is given by (13.76):

Pin = |Vg|2 Ri

2|Ri − j/ω0Cgs |2 = (3.1)2(10)

2[(10)2 + (1/2π(12 × 109)(0.2 × 10−12))2]
= 10.7 mW.

The pulse width is found from (13.73) as

cos
πτ

T
= 2Vt − Vgmax − Vgmin

Vgmax − Vgmin
= 2(−2.0) − 0.2 + 6.0

0.2 + 6.0
= 0.29,

for
τ

T
= 0.406.

Then the load current for the second harmonic is given by (13.72b):

I2 = Imax
4τ

πT

cos(2πτ/T )

1 − (4τ/T )2
= 0.262Imax = 21.0 mA.

The load resistance required to match the transistor is found from (13.78):

RL = Vdmax − Vdmin

2I2
= 5 − 1

2(0.021)
= 95.2 �.

The output power at 24 GHz is given by (13.79):

P2 = 1

2
|I2|2 RL = 1

2
(0.021)2(95.2) = 21.0 mW.

Finally, the conversion gain is, assuming the input is conjugately matched,

Gc = P2

Pavail
= 21.0

10.7
= 2.9 dB.

The load reactance required to resonate the second harmonic is X L = 1/2ω0Cds =
44.2 �, which corresponds to an inductance of 0.293 nH. ■
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13.5 MIXERS

A mixer is a three-port device that uses a nonlinear or time-varying element to achieve
frequency conversion. As introduced in Section 11.1, an ideal mixer produces an output
consisting of the sum and difference frequencies of its two input signals. Operation of
practical RF and microwave mixers is usually based on the nonlinearity provided by either
a diode or a transistor. As we have seen, a nonlinear component can generate a wide variety
of harmonics and other products of input frequencies, so filtering must be used to select
the desired frequency components. Modern microwave systems typically use several mix-
ers and filters to perform the functions of frequency up-conversion and down-conversion
between baseband signal frequencies and RF carrier frequencies.

We begin by discussing some of the important characteristics of mixers, such as image
frequency, conversion loss, noise effects, and intermodulation distortion. Next we discuss
the operation of single-ended mixers, using either a single diode or a transistor as the
nonlinear element. The balanced diode mixer circuit is then described, followed by a brief
description of more specialized mixer circuits.

Mixer Characteristics

The symbol and functional diagram for a mixer are shown in Figure 13.24. The mixer
symbol is intended to imply that the output is proportional to the product of the two input
signals. We will see that this is an idealized view of mixer operation, which in actuality
produces a large variety of harmonics and other undesired products of the input signals.
Figure 13.24a illustrates the operation of frequency up-conversion, as occurs in a transmit-
ter. A local oscillator (LO) signal at the relatively high frequency fLO is connected to one
of the input ports of the mixer. The LO signal can be represented as

vLO(t) = cos 2π fLOt. (13.81)

A lower frequency baseband or intermediate frequency (IF) signal is applied to the other
mixer input. This signal typically contains the information or data to be transmitted, and

FIGURE 13.24 Frequency conversion using a mixer. (a) Up-conversion. (b) Down-conversion.
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can be expressed for our purposes as

vIF(t) = cos 2π fIFt. (13.82)

The output of the idealized mixer is given by the product of the LO and IF signals:

vRF(t) = KvLO(t)vIF(t) = K cos 2π fLOt cos 2π fIFt

= K

2
[cos 2π( fLO − fIF)t + cos 2π( fLO + fIF)t], (13.83)

where K is a constant accounting for the voltage conversion loss of the mixer. The RF
output is seen to consist of the sum and differences of the input signal frequencies:

fRF = fLO ± fIF. (13.84)

The spectra of the input and output signals are shown in Figure 13.24a, where we see
that the mixer has the effect of modulating the LO signal with the IF signal. The sum and
difference frequencies at fLO ± fIF are called the sidebands of the carrier frequency fLO,
with fLO + fIF being the upper sideband (USB), and fLO − fIF being the lower sideband
(LSB). A double-sideband (DSB) signal contains both upper and lower sidebands, as in
(13.83), while a single-sideband (SSB) signal can be produced by filtering or by using a
single-sideband mixer.

Conversely, Figure 13.24b shows the process of frequency down-conversion, as used
in a receiver. In this case an RF input signal of the form

vRF(t) = cos 2π fRFt (13.85)

is applied to the input of the mixer, along with the LO signal of (13.81). The output of the
mixer is

vIF(t) = KvRF(t)vLO(t) = K cos 2π fRFt cos 2π fLOt

= K

2
[cos 2π( fRF − fLO)t + cos 2π( fRF + fLO)t]. (13.86)

Thus the mixer output consists of the sum and difference of the input signal frequencies.
The spectrum for these signals is shown in Figure 13.24b. In practice, the RF and LO
frequencies are relatively close together, so the sum frequency is approximately twice the
RF frequency, while the difference is much smaller than fRF. The desired IF output in
a receiver is the difference frequency, fRF − fLO, which is easily selected by low-pass
filtering:

fIF = fRF − fLO. (13.87)

Note that the above discussion only considers the sum and difference outputs as generated
by multiplication of the input signals, whereas in a realistic mixer many more products will
be generated due to the more complicated nonlinear behavior of the diode or transistor.
These products are usually undesirable and are removed by filtering.

Image frequency: In a receiver the RF input signal at frequency fRF is typically delivered
from the antenna, which may receive RF signals over a relatively wide band of frequencies.
For a receiver with an LO frequency fLO and IF frequency fIF, (13.87) gives the RF input
frequency that will be down-converted to the IF frequency as

fRF = fLO + fIF, (13.88a)



c13OscillatorsAndMixers Pozar September 16, 2011 15:44

13.5 Mixers 639

since the insertion of (13.88a) into (13.87) yields fIF (after low-pass filtering). Now con-
sider the RF input frequency given by

fIM = fLO − fIF. (13.88b)

Insertion of (13.88b) into (13.87) yields − fIF (after low-pass filtering). Mathematically,
this frequency is identical to fIF because the Fourier spectrum of any real signal is sym-
metric about zero frequency, and thus contains negative as well as positive frequencies. The
RF frequency defined in (13.88b) is called the image response. The image response is im-
portant in receiver design because a received RF signal at the image frequency of (13.88b)
is indistinguishable at the IF stage from the desired RF signal of frequency (13.88a) unless
steps are taken in the RF stages of the receiver to preselect signals only within the desired
RF frequency band.

The choice of which RF frequency in (13.88) is the desired and which is the image
response is arbitrary, depending on whether the LO frequency is above or below the desired
RF frequency. Another way of viewing this difference is to note that fIF in (13.88) may
be negative. Observe that the desired and image frequencies of (13.88a) and (13.88b) are
separated by 2 fIF.

Another implication of (13.87) and the fact that fIF may be negative is that there are
two LO frequencies that can be used for a given RF and IF frequency:

fLO = fRF ± fIF, (13.89)

since taking the difference frequency of fRF with these two LO frequencies gives ± fIF.
These two frequencies correspond to the upper and lower sidebands when a mixer is op-
erated as an up-converter. In practice, most receivers use a local oscillator set at the upper
sideband, fLO = fRF + fIF, because this requires a smaller LO tuning ratio when the re-
ceiver must select RF signals over a given band.

Conversion loss: Mixer design requires impedance matching at three ports, complicated
by the fact that several frequencies and their harmonics are involved. Ideally, each mixer
port would be matched at its particular frequency (RF, LO, or IF), and undesired frequency
products would be absorbed with resistive loads, or blocked with reactive terminations.
Resistive loads increase mixer losses, however, and reactive loads can be very frequency
sensitive. In addition, there are inherent losses in the frequency conversion process because
of the generation of undesired harmonics and other frequency products. An important fig-
ure of merit for a mixer is therefore the conversion loss, which is defined as the ratio of
available RF input power to the available IF output power, expressed in dB:

Lc = 10 log
available RF input power

available IF output power
≥ 0 dB. (13.90)

Conversion loss accounts for resistive losses in a mixer as well as loss in the frequency
conversion process from RF to IF ports. Conversion loss applies to both up-conversion
and down-conversion, even though the context of the above definition is for the latter case.
Since the RF stages of receivers operate at much lower power levels than do transmit-
ters, minimum conversion loss is more critical for receivers because of the importance of
minimizing losses in the RF stages to maximize receiver noise figure.

Practical diode mixers typically have conversion losses between 4 and 7 dB in the
1–10 GHz range. Transistor mixers have lower conversion loss, and they may even have
conversion gain of a few dB. One factor that strongly affects conversion loss is the LO
power level; minimum conversion loss often occurs for LO powers between 0 and 10 dBm.
This power level is large enough that the accurate characterization of mixer performance
often requires nonlinear analysis.
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Noise figure: Noise is generated in mixers by the diode or transistor elements, and by ther-
mal sources due to resistive losses. Noise figures of practical mixers range from 1 to 5 dB,
with diode mixers generally achieving lower noise figures than transistor mixers. The noise
figure of a mixer depends on whether its input is a single-sideband signal or a double-
sideband signal. This is because the mixer will down-convert noise at both sideband fre-
quencies (since these have the same IF), but the power of a SSB signal is one-half that of
a DSB signal (for the same amplitude). To derive the relation between the noise figure for
these two cases, first consider a DSB input signal of the form

vDSB(t) = A[cos(ωLO − ωIF)t + cos(ωLO + ωIF)t]. (13.91)

Upon mixing with an LO signal cos ωLOt and low-pass filtering, the down-converted IF
signal will be

vIF(t) = AK

2
cos(ωIFt) + AK

2
cos(−ωIFt) = AK cos ωIFt, (13.92)

where K is a constant accounting for the conversion loss for each sideband. The average
power of the DSB input signal of (13.91) is

Si = A2

2
+ A2

2
= A2,

and the average power of the output IF signal is

So = A2 K 2

2
.

For noise figure, the input noise power is defined as Ni = kT0 B, where T0 = 290 K and B
is the IF bandwidth. The total output noise power is equal to the input noise plus Nadded,
the noise power added by the mixer, divided by the conversion loss (assuming a reference
at the mixer input):

No = (K T0 B + Nadded)

Lc
.

Then using the definition of noise figure gives the DSB noise figure of the mixer as

FDSB = Si No

So Ni
= 2

K 2Lc

(
1 + Nadded

kT0 B

)
. (13.93)

The corresponding analysis for the SSB case begins with a SSB input signal of the
form

vSSB(t) = A cos(ωLO − ωIF)t. (13.94)

Upon mixing with the LO signal cos ωLOt and low-pass filtering, the down-converted IF
signal will be

vIF(t) = AK

2
cos(ωIFt). (13.95)

The average power of the SSB input signal of (13.94) is

Si = A2

2
,
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and the average power of the output IF signal is

So = A2 K 2

8
.

The input and output noise powers are the same as for the DSB case, so the noise figure
for an SSB input signal is

FSSB = Si No

So Ni
= 4

K 2Lc

(
1 + Nadded

kT0 B

)
. (13.96)

Comparison with (13.93) shows that the noise figure of the SSB case is twice that of the
DSB case:

FSSB = 2FDSB. (13.97)

Other mixer characteristics: Since mixers involve nonlinearity, they will produce inter-
modulation products. Typical values of IIP3 for mixers range from 15 to 30 dBm. Another
important characteristic of a mixer is the isolation between the RF and LO ports. Ideally,
the LO and RF ports would be decoupled, but internal impedance mismatches and limi-
tations of coupler performance often result in some LO power being coupled out of the
RF port. This is a potential problem for receivers that drive the RF port directly from the
antenna because LO power coupled through the mixer to the RF port will be radiated by
the antenna. Because such signals can interfere with other services or users, regulatory
agencies often set stringent limits on the RF power radiated by receivers. This problem
can be largely alleviated by using a bandpass filter between the antenna and mixer, or by
using an RF amplifier ahead of the mixer. Isolation between the LO and RF ports is highly
dependent on the type of coupler used for diplexing these two inputs, but typical values
range from 20 to 40 dB.

EXAMPLE 13.7 IMAGE FREQUENCY

The IS-54 digital cellular telephone system uses a receive frequency band of 869–
894 MHz, with a first IF frequency of 87 MHz and a channel bandwidth of 30 kHz.
What are the two possible ranges for the LO frequency? If the upper LO frequency
range is used, determine the image frequency range. Does the image frequency
fall within the receive passband?

Solution
By (13.89), the two possible LO frequency ranges are

fLO = fRF ± fIF = (869 to 894) ± 87 =
{

956 to 981 MHz
782 to 807 MHz.

Using the 956–981 MHz LO, we find that (13.87) gives the IF frequency as

fIF = fRF − fLO = (869 to 894) − (956 to 981) = −87 MHz,

so from (13.88b) the RF image frequency range is

fIM = fLO − fIF = (956 to 981) + 87 = 1043 to 1068 MHz,

which is well outside the receive passband. ■
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FIGURE 13.25 (a) Circuit for a single-ended diode mixer. (b) Idealized equivalent circuit.

The above treatment of mixers is idealized because of the assumption that the output
was proportional to the product of the input signals, thus producing only sum and difference
frequencies (for sinusoidal inputs). We now discuss more realistic mixers and show that
the output does indeed contain a term proportional to the product of the inputs, but it also
contains many higher order products as well.

Single-Ended Diode Mixer

A basic diode mixer circuit is shown in Figure 13.25a. This type of mixer is called a single-
ended mixer because it uses a single diode element. The RF and LO inputs are combined
in a diplexer, which superimposes the two input voltages to drive the diode. The diplexing
function can be implemented using a directional coupler or hybrid junction to provide
signal combining as well as isolation between the two inputs. The diode may be biased
with a DC bias voltage, which must be decoupled from the RF signal paths. This is done
by using DC blocking capacitors on either side of the diode, and an RF choke between the
diode and the bias voltage source. The AC output of the diode is passed through a low-
pass filter to provide the desired IF output voltage. This description is for application as a
down-converter, but the same mixer can be used for up-conversion since each port may be
used interchangeably as an input or output port.

The AC equivalent circuit of the mixer is shown in Figure 13.25b, where the RF and
LO input voltages are represented as two series-connected voltage sources. Let the RF
input voltage be a cosine wave of frequency ωRF:

vRF(t) = VRF cos ωRFt, (13.98)

and let the LO input voltage be a cosine wave of frequency ωLO:

vLO(t) = VLO cos ωLOt. (13.99)
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Using the small-signal approximation of (11.6) gives the total diode current as

i(t) = I0 + Gd [vRF(t) + vLO(t)] + G ′
d

2
[vRF(t) + vLO(t)]2 + · · · . (13.100)

The first term in (13.100) is the DC bias current, which will be blocked from the IF output
by the DC blocking capacitors. The second term is a replication of the RF and LO input
signals, which will be filtered out by the low-pass IF filter. This leaves the third term, which
can be rewritten using trigonometric identities as

i(t) = G ′
d

2
(VRF cos ωRFt + VLO cos ωLOt)2

= G ′
d

2

(
V 2

RF cos2 ωRFt + 2VRFVLO cos ωRFt cos ωLOt + V 2
LO cos2 ωLOt

)

= G ′
d

4

[
V 2

RF(1 + cos 2ωRFt) + V 2
LO(1 + cos 2ωLOt) + 2VRF VLO cos(ωRF − ωLO)t

+ 2VRFVLO cos(ωRF + ωLO)t
]
.

This result is seen to contain several new signal components, only one of which produces
the desired IF difference product. The two DC terms again will be blocked by the blocking
capacitors, and the 2ωRF, 2ωLO, and ωRF + ωLO terms will be blocked by the low-pass
filter. This leaves the IF output current as

iIF(t) = G ′
d

2
VRFVLO cos ωIFt, (13.101)

where ωIF = ωRF − ωLO is the IF frequency. The spectrum of the down-converting single-
ended mixer is thus identical to that of the idealized mixer shown in Figure 13.24b.

Single-Ended FET Mixer

There are several FET parameters that offer nonlinearities that can be used for mixing, but
the strongest is the transconductance, gm , when the FET is operated in a common source
configuration with a negative gate bias. Figure 13.26 shows the variation of transconduc-
tance with gate bias for a typical FET. When used as an amplifier, the gate bias voltage is
chosen near zero, or slightly positive, so the transconductance is near its maximum value,
and the transistor operates as a linear device. When the gate bias is near the pinch-off re-
gion, where the transconductance approaches zero, a small positive variation of gate volt-
age can cause a large change in transconductance, leading to a nonlinear response. Thus
the LO voltage can be applied to the gate of the FET to pump the transconductance to

FIGURE 13.26 Variation of FET transconductance versus gate-to-source voltage.
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FIGURE 13.27 Circuit for a single-ended FET mixer.

switch the FET between high- and low-transconductance states, thus providing the desired
mixing function.

The circuit for a single-ended FET mixer is shown in Figure 13.27. A diplexing cou-
pler is again used to combine the RF and LO signals at the gate of the FET. An impedance
matching network is also usually required between the inputs and the FET, which typically
presents a very low input impedance. RF chokes are used to bias the gate at a negative
voltage near pinch-off, and to provide a positive bias for the drain of the FET. A bypass ca-
pacitor at the drain provides a return path for the LO signal, and a low-pass filter provides
the final IF output signal.

Our analysis of the mixer of Figure 13.27 follows the original work described in ref-
erence [12]. The simplified equivalent circuit is shown in Figure 13.28, and is based on
the unilateral equivalent circuit of a FET introduced in Section 11.3. The RF and LO
input voltages are given in (13.98) and (13.99). Let Zg = Rg + j Xg be the Thevenin
source impedance for the RF input port, and let ZL = RL + j X L be the Thevenin source
impedance at the IF output port. These impedances are complex to allow a conjugate match
at the input and output ports for maximum power transfer. The LO port has a real genera-
tor impedance of Z0 since we are not concerned with maximum power transfer for the LO
signal.

Since the FET transconductance is driven by the LO signal, its time variation can be
expressed as a Fourier series in terms of harmonics of the LO:

g(t) = g0 + 2
∞∑

n=1

gn cos nω0t. (13.102)

Because we do not have an explicit formula for the transconductance, we cannot calcu-
late directly the Fourier coefficients of (13.102), but must rely on measurements for these

FIGURE 13.28 Equivalent circuit for the FET mixer of Figure 13.27.
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values. As we will see, the desired down-conversion result is due solely to the n = 1 term
of the Fourier series, so we only need the g1 coefficient. Measurements typically give a
value in the range of 10 mS for g1.

The conversion gain of the FET mixer can be found as

Gc = PIF-avail

PRF-avail
=

∣∣∣V IF
D

∣∣∣2
RL

|ZL |2
|VRF|2
4Rg

= 4Rg RL

|ZL |2
∣∣∣∣∣

V IF
D

VRF

∣∣∣∣∣
2

, (13.103)

where V IF
D is the IF drain voltage, and the impedances Zg and ZL are chosen for maximum

power transfer at the RF and IF ports. The RF frequency component of the phasor volt-
age across the gate-to-source capacitance is given in terms of the voltage divider between
Zg, Ri, and Cgs :

V RF
c = VRF

jωRFCgs

[
(Ri + Zg) − j

ωRFCgs

] = VRF

1 + jωRFCgs(Ri + Zg)
. (13.104)

Multiplying the transconductance of (13.102) by vRF
c (t) = V RF

c cos ωRFt gives terms of the
form

gm(t)vRF
c (t) = g0V RF

c cos ωRFt + 2g1V RF
c cos ωRFt cos ωLOt + · · · . (13.105)

The down-converted IF frequency component can be extracted from the second term of
(13.105) using the usual trigonometric identity

gm(t)vRF
c (t)

∣∣∣
ωIF

= g1V RF
c cos ωIFt, (13.106)

where ωIF = ωRF − ωLO. Then the IF component of the drain voltage is, in phasor form,

V IF
D = −g1V RF

c

(
Rd ZL

Rd + ZL

)
= −g1VRF

1 + jωRFCgs(Ri + Zg)

(
Rd ZL

Rd + ZL

)
, (13.107)

where (13.104) has been used. Using this result in (13.103) gives the conversion gain (be-
fore conjugate matching) as

Gc

∣∣∣∣∣∣ not
matched

=
(

2g1 Rd

ωRFCgs

)2 Rg[
(Ri + Rg)2 +

(
Xg − 1

ωRFCgs

)2
] RL[

(Rd + RL)2 + X2
L

] .

We now conjugately match the RF and IF ports to maximize the conversion gain. Thus we
let Rg = Ri , Xg = 1/ωRFCgs, RL = Rd , and X L = 0, which reduces the above result to

Gc = g2
1 Rd

4ω2
RFC2

gs Ri
. (13.108)

The quantities g1, Rd, Ri, and Cgs are all parameters of the FET. Practical mixer circuits
generally use matching circuits to transform the FET impedance to 50 � for the RF, LO,
and IF ports.
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EXAMPLE 13.8 MIXER CONVERSION GAIN

A single-ended FET mixer is to be designed for a wireless local area network re-
ceiver operating at 2.4 GHz. The parameters of the FET are Rd = 300 �, Ri =
10 �, Cgs = 0.3 pF, and g1 = 10 mS. Calculate the maximum possible conver-
sion gain.

Solution
This is a straightforward application of the formula for conversion gain given in
(13.108):

Gc = g2
1 Rd

4ω2
RFC2

gs Ri
= (10 × 10−3)2(300)

4(2π)2(2.4 × 109)2(10)
= 36.6 = 15.6 dB.

Note that this value does not include losses due to the necessary impedance match-
ing networks. ■

Balanced Mixer
RF input matching and RF-LO isolation can be improved through the use of a balanced
mixer, which consists of two single-ended mixers combined with a hybrid junction.
Figure 13.29 shows the basic configuration, with either a 90◦ hybrid (Figure 13.29a), or a
180◦ hybrid (Figure 13.29b). As we will see, a balanced mixer using a 90◦ hybrid junc-
tion will ideally lead to a perfect input match at the RF port over a wide frequency range,
while the use of a 180◦ hybrid will ideally lead to perfect RF-LO isolation over a wide fre-
quency range. In addition, both mixers will reject all even-order intermodulation products.
Figure 13.30 shows a photograph of a microstrip circuit that contains several balanced
mixers.

We can analyze the performance of a balanced mixer using the small-signal approach
that was used for the single-ended diode mixer. Here we will concentrate on the balanced

FIGURE 13.29 Balanced mixer circuits. (a) Using a 90◦ hybrid. (b) Using a 180◦ hybrid.
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FIGURE 13.30 Photograph of a 35 GHz microstrip monopulse radar receiver circuit. Three bal-
anced mixers using ring hybrids can be seen, along with three stepped-impedance
low-pass filters, and six quadrature hybrids. Eight feedlines are aperture coupled
to microstrip antennas on the reverse side. The circuit also contains a Gunn diode
source for the local oscillator.

Courtesy of Millitech Inc., Northampton, Mass.

mixer with a 90◦ hybrid, shown in Figure 13.29a, and leave the 180◦ hybrid case as a
problem. As usual, let the RF and LO voltages be defined as

vRF(t) = VRF cos ωRFt, (13.109)

and

vLO(t) = VLO cos ωLOt. (13.110)

From Section 7.5, the scattering matrix for the 90◦ hybrid junction is

[S] = −1√
2

⎡
⎢⎣

0 j 1 0
j 0 0 1
1 0 0 j
0 1 j 0

⎤
⎥⎦, (13.111)
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where the ports are numbered as shown in Figure 13.29a. The total RF and LO voltages
applied to the two diodes can then be written as

v1(t) = 1√
2

[
VRF cos

(
ωRFt − 90◦) + VLO cos

(
ωLOt − 180◦)]

= 1√
2

(VRF sin ωRFt − VLO cos ωLOt), (13.112a)

v2(t) = 1√
2

[
VRF cos

(
ωRFt − 180◦) + VLO cos

(
ωLOt − 90◦)]

= 1√
2

(−VRF cos ωRFt + VLO sin ωLOt). (13.112b)

Using only the quadratic term from the small-signal diode approximation of (11.6) gives
the diode currents as

i1(t) = Kv2
1 = K

2

(
V 2

RF sin2 ωRFt − 2VRFVLO sin ωRF cos ωLOt + V 2
LO cos2 ωLOt

)
,

(13.113a)

i2(t) = −Kv2
2 = −K

2

(
V 2

RF cos2 ωRFt − 2VRFVLO cos ωRF sin ωLOt + V 2
LO sin2 ωLOt

)
,

(13.113b)

where the negative sign on i2 accounts for the reversed diode polarity, and K is a constant
for the quadratic term of the diode response. Adding these two currents at the input to the
low-pass filter gives

i1(t) + i2(t) = −K

2

(
V 2

RF cos 2ωRFt + 2VRFVLO sin ωIFt − V 2
LO cos 2ωLOt

)
,

where the usual trigonometric identities have been used, and ωIF = ωRF − ωLO is the IF
frequency. Note that the DC components of the diode currents cancel upon combining.
After low-pass filtering, the IF output is

iIF(t) = −K VRFVLO sin ωIFt, (13.114)

as desired.
We can also calculate the input match at the RF port and the coupling between the

RF and LO ports. If we assume the diodes are matched and that each exhibits a voltage
reflection coefficient � at the RF frequency, then the phasor expression for the reflected RF
voltages at the diodes will be

V�1 = �V1 = − j�VRF√
2

, (13.115a)

V�2 = �V2 = −�VRF√
2

. (13.115b)
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These reflected voltages appear at ports 2 and 3 of the hybrid, respectively, and com-
bine to form the following outputs at the RF and LO ports:

V RF
� = − j V�1√

2
− V�2√

2
= −1

2
�VRF + 1

2
�VRF = 0, (13.116a)

V LO
� = −V�2√

2
− j

V�1√
2

= 1

2
j�VRF + 1

2
j�VRF = j�VRF. (13.116b)

Thus we see that the phase characteristics of the 90◦ hybrid lead to perfect cancellation of
reflections at the RF port. The isolation between the RF and LO ports, however, is depen-
dent on the matching of the diodes, which may be difficult to maintain over a reasonable
frequency range.

Image Reject Mixer

We have already discussed the fact that two distinct RF input signals at frequencies ωRF =
ωLO ± ωIF will down-convert to the same IF frequency when mixed with ωLO. These two
frequencies are the upper and lower sidebands of a double-sideband signal. The desired
response can be arbitrarily selected as either the LSB (ωLO − ωIF) or the USB (ωLO + ωIF),
assuming a positive IF frequency. The image reject mixer, shown in Figure 13.31, can be
used to isolate these two responses into separate output signals. The same circuit can also
be used for up-conversion, in which case it is usually called a single-sideband modulator.
In this case, the IF input signal is delivered to either the LSB or the USB port of the IF
hybrid, and the associated single-sideband signal is produced at the RF port of the mixer.

We can analyze the image reject mixer using the small-signal approximation. Let the
RF input signal be expressed as

vRF(t) = VU cos(ωLO + ωIF)t + VL cos(ωLO − ωIF)t, (13.117)

where VU and VL represent the amplitudes of the upper and lower sidebands, respectively.
Using the scattering matrix given in (13.111) for the 90◦ hybrid gives the RF voltages at
the diodes as

vA(t) = 1√
2

[
VU cos

(
ωLOt + ωRFt − 90◦) + VL cos

(
ωLOt − ωIFt − 90◦)]

= 1√
2
[VU sin(ωLO + ωIF)t + VL sin(ωLO − ωIF)t], (13.118a)

FIGURE 13.31 Circuit for an image reject mixer.
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vB(t) = 1√
2

[
VU cos

(
ωLOt + ωIFt − 180◦) + VL cos

(
ωLOt − ωIFt − 180◦)]

= −1√
2
[VU cos(ωLO + ωIF)t + VL cos(ωLO − ωIF)t]. (13.118b)

After mixing with the LO signal of (13.110) and low-pass filtering, the IF inputs to the IF
hybrid are

vA
IF(t) = K VLO

2
√

2
(VU − VL) sin ωIFt, (13.119a)

vB
IF(t) = −K VLO

2
√

2
(VU + VL) cos ωIFt, (13.119b)

where K is the mixer constant for the squared term of the diode response. The phasor
representation of the IF signals of (13.119) is

V A
IF = − jK VLO

2
√

2
(VU − VL), (13.120a)

V B
IF = −K VLO

2
√

2
(VU + VL). (13.120b)

Combining these voltages in the IF hybrid gives the following outputs:

V1 = − j
V A

IF√
2

− V B
IF√
2

= K VLOVL

2
(LSB), (13.121a)

V2 = − V A
IF√
2

− j
V B

IF√
2

= − jK VLOVU

2
(USB), (13.121b)

which we see are the separate sidebands of the down-converted input signal of (13.117).
These outputs can be expressed in time domain form as

v1(t) = K VLOVL

2
cos ωIFt, (13.122a)

v2(t) = K VLOVU

2
sin ωIFt, (13.122b)

which clearly shows the presence of a 90◦ phase shift between the two sidebands. Also
note that the image rejection mixer does not incur any additional losses beyond the usual
conversion losses of the single rejection mixer. A practical difficulty with image rejection
mixers is in fabricating a good hybrid at the relatively low IF frequency. Losses, and hence
noise figure, are also usually greater than for a simpler mixer.

Differential FET Mixer and Gilbert Cell Mixer

The mixer shown in Figure 13.32a uses two FETs in a differential balanced configuration,
similar to the differential amplifier discussed in Section 12.4. The LO input voltage and IF
output voltage are balanced signals; baluns may be used at these ports to convert to single-
ended signals. The RF input is single ended, and is applied to the bottom transistor. The
RF and LO voltages can be written as

vRF (t) = VRF cos ωRFt (13.123a)

v±
LO (t) = ±VLO cos ωLOt (13.123b)



c13OscillatorsAndMixers Pozar September 16, 2011 15:44

13.5 Mixers 651

RD

Vdd

RD

vIF 
+ vIF 

–

vLO
+ vLO

–

vRF

RD

Vdd

RD

�LO

gmVRF

vIF 
+ vIF 

–

–T
4

T
4

T
2

T3T
4

3T
2

7T
4

9T
4

2T

t

5T
2

5T
4

vLO
+ (t)

g (t)

(a) (b)

(c)

FIGURE 13.32 (a) A singly balanced differential FET mixer. (b) Simplified equivalent circuit.
(c) LO voltage waveform and idealized switching waveform of the top left FET.

Conceptually, the circuit operates as an alternating switch, with the LO turning the top
two FETs on and off with alternate half-cycles of the LO voltage. As with the differential
mode of the differential amplifier, the connection between the sources of the upper FETs
is a virtual ground for the LO voltage. These transistors are biased slightly above pinch-
off, so each will be conducting for slightly more than half of each LO cycle. During the
positive half-cycle of v+

LO the top left FET will conduct with a low resistance, and it will
turn off during the negative half cycle. During the positive half cycle of v−

LO (which occurs
during the negative half cycle of v+

LO) the top right FET will turn on. Thus, one of the
upper FETs is always conducting. The lower FET is biased into saturation and operates as
a normal RF amplifier, providing RF current through the upper switches. The RF current at
the drain of the bottom FET is approximately IRF = gm VRF. The RF and LO ports require
impedance matching, and the IF output circuit should provide a return path to ground for
the LO signal. A current source, or inductive degeneration, is often used on the source of
the lower FET.

A simplified equivalent circuit is shown in Figure 13.32b, with the upper FETs re-
placed with ideal switches. The effect of the switches can be modeled by using a Fourier
series for the idealized conductance waveform shown in Figure 13.32c. The first few terms
of this Fourier series can be found as

g (t) = 1

2
+ 2

π
cos ωLOt − 2

3π
cos 3ωLOt + · · · (13.124)
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FIGURE 13.33 A Gilbert cell mixer.

Then the voltages at the IF terminals can be expressed as

v+
IF (t) = −g (t) IRF RD = −gm VRF RD

(
1

2
+ 2

π
cos ωLOt

)
cos ωRFt (13.125a)

v−
IF (t) = − [1 − g (t)] IRF RD = −gm VRF RD

(
1

2
− 2

π
cos ωLOt

)
cos ωRFt, (13.125b)

where we have retained only the first two terms of (13.124). The net output IF voltage is

vIF (t) = v+
IF (t) − v−

IF (t) = −4

π
gm VRF RD cos ωLOt cos ωRFt. (13.126)

Note that voltages at the RF and LO frequencies are canceled (without filtering), leaving
only terms at the frequencies ωLO ± ωRF. After low-pass filtering, the IF output is

vIF (t)

∣∣∣∣
LPF

= −2

π
gm VRF RD cos ωIFt. (13.127)

The Gilbert cell mixer, shown in Figure 13.33, uses two singly balanced FET mixers
of the type shown in Figure 13.32a to form a double-balanced mixer. It has fully balanced
(differential) ports for LO, RF, and IF signals. Due to the symmetry of the circuit and its ex-
citations, the RF and LO signals are canceled at the IF output port. Operation is the same as
the singly balanced FET mixer, with the four upper FETs operating as switches controlled
by the LO voltage, and the lower two FETs operating as a balanced amplifier for the RF
input signal. The circuit of Figure 13.33 includes a current source at the sources of the
amplifier FETs. This mixer is frequently used in CMOS RFICs for wireless applications.

Other Mixers
There are a number of other mixer circuits that provide various advantages in terms of
bandwidth,harmonic generation, and intermodulation products.The double-balanced mixer
of Figure 13.34 uses two hybrid junctions or transformers, and provides good isolation be-
tween all three ports, as well as rejection of all even harmonics of the RF and LO signals.
This leads to very good conversion loss, but less than ideal input matching at the RF port.
The double-balanced mixer also provides a higher third-order intercept point than either a
single-ended mixer or a balanced mixer.



c13OscillatorsAndMixers Pozar September 16, 2011 15:44

13.5 Mixers 653

FIGURE 13.34 Double-balanced mixer circuit.
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FIGURE 13.35 Subharmonically pumped mixer using an antiparallel diode pair.

Figure 13.35 shows the circuit for an antiparallel diode mixer, which is often used for
subharmonically pumped millimeter wave frequency conversion. The back-to-back diodes
function as a frequency doubler, thus requiring an LO frequency of one-half the usual
value. The diode nonlinearity operates as a resistive frequency multiplier to generate the
second harmonic of the LO to mix with the RF input to produce the desired output fre-
quency. The antiparallel diode pair has a symmetric I –V characteristic that suppresses the
fundamental mixing product of the RF and LO input signals, leading to better conversion
loss. A photograph of a SiGe MMIC down-converter using a subharmonic mixer is shown
in Figure 13.36.

Table 13.1 summarizes the characteristics of several of the mixers that we have
discussed.

TABLE 13.1 Mixer Characteristics

Mixer Number of RF Input RF-LO Conversion Third-Order
Type Diodes Match Isolation Loss Intercept

Single ended 1 Poor Fair Good Fair

Balanced (90◦) 2 Good Poor Good Fair

Balanced (180◦) 2 Fair Excellent Good Fair

Double balanced 4 Poor Excellent Excellent Excellent

Image reject 2 or 4 Good Good Good Good
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FIGURE 13.36 (a) Photograph of a monolithic integrated millimeter wave down converter using
silicon germanium (SiGi). (b) Block diagram of the chip. The circuit operates
from 43.5 to 45.5 GHz and includes differential LNA, LO, and IF amplifiers, a
differential subharmonic mixer, and an off-chip RF filter. The noise figure is less
than 6 dB.

Courtesy of Hittite Microwave Corporation.
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PROBLEMS

13.1 Derive the admittance matrix representation of the transistor oscillator circuit given in (13.3).

13.2 Derive the results in (13.20)–(13.22) for a Colpitts oscillator using a common emitter transistor with
an inductor having a series resistance R.

13.3 Design a Colpitts oscillator operating at 200 MHz using an FET in a common gate configuration, in-
cluding the effect of a lossy inductor. First derive equations for the resonant frequency and condition
required for sustaining oscillation for an inductor with loss, corresponding to equations (13.20)–
(13.22) for the BJT case. Use these results to find the required capacitances, assuming an inductor of
15 nH with a Q of 50, and a transistor with gm = 20 mS and Ro = 1/Go = 200 �. Determine the
minimum value of the inductor Q required to sustain oscillations.

13.4 Prove that the standard Smith chart can be used for negative resistances by plotting 1/�∗ (instead
of �). In this case, the resistance circle values are read as negative, while the reactance circles are
unchanged.

13.5 Design a transistor oscillator at 1.9 GHz using a silicon BJT in a common emitter configuration
driving a 50 � load on the drain side. The scattering parameters are as follows (Z0 = 50 �): S11 =
0.72 � 157◦, S12 = 0.15� 56◦, S21 = 1.9� 52◦, and S22 = 0.63� −63◦. Choose �L for |�in| � 1, and
design appropriate load and terminating networks.

13.6 Repeat the oscillator design of Example 13.4 by replacing the dielectric resonator and microstrip
feedline with a single-stub tuner to match �S to a 50 � load. Find the Q of the tuner and 50 �

load, then compute and plot |�out| versus 	 f/ f0. Compare with the result in Figure 13.12b for the
dielectric resonator case.

13.7 Repeat the dielectric oscillator design of Example 13.4 using a GaAs MESFET having the fol-
lowing scattering parameters: S11 = 1.2� 150◦, S12 = 0.2� 120◦, S21 = 3.7� −72◦, and S22 =
1.3 � −67◦.

13.8 A HEMT device in the common gate configuration has the following scattering parameters at 8 GHz
(Z0 = 50 �): S11 = 0.46� 178◦, S12 = 0.045� 73◦, S21 = 1.41� −19◦, S22 = 1.02� −12◦. For ap-
plication in an oscillator, a series inductor is added to the gate, as shown below, to increase instability.
Compute and plot the µ-stability factor for L ranging from 0 to 20 nH, and determine the value that
maximizes instability. (This can most easily be done with a microwave CAD package.)
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13.9 An oscillator uses an amplifier with a noise figure of 6 dB and a resonator having a Q of 500,
and produces a 100 MHz output at a power level of 10 dBm. If the measured fα is 50 kHz, plot the
spectral density of the output noise power, and determine the phase noise (in dBc/Hz) at the following
frequencies: (a) at 1 MHz from the carrier; (b) at 10 kHz from the carrier (assume K = 1).

13.10 Repeat Problem 13.10 for fα = 200 kHz.

13.11 Derive Equation (13.50) giving the required phase noise for a specified receiver selectivity.

13.12 Find the necessary LO phase noise specification if an 860 MHz cellular receiver with a 30 kHz
channel spacing is required to have an adjacent channel rejection of 80 dB, assuming the interfering
channel is at the same level as the desired channel. The final IF voice bandwidth is 12 kHz.

13.13 Apply the Manley–Rowe relations to an up-converting mixer. Assume a nonlinear reactance is ex-
cited at frequencies f1 (RF) and f2 (LO), and terminated with open circuits at all other frequencies
except f3 = f1 + f2. Show that the maximum possible conversion gain is given by −P11/P10 =
1 + ω2/ω1.

13.14 Derive the relation between pulse duration and gate voltages given in (13.73) for the FET frequency
multiplier.

13.15 A double-sideband signal of the form vRF(t) = VRF[cos(ωLO − ωIF)t + cos(ωLO + ωIF)t] is ap-
plied to a mixer with an LO voltage given by vLO(t) = VLO cos ωLOt . Derive the output of the
mixer after low-pass filtering.

13.16 A diode has an I –V characteristic given by i(t)= Is(e3v(t) − 1). Let v(t)= 0.1 cos ω1t + 0.1 cos ω2t,
and expand i(t) in a power series in v, retaining only the v, v2, and v3 terms. For Is = 1 A, find the
magnitudes of the current at each frequency.

13.17 An RF input signal at 1800 MHz is down-converted in a mixer to an IF frequency of 87 MHz. What
are the two possible LO frequencies and the corresponding image frequencies?

13.18 Consider a diode mixer with a conversion loss of 5 dB and a noise figure of 4 dB, and a FET mixer
with conversion gain of 3 dB and a noise figure of 8 dB. If each of these mixers is followed by an
IF amplifier having a gain of 30 dB and a noise figure FA, as shown below, calculate and plot the
overall noise figure for both amplifier–mixer configurations for FA = 0–10 dB.

13.19 Let TSSB be the equivalent noise temperature of a mixer receiving a SSB signal, and TDSB be the
temperature when it receives a DSB signal. Compute the output noise powers in each case, and show
that TSSB = 2TDSB, and that therefore FSSB = 2FDSB. Assume that the conversion gains for the
signal and its image are identical.

13.20 If the noise power Ni = kTB is applied at the RF input port of a mixer having noise figure F (DSB)
and conversion loss Lc, what is the available output noise power at the IF port? Assume the mixer is
at a physical temperature T0.
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13.21 A phase detector produces an output signal proportional to the phase difference between two RF
input signals. Let these input signals be expressed as

v1 = v0 cos ωt,
v2 = v0 cos(ωt + θ).

If these two signals are applied to a single-balanced mixer using a 90◦ hybrid, show that the IF output
signal, after low-pass filtering, is given by

i = kv2
0 sin θ,

where k is a constant. If the mixer uses a 180◦ hybrid, show that the corresponding output signal is
given by

i = kv2
0 cos θ.

13.22 Analyze a balanced mixer using a 180◦ hybrid junction. Find the output IF current, and the input
reflections at the RF and LO ports. Show that this mixer suppresses even harmonics of the LO.
Assume that the RF signal is applied to the sum port of the hybrid, and that the LO signal is applied
to the difference port.

13.23 For an image rejection mixer, let the RF hybrid have a dissipative insertion loss of L R and the IF
hybrid have a dissipative insertion loss of L I . If the component single-ended mixers each have a
conversion loss Lc and noise figure F , derive expressions for the overall conversion loss and noise
figure of the image rejection mixer.
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C h a p t e r F o u r t e e n

Introduction to Microwave
Systems

A microwave system consists of passive and active microwave components arranged to
perform a useful function. Probably the two most important examples are microwave com-
munication systems and microwave radar systems, but there are many others. In this chapter
we will discuss the basic operation of several types of microwave systems to give a general
overview of the application of microwave technology, and to show how the subjects of earlier
chapters fit into the overall scheme of complete microwave systems.

An important component in any radar or wireless communication system is the antenna, so
we will first discuss some of the basic properties of antennas. Then we treat wireless commu-
nication, radar, and radiometry systems as important applications of RF and microwave tech-
nology. We also briefly discuss propagation effects, biological effects, and other miscellaneous
applications.

All of these topics are of sufficient depth that many books have been written for each. Our
purpose here is to introduce these topics as a way of placing the earlier material in this book
in the larger context of practical system applications. The interested reader is referred to the
references at the end of the chapter for more complete treatments.

14.1 SYSTEM ASPECTS OF ANTENNAS

In this section we describe some of the basic characteristics of antennas that will be needed
for our study of microwave communications, radar, and remote sensing systems. We are
interested here not in the detailed electromagnetic theory of antenna operation, but rather
in the systems aspect of the operation of an antenna in terms of its radiation patterns, di-
rectivity, gain, efficiency, and noise characteristics. References [1] and [2] can be reviewed
for a more in-depth treatment of the fascinating subject of antenna theory and design.
Figure 14.1 shows some of the different types of antennas that have been developed for
commercial wireless systems.

658
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FIGURE 14.1 Photograph of various millimeter wave antennas. Clockwise from top: a high-gain
38 GHz reflector antenna with radome, a prime-focus parabolic antenna, a corru-
gated conical horn antenna, a 38 GHz planar microstrip array, a pyramidal horn
antenna with a Gunn diode module, and a multibeam reflector antenna.

A transmitting antenna can be viewed as a device that converts a guided electromag-
netic wave on a transmission line into a plane wave propagating in free space. Thus, one
side of an antenna appears as an electrical circuit element, while the other side provides
an interface with a propagating plane wave. Antennas are inherently bidirectional, in that
they can be used for both transmit and receive functions. Figure 14.2 illustrates the basic

FIGURE 14.2 Basic operation of transmitting and receiving antennas.
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operation of transmitting and receiving antennas. The transmitter can be modeled as a
Thevenin source consisting of a voltage generator and series impedance, delivering a power
Pt to the transmitting antenna. A transmitting antenna radiates a spherical wave that, at
large distances, approximates a plane wave over a localized area. A receiving antenna in-
tercepts a portion of an incident plane wave, and delivers a receive power Pr to the receiver
load impedance.

A wide variety of antennas have been developed for different applications, as summa-
rized in the following categories:

� Wire antennas include dipoles, monopoles, loops, sleeve dipoles, Yagi–Uda arrays,
and related structures. Wire antennas generally have low gains, and are most often
used at lower frequencies (HF to UHF). They have the advantages of light weight,
low cost, and simple design.

� Aperture antennas include open-ended waveguides, rectangular or circular horns,
reflectors, lenses, and reflectarrays. Aperture antennas are most commonly used at
microwave and millimeter wave frequencies, and have moderate to high gains.

� Printed antennas include printed slots, printed dipoles, and microstrip patch an-
tennas. These antennas can be made with photolithographic methods, with both
radiating elements and associated feed circuitry fabricated on dielectric substrates.
Printed antennas are most often used at microwave and millimeter wave frequencies,
and can be easily arrayed for high gain.

� Array antennas consist of a regular arrangement of antenna elements with a feed
network. Pattern characteristics such as beam pointing angle and sidelobe levels can
be controlled by adjusting the amplitude and phase excitation of the array elements.
An important type of array antenna is the phased array, in which variable-phase
shifters are used to electronically scan the main beam of the antenna.

Fields and Power Radiated by an Antenna

While we do not require detailed solutions to Maxwell’s equations for our purposes, we do
need to be familiar with the far-zone electromagnetic fields radiated by an antenna. Con-
sider an antenna located at the origin of a spherical coordinate system. At large distances,
where the localized near-zone fields are negligible, the radiated electric field of an arbitrary
antenna can be expressed as

Ē(r, θ, φ) = [
θ̂ Fθ (θ, φ) + φ̂Fφ(θ, φ)

]e− jk0r

r
V/m, (14.1)

where Ē is the electric field vector, θ̂ and φ̂ are unit vectors in the spherical coordinate
system, r is the radial distance from the origin, and k0 = 2π/λ is the free-space propaga-
tion constant, with wavelength λ = c/ f . Also defined in (14.1) are the pattern functions,
Fθ (θ, φ) and Fφ(θ, φ). The interpretation of (14.1) is that this electric field propagates in
the radial direction with a phase variation of e− jk0r and an amplitude variation with dis-
tance of 1/r . The electric field may be polarized in either the θ̂ or φ̂ direction, but not in the
radial direction, since this is a TEM wave. The magnetic fields associated with the electric
field of (14.1) can be found from (1.76) as

Hφ = Eθ

η0
, (14.2a)

Hθ = −Eφ

η0
, (14.2b)
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where η0 = 377 �, the wave impedance of free-space. Note that the magnetic field vector
is also polarized only in the transverse directions. The Poynting vector for this wave is
given by (1.90) as

S̄ = Ē × H̄∗ W/m2, (14.3)

and the time-average Poynting vector is

S̄avg = 1

2
Re {S̄} = 1

2
Re {Ē × H̄∗} W/m2. (14.4)

We mentioned earlier that at large distances the near fields of an antenna are negli-
gible, and that the radiated electric field can be written as in (14.1). We can give a more
precise meaning to this concept by defining the far-field distance as the distance where the
spherical wave front radiated by an antenna becomes a close approximation to the ideal
planar phase front of a plane wave. This approximation applies over the radiating aperture
of the antenna, and so it depends on the maximum dimension of the antenna. If we call this
maximum dimension D, then the far-field distance is defined as

Rff = 2D2

λ
m. (14.5)

This result is derived from the condition that the actual spherical wave front radiated by
the antenna departs less than π/8 = 22.5◦ from a true plane wave front over the maximum
extent of the antenna. For electrically small antennas, such as short dipoles and small loops,
this result may give a far-field distance that is too small; in this case, a minimum value of
Rff = 2λ should be used.

EXAMPLE 14.1 FAR-FIELD DISTANCE OF AN ANTENNA

A parabolic reflector antenna used for reception with the direct broadcast sys-
tem (DBS) is 18 inches in diameter and operates at 12.4 GHz. Find the far-field
distance for this antenna.

Solution
The operating wavelength at 12.4 GHz is

λ = c

f
= 3 × 108

12.4 × 109
= 2.42 cm.

The far-field distance is found from (14.5), after converting 18 inches to 0.457 m:

Rff = 2D2

λ
= 2(0.457)2

0.0242
= 17.3 m.

The actual distance from a DBS satellite to Earth is about 36,000 km, so it is safe
to say that the receive antenna is in the far-field of the transmitting antenna. ■

Next, define the radiation intensity of the radiated electromagnetic field as

U (θ, φ) = r2|S̄avg| = r2

2
Re

{
Eθ θ̂ × H∗

φ φ̂ + Eφφ̂ × H∗
θ θ̂

}

= r2

2η0

[|Eθ |2 + |Eφ |2] = 1

2η0

[|Fθ |2 + |Fφ |2] W, (14.6)
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where (14.1), (14.2), and (14.4) were used. The units of the radiation intensity are watts,
or watts per unit solid angle, since the radial dependence has been removed. The radiation
intensity gives the variation in radiated power versus position around the antenna. We can
find the total power radiated by the antenna by integrating the Poynting vector over the
surface of a sphere of radius r that encloses the antenna. This is equivalent to integrating
the radiation intensity over a unit sphere:

Prad =
2π∫

φ=0

π∫

θ=0

S̄avg · r̂r2 sin θdθdφ =
2π∫

φ=0

π∫

θ=0

U (θ, φ) sin θdθdφ. (14.7)

Antenna Pattern Characteristics
The radiation pattern of an antenna is a plot of the magnitude of the far-zone field strength
versus position around the antenna, at a fixed distance from the antenna. Thus the radiation
pattern can be plotted from the pattern function Fθ (θ, φ) or Fφ(θ, φ), versus either the
angle θ (for an elevation plane pattern) or the angle φ (for an azimuthal plane pattern).
The choice of plotting either Fθ or Fφ is dependent on the polarization of the antenna.

A typical antenna pattern is shown in Figure 14.3. This pattern is plotted in polar form,
versus the elevation angle, θ , for a small horn antenna oriented in the vertical direction. The
plot shows the relative variation of the radiated power of the antenna in dB, normalized to
the maximum value. Since the pattern functions are proportional to voltage, the radial scale
of the plot is computed as 20 log |F(θ, φ)|; alternatively, the plot could be computed in
terms of the radiation intensity as 10 log |U (θ, φ)|. The pattern may exhibit several distinct
lobes, with different maxima in different directions. The lobe having the maximum value
is called the main beam, while those lobes at lower levels are called sidelobes. The pattern
of Figure 14.3 has one main beam at θ = 0 and several sidelobes, the largest of which are
located at about θ = ±16◦. The level of these sidelobes is 13 dB below the level of the
main beam. Radiation patterns may also be plotted in rectangular form; this is especially
useful for antennas having a narrow main beam.

-30 -20 -10 0

FIGURE 14.3 The E-plane radiation pattern of a small horn antenna. The pattern is normalized
to 0 dB at the beam maximum, with 10 dB per radial division.
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A fundamental property of an antenna is its ability to focus power in a given direction,
to the exclusion of other directions. Thus an antenna with a broad main beam can transmit
(or receive) power over a wide angular region, while an antenna having a narrow main
beam will transmit (or receive) power over a small angular region. One measure of this
focusing effect is the 3 dB beamwidth of the antenna, defined as the angular width of the
main beam at which the power level has dropped 3 dB from its maximum value (its half-
power points). The 3 dB beamwidth of the pattern of Figure 14.3 is about 10◦. Antennas
having a constant pattern in the azimuthal plane are called omnidirectional, and are useful
for applications such as broadcasting or for hand-held wireless devices, where it is desired
to transmit or receive equally in all directions. Patterns that have relatively narrow main
beams in both planes are known as pencil beam antennas, and are useful in applications
such as radar and point-to-point radio links.

Another measure of the focusing ability of an antenna is the directivity, defined as the
ratio of the maximum radiation intensity in the main beam to the average radiation intensity
over all space:

D = Umax

Uavg
= 4πUmax

Prad
= 4πUmax

π∫

θ=0

2π∫

φ=0

U (θ, φ) sin θdθdφ

, (14.8)

where (14.7) has been used for the radiated power. Directivity is a dimensionless ratio of
power, and is usually expressed in dB as D(dB) = 10 log(D).

An antenna that radiates equally in all directions is called an isotropic antenna. Apply-
ing the integral identity that

π∫

θ=0

2π∫

φ=0

sin θdθdφ = 4π

to the denominator of (14.8) for U (θ, φ) = 1 shows that the directivity of an isotropic ele-
ment is D = 1, or 0 dB. Since the minimum directivity of any antenna is unity, directivity
is sometimes stated as relative to the directivity of an isotropic radiator, and written as dBi.
Typical directivities for some common antennas are 2.2 dB for a wire dipole, 7.0 dB for a
microstrip patch antenna, 23 dB for a waveguide horn antenna, and 35 dB for a parabolic
reflector antenna.

Beamwidth and directivity are both measures of the focusing ability of an antenna:
an antenna pattern with a narrow main beam will have a high directivity, while a pattern
with a wide beam will have a lower directivity. We might therefore expect a direct relation
between beamwidth and directivity, but in fact there is not an exact relationship between
these two quantities. This is because beamwidth is only dependent on the size and shape
of the main beam, whereas directivity involves integration of the entire radiation pattern.
Thus it is possible for many different antenna patterns to have the same beamwidth but
quite different directivities due to differences in sidelobes or the presence of more than one
main beam. With this qualification in mind, however, it is possible to develop approximate
relations between beamwidth and directivity that apply with reasonable accuracy to a large
number of practical antennas. One such approximation that works well for antennas with
pencil beam patterns is the following:

D ∼= 32,400

θ1θ2
, (14.9)

where θ1 and θ2 are the beamwidths in two orthogonal planes of the main beam, in degrees.
This approximation does not work well for omnidirectional patterns because there is a
well-defined main beam in only one plane for such patterns.
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EXAMPLE 14.2 PATTERN CHARACTERISTICS OF A DIPOLE ANTENNA

The far-zone electric field radiated by an electrically small wire dipole antenna
oriented on the z-axis is given by

Eθ (r, θ, φ) = V0 sin θ
e− jk0r

r
V/m,

Eφ(r, θ, φ) = 0.

Find the main beam position of the dipole antenna, its beamwidth, and its direc-
tivity.

Solution
The radiation intensity for the above far-field is

U (θ, φ) = C sin2 θ,

where the constant C = V 2
0 /2η0. The radiation pattern is seen to be independent

of the azimuth angle φ, and so is omnidirectional in the azimuthal plane. The
pattern has a “donut” shape, with nulls at θ = 0 and θ = 180◦ (along the z-axis),
and a beam maximum at θ = 90◦ (the horizontal plane). The angles where the
radiation intensity has dropped by 3 dB are given by the solutions to

sin2 θ = 0.5;
thus the 3 dB, or half-power, beamwidth is 135◦ − 45◦ = 90◦.

The directivity is calculated using (14.8). The denominator of this expression
is

π∫

θ=0

2π∫

φ=0

U (θ, φ) sin θdθdφ = 2πC

π∫

θ=0

sin3 θdθ = 2πC

(
4

3

)
= 8πC

3
,

where the required integral identity is listed in Appendix D. Since Umax = C , the
directivity reduces to

D = 3

2
= 1.76 dB. ■

Antenna Gain and Efficien y

Resistive losses, due to nonperfect metals and dielectric materials, exist in all practical
antennas. Such losses result in a difference between the power delivered to the input of an
antenna and the power radiated by that antenna. As with many other electrical components,
we can define the radiation efficiency of an antenna as the ratio of the desired output power
to the supplied input power:

ηrad = Prad

Pin
= Pin − Ploss

Pin
= 1 − Ploss

Pin
, (14.10)

where Prad is the power radiated by the antenna, Pin is the power supplied to the input of
the antenna, and Ploss is the power lost in the antenna. Note that there are other factors that
can contribute to the effective loss of transmit power, such as impedance mismatch at the
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input to the antenna, or polarization mismatch with the receive antenna. However, these
losses are external to the antenna and could be eliminated by the proper use of matching
networks, or the proper choice and positioning of the receive antenna. Therefore losses
of this type are usually not attributed to the antenna itself, as are dissipative losses due to
metal conductivity or dielectric loss within the antenna.

Recall that antenna directivity is a function only of the shape of the radiation pattern
(the radiated fields) of an antenna, and is not affected by losses in the antenna itself. To
account for the fact that an antenna having a radiation efficiency less than unity will not
radiate all of its input power, we define antenna gain as the product of directivity and
efficiency:

G = ηrad D. (14.11)

Thus, gain is always less than or equal to directivity. Gain can also be computed directly,
by replacing Prad in the denominator of (14.8) with Pin, since by the definition of radiation
efficiency in (14.10) we have Prad = ηrad Pin. Gain is usually expressed in dB, as G(dB) =
10 log(G). Sometimes the effect of impedance mismatch loss is included in the gain of an
antenna; this is referred to as the realized gain [1].

Aperture Efficien y and Effective Area

Many types of antennas can be classified as aperture antennas, meaning that the antenna
has a well-defined aperture area from which radiation occurs. Examples include reflector
antennas, horn antennas, lens antennas, and array antennas. For such antennas, it can be
shown that the maximum directivity that can be obtained from an electrically large aperture
of area A is given as

Dmax = 4π A

λ2
. (14.12)

For example, a rectangular horn antenna having an aperture 2λ × 3λ has a maximum direc-
tivity of 24π , or about 19 dB. In practice, there are several factors that can serve to reduce
the directivity of an antenna from its maximum possible value, such as nonideal amplitude
or phase characteristics of the aperture field, aperture blockage, or, in the case of reflector
antennas, spillover of the feed pattern. For this reason, we define an aperture efficiency as
the ratio of the actual directivity of an aperture antenna to the maximum directivity given
by (14.12). Then we can write the directivity of an aperture antenna as

D = ηap
4π A

λ2
. (14.13)

Aperture efficiency is always less than or equal to unity.
The above definitions of antenna directivity, efficiency, and gain were stated in terms

of a transmitting antennas, but they apply to receiving antennas as well. For a receiving
antenna it is also of interest to determine the received power for a given incident plane wave
field. This is the converse problem of finding the power density radiated by a transmitting
antenna, as given in (14.4). Determining received power is important for the derivation of
the Friis radio system link equation, to be discussed in the following section. We expect that
received power will be proportional to the power density, or Poynting vector, of the incident
wave. Since the Poynting vector has dimensions of W/m2, and the received power, Pr , has
dimensions of W, the proportionality constant must have units of area. Thus we write

Pr = Ae Savg, (14.14)
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where Ae is defined as the effective aperture area of the receive antenna. The effective
aperture area has dimensions of m2, and can be interpreted as the “capture area” of a
receive antenna, intercepting part of the incident power density radiated toward the receive
antenna. The quantity Pr in (14.14) is the power available at the terminals of the receive
antenna, as delivered to a conjugately matched load.

The maximum effective aperture area of an antenna can be shown to be related to the
directivity of the antenna as [1, 2]

Ae = Dλ2

4π
, (14.15)

where λ is the operating wavelength of the antenna. For electrically large aperture antennas
the effective aperture area is often close to the actual physical aperture area. However,
for many other types of antennas, such as dipoles and loops, there is no simple relation
between the physical cross-sectional area of the antenna and its effective aperture area.
The maximum effective aperture area as defined above does not include the effect of losses
in the antenna, which can be accounted for by replacing D in (14.15) with G, the gain, of
the antenna.

Background and Brightness Temperature

We have seen how noise power is generated by lossy components and active devices, but
noise can also be delivered to the input of a receiver by the antenna. Antenna noise power
may be received from the external environment, or generated internally as thermal noise
due to losses in the antenna itself. While noise produced within a receiver is controllable
to some extent (by judicious design and component selection), the noise received from
the environment by a receiving antenna is generally not controllable, and may exceed the
noise level of the receiver itself. Thus it is important to characterize the noise power deliv-
ered to a receiver by its antenna.

Consider the three situations shown in Figure 14.4. In Figure 14.4a we have the simple
case of a resistor at temperature T , producing an available output noise power

No = kTB, (14.16)

where B is the system bandwidth and k is Boltzmann’s constant. In Figure 14.4b we have
an antenna enclosed by an anechoic chamber at temperature T . The anechoic chamber
appears as a perfectly absorbing enclosure, and is in thermal equilibrium with the an-
tenna. Thus the terminals of the antenna are indistinguishable from the resistor terminals of
Figure 14.4a (assuming an impedance-matched antenna), and therefore it produces the

FIGURE 14.4 Illustrating the concept of background temperature. (a) A resistor at temperature T .
(b) An antenna in an anechoic chamber at temperature T . (c) An antenna viewing
a uniform sky background at temperature T .
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FIGURE 14.5 Natural and man-made sources of background noise.

same output noise power as the resistor of Figure 14.4a. Figure 14.4c shows the same an-
tenna directed at the sky. If the main beam of the antenna is narrow enough so that it sees
a uniform region at physical temperature T , then the antenna again appears as a resistor at
temperature T and produces the output noise power given in (14.16). This is true regard-
less of the radiation efficiency of the antenna, as long as the physical temperature of the
antenna is also T .

In actuality an antenna typically sees a much more complex environment than the
cases depicted in Figure 14.4. A general scenario of both naturally occurring and man-
made noise sources is shown in Figure 14.5, where we see that an antenna with a relatively
broad main beam may pick up noise power from a variety of origins. In addition, noise
may be received through the sidelobes of the antenna pattern or via reflections from the
ground or other large objects. As in Chapter 10, where the noise power from an arbi-
trary white noise source was represented as an equivalent noise temperature, we define the
background noise temperature, TB , as the equivalent temperature of a resistor required to
produce the same noise power as the actual environment seen by the antenna. Some typ-
ical background noise temperatures that are relevant at low microwave frequencies are as
follows:

� Sky (toward zenith) 3–5 K
� Sky (toward horizon) 50–100 K
� Ground 290–300 K

The overhead sky background temperature of 3–5 K is the cosmic background radiation
believed to be a remnant of the big bang at the creation of the universe. This would be
the noise temperature seen by an antenna with a narrow beam and high radiation effi-
ciency pointed overhead, away from “hot” sources such as the Sun or stellar radio objects.
The background noise temperature increases as the antenna is pointed toward the horizon
because of the greater thickness of the atmosphere, so that the antenna sees an effective
background closer to that of the anechoic chamber of Figure 14.4b. Pointing the antenna
toward the ground further increases the effective loss, and hence the noise temperature.

Figure 14.6 gives a more complete picture of the background noise temperature, show-
ing the variation of TB versus frequency and for several elevation angles [3]. Note that the
noise temperature shown in the graph follows the trends listed above, in that it is lowest
for the overhead sky (θ = 90◦), and greatest for angles near the horizon (θ = 0◦). Also
note the sharp peaks in noise temperature that occur at 22 and 60 GHz. The first is due to
the resonance of molecular water, while the second is caused by resonance of molecular
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FIGURE 14.6 Background noise temperature of sky versus frequency. θ is elevation angle mea-
sured from the horizon. Data are for sea level, with surface temperature of 15◦ C
and surface water vapor density of 7.5 gm/m3.

oxygen. Both of these resonances lead to increased atmospheric loss and hence increased
noise temperature. The loss is great enough at 60 GHz that a high-gain antenna pointing
through the atmosphere effectively appears as a matched load at 290 K. While loss in gen-
eral is undesirable, these particular resonances can be useful for remote sensing applica-
tions, or for using the inherent attenuation of the atmosphere to limit propagation distances
for radio communications over small distances.

When the antenna beamwidth is broad enough that different parts of the antenna pat-
tern see different background temperatures, the effective brightness temperature seen by
the antenna can be found by weighting the spatial distribution of background temperature
by the pattern function of the antenna. Mathematically we can write the brightness temper-
ature Tb seen by the antenna as

Tb =

2π∫

φ=0

π∫

θ=0

TB(θ, φ)D(θ, φ) sin θdθdφ

2π∫

φ=0

π∫

θ=0

D(θ, φ) sin θdθdφ

, (14.17)

where TB(θ, φ) is the distribution of the background temperature, and D(θ, φ) is the di-
rectivity (or the power pattern function) of the antenna. Antenna brightness temperature
is referenced at the terminals of the antenna. Observe that when TB is a constant, (14.17)
reduces to Tb = TB , which is essentially the case of a uniform background temperature
shown in Figure 14.3b or 14.4c. Also note that this definition of antenna brightness tem-
perature does not involve the gain or efficiency of the antenna, and so does not include
thermal noise due to losses in the antenna.
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Antenna Noise Temperature and G/T

If a receiving antenna has dissipative loss, so that its radiation efficiency ηrad is less than
unity, the power available at the terminals of the antenna is reduced by the factor ηrad
from that intercepted by the antenna (the definition of radiation efficiency is the ratio of
output to input power). This reduction applies to received noise power, as well as received
signal power, so the noise temperature of the antenna will be reduced from the brightness
temperature given in (14.17) by the factor ηrad. In addition, thermal noise will be generated
internally by resistive losses in the antenna, and this will increase the noise temperature of
the antenna. In terms of noise power, a lossy antenna can be modeled as a lossless antenna
and an attenuator having a power loss factor of L = 1/ηrad. Then, using (10.15) for the
equivalent noise temperature of an attenuator, we can find the resulting noise temperature
seen at the antenna terminals as

TA = Tb

L
+ (L − 1)

L
Tp = ηradTb + (1 − ηrad)Tp. (14.18)

The equivalent temperature TA is called the antenna noise temperature, and is a combi-
nation of the external brightness temperature seen by the antenna and the thermal noise
generated by the antenna. As with other equivalent noise temperatures, the proper interpre-
tation of TA is that a matched load at this temperature will produce the same available noise
power as does the antenna. Note that this temperature is referenced at the output terminals
of the antenna; since an antenna is not a two-port circuit element, it does not make sense
to refer the equivalent noise temperature to its “input.”

Observe that (14.18) reduces to TA = Tb for a lossless antenna with ηrad = 1. If the
radiation efficiency is zero, meaning that the antenna appears as a matched load and does
not see any external background noise, then (14.18) reduces to TA = Tp, due to the thermal
noise generated by the losses. If an antenna is pointed toward a known background tem-
perature different than T0, then (14.18) can be used to determine its radiation efficiency.

EXAMPLE 14.3 ANTENNA NOISE TEMPERATURE

A high-gain antenna has the idealized hemispherical elevation plane pattern shown
in Figure 14.7, and is rotationally symmetric in the azimuth plane. If the antenna
is facing a region having a background temperature TB approximated as given in
Figure 14.7, find the antenna noise temperature. Assume the radiation efficiency
of the antenna is 100%.

Solution
Since ηrad = 1, (14.18) reduces to TA = Tb. The brightness temperature can be
computed from (14.17), after normalizing the directivity to a maximum value

FIGURE 14.7 Idealized antenna pattern and background noise temperature for Example 14.3.
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of unity:

Tb =

2π∫
φ=0

π∫
θ=0

TB(θ, φ)D(θ, φ) sin θdθdφ

2π∫
φ=0

π∫
θ=0

D(θ, φ) sin θdθdφ

=

1◦∫
θ=0

10 sin θdθ+
30◦∫

θ=1◦
0.1 sin θdθ+

90◦∫
θ=30◦

sin θdθ

1◦∫
θ=0

sin θdθ +
90◦∫

θ=1◦
0.01 sin θdθ

= −10 cos θ |1◦
0 − 0.1 cos θ |30◦

1◦ − cos θ |90◦
30◦

−cosθ |1◦
0 − 0.01 cos θ |90◦

1◦
= 0.00152 + 0.0134 + 0.866

0.0102
= 86.4 K.

In this example most of the noise power is collected through the sidelobe region
of the antenna. ■

The more general problem of a receiver connected through a lossy transmission line to
an antenna viewing a background noise temperature distribution TB can be represented by
the system shown in Figure 14.8. The antenna is assumed to have a radiation efficiency ηrad,
and the connecting transmission line has a power loss factor of L ≥ 1, with both at physical
temperature Tp. We also include the effect of an impedance mismatch between the antenna
and the transmission line, represented by the reflection coefficient �. The equivalent noise
temperature seen at the output terminals of the transmission line consists of three contri-
butions: noise power from the antenna due to internal noise and the background brightness
temperature, noise power generated from the lossy line in the forward direction, and noise
power generated by the lossy line in the backward direction and reflected from the antenna
mismatch toward the receiver. The noise due to the antenna is given by (14.18), but re-
duced by the loss factor of the line, 1/L , and the reflection mismatch factor, (1 − |�|2).
The forward noise power from the lossy line is given by (10.15), after reduction by the loss
factor, 1/L . The contribution from the lossy line reflected from the mismatched antenna
is given by (10.15), after reduction by the power reflection coefficient, |�|2, and the loss
factor, 1/L2 (since the reference point for the back-directed noise power from the lossy
line given by (10.15) is at the output terminals of the line). Thus the overall system noise
temperature seen at the input to the receiver is given by

TS = TA

L
(1 − |�|2) + (L − 1)

Tp

L
+ (L − 1)

Tp

L2
|�|2

= (1 − |�|2)
L

[ηradTb + (1 − ηrad)Tp] + (L − 1)

L

(
1 + |�|2

L

)
Tp. (14.19)

Background
temperature

TB (�, �)

Antenna
TP, �rad

Receiver

TA TS

�

Lossy line
TP, �

FIGURE 14.8 A receiving antenna connected to a receiver through a lossy transmission line. An
impedance mismatch exists between the antenna and the line.
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Observe that for a lossless line (L = 1) the effect of an antenna mismatch is to reduce the
system noise temperature by the factor (1 − |�|2). Of course, the received signal power
will be reduced by the same amount. Also note that for the case of a matched antenna
(� = 0), (14.19) reduces to

TS = 1

L
[ηradTb + (1 − ηrad)Tp] + L − 1

L
Tp, (14.20)

as expected for a cascade of two noisy components.
Finally, it is important to realize the difference between radiation efficiency and aper-

ture efficiency, and their effects on antenna noise temperature. While radiation efficiency
accounts for resistive losses, and thus involves the generation of thermal noise, aperture ef-
ficiency does not. Aperture efficiency applies to the loss of directivity in aperture antennas,
such as reflectors, lenses, or horns, due to feed spillover or suboptimum aperture excitation
(e.g., a nonuniform amplitude or phase distribution), and by itself does not lead to any ad-
ditional effect on noise temperature that would not be included through the pattern of the
antenna.

The antenna noise temperature defined above is a useful figure of merit for a receive
antenna because it characterizes the total noise power delivered by the antenna to the input
of a receiver. Another useful figure of merit for receive antennas is the G/T ratio, defined as

G/T (dB) = 10 log
G

TA
dB/K, (14.21)

where G is the gain of the antenna, and TA is the antenna noise temperature. This quantity
is important because, as we will see in Section 14.2, the signal-to-noise ratio (SNR) at the
input to a receiver is proportional to G/TA. The ratio G/T can often be maximized by in-
creasing the gain of the antenna, since this increases the numerator and usually minimizes
reception of noise from hot sources at low elevation angles. Of course, higher gain requires
a larger and more expensive antenna, and high gain may not be desirable for applications
requiring omnidirectional coverage (e.g., cellular telephones or mobile data networks), so
often a compromise must be made. Finally, note that the dimensions given in (14.21) for
10 log(G/T ) are not actually decibels per degree kelvin, but this is the nomenclature that
is commonly used for this quantity.

14.2 WIRELESS COMMUNICATIONS

Wireless communications involves the transfer of information between two points without
direct connection. While this may be accomplished using sound, infrared, optical, or radio
frequency energy, most modern wireless systems rely on RF or microwave signals, usually
in the UHF to millimeter wave frequency range. Because of spectrum crowding and the
need for higher data rates, the trend is to higher frequencies, so the majority of wireless
systems today operate at frequencies ranging from about 800 MHz to a few gigahertz. RF
and microwave signals offer wide bandwidths, and have the added advantage of being able
to penetrate fog, dust, foliage, and even buildings and vehicles to some extent. Historically,
wireless communication using RF energy has its foundations in the theoretical work of
Maxwell, followed by the experimental verification of electromagnetic wave propagation
by Hertz, and the practical development of radio techniques and systems by Tesla, Marconi,
and others in the early part of the 20th century. Today, wireless systems include broadcast
radio and television, cellular telephone and networking systems, direct broadcast satellite
(DBS) television service, wireless local area networks (WLANs), paging systems, Global
Positioning System (GPS) service, and radio frequency identification (RFID) systems [4].
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These systems are beginning to provide, for the first time in history, worldwide connectivity
for voice, video, and network communications.

One way to categorize wireless systems is according to the nature and placement of
the users. In a point-to-point radio system a single transmitter communicates with a single
receiver. Such systems generally use high-gain antennas in fixed positions to maximize
received power and minimize interference with other radios that may be operating nearby
in the same frequency range. Point-to-point radios are typically used for satellite commu-
nications, dedicated data communications by utility companies, and backhaul connection
of cellular base stations to a central switching office. Point-to-multipoint systems connect
a central station to a large number of possible receivers. The most common examples are
commercial AM and FM radio and broadcast television, where a central transmitter uses
an antenna with a broad azimuthal beam to reach many listeners and viewers. Multipoint-
to-multipoint systems allow simultaneous communication between individual users (who
may not be in fixed locations). Such systems generally do not connect two users directly,
but instead rely on a grid of base stations to provide the desired interconnections between
users. Cellular telephone systems and some types of WLANs are examples of this type of
application.

Another way to characterize wireless systems is in terms of the directionality of com-
munication. In a simplex system, communication occurs only in one direction—from the
transmitter to the receiver. Examples of simplex systems include broadcast radio, televi-
sion, and paging systems. In a half-duplex system, communication may occur in two direc-
tions, but not simultaneously. Early mobile radios and citizens band radio are examples of
duplex systems, and generally rely on a “push-to-talk” function so that a single channel can
be used for both transmitting and receiving at different times. Full-duplex systems allow si-
multaneous two-way transmission and reception. Examples include cellular telephone and
point-to-point radio systems. Full-duplex transmission clearly requires a duplexing tech-
nique to avoid interference between transmitted and received signals. This can be done by
using separate frequency bands for transmit and receive (frequency division duplexing), or
by allowing users to transmit and receive only in certain predefined time intervals (time
division duplexing).

While most wireless systems are ground based, it is also possible to use satellite sys-
tems for voice, video, and data communications [5]. Satellites offer the possibility of
communication with a large number of users over wide areas, perhaps including the en-
tire planet. Satellites in a geosynchronous earth orbit (GEO) are positioned approximately
36,000 km above Earth, and have a 24-hour orbital period. When a GEO satellite is posi-
tioned above the equator, it becomes geostationary, and will remain in a fixed position rel-
ative to Earth. Such satellites are useful for point-to-point radio links between widely sep-
arated stations, and are commonly used for television and data communications through-
out the world. At one time transcontinental telephone service relied on such satellites,
but undersea fiber optics cables have largely replaced satellites for transoceanic connec-
tions as being more economical and avoiding the annoying delay caused by the very long
round-trip path between the satellite and Earth. Another drawback of GEO satellites is
that their high altitude greatly reduces the received signal strength, making it difficult
for two-way communication with handheld transceivers. Low Earth orbit (LEO) satel-
lites orbit much closer to Earth, typically in the range of 500–2000 km. The shorter path
length may allow line-of-sight communication between LEO satellites and hand-held ra-
dios, but satellites in LEO orbits are visible from a given point on the ground for only
a short time, typically between a few minutes and about 20 minutes. Effective coverage
therefore requires a large number of LEO satellites in different orbital planes. The ill-fated
Iridium system is probably the best-known example of a LEO satellite communications
system.
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R

FIGURE 14.9 A basic radio system.

The Friis Formula

A general radio system link is shown in Figure 14.9, where the transmit power is Pt , the
transmit antenna gain is Gt , the receive antenna gain is Gr , and the received power (de-
livered to a matched load) is Pr . The transmit and receive antennas are separated by the
distance R.

From (14.6)–(14.7), the power density radiated by an isotropic antenna (D =
1 = 0 dB) at a distance R is given by

Savg = Pt

4π R2
W/m2. (14.22)

This result reflects the fact that we must be able to recover all of the radiated power by
integrating over a sphere of radius R surrounding the antenna; since the power is distributed
isotropically, and the area of a sphere is 4π R2, (14.22) follows. If the transmit antenna has
a directivity greater than 0 dB, we can find the radiated power density by multiplying by
the directivity, since directivity is defined as the ratio of the actual radiation intensity to the
equivalent isotropic radiation intensity. In addition, if the transmit antenna has losses, we
can include the radiation efficiency factor, which has the effect of converting directivity to
gain. Thus, the general expression for the power density radiated by an arbitrary transmit
antenna is

Savg = Gt Pt

4π R2
W/m2. (14.23)

If this power density is incident on the receive antenna, we can use the concept of effective
aperture area, as defined in (14.14), to find the received power:

Pr = Ae Savg = Gt Pt Ae

4π R2
W.

Next, (14.15) can be used to relate the effective area to the directivity of the receive antenna.
Again, the possibility of losses in the receive antenna can be accounted for by using the
gain (rather than the directivity) of the receive antenna. Then the final result for the received
power is

Pr = Gt Grλ
2

(4π R)2
Pt W. (14.24)

This result is known as the Friis radio link formula, and it addresses the fundamental
question of how much power is received by a radio antenna. In practice, the value given
by (14.24) should be interpreted as the maximum possible received power, as there are a
number of factors that can serve to reduce the received power in an actual radio system.
These include impedance mismatch at either antenna, polarization mismatch between the
antennas, propagation effects leading to attenuation or depolarization, and multipath effects
that may cause partial cancellation of the received field.



c14IntroToMicrowaveSystems Pozar September 26, 2011 18:40

674 Chapter 14: Introduction to Microwave Systems

Observe in (14.24) that the received power decreases as 1/R2 as the separation be-
tween transmitter and receiver increases. This dependence is a result of conservation of
energy. While it may seem to be prohibitively large for large distances, in fact the space
decay of 1/R2 is usually much better than the exponential decrease in power due to losses
in a wired communications link. This is because the attenuation of power on a transmission
line varies as e−2αz (where α is the attenuation constant of the line), and at large distances
the exponential function decreases faster than an algebraic dependence like 1/R2. Thus
for long-distance communications, radio links will perform better than wired links. This
conclusion applies to any type of transmission line, including coaxial lines, waveguides,
and even fiber optic lines. (It may not apply, however, if the communications link is land
or sea based, so that repeaters can be inserted along the link to recover lost signal power.)

As can be seen from the Friis formula, received power is proportional to the prod-
uct Pt Gt . These two factors—the transmit power and transmit antenna gain—characterize
the transmitter, and in the main beam of the antenna the product Pt Gt can be interpreted
equivalently as the power radiated by an isotropic antenna with input power Pt Gt . Thus,
this product is defined as the effective isotropic radiated power (EIRP):

EIRP = Pt Gt W. (14.25)

For a given frequency, range, and receiver antenna gain, the received power is propor-
tional to the EIRP of the transmitter and can only be increased by increasing the EIRP. This
can be done by increasing the transmit power, or the transmit antenna gain, or both.

Link Budget and Link Margin

The various terms in the Friis formula of (14.24) are often tabulated separately in a link
budget, where each of the factors can be individually considered in terms of its net effect
on the received power. Additional loss factors, such as line losses or impedance mismatch
at the antennas, atmospheric attenuation (see Section 14.5), and polarization mismatch can
also be added to the link budget. One of the terms in a link budget is the path loss, account-
ing for the free-space reduction in signal strength with distance between the transmitter
and receiver. From (14.24), path loss is defined (in dB) as

L0(dB) = 20 log

(
4π R

λ

)
> 0. (14.26)

Note that path loss depends on wavelength (frequency), which serves to provide a normal-
ization for the units of distance.

With the above definition of path loss, we can write the remaining terms of the Friis
formula as shown in the following link budget:

Transmit power Pt

Transmit antenna line loss (−)Lt

Transmit antenna gain Gt

Path loss (free-space) (−)L0

Atmospheric attenuation (−)L A

Receive antenna gain Gr

Receive antenna line loss (−)Lr

Receive power Pr

We have also included loss terms for atmospheric attenuation and line attenuation. Assum-
ing that all of the above quantities are expressed in dB (or dBm, in the case of Pt ), we can
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write the receive power as

Pr (dBm) = Pt − Lt + Gt − L0 − L A + Gr − Lr . (14.27)

If the transmit and/or receive antenna is not impedance matched to the transmitter/
receiver (or to their connecting lines), impedance mismatch will reduce the received power
by the factor (1 − |�|2), where � is the appropriate reflection coefficient. The resulting
impedance mismatch loss,

L imp(dB) = −10 log(1 − |�|2) ≥ 0, (14.28)

can be included in the link budget to account for the reduction in received power.
Another possible entry in the link budget relates to the polarization matching of the

transmit and receive antennas, as maximum power transmission between transmitter and
receiver requires both antennas to be polarized in the same manner. If a transmit antenna is
vertically polarized, for example, maximum power will only be delivered to a vertically po-
larized receiving antenna, while zero power would be delivered to a horizontally polarized
receive antenna, and half the available power would be delivered to a circularly polarized
antenna. Determination of the polarization loss factor is explained in references [1], [2],
and [4].

In practical communications systems it is usually desired to have the received power
level greater than the threshold level required for the minimum acceptable quality of service
(usually expressed as the minimum carrier-to-noise ratio (CNR), or minimum SNR). This
design allowance for received power is referred to as the link margin, and can be expressed
as the difference between the design value of received power and the minimum threshold
value of receive power:

Link margin (dB) = LM = Pr − Pr(min) > 0, (14.29)

where all quantities are in dB. Link margin should be a positive number; typical values may
range from 3 to 20 dB. Having a reasonable link margin provides a level of robustness to the
system to account for variables such as signal fading due to weather, movement of a mobile
user, multipath propagation problems, and other unpredictable effects that can degrade
system performance and quality of service. Link margin that is used to account for fading
effects is sometimes referred to as fade margin. Satellite links operating at frequencies
above 10 GHz, for example, often require fade margins of 20 dB or more to account for
attenuation during heavy rain.

As seen from (14.29) and the link budget, link margin for a given communication
system can be improved by increasing the received power (by increasing transmit power or
antenna gains), or by reducing the minimum threshold power (by improving the design of
the receiver, changing the modulation method, or by other means). Increasing link margin
therefore usually involves an increase in cost and complexity, so excessive increases in link
margin are usually avoided.

EXAMPLE 14.4 LINK ANALYSIS OF DBS TELEVISION SYSTEM

The direct broadcast system in North America operates at 12.2–12.7 GHz, with a
transmit carrier power of 120 W, a transmit antenna gain of 34 dB, an IF band-
width of 20 MHz, and a worst-case slant angle (30◦) distance from the geostation-
ary satellite to Earth of 39,000 km. The 18-inch receiving dish antenna has a gain
of 33.5 dB and sees an average background brightness temperature of Tb = 50 K,
with a receiver low-noise block (LNB) having a noise figure of 0.7 dB. The re-
quired minimum CNR is 15 dB. The overall system is shown in Figure 14.10.
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FIGURE 14.10 Diagram of the DBS system for Example 14.4.

Find (a) the link budget for the received carrier power at the antenna terminals,
(b) G/T for the receive antenna and LNB system, (c) the CNR at the output of the
LNB, and (d) the link margin of the system.

Solution
We will take the operating frequency to be 12.45 GHz, so the wavelength is 0.0241
m. From (14.26) the path loss is

L0 = 20 log

(
4π R

λ

)
= 20 log

(
(4π) (39 × 106)

0.0241

)
= 206.2 dB

(a) The link budget for the received power is

Pt = 120 W = 50.8 dBm
Gt = 34.0 dB
L0 = (−)206.2 dB
Gr = 33.5 dB
Pr = −87.9 dBm = 1.63 × 10−12 W.

(b) To find G/T we first find the noise temperature of the antenna and LNB cas-
cade, referenced at the input of the LNB:

Te = TA + TLNB = Tb + (F − 1)T0 = 50 + (1.175 − 1)(290) = 100.8 K.

Then G/T for the antenna and LNB is

G/T (dB) = 10 log
2239

100.8
= 13.5 dB/K.

(c) The CNR at the output of the LNB is

CNR = Pr GLNB

kTe BGLNB
= 1.63 × 10−12

(1.38 × 10−23)(100.8)(20 × 106)
= 58.6 = 17.7 dB.

Note that GLNB, the gain of the LNB module, cancels in the ratio for the output
CNR.

(d) If the minimum required CNR is 15 dB, the system link margin is 2.7 dB. ■

Radio Receiver Architectures

The receiver is usually the most critical component of a wireless system, having the over-
all purpose of reliably recovering the desired signal from a wide spectrum of transmit-
ting sources, interference, and noise. In this section we will describe some of the critical
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requirements for radio receiver design and summarize some of the most common types of
receiver architectures.

A well-designed radio receiver must provide several different functions:

� High gain (∼100 dB) to restore the low power of the received signal to a level near
its original baseband value

� Selectivity, in order to receive the desired signal while rejecting adjacent channels,
image frequencies, and interference

� Down-conversion from the received RF frequency to a lower IF frequency for
processing

� Detection of the received analog or digital information
� Isolation from the transmitter to avoid saturation of the receiver

Because the typical signal power level from the receive antenna may be as low as −100
to −120 dBm, the receiver may be required to provide gain as high as 100 to 120 dB.
This much gain should be spread over the RF, IF, and baseband stages to avoid instabilities
and possible oscillation; it is generally good practice to avoid more than about 50–60 dB
of gain at any one frequency band. The fact that amplifier cost generally increases with
frequency is a further reason to spread gain over different frequency stages.

In principle, selectivity can be obtained by using a narrow bandpass filter at the RF
stage of the receiver, but the bandwidth and cutoff requirements for such a filter are usually
impractical to realize at RF frequencies. It is more effective to achieve selectivity by down-
converting a relatively wide RF bandwidth around the desired signal, and using a sharp-
cutoff bandpass filter at the IF stage to select only the desired frequency band. In addition,
many wireless systems use a number of narrow but closely spaced channels, which must
be selected using a tuned local oscillator, while the IF passband is fixed. The alternative of
using an extremely narrow band, electronically tunable RF filter is not practical.

Tuned radio frequency receiver: One of the earliest types of receiving circuits to be de-
veloped was the tuned radio frequency (TRF) receiver. As shown in Figure 14.11, a TRF
receiver employs several stages of RF amplification along with tunable bandpass filters to
provide high gain and selectivity. Alternatively, filtering and amplification may be com-
bined by using amplifiers with a tunable bandpass response. At relatively low broadcast
radio frequencies, such filters and amplifiers have historically been tuned using mechan-
ically variable capacitors or inductors. However, such tuning is problematic because of
the need to tune several stages in parallel, and selectivity is poor because the passband
of such filters is fairly broad. In addition, all the gain of the TRF receiver is achieved at
the RF frequency, limiting the amount of gain that can be obtained before oscillation oc-
curs, and increasing the cost and complexity of the receiver. Because of these drawbacks
TRF receivers are seldom used today, and are an especially bad choice for higher RF or
microwave frequencies.

FIGURE 14.11 Block diagram of a tuned radio frequency receiver.
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FIGURE 14.12 Block diagram of a direct-conversion receiver.

Direct conversion receiver: The direct conversion receiver, shown in Figure 14.12, uses a
mixer and local oscillator to perform frequency down-conversion with a zero IF frequency.
The local oscillator is set to the same frequency as the desired RF signal, which is then
converted directly to baseband. For this reason, the direct conversion receiver is sometimes
called a homodyne receiver. For AM reception the received baseband signal would not re-
quire any further detection. The direct conversion receiver offers several advantages over
the TRF receiver, as selectivity can be controlled with a simple low-pass baseband filter,
and gain may be spread through the RF and baseband stages (although it is difficult to ob-
tain stable high gain at very low frequencies). Direct conversion receivers are simpler and
less costly than superheterodyne receivers since there is no IF amplifier, IF bandpass filter,
or IF local oscillator required for final down conversion. Another important advantage of
direct conversion is that there is no image frequency, since the mixer difference frequency
is effectively zero, and the sum frequency is twice the LO and easily filtered. However, a
serious disadvantage is that the LO must have a very high degree of precision and stability,
especially for high RF frequencies, to avoid drift of the received signal frequency. This type
of receiver is often used with Doppler radars, where the exact LO can be obtained from
the transmitter, but a number of newer wireless systems are being designed with direct
conversion receivers.

Superheterodyne receiver: By far the most popular type of receiver in use today is the
superheterodyne circuit, shown in Figure 14.13. The block diagram is similar to that of the
direct conversion receiver, but the IF frequency is now nonzero, and is generally selected to
be between the RF frequency and baseband. A midrange IF allows the use of sharper cutoff
filters for improved selectivity, and higher IF gain through the use of an IF amplifier. Tuning
is conveniently accomplished by varying the frequency of the local oscillator so that the IF
frequency remains constant. The superheterodyne receiver represents the culmination of
over 50 years of receiver development, and is used in the majority of broadcast radios and
televisions, radar systems, cellular telephone systems, and data communications systems.

At microwave and millimeter wave frequencies it is often necessary to use two stages
of down conversion to avoid problems due to LO stability. Such a dual-conversion super-
heterodyne receiver employs two local oscillators, two mixers, and two IF frequencies to
achieve down-conversion to baseband.

FIGURE 14.13 Block diagram of a single-conversion superheterodyne receiver.
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FIGURE 14.14 Noise analysis of a microwave receiver front end, including antenna and trans-
mission line contributions.

Noise Characterization of a Receiver

We can now analyze the noise characteristics of a complete antenna–transmission line–
receiver front end, as shown in Figure 14.14. In this system the total noise power at the
output of the receiver, No, will be due to contributions from the antenna pattern, the loss
in the antenna, the loss in the transmission line, and the receiver components. This noise
power will determine the minimum detectable signal level for the receiver and, for a given
transmitter power, the maximum range of the communication link.

The receiver components in Figure 14.14 consist of an RF amplifier with gain GRF
and noise temperature TRF, a mixer with an RF-to-IF conversion loss factor L M and noise
temperature TM , and an IF amplifier with gain GIF and noise temperature TIF. The noise
effects of later stages can usually be ignored since the overall noise figure is dominated by
the characteristics of the first few stages. The component noise temperatures can be related
to noise figures as T = (F − 1)T0. From (10.22) the equivalent noise temperature of the
receiver can be found as

TREC = TRF + TM

GRF
+ TIFL M

GRF
. (14.27)

The transmission line connecting the antenna to the receiver has a loss LT , and is at a
physical temperature Tp. So from (10.15) its equivalent noise temperature is

TTL = (LT − 1)Tp. (14.28)

Again using (10.22), we find that the noise temperature of the transmission line (TL) and
receiver (REC) cascade is

TTL+REC = TTL + LT TREC

= (LT − 1)Tp + LT TREC. (14.29)

This noise temperature is defined at the antenna terminals (the input to the transmission
line).

As discussed in Section 14.1, the entire antenna pattern can collect noise power. If the
antenna has a reasonably high gain with relatively low sidelobes, we can assume that all
noise power comes via the main beam, so that the noise temperature of the antenna is given
by (14.18):

TA = ηradTb + (1 − ηrad)Tp, (14.30)
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where ηrad is the efficiency of the antenna, Tp is its physical temperature, and Tb is the
equivalent brightness temperature of the background seen by the main beam. (One must be
careful with this approximation, as it is quite possible for the noise power collected by the
sidelobes to exceed the noise power collected by the main beam, if the sidelobes are aimed
at a hot background. See Example 14.3.) The noise power at the antenna terminals, which
is also the noise power delivered to the transmission line, is

Ni = kBTA = kB[ηradTb + (1 − ηrad)Tp], (14.31)

where B is the system bandwidth. If Si is the received power at the antenna terminals, then
the input SNR at the antenna terminals is Si/Ni . The output signal power is

So = Si GRFGIF

LT L M
= Si GSYS, (14.32)

where GSYS has been defined as a system power gain. The output noise power is

No = (Ni + kBTTL+REC) GSYS

= kB(TA + TTL+REC)GSYS

= kB[ηradTb + (1 − ηrad)Tp + (LT − 1)Tp + LT TREC]GSYS

= kBTSYSGSYS, (14.33)

where TSYS has been defined as the overall system noise temperature. The output SNR is

So

No
= Si

kBTSYS
= Si

kB[ηradTb + (1 − ηrad)Tp + (LT − 1)Tp + LT TREC] . (14.34)

It may be possible to improve this SNR by various signal processing techniques. Note
that it may appear to be convenient to use an overall system noise figure to calculate the
degradation in SNR from input to output for the above system, but one must be very careful
with such an approach because noise figure is defined only for Ni = kT0 B, which is not the
case here. It is often less confusing to work directly with noise temperatures and powers,
as we did above.

EXAMPLE 14.5 SIGNAL-TO-NOISE RATIO OF A MICROWAVE RECEIVER

A microwave receiver like that of Figure 14.14 has the following parameters:

f = 4.0 GHz, GRF = 20 dB,

B = 1 MHz, FRF = 3.0 dB,

G A = 26 dB, L M = 6.0 dB,

ηrad = 0.90, FM = 7.0 dB,

Tp = 300 K, GIF = 30 dB,

Tb = 200 K, FIF = 1.1 dB.

LT = 1.5 dB,

If the received power at the antenna terminals is Si = −80 dBm, calculate the
input and output SNRs.
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Solution
We first convert the above dB quantities to numerical values, and noise figures to
noise temperatures:

GRF = 1020/10 = 100,

GIF = 1030/10 = 1000,

LT = 101.5/10 = 1.41,

L M = 106/10 = 4.0,

TM = (FM − 1)T0 = (107/10 − 1)(290) = 1163 K,

TRF = (FRF − 1)T0 = (103/10 − 1)(290) = 289 K,

TIF = (FIF − 1)T0 = (101.1/10 − 1)(290) = 84 K.

Then from (14.27), (14.28), and (14.30) the noise temperatures of the receiver,
transmission line, and antenna are

TREC = TRF + TM

GRF
+ TIFL M

GRF
= 289 + 1163

100
+ 84(4.0)

100
= 304 K,

TTL = (LT − 1)Tp = (1.41 − 1)300 = 123 K,

TA = ηradTb + (1 − ηrad)Tp = 0.9(200) + (1 − 0.9)(300) = 210 K.

The input noise power, from (14.31), is

Ni = kBTA = 1.38 × 10−23(106)(210) = 2.9 × 10−15W = −115 dBm.

Then the input SNR is

Si

Ni
= −80 + 115 = 35 dB.

From (14.33) the total system noise temperature is

TSYS = TA + TTL + LT TREC = 210 + 123 + (1.41)(304) = 762 K.

This result clearly shows the noise contributions of the various components. The
output SNR is found from (14.34) as

So

No
= Si

kBTSYS
,

kBTSYS = 1.38 × 10−23(106)(762) = 1.05 × 10−14 W = −110 dBm,

so

So

No
= −80 + 110 = 30 dB.

■

Digital Modulation and Bit Error Rate

Information may be impressed upon a sinusoidal carrier using amplitude, frequency, or
phase modulation. If the modulating signal is analog, as in the case of AM or FM radio,
the amplitude, frequency, or phase of the carrier will undergo a continuous variation. If
the modulating signal represents digital data in binary form, the variation in the amplitude,
frequency, or phase of the carrier will be limited to two values. These types of modulations
are usually referred to as amplitude shift keying, frequency shift keying, and phase shift
keying, and abbreviated as ASK, FSK, and PSK, respectively. For example, ASK may
involve a carrier that is turned on for a binary “1,” and off for a binary “0.” Frequency
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FIGURE 14.15 Binary data and the resulting modulated carrier waveforms for amplitude shift
keying, frequency shift keying, and phase shift keying.

shift keying involves switching between two different carrier frequencies, while phase shift
keying involves a 180◦ phase shift of the carrier, depending on the binary data. Binary
phase shift keying is also referred to as BPSK. Figure 14.15 shows the carrier waveforms
that result from binary digital modulation with ASK, FSK, and PSK methods.

The majority of modern wireless systems rely on digital modulation methods due to
their superior performance in the presence of noise and signal fading, lower power re-
quirements, and better suitability for the transmission of data with error-correcting codes
or encryption. Besides the basic binary modulation schemes described above, there are
a number of other digital modulation methods. One popular method is quadrature phase
shift keying (QPSK), where two data bits are used to select one of four possible phase states
(0◦, 90◦, 180◦, or 270◦). More generally, one can use m-ary phase shift keying, where one
of 2m phase states is selected on the basis of m data bits. It is also possible to modulate
both amplitude and phase simultaneously, resulting in quadrature amplitude modulation,
or QAM. Such higher order modulation methods allow higher data rates for a given channel
bandwidth, but involve more system and processing complexity.

In an ideal situation a receiver will detect the same binary digit that was transmitted,
but the presence of noise in the communication channel introduces the possibility that
errors will be made during the detection process. The likelihood of an error in the detection
of a single bit is quantified by the bit error probability, Pb, also known as the bit error rate
(BER). The probability of error is dependent on the ratio of bit energy to noise power
density, Eb/n0, where Eb is the energy received during each bit interval, and n0 is the
power spectral density of the noise on the channel. The probability of error decreases as bit
energy increases, or as noise density decreases. If S is the received signal (carrier) power
(watts), with Tb being the bit period (seconds), and Rb the bit rate (bits per second), the bit
energy can be written as

Eb = STb = S/Rb, (W-sec) (14.35)

Then the ratio Eb/n0 is

Eb

n0
= STb

n0
= S

n0 Rb
. (14.36)
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FIGURE 14.16 Comparison of bit error rates for ASK, FSK, BPSK, and QPSK modulation meth-
ods versus Eb/n0. (Coherent demodulation is assumed, with Gray coding for
QPSK.)

Since the noise power is N = n0 B, where B is the bandwidth of the receiver, the ratio of
bit energy to noise power density can be expressed in terms of the SNR as

Eb

n0
= S

N
BTb = S

N

B

Rb
. (14.37)

Note that this result indicates that, for a given SNR, the ratio of bit energy to noise power
density will decrease (and the BER will increase) as the data rate increases. Depending
on the type of modulation, the required receiver bandwidth may range from one to several
times the bit rate.

Figure 14.16 shows bit error probability for four types of digital modulation (ASK,
FSK, BPSK, and QPSK) versus the Eb/n0 ratio. The bit error rate for QPSK is the same
as for BPSK, but note that QPSK involves the transmission of two bits for every one bit
sent by BPSK.

Each of the binary modulation methods transmits one bit during each bit period, and
they are therefore said to have a bandwidth efficiency of 1 bps/Hz. Higher level modulation
methods can achieve higher bandwidth efficiencies. For example, QPSK transmits two
bits per period, and therefore has a bandwidth efficiency of 2 bps/Hz. Table 14.1 lists the
bandwidth efficiency and the required Eb/n0 ratio for a bit error rate of 10−5 for various
digital modulation methods.

EXAMPLE 14.6 LINK ANALYSIS FOR LEO SATELLITE DOWNLINK

A LEO satellite at an orbital distance of 940 km uses QPSK to communicate with
a handset on Earth. The satellite has a transmit power of 80 W and an antenna gain
of 20 dB, while the handset has an antenna gain of 1 dB and a system temperature
of 750 K. If atmospheric attenuation is 2 dB, and the required link margin is
10 dB, what is the maximum data rate for a bit error probability of 0.01?

Amilcar
Comentário do texto
fazer para aulas
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Solution
The wavelength is 1.875 cm, so from (14.26) the path loss is

L0 = 20 log

(
4π R

λ

)
= 20 log

(
(4π) (940 × 103)

0.01875

)
= 176.0 dB

The received power is

Pr = Pt + Gt − L0 − L A + Gr = 49 + 20 − 176 − 2 + 1 = −108 dBm.

For a link margin of 10 dB, this received power level should be 10 dB above the
threshold level. Thus, the threshold received signal level is

Smin = Pr − LM = −108 − 10 = −118 dBm = 1.58 × 10−15 W.

From Figure 14.16, the required Eb/n0 for a bit error rate of 0.01 for QPSK is
about 5 dB = 3.16. Solving (14.36) for the maximum bit rate gives

Rb =
(

Eb

n0

)−1 Smin

n0
=

(
Eb

n0

)−1 Smin

kTsys
=

(
1

3.16

)
1.58 × 10−15(

1.38 × 10−23
)
(750)

=48 kbps

■

TABLE 14.1 Summary of Performance of Various Digital
Modulation Methods

Modulation Eb/n0(dB) for Bandwidth

Type Pb = 10−5 Efficiency

Binary ASK 15.6 1

Binary FSK 12.6 1

Binary PSK 9.6 1

QPSK 9.6 2

8-PSK 13.0 3

16-PSK 18.7 4

16-QAM 13.4 4

64-QAM 17.8 6

Wireless Communication Systems

We conclude this section with a summary of some of the most prevalent wireless com-
munication systems in current use. Table 14.2 lists some of the commonly used frequency
bands for wireless systems.

Cellular telephone and data systems: Cellular voice and networking systems are in con-
stant evolution, involving the use of old and new technology, existing and newly available
carrier frequencies, sophisticated multiple-access techniques, international agreements,
and the special interests of commercial service providers, governments, and regulatory
agencies. The objective is to provide mobile users with voice and data service (including
Internet access and video), with high data rates and compatibility across systems. Much
progress has been made, but there are still technical and organizational challenges that
remain.
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TABLE 14.2 Wireless System Frequencies

Wireless System (Country) Frequency

Advanced Mobile Phone System (AMPS, United States; obsolete) U: 824–849 MHz

D: 869–894 MHz

GSM 850 (Americas) U: 824–849 MHz

D: 869–894 MHz

GSM 900 (worldwide) U: 890–915 MHz

D: 935–960 MHz

GSM 1800 (worldwide) U: 1710–1785 MHz

D: 1805–1880 MHz

GSM 1900 (Americas) U: 1850–1910 MHz

D: 1930–1990 MHz

Universal Mobile Telecommunications System (UMTS), U: 1920–1980 MHz

band 1 (most countries) D: 2110–2170 MHz

UMTS, band 2 (most countries) U: 1850–1910 MHz

D: 1930–1990 MHz

UMTS, band 8 (most countries) U: 880–916 MHz

D: 925–960 MHz

Wireless local area networks (WiFi) 902–928 MHz

2.400–2.484 GHz

5.725–5.850 GHz

Global Positioning System (GPS) L1: 1575.42 MHz

L2: 1227.60 MHz

Direct Broadcast Satellite (DBS) (Europe, Russia) 10.7–12.75 GHz

(Americas) 12.2–12.7 GHz

(Asia, Australia) 11.7–12.2 GHz

Industrial, medical, and scientific bands (most countries) 902–928 MHz

2.400–2.484 GHz

5.725–5.850 GHz

U, uplink (mobile-to-base); D, downlink (base-to-mobile).

Cellular telephone systems were first proposed in the 1970s in response to the problem
of providing mobile radio service to a large number of users in urban areas. Early mobile
radio systems could handle only a very limited number of users due to inefficient use of
the radio spectrum and interference between users. The cellular radio concept solved this
problem by dividing a geographical area into nonoverlapping cells in which each cell has its
own transmitter and receiver (the base station) to communicate with mobile users operating
in that cell. Each cell site may allow as many as several hundred users to simultaneously
communicate over voice and/or data channels. Frequency bands assigned to a particular
cell can be reused in other, nonadjacent cells.

The first cellular telephone systems were built in Japan and Europe in 1979 and 1981,
and in the United States (AMPS) in 1983. These systems used analog FM modulation
and divided their allocated frequency bands into several hundred channels, each of which
could support an individual telephone conversation. These early services grew slowly at
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first, because of the initial costs of developing an infrastructure of base stations and the
initial expense of handsets, but by the 1990s growth became phenomenal.

Because of the rapidly growing business and consumer demand for wireless services,
as well as advances in wireless technology, several second-generation standards were im-
plemented in the United States, Europe, and Asia. These standards all employed digital
modulation methods to provide better-quality service and more efficient use of the radio
spectrum, as well as multiple-access methods that could be categorized as either time di-
vision multiple access (TDMA), or code division multiple access (CDMA). Since then,
most countries have made more radio spectrum available, usually as a result of freeing up
frequency bands that had been used by VHF broadcast television.

Today, most wireless cellular and smartphone systems have migrated to third-
generation (3G) standards, or are in the process of being upgraded to 3G standards. The
International Mobile Telecommunications (IMT)-2000 project of the International Tele-
communications Union (ITU) forms the basis for 3G standards, most of which rely on
CDMA and its variations, W-CDMA and CDMA2000. At the present time, IMT-2000 sup-
ports data rates of 2 Mbps for fixed users and 144 kbps for mobile users. A related effort is
the 3rd Generation Partnership Project (3GPP), which is based on a collaboration of vari-
ous telecommunications groups to form a migration path from existing second-generation
infrastructure to 3G, and then toward a Long-Term Evolution (LTE) goal in 2010–2011 of
data rates of 100 Mbps for fixed users and 50 Mbps for mobile users. Many countries have
adopted the Universal Mobile Telecommunications System standard, which is based on
3GPP. Another variation is the 3GPP2 standard, which works from existing CDMA tech-
nologies (including W-CDMA and CDMA2000) to provide high data rates. At present,
there are many proposed standards for interim use for capitalizing on existing infrastruc-
ture, as well as for new standards that will evolve into fourth-generation systems.

Satellite systems for wireless voice and data: The conceptual advantage of satellite sys-
tems is that a relatively small number of satellites can provide coverage to users at any
location in the world, including the oceans, deserts, and mountains—areas for which it
is difficult or impossible to provide cellular service. In principle, as few as three geosyn-
chronous satellites can provide complete global coverage, but the very high altitude of the
geosynchronous orbit makes it difficult to communicate with hand held terminals because
the large path loss results in very low signal strength. Satellites in lower orbits can provide
usable levels of signal power, but many more satellites are then needed to provide global
coverage.

The Iridium project, originally financed by a consortium of companies headed by Mo-
torola, was the first commercial satellite system to offer worldwide hand held wireless
telephone service. It consists of 66 LEO satellites in near-polar orbits, and connects mobile
phone and paging subscribers to the public telephone system through a series of intersatel-
lite relay links and land-based gateway terminals. Figure 14.17 shows a photo of one of
the Iridium phased array antennas. The Iridium system cost was approximately $5 billion;
it began service in November 1998, and filed for bankruptcy in August 1999. Iridium was
acquired by the U.S. Defense Department in 2001 and is still operating at this time.

One drawback of using satellites for telephone service is that weak signal levels require
a line-of-sight path from the mobile user to the satellite, meaning that satellite telephones
generally cannot be used in buildings, automobiles, or even in many wooded or urban
areas. This places satellite phone service at a definite performance disadvantage relative
to land-based cellular services. Other commercial LEO satellite communications systems,
such as Globalstar, have also ended in financial failure.

Most successful satellite communications systems rely on geostationary satellites.
These include the INMARSAT systems, originally used to provide communications to
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FIGURE 14.17 Photograph of one of the three L-band antenna arrays for an Iridium communi-
cations satellite. The Iridium system consists of 66 satellites in low Earth orbit
to provide global personal satellite TDMA communications services, including
voice, fax, and paging.

Courtesy of Raytheon Company, Waltham, Mass.

maritime shipping, but also used in remote areas. Many financial services and businesses
use very small aperture terminals (VSATs), which provide relatively low rate data com-
munications to geostationary satellites with 12- to 18-inch antennas. An example of a geo-
stationary satellite telephone service is the Thuraya system, which provides coverage to
parts of Africa, Europe, India, and the Middle East. The subscriber link operates at L band,
with a fairly compact handset. There is a noticeable conversational delay with the Thuraya
system due to the propagation time to and from the satellite.

Global Positioning: The Global Positioning System (GPS) uses 24 satellites in medium
Earth orbits to provide accurate position information (latitude, longitude, and elevation)
to users on land, air, or sea. Originally developed as the NAVSTAR system by the U.S.
Department of Defense, GPS has become one of the most pervasive applications of wireless
technology for consumers and businesses throughout the world. GPS receivers are used
on airplanes, ships, trucks, trains, and automobiles. Advances in technology have led to
substantial reductions in size and cost, so that small GPS receivers can be integrated into
cellular telephones and smart phones, and hand-held GPS devices are used by hikers and
sportsmen. With differential GPS, accuracies on the order of 1 cm can be achieved, a
capability that has revolutionized the surveying industry. An entirely new field of study,
known as geographic information systems (GIS), is based on the relation of data to location,
usually obtained in conjunction with GPS.

GPS positioning operates by using triangulation with a minimum of four satellites.
GPS satellites are in orbits 20,200 km above Earth, with orbital periods of 12 hours.
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Distances from the user’s GPS receiver to these satellites are found by timing the prop-
agation delay between the satellites and the receiver. The orbital positions of the satellites
(ephemeris) are known to very high accuracy, and each satellite contains an extremely ac-
curate clock to provide a unique set of timing pulses. A GPS receiver decodes this timing
information and performs the necessary calculations to find the position and velocity of
the receiver. The GPS receiver usually must have a line-of-sight view to at least four satel-
lites in the GPS constellation, although three satellites are adequate if altitude position is
known (as in the case of ships at sea). Because of the low-gain antennas required for op-
eration, the received signal level from a GPS satellite is very low—typically on the order
of −130 dBm (for a receiver antenna gain of 0 dB). This signal level is usually below
the noise power at the receiver, but spread-spectrum techniques are used to improve the
received SNR.

GPS operates at two frequency bands: L1, at 1575.42 MHz, and L2, at 1227.60 MHz,
transmitting spread-spectrum signals with BPSK modulation. The L1 frequency is used
to transmit ephemeris data for each satellite, as well as timing codes, which are available
to any commercial or public user. This mode of operation is referred to as the Course/
Acquisition (C/A) code. In contrast, the L2 frequency is reserved for military use, and uses
an encrypted timing code referred to as the Protected (P) code (there is also a P code signal
transmitted at the L1 frequency). The P code offers much higher accuracy than the C/A
code. The typical accuracy that can be achieved with an L1 GPS receiver is about 100 feet.
Accuracy is limited by timing errors in the clocks on the satellites and the receiver, as well
as error in the assumed position of the GPS satellites. The most significant error is generally
caused by atmospheric and ionospheric effects, which introduce small but variable delays
in signal propagation from the satellite to the receiver.

Wireless local area networks: Wireless local area networks provide connections between
computers and peripherals over short distances. Wireless networks can be found in airports,
coffee shops, office buildings, college campuses, and even on commercial airliners, busses,
and cruise ships. Indoor coverage is usually less than a few hundred feet. Outdoors, in the
absence of obstructions and with the use of high-gain antennas, much longer ranges can be
obtained. Wireless networks are especially useful when it is impossible or prohibitively ex-
pensive to place network wiring in or between buildings, or when only temporary network
access is needed. Mobile users, of course, can only be connected to a computer network
through a wireless link.

Most commercial WLAN products are based on the IEEE 802.11 standards (Wi-Fi).
These operate at either 2.4 or 5.7 GHz (in the industrial, scientific, and medical frequency
bands), and use either frequency-hopping or direct-sequence spread-spectrum techniques.
Standards 802.11a, 802.11b, and 802.11g can provide data rates up to 54 Mbps, while
802.11n (which uses multiple antennas) can achieve data rates of up to 150 Mbps. Actual
data rates are often significantly lower due to nonideal propagation conditions and loading
from other users.

Another wireless networking standard is Bluetooth, which is intended for short-range
networking of portable devices, such as cameras, printers, headsets, games, and similar
applications, to resident computers or routers. Bluetooth devices operate at 2.4 GHz, with
RF power in the range of 1–100 mW and corresponding operating ranges of 1–100 m. Data
rates range from 1 to 24 Mbps.

Millimeter wave frequencies are increasingly being considered for high speed local
area networking due to the large bandwidths that are available. Figure 14.18 shows a de-
velopmental model of a high-speed 60 GHz wireless networking transmitter.

Direct broadcast satellites: DBS systems provide television service with continental cov-
erage from geosynchronous satellites directly to home users with a relatively small 18 inch
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FIGURE 14.18 Photograph of a high-speed 60 GHz wireless local area network transmitter. This
WLAN operates at 59–62 GHz, with a data rate of 2.8 Gbps. It uses GaAs chips
and a built-in four-element, circularly polarized microstrip antenna.

Courtesy of Newlans, Inc., Acton, Mass.

diameter antenna. Prior to DBS technology, satellite TV service relied on analog signals
that required an unsightly dish antenna as large as 6 feet in diameter to achieve the nec-
essary SNR. The smaller DBS antenna became possible through the use of digital mod-
ulation techniques, which reduce the required received signal levels as compared to an
analog system. DBS systems operate with carrier frequencies in the 10–12 GHz range
(see Table 14.2), and typically use QPSK with digital multiplexing and error correction
to deliver digital data at a rate of 40 Mbps. Several DBS satellites are used through-
out the world to provide subscriber television service, sometimes with more than one
satellite per coverage area. For North America, two satellites, DBS-1 and DBS-2, are
in geostationary orbit at 101.2◦ and 100.8◦ longitude, and each provides 16 channels
with 120 W of radiated power per channel. These satellites use opposite circular polar-
izations to minimize loss due to precipitation, and to avoid interference with each other
(polarization duplexing).

Point-to-point radio systems: Point-to-point radios are used to provide dedicated data con-
nections between two fixed points. Electric utility companies use point-to-point radios for
transmission of telemetry information for the generation, transmission, and distribution of
electric power between generating stations and substations. Point-to-point radios are also
used to connect cellular base stations to the public switched telephone network, and are at-
tractive because they are generally much cheaper than running high-bandwidth fiber-optic
lines below ground level. Point-to-point radios usually operate in the 18, 24, or 38 GHz
bands, and use a variety of digital modulation methods to provide data rates in excess of
50 Mbps. High-gain antennas are typically used to minimize power requirements and to
avoid interference with other users.

Other wireless systems: Many other applications of wireless technology are being devel-
oped, and we can only briefly mention some of these. One of the most pervasive may turn
out to be Radio Frequency Identification (RFID) systems, which rely on small, low-cost
tags that can receive an interrogatory RF signal and reply with a signal containing pre-
programmed data. RFID tags can be used for retail products, inventory control, industrial
materials, security applications, or any application that requires identification or tracking.
An interesting feature of RFID tags is that they can be passively powered, whereby they
store the power required for signaling by rectifying the interrogatory signal and charging a
small capacitor. This is then used to drive very low power CMOS circuitry to transmit data
back to the interrogating receiver.
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Another area where wireless technology is beginning to experience growth is in motor
vehicle and highway applications. These include toll collection, intelligent cruise control,
collision avoidance radar, blind spot radar, traffic information, emergency messaging, and
vehicle identification. Automatic toll collection is already in service in many parts of the
United States and Europe. A number of automobile models are available with blind spot
and collision sensors as optional equipment.

14.3 RADAR SYSTEMS

Radar, or radio detection and ranging, is the oldest application of microwave technology,
dating back to World War II. In its basic operation, a transmitter sends out a signal, which
is partly reflected by a distant target, and then detected by a sensitive receiver. If a narrow-
beam antenna is used, the target’s direction can be accurately given by the angular position
of the antenna. The distance to the target is determined by the time required for a pulsed
signal to travel to the target and back, and the radial velocity of the target is related to the
Doppler shift of the return signal. Below are listed some of the typical applications of radar
systems.

Civilian applications

� Airport surveillance
� Marine navigation
� Weather radar
� Altimetry
� Aircraft landing
� Security alarms
� Speed measurement (police radar)
� Geographic mapping

Military applications
� Air and marine navigation
� Detection and tracking of aircraft, missiles, and spacecraft
� Missile guidance
� Fire control for missiles and artillery
� Weapon fuses
� Reconnaissance

Scientific applications
� Astronomy
� Mapping and imaging
� Precision distance measurement
� Remote sensing of the environment

Early radar work in the United States and Britain began in the 1930s using very high
frequency (VHF) sources. A major breakthrough occurred in the early 1940s with the
British invention of the magnetron tube as a reliable source of high-power microwaves.
Higher frequencies allowed the use of reasonably sized antennas with high gain, allowing
mechanical tracking of targets with good angular resolution. Radar was quickly developed
in Great Britain and the United States, and played an important role in World War II.
Figure 14.19 shows a photograph of the phased array radar for the Patriot missile system.

We will now derive the radar equation, which governs the basic operation of most
radars, and then describe some of the more common types of radar systems.
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FIGURE 14.19 Photograph of the Patriot phased array radar. This is a C-band multifunction radar
that provides tactical air defense, including target search and tracking, and missile
fire control. The phased array antenna uses 5000 ferrite phase shifters to electron-
ically scan the antenna beam.

Courtesy of Raytheon Company, Waltham, Mass.

The Radar Equation

Two basic radar systems are illustrated in Figure 14.20; in a monostatic radar the same
antenna is used for both transmit and receive, while a bistatic radar uses two separate an-
tennas for these functions. Most radars are of the monostatic type, but in some applications
(such as missile fire control) the target may be illuminated by a separate transmit antenna.
Separate antennas are also sometimes used to achieve the necessary signal isolation be-
tween transmitter and receiver.

Here we will consider the monostatic case, but the bistatic case is very similar. If the
transmitter radiates a power Pt through an antenna of gain G, the power density incident
on the target is, from (14.23),

St = Pt G

4π R2
, (14.38)

where R is the distance to the target. It is assumed that the target is in the main beam
direction of the antenna. The target will scatter the incident power in various directions;
the ratio of the scattered power in a given direction to the incident power density is defined
as the radar cross section, σ , of the target. Mathematically,

σ = Ps

St
m2, (14.39)

where Ps is the total power scattered by the target, and St is the power density incident on
the target. The radar cross section thus has the dimensions of area, and is a property of the
target itself. It depends on the incident and reflection angles, as well as on the polarizations
of the incident and reflected waves.

Since the target scatters as a source of finite size, the power density of the reradiated
field must decay as 1/4π R2 away from the target. Thus the power density of the scattered
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FIGURE 14.20 Basic monostatic and bistatic radar systems. (a) Monostatic radar system.
(b) Bistatic radar system.

field back at the receive antenna must be

Sr = Pt Gσ

(4π R2)2
. (14.40)

Using (14.15) for the effective area of the antenna gives the received power as

Pr = Pt G2λ2σ

(4π)3 R4
. (14.41)

This is the radar equation. Note that the received power varies as 1/R4, which implies that
a high-power transmitter and a sensitive low-noise receiver are needed to detect targets at
long ranges.

Because of noise received by the antenna and generated in the receiver, there will be
some minimum detectable power that can be discriminated by the receiver. If this power is
Pmin, then (14.41) can be rewritten to give the maximum range as

Rmax =
[

Pt G2σλ2

(4π)3 Pmin

]1/4

. (14.42)

Signal processing can effectively reduce the minimum detectable signal, and so increase
the usable range. One very common processing technique used with pulse radars is pulse
integration, in which a sequence of N received pulses is integrated over time. The effect
is to reduce the noise level, which has a zero mean, relative to the returned pulse level,
resulting in an improvement factor of approximately N [6].

Of course, the above results seldom describe the performance of an actual radar sys-
tem. Factors such as propagation effects, the statistical nature of the detection process, and
external interference often reduce the usable range of a radar system.
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EXAMPLE 14.7 APPLICATION OF THE RADAR RANGE EQUATION

A pulse radar operating at 10 GHz has an antenna with a gain of 28 dB and a
transmitter power of 2 kW (pulse power). If it is desired to detect a target with a
cross section of 12 m2, and the minimum detectable signal is −90 dBm, what is
the maximum range of the radar?

Solution
The required numerical values are

G = 1028/10 = 631,

Pmin = 10−90/10 mW = 10−12 W,

λ = 0.03 m.

Then the radar range equation of (14.42) gives the maximum range as

Rmax =
[

(2 × 103)(631)2(12)(.03)2

(4π)3(10−12)

]1/4

= 8114 m. ■

Pulse Radar
A pulse radar determines target range by measuring the round-trip time of a pulsed mi-
crowave signal. Figure 14.21 shows a typical pulse radar system block diagram. The trans-
mitter portion consists of a single-sideband mixer used to frequency offset a microwave
oscillator of frequency f0 by an amount equal to the IF frequency. After power amplifi-
cation, pulses of this signal are transmitted by the antenna. The transmit/receive switch is
controlled by the pulse generator to give a transmit pulse width τ , with a pulse repetition
frequency (PRF) of fr = 1/Tr . The transmit pulse thus consists of a short burst of a mi-
crowave signal at the frequency f0 + fIF. Typical pulse durations range from 100 ms to
50 ns; shorter pulses give better range resolution, but longer pulses result in a better SNR
after receiver processing. Typical pulse repetition frequencies range from 100 Hz to 100
kHz; higher PRFs give more returned pulses per unit time, which improves performance,
but lower PRFs avoid range ambiguities that can occur when R > cTr/2.

In the receive mode, the returned signal is amplified and mixed with the local oscilla-
tor of frequency f0 to produce the desired IF signal. The local oscillator is used for both
up-conversion in the transmitter and down-conversion in the receiver; this simplifies the
system and avoids the problem of frequency drift, which would be a consideration if sepa-
rate oscillators were used. The IF signal is amplified, detected, and fed to a video amplifier/
display. Search radars often use a continuously rotating antenna for 360◦ azimuthal cover-
age; in this case the display shows a polar plot of target range versus angle. Modern radars
use a computer for the processing of the detected signal and display of target information.

The transmit/receive (T/R) switch in the pulse radar actually performs two functions:
forming the transmit pulse train, and switching the antenna between the transmitter and
receiver. This latter function is also known as duplexing. In principle, the duplexing func-
tion could be achieved with a circulator, but an important requirement is that a high degree
of isolation (about 80–100 dB) be provided between the transmitter and receiver to avoid
transmitter leakage into the receiver, which would drown the target return (or possibly dam-
age the receiver). As circulators typically achieve only 20–30 dB of isolation, some type of
switch, with high isolation, is required. If necessary, further isolation can be obtained by
using additional switches along the path of the transmitter circuit.
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FIGURE 14.21 A pulse radar system and timing diagram.

Doppler Radar
If the target has a velocity component along the line of sight of the radar, the returned
signal will be shifted in frequency relative to the transmitted frequency due to the Doppler
effect. If the transmitted frequency is f0, and the radial target velocity is v, then the shift
in frequency, or the Doppler frequency, will be

fd = 2v f0

c
, (14.43)

where c is the velocity of light. The received frequency is then f0 ± fd , where the plus
sign corresponds to an approaching target and the minus sign corresponds to a receding
target.

Figure 14.22 shows a basic Doppler radar system. Observe that it is much simpler than
a pulse radar since a continuous wave signal is used, and the transmit oscillator can also
be used as a local oscillator for the receive mixer because the received signal is frequency
offset by the Doppler frequency. The filter following the mixer should have a passband
corresponding to the expected minimum and maximum target velocities. It is important
that the filter have high attenuation at zero frequency, to eliminate the effect of clutter
return and transmitter leakage at the frequency f0, as these signals would down-convert to
zero frequency. Then a high degree of isolation is not necessary between transmitter and
receiver, and a circulator can be used. This type of filter response also helps to reduce the
effect of 1/ f noise.

The above radar cannot distinguish between approaching and receding targets, as the
sign of fd is lost in the detection process. Such information can be recovered, however, by
using a mixer that produces separately the upper and lower sideband products.
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Since the return of a pulse radar from a moving target will contain a Doppler shift, it is
possible to determine both the range and velocity (and position, if a narrow-beam antenna
is used) of a target with a single radar. Such a radar is known as a pulse-Doppler radar, and
it offers several advantages over pulse or Doppler radars. One problem with a pulse radar is
that it is impossible to distinguish between a true target and clutter returns from the ground,
trees, buildings, etc. Such clutter returns may be picked up from the antenna sidelobes.
However, if the target is moving (e.g., as in an airport surveillance radar application), the
Doppler shift can be used to separate its return from clutter, which is stationary relative to
the radar.

Radar Cross Section

A radar target is characterized by its radar cross section, as defined in (14.36), which gives
the ratio of scattered power to incident power density. The cross section of a target depends
on the frequency and polarizations of the incident and scattered waves, and on the incident
and reflected angles relative to the target. Thus we can define a monostatic cross section
(incident and reflected angles identical), and a bistatic cross section (incident and reflected
angles different).

For simple shapes the radar cross section can be calculated as an electromagnetic
boundary value problem; more complex targets require numerical techniques or measure-
ment to find the cross section. The radar cross section of a conducting sphere can be cal-
culated exactly; the monostatic result is shown in Figure 14.23, normalized to πa2, the
physical cross-sectional area of the sphere. Note that the cross section increases very
quickly with size for electrically small spheres (a � λ). This region is called the Rayleigh
region, and it can be shown that σ varies as (a/λ)4 in this region. (This strong dependence
on frequency explains why the sky is blue, as the blue component of sunlight scatters more
strongly from atmospheric particles than do the lower frequency red components.)

For electrically large spheres, where a � λ, the radar cross section of the sphere is
equal to its physical cross section, πa2. This is the optical region, where geometrical optics
is valid. Many other shapes, such as flat plates at normal incidence, also have cross sections
that approach the physical area for electrically large sizes.

Between the Rayleigh region and the optical region is the resonance region, where
the electrical size of the sphere is on the order of a wavelength. Here the cross section is
oscillating with frequency due to phase addition and cancellation of various scattered field
components. Of particular note is the fact that the cross section may reach quite high values
in this region.
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TABLE 14.3 Typical Radar Cross Sections

Target σ(m2)

Bird 0.01

Missile 0.5

Person 1

Small plane 1–2

Bicycle 2

Small boat 2

Fighter plane 3–8

Bomber 30–40

Large airliner 100

Truck 200
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FIGURE 14.23 Monostatic radar cross section of a conducting sphere.

Complex targets such as aircraft or ships generally have cross sections that vary rapidly
with frequency and aspect angle. In military applications it is often desirable to mini-
mize the radar cross section of vehicles to reduce detectability. This can be accomplished
by using radar-absorbing materials (lossy dielectrics) in the construction of the vehicle.
Table 14.3 lists the approximate radar cross sections of a variety of different targets.

14.4 RADIOMETER SYSTEMS

A radar system obtains information about a target by transmitting a signal and receiving
the echo from the target, and thus can be described as an active remote sensing system.
Radiometry, however, is a passive technique, which develops information about a target
solely from the microwave portion of the blackbody radiation (noise) that it either emits
directly or reflects from surrounding bodies. A radiometer is a sensitive receiver specially
designed to measure this noise power.
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FIGURE 14.24 Noise power sources in a typical radiometer application.

Theory and Applications of Radiometry

As discussed in Section 10.1, a body in thermodynamic equilibrium at a temperature T
radiates energy according to Planck’s radiation law. In the microwave region this result
reduces to P = kTB, where k is Boltzmann’s constant, B is the system bandwidth, and P
is the radiated power. This result strictly applies only to a blackbody, which is defined as
an idealized material that absorbs all incident energy and reflects none; a blackbody also
radiates energy at the same rate as it absorbs energy, thus maintaining thermal equilibrium.
A nonideal body will partially reflect incident energy, and so it does not radiate as much
power as would a blackbody at the same temperature. A measure of the power radiated
by a body relative to that radiated by an ideal blackbody at the same temperature is the
emissivity, e, defined as

e = P

kTB
, (14.44)

where P is the power radiated by the nonideal body, and kTB is the power that would
be emitted by a perfect blackbody. Thus, 0 ≤ e ≤ 1, and e = 1 for a perfect blackbody;
emissivity may be thought of as the “efficiency” of blackbody radiation.

As we saw in Section 10.1, noise power can also be quantified in terms of equivalent
temperature. Thus, for radiometric purposes, we can define a brightness temperature, TB , as

TB = eT, (14.45)

where T is the physical temperature of the body. This shows that, radiometrically, a body
never looks hotter than its actual temperature, since 0 ≤ e ≤ 1.

Consider Figure 14.24, which shows the antenna of a microwave radiometer receiving
noise powers from various sources. The antenna is pointed at a region of Earth that has
an apparent brightness temperature TB . The atmosphere emits radiation in all directions;
the component radiated directly toward the antenna is TAD, while the component reflected
from Earth to the antenna is TAR. There may also be noise powers that enter the sidelobes
of the antennas from the Sun or other sources. Thus, we can see that the total brightness
temperature seen by the radiometer is a function of the scene under observation, as well
as the observation angle, frequency, polarization, attenuation of the atmosphere, and the
antenna pattern. The objective of radiometry is to infer information about the scene from
the measured brightness temperature and an analysis of the radiometric mechanisms that
relate brightness temperature to physical conditions of the scene. For example, the power
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FIGURE 14.25 Photograph of a stepped frequency microwave radiometer, operating at 4.7–7.2
GHz. This instrument is flown on aircraft to measure brightness temperature and
infer ocean surface wind speed and rain rate estimation in hurricanes.

Courtesy of ProSensing, Inc., Amherst, Mass.

reflected from a uniform layer of snow over soil can be treated as plane wave reflection
from a multilayer dielectric region, leading to the development of an algorithm that gives
the thickness of the snow in terms of measured brightness temperature at various frequen-
cies. Figure 14.25 shows a commercial multifrequency airborne radiometer for weather
applications.

Microwave radiometry has developed over the last 20 years into a mature technology,
one that is strongly interdisciplinary, drawing on results from fields such as electrical en-
gineering, oceanography, geophysics, and atmospheric and space sciences, to name a few.
Some of the more important applications of microwave radiometry are listed below.

Environmental applications
� Measurement of soil moisture
� Flood mapping
� Snow cover/ice cover mapping
� Ocean surface wind speed
� Atmospheric temperature profile
� Atmospheric humidity profile

Military applications
� Target detection
� Target recognition
� Surveillance
� Mapping

Astronomy applications
� Planetary mapping
� Solar emission mapping
� Mapping of galactic objects
� Measurement of cosmological background radiation
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FIGURE 14.26 Total power radiometer block diagram.

Total Power Radiometer

The aspect of radiometry that is of most interest to the microwave engineer is the design
of the radiometer itself. The basic problem is to build a receiver that can distinguish be-
tween the desired external radiometric noise and the inherent noise of the receiver, even
though the radiometric power is usually less than the receiver noise power. Although it
is not a very practical instrument, we will first consider the total power radiometer be-
cause it represents a simple and direct approach to the problem and serves to illustrate the
difficulties involved in radiometer design.

The block diagram of a typical total power radiometer is shown in Figure 14.26. The
front end of the receiver is a standard superheterodyne circuit consisting of an RF amplifier,
a mixer/local oscillator, and an IF stage. The IF filter determines the system bandwidth, B.
The detector is generally a square-law device, so that its output voltage is proportional
to the input power. The integrator is essentially a low-pass filter with a cutoff frequency
of 1/τ , and serves to smooth out short-term variations in the noise power. For simplicity,
we assume that the antenna is lossless, although in practice antenna loss will affect the
apparent temperature of the antenna, as given in (14.18).

If the antenna is pointed at a background scene with a brightness temperature TB ,
the antenna power will be PA = kTBB; this is the desired signal. The receiver contributes
noise that can be characterized as a power PR = kTRB at the receiver input, where TR

is the overall noise temperature of the receiver. Thus the output voltage of the radio-
meter is

Vo = G(TB + TR)k B, (14.46)

where G is the overall gain constant of the radiometer. Conceptually, the system is cali-
brated by replacing the antenna input with two calibrated noise sources, from which the
system constants Gk B and GTRk B can be determined. (This is similar to the Y -factor
method for measuring noise temperature.) Then the desired brightness temperature, TB ,
can be determined.

Two types of errors occur with this radiometer. First is an error, �TN , in the mea-
sured brightness temperature due to noise fluctuations. Since noise is a random process, the
measured noise power may vary from one integration period to the next. The integrator (or
low-pass filter) acts to smooth out ripples in Vo with frequency components greater than
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1/τ . It can be shown that the remaining error is [7]

�TN = TB + TR√
Bτ

. (14.47)

This result shows that if a longer measurement time, τ , can be tolerated, the error due to
noise fluctuation can be reduced to a negligible value.

A more serious error is due to random variations in the system gain, G. Such varia-
tions generally occur in the RF amplifier, mixer, or IF amplifier, over a period of 1 s or
longer. If the system is calibrated with a certain value of G, which changes by the time a
measurement is made, an error will occur, as given in reference [7] as

�TG = (TB + TR)
�G

G
, (14.48)

where �G is the rms change in the system gain, G.
It will be useful to consider some typical numbers. For example, a 10 GHz total power

radiometer may have a bandwidth of 100 MHz, a receiver temperature of TR = 500 K, an
integrator time constant of τ = 0.01 s, and a system gain variation of �G/G = 0.01. If
the antenna temperature is TB = 300 K, (14.47) gives the error due to noise fluctuations as
�TN = 0.8 K, while (14.48) gives the error due to gain variations as �TG = 8 K. These
results, which are based on reasonably realistic data, show that gain variation is the most
detrimental factor affecting the accuracy of the total power radiometer.

The Dicke Radiometer

We have seen that the dominant factor affecting the accuracy of the total power radiometer
is the variation of gain of the overall system. Since such gain variations have a relatively
long time constant (>1 s), it is conceptually possible to eliminate this error by repeatedly
calibrating the radiometer at rapid rate. This is the principle behind the operation of the
Dicke null-balancing radiometer.

A system diagram is shown in Figure 14.27. The superheterodyne receiver is identical
to the total power radiometer, but the input is periodically switched between the antenna
and a variable power noise source; this switch is called the Dicke switch. The output of the
square-law detector drives a synchronous demodulator, which consists of a switch and a
difference circuit. The demodulator switch operates in synchronism with the Dicke switch,
so that the output of the subtractor is proportional to the difference between the noise pow-
ers from the antenna, TB , and the reference noise source, TREF. The output of the subtractor
is then used as an error signal to a feedback control circuit, which controls the power level
of the reference noise source so that Vo approaches zero. In this balanced state, TB = TREF,
and TB can be determined from the control voltage, Vc. The square-wave sampling fre-
quency, fs , is chosen to be much faster than the drift time of the system gain, so that this
effect is virtually eliminated. Typical sampling frequencies range from 10 to 1000 Hz.

A typical radiometer would measure brightness temperature TB over a range of about
50–300 K; this then implies that the reference noise source would have to cover this same
range, which is difficult to do in practice. Thus, there are several variations on the above
design, differing essentially in the way that the reference noise power is controlled or added
to the system. One possible method is to use a constant TREF that is somewhat hotter than
the maximum TB to be measured. The amount of reference noise power delivered to the
system is then controlled by varying the pulse width of the sampling waveform. Another
approach is to use a constant reference noise power, and vary the gain of the IF stage
during the reference sample time to achieve a null output. Other possibilities, including
alternatives to the Dicke radiometer, are discussed in the literature [7].
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FIGURE 14.27 Balanced Dicke radiometer block diagram.

14.5 MICROWAVE PROPAGATION

In free-space, electromagnetic waves propagate in straight lines without attenuation or
other adverse effects. Free-space, however, is an idealization that is only approximated
when RF or microwave energy propagates through the atmosphere or in the presence of
Earth. In practice, the performance of a communication, radar, or radiometry system may
be seriously affected by propagation effects such as reflection, refraction, attenuation, or
diffraction. Below we discuss some specific propagation phenomenon that can influence
the operation of microwave systems. It is important to realize that propagation effects gen-
erally cannot be quantified in any exact or rigorous sense, but can only be described in
terms of their statistics.

Atmospheric Effects

The relative permittivity of the atmosphere is close to unity, but is actually a function of
air pressure, temperature, and humidity. An empirical result that is useful at microwave
frequencies is given by [6]

εr =
[

1 + 10−6

(
79P

T
− 11V

T
+ 3.8 × 105V

T 2

)]2

, (14.49)

where P is the barometric pressure in millibars, T is the temperature in kelvins, and V
is the water vapor pressure in millibars. This result shows that permittivity generally de-
creases (approaches unity) as altitude increases since pressure and humidity decrease with
height faster than does temperature. This change in permittivity with altitude causes radio
waves to bend toward Earth, as depicted in Figure 14.28. Such refraction of radio waves
can sometimes be useful since it may extend the range of radar and communication systems
beyond the limit imposed by the presence of Earth’s horizon.
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FIGURE 14.28 Refraction of radio waves by the atmosphere.

If an antenna is at a height, h, above Earth, simple geometry gives the line-of-sight
distance to the horizon as

d = √
2Rh, (14.50)

where R is the radius of Earth. From Figure 14.28 we see that the effect of refraction on
range can be accounted for by using an effective Earth radius kR, where k > 1. A value
commonly used [6] is k = 4/3, but this is only an average value, which changes with
weather conditions. In a radar system, refraction effects can lead to errors when determin-
ing the elevation of a target close to the horizon.

Weather conditions can sometimes produce a localized temperature inversion, where
the temperature increases with altitude. Equation (14.49) then shows that the atmospheric
permittivity will decrease much faster than normal with increasing altitude. This condition
can sometimes lead to ducting (also called trapping, or anomalous propagation), where a
radio wave can propagate long distances parallel to Earth’s surface via the duct created by
the layer of air along the temperature inversion. The situation is very similar to propagation
in a dielectric waveguide. Such ducts can range in height from 50 to 500 feet, and may be
near Earth’s surface or higher in altitude.

Another atmospheric effect is attenuation, caused primarily by the absorption of mi-
crowave energy by water vapor or molecular oxygen. Maximum absorption occurs when
the frequency coincides with one of the molecular resonances of water or oxygen, and thus
atmospheric attenuation has distinct peaks at these frequencies. Figure 14.29 shows the
atmospheric attenuation versus frequency. At frequencies below 10 GHz the atmosphere
has very little effect on the strength of a signal. At 22.2 and 183.3 GHz, resonance peaks
occur due to water vapor resonances, while resonances of molecular oxygen cause peaks
at 60 and 120 GHz. Thus there are “windows” in the millimeter wave band near 35, 94,
and 135 GHz where radar and communication systems can operate with minimum loss.
Precipitation such as rain, snow, or fog will increase the attenuation, especially at higher
frequencies. The effect of atmospheric attenuation can be included in system design when
using the Friis transmission equation or the radar equation.

In some instances the system frequency may be chosen at a point of maximum at-
mospheric attenuation. Remote sensing of the atmosphere (temperature, water vapor, rain
rate) is often done with radiometers operating near 20 or 55 GHz to maximize the sensing
of atmospheric conditions. Another interesting example is spacecraft-to-spacecraft com-
munication at 60 GHz. This millimeter wave frequency band has the advantages of a large
bandwidth and small antennas with high gains, and, since the atmosphere is very lossy at
this frequency, the possibilities of interference, jamming, and eavesdropping from Earth
are greatly reduced.
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FIGURE 14.29 Average atmospheric attenuation versus frequency (horizontal polarization).

Ground Effects

The most obvious effect of the presence of the ground on RF and microwave propagation
is reflection from Earth’s surface (land or sea). As shown in Figure 14.30, a radar target (or
receiver antenna) may be illuminated by both a direct wave from the transmitter and a wave
reflected from the ground. The reflected wave is generally smaller in amplitude than the
direct wave because of the larger distance it travels, the fact that it usually radiates from
the sidelobe region of the transmit antenna, and the fact that the ground is not a perfect
reflector. Nevertheless, the received signal at the target or receiver will be the vector sum
of the two wave components and, depending on the relative phases of the two waves, may
be greater or less than the direct wave alone. Because the distances involved are usually
very large in terms of the electrical wavelength, even a small variation in the permittivity
of the atmosphere can cause fading (long-term fluctuations) or scintillation (short-term
fluctuations) in the signal strength. These effects can also be caused by reflections from
inhomogeneities in the atmosphere.

In communication systems fading can sometimes be reduced by making use of the fact
that the fading of two communication channels having different frequencies, polarizations,

Earth

Refle
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dDirect

FIGURE 14.30 Direct and reflected waves over Earth’s surface.
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or physical locations is essentially independent. Thus a communication link can reduce
fading effects by combining the outputs of two (or more) such channels; this is called a
diversity system.

Another ground effect is diffraction, whereby a radio wave scatters energy in the vicin-
ity of the line-of-sight boundary at the horizon, thus giving a range slightly beyond the
horizon. This effect is usually very small at microwave frequencies. Of course, when ob-
stacles such as hills, mountains, or buildings are in the path of propagation, diffraction
effects can be stronger.

In a radar system, unwanted reflections often occur from terrain, vegetation, trees,
buildings, and the surface of the sea. Such clutter echoes generally degrade or mask the
return of a true target, or show up as a false target, in the context of a surveillance or
tracking radar. In mapping or remote sensing applications such clutter returns may actually
constitute the desired signal.

Plasma Effects

A plasma is a gas consisting of ionized particles. The ionosphere consists of spherical
layers of atmosphere with particles that have been ionized by solar radiation, and thus
forms a plasma region. A very dense plasma is formed on a spacecraft as it reenters the
atmosphere from outer space, due to the high temperatures produced by friction. Plasmas
are also produced by lightning, meteor showers, and nuclear explosions.

A plasma is characterized by the number of ions per unit volume; depending on this
density and the frequency, a wave might be reflected, absorbed, or transmitted by the
plasma medium. An effective permittivity can be defined for a uniform plasma region as

εe = ε0

(
1 − ω2

p

ω2

)
, (14.51)

where

ωp =
√

Nq2

mε0
(14.52)

is the plasma frequency. In (14.52), q is the charge of the electron, m is the mass of the
electron, and N is the number of ionized particles per unit volume. By studying the solution
of Maxwell’s equations for plane wave propagation in such a medium, it can be shown that
wave propagation through a plasma is only possible for ω > ωp. Lower frequency waves
will be totally reflected. If a magnetic field is present, the plasma becomes anisotropic, and
the analysis is more complicated. Earth’s magnetic field may be strong enough to produce
such an anisotropy in some cases.

The ionosphere consists of several different layers with varying ion densities; in order
of increasing ion density, these layers are referred to as D, E, F1, and F2. The character-
istics of these layers depend on seasonal weather and solar cycles, but the average plasma
frequency is about 8 MHz. Thus, signals at frequencies less than 8 MHz (e.g., short-wave
radio) can reflect off the ionosphere to travel distances well beyond the horizon. Higher
frequency signals, however, will pass through the ionosphere.

In the case of a spacecraft entering the atmosphere, the high velocity produces a very
dense plasma around the vehicle. The electron density is high enough that, from (14.52),
the plasma frequency is very high, thus inhibiting communication with the spacecraft until
its velocity has decreased. Besides this blackout effect, the plasma layer may also cause a
large impedance mismatch between the antenna and its feed line.
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14.6 OTHER APPLICATIONS AND TOPICS

Microwave Heating
To the average consumer the term “microwave” connotes a microwave oven, used in many
households for heating food; industrial and medical applications also exist for microwave
heating. As shown in Figure 14.31, a microwave oven is a relatively simple system consist-
ing of a high-power microwave source, a waveguide feed, and the oven cavity. The source
is generally a magnetron tube operating at 2.45 GHz, although 915 MHz is sometimes used
when greater penetration is desired. Power output is usually in the range of 500–1500 W.
The oven cavity has metallic walls, and is electrically large. To reduce the effect of uneven
heating caused by standing waves in the oven, a “mode stirrer,” which is just a metallic fan
blade, is used to perturb the field distribution inside the oven. The food is also rotated with
a motorized platter.

In a conventional oven a gas or charcoal fire, or an electric heating element, generates
heat external to the material to be heated. The outside portion of the material is heated by
convection, and the inside of the material is warmed by conduction from the outer portion.
In microwave heating, by contrast, the inside of the material is heated first. The process
through which this occurs primarily involves the conduction losses in food materials hav-
ing large loss tangents [8, 9]. An interesting fact is that the loss tangents of many foods
decrease with increasing temperature, so that microwave heating is to some extent self-
regulating. The result is that microwave cooking generally gives faster and more uniform
heating of food as compared with conventional cooking. The efficiency of a microwave
oven, when defined as the ratio of power converted to heat (in the food) to the power sup-
plied to the oven, is generally less than 50%, but this is usually greater than the cooking
efficiency of a conventional oven.

The most critical issue in the design of a microwave oven is safety. Since a very high
power source is used, leakage must be very small to avoid exposing the user to harm-
ful radiation. Thus the magnetron, feed waveguide, and oven cavity must all be carefully
shielded. The door of the oven requires particular attention; besides close mechanical tol-
erances, the joint around the door usually employs RF-absorbing material and a λ/4 choke
flange to reduce power leakage to an acceptable level.

Power Transfer
Electrical power transmission lines are a very efficient and convenient way to transfer
energy from one point to another, as they have relatively low loss and initial costs, and can

“Mode stirrer”

Oven
cavity

Food

Waveguide

Magnetron

Power
supply

Rotating plate

FIGURE 14.31 A microwave oven.
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be easily routed. There are applications, however, where it is inconvenient or impossible to
use such power lines. In such cases it is conceivable that electrical power can be transmitted
without wires by a well-focused microwave beam [10].

One example is a solar satellite power station, where it has been proposed that elec-
tricity be generated in space by a large orbiting array of solar cells and transmitted to a
receiving station on Earth by a microwave beam. We would thus be provided with a virtu-
ally inexhaustible source of electricity. Placing the solar arrays in space has the advantage
of power delivery uninterrupted by darkness, clouds, or precipitation, which are problems
encountered with Earth-based photovoltaic arrays.

To be economically competitive with other sources, a solar power satellite station
would have to be very large. One proposal involves a solar array about 5 × 10 km in size
feeding a 1 km diameter phased array antenna. The power output on Earth would be on the
order of 5 GW. Such a project is extremely large in terms of cost and complexity. Also of
legitimate concern is the operational safety of such a scheme, in terms of both the radiation
hazards associated with the system when it is operating as designed, and the risks involved
with a malfunction of the system. These considerations, as well as the political and philo-
sophical ramifications of such a large, centralized power system, have made the future of
the solar power satellite station doubtful.

Similar in concept, but on a much smaller scale, is the transmission of electrical power
from Earth to a vehicle such as a small drone helicopter or airplane. The advantages are
that such an aircraft could run indefinitely, and very quietly, at least over a limited area.
Battlefield surveillance and weather prediction would be some possible applications. The
concept has been demonstrated with several projects involving small pilotless aircraft.

On an even smaller scale is the wireless transmission of power to RFID tags, which is
feasible primarily because of the very low DC power required for appropriately designed
CMOS circuitry. A related idea is the collection of ambient RF power to charge batteries of
portable devices. This sounds attractive, and may be possible in principle, but it is probably
not feasible in most situations, especially when other power sources are available.

Biological Effects and Safety

The proven dangers of exposure to RF and microwave radiation are due to thermal effects.
The body absorbs RF and microwave energy and converts it to heat; as in the case of a
microwave oven, this heating occurs within the body and may not be felt at low levels.
Such heating is most dangerous in the brain, the eye, the genitals, and the stomach organs.
Excessive radiation can lead to cataracts, sterility, or cancer. It is important to determine
a safe radiation level standard so that users of RF and microwave equipment will not be
exposed to harmful power levels.

At the time of this writing, the most recent IEEE safety standard for human exposure
to electromagnetic fields is given by IEEE Standard C95.1-2005. In the RF-microwave fre-
quency range of 100 MHz to 100 GHz, exposure limits are specified for the power density
(W/m2) as a function of frequency, as shown in Figure 14.32. This graph shows both the
recommended limits for the general population, and for exposure in controlled environ-
ments that exist for occupational workers. These limits apply to exposure averaged over
either 6 minutes (for occupational workers) or 30 minutes (for the general population).
The recommended safe power density limits are generally lower at lower frequencies be-
cause fields penetrate the body more deeply at these frequencies. At higher frequencies
most of the power absorption occurs near the skin surface, so the safe limits can be higher.
At frequencies below 100 MHz electric and magnetic fields interact with the body differ-
ently than higher frequency electromagnetic fields, and so separate limits are given for field
components at these lower frequencies.
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FIGURE 14.32 IEEE Standard C95.1-2005 recommended power density limits for human expo-
sure to RF and microwave electromagnetic fields. For a controlled (occupational)
environment the exposure is averaged over a 6 minute period, while for the gen-
eral population the exposure is averaged over a 30 minute period.

In the United States, the Federal Communications Commission (FCC) sets a separate
exposure limit for hand-held wireless devices (cell phones, PDAs, smartphones, etc). These
limits are given in terms of the Specific Absorption Rate (SAR), which measures how much
power is dissipated as heat in a unit of tissue mass. Specific Absorption Rate is defined as

SAR = σ

2ρ

∣∣Ē∣∣2
W/kg, (14.53)

where σ is the conductivity of the tissue (S/m), ρ is the density of the tissue (kg/m3), and
Ē is the electric field in the tissue sample. For partial body exposure (typically the head or
hand), the FCC limit on SAR is 1.6 W/kg, averaged over 1 g of tissue. All wireless devices
sold in the United States must meet this standard. Other countries have standards that are
similar in nature and scope. The European Union, for example, requires hand held wireless
devices to have SAR exposure of less than 2 W/kg, averaged over 10 g of tissue.

A separate standard applies to microwave ovens sold in the United States, requiring
that all ovens be tested to ensure that the power level at 5 cm from any point on the oven
does not exceed 1 mW/cm2.

Most experts feel that the above limits represent safe levels, with a reasonable margin.
Some researchers, however, feel that health hazards may occur due to nonthermal effects
of long-term exposure to even low levels of microwave radiation.

EXAMPLE 14.8 POWER DENSITY IN THE VICINITY OF A MICROWAVE
RADIO LINK

An 18 GHz common-carrier microwave communications link uses a tower-
mounted antenna with a gain of 36 dB and a transmitter power of 10 W. To evalu-
ate the radiation hazard of this system, calculate the power density at a distance of
20 m from the antenna. Do this for a position in the main beam of the antenna, and
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for a position in the sidelobe region of the antenna. Assume a worst-case sidelobe
level of −10 dB.

Solution
The numerical gain of the antenna is

Gt = 1036/10 = 4000.

From (14.23), the power density in the main beam of the antenna at a distance of
R = 20 m is

Savg = Pt Gt

4π R2
= (10) (4000)

4π(20)2
= 8 W/m2.

The worst-case power density in the sidelobe region is 10 dB below this value, or
0.8 W/m2.

Thus, the power density in the main beam at 20 m is below the U.S. standard
for radiation hazard for the general population, while the power density in the
sidelobe region is well below this limit. These power levels will diminish rapidly
with increasing distance due to the 1/r2 dependence. ■
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PROBLEMS

14.1 The Iridium satellite communication system was designed with a link margin of 16 dB, and was orig-
inally advertised as being capable of providing service to users with hand-held phones in vehicles,
buildings, and urban areas. Today, after bankruptcy and restructuring of the company, it is rec-
ommended that Iridium phones be used outdoors, with a line of sight to the satellites. Find some
estimates of the link margins (due to fading) required for L-band communications into vehicles and
buildings. Do you think the Iridium system would have operated reliably in these environments? If
not, why was the system designed with a 16 dB link margin?

14.2 An antenna has a radiation pattern function given by Fθ (θ, φ) = A sin2 θ cos φ. Find the main beam
position, the 3 dB beamwidths in the principal planes, and the directivity (in dB) for this antenna.
What is the polarization of this antenna?
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14.3 A monopole antenna on a large ground plane has a far-field pattern function given by Fθ (θ, φ) =
A sin θ for 0 ≤ θ ≤ 90◦. The radiated field is zero for 90◦ ≤ θ ≤ 180◦. Find the directivity (in dB)
of this antenna.

14.4 A DBS reflector antenna operating at 12.4 GHz has a diameter of 18 inches. If the aperture efficiency
is 65%, find the directivity.

14.5 A reflector antenna used for a cellular base station backhaul radio link operates at 38 GHz, with a gain
of 39 dB, a radiation efficiency of 90%, and a diameter of 12 inches. (a) Find the aperture efficiency
of this antenna. (b) Find the half-power beamwidth, assuming the beamwidths are identical in the
two principal planes.

14.6 A high-gain antenna array operating at 2.4 GHz is pointed toward a region of the sky for which the
background can be assumed to be at a uniform temperature of 5 K. A noise temperature of 105 K is
measured for the antenna temperature. If the physical temperature of the antenna is 290 K, what is
its radiation efficiency?

14.7 Derive equation (14.20) by treating the antenna and lossy line as a cascade of two networks whose
equivalent noise temperatures are given by (14.18) and (10.15).

14.8 Consider the replacement of a DBS dish antenna with a microstrip array antenna. A microstrip array
offers an aesthetically pleasing flat profile, but suffers from relatively high dissipative loss in its feed
network, which leads to a high noise temperature. If the background noise temperature is TB = 50 K,
with an antenna gain of 33.5 dB and a receiver LNB noise figure of 1.1 dB, find the overall G/T for
the microstrip array antenna and the LNB if the array has a total loss of 2.5 dB. Assume the antenna
is at a physical temperature of 290 K.

14.9 At a distance of 300 m from an antenna operating at 5.8 GHz, the radiated power density in the main
beam is measured to be 7.5 × 10−3 W/m2. If the input power to the antenna is known to be 85 W,
find the gain of the antenna.

14.10 A cellular base station is to be connected to its Mobile Telephone Switching Office located 5 km
away. Two possibilities are to be evaluated: (1) a radio link operating at 28 GHz, with Gt = Gr =
25 dB, and (2) a wired link using coaxial line having an attenuation of 0.05 dB/m, with four 30 dB
repeater amplifiers along the line. If the minimum required received power level for both cases is the
same, which option will require the smallest transmit power?

14.11 A GSM cellular telephone system operates at a downlink frequency of 935–960 MHz, with a channel
bandwidth of 200 kHz, and a base station that transmits with an EIRP of 20 W. The mobile receiver
has an antenna with a gain of 0 dBi and a noise temperature of 450 K, and the receiver has a noise
figure of 8 dB. Find the maximum operating range if the required minimum SNR at the output of the
receiver is 10 dB, and a link margin of 30 dB is required to account for propagation into vehicles,
buildings, and urban areas.

14.12 Consider the GPS receiver system shown below. The guaranteed minimum L1 (1575 MHz) carrier
power received by an antenna on Earth having a gain of 0 dBi is Si = −160 dBW. A GPS receiver is
usually specified as requiring a minimum carrier-to-noise ratio, relative to a 1 Hz bandwidth, of C/N
(Hz). If the receiver antenna actually has a gain G A and a noise temperature TA, derive an expression
for the maximum allowable amplifier noise figure F , assuming an amplifier gain G and a connecting
line loss L . Evaluate this expression for C/N = 32 dB-Hz, G A = 5 dB, TA = 300 K, G = 10 dB,
and L = 25 dB.

LNA

14.13 A key premise in many science fiction stories is the idea that radio and TV signals from Earth
can travel through space and be received by listeners in another star system. Show that this is a
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fallacy by calculating the maximum distance from Earth where a signal could be received with a
SNR of 0 dB. Specifically, assume TV channel 4, broadcasting at 67 MHz, with a 4 MHz band-
width, a transmitter power of 1000 W, transmit and receive antenna gains of 4 dB, a cosmic back-
ground noise temperature of 4 K, and a perfectly noiseless receiver. How much would this dis-
tance decrease if an SNR of 30 dB is required at the receiver? (30 dB is a typical value for good
reception of an analog video signal.) Relate these distances to the nearest planet in our solar
system.

14.14 The Mariner 10 spacecraft used to explore the planet Mercury in 1974 used BPSK with Pb = 0.05
(Eb/n0 = 1.4 dB) to transmit image data back to Earth (a distance of about 1.6 × 108 km). The
spacecraft transmitter operated at 2.295 GHz, with an antenna gain of 27.6 dB and a carrier power
of 16.8 W. The ground station had an antenna with a gain of 61.3 dB and an overall system noise
temperature of 13.5 K. Find the maximum possible data rate.

14.15 Derive the radar equation for the bistatic case where the transmit and receive antennas have gains of
Gt and Gr , and are at distances Rt and Rr from the target, respectively.

14.16 A pulse radar has a pulse repetition frequency fr = 1/Tr . Determine the maximum unambiguous
range of the radar. (Range ambiguity occurs when the round-trip time of a return pulse is greater than
the pulse repetition time, so it becomes unclear as to whether a given return pulse belongs to the last
transmitted pulse or some earlier transmitted pulse.)

14.17 A Doppler radar operating at 12 GHz is intended to detect target velocities ranging from 1 to
20 m/sec. What is the required passband of the Doppler filter?

14.18 A pulse radar operates at 2 GHz and has a per-pulse power of 1 kW. If it is to be used to detect
a target with σ = 20 m2 at a range of 10 km, what should be the minimum isolation between the
transmitter and receiver so that the leakage signal from the transmitter is at least 10 dB below the
received signal? Assume an antenna gain of 30 dB.

14.19 An antenna having a gain G is shorted at its terminals. What is the minimum monostatic radar cross
section in the direction of the main beam?

14.20 Consider the radiometer antenna shown below, where the antenna is at a physical temperature Tp
and has a radiation efficiency ηrad, and an impedance mismatch � at its terminals. If TS is the ap-
parent temperature seen by the radiometer, show that �TS/�Ttrue is equal to the product of radia-
tion efficiency and mismatch loss, by applying two background temperatures, TB = Tp and TB =
T2 	= Tp .

TB

Tp, �rad

Radiometer

TS

�

14.21 The atmosphere does not have a definite thickness since it gradually thins with altitude, with a conse-
quent decrease in attenuation. However, if we use a simplified “orange peel” model and assume that
the atmosphere can be approximated by a uniform layer of fixed thickness, we can estimate the back-
ground noise temperature seen through the atmosphere. Thus, let the thickness of the atmosphere
be 4000 m, and find the maximum distance � to the edge of the atmosphere along the horizon, as
shown in the figure below (the radius of Earth is 6400 km). Now assume an average atmospheric
attenuation of 0.005 dB/km, with a background noise temperature beyond the atmosphere of 4 K,
and find the noise temperature seen on Earth by treating the cascade of the background noise with
the attenuation of the atmosphere. Do this for an ideal antenna pointing toward the zenith, and toward
the horizon.
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14.22 A 28 GHz radio link uses a tower-mounted reflector antenna with a gain of 32 dB and a transmit-
ter power of 5 W. (a) Find the minimum distance within the main beam of the antenna for which
the U.S-recommended safe power density limit of 10 mW/cm2 is not exceeded. (b) How does this
distance change for a position within the sidelobe region of the antenna if we assume a worst-case
sidelobe level of 10 dB below the main beam? (c) Are these distances in the far-field region of the
antenna? (Assume a circular reflector, with an aperture efficiency of 60%.)

14.23 On a clear day, with the sun directly overhead, the received power density from sunlight is about
1300 W/m2. If we make the simplifying assumption that this power is transmitted via a single-
frequency plane wave, find the resulting amplitude of the incident electric and magnetic fields.
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APPENDIX A PREFIXES

Multiplying Factor Prefix Symbol

1012 tera T

109 giga G

106 mega M

103 kilo k

102 hecto h

101 deka da

10−1 deci d

10−2 centi c

10−3 milli m

10−6 micro µ

10−9 nano n

10−12 pico p

10−15 femto f

APPENDIX B VECTOR ANALYSIS

Coordinate Transformations

Rectangular to cylindrical:

x̂ ŷ ẑ

ρ̂ cos φ sin φ 0

φ̂ −sin φ cos φ 0

ẑ 0 0 1

Rectangular to spherical:

x̂ ŷ ẑ

r̂ sin θ cos φ sin θ sin φ cos θ

θ̂ cos θ cos φ cos θ sin φ −sin θ

φ̂ −sin φ cos φ 0

Cylindrical to spherical:

ρ̂ φ̂ ẑ

r̂ sin θ 0 cos θ

θ̂ cos θ 0 −sin θ

φ̂ 0 1 0
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These tables can be used to transform unit vectors as well as vector components; e.g.,

ρ̂ = x̂ cos φ + ŷ sin φ

Aρ = Ax cos φ + Ay sin φ

Vector Differential Operators

Rectangular coordinates:

∇ f = x̂
∂ f

∂x
+ ŷ

∂ f

∂y
+ ẑ

∂ f

∂z

∇ · Ā = ∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z

∇ × Ā = x̂

(
∂ Az

∂y
− ∂ Ay

∂z

)
+ ŷ

(
∂ Ax

∂z
− ∂ Az

∂x

)
+ ẑ

(
∂ Ay

∂x
− ∂ Ax

∂y

)

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2

∇2 Ā = x̂∇2 Ax + ŷ∇2 Ay + ẑ∇2 Az

Cylindrical coordinates:

∇ f = ρ̂
∂ f

∂ρ
+ φ̂

1

ρ

∂ f

∂φ
+ ẑ

∂ f

∂z

∇ · Ā = 1

ρ

∂

∂ρ
(ρ Aρ) + 1

ρ

∂ Aφ

∂φ
+ ∂ Az

∂z

∇ × Ā = ρ̂

(
1

ρ

∂ Az

∂φ
− ∂ Aφ

∂z

)
+ φ̂

(
∂ Aρ

∂z
− ∂ Az

∂ρ

)
+ ẑ

1

ρ

[
∂(ρ Aφ)

∂ρ
− ∂ Aρ

∂φ

]

∇2 f = 1

ρ

∂

∂ρ

(
ρ

∂ f

∂ρ

)
+ 1

ρ2

∂2 f

∂φ2
+ ∂2 f

∂z2

∇2 Ā = ∇(∇ · Ā) − ∇ × ∇ × Ā

Spherical coordinates:

∇ f = r̂
∂ f

∂r
+ θ̂

1

r

∂ f

∂θ
+ φ̂

r sin θ

∂ f

∂φ

∇ · Ā = 1

r2

∂

∂r
(r2 Ar ) + 1

r sin θ

∂

∂θ
(sin θ Aθ ) + 1

r sin θ

∂ Aφ

∂φ

∇ × Ā = r̂

r sin θ

[
∂

∂θ
(Aφ sin θ) − ∂ Aθ

∂φ

]
+ θ̂

r

[
1

sin θ

∂ Ar

∂φ
− ∂

∂r
(r Aφ)

]

+ φ̂

r

[
∂

∂r
(r Aθ ) − ∂ Ar

∂θ

]

∇2 f = 1

r2

∂

∂r

(
r2 ∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2

∇2 Ā = ∇∇ · Ā − ∇ × ∇ × Ā
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Vector identities:

Ā · B̄ = |A||B| cos θ, where θ is the angle between Ā and B̄ (B.1)
| Ā × B̄| = |A||B| sin θ, where θ is the angle between Ā and B̄. (B.2)

Ā · B̄ × C̄ = Ā × B̄ · C̄ = C̄ × Ā · B̄ (B.3)
Ā × B̄ = −B̄ × Ā (B.4)

Ā × (B̄ × C̄) = ( Ā · C̄)B̄ − ( Ā · B̄)C̄ (B.5)
∇( f g) = g∇ f + f ∇g (B.6)

∇ · ( f Ā) = Ā · ∇ f + f ∇ · Ā (B.7)
∇ · ( Ā × B̄) = (∇ × Ā) · B̄ − (∇ × B̄) · Ā (B.8)

∇ × ( f Ā) = (∇ f ) × Ā + f ∇ × Ā (B.9)
∇ × ( Ā × B̄) = Ā∇ · B̄ − B̄∇ · Ā + (B̄ · ∇) Ā − ( Ā · ∇)B̄ (B.10)

∇ · ( Ā · B̄) = ( Ā · ∇)B̄ + (B̄ · ∇) Ā + A × (∇ × B̄) + B̄ × (∇ × Ā) (B.11)
∇ · ∇ × Ā = 0 (B.12)
∇ × (∇ f ) = 0 (B.13)

∇ × ∇ × Ā = ∇∇ · Ā − ∇2 Ā (B.14)

Note: the term ∇2 Ā has meaning only for rectangular components of Ā.
∫

V

∇ · Ā dv =
∮

S

Ā · ds̄ (divergence theorem) ((B.15))

∫

S

(∇ × Ā) · ds̄ =
∮

C

Ā · d �̄ (Stokes’ theorem) ((B.16))

APPENDIX C BESSEL FUNCTIONS

Bessel functions are solutions to the differential equation,

1

ρ

d

dρ

(
ρ

d f

dρ

)
+

(
k2 − n2

ρ2

)
f = 0 (C.1)

where k2 is real and n is an integer. The two independent solutions to this equation are
called ordinary Bessel functions of the first and second kind, written as Jn(kρ) and Yn(kρ),
and so the general solution to (C.1) is

f (ρ) = AJn(kρ) + BYn(kρ) (C.2)

where A and B are arbitrary constants to be determined from boundary conditions.
These functions can be written in series form as

Jn(x) =
∞∑

m=0

(−1)m(x/2)n+2m

m!(n + m)! (C.3)

Yn(x) = 2

π

(
γ + ln

x

2

)
Jn(x) − 1

π

n−1∑
m=0

(n − m − 1)!
m!

(
2

x

)n−2m

− 1

π

∞∑
m=0

(−1)m(x/2)n+2m

m!(n + m)!
(

1 + 1

2
+ 1

3
+ · · · + 1

m
+ 1 + 1

2
+ · · · + 1

n + m

)

(C.4)
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FIGURE C.1 Bessel functions of the first and second kind.

where γ = 0.5772 . . . is Euler’s constant, and x = kρ. Note that Yn becomes infinite at
x = 0, due to the ln term. From these series expressions, small argument formulas can be
obtained as

Jn(x) ∼ 1

n!
( x

2

)n
(C.5)

Y0(x) ∼ 2

π
ln x (C.6)

Yn(x) ∼ −1

π
(n − 1)!

( x

2

)n
, n > 0 (C.7)

Large argument formulas can be derived as

Jn(x) ∼
√

2

πx
cos

(
x − π

4
− nπ

2

)
(C.8)

Yn(x) ∼
√

2

πx
sin

(
x − π

4
− nπ

2

)
(C.9)

Figure C.1 shows graphs of a few of the lowest order Bessel functions of each type.
Recurrence formulas relate Bessel functions of different orders:

Zn+1(x) = 2n

x
Zn(x) − Zn−1(x) (C.10)

Z ′
n(x) = −n

x
Zn(x) + Zn−1(x) (C.11)
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Z ′
n(x) = n

x
Zn(x) − Zn+1(x) (C.12)

Z ′
n(x) = 1

2
[Zn−1(x) − Zn+1(x)] (C.13)

where Zn = Jn or Yn . The following integral relations involving Bessel functions are
useful:

∫ x

0
Z2

m(kx)x dx = x2

2

[
Z

′2
n (kx) +

(
1 − n2

k2x2

)
Z2

n(kx)

]
(C.14)

∫ x

0
Zn(kx)Zn(�x)x dx = x

k2 − �2
[k Zn(�x)Zn+1(kx) − �Zn(kx)Zn+1(�x)] (C.15)

∫ pnm

0

[
J

′2
n (x) + n2

x2
J 2

n (x)

]
x dx = p2

nm

2
J

′2
n (pnm) (C.16)

∫ p′
nm

0

[
J

′2
n (x) + n2

x2
J 2

n (x)

]
x dx = (p′

nm)2

2

(
1 − n2

(p′
nm)2

)
J 2

n (p′
nm) (C.17)

where Jn(pnm) = 0, and J ′
n(p′

nm) = 0. The zeros of Jn(x) and J ′
n(x) are on the following

two pages.

Zeros of Bessel Functions of First Kind: Jn(x) = 0 for 0 < x < 12

n 1 2 3 4

0 2.4048 5.5201 8.6537 11.7915

1 3.8317 7.0156 10.1735

2 5.1356 8.4172 11.6198

3 6.3802 9.7610

4 7.5883 11.0647

5 8.7715

6 9.9361

7 11.0864

Extrema of Bessel Functions of First Kind: d Jn(x)/dx = 0 for
0 < x < 12

n 1 2 3 4

0 3.8317 7.0156 10.1735 13.3237

1 1.8412 5.3314 8.5363 11.7060

2 3.0542 6.7061 9.9695

3 4.2012 8.0152 11.3459

4 5.3175 9.2824

5 6.4156 10.5199

6 7.5013 11.7349

7 8.5778

8 9.6474

9 10.7114

10 11.7709
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APPENDIX D OTHER MATHEMATICAL RESULTS

Useful Integrals

∫ a

0
cos2 nπx

a
dx =

∫ a

0
sin2 nπx

a
dx = a

2
, for n ≥ 1 (D.1)

∫ a

0
cos

mπx

a
cos

nπx

a
dx =

∫ a

0
sin

mπx

a
sin

nπx

a
dx = 0, for m �= n (D.2)

∫ a

0
cos

mπx

a
sin

nπx

a
dx = 0 (D.3)

∫ π

0
sin3 θdθ = 4

3
(D.4 )

Taylor Series

f (x) = f (x0) + (x − x0)
d f

dx

∣∣∣∣
x=x0

+ (x − x0)
2

2!
d2 f

dx2

∣∣∣∣
x=x0

+ · · · (D.5)

ex = 1 + x + x2

2! + x3

3! + · · · (D.6)

1

1 − x
= 1 + x + x2 + x3 + · · · , for |x | < 1 (D.7)

√
1 + x = 1 + x

2
− x2

8
+ · · · , for |x | < 1 (D.8)

ln x = 2

(
x − 1

x + 1

)
+ 2

3

(
x − 1

x + 1

)3

+ · · · , for x > 0 (D.9)

sin x = x − x3

3! + x5

5! + · · · (D.10)

cos x = 1 − x2

2! + x4

4! + · · · (D.11)

APPENDIX E PHYSICAL CONSTANTS
� Permittivity of free-space = ε0 = 8.854 × 10−12 F/m
� Permeability of free-space = µ0 = 4π × 10−7 H/m
� Impedance of free-space = η0 = 376.7 

� Velocity of light in free-space = c = 2.998 × 108 m/s
� Charge of electron = q = 1.602 × 10−19 C
� Mass of electron = m = 9.107 × 10−31 kg
� Boltzmann’s constant = k = 1.380 × 10−23 J/◦K
� Planck’s constant = h = 6.626 × 10−34 J-sec
� Gyromagnetic ratio = γ = 1.759 × 1011 C/Kg (for g = 2)
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APPENDIX F CONDUCTIVITIES FOR SOME MATERIALS

Material Conductivity S/m (20◦C) Material Conductivity S/m (20◦C)

Aluminum 3.816 × 107 Nichrome 1.0 × 106

Brass 2.564 × 107 Nickel 1.449 × 107

Bronze 1.00 × 107 Platinum 9.52 × 106

Chromium 3.846 × 107 Sea water 3–5

Copper 5.813 × 107 Silicon 4.4 × 10−4

Distilled water 2 × 10−4 Silver 6.173 × 107

Germanium 2.2 × 106 Steel (silicon) 2 × 106

Gold 4.098 × 107 Steel (stainless) 1.1 × 106

Graphite 7.0 × 104 Solder 7.0 × 106

Iron 1.03 × 107 Tungsten 1.825 × 107

Mercury 1.04 × 106 Zinc 1.67 × 107

Lead 4.56 × 106

APPENDIXG DIELECTRIC CONSTANTS AND LOSS TANGENTS FOR
SOME MATERIALS

Material Frequency εr tan δ (25◦C)

Alumina (99.5%) 10 GHz 9.5–10. 0.0003

Barium tetratitanate 6 GHz 37 ± 5% 0.0005

Beeswax 10 GHz 2.35 0.005

Beryllia 10 GHz 6.4 0.0003

Ceramic (A-35) 3 GHz 5.60 0.0041

Fused quartz 10 GHz 3.78 0.0001

Gallium arsenide 10 GHz 13.0 0.006

Glass (pyrex) 3 GHz 4.82 0.0054

Glazed ceramic 10 GHz 7.2 0.008

Lucite 10 GHz 2.56 0.005

Nylon (610) 3 GHz 2.84 0.012

Parafin 10 GHz 2.24 0.0002

Plexiglass 3 GHz 2.60 0.0057

Polyethylene 10 GHz 2.25 0.0004

Polystyrene 10 GHz 2.54 0.00033

Porcelain (dry process) 100 MHz 5.04 0.0078

Rexolite (1422) 3 GHz 2.54 0.00048

Silicon 10 GHz 11.9 0.004

Styrofoam (103.7) 3 GHz 1.03 0.0001

Teflon 10 GHz 2.08 0.0004

Titania (D-100) 6 GHz 96 ± 5% 0.001

Vaseline 10 GHz 2.16 0.001

Water (distilled) 3 GHz 76.7 0.157
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APPENDIX H PROPERTIES OF SOME MICROWAVE FERRITE MATERIALS

Trans-Tech 4π Ms �H Tc 4π Mr
Material Number G Oe εr tan δ ◦C G

Magnesium ferrite TT1-105 1750 225 12.2 0.00025 225 1220
Magnesium ferrite TT1-390 2150 540 12.7 0.00025 320 1288
Magnesium ferrite TT1-3000 3000 190 12.9 0.0005 240 2000
Nickel ferrite TT2-101 3000 350 12.8 0.0025 585 1853
Nickel ferrite TT2-113 500 150 9.0 0.0008 120 140
Nickel ferrite TT2-125 2100 460 12.6 0.001 560 1426
Lithium ferrite TT73-1700 1700 <400 16.1 0.0025 460 1139
Lithium ferrite TT73-2200 2200 <450 15.8 0.0025 520 1474
Yttrium garnet G-113 1780 45 15.0 0.0002 280 1277
Aluminum garnet G-610 680 40 14.5 0.0002 185 515

APPENDIX I STANDARD RECTANGULAR WAVEGUIDE DATA

Recommended TE10 Cutoff EIA Inside Outside
Frequency Frequency Designation Dimensions Dimensions

Band∗ Range (GHz) (GHz) WR-XX [Inches (cm)] [Inches (cm)]

L 1.12–1.70 0.908 WR-650 6.500 × 3.250 6.660 × 3.410
(16.51 × 8.255) (16.916 × 8.661)

R 1.70–2.60 1.372 WR-430 4.300 × 2.150 4.460 × 2.310
(10.922 × 5.461) (11.328 × 5.867)

S 2.60–3.95 2.078 WR-284 2.840 × 1.340 3.000 × 1.500
(7.214 × 3.404) (7.620 × 3.810)

H (G) 3.95–5.85 3.152 WR-187 1.872 × 0.872 2.000 × 1.000
(4.755 × 2.215) (5.080 × 2.540)

C (J) 5.85–8.20 4.301 WR-137 1.372 × 0.622 1.500 × 0.750
(3.485 × 1.580) (3.810 × 1.905)

W (H) 7.05–10.0 5.259 WR-112 1.122 × 0.497 1.250 × 0.625
(2.850 × 1.262) (3.175 × 1.587)

X 8.20–12.4 6.557 WR-90 0.900 × 0.400 1.000 × 0.500
(2.286 × 1.016) (2.540 × 1.270)

Ku (P) 12.4–18.0 9.486 WR-62 0.622 × 0.311 0.702 × 0.391
(1.580 × 0.790) (1.783 × 0.993)

K 18.0–26.5 14.047 WR-42 0.420 × 0.170 0.500 × 0.250
(1.07 × 0.43) (1.27 × 0.635)

Ka (R) 26.5–40.0 21.081 WR-28 0.280 × 0.140 0.360 × 0.220
(0.711 × 0.356) (0.914 × 0.559)

Q 33.0–50.5 26.342 WR-22 0.224 × 0.112 0.304 × 0.192
(0.57 × 0.28) (0.772 × 0.488)

U 40.0–60.0 31.357 WR-19 0.188 × 0.094 0.268 × 0.174
(0.48 × 0.24) (0.681 × 0.442)

V 50.0–75.0 39.863 WR-15 0.148 × 0.074 0.228 × 0.154
(0.38 × 0.19) (0.579 × 0.391)

E 60.0–90.0 48.350 WR-12 0.122 × 0.061 0.202 × 0.141
(0.31 × 0.015) (0.513 × 0.356)

W 75.0–110.0 59.010 WR-10 0.100 × 0.050 0.180 × 0.130
(0.254 × 0.127) (0.458 × 0.330)

F 90.0–140.0 73.840 WR-8 0.080 × 0.040 0.160 × 0.120
(0.203 × 0.102) (0.406 × 0.305)

D 110.0–170.0 90.854 WR-6 0.065 × 0.0325 0.145 × 0.1125
(0.170 × 0.083) (0.368 × 0.2858)

G 140.0–220.0 115.750 WR-5 0.051 × 0.0255 0.131 × 0.1055
(0.130 × 0.0648) (0.333 × .2680)

∗ Letters in parentheses denote alternative designations.
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Answers to Selected Problems

1.2 (a) η = 236 
, (b) vp = 1.88 × 108 m/sec, (c) λ = 0.0784 m, (d) �φ = 229.5◦
1.8 (b) t 
 0.017 mm
1.9 (a) Si = 46.0 W/m2, Sr = 0.595 W/m2, (b) Sin = 45.6 W/m2

2.1 (a) f = 600 MHz, (b) vp = 2.08 × 108 m/sec, (c) λ = 0.346 m, (d) εr = 2.08,
(e) I (z) = 1.8e− jβz , (f) v (t, z) = 0.135 cos (ωt − βz)

2.3 α = 0.38 dB/m
2.8 Z in = 203. − j5.2 


2.9 Z in = 19.0 − j20.6 
, �L = 0.62� 83◦
2.11 � = 2.147 cm, � = 3.324 cm
2.12 Z0 = 66.7 
 or 150.0 


2.16 PL = 0.681 W
2.18 Pinc = 0.250 W, Pref = 0.010 W, Ptrans = 0.240 W
2.20 (d) Z in = 24.5 + j20.3 
, (e) �min = 0.325λ, (f) �max = 0.075λ

2.23 ZL = 99 − j46 


2.29 Ps = 0.600 W, Ploss = 0.0631 W, PL = 0.1706 W

3.5 loss = 0.45dB, �φ = 2331◦
3.6 � 
 10.3 cm
3.9 fc = 5.06 GHz

3.13 fc (TE11) = 17.94 GHz, fc (TE01) = 37.35 GHz
3.15 kca = 3.12
3.19 W = 0.217 mm, λg = 4.045 cm
3.20 W = 0.457 mm, λg = 4.525 cm
3.21 � = 2.0754 cm, Z in = 0.27 − j12.82 


3.27 vp = 2.37 × 108 m/sec, vg = 1.83 × 108 m/sec

4.4 V +
1 = 10� 90◦, V −

1 = 0, Z (2)
in = 50� 90◦

4.14 (d) IL = 10.5 dB, delay = 45◦, (e) � = 0.018� 90◦
4.18 IL = 8.0 dB, delay = 90◦
4.20 PL = 1.0 W
4.24 VL = 1� −90◦
4.30 � = 0.082 cm

5.1 (a) C = 0.0568 pF, L = 9.44 nH or L = 7.10 nH, C = 0.298 pF
5.3 d = 0.2276λ, � = 0.3776λ or d = 0.4059λ, � = 0.1224λ

5.6 d = 0.174λ, � = 0.353λ or d = 0.481λ, � = 0.147λ

722
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5.9 �1 = 0.086λ, �2 = 0.198λ or �1 = 0.375λ, �2 = 0.375λ

5.14 error = 4%
5.17 Z1 = 1.1067Z0, Z2 = 1.3554Z0
5.21 Z1 = 1.095Z0, Z2 = 1.363Z0
5.24 RL < 6.4 dB

6.1 f0 = 800 MHz, Q0 = 100, QL = 50
6.5 Q0 = 138
6.9 f101 = 9.965 GHz, Q101 = 6349

6.14 a = 2.107 cm, d = 2.479 cm, Q0 = 1692
6.18 f0 = 7.11 GHz
6.21 (c) f0 = 93.8 GHz, Qc = 92, 500

7.3 RL = 20 dB, C = 15 dB, D = 30 dB, L = 0.5 dB
7.8 change = 1.2 dB

7.13 s = 5.28 mm, r0 = 3.77 mm
7.19 s = 0.20 mm, w = 0.6 mm
7.22 s = 1.15 mm, w = 1.92 mm, � = 6.32 mm
7.32 V −

1 = V −
3 = V −

4 = 0, V −
2 = V −

5 = − j0.707

8.6 R = 2.66, C = 0.685, L = 1.822
8.7 N = 5
8.8 L1 = L5 = 1.143 nH, C2 = C4 = 0.928 pF, L3 = 0.877 nH

8.10 attenuation = 11 dB
8.16 β�1 = β�5 = 29.3◦, β�2 = β�4 = 29.4◦, β�3 = 43.7◦
8.18 attenuation = 30 dB
8.19 bandwidth about 1.9:1
8.23 N = 3

9.1 (b) µ = 6.55µ0, κ = 4.95µ0
9.4 Ha = 500 Oe
9.6 L = 1.403 cm
9.8 229 Oe < H0 < 950 Oe

9.12 (a) H0 = 2204 Oe, (b) H0 = 2857 Oe
9.15 L = 23.5 mm
9.17 L = 44.5 cm
9.18 L = 9.2 cm

10.1 F = 7.0 dB
10.4 Fcas = 4.3 dB
10.7 (a) F = 6 dB, (b) F = 1.76 dB, (c) F = 3 dB

10.14 ratio = 6 dB
10.15 OIP3 = 20.8 dBm (coherent)
10.17 LDR = 74.5 dB
10.18 LDR = 86.7 dB, SFDR = 57.8 dB

11.2 ON: IL = 0.42 dB, OFF: IL = 11.4 dB
11.3 ON: IL = 0.044 dB, OFF: IL= 18.6 dB
11.7 Ri = 12.2 
, Cgs = 0.84 pF, Rds = 213 
, Cds = 0.51 pF, gm = 54 mS

12.1 (b) GA = 0.5, GT = 0.444, G = 0.457
12.4 CL = 4.00� 96◦, RL = 3.60, K = 0.275
12.6 A and C are unconditionally stable
12.9 GT = 10.5 dB
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12.13 −2.9 dB < GT − GTU < 4.3 dB
12.15 GT = 19.4 dB
12.21 Nopt = 8.4

13.3 Qmin = 14
13.8 L = 2.5 nH results in µ = −0.931
13.9 (a) L = −181 dBc/Hz, (b) L = −153 dBc/Hz

13.12 L = −121 dBc/Hz
13.17 fIM = 1974 MHz or 1626 MHz

14.2 D = 5.7 dB
14.4 D = 33.6 dB
14.6 ηrad = 65%
14.8 G/T = 9.7 dB/K

14.11 R = 15.2 km
14.13 R = 1.9 × 109 m (for SNR = 0 dB)
14.17 80–1600 Hz
14.23 |E | = 990 V/m
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Index

A
ABCD parameters, 188–191

table for basic circuits, 190
table for conversions, 192

Admittance inverter, 421–422
Admittance matrix, 174–178

table for conversions, 192
AM modulation, 528
Ampere’s law, 8
Amplifier design, 571–601

balanced, 586–588
differential, 593–596
distributed, 588–593
low-noise, 580–585
maximum gain, 571–575
maximum stable gain, 572
power, 596–601
specified gain, 575–579
stability, 564–570

Amplitude shift keying (ASK), 681–684
Anisotropic media, 11–12
Antenna

aperture efficiency, 665
directivity, 663
effective aperture area, 665–666
gain, 664–665
G/T, 671
noise temperature, 669–671
pattern, 662–664
radiation efficiency, 664
types, 659–660

Aperture efficiency, 665
Aperture coupling, 215–221, 302–305
Attenuation

atmospheric, 702–703
transmission line, 78–85

Attenuation constant for
circular waveguide, 125, 126–128

coaxial line, 80
dielectric loss, 101–102
microstrip line, 149–150
parallel plate waveguide, 107, 108–109
plane wave in lossy dielectric, 17–18
rectangular waveguide, 115, 116
stripline, 143–144

Attenuator, 179–180
Available power gain, 559–562

B
Background noise temperature, 666–668
Balanced amplifiers, 586–588
Balun, 594
Bandpass filters

coupled line, 426–436
coupled resonator, 437–447
lumped element, 411–415

Bandstop filters
coupled resonator, 437–441
lumped element, 411–414

BARITT diode, 539
Bessel functions, 715–717

zeroes of, 123, 126, 717
Bethe hole coupler, 334–338
Binary phase shift keying (BPSK), 682–683
Binomial coefficients, 253
Binomial filter response, 400, 402–404
Binomial matching transformer, 252–256
Biological effects, 706–708
Bit error rate, 681–684
Bipolar junction transistor (BJT), 540–543
Black body, 697
Bloch impedance, 384
Bode-Fano criterion, 267–269
Boltzmann’s constant, 498
Bounce diagram, 87–89
Boundary conditions, 12–15

725



bindex Pozar September 29, 2011 19:43

726 Index

Brewster angle, 37
Brightness temperature, 666–668

C
Cavity resonators

cylindrical cavity, 288–293
dielectric resonator, 293–297
rectangular cavity, 284–288

Cellular telephone systems, 2–3, 684–686
Characteristic impedance, 50–51, 171

coaxial line, 56
microstrip line, 148
parallel plate line, 100
stripline, 142

Chebyshev
filter response, 400–401, 404–405
matching transformers, 256–261
polynomials, 257–258

Chip capacitor, resistor, 233–234
Choke

bias, 531, 542, 545
flange, 121

Circular cavity (see Cavity resonators)
Circular polarization, 24–25, 458–460
Circular waveguide, 121–130

attenuation, 125, 126–128
cutoff frequency, 124, 126–128
propagation constant, 124, 126, 128
table for, 128

Circulator
ferrite junction, 487–493
general properties, 318–319, 487–488

Complementary metal oxide semiconductor
(CMOS), 543

Coaxial connectors, 134
Coaxial line

attenuation constant, 80, 82–83
characteristic impedance, 56
data for standard lines, 721
distributed line parameters, 53–54
field analysis, 54–56, 130–133
higher-order modes, 131–133
power capacity, 160
propagation constant, 56

Common Mode Rejection Ratio, 596
Composite filters, 396–399
Compression point, 512–513
Computer aided design (CAD), 202
Conductivity, 10

table for metals, 719
Conductor loss, 26–28
Conjugate matching, 77–78, 187, 571–575
Connectors, coaxial, 134
Constant gain circles, 575–579

Constant-k filters, 390–393, 397
Constant noise figure circles, 580–582
Conversion loss, mixer, 639
Coplanar waveguide, 159–160
Coupled lines, 347–351

characteristic impedance, 348–351
couplers, 351–362
filters, 426–436

Couplers (see Directional couplers)
Coupling

aperture, 215–221, 302–305
coefficient, 298–299, 619
critical, 299
resonator, 297–305

Crossed-guide coupler, 371–372
Current

displacement, 7
electric, magnetic, 6, 8–9

Cutoff frequency
circular waveguide, 124, 126–128
parallel plate waveguide, 105, 108
rectangular waveguide, 113, 116

Cutoff wavelength, 105, 109, 117, 128

D
DC block, 530–531, 642–643
Decibel notation, 62–63
Demagnetization factor, 462–463
Detector, 525–529

sensitivity, 528
Dicke radiometer, 700–701
Dielectric constant, table, 719
Dielectric loaded waveguide, 119–120, 153–154
Dielectric loss, 26–27
Dielectric loss tangent, table, 719
Dielectric resonator oscillators, 617–622
Dielectric resonators, 293–297
Dielectric strength for air, 160–161
Dielectric waveguide, 159
Differential amplifier, 593–596
Differential mixer, 650–652
Digital modulation, 681–684
Diode

BARITT, 539
detectors, 525–529
Gunn, 538
IMPATT, 539
I-V curve, 526, 538
mixer, 642–643
multipliers, 628–633
PIN, 530–531
Schottky, 525–529
switches, 531–534
Varactor, 537
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Directional couplers, 320–323
Bethe hole, 334–338
coupled line, 351–362
Lange, 359–362
Moreno crossed-guide, 372
multihole waveguide, 338–343
quadrature, 343–346
Riblet short slot, 373
ring hybrid, 362–367
Schwinger reversed phase, 372–373
tapered line, 367–371

Directivity
antenna, 663
coupler, 322–324

Discontinuities, 203–205, 209–210
microstrip, 205, 209–210
waveguide, 204

Dispersion, 80, 150, 155
Distortionless line, 80–81
Double sideband modulation (DSB), 638
Dynamic range, 497, 511, 519–521

E
Effective aperture area, 665–666
Effective isotropic radiated power (EIRP), 674
Effective permittivity, microstrip, 148
Efficiency

aperture, 665
power added, 597
radiation, 664

Electric energy, 25
Electric field, 6
Electric flux density, 7
Electric polarizability, 217
Electric potential, 98–99
Electric susceptibility, 10
Electric wall, 14–15
Electromagnetic spectrum, 2
Elliptic filter, 401
Emissivity, 697
Energy, electric, magnetic, 25
Energy transmission, 705–706
E-plane T-junction, 325
Equal ripple filter response, 400–401, 404–405
Equivalent voltages and currents, 166–170
Even-odd mode characteristic impedance,

348–351
Exponential tapered line, 262–263
Extraordinary wave, 470–471

F
Fabry-Perot resonator, 315
Fade margin, 675
Far field, 661
Faraday rotation, 465–469
Faraday’s law, 8

Ferrite devices
circulators, 487–493
gyrator, 486–487
isolators, 475–482
loaded waveguide, 471–475
phase shifters, 482–486

Ferrites, 451
loss in, 460–462
permeability tensor for, 457
plane wave propagation in, 465–471
table of properties, 720

Field effect transistor (FET), 543–547
Filters

bandpass, 411–415, 426–447
bandstop, 411–414, 437–441
composite, 396–399
constant-k, 390–393, 397
coupled line, 426–436
elliptic, 401
high pass, 397, 410
high-Z, low-Z, 422–426
implementation, 415–422
linear phase, 401, 406–408
low pass, 390–399, 410–412
m-derived, 393–396, 397
scaling, 408–411
transformations, 410–415

Flanges, waveguide, 120–121
Flow graph, 194–198
Frequency bands, 2, 685
Frequency multipliers, 627–636
Frequency shift keying (FSK), 681–683
Friis power transmission formula, 673–674

G
Gain (also see Power gain)

amplifier, 562–564
antenna, 664–665
compression, 512–513
two-port power, 558–564

Gilbert cell mixer, 652
Global Positioning System (GPS), 687–688
Group delay, 401
Group velocity, 155–157

for periodic structures, 386
for waveguide, 157

G/T, 671
Gunn diode, 538
Gyrator, 486–487
Gyromagnetic ratio, 453
Gyrotropic medium (see Ferrites)

H
Helmholtz equations, 15–16
High electron mobility transistor (HEMT),

546–547



bindex Pozar September 29, 2011 19:43

728 Index

Hertz, H., 4
Heterojunction bipolar transistor (HBT),

542–543
High pass filters

constant-k, 392, 397
m-derived, 397
transformation to, 410

High-Z, low-Z filters, 422–426
History, of microwave engineering, 4–6
H-plane T-junction, 325
Hybrid junctions

coupled line, 351–359
quadrature, 343–346
ring (rat-race), 363–367
scattering matrix, 313–314, 343, 363
tapered coupled line, 367–371
waveguide magic-T, 361

I
Image frequency, 638–639
Image impedance, 388–390
Image parameters, filter design using,

390–399
Image theory, 42–44
IMPATT diode, 539
Impedance

characteristic, 50–51, 171
concept of, 170–171
image, 388–390
intrinsic, 17
wave, 17, 18, 99, 100, 101
waveguide, 100, 101

Impedance inverter, 421–422
Impedance matching, 228–229

Bode-Fano criterion, 267–269
double stub, 241–246
L-section, 229–233
multisection transformer, 251–261
quarter wave transformer, 72–75, 246–249
single stub, 234–241
tapered line, 261–267

Impedance matrix, 174–178
table for conversions, 192

Impedance transformers (see Impedance
matching)

Incremental inductance rule, Wheeler, 83–85
Inductive degeneration, 583
Insertion loss, 62
Insertion loss method for filter design, 399–408
Intermodulation distortion, 513–519
Inverters, admittance, impedance, 421–422
Iris, waveguide, 203
Isolators

field displacement, 479–482
resonance, 476–479

J
Junction circulator, 487–493

K
Kittel’s equation, 464
Klopfenstein tapered line, 264–265
Klystron, 553–554
Kuroda identities, 416–419

L
Lange coupler, 359–362
Linearly polarized plane waves, 15–23
Linear dynamic range, 519–521
Linear phase filter, 401, 406–408
Line parameters (per unit length), 51–53
Linewidth, gyromagnetic resonance, 460
Link budget, 674–676
Link margin, 675
Load pull contours, 598
Loaded Q, 277
Loaded waveguide

dielectric loading, 119–120, 153–154
ferrite loading, 471–475

Loss (see also Attenuation constant)
conductor, 26–28
dielectric, 26–27
ferrite, 460–462
insertion, 62
return, 58

Loss tangent, 11
table, 719

Lossy transmission lines, 79–82
Low pass filters

constant-k, 390–393, 397
high-Z, low-Z, 422–426
m-derived, 393–396, 397
prototype, 401–408

L-section matching, 229–233

M
Magic-T, 323, 371
Magnetic energy, 25
Magnetic field, 6
Magnetic flux density, 7
Magnetic polarizability, 217
Magnetic susceptibility, 11
Magnetic wall, 15
Manley-Rowe relations, 628–631
Matched line, 57
Matching (see Impedance matching)
Material constants

table of conductivities, 719
table of dielectric constants and loss tangents,

719
table of ferrite properties, 720
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Maximally flat filter response, 400, 402–404
Maximum power capacity, 134, 160–161
Maximum stable gain, 572
Maxwell, J., 4–5
Maxwell’s equations, 4, 6–10
m-derived filters, 393–396, 397
MEMs, 551–552
Metal semiconductor FET (MESFET), 543,

544–546
Microstrip, 147–153

attenuation, 148–149
characteristic impedance, 148
coupled, 350
discontinuities, 205, 209–210
effective permittivity, 148
higher order modes, 150–152
propagation constant, 147–148

Microwave heating, 705
Microwave integrated circuits (MIC), 547–550

hybrid, 548
monolithic (MMIC), 548–550

Microwave oven, 705
Microwave sources, 538–540, 552–556

Gunn diode, 538
IMPATT diode, 539
oscillators, 605–622
tubes, 552–556

Microwave tubes, 552–556
backward wave oscillator, 554
crossed-field amplifier, 555
extended interaction oscillator, 554
gyratron, 555
klystron, 553–554
magnetron, 552, 554
traveling wave tube, 554

Mixers, 526, 637–654
antiparallel diode, 653
balanced, 646–649
conversion loss, 639
differential FET, 650–652
diode, 642–643
double balanced, 652–653
FET, 643–645
Gilbert cell, 652
image rejection, 649–650
image response, 638–639

Modal analysis, 203–209
Modes

cavity modes, 284–287, 288–292
circular waveguide, 121–128
parallel plate waveguide, 102–110
rectangular waveguide, 110–120

Modulation, 528–529, 681–684
Metal oxide semiconductor FET (MOSFET),

543, 546

Multiple reflections, on quarter wave
transformer, 74–75

Multipliers (see Frequency multipliers)

N
Negative resistance oscillators, 613–615
Neper, 62–63
Network analyzer, 188
Noise, 496–511

figure, 502–511
phase, 622–627
sources, 497–498
temperature, 498–502

Noise figure, 502–511
circles, 557–561
of cascade, 504–505
of lossy line, 503–504, 508–509
of mismatched amplifier, 510–511
of mixer, 640–641
of passive network, 506–508
of transistor amplifier, 580–582

O
Ohm’s law for fields, 10–11
Open circuit stub, impedance, 60–61
Oscillators

crystal, 612–613
dielectric resonator, 617–622
negative resistance, 613–615
transistor, 605–613, 615–622

P
Passive intermodulation (PIM), 519
Parallel plate waveguide, 102–110

attenuation, 107, 108–109
characteristic impedance (TEM), 104
table for, 109

Periodic structures
analysis, 382–385
k-β diagram, 385–386
phase and group velocities, 386

Permanent magnets, 464–465
Permeability, 7, 12

tensor, for ferrite, 457
Permittivity, 7, 11

of atmosphere, 701
Perturbation theory for

attenuation, 82–83
cavity resonance, 306–312
ferrite loaded waveguide, 474

Phase constant (see Propagation constant)
Phase matching, 36
Phase noise, 622–627
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Phase shifters
Faraday rotation, 485
loaded line, 535–536
reflection, 536–537
Reggia-Spencer, 486
remanent (latching), 482–485
switched line, 534–535

Phase velocity
plane wave, 16
transmission line, 51
waveguide, 104, 105, 109, 113, 117, 128

Phasor notation, 8–9
Physical constants, table, 718
PIN diodes, 530–531

phase shifters, 534–537
switches, 531–534

Plane waves, 16–25
in conducting media, 19
in ferrites, 465–471
in general lossy media, 17–18
in lossless dielectric, 16–17
reflection, 28–40

Plasma, 704
Polarizability, 217
Polarization, wave, 24
Power, 25–28
Power added efficiency (PAE), 597
Power amplifiers, 596–601
Power loss, 26–27, 31–32
Power capacity of transmission line, 160–161
Power divider (see also Directional coupler)

resistive, 326–328
T-junction, 324–326
Wilkinson, 328–333

Power gain, 558–564
Power waves, 185–188
Poynting’s theorem, 24–25
Poynting vector, 26
Precession, magnetic dipole, 453–456
Probe coupling, 214–215
Propagation

atmospheric effects, 701–702
ground effects, 703–704
plasma effects, 704

Propagation constant for
circular waveguide, 124, 126, 128
coaxial line, 56
microstrip line, 147–148
parallel plate guide, 98, 104, 108, 109
plane waves in a good conductor, 19, 20
plane waves in lossless dielectric, 16, 20
rectangular waveguide, 112, 115, 117
stripline, 142
TEM modes, 98
TM or TE modes, 100–101

Q
Q, 274, 277–278

for circular cavity, 291–292
for dielectric resonator, 297
for rectangular cavity, 286–287
for RLC circuit, 274, 276, 278
for transmission line resonator, 280, 282, 283
from resonator measurements, 305–306

Quadrature hybrid, 343–346
Quadrature phase shift keying (QPSK), 682
Quarter-wave transformers

multiple reflection viewpoint, 74–75
multisection, 251–261
single-section, 72–75, 246–249

R
Radar systems, 690–695
Radar cross section, 695–696
Radiation

condition, 15
efficiency, 664
hazards, 706–707
patterns, 662–663

Radiometer systems, 696–701
Rat-race (ring hybrid), 363–367
Receivers, 676–680
Reciprocal networks, 175–176, 181–182
Reciprocity theorem, 40–42
Rectangular cavity (see Cavity resonators)
Rectangular waveguide, 110–120

attenuation, 115, 116
cutoff frequency, 113, 116
group velocity, 157
maximum power capacity, 160–161
phase velocity, 113, 117
propagation constant, 112, 115, 117
table for, 117
table of standard sizes, 720

Rectification, 525–528
Reflection coefficient, 29, 57
Reflectometer, 374–375
Remanent magnetization, 464, 483
Resonant circuits, 272–277
Return loss, 58
Richards’ transformation, 416
Ridge waveguide, 158–159
Root-finding algorithms, 139–140

S
Saturation magnetization, 455
Scattering matrix, 178–185

for circulator, 318–319, 487–488
for directional coupler, 320–323
generalized, 185–188
for gyrator, 486
for quadrature hybrid, 343
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for ring hybrid, 363
shift in reference planes, 184–185
table for conversions, 192

Schwinger reversed phase coupler, 372–373
Separation of variables, 20–21, 111–112,

119–120, 122–123, 130–131, 132
Short circuit stub impedance, 59
Signal flow graphs, 194–198
Single sideband modulation, 638
Skin depth, 19
Slotline, 159
Slotted line, 68–72
Small reflection theory, 250–252
Smith chart, 63–68
Snell’s law, 36
Sources (see Microwave sources)
Scattering parameters (see Scattering matrix)
Specific Absorption Ratio (SAR), 707
Spectrum analyzer, 529–530
Spurious free dynamic range, 519–520
Stability

amplifier, 564–570
circles, 564–567

Standing wave ratio (SWR), 58
Stepped impedance filters, 422–426
Stripline, 141–147

approximate analysis, 144–147
attenuation, 143
characteristic impedance, 141
coupled, 349–350
propagation constant, 142

Surface current, 9–10, 13–14
Surface impedance, 33–34
Surface resistance, 28, 33
Surface waves

at dielectric interface, 38–40
of dielectric slab, 135–139

Switches, PIN diode, 531–534

T
Tapered coupled line hybrid, 367–371
Tapered transmission lines

exponential taper, 262–263
Klopfenstein taper, 264–265
triangular taper, 263–264

Telegrapher equations, 49, 55
TEM waves and modes

attenuation due to dielectric loss, 98
plane waves, 16–25
propagation constant, 16, 18, 19, 98
transmission lines, 54–56
wave impedance, 17, 18, 56, 99

TE, TM modes
attenuation due to dielectric loss, 101–102
propagation constant, 96–97
wave impedance, 96–97

Terminated transmission line, 56–62
input impedance, 59
reflection coefficient, 57
voltage maxima and minima, 58

Third-order intercept, 515–518
T-junction, 324–326
Total reflection, plane wave, 38–40
Transducer power gain, 559–561
Transistor

amplifier, 571–601
characteristics, 540–547
mixer, 643–645, 650–652
models, 541, 544
multipliers, 633–636
oscillator, 605–613, 615–622
types, 540–547

Transmission coefficient, 29, 62
Transmission line

equations, 49
input impedance, 59
junctions, 62
parameters, 51–54

Transmission line resonators, 278–284
Transmission lines

coaxial, 53–56, 130–133
microstrip, 147–153
parallel plate, 54, 102–110
stripline, 141–147
transients on, 86–89
two-wire, 54

Transverse resonance method, 153–154
Traveling wave amplifier (see Amplifier design)
Traveling waves

plane waves, 16
on transmission lines, 50

Through-Reflect-Line (TRL) calibration,
197–202

Two-port networks, equivalent circuits,
191–194

Two-port power gains (see Power gain)

U
Unilateral device, 541
Unilateral figure of merit, 576
Unilateral transducer power gain, 561, 563
Unitary matrix, 181
Unit element, 417
Unit matrix, 180
Unloaded Q, 274

V
Varactor diode, 537
Velocity (see Wave velocities)
Voltage standing wave ratio (see Standing wave

ratio)
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W
Wave equation, 16, 18, 20
Waveguide (see Rectangular waveguide;

Circular waveguide; Loaded waveguide;
Parallel plate waveguide)

Waveguide components, 111
directional couplers, 334–343, 372–272
discontinuities, 204
isolators, 476–482
magic-T, 323, 371
phase shifters, 482–486
T-junctions, 325

Waveguide excitation by
apertures, 215–221
arbitrary sources, 212–214
current sheets, 210–212

Waveguide flanges, 120–121
Waveguide impedance, 100, 101

Wavelength
in free-space, 16–17
on transmission line, 51
for waveguide, 105, 109, 113, 117, 128

Wave velocities
group, 155–157, 386
phase, 16, 51, 104, 105, 109, 113, 117, 128

Wheeler incremental inductance rule, 83–85
Wilkinson power divider, 328–333
Wireless systems, 671–672, 684–690

Y
YIG-tuned oscillator, 605
Y-parameters (see Admittance matrix)

Z
Z-parameters (see Impedance matrix)
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USEFUL RESULTS

Maxwell’s equations:

∇ × Ē = − jωµH̄ − M̄ ∇ · D̄ = ρ

∇ × H̄ = jωε Ē + J̄ ∇ · B̄ = 0

Surface resistance and skin depth:

Rs =
√

ωµ

2σ
δs =

√
2

ωµσ

Input impedance of terminated lossless transmission lines:

Z in = Z0
ZL + j Z0 tan β�

Z0 + j ZL tan β�
(arbitrary load)

Z in = j Z0 tan β� (short-circuited line)

Z in = − j Z0 cot β� (open-circuited line)

Relations between load impedance and reflection coefficient:

� = ZL − Z0

ZL + Z0
ZL = Z0

1 + �

1 − �

Definitions of return loss, insertion loss and SWR:

RL = −20 log |�|, IL = −20 log |T |, SWR = 1 + |�|
1 − |�|

Conversion between dB and nepers:

1 neper = 8.686 dB

Elements of the ferrite permeability tensor:

µ = µ0

(
1 + ω0ωm

ω2
0 − ω2

)
ω0 = µ0γ H0

ωm = µ0γ Ms

κ = µ0
ωωm

ω2
0 − ω2

(or 2.8 MHz/Oersted)

Conversion between some values of reflection coefficient, SWR, and return loss:

|�| 0.024 0.032 0.048 0.050 0.056 0.10 0.178 0.200 0.316 0.33
SWR 1.05 1.07 1.10 1.11 1.12 1.22 1.43 1.50 1.92 2.00
RL (dB) 32.3 30.0 26.4 26.0 25.0 20.0 15.0 14.0 10.0 9.6

F2
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The ABCD Parameters of Some Useful Two-Port Circuits.

Circuit ABCD Parameters

Z A = 1

C = 0

B = Z

D = 1

Y
A = 1

C = Y

B = 0

D = 1

Z0, � A = cos β�

C = jY0 sin β�

B = j Z0 sin β�

D = cos β�

N : 1

A = N

C = 0

B = 0

D = 1

N

Y1 Y2

Y3 A = 1 + Y2

Y3

C = Y1 + Y2 + Y1Y2

Y3

B = 1

Y3

D = 1 + Y1

Y3

Z1 Z2

Z3

A = 1 + Z1

Z3

C = 1

Z3

B = Z1 + Z2 + Z1 Z2

Z3

D = 1 + Z2

Z3

F3
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VECTOR ANALYSIS

Coordinate Transformations

Rectangular to cylindrical:

x̂ ŷ ẑ

ρ̂ cos φ sin φ 0

φ̂ − sin φ cos φ 0

ẑ 0 0 1

Rectangular to spherical:

x̂ ŷ ẑ

r̂ sin θ cos φ sin θ sin φ cos θ

θ̂ cos θ cos φ cos θ sin φ − sin θ

φ̂ − sin φ cos φ 0

Cylindrical to spherical:

ρ̂ φ̂ ẑ

r̂ sin θ 0 cos θ

θ̂ cos θ 0 − sin θ

φ̂ 0 1 0

These tables can be used to transform unit vectors as well as vector components; e.g.,

ρ̂ = x̂ cos φ + ŷ sin φ

Aρ = Ax cos φ + Ay sin φ

B2
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Vector Differential Operators

Rectangular coordinates:

∇ f = x̂
∂ f

∂x
+ ŷ

∂ f

∂y
+ ẑ

∂ f

∂z

∇ · Ā = ∂ Ax

∂x
+ ∂ Ay

∂y
+ ∂ Az

∂z

∇ × Ā = x̂

(
∂ Az

∂y
− ∂ Ay

∂z

)
+ ŷ

(
∂ Ax

∂z
− ∂ Az

∂x

)
+ ẑ

(
∂ Ay

∂x
− ∂ Ax

∂y

)

∇2 f = ∂2 f

∂x2
+ ∂2 f

∂y2
+ ∂2 f

∂z2

∇2 Ā = x̂∇2 Ax + ŷ∇2 Ay + ẑ∇2 Az

Cylindrical coordinates:

∇ f = ρ̂
∂ f

∂ρ
+ φ̂

1

ρ

∂ f

∂φ
+ ẑ

∂ f

∂z

∇ · Ā = 1

ρ

∂

∂ρ
(ρ Aρ) + 1

ρ

∂ Aφ

∂φ
+ ∂ Az

∂z

∇ × Ā = ρ̂

(
1

ρ

∂ Az

∂φ
− ∂ Aφ

∂z

)
+ φ̂

(
∂ Aρ

∂z
− ∂ Az

∂ρ

)
+ ẑ

1

ρ

[
∂(ρ Aφ)

∂ρ
− ∂ Aρ

∂φ

]

∇2 f = 1

ρ

∂

∂ρ

(
ρ

∂ f

∂ρ

)
+ 1

ρ2

∂2 f

∂φ2
+ ∂2 f

∂z2

∇2 Ā = ∇(∇ · Ā) − ∇ × ∇ × Ā

Spherical coordinates:

∇ f = r̂
∂ f

∂r
+ θ̂

1

r

∂ f

∂θ
+ φ̂

r sin θ

∂ f

∂φ

∇ · Ā = 1

r2

∂

∂r

(
r2 Ar

) + 1

r sin θ

∂

∂θ
(sin θ Aθ ) + 1

r sin θ

∂ Aφ

∂φ

∇ × Ā = r̂

r sin θ

[
∂

∂θ
(Aφ sin θ) − ∂ Aθ

∂φ

]
+ θ̂

r

[
1

sin θ

∂ Ar

∂φ
− ∂

∂r
(r Aφ)

]
+ φ̂

r

[
∂

∂r
(r Aθ ) − ∂ Ar

∂θ

]

∇2 f = 1

r2

∂

∂r

(
r2 ∂ f

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ f

∂θ

)
+ 1

r2 sin2 θ

∂2 f

∂φ2

∇2 Ā = ∇∇ · Ā − ∇ × ∇ × Ā

B3
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