

Universidade de São Paulo - USP Escola de Engenharia de São Carlos - EESC Departamento de Engenharia Elétrica

# **Dispositivos Ópticos Integrados**

# SEL 366 Comunicações Ópticas

Prof. Dr. Ben-Hur Viana Borges

# Agenda

- Introdução
- Teoria de guias ópticos integrados
- Estruturas clássicas
  - Dispositivos ópticos passivos
    - Acoplador direcional
    - Dispositivos assistidos por rede de difração
    - Filtros ópticos
    - Moduladores ópticos
    - Sensores ópticos integrados
  - Dispositivos ópticos ativos
    - Moduladores
    - Ressoadores
    - Filtros
    - Lasers
- Conclusões
- Bibliografia

# Óptica Integrada

- Termo criado em 1969 por S.E. Miller, no artigo "Integrated Optics: An Introduction", The Bell System Technical Journal, vol. 48, pp. 2059-2068.
- Neste artigo foram apresentados os conceitos para integrar circuitos ópticos em um mesmo substrato;
- Foram apresentadas propostas de:
  - Guias de ondas;
  - Acopladores co- e contra-direcionais.
- A tecnologia atual tem tirado todo o proveito obtido com os avanços da microeletrônica.

## Equações de Maxwell

$$\nabla \times \overline{E}(\overline{r},t) + \frac{\partial}{\partial t}\overline{B}(\overline{r},t) = 0$$

Lei de Indução de Faraday

 $\nabla \times \overline{H}(\overline{r},t) - \frac{\partial}{\partial t}\overline{D}(\overline{r},t) = \overline{J}(\overline{r},t)$  Lei circuital de Ampère

 $\nabla \cdot \overline{B}(\overline{r},t) = 0$  Lei de Gauss para campo Magnético

 $\nabla \cdot \overline{D}(\overline{r},t) = \rho(\overline{r},t)$ 

Lei de Gauss para campo Elétrico

 $\overline{D} = \varepsilon \overline{E}$ 

Relações constitutivas

 $\overline{B} = \mu \overline{H}$ 

# Equações de Onda

$$\nabla^2 \overline{E} + \nabla \left(\frac{1}{\varepsilon(r)} \nabla \varepsilon(r) \cdot \overline{E}\right) = \mu_0 \varepsilon(r) \frac{\partial^2}{\partial t^2} \overline{E}$$

Vetorial, Formulação-E

$$\nabla^2 \overline{H} + \frac{1}{\varepsilon(r)} \nabla \varepsilon(r) \times \left( \nabla \times \overline{H} \right) = \mu_0 \varepsilon(r) \frac{\partial^2}{\partial t^2} \overline{H}$$

Vetorial, Formulação-H

$$\left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2} + n^2 \frac{\partial}{\partial y} \frac{1}{n^2} \frac{\partial}{\partial y} - \mu_0 \varepsilon \frac{\partial^2}{\partial t^2}\right) \left\{ \frac{\overline{E}}{\overline{H}} \right\} = 0 \quad \text{Semi-vetorial}$$

$$\left(\nabla^2 - \mu_0 \varepsilon \frac{\partial^2}{\partial t^2}\right) \left\{\frac{\overline{E}}{\overline{H}}\right\} = 0$$

Escalar

## Lei de Snell



Continuidadedascomponentesdecampoaolongodasinterfacesentredoismeios:

 $n_1 sin(\theta_1) = n_2 sin(\theta_2)$ 

Ângulo crítico:  $\theta_c = \arcsin(n_2/n_1)$ 

# Reflexão Interna Total - $(n_1 > n_2)$



# Confinamento Óptico – O que caracteriza um guia óptico



Guiamento Óptico  $\Rightarrow$  n<sub>1</sub> > n<sub>2</sub>

# Cone de aceitação

![](_page_8_Figure_1.jpeg)

Cone de aceitação

Abertura Numérica: NA =  $(n_1^2 - n_2^2)^{1/2}$ 

### Propagação em guias de ondas ópticos

![](_page_9_Figure_1.jpeg)

Um guia de onda é considerado como um meio do tipo lente, o qual tende a focalizar o feixe de luz para dentro do guia de onda.

# Exemplo de um Dispositivo Óptico Integrado

![](_page_10_Figure_1.jpeg)

# **Tipos de Estruturas Comumente Utilizadas em Ol**

![](_page_11_Figure_1.jpeg)

# Aplicações Típicas de Guias Ópticos Integrados

![](_page_12_Figure_1.jpeg)

# Reflexão e Transmissão em uma Interface Dielétrica

![](_page_13_Figure_1.jpeg)

# Guias Ópticos Integrados – Fundamentação Teórica

![](_page_14_Figure_1.jpeg)

Suporta propagação de modos elétricos transversais (TE) e magnéticos transversais (TM)

#### Componentes principais: $E_v$ , $H_x e H_z$

 $e^{j(\omega t-\beta z)}$ 

$$\nabla \times \overline{E} = -j\omega\mu \overline{H}$$
  
Equações de Maxwell no domínio da  
freqüência

Expandindo os rotacionais de campo elétrico e magnético, resulta:

$$H_{x} = -\frac{\beta}{\omega \mu} E_{y} \qquad H_{z} = \frac{j}{\omega \mu} \frac{\partial E_{y}}{\partial x}$$
$$-\frac{\partial H_{z}}{\partial x} - j\beta H_{x} = j\omega \varepsilon E_{y}$$

$$\frac{\partial^2 E_y}{\partial x^2} + \left(k_0^2 n^2 - \beta^2\right) E_y = 0$$

Equação escalar de Helmholtz.

Solução geral

 $\kappa' = \sqrt{k_0^2 n^2 - \beta^2}$  $E_{v}(x) = Ae^{-j\kappa \cdot x} + Be^{j\kappa \cdot x}$ onde Condições de radiação:  $\kappa'_{2} = \sqrt{k_{0}^{2} n_{2}^{2} - \beta^{2}} = k_{2}$ Oscilação na região  $\kappa$  puramente real em 2  $\longrightarrow$ guia de onda Evanescente nas cascas Onde:  $k_1^2 = \beta^2 - k_0^2 n_1^2$  $k_0 n_1 < \beta < k_0 n_2$  (n<sub>1</sub> = n<sub>3</sub>)  $k_0 n_3 < \beta < k_0 n_2$  (n<sub>1</sub> < n<sub>3</sub>)  $k_3^2 = \beta^2 - k_0^2 n_3^2$ 

Solução em cada camada:

$$E_{y}^{(l)}(x) = Ae^{-k_{l}(x-d)} \qquad d \le x \le +\infty$$

$$E_y^{(2)}(x) = B\cos(k_2 x) + C\sin(k_2 x) \qquad \qquad 0 \le x \le d$$

$$E_{y}^{(3)}(x) = De^{k_{3}x} \qquad -\infty \le x \le 0$$

Constantes de integração A, B, C e D obtidas através da aplicação das condições de continuidade de campo  $E_v \in H_z$  nas interfaces em x=0 e x=d:

$$E_{y}^{(1)}(d) = E_{y}^{(2)}(d) \qquad \qquad E_{y}^{(2)}(0) = E_{y}^{(3)}(0)$$

 $\frac{j}{\omega \mu_0} \frac{\partial E_y^{(2)}}{\partial x} \bigg|_{x=0} = \frac{j}{\omega \mu_0} \frac{\partial E_y^{(3)}}{\partial x} \bigg|_{x=0}$ 

$$\frac{j}{\omega \mu_0} \frac{\partial E_y^{(1)}}{\partial x} \bigg|_{x=d} = \frac{j}{\omega \mu_0} \frac{\partial E_y^{(2)}}{\partial x} \bigg|_{x=d}$$

18

$$B = C \cdot \frac{k_1 \tan(k_2 d) + k_2}{k_2 \tan(k_2 d) - k_1}$$

$$B = \frac{k_2}{k_3}C$$

![](_page_18_Figure_3.jpeg)

A última constante de integração (B ou C) é obtida através do vetor de Poynting:

$$-\frac{1}{2}\int_{-\infty}^{\infty} E_{y}(x) \times H_{x}^{*}(x) dx = 1 \quad (W / m)$$
$$H_{x}(x) = -\frac{\beta}{\omega \mu} E_{y}(x)$$

$$\frac{\beta}{2\omega\,\mu}\int_{-\infty}^{\infty} \left|E_{y}\left(x\right)\right|^{2} dx = 1 \quad \frac{W}{m}$$

## **Modos TM**

Componentes principais:  $H_v$ ,  $E_x e E_z$ 

$$\frac{\partial^2 H_y}{\partial x^2} + (k_0^2 n^2 - \beta^2) H_y = 0$$
Equação escalar de Helmholtz.  

$$H_y^{(1)}(x) = Ae^{-k_1(x-d)} \qquad d \le x \le +\infty$$

$$H_y^{(2)}(x) = B\cos(k_2 x) + C \sin(k_2 x) \qquad 0 \le x \le d$$

$$H_y^{(3)}(x) = De^{k_3 x} \qquad -\infty \le x \le 0$$
Condições de contorno:  
Continuidade de campo  
nas interfaces x=0 e x=d
$$H_y \qquad e \qquad E_z = -j \frac{1}{\omega \varepsilon} \frac{\partial H_y}{\partial x}$$

e

Continuidade de campo nas interfaces x=0 e x=d

# Modos TM

$$\tan(k_2 d) = \frac{k_2 \left[ k_1 \left( \frac{n_2}{n_1} \right)^2 + \left( \frac{n_2}{n_3} \right)^2 k_3 \right]}{k_2^2 - \left( \frac{n_2}{n_3} \right)^2 \left( \frac{n_2}{n_1} \right)^2 k_1 k_3}$$

A constante de integração restante é obtida via vetor de Poynting:

$$\frac{1}{2} \int_{-\infty}^{\infty} E_x(x) \times H_y^*(x) dx = 1 \quad (W / m)$$
$$E_x(x) = \frac{\beta}{\omega \varepsilon} H_y(x)$$

$$\frac{\beta}{2\omega\varepsilon} \int_{-\infty}^{\infty} \left| H_{y}(x) \right|^{2} dx = 1 \quad \frac{W}{m}$$

# **Dispositivos multi-camadas**

![](_page_21_Figure_1.jpeg)

$$E_{1}(x) = A_{1} \exp\left(-k_{1}\left[x-D_{1}-\frac{S}{2}\right]\right)$$

$$E_{2}(x) = A_{2} \cos\left(k_{2}\left[x-\frac{S}{2}\right]\right) + B_{2} \operatorname{sen}\left(k_{2}\left[x-\frac{S}{2}\right]\right)$$

$$E_{3}(x) = A_{3} \exp(k_{3}x) + B_{3} \exp(-k_{3}x)$$

$$E_{4}(x) = A_{4} \cos\left(k_{4}\left[x+\frac{S}{2}\right]\right) + B_{4} \operatorname{sen}\left(k_{4}\left[x+\frac{S}{2}\right]\right)$$

$$E_{5}(x) = A_{5} \exp\left(k_{5}\left[x+D_{2}+\frac{S}{2}\right]\right)$$

O processo se repete da mesma forma que no formalismo anterior.

### Acoplamento com prismas

![](_page_22_Figure_1.jpeg)

a) Casamento de fase não pode ser satisfeito.

$$\beta_m = kn_1 sen(\theta_m)$$

![](_page_22_Figure_4.jpeg)

b) Casamento de fase **pode** ser satisfeito.

 $\beta_m = kn_p sen(\theta_m)$ 

### Acoplamento por rede de difração de Bragg

![](_page_23_Figure_1.jpeg)

Constante da rede:

$$K = \frac{2\pi}{\Lambda}$$

ŀ

Constante de propagação longitudinal no meio  $n_1$ :

$$\beta_0 = \frac{2\pi}{\lambda_0} n_1 sen(\theta_m)$$

Condição de casamento de fase:

$$\beta_m = \beta_0 + K$$

# Acoplamento do Laser no Guia de Onda

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_2.jpeg)

### **Modos Guiados**

![](_page_25_Picture_1.jpeg)

![](_page_25_Picture_2.jpeg)

#### Guia multimodo (3 modos guiados)

# **Dispositivos Passivos**

![](_page_27_Figure_1.jpeg)

Layout de uma Estrutura Mach-Zehnder para Aplicações em Sensores

$$I = \frac{I_o}{2} \left( 1 + \cos \Delta \Phi \right)$$

Perdas adicionais podem ser causadas por radiação nas junções.

![](_page_27_Figure_5.jpeg)

Reduzida através do Método do Índice Efetivo

![](_page_28_Figure_2.jpeg)

Esta estrutura, apesar da aparência, é planar. Estende para infinito na direção x.

29

= 0

![](_page_29_Figure_1.jpeg)

Discretização do Índice de Refração ao Longo da Estrutura

![](_page_30_Figure_1.jpeg)

Interferômetro Mach-Zehnder (Sem Perturbação)

![](_page_31_Figure_1.jpeg)

Interferômetro Mach-Zehnder (Com Perturbação)

# Dispositivos passivos – Acoplador com Junção Y em Curva

![](_page_32_Picture_1.jpeg)

#### Dispositivos passivos – Acoplador com Junção Y em Curva

![](_page_33_Figure_1.jpeg)

Distribuição de Campo para o Acoplador com Junção Y em Curva

#### Dispositivos passivos – Acoplador com Junção Y em Curva

![](_page_34_Figure_1.jpeg)

Contorno de Campo para o Acoplador com Junção Y em Curva

# **Dispositivos passivos – Junção Y Reta**

![](_page_35_Figure_1.jpeg)

#### Dispositivos passivos – Junção Y Reta

![](_page_36_Figure_1.jpeg)

Ângulo de Abertura,  $\theta$ =0,01 radiano

#### Dispositivos passivos – Junção Y Reta

![](_page_37_Figure_1.jpeg)

### **Cavidades Fabry-Perot**

![](_page_38_Picture_1.jpeg)

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

- n é o índice de refração L é o comprimento da cavidade  $\lambda$  é o comprimento de onda
- R é refletividade

## Filtro DBR (Duplo refrator de Bragg)

![](_page_39_Figure_1.jpeg)

$$T_r = \frac{T^2 \exp\left(is - \frac{gL_s}{2}\right)}{1 - r^2 \exp(i2s - gL_s)}$$

 $L_B$  é o comprimento da rede  $\beta$  é constante de propagação g é o coeficiente de atenuação  $\lambda$  é o comprimento de onda  $\lambda_B$  é o comprimento de onda de Bragg  $L_s$  é o comprimento da região ativa

# Filtro DBR passivo (Duplo refrator de Bragg)

![](_page_40_Figure_1.jpeg)

![](_page_40_Figure_2.jpeg)

## **Ressoador em anel**

![](_page_41_Figure_1.jpeg)

| Parâmetro da estrutura                    | Valor   |
|-------------------------------------------|---------|
| Comprimento de onda                       | 1,33 μm |
| Índice de refração do guia                | 3,20    |
| Índice de refração do substrato           | 1,00    |
| Espessura dos guias de onda retos         | 0,20 μm |
| Espessura do guia de onda em anel         | 0,20 μm |
| Espaçamento entre os guias retos e o anel | 0,18 μm |
| Raio externo do anel                      | 3,60 µm |

![](_page_41_Figure_3.jpeg)

Comprimento de onda na ressonância

![](_page_41_Figure_5.jpeg)

Comprimento de onda fora da ressonância

# **Dispositivos Ativos**

## **Dispositivos ativos – Acoplador com Junção Y em Curva**

![](_page_43_Figure_1.jpeg)

# Dispositivos ativos – Modulador de fase

$$\phi = n(E)k_0L = \frac{2\pi}{\lambda_0}n(E)L$$

![](_page_44_Figure_2.jpeg)

$$\phi_{0} = \frac{2\pi}{\lambda_{0}} nL$$
 Fase sem tensão aplicada  

$$\phi = \phi_{0} - \pi \frac{rn^{3}EL}{\lambda_{0}}$$
 Fase com tensão aplicada  

$$E = \frac{V}{d}$$
 Campo elétrico aplicado  

$$\phi = \phi_{0} - \pi \frac{V}{V_{\pi}}$$
 Modulação de fase  

$$V_{\pi} = \frac{d}{2L} \frac{\lambda_{0}}{rn^{3}}$$
 Tensão de meia onda  
(para  $\phi = \pi/2$ )

45

V

 $V_{\pi}$ 

 $\pi/2$ 

V

#### **Dispositivos ativos – Acoplador direcional**

![](_page_45_Figure_1.jpeg)

$$\frac{dA_{1}(z)}{dz} = -j\beta_{1}A_{1}(z) - j\kappa A_{2}(z)$$

$$\frac{dA_{2}(z)}{dz} = -j\beta_{2}A_{2}(z) - j\kappa A_{1}(z)$$

$$P_{1}(z) = |A_{1}(z)|^{2} = \cos^{2}(gz) + \left(\frac{\Delta\beta}{2}\right)^{2} \frac{sen^{2}(gz)}{g^{2}}$$

$$P_{2}(z) = |A_{2}(z)|^{2} = \frac{\kappa^{2}}{g^{2}}sen^{2}(gz)$$

$$\beta \text{ é a constante de propagação}$$

$$\kappa \text{ é o coeficiente de acoplamento}$$

0.9  $A_1(z)$ 0.8 0.7 0.6 0.0 5.0 4 Síncrono 0.4 0.3 0.2 (Z) А 0.1 0 L 0 100 200 300 400 500 600 700 Comprimento do dispositivo (micrômetros)

![](_page_45_Figure_4.jpeg)

$$\beta = \overline{\beta} \pm g$$
$$\overline{\beta} = \frac{\beta_1 + \beta_2}{2}$$
$$g^2 = \kappa^2 + \left(\frac{\Delta\beta}{2}\right)^2$$

#### **Moduladores**

![](_page_46_Figure_1.jpeg)

 $I = \frac{I_o}{2} \left( 1 + \cos \Delta \Phi \right)$ 

Layout de uma Estrutura Mach-Zehnder para Aplicações em Moduladores

Efeito Pockels (linear):

![](_page_46_Figure_6.jpeg)

### **Moduladores Fabry-Perot**

![](_page_47_Picture_1.jpeg)

![](_page_47_Figure_2.jpeg)

![](_page_47_Figure_3.jpeg)

- n é o índice de refração L é o comprimento da cavidade λ é o comprimento de onda
- R é refletividade

# Filtro DBR (Duplo refrator de Bragg)

![](_page_48_Figure_1.jpeg)

# Filtro DBR ativo (Duplo refrator de Bragg)

![](_page_49_Figure_1.jpeg)

![](_page_49_Figure_2.jpeg)

#### Lasers

Para se construir um laser, é preciso:

- **Dois espelhos**
- Um meio que permita obter ganho óptico
- **Bombeio**

A radiação Laser é caracterizada pelo grau extremo de:

- Monocromaticidade;
- Coerência;
- Direcionalidade;
- Brilho.

Dado histórico: A foto ao lado mostra o primeiro laser construído no mundo. Maiman, Asawa and D'Haenens, Hughes Research Labs. Maio 1960.

![](_page_50_Picture_11.jpeg)

# Freqüências de ressonância

Quando um laser se encontra no limiar de "*leisamento*" uma condição de onda estacionária deve se estabelecer dentro da cavidade. Assim, a magnitude e fase de uma onda refletida deve ser igual àquela que a originou, ou seja, em termos de intensidade de campo eletromagnético:

Sabendo que a intensidade  $I(z) \propto |E(z)|^2$ 

![](_page_51_Figure_3.jpeg)

Espelho

A condição obtida para a fase só será verdadeira quando  $2\beta L = 2\pi m$  (m é um número inteiro).

Sabendo que:

 $\beta = \frac{2\pi}{\lambda_0} n_{ef}$  obtemos a seguinte expressão para o inteiro *m*:

 $m = \frac{2Ln_{ef}}{\lambda_0} = \frac{2Ln_{ef}}{c}f$ 

Espelho

### Freqüências de ressonância

Da expressão para *m* obtemos que a cavidade irá ressoar apenas quando o comprimento L for um múltiplo inteiro de meio comprimento de onda, ou seja:

$$L = m \frac{\lambda_0}{2n_{ef}}$$

Dependendo da estrutura do laser, qualquer número de freqüências pode satisfazer as condições impostas à magnitude e à fase. Assim, alguns lasers são multimodo e outros são monomodo. Com isso podemos obter a separação entre os modos de uma cavidade, considerando apenas modos longitudinais. Para isso, basta considerar dois modos consecutivos, ou seja:

$$m-1 = \frac{2Ln_{ef}}{c} f_{m-1}$$
 e  $m = \frac{2Ln_{ef}}{c} f_m$ 

Subtraindo ambas equações, temos:

$$1 = \frac{2Ln_{ef}}{c} \left( f_m - f_{m-1} \right) = \frac{2Ln_{ef}}{c} \Delta f$$

Portanto, o espaçamento de freqüência é:

$$\Delta f = \frac{c}{2Ln_{et}}$$

Relacionando ao espaçamento  $\Delta\lambda$  através da equação:

 $\Delta \lambda = \frac{\lambda_0}{2Ln_{ef}}$ Logo:

### Espectro de um laser tipo Fabry-Perot

A relação entre ganho e freqüência pode ser suposta como tendo uma forma gaussiana, ou seja:

$$g(\lambda) = g(0)exp\left[-\frac{(\lambda - \lambda_C)^2}{2\sigma^2}\right]$$

onde:

 $\lambda_{c}$  é o comprimento de onda central  $\sigma$  é a largura espectral do ganho g(0) é o ganho máximo (proporcional à inversão de população)

![](_page_53_Figure_5.jpeg)

#### Laser de dupla heteroestrutura

![](_page_54_Figure_1.jpeg)

# **Bibliografia**

- Ben-Hur V. Borges, "*Comunicações Ópticas*", Notas de Aula SEL 366 Comunicações Ópticas, 2004.
- Reinhard März, "*Integrated Optics: Design and Modeling*", Artech House, 1995.
- Gerd Keiser, "Optical Fiber Communications", 2nd Ed., 1991.
- Dietrich Marcuse, "*Theory of Dielectric Waveguides*", Second Edition, Academic Press, 1991.
- Robert G. Hunsperger, "*Integrated Optics: Theory and Technology*", Third Edition, Springer Series in Optical Science, Springer-Verlag, 1991.
- Theodor Tamir, "*Guided-Wave Optoelectronics*", Second Edition, Springer Series in Electronics and Photonics 26, Springer-Verlag, 1990.
- Amnon Yariv, "Quantum Electronics", Third Edition, Wiley, 1989.