Disciplina: SLC0673

Ciclos energéticos vitais

Prof. Dr. Andrei Leitão

Fatty acid metabolism

Oxidation of Fatty Acids

Stage 1: A long-chain fatty acid is oxidized to yield acetyl residues in the form of acetyl-CoA. This process is called oxidation.

Stage 2: The acetyl groups are oxidized to CO_2 via the citric acid cycle.

Stage 3: Electrons derived from the oxidations of stages 1 and 2 pass to O2 via the mitochondrial respiratory chain, providing the energy for ATP synthesis by oxidative phosphorylation.

The β-oxidation pathway

In each pass through this four-step sequence, one acetyl residue (shaded in pink) is removed in the form of acetyl-CoA from the carboxyl end of the fatty acyl chain—in this example palmitate (C16), which enters as palmitoyl-CoA.

Six more passes through the pathway yield seven more molecules of acetyl-CoA, the seventh arising from the last two carbon atoms of the 16-carbon chain.

Production of ATP

Seven passes through the oxidation sequence are required to oxidize one molecule of palmitoyl-CoA to eight molecules of acetyl-CoA. The overall equation is:

Palmitoyl-CoA +
$$7$$
CoA + 7 FAD + 7 NAD⁺ + 7 H₂O \longrightarrow 8 acetyl-CoA + 7 FADH₂ + 7 NADH + 7 H⁺ (17–3)

The overall equation for the oxidation of palmitoyl-CoA to eight molecules of acetyl-CoA, including the electron transfers and oxidative phosphorylations, is:

Palmitoyl-CoA +
$$7\text{CoA} + 7\text{O}_2 + 28\text{P}_i + 28\text{ADP} \longrightarrow$$

8 acetyl-CoA + $28\text{ATP} + 7\text{H}_2\text{O}$ (17–4)

Acetyl-CoA can also produce ATP from citric acid cycle.

Oxidation of Fatty Acids

TABLE 17–1 Yield of ATP during Oxidation of One Molecule of Palmitoyl-CoA to CO₂ and H₂O

Enzyme catalyzing the oxidation step	Number of NADH or FADH ₂ formed	Number of ATP ultimately formed*
Acyl-CoA dehydrogenase	7 FADH ₂	10.5
B-Hydroxyacyl-CoA dehydrogenase	7 NADH	17.5
Isocitrate dehydrogenase	8 NADH	20
α -Ketoglutarate dehydrogenase	8 NADH	20
Succinyl-CoA synthetase		8†
Succinate dehydrogenase	8 FADH ₂	12
Malate dehydrogenase	8 NADH	20
Total		108

^{*}These calculations assume that mitochondrial oxidative phosphorylation produces 1.5 ATP per FADH₂ oxidized and 2.5 ATP per NADH oxidized.

[†]GTP produced directly in this step yields ATP in the reaction catalyzed by nucleoside diphosphate kinase (p. XXX).