



# Departamento de Engenharia Elétrica e de Computação

# SEL 0412–Tecnologia Digital Profa. Luiza Maria Romeiro Codá

# "Cronômetro"

## 1. Objetivos:

 Utilização do programa QUARTUSII da empresa ALTERA no projeto, simulação e teste de circuitos seqüenciais em dispositivos "HCPLDs"

## 2. Material utilizado:

- Dispositivo Programável de Alta Complexidade HCPLD do tipo FPGA Cyclone IV da Altera
- Módulo de desenvolvimento Mercúrio IV Macnica DWH
- Multímetro
- Osciloscópio

## 3. Procedimento Experimental:

Utilizando o dispositivo FPGA EP4CE30F23C7 da família Cyclone IV-E da placa mercúrio IV da macnica, projete, simule e teste os seguintes circuitos.(Observação: utilizar o nome dos pinos como descrito em cada item para utilizar o arquivo de pinagem documentado pelo fabricante da placa.

## 3.1 Divisor de frequência:

Projetar e programar um circuito que transforme a frequência de relógio da placa (pino clock\_50MHz) mercúrio IV para uma frequência de 10 Hz (frequência da placa mercúrio é 50MHz), como mostra a Figura 1. Verifique a saída (10Hz) no LED RGB.

 $\frac{fclk}{m odulo} = 10 Hz , \text{ se } fclk = 50 \text{MHz}$  Modulo = 5 000 000

Criar um contador módulo 5 000 000 que representado em binário é apresenta (100 1100 0100 1011 0100 0000)b, o qual apresenta 23 bits, ou seja, o contador a ser implementado deve ter 23 Flip Flops, e a saída do último FF apresenta a frequência de 10Hz.

Implementação do divisor de frequência:

utilize o projeto lpm\_counter como um contador de 23 bits e módulo 5 000 000 e nomeie as saídas como f[22..0]. A saída f[22] é um sinal de 10hz(não usar Cout). Nomeio o pino de entrada(clock) como **clock\_50MHZ** e o pino de saída como **LED\_B**. Ligue a saída f[22] ao pino LED\_B



Figura 1 divisor de frequência

## 3.2 Circuito para Matriz de LEDs

Projete um circuito para visualize a frequência de 10Hz utilizando a matriz de LEDs (figura 2). Um LED da matriz acende quando a Coluna e a linha específica estiverem em nível '0' como mostra a Figura 3



Figura 2 Matriz de LEDs



Figura 3 linha e coluna zero ligadas ao '0':LEDM\_C[0] = '0' e LEDM\_R[0] = '0'

Para visualizar os 10Hz cada coluna ficará acesa a cada 10Hz, acendendo primeiro a coluna zero (LEDM\_C[0] e por último a coluna 4 ( LEDM\_C[4]), como mostra a Figura 3.





#### Implementação do circuito de controle da matriz de LEDs:

crie um contador módulo 5, com a entrada de 10Hz (saída do divisor do item 3.1, f[22]) como clock e ligue um decodificador 74138 de 3 x 8, que apresenta 3 entradas e 8 saídas(Figura 5). A cada valor de entrada em binário fornecido pelo contador, a saída com índice igual ao da entrada é colocada em nível baixo, como mostra a Tabela 1.

Ligue as saídas do contador módulo 5 nas entradas A, B, e C. (A é o LSB) do decodificador. Nas saídas do 74138 de O0 a O4 devem ser ligadas pinos para as colunas da matriz (nomeadas como LEDM\_C[4..0]) e as linhas da matriz (nomeadas como LEDM\_R[7..0] devem ser todas mantidas no nível baixo, como mostra a figura 6.

Tabela 1 tabela verdade do 74138

|                | TRUTH TABLE |                |                |                |    |      |         |    |            |            |    |    |                |  |
|----------------|-------------|----------------|----------------|----------------|----|------|---------|----|------------|------------|----|----|----------------|--|
|                | INPUTS      |                |                |                |    |      | OUTPUTS |    |            |            |    |    |                |  |
| E <sub>1</sub> | E2          | E <sub>3</sub> | A <sub>0</sub> | A <sub>1</sub> | A2 | 00   | σ       | σ2 | <b>0</b> 3 | <b>0</b> 4 | 05 | σε | 0 <sub>7</sub> |  |
| н              | х           | х              | х              | х              | х  | н    | н       | н  | н          | н          | н  | н  | н              |  |
| x              | н           | х              | х              | x              | x  | н    | н       | н  | H          | н          | н  | н  | H              |  |
| X              | х           | L              | x              | x              | x  | н    | н       | н  | H          | н          | н  | н  | н              |  |
| L              | L           | н              | L              | L              | L  | L    | н       | н  | H          | н          | н  | н  | н              |  |
| L              | L           | н              | н              | L              | L  | н    | L       | н  | H          | H          | н  | н  | н              |  |
| L              | L           | н              | L              | н              | L  | н    | н       | L  | H          | н          | н  | н  | H              |  |
| L              | L           | н              | н              | H              | L  | н    | н       | H  | L          | н          | н  | н  | н              |  |
| L              | L           | н              | L              | L              | H  | н    | н       | н  | H          | L          | н  | н  | н              |  |
| L              | L           | н              | н              | L              | H  | н    | н       | н  | H          | н          | L  | н  | H              |  |
| L              | L           | н              | L              | н              | H  | н    | н       | н  | H          | н          | н  | L  | н              |  |
|                |             | н              | 14             | H              | H  | N 14 | ы       | 14 | H          | H          | ы  | ы  | 1              |  |



Figura 5 decodificador 74138 do software Quartus II



Figura 6 Circuito de visualização do 10Hz na matriz de LEDs

#### 3.3 Circuito do cronômetro:

Projete um cronômetro que conte de 0 a 59 segundos. Apresente a contagem nos displays de 7 segmentos da placa. A unidade deve ser visualizada no display DISP0 e a dezena deve ser visualizada no display DISP1, mostrados na Figura 7. Os displays acendem com nível alto, ou seja, são displays catodo comum..



Figura 7 nomes dos displays da placa mercúrio IV

#### 3.3.1 Obtenha uma frequência de 1 Hz:

A partir da saída mais significativa do contador ligado à matriz de LEDs (contador do item 3.2) cuja frequência é de 2Hz, divida essa frequência por 2 utilizando um Flip Flop tipo T ( componente TFF) em modo Toggle, como mostra a Figura 8



Figura 8 Circuito para obter a frequência de 1Hz

#### 3.3.2 Implementação do circuito da unidade:

Utilize o projeto lpm\_counter para fazer um contador módulo 10 e assim gerar a unidade do cronômetro, onde o clock deste contador é uma frequência de 1Hz. A saída desse contador deve ser convertida para display de 7 segmentos utilizando o CI 7448 ( que é um decodificador BCD para display de 7 segmentos catodo comum). A saída do 7448 deve ser ligada aos segmentos do display 0 da placa, nomeados como **DISP0\_D[6..0]** como mostra a Figura 9.



Figura 9 Circuito da Unidade do cronômetro

## 3.3.2 Implementação do circuito da dezena:

Utilize outro projeto lpm\_counter para fazer um contador módulo 6 e assim gerar a dezena do cronômetro. O clock desse contador é a saída mais significativa invertida do contador módulo 10 (pois o lpm\_counter é sensível à subida do clock e é preciso que seja sensível a descida para mudar o valor quando o bit mais significativo passa de 0 para 1. Contagem da unidade:



A saída do contador da dezena deve ser ao decodificador 7448 e este ao display 1 da placa,, cujos pinos são nomeados como **DISP1\_D[6..0].** (Figura 10).



Figura 10 Circuito da Dezena do cronômetro

3.4 ZERAR a contagem: Modificar os parâmetros dos contadores módulo 10 e módulo 6 (que estão ligados ao decodificador 7448), para incluir entrada ACLEAR com objetivo de zerar a contagem. Utilizar uma chave Push Button KEY[0] (Figura 11). O circuito modificado é mostrado na figura 12.



Figura 11 Chaves Push Buttom do mercúrio IV



Figura 12 Inclusão do botão para zerar

3.5 Parar a contagem: Modificar os parâmetros do projeto lpm\_counter do contador de módulo 5 (utilizado para acionar a matriz de LEDs) e incluir uma entrada CLK\_EN para PARAR a contagem. Utilizar uma chave Push Buttom KEY[1] (Figura 11) do módulo mercúrio IV. Essa entrada clk\_en deve ser conectada à saída Q de um Flip Flop tipo T no modo Toggle, cuja clock é a chave (KEY[1]), como mostra a Figura 13.



Figura 13 Inclusão do botão de PARAR contagem.

3.6 Eliminador de ruído Push Buttom (PB) : Caso o ruído mecânico da chave Push Buttom (chave de parada) cause mal funcionamento no circuito, implementar um eliminador de ruído de chave PB, cujo diagrama em blocos é mostrado na Figura 14, e ligar a chave PB à ele. O clock deve ter 100Hz, e deve ser obtido implementando um divisor de frequência a partir da frequência da placa (50MHz). Utilize o projeto LPM\_COUNTER para criar a frequência

de 100Hz e os projetos DFF para implementar o Flip flop D, o projeto AND2 para a porta and. O projeto do eliminador no software é mostrado na Figura 15.



Figura 14 circuito eliminador de ruído de chave PB



Figura 15 Implementação do eliminador de ruído PB

# 4.Bibliografia:

- Site da ALTERA
- Fregni, E. & Saraiva, A.M., " Engenharia do Projeto Lógico Digital", Ed. Edgard Blücher Ltda.
- Tocci, J. R., "Sistemas Digitais- Princípios e Aplicações