Análise no domínio da frequência

Introdução

Espectro de frequências

RF a partir da RI

Passo intermediário de outros processos

Introdução

- A TDF é um das ferramentas mais importantes de PDS, é muito utilizada em 3 situações especificas:
 - Para determinar o espectro de frequências de um sinal
 - Para obter a resposta em frequência de um sistema a partir da resposta impulsiva do sistemas ou vice-versa
 - Ou como passo intermediário em técnicas de PDS mais elaboradas

TRANSFORMADA DE FOURIER

Continuo e aperiódico

SÉRIE DE FOURIER

Continuo e periódico

TRANSFORMADA DE FOURIER DE TEMPO

DISCRETO

Discreto e aperiódico

TRANSFORMADA DE FOURIER DISCRETA (SÉRIE DE FOURIER DISCRETA)

Discreto e periódico

SÉRIE DE FOURIER

Continuo e periódico

$$\sqrt{}$$

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j\omega_0 kt}$$

SÍNTESE

$$a_k = \frac{1}{T} \int_0^T x(t) e^{-jk\omega_0 t} dt$$

ANÁLISE

TRANSFORMADA DE FOURIER

Continuo e aperiódico

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega$$

Transformada inversa de Fourier

$$X(j\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

Transformada de Fourier (Integral de Fourier)

SÉRIE DE FOURIER DISCRETA

Discreto e periódico

$$x[n] = \sum_{k = \langle N \rangle} a_k e^{j\frac{2\pi}{N}kn}$$

$$a_k = \frac{1}{N} \sum_{n = \langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

TRANSFORMADA DE FOURIER DE TEMPO DISCRETO

Discreto e aperiódico

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

SÍNTESE

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

ANÁLISE

TRANSFORMADA DE FOURIER

Continuo e aperiódico

SÉRIE DE FOURIER

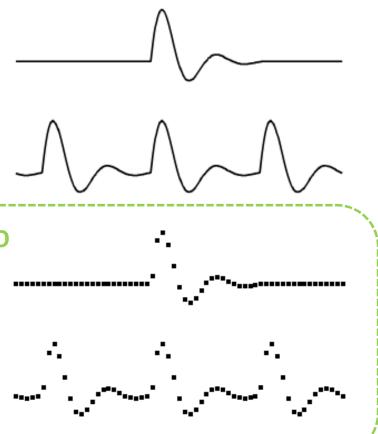
Continuo e periódico

TRANSFORMADA DE FOURIER DE TEMPO
DISCRETO

Discreto e aperiódico

TRANSFORMADA DE FOURIER DISCRETA (SÉRIE DE FOURIER DISCRETA)

Discreto e periódico



$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{j\frac{2\pi}{N}kn}$$
 n = 0, 1, 2, ..., N-1

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

$$k = 0, 1, 2, ..., N-1$$

Análise no domínio da frequência

TRANSFORMADA DE FOURIER DE TEMPO DISCRETO (DTFT)

Representação de sequências por transformadas de Fourier

Muitas sequências podem ser representadas por uma integral de Fourier na forma

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
ANÁLISE

somável

em que

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad \qquad \text{SÍNTESE}$$

Oppenheim • Schafer

Processes

complexa continua

 $X(e^{j\omega})$

 $-\infty < \omega < \infty$

Não posso fazer um gráfico no MATLAB da função toda

Representação de sequências por transformadas de Fourier

Muitas sequências podem ser representadas por uma integral de Fourier na forma

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$
ANÁLISE

somável

em que

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \qquad \qquad \text{SÍNTESE}$$

Oppenheim • Schafer

 $X(e^{j\omega})$

Truncar ω

periódica

simétrica

Exemplo

Determine a DTFT de $x[n] = 0.5^n u[n]$

É somável e tem TF

x[n] se estende até ∞

$$X(e^{j\omega}) = \sum_{-\infty}^{\infty} x[n]e^{-j\omega n} = \sum_{0}^{\infty} 0.5^{n}e^{-j\omega n} = \sum_{0}^{\infty} (0.5 e^{-j\omega})^{n} = \frac{1}{1 - 0.5e^{-j\omega}} = \frac{e^{j\omega}}{e^{j\omega} - 0.5}$$

 $X(e^{j\omega})$ é periódica, com período 2 π

 $X(e^{j\omega})$ é simétrica, $[0,\pi]$

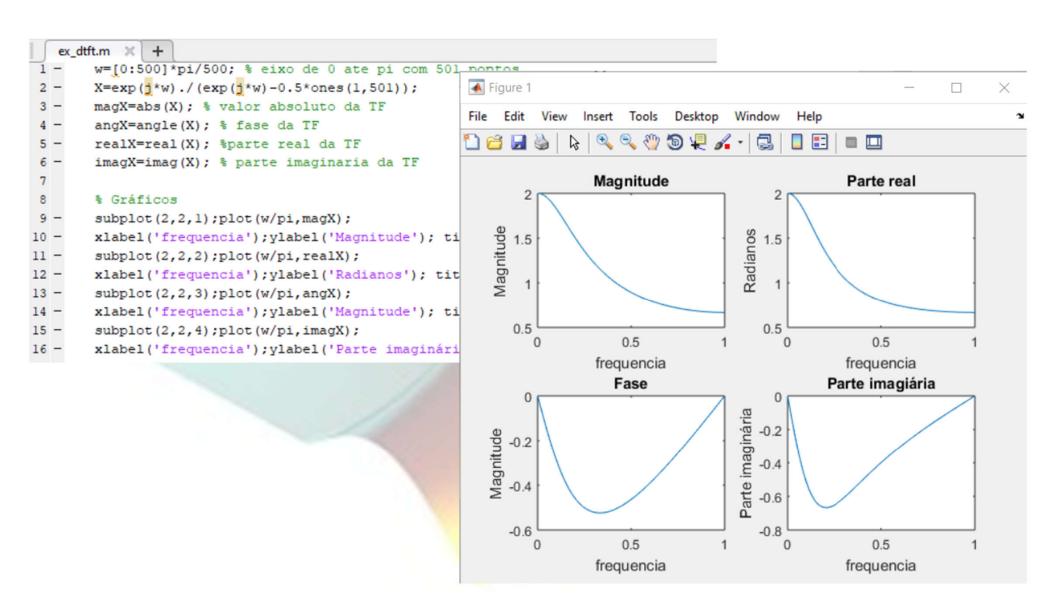
Representar apenas alguns pontos da DTFT entre $0 e \pi$

$$X(e^{j\omega}) = \sum_{0}^{\infty} \frac{1}{1 - 0.5e^{-j\omega}} = \frac{e^{j\omega}}{e^{j\omega} - 0.5}$$

501

pontos

```
ex dtft.m X
                                                                     entre 0 e \pi
       w=[0:500]*pi/500; % eixo de 0 ate pi com 501 pontos
       X=\exp(j^*w)./(\exp(j^*w)-0.5*ones(1,501));
       magX=abs(X); % valor absoluto da TF
       angX=angle(X); % fase da TF
      realX=real(X); %parte real da TF
       imagX=imag(X); % parte imaginaria da TF
        % Gráficos
9 -
       subplot(2,2,1);plot(w/pi,magX);
10 -
       xlabel('frequencia');ylabel('Magnitude'); title('Magnitude');
11 -
      subplot(2,2,2);plot(w/pi,realX);
12 -
       xlabel('frequencia');ylabel('Radianos'); title('Parte real');
13 -
       subplot (2,2,3); plot (w/pi,angX);
14 -
       xlabel('frequencia');ylabel('Magnitude'); title('Fase');
15 -
       subplot (2,2,4); plot (w/pi,imagX);
16 -
       xlabel('frequencia'); vlabel('Parte imaginária'); title('Parte imagiária');
```



Exemplo

Determine a DTFT de
$$x[n]=\delta[n+1]+2\delta[n]+3\delta[n-1]+\delta[n-2]+5\delta[n-3]$$

$$X(e^{j\omega}) = e^{j\omega} + 2 + 3e^{-j\omega} + 4e^{-j2\omega} + 5e^{-j3\omega}$$

 $\mathit{X}(e^{j\omega})$ é periódica, com período 2π

 $X(e^{j\omega})$ é simétrica, $[0,\pi]$

É finita/somável e tem TF

Não precisa ser truncado a TF pode ser computada numericamente

Implementar numericamente

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

- · Calcular numericamente a expressão
 - -x[n] com N amostras $n_1 \leq n \leq n_2$
 - $-\omega$ dividido em (M+1) frequências equidistantes entre D e π

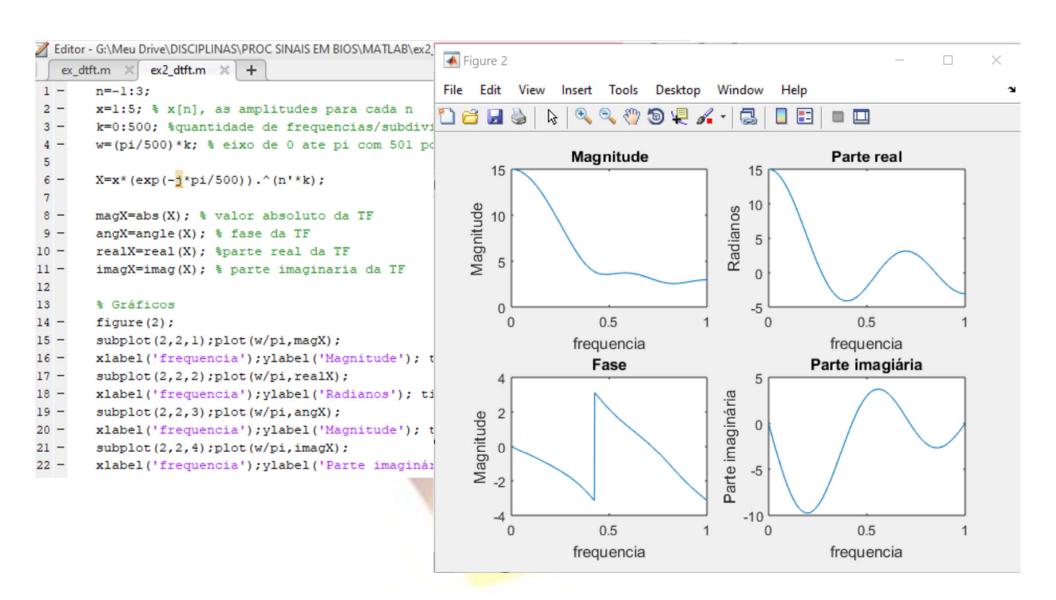
•
$$\omega_k = \frac{\pi}{M} k$$
, $k = 0, \dots, M$

$$X(e^{j\omega_k}) = \sum_{l=1}^{N} e^{-j(\pi/M)kn_lx[n_l]} \frac{1}{(M+1)xN}$$

$$X^T = x^T \left[e^{-j\left(\frac{\pi}{M}\right) k n^T} \right]$$

```
>> k = [0:M]; n = [n1:n2];
>> X = x * (exp(-j*pi/M)) .^ (n'*k);
```

```
Editor - G:\Meu Drive\DISCIPLINAS\PROC SINAIS EM BIOS\MATLAB\ex2 dtft.m
   ex_dtft.m × ex2_dtft.m × +
        n=-1:3:
                                                        x[n] = \delta[n+1] + 2\delta[n] + 3\delta[n-1] + \delta[n-2] + 5\delta[n-3]
        x=1:5; % x[n], as amplitudes para cada n
        k=0:500; %quantidade de frequencias/subdivisões entre 0 e pi
        w=(pi/500)*k; % eixo de 0 ate pi com 501 pontos
 5
       X=x*(exp(-j*pi/500)).^(n'*k);
                                                          >> k = [0:M]; n = [n1:n2];
                                                          >> X = x * (exp(-j*pi/M)) .^ (n'*k);
        magX=abs(X); % valor absoluto da TF
9 -
        angX=angle(X); % fase da TF
10 -
        realX=real(X); %parte real da TF
11 -
        imagX=imag(X); % parte imaginaria da TF
12
13
        % Gráficos
14 -
        figure(2);
15 -
        subplot(2,2,1);plot(w/pi,magX);
16 -
        xlabel('frequencia');ylabel('Magnitude'); title('Magnitude');
17 -
        subplot (2,2,2); plot (w/pi, realX);
18 -
        xlabel('frequencia');ylabel('Radianos'); title('Parte real');
19 -
        subplot (2,2,3); plot (w/pi,angX);
20 -
       xlabel('frequencia');ylabel('Magnitude'); title('Fase');
21 -
        subplot(2,2,4);plot(w/pi,imagX);
22 -
        xlabel('frequencia');ylabel('Parte imaginária'); title('Parte imagiária');
```



Análise no domínio da frequência

TRANSFORMADA DE FOURIER DISCRETA (DFT)

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{j\frac{2\pi}{N}kn}$$
 n = 0, 1, 2, ..., N-1

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n}$$

$$a_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-j\frac{2\pi}{N}kn}$$

$$k = 0, 1, 2, ..., N-1$$

Não são computáveis numericamente

Sequencia originalmente periódica > DFS

Fazer uma sequencia parecer periódica

$$\tilde{x}(n) = \tilde{x}(n+kN), \quad \forall n, k$$

$$\tilde{X}(k+N) = \tilde{X}(k)$$

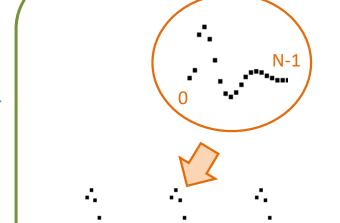
Mesmo assim os algoritmos são proibitivos!

DTFT

Não são computáveis numericamente

十己

Sequencia originalmente periódica > DFS



DFT Pode ser calculada numericamente

Amostrando

DTFT

十己

Mesmo assim os algoritmos são proibitivos!

DFS

$$\tilde{x}(n) = \tilde{x}(n+kN), \quad \forall n, k$$

$$\tilde{X}(k+N) = \tilde{X}(k)$$

$$\mathbf{\tilde{X}} = \mathbf{W}_N \mathbf{\tilde{x}}$$

$$\tilde{\mathbf{x}} = \frac{1}{N} \mathbf{W}_N^* \tilde{\mathbf{X}}$$

$$\mathbf{W}_{N} \stackrel{\triangle}{=} \begin{bmatrix} W_{N}^{kn} & \cdots & 1 \\ W_{N}^{kn} & \cdots & W_{N}^{(N-1)} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & W_{N}^{(N-1)} & \cdots & W_{N}^{(N-1)^{2}} \end{bmatrix}$$

DFT

$$\tilde{x}(n) = x((n))_N$$
 (Periodic extension)

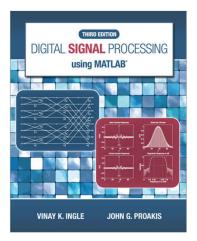
$$x(n) = \tilde{x}(n)\mathcal{R}_N(n)$$
 (Window operation)

$$X(k) \stackrel{\triangle}{=} \mathrm{DFT}\left[x(n)\right] = \begin{cases} \tilde{X}(k), \ 0 \le k \le N-1 \\ 0, & \mathrm{elsewhere} \end{cases} = \tilde{X}(k)\mathcal{R}_N(k)$$

$$X(k) = \sum_{n=0}^{N-1} x(n)W_N^{nk}, \quad 0 \le k \le N-1$$

```
function [Xk] = dft(xn,N)
% Computes Discrete Fourier Transform
% -----
% [Xk] = dft(xn,N)
% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence
% N = Length of DFT
                           % row vector for n
n = [0:1:N-1];
k = [0:1:N-1];
                         % row vecor for k
WN = \exp(-j*2*pi/N);
                           % Wn factor
                           % creates a N by N matrix of nk values
nk = n'*k;
WNnk = WN . nk;
                           % DFT matrix
                           % row vector for DFT coefficients
Xk = xn * WNnk;
function [xn] = idft(Xk,N)
% Computes Inverse Discrete Transform
% ------
% [xn] = idft(Xk,N)
% xn = N-point sequence over 0 <= n <= N-1
% Xk = DFT coeff. array over 0 <= k <= N-1
% N = length of DFT
n = [0:1:N-1];
                           % row vector for n
k = [0:1:N-1];
                           % row vecor for k
WN = \exp(-j*2*pi/N);
                           % Wn factor
                           % creates a N by N matrix of nk values
nk = n'*k;
WNnk = WN .^ (-nk);
                           % IDFT matrix
xn = (Xk * WNnk)/N;
                           % row vector for IDFT values
```

DFT



Exemplo

Seja x[n] uma sequencia com 4 pontos:

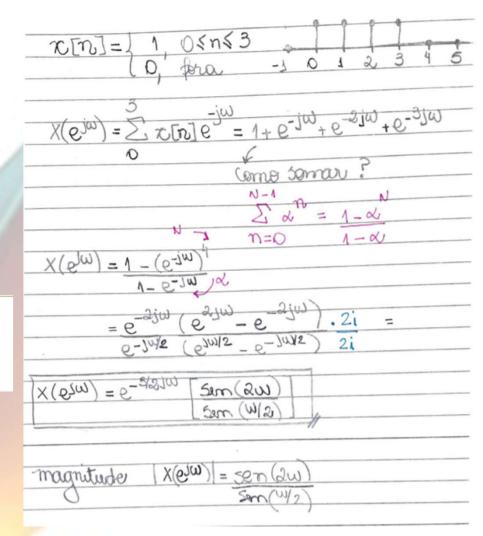
$$x[n] = \begin{cases} 1, 0 \le n \le 3\\ 0, para \ os \ demais \ pontos \end{cases}$$

- a) Compute a DTFT (Transformada de Fourier de Tempo Discreto, $X(e^{j\omega})$ e plote sua magnitude
- b) Compute os 4 pontos a DFT (Transformada de Fourier Discreta) de x[n].

```
>> xn=[1,1,1,1];N=4;X=dft(xn,N)

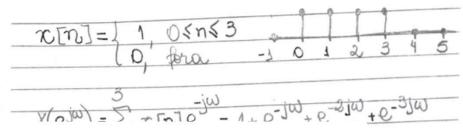
X =

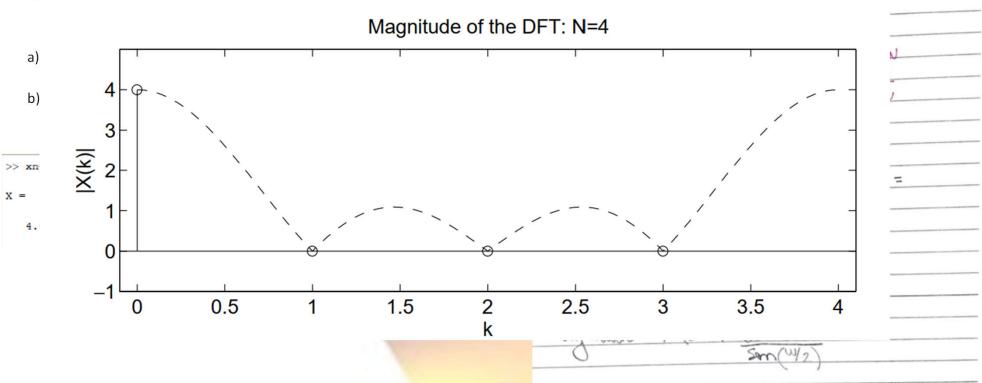
4.0000 + 0.0000i -0.0000 - 0.0000i 0.0000 - 0.0000i 0.0000 - 0.0000i
```



Exemplo

Se





Análise no domínio da frequência

O conteúdo em frequência de um sinal também pode ser obtido utilizando-se a FFT, no MATLAB isto é feito utilizando-se a função fft

```
Syntax
  Y = fft(X)
  Y = fft(X,n)
  Y = fft(X, n, dim)
Description
                                                                                                                                                                     example
Y = fft(X) computes the discrete Fourier transform (DFT) of X using a fast Fourier transform (FFT) algorithm.

    If X is a vector, then fft (X) returns the Fourier transform of the vector.

   If X is a matrix, then fft(X) treats the columns of X as vectors and returns the Fourier transform of each column.
• If X is a multidimensional array, then fft(X) treats the values along the first array dimension whose size does not equal 1 as vectors and returns the
    Fourier transform of each vector.
Y = fft(X, n) returns the n-point DFT. If no value is specified, Y is the same size as X.
• If X is a vector and the length of X is less than n, then X is padded with trailing zeros to length n.
• If X is a vector and the length of X is greater than n, then X is truncated to length n.
   If X is a matrix, then each column is treated as in the vector case.
• If X is a multidimensional array, then the first array dimension whose size does not equal 1 is treated as in the vector case.
Y = \frac{fft}{(X, n, dim)} returns the Fourier transform along the dimension dim. For example, if X is a matrix, then \frac{fft}{(X, n, 2)} returns the n-point Fourier
transform of each row.
```

https://www.mathworks.com/help/matlab/ref/fft.html?searchHighlight=fft&s_tid=doc_srchtitle

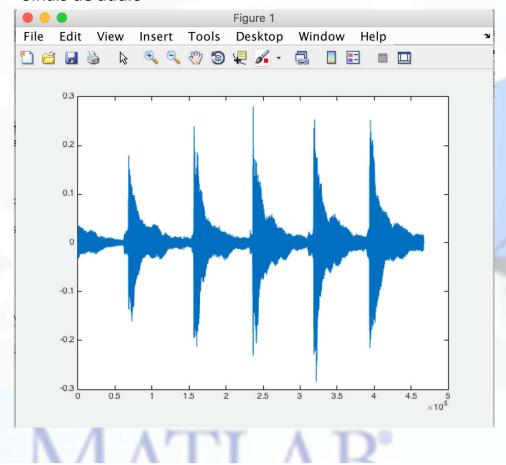
Exemplo

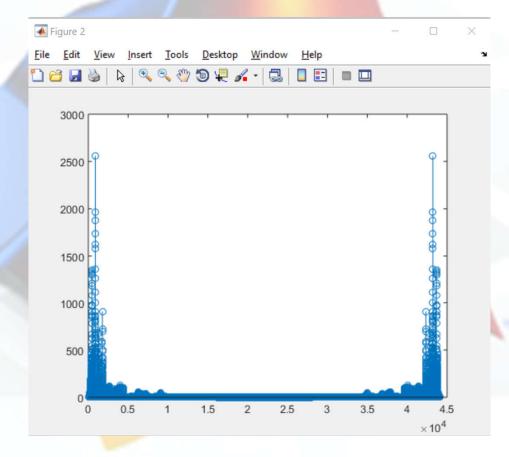
Sinais de áudio

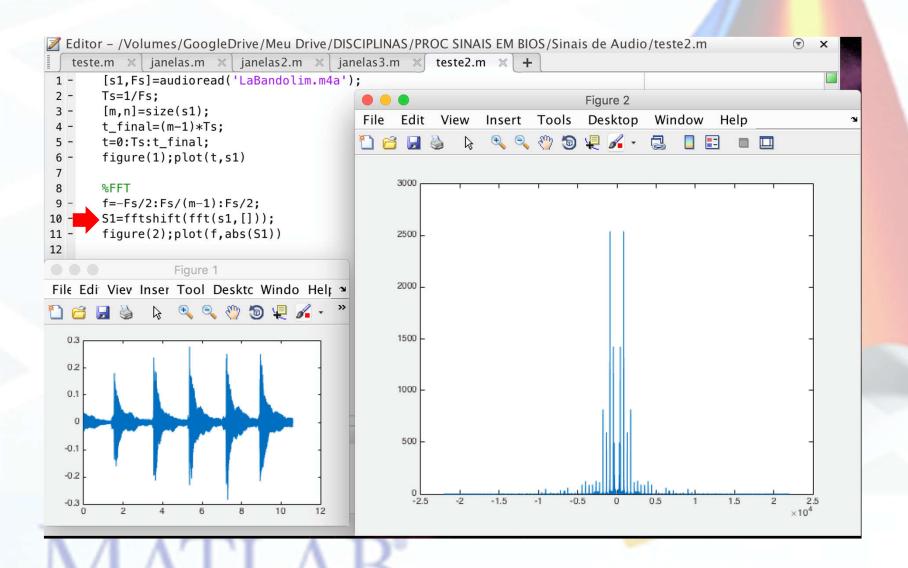
MATT A D°

Exemplo

Sinais de áudio

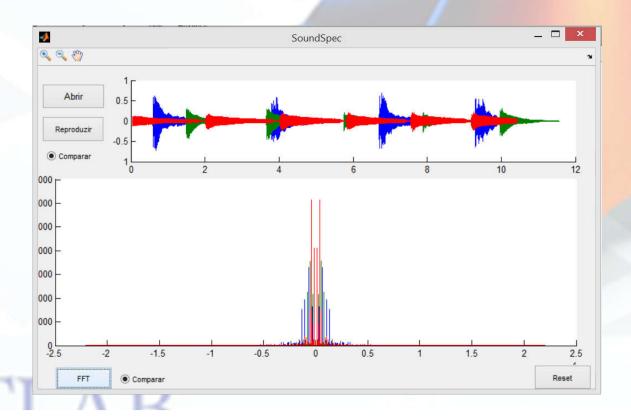






TAREFA

- Monte uma interface no GUIDE para abrir um arquivo de som, exibi-lo na tela e reproduzi-lo.
- Calcule a transformada de Fourier do sinal



TAREFA - Sugestões

Matlab demonstration - basic signal manipulation using audio signals https://www.youtube.com/watch?v=ie7iREcYBPU

GUIDE

[som, Fs] = audioread(arquivo); % le o audio

MATT A D°

http://www.mathworks.com/videos/creating-a-gui-with-guide-68979.html

```
Reproduzir audio

Reproduzir audio

Cla (handles.axes1, 'reset') % limpa o conteudo do eixo
% set (handles.axes1, 'Visible', 'off') % deixa o eixo invisivel

cla (handles.axes2, 'reset')
set (handles.radiobutton1, 'Value', 0)
set (handles.radiobutton2, 'Value', 0)
reset

x=get (hObject, 'Value');
if x==1.0
axes (handles.axes2); hold all;
else
hold off;
radiobuttom
end

reset
```

arquivo-uigetfile('*.*'); % Chama a janela "Abrir" em popup e salva na variavel arquivo as informações do arquivo selecionados

Abrir arquivo/ler arquivo de áudio

TAREFA

Comente o código a seguir e explique de maneira geral o que ele faz.

```
n=0:99;
fs=200;
Ts=1/fs;
x = cos(2*pi*20*n*Ts+pi/4)+3*cos(2*pi*40*n*Ts-2*pi/5)+3*cos(2*pi*60*n*Ts+pi/8);
X=fft(x);
m=0:length(X)-1;
subplot (2,1,1);
stem(m*fs/length(X),abs(X),'m');
ylabel('Magnitude');
xlabel('Frequencia (Hz)');
title('Resposta de magnitude em frequencia');
subplot (2,1,2);
stem(m*fs/length(X),angle(X),'g');
ylabel('Angulo de fase');
xlabel('Frequencia (Hz)');
title('Traçado de angulo de fase');
```

Análise no domínio da frequência

APLICAÇÕES DA DFT

Introdução

Espectro de frequências

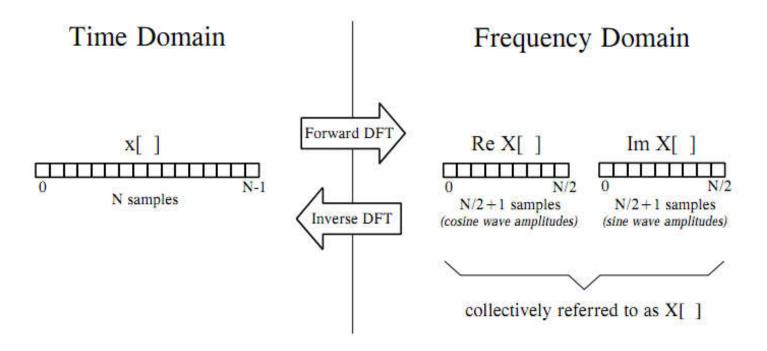
RF a partir da RI

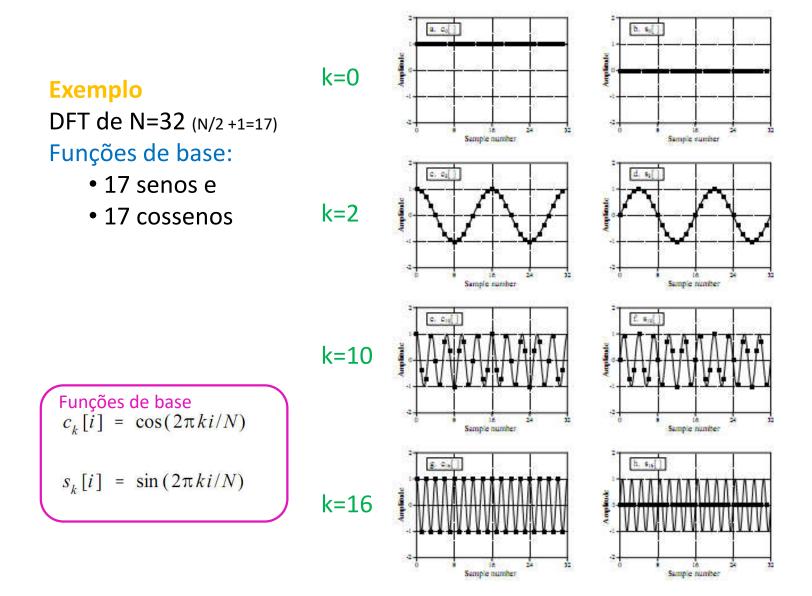
Passo intermediário de outros processos

Análise no domínio da frequência

ANÁLISE ESPECTRAL DE SINAIS

Introdução





Introdução

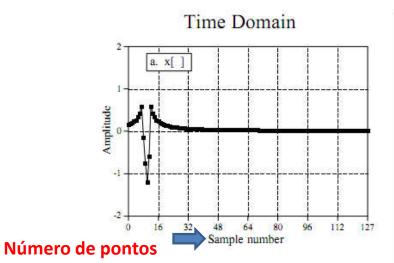
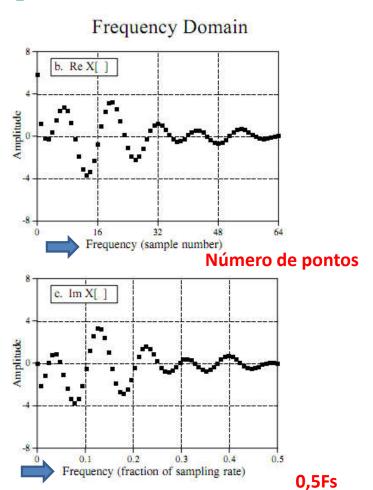
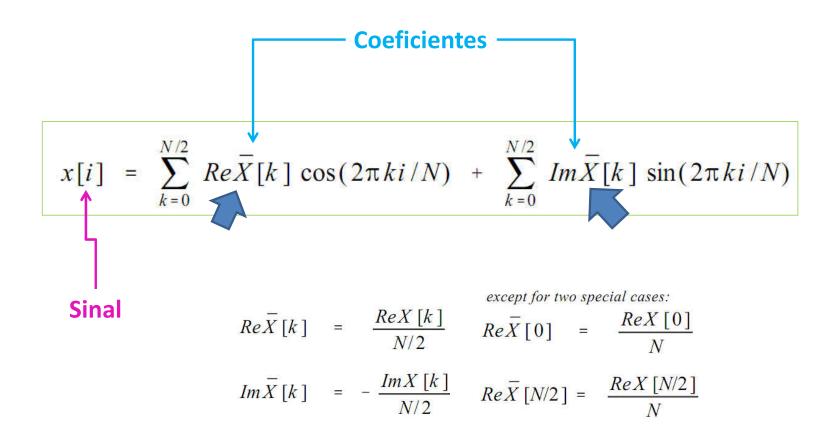


FIGURE 8-4

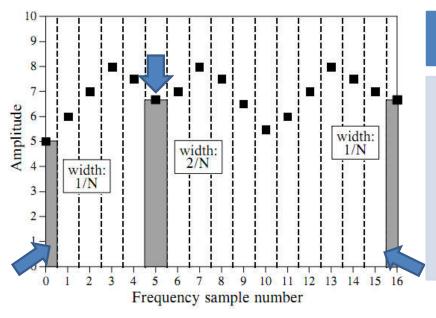
Example of the DFT. The DFT converts the time domain signal, $x[\]$, into the frequency domain signals, $ReX[\]$ and $ImX[\]$. The horizontal axis of the frequency domain can be labeled in one of three ways: (1) as an array index that runs between 0 and N/2, (2) as a fraction of the sampling frequency, running between 0 and 0.5, (3) as a natural frequency, running between 0 and π . In the example shown here, (b) uses the first method, while (c) use the second method.



Equação de Síntese



Densidade Espectral



DENSIDADE ESPECTRAL DE POTËNCIAS

- É como se define o domínio da frequência
- A PSD descreve quanto há do sinal em cada unidade de banda (função de base)

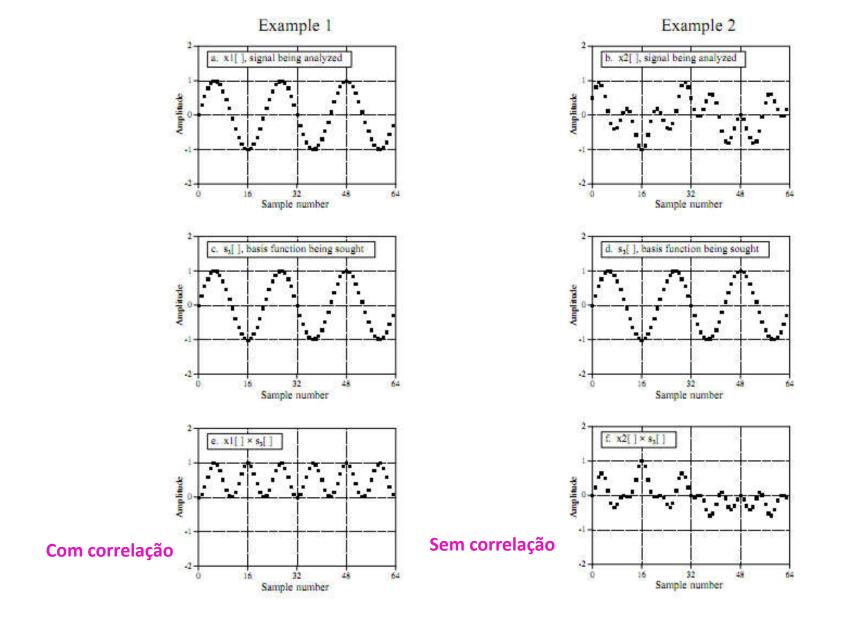
- É o cálculo da transformada
 - 3 métodos de cálculo
 - Conjunto de equações simultâneas (Sistema)
 - Correlação
 - FFT

- Conjunto de equações simultâneas
 - Util pra entender, mas ineficiente
 - N valores em t e quero obter N valores em f
 - A soma é ponto a ponto então para cada ponto do sinal terei somado N senos/cossenos
 - N equações LI
 - Resolver SISTEMA

$$x[i] = \sum_{k=0}^{N/2} Re \overline{X}[k] \cos(2\pi ki/N) + \sum_{k=0}^{N/2} Im \overline{X}[k] \sin(2\pi ki/N)$$

Correlação

 A ideia básica da correlação é detectar uma forma de onda conhecida em um sinal



Correlação

- A equação de síntese é determinada com base nesse principio:
 - Procurar senos e cossenos especificos no sinal x[i]

$$ReX[k] = \sum_{i=0}^{N-1} x[i] \cos(2\pi k i/N)$$

$$Im X[k] = -\sum_{i=0}^{N-1} x[i] \sin(2\pi k i/N)$$

- Correlação
 - Só é possivel porque as funções base são ortogonais
 - São totalmente não-correlacionadas