Diffraction I: Geometry

1 INTRODUCTION

After the preliminary survey of the physics of x-rays and the geometry of crystals,
this chapter will fit the two together and discuss the phenomenon of x-ray diffrac-
tion, which is an interaction of the two. Historically, this is exactly the way this field
of science developed. For many years, mineralogists and crystallographers had
accumulated knowledge about crystals, chiefly by measurement of interfacial
angles, chemical analysis, and determination of physical properties. There was little
knowledge of interior structure, however, although some very shrewd guesses had
been made, namely, that crystals were built up by periodic repetition of some unit,
probably an atom or molecule, and that these units were situated some 1 or 2 A
apart. On the other hand, there were indications, but only indications, that x-rays
might be electromagnetic waves about 1 or 2 A in wavelength. In addition, the phe-
nomenon of diffraction was well understood, and it was known that diffraction, as
of visible light by a ruled grating, occurred whenever wave motion encountered a
set of regularly spaced scattering objects, provided that the wavelength of the wave
motion was of the same order of magnitude as the repeat distance between the scat-
tering centers.

Such was the state of knowledge in 1912 when the German physicist von Laue
(1879-1960) took up the problem. Stimulated by a discussion with P. P. Ewald of
Ewald’s doctoral dissertation (scattering of electromagnetic waves by an array of
harmonic oscillators [1]), von Laue reasoned that, if crystals were composed of reg-
ularly spaced atoms which might act as scattering centers for x-rays, and if x-rays
were electromagnetic waves of wavelength about equal to the interatomic distance
in crystals, then it should be possible to diffract x-rays by means of crystals. Under
his direction, Friedrich and Knipping conducted experiments to test this hypothe-
sis: A crystal of copper sulfate was set up in the path of a narrow beam of x-rays and
a photographic plate was arranged to record the presence of diffracted beams, if
any. The second attempt was successful and showed without doubt that x-rays were
diffracted by the crystal out of the primary beam to form a pattern of spots on the
photographic plate [2]. These experiments proved, at one and the same time, the
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wave nature of x-rays and the periodicity of the arrangement of atoms within a
crystal. Hindsight is always easy and these ideas appear quite simple now, when
viewed from the vantage point of ninety years’ development of the subject, but they
were not at all obvious in 1912, and von Laue’s hypothesis and its experimental ver-
ification must stand as a great intellectual achievement [G.11]

The account of these experiments was read with great interest by two English
physicists, W. H. Bragg (1862-1942) and his son W. L. Bragg (1890-1971). The latter,
although only a young student at the time-it was still the year 1912-successfully ana-
lyzed the Laue experiment and was able to express the necessary conditions for dif-
fraction in a considerably simpler mathematical form than that used by von Laue
[3]- He also attacked the problem of crystal structure with the new tool of x-ray dif-
fraction and, in the following year, solved the structures of NaCl, KCl, KBr, and KI,
all of which have the NaCl structure; these were the first complete crystal-structure
determinations ever made [4]. The simpler structures of metals like iron and copper
were not determined until later.

2 DIFFRACTION

Diffraction is due essentially to the existence of certain phase relations between
two or more waves, and it is advisable, at the start, to get a clear notion of what is
meant by phase relations. Consider a beam of x-rays, such as beam 1 in Fig. 1, pro-
ceeding from left to right. For convenience only, this beam is assumed to be plane-
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Figure 1 Effect of path difference on relative phase.
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polarized so that the electric field vector E always lies in the plane of the drawing.
Imagine this beam to be composed of two equal parts, ray 2 and ray 3, each of half
the amplitude of beam 1. These two rays, on the wave front AA’, are said to be com-
pletely in phase or in step; i.e., their electric-field vectors have the same magnitude
and direction at the same instant at any point x measured along the direction of
propagation of the wave. A wave front is a surface perpendicular to this direction of
propagation.

Now consider an imaginary experiment, in which ray 3 is allowed to continue in
a straight line but ray 2 is diverted by some means into a curved path before rejoin-
ing ray 3. What is the situation on the wave front BB’ where both rays are pro-
ceeding in the original direction? On this front, the electric vector of ray 2 has its
maximum value at the instant shown, but that of ray 3 is zero. The two rays are
therefore out of phase. Adding these two imaginary components of the beam
together, produces the form of beam 1 shown in the upper right of the drawing. If
the amplitudes of rays 2 and 3 are each 1 unit, then the amplitude of beam 1 at the
left is 2 units and that of beam 1 at the right is 1.4 units, if a sinusoidal variation of
E with x is assumed.

Two conclusions may be drawn from this illustration:

1. Differences in the length of the path traveled lead to differences in phase.
2. The introduction of phase differences produces a change in amplitude.

The greater the path difference, the greater the difference in phase, since the
path difference, measured in wavelengths, exactly equals the phase difference, also
measured in wavelengths. If the diverted path of ray 2 in Fig. 1 were a quarter wave-
length longer than shown, the phase difference would be a half wavelength. The two
rays would then be completely out of phase on the wave front BB’ and beyond, and
they would therefore annul each other, since at any point their electric vectors
would be either both zero or of the same magnitude and opposite in direction. If
the difference in path length were made three quarters of a wavelength greater
than shown, the two rays would be one complete wavelength out of phase, a condi-
tion indistinguishable from being completely in phase since in both cases the two
waves would combine to form a beam of amplitude 2 units, just like the original
beam. Thus, two rays are completely in phase whenever their path lengths differ
either by zero or by a whole number of wavelengths.

Differences in the path length of various rays arise quite naturally when consid-
ering how a crystal diffracts x-rays. Figure 2 shows a section of a crystal, its atoms
arranged on a set of parallel planes A, B, C, D, ... ,normal to the plane of the draw-
ing and spaced a distance d’ apart. Assume that a beam of perfectly parallel, per-
fectly monochromatic x-rays of wavelength A is incident on this crystal at an angle
0, called the Bragg angle, where 6 is measured between the incident beam and the
particular crystal planes under consideration.

Whether this incident beam of x-rays will be diffracted by the crystal and, if so,
under what conditions, are the questions central to this chapter. A diffracted beam
may be defined as a beam composed of a large number of scattered rays mutually
reinforcing one another. Diffraction is, therefore, essentially a scattering phenome-
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1 plane normal

Figure 2 Diffraction of x-rays by a crystal.

non and not one involving any “new” kind of interaction between x-rays and atoms.
Atoms scatter incident x-rays in all directions and the following paragraphs demon-
strate that in some of these directions the scattered beams will be completely in
phase and so reinforce each other to form diffracted beams.

For the particular conditions described by Fig. 2, the only diffracted beam
formed is that shown, namely one making an exit angle 6 with respect to the dif-
fraction planes' equal to the angle 8 of incidence. This will be shown, first, for one
plane of atoms and, second, for all the atoms making up the crystal. Consider rays
1 and 1a in the incident beam; they strike atoms K and P in the first plane of atoms
and are scattered in all directions. Only in the directions 1’ and 1a’, however, are
these scattered beams completely in phase and so capable of reinforcing one anoth-
er; they do so because the difference in their length of path between the wave fronts
XX' and YY’ is equal to

OK — PR = PKcos § — PKcos 6 = 0.

Similarly, the rays scattered by all the atoms in the first plane in a direction paral-
lel to 1’ are in phase and add their contributions to the diffracted beam. This will be
true of all the planes separately, and it remains to find the condition for reinforce-
ment of rays scattered by atoms in different planes. Rays 1 and 2, for example, are
scattered by atoms K and L, and the path difference for rays 1K1’ and 212’ is

ML + LN = d'sin 0 + d'sin 6.
! Note that these angles are defined differently in x-ray diffraction and in general optics. In the latter,

the angles of incidence and reflection are the angles which the incident and reflected beams make with
the normal to the reflecting surface.
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This is also the path difference for the overlapping rays scattered by S and P in the
direction shown, since in this direction there is no path difference between rays
scattered by S and L or P and K. Scattered rays 1’ and 2’ will be completely in
phase if this path difference is equal to a whole number n of wavelengths, or if

nA = 2d'sin 6. (1)

This relation was first formulated by W. L. Bragg and is known as Bragg’s law. It
states the essential condition which must be met if diffraction is to occur. z is called
the order of diffraction; it may take on any integral value consistent with sinf not
exceeding unity and is equal to the number of wavelengths in the path difference
between rays scattered by adjacent planes. Therefore, for fixed values of A and d’,
there may be several angles of incidence 6, 6,, 65,... at which diffraction may
occur, corresponding ton = 1,2,3,.... In a first-order reflection (n = 1), the scat-
tered rays 1’ and 2’ of Fig. 2 would differ in length of path (and in phase) by one
wavelength, rays 1’ and 3’ by two wavelengths, rays 1’ and 4’ by three wavelengths,
and so on throughout the crystal. The rays scattered by all the atoms in all the
planes are therefore completely in phase and reinforce one another (constructive
interference) to form a diffracted beam in the direction shown. In all other direc-
tions of space the scattered beams are out of phase and annul one another (destruc-
tive interference). The diffracted beam is rather strong compared to the sum of all
the rays scattered in the same direction, simply because of the reinforcement which
occurs,? but is extremely weak compared to the incident beam since the atoms of a

crystal scatter only a small fraction of the energy incident on them.

It is helpful to distinguish three scattering modes:
1. By atoms arranged randomly in space, as in a monatomic gas. This scatter-
ing occurs in all directions and is weak. Intensities add.
2. By atoms arranged periodically in space, as in a perfect crystal:
a) In a very few directions, those satisfying Bragg’s law, the scattering is
strong and is called diffraction. Amplitudes add.

2 If the scattering atoms were not arranged in a regular, periodic fashion but in some independent man-
ner, then the rays scattered by them would have a random phase relationship to one another. In other
words, there would be an equal probability of the phase difference between any two scattered rays hav-
ing any value between zero and one wavelength. Neither constructive nor destructive interference takes
place under these conditions, and the intensity of the beam scattered in a particular direction is simply
the sum of the intensities of all the rays scattered in that direction. If there are N scattered rays each of
amplitude A and therefore of intensity A2 in arbitrary units, then the intensity of the scattered beam is
NAZ On the other hand, if the rays are scattered by the atoms of a crystal in a direction satisfying Bragg’s
law, then they are all in phase and the amplitude of the scattered beam is the sum of the amplitudes of
the scattered rays. The total amplitude is then N times the amplitude A of each scattered ray, or NA. The
intensity of the scattered beam is therefore N?A2, or N times as large as if reinforcement had not
occurred. Since N is very large for the scattering of x-rays from even a small bit of crystal, (N =1.1 X
10" atoms for 1 mg of iron), the role of reinforcement in producing a strong diffracted beam is consid-
erable.
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b) In most directions, those not satisfying Bragg’s law, there is no scattering
because the scattered rays cancel one another.

At first glance, the diffraction of x-rays by crystals and the reflection of visible
light by mirrors appear very similar, since in both phenomena the angle of inci-
dence is equal to the angle of reflection. It seems that the planes of atoms act as lit-
tle mirrors which “reflect” the x-rays. Diffraction and reflection, however, differ
fundamentally in at least three aspects:

1. The diffracted beam from a crystal is built up of rays scattered by all the
atoms of the crystal which lie in the path of the incident beam. The reflec-
tion of visible light takes place in a thin surface layer only.

2. The diffraction of monochromatic x-rays takes place only at those particu-
lar angles of incidence which satisfy Bragg’s law. The reflection of visible
light takes place at any angle of incidence.

3. The reflection of visible light by a good mirror is almost 100 percent effi-
cient. The intensity of a diffracted x-ray beam is extremely small compared
to that of the incident beam.

Despite these differences, the terms “reflecting planes” and “reflected beams”
are often used when diffracting planes and diffracted beams are described. This is
common usage and, from now on, these terms will appear without quotation marks
but with the tacit understanding that diffraction is meant and not reflection.’ Also,
always remember it is the constructive interference of scattering from the atoms
which produces diffracted intensity. Lack of understanding of what the commonly
used term “diffracting planes” represents, can lead to errors.

To sum up, diffraction is essentially a scattering phenomenon in which a large
number of atoms cooperate. Since the atoms are arranged periodically on a lattice,
the rays scattered by them have definite phase relations between them; these phase
relations are such that destructive interference occurs in most directions of scatter-
ing, but in a few directions constructive interference takes place and diffracted
beams are formed. Strictly speaking, for interference to occur, the interacting waves
must be superimposed physically (i.e., waves 1a’ and 2a’ in Fig. 2), but given the
cloud-like distribution of electrons around the nucleus of each scattering atom, the
relatively large depth of penetration of the x-ray beam and the large number of
scattering events which typically occur in a sample, the requirement for physical
superposition is normally left implicit in treatments of diffraction. The two essen-
tials are a wave motion capable of interference (x-rays) and a set of periodically
arranged scattering centers (the atoms of a crystal).

3 For the sake of completeness, it should be mentioned that x-rays can be totally reflected by a solid sur-
face, just as visible light is by a mirror, but only at very small angles of incidence (below about one
degree). X-ray reflectivity is a powerful technique for studying surfaces and internal interfaces which lie
in the vicinity of the surface [5]. Commercial instrumentation ranging from high resolution diffractome-
ters to dedicated x-ray reflectometers are available, and the theory and experimental methods are sum-
marized elsewhere [6, 7].
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3 BRAGG’'S LAW

Two geometrical facts are worth remembering: (1) The incident beam, the normal
to the diffraction plane, and the diffracted beam are always coplanar. (2) The angle
between the diffracted beam and the transmitted beam is always 26. This is known
as the diffraction angle, and it is this angle, rather than 6, which is usually measured
experimentally.

As previously stated, diffraction in general occurs only when the wavelength of
the wave motion is of the same order of magnitude as the repeat distance between
scattering centers. This requirement follows from Bragg’s law. Since sinf cannot
exceed unity,

naA
2d’

Therefore, nA must be less than 2d". For diffraction, the smallest value of » is 1.
(n = 0 corresponds to the beam diffracted in the same direction as the transmitted
beam. It cannot be observed.) Therefore the condition for diffraction at any observ-
able angle 20 is

=sinf < 1. (2)

A <2d. 3)

For most sets of crystal planes d is of the order of 3 A or less, which means that A
cannot exceed about 6 A. A crystal could not possibly diffract ultraviolet radiation,
measuring for example, of wavelength about 500 A. On the other hand, if A is very
small the diffraction angles requires very specialized equipment.

Bragg’s law may be written in the form

’

d .
A= 2; sin 6. 4)

Since the coefficient of A is now unity, a reflection of any order can be considered
as a first-order reflection from planes, real or fictitious, spaced at a distance 1/n of
the previous spacing. This turns out to be a real convenience, so that d = d'/n and

A = 2dsin 6. (5)

This form will be used throughout this book.

This usage is illustrated by Fig. 3. Consider the second-order 100 reflection®
shown in (a) for a simple cubic substance. Since it is second-order, the path differ-
ence ABC between rays scattered by adjacent (100), say i and i + 1 planes must be
two whole wavelengths.

4 This means the reflection from the (100) planes. Conventionally, the Miller indices of a diffraction
plane hkl, written without parentheses, stand for the diffracted beam from the plane (hk/).
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In the simple cubic structure all of the lattice points are on one of the (100) and
are separated by d = a/(1% + 0 + 0)*° = a. If there were scatterers on the dotted plane
midway between the ith and (i+1)th planes (Fig. 3b),’ they would scatter one wave-
length out of phase with the atoms on the ith and (i+1)th planes. The ith, (i+1/2)th
and (i+1)th planes are, therefore, positions of equal phase in the diffracted beam.
This periodicity, that for second order 100 diffraction, is /2 and is indicated by d,,.
Note that the formula for d-spacings using & = 2, k = 0 and [ = 0 yields d,,, = a/2.
Similar considerations hold for diffraction of the third, fourth, etc., orders of (100),
i.e., the, 300, 400, etc. reflections. In general, nth-order diffraction from (hkl) with
spacing d' may be considered as a first-order diffraction from (nh nk nl) with spac-
ing d = d'/n. Note that this convention accords with the definition of Miller indices
since (nh nk nl) are the Miller indices of planes parallel to (kk/) but with 1/nth the
spacing of the latter. The presence or absence of atoms at different positions with-
in the unit cell, such as on the (i+1/2)th plane in Fig. 3, has a profound effect on the
diffracted intensity observed for different reflections.

4 LAUE’S EQUATIONS

Bragg’s equation describes diffraction in terms of a scalar equation. Crystals are, in
general, three-dimensional entities, and, for greatest generality, equations devel-
oped to describe the diffracted beam directions need to be expressed in terms of
vectors.

Consider a one-dimensional array of scatterers spaced a apart (Fig. 4). Let the
incident beam direction be denoted S, and make an angle «, with the line of scat-
terers, and define the diffracted beam direction as S. In order for the path differ-
ence to be an integral multiple of wavelengths %A, the angle « which S makes with
the line of scatterers must satisfy:

a(cos a — cos ay) = hA. (6a)

This equation is satisfied for a series of cones with axes concentric with the row of
scatterers and with semi-apex angle of a.

Next consider a two-dimensional network of scatterers with spacing a along one
axis and b along the second axis. If the angles S, and S make with the rows spaced
b apart are B, and 3, respectively, a second equation must be simultaneously be sat-
isfied in order for constructive interference to occur:

b(cos B — cos By) = kA, (6b)

where k is an integer. Similarly, a third condition arises when one considers a three-
dimensional array of scatterers with spacing c in the third dimension:

3 The dotted plane in Fig. 3 is occupied by atoms in the face-centered and body-centered Bravais lat-
tices.
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Figure 3 Equivalence of (a) a second-order 100 reflection and (b) a first-order 200 reflection. The inci-
dent and diffracted beam directions are S, and S, respectively, and the ith, (i+1/2)th and (i+1)th planes
are labeled.

Figure 4 One-dimensional array of scatters with periodicity a, beam S incident at angle «, and dif-
fracted beam S at angle a.

c(cos y — cos yy) = IA, (6¢)

where / is an integer. The Eq. 6 are collectively known as Laue’s Equations and
emphasize the three-dimensional nature of diffraction. Generally, Bragg’s law is
more convenient to use for numerical purposes, and, as will be shown in the fol-
lowing section, the three-dimensionality of diffraction is more easily seen using the
reciprocal lattice.
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5 RECIPROCAL LATTICE AND DIFFRACTION

The reciprocal lattice can also be used to determine the geometric conditions for
diffraction. First, in the direct space lattice consider the interference between scat-
tering from two lattice points O and A (Fig. 5). Point O is at the origin of the lattice,
and point A is located relative to O by vector OA = pa, + ga, + ra,;, where 7, g, and
p are integers. Note that p, g, and r must be integers since both O and A are lattice
points. For x-rays of wavelength A, incident beam S and diffracted beam S, the path
difference 6 for x-rays scattered from O and A is

6 = uA + Av
= Om + On

= S,-OA + (=S)-0A

—OA-(S = S), ™)
and the corresponding phase difference ¢ (in radians) is

2@(S = S,) - OA
¢ =278/ = /\ = =27 /-0A (8

where S and S, are unit vectors and / = (S — Sy/A) and is termed the scattering
vector. Note that / is in units of A", Implicit in this treatment is that vectors a, are
for a primitive unit cell for whatever crystal system is being considered. Giving the
vectors a’; in terms of a non-primitive unit cell has important consequences, how-
ever, which are beyond the scope of this chapter.

The link to the reciprocal latttice comes through defining / as a vector in that
space, i.e., by letting

Figure 5 X-ray scattering by
atoms at O and A. After
Guinier [G.13].
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/= h,bl + k/bz + l,bj,, (9)

and noting that &', k" and /" have no special significance and are continuously vari-
able. After substituting the vector expressions for / and OA in Eq. §, the result is
(l) = _27T(h,b1 + k,bz + l’bs) . (pal + qa, + l’a3)

—2m(h'p + k'q + I'r). (10)

In order for diffraction to occur, ¢ must be an integral multiple of 27; in order for
this to be true simultaneously for many p, ¢, r (i.e., for many different scattering
sites) 4', k' and [’ must be integers which will now be written 4, k and /. Thus, / or
(S = Sy/A) must start and end on points of the reciprocal lattice.

The conditions for diffraction can be represented graphically in reciprocal space
using the Ewald sphere construction [2.3]. While the reciprocal lattice of a three
dimensional crystal is also three dimensional, a convenient plane through recipro-
cal space normally is plotted; the reciprocal lattice plane perpendicular to b, and
through the origin of the reciprocal lattice is used to illustrate the Ewald sphere
construction. The first step in plotting the Ewald sphere representation of diffrac-
tion is to construct the reciprocal lattice in question. Next one plots Sy/A parallel to
the incident beam direction, giving it length 1/A A and terminating it at the origin
of the reciprocal lattice. The sphere centered at the origin of vector Sy/A and with
radius 1/A represents the locus of possible S for wavelength A and is termed the
Ewald sphere. In order for diffraction to be observed (i.e., for Bragg’s law to be sat-
isfied), S and, hence, / must end on a reciprocal lattice point. This means that / is
parallel to the normal of (kk/)and has magnitude 1/d,,,, and Bragg’s law (or the
Laue equations) can be derived directly from the Ewald sphere construction.
Perhaps the most important point to remember is that the Ewald sphere must inter-
sect a reciprocal lattice point hk/ for diffraction from (k) to be observed.

An important property of the transformation from the direct space lattice to the
reciprocal lattice (and the reverse transformation) is that vectors in one lattice are
physically parallel to their counterpart in the other lattice. For example, the direc-
tion from the Ewald sphere center to the reciprocal lattice point ikl on the sphere
is S and defines the direction along which the diffracted beam S,,, is observed. In
direct space the parallel vector, also written as S, defines the diffracted beam direc-
tion. It is possible for certain S, to produce two or more diffracted beams simulta-
neously, but, given the wavelengths of x-rays used in diffractometry and the lattice
parameters of crystals, this possibility is unlikely. ¢

% In the case of electrons used in the transmission electron microscope, wavelengths are at least an order
of magnitude smaller than those of x-rays used in diffractometry. The result, as will be seen in Sec. 9, is
that multiple diffracted beams are the rule rather than the exception for electron diffraction.
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There is another way of viewing the direct space to reciprocal space transforma-
tion. Note that the incident and diffracted beams S, and S each consist of many par-
allel rays displaced from each other in space. Then the transformation to reciprocal
space can be viewed as mapping all parallel rays to a single point, just as was seen
for the periodic “planar” arrays of lattice point being mapped onto a single point in
the reciprocal lattice. This aspect of the reciprocal lattice is covered in more detail
in Sec. 9.

An example of the Ewald sphere construction is shown in Fig. 6 for a simple
orthorhombic crystal with lattice parameters a, = 2.0 A, a, = 1.0 A and a, = 3.0 A.
The corresponding magnitudes of the reciprocal lattice vectors are b, = 0.5 Al
b,=1.0 A" and b, = 0.33 A", and Fig. 6 shows the reciprocal lattice adjacent to the
direct space lattice. If the orthorhombic crystal is oriented for 100 diffraction with
Cu Ka radiation (A = 1.54 A), S, must make an angle of 22.6° with (100). This is
shown for S, in the plane of the paper, i.e., this S; makes an angle of 22.6° with a,,
and the resulting S makes the same angle with -a,.

Remember that the Bragg angle for 100 is not equal to that for 010 or 001 in the
orthorhombic system. The lengths of S,/A and S/A are (1.54 A)"' = 0.649 A", and
Sy/A and the corresponding Ewald sphere are shown to scale and in the correct ori-
entation in the reciprocal lattice. The Ewald sphere intersects the reciprocal lattice
point (1,0,0), and 100 diffraction will occur. Note that the direction of the diffract-
ed beam in reciprocal space is parallel to that in direct space and that the angle
between S, and S in Fig. 6 is 26. One should also note that the symmetry present in
the direct space lattice must also be reflected in the reciprocal lattice.

Rotation of S, about a; can be used to orient the crystal to diffract from other
<h00>." In order to orient the crystal shown in Fig. 6 for 200 diffraction, i.e., second
order 100 diffraction, S, must rotate 27.75° from its orientation in Fig. 6 toward a,.
This rotation brings the Ewald sphere into contact with the 200 reciprocal lattice
point. Similarly, S, must rotate 45.2° counterclockwise from the orientation pictured
in Fig. 6 in order to produce 100 diffraction.

The possible diffraction beam directions for a given crystal can also be deter-
mined using the Ewald sphere construction. Consider the reciprocal lattice for the
simple orthorhombic crystal shown in Fig. 6. Remembering that the condition for
diffraction from (hkl) is that the Ewald sphere intersects the Akl reciprocal lattice
point, the Ewald sphere can be rotated about the origin of the reciprocal lattice,
through all possible orientations, to determine which Akl reflections are possible
(Fig. 7). The result is the limiting sphere centered on the origin of the reciprocal lat-
tice and with radius 2/A. All the diffracted beams corresponding to the reciprocal
lattice points lying within or on the limiting sphere can be excited for the proper
crystal orientation. One advantage of using the reciprocal lattice to determine

7 Users of x-ray diffraction often speak of rotating the incident beam while keeping the crystal orienta-
tion fixed. For practical reasons, it is actually the crystal which is rotated and the incident x-ray beam
which remains stationary.
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Figure 6 (a) Direct space lattice for a simple orthorhombic crystal and (b) the corresponding reciprocal
space lattice and Ewald sphere for Cu K radiation. The orientation of the incident beam S, is such that
100 diffraction occurs, i.e., (100) are oriented to satisfy Bragg’s law and the reciprocal lattice point 100 is
on the Ewald sphere.

which diffracted beams are possible is that the directions of S and S, are obvious;
this is not the case for the numerical approach described in the previous paragraphs
of this section. When numerical values of the Bragg angle are required, however, it
is advantageous to use Bragg’s law directly.

6 DIFFRACTION DIRECTIONS

What determines the possible directions, i.e., the possible angles 26, in which a given
crystal can diffract a beam of monochromatic x-rays? Referring to Fig. 3, the vari-
ous diffraction angles 26,,26,, 26, ... can be obtained from the (100) planes by
using a beam incident at the correct angle 6, 6,,6;,... and producing first-,
second-, third-, ... order reflections. But diffraction can also be produced by the
(110) planes, the (111) planes, the (213) planes, and so on. A general relation is
needed which will predict the diffraction angle for any set of planes. This relation is
obtained by combining Bragg’s law and the plane-spacing equation applicable to
the particular crystal involved.
For example, if the crystal is cubic, then

A= 2d sin 6
and
1 (P+E+P
PR
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Figure 7 Illustration of the limiting sphere. The Ewald sphere and reciprocal lattice of Fig. 6 are shown
for reference; S, is shown oriented for 100 diffraction. Diffraction from 100, 200, 110, 010, etc. is possible
for this crystal and x-ray wavelength; 300, 210, etc, diffraction cannot be observed.

Combining these equations rearranging terms produces

/\2
sin’6 = (1> + K + ). (11)
da

This equation predicts, for a particular incident wavelength A and a particular cubic
crystal of unit cell size a, all the possible Bragg angles at which diffraction can occur
from the planes (hkl). For (110) planes, for example, Eq. (11) becomes

)\2

f02
Sim 0110 = .
24
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If the crystal is tetragonal, with axes a and c, then the corresponding general equa-

tion is
N+ Kk P
sinf = X<72 + 7) (12)

a c
and similar equations can readily be obtained for the other crystal systems.

These examples show that the directions in which a beam of given wavelength is
diffracted by a given set of lattice planes are determined by the crystal system to
which the crystal belongs and its lattice parameters. In short, diffraction directions
are determined solely by the shape and size of the unit cell. This is an important point
and so is its converse: all that can be determined about an unknown crystal by
measurements of the directions of diffracted beams are the shape and size of its unit
cell. Intensities of diffracted beams are determined by the positions of the atoms
within the unit cell, and it follows that intensities must be measured if any infor-
mation at all is to be obtained about atom positions. For many crystals, there are
particular atomic arrangements which reduce the intensities of some diffracted
beams to zero. In such a case, there is simply no diffracted beam at the angle pre-
dicted by an equation of the type of Egs. (11) and (12). It is in this sense that equa-
tions of this kind predict all possible iffracted beams.

7 X-RAY SPECTROSCOPY

Experimentally, Bragg’s law can be applied in two ways. By using x-rays of known
wavelength and measuring 6, the spacing d of various planes in a crystal are deter-
mined: this is structure analysis and is the subject, in one way or another, of the
greater part of this book. Alternatively, a crystal with planes of known spacing d can
be used to measure 6, and thus determine the wavelength A of the radiation used:
this is x-ray spectroscopy.

The essential features of an x-ray spectrometer [8] are shown in Fig. 8. X-rays
from the tube T are incident on a crystal C which may be set at any desired angle
to the incident beam by rotation about an axis through O, the center of the spec-
trometer circle. D is a detector which measures the intensity of the diffracted x-rays;
it can also be rotated about O and set at any desired angular position. The crystal is
usually cut or cleaved so that a particular set of diffracting planes of known spacing

Figure 8 The x-ray spectrometer.
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is parallel to its surface, as suggested by the drawing. In use, the crystal is positioned
so that its diffracting planes make some particular angle 6 with the incident beam,
and D is set at the corresponding angle 26. The intensity of the diffracted beam is
then measured and its wavelength calculated from Bragg’s law, this procedure
being repeated for various angles §. W. H. Bragg designed and used the first x-ray
spectrometer, and the Swedish physicist Siegbahn developed it into an instrument
of very high precision.

X-ray spectroscopy is of concern only insofar as it concerns certain units of
wavelength. Wavelength measurements made in the way just described are obvi-
ously relative, and their accuracy is no greater than the accuracy with which the
plane spacing of the crystal is known.

Before considering how the first plane spacing was determined, first consider the
subject of x-ray density. Normally the density of a solid is found by measuring the
volume, usually of the order of a few cubic centimeters, and the weight of a partic-
ular specimen. But x-ray diffraction allows measurement of the lattice parameters
of a crystal’s unit cell, and therefore its volume, together with the number of atoms
in the cell. Density determination can be based not on a few cubic centimeters but
on the volume of a single unit cell, by defining the

weight of atoms in unit cell

—ray densit
x-ray density volume of unit cell

2 AN
P
where p = density (g/lcm®), £ A = sum of the atomic weights of all the atoms in the

unit cell, N = Avogadro’s number, and V = volume of unit cell (cm?). Inserting the
value of N produces

Sa Sa 1.66042 3 A

NV (602257 X 107)(V' x 1072 v

where p is in g/cm® and V" is the unit-cell volume in A®,

The macroscopic density of a particular specimen, determined from the weight
and volume of that specimen, is usually less than, and cannot exceed, the x-ray den-
sity, because the macroscopic specimen will usually contain cracks and pores on the
macroscopic scale and vacancies in the lattice on the atomic scale. The x-ray densi-
ty is therefore a useful quantity to know. Comparing it to the macroscopic density
of, for example, a pressed and sintered metal or ceramic compact, determines the
percent porosity in the compact. X-ray densities are sometimes loosely called “the-
oretical densities”; they are not theoretical because they are determined experi-
mentally.

(13)

p (14)
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To return to the problem of wavelength determination, it is an interesting and
crucial fact that Bragg was able to solve the crystal structure of NaCl without know-
ing the wavelength of the x-rays being diffracted. All he knew—all he needed to
know—was that there was one single, strong wavelength in the radiation from the
x-ray tube, namely, the strong Ko line of the tube target. Once the NaCl structure
is known, it follows that there are four sodium and four chlorine atoms per unit cell,
and that

D' A = 4(at. wt. Na) + 4(at. wt. Cl).

If this value is inserted into Eq. (13) together with the macroscopic density p, the
volume V' of the unit cell can be found. Because NaCl is cubic, the lattice parame-
ter a is given simply by the cube root of V'. From this value of a and the cubic plane-
spacing equation the spacing of any set of planes can be found.

In this way, Siegbahn obtained a value of 2.814 A for the spacing of the (200)
planes of rock salt (NaCl), which he could use as a basis for wavelength measure-
ments [9]. This spacing was known to only four significant figures, because it was
derived from a macroscopic density of that precision. However, Siegbahn was able
to measure wavelengths in terms of this spacing much more accurately, namely, to
six significant figures. Not wishing to throw away the high relative precision he
could attain, he wisely decided to arbitrarily define a new unit in which relative
wavelengths could be expressed. This was the X unit (XU), so called because its
true value in absolute units (angstroms) was unknown. By defining the (200) spac-
ing of rock salt to six significant figures as 2814.00 XU, the new unit was made as
nearly as possible equal to 0.001 A.

Once a particular wavelength was determined in terms of this spacing, the spac-
ing of a given set of planes in any other crystal could be measured. Siegbahn thus
measured the (211) spacing of calcite (CaCOs3), which he found more suitable as a
standard crystal, and thereafter based all his wavelength measurements on this
spacing. Its value is 3029.45 XU. Later on, the kilo X unit (kX) was introduced, a
thousand times as large as the X unit and nearly equal to an angstrom. The kX unit
is therefore defined by the relation

(211) plane spacing of calcite
1kX = . 15
3.02945 (15)

On this basis, Siegbahn and coworkers made very accurate measurements of wave-
length in relative (kX) units and these measurements form the basis of most pub-
lished wavelength tables.

It was found later that x-rays could be diffracted by a ruled grating such as is
used in the spectroscopy of visible light, provided that the angle of incidence (the
angle between the incident beam and the plane of the grating) is kept below the
critical angle for total reflection. Gratings thus offer a means of making absolute
wavelength measurements, independent of any knowledge of crystal structure. By
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a comparison of values so obtained with those found by Siegbahn from crystal dif-
fraction, it was possible to calculate the following relation between the relative and
absolute units:

1 kX = 1.00202A.

This conversion factor was adopted in 1946 by international agreement. Later work
improved the accuracy of this factor, and the relation is now believed to be

1 kX = 1.002056A*. (16)

Note that this relation is stated in terms of still another unit, the A’ unit, which was
introduced because of the still remaining uncertainty in the conversion factor. The
difference between A and A" is only some five parts per million, and the distinction
between the two units is negligible except in work of the very highest accuracy.

The present situation is not entirely clear, but the wavelength tables published
by the International Union of Crystallography [Vol. C, G.1] are the best available
value.

The distinction between kX and A is unimportant if no more than about three
significant figures are involved, because the kX unit is only about 0.2 percent larg-
er than the angstrom. In precise work, on the other hand, units must be correctly
stated, and on this point there has been considerable confusion in the past. Some
wavelength values published prior to about 1946 are stated to be in angstrom units
but are actually in kX units. Some crystallographers have used such a value as the
basis for a precise measurement of the lattice parameter of a crystal, and the result
has been stated, again incorrectly, in angstrom units. Many published parameters
are therefore in error, and it is unfortunately not always easy to determine which
ones are and which ones are not. The only safe rule to follow, in stating a precise
parameter, is to give the wavelength of the radiation used in its determination.
Similarly, any published table of wavelengths can be tested for the correctness of its
units by noting the wavelength given for a particular characteristic line, Cu K for
example. The wavelength of this line is 1.540562 A" (1974 value, 1.002056 as con-
version factor), 1.54051 A (1946 value, 1.00202 factor), or 1.53740 kX.

8 DIFFRACTION METHODS

Diffraction can occur whenever Bragg’s law, A = 2d sin 6, is satisfied. This equation
puts very stringent conditions on A and 6 for any given crystal. With monochromat-
ic radiation, an arbitrary setting of a single crystal in a beam of x-rays will not in
general produce any diffracted beams. Some way of satisfying Bragg’s law must be
devised, and this can be done by continuously varying either A or 6 during the
experiment. The ways in which these quantities are varied distinguish three main
diffraction methods:
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Method A [¢)
Laue Variable Fixed
Rotating-crystal Fixed Variable (in part)
Powder Fixed Variable

Laue Method

The Laue method was the first diffraction method ever used, and it reproduces von
Laue’s original experiment. In this method, a beam of white radiation, the continu-
ous spectrum from an x-ray tube, falls on a fixed single crystal. The Bragg angle 6 is
therefore fixed for every set of planes in the crystal, and each set selects and dif-
fracts that particular wavelength which satisfies Bragg’s law for the particular val-
ues of d and 6 involved. Each diffracted beam thus has a different wavelength.

There are two variations of the Laue method, depending on the relative posi-
tions of source, crystal, and film (Fig. 9). In each, the film is flat and placed perpen-
dicular to the incident beam. The film in the transmission Laue method (the origi-
nal Laue method) is placed behind the crystal so as to record the beams diffracted
in the forward direction. This method is so called because the diffracted beams are
partially transmitted through the crystal. In the back-reflection Laue method the
film is placed between the crystal and the x-ray source, the incident beam passing
through a hole in the film, and the beams diffracted in a backward direction are
recorded.

In either method, the diffracted beams form an array of spots on the film as
shown in Fig. 10. This array of spots is commonly called a pattern, but the term is not
used in any strict sense and does not imply any periodic arrangement of the spots.
On the contrary, the spots are seen to lie on certain curves, as shown by the lines
drawn on the photographs. These curves are generally ellipses or hyperbolas for
transmission patterns [Fig. 10(a)] and hyperbolas for back-reflection patterns
[Fig. 10(b)].

The spots lying on any one curve are reflections from planes belonging to one

S AU

9

(a) (b)

Figure 9 (a) Transmission and (b) back-reflection Laue methods.

109



110

Diffraction |I: Geometry

(®)

Figure 10 (a) Transmission and (b) back-reflection Laue patterns of an aluminum crystal (cubic).
Tungsten radiation, 30 kV, 19 mA.

(a) (b)

Figure 11 Location of Laue spots (a) on ellipses in transmission method and (b) on hyperbolas in back-
reflection method. (C = crystal, F = film, Z.A. = zone axis.)

zone. This is due to the fact that the Laue reflections from planes of a zone all lie
on the surface of an imaginary cone whose axis is the zone axis. As shown in
Fig. 11(a), one side of the cone is tangent to the transmitted beam, and the angle of
inclination ¢ of the zone axis (Z.A.) to the transmitted beam is equal to the semi-
apex angle of the cone. A film placed as shown intersects the cone in an imaginary
ellipse passing through the center of the film, the diffraction spots from planes of a
zone being arranged on this ellipse. When the angle ¢ exceeds 45, a film placed
between the crystal and the x-ray source to record the back-reflection pattern will
intersect the cone in a hyperbola, as shown in Fig. 11(b).

The fact that the Laue reflections from planes of a zone lie on the surface of a
cone can be demonstrated nicely with the stereographic projection. In Fig. 12, the
crystal is at the center of the reference sphere, the incident beam [/ enters at the left,
and the transmitted beam 7 leaves at the right. The point representing the zone axis
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Figure 12 Stereographic projection of trans-
mission Laue method.

lies on the circumference of the basic circle and the poles of five planes belonging
to this zone, P, to P, lie on the great circle shown. The direction of the beam dif-
fracted by any one of these planes, for example the plane P,, can be found as fol-
lows. I, P,, D, (the diffraction direction required), and 7 are all co-planar. Therefore
D, lies on the great circle through I, P,, and 7. The angle between / and P, is
(90" — 9), and D, must lie at an equal angular distance on the other side of P,, as
shown. The diffracted beams so found, D, to D, are seen to lie on a small circle, the
intersection with the reference sphere of a cone whose axis is the zone axis.

The positions of the spots on the film, for both the transmission and the back-
reflection method, depend on the orientation of the crystal relative to the incident
beam, and the spots themselves become distorted and smeared if the crystal has
been bent or twisted in any way. These facts account for the two main uses of the
Laue methods: the determination of crystal orientation and the assessment of crys-
tal quality.

The Ewald sphere treatment of diffraction of a single wavelength A from a crys-
tal can be readily extended to the Laue method where multiple A are incident. The
range of wavelengths used is represented by a series of parallel incident beams,
each with a different length proportional to 1/A,. Note that each of these vectors
terminates at the origin of the reciprocal lattice, and each has a different origin
(Fig. 13). Thus, each incident beam S,/A; has a corresponding Ewald sphere touch-
ing the origin of the reciprocal lattice and having radius 1/A;. All of the different
S,/ A; pass through the origin of the reciprocal lattice, and the corresponding Ewald
spheres have centers lying on the line OACDB of Fig. 13, i.e., the incident beam
direction. The range of wavelengths present in the incident beam is of course not
infinite. It has a sharp lower limit at Agy;, the short-wavelength limit of the contin-
uous spectrum,; the upper limit is less definite and depends on experimental factors
such as whether the transmission or back-reflection geometry is being used. In the
example of the Ewald sphere construction shown in Fig. 13, the upper wavelength
limit is taken as the wavelength of the K absorption edge of the silver in the emul-
sion (0.48 A), because the effective photographic intensity of the continuous spec-
trum drops abruptly at that wavelength. This choice is most appropriate for trans-
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Figure 13 Reciprocal lattice (a) and corresponding schematic of the crystal in direct space (b) for the
Laue method. (S — S,)/A = H.

mission Laue patterns of crystals which are quite absorbing since the value of the
linear attenuation coefficient (of an element in a sample) rises rapidly with increas-
ing wavelength. For back-reflection Laue patterns considerable darkening of the
film wll occur for wavelengths above the silver edge and below the bromine K-edge
as well as for somewhat longer wavelengths.

To these two extreme wavelengths correspond two extreme Ewald spheres, as
shown in Fig. 13, which is a section through these spheres and the / = 0 layer of the
reciprocal lattice. The incident beam is along the b, vector, i.e., perpendicular to the
(h00) planes of the crystal. The larger sphere shown is centered at B and has a
radius equal to the reciprocal of Agy, while the smaller sphere is centered at A and
has a radius equal to the reciprocal of the wavelength of the silver K absorption
edge. A whole series of spheres lie between these two, and any reciprocal-lattice
point lying in the shaded region of the diagram is on the surface of one of these
spheres and corresponds to a set of crystal planes oriented to diffract one of the
incident wavelengths. In the forward direction, for example, a 120 reflection will be
produced. To find its direction, locate a point C on AB which is equidistant from the
origin O and the reciprocal-lattice point 120; C is therefore the center of the Ewald
sphere passing through the point 120. Joining C to 120 gives the diffracted-beam
vector S/A for this reflection. The direction of the 410 reflection, one of the many
backward-diffracted beams, is found in similar fashion; here the reciprocal-lattice
point in question is situated on a Ewald sphere centered at D.
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Rotating-Crystal Method

In the rotating-crystal method a single crystal is mounted with one of its axes, or
some important crystallographic direction, normal to a monochromatic x-ray beam.
A cylindrical film is placed around it and the crystal is rotated about the chosen
direction, the axis of the film coinciding with the axis of rotation of the crystal
(Fig. 14). As the crystal rotates, a particular set of lattice planes will, for an instant,
make the correct Bragg angle for diffraction of the monochromatic incident beam,
and at that instant a diffracted beam will be formed. The diffracted beams are again
located on imaginary cones but now the cone axes coincide with the rotation axis.
The result is that the spots on the film, when the film is laid flat, lie on imaginary
horizontal “layer” lines, as shown in Fig. 15. Since the crystal is rotated about only
one axis, the Bragg angle does not take on all possible values between 0" and 90 for
every set of planes. Not every set, therefore, is able to produce a diffracted beam;
sets perpendicular or almost perpendicular to the rotation axis are examples.

The Ewald sphere construction for monochromatic radiation can be used to
illustrate why beams diffracted from a single crystal rotated about one of its axes
lie on the surface of cones coaxial with the rotation axis. This interpretation of the
patterns of diffraction spots was emphasized by Bernal [10]. Suppose a simple cubic
crystal is rotated about the axis [001]. This is equivalent to rotation of the recipro-
cal lattice about the b; axis. Figure 16 shows a portion of the reciprocal lattice ori-
ented in this manner, together with the adjacent Ewald sphere.

All crystal planes having indices (k1) are represented by points lying on a plane
(called the “I =1 layer”) in the reciprocal lattice, normal to b;. When the reciprocal
lattice rotates, this plane cuts the Ewald sphere in the small circle shown, and any

Figure 14 Rotating-crystal method.
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Figure 15 Rotating-crystal pattern of a quartz crystal (hexagonal) rotated about its ¢ axis. Filtered cop-
per radiation. (The streaks are due to the white radiation not removed by the filter.) (Courtesy of B. E.
Warren.)

rotation axis rotation axis of
of crystal and  reciprocal lattice
axis of film

Ewald sphere

Figure 16 Reciprocal-lattice treatment of rotating-crystal method.

points on the / = 1 layer which touch the sphere surface must touch it on this circle.
Therefore all diffracted-beam vectors S/A must end on this circle, which is equiva-
lent to saying that the diffracted beams must lie on the surface of a cone. In this par-
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ticular case, all the #k1 points shown intersect the surface of the sphere sometime
during their rotation about the b; axis, producing the diffracted beams shown in
Fig. 16. In addition many Ak0 and hk1 reflections would be produced, but these
have been omitted from the drawing for the sake of clarity.

The chief use of the rotating-crystal method and its variations were in the deter-
mination of unknown crystal structures, but the complete determination of complex
crystal structures is a subject beyond the scope of this book and outside the
province of the average materials scientist/engineer who uses x-ray diffraction as a
laboratory tool. Analyzing patterns consisting of layer lines of diffraction spots
remains important however, for polymers and is beyond the scope of this chapter.

Powder Method

In the powder method, the crystal to be examined is reduced to a very fine powder
or already is in the form of loose or consolidated microscopic grains. The sample in
a suitable holder is placed in a beam of monochromatic x-rays. Each particle of the
powder is a tiny crystal, or assemblage of smaller crystals, oriented at random with
respect to the incident beam. Just by chance, some of the crystals will be correctly
oriented so that their (100) planes, for example, can diffract the incident beam.
Other crystals will be correctly oriented for 110 reflections, and so on. The result is
that every set of lattice planes will be capable of diffraction. The mass of powder is
equivalent, in fact, to a single crystal rotated, not about one axis, but about all pos-
sible axes.

Consider one particular Akl reflection, and remember that S, S, and N, the nor-
mal to the diffraction planes (4kl), must be coplanar. One or more little crystals
will, by chance, be so oriented that their (hk/) planes make the correct Bragg angle
for diffraction; Fig. 17(a) shows one plane in this set and the diffracted beam
formed. If this plane is now rotated about the incident beam in such a way that 6 is
kept constant, then the diffracted beam will travel over the surface of a cone as
shown in Fig. 17 (b), the axis of the cone coinciding with the transmitted beam.

S hkl

(b)

Figure 17 Formation of a diffracted cone of radiation in the powder method.
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Equivalently, one can imagine rotating N;,, about S, while keeping the angle
between them equal to 90° — 6 degrees.

This rotation does not actually occur, but the presence of a large number of crys-
tal particles having all possible orientations is equivalent to this rotation, since
among these particles there will be a certain fraction whose (hkl) planes make the
correct Bragg angle with the incident beam and which at the same time lie in all
possible rotational positions about the axis of the incident beam. The Akl reflection
from a stationary mass of powder thus has the form of a conical sheet of diffracted
radiation, and a separate cone is formed for each set of differently spaced lattice
planes.

Figure 18 shows three such cones and also illustrates a common powder-diffrac-
tion method. In this, the Hull/Debye-Scherrer method [11, 12], a narrow strip of
film is curved into a short cylinder with the specimen placed on its axis and the inci-
dent beam directed at right angles to this axis.  The cones of diffracted radiation
intersect the cylindrical strip of film in lines, and when the strip is unrolled and laid
flat, the resulting pattern appears as in Fig. 18(b). Actual patterns, produced by var-
ious metal powders, are shown in Fig. 19. Each diffraction line is made up of a large
number of small spots, each from a separate crystal particle, the spots lying so close
together that they appear as a continuous line. The lines are generally curved,
unless they occur exactly at 260 = 90° when they will be straight. From the measured
position of a given diffraction line on the film, # can be determined, and from 6,
knowing A, the spacing d of the diffracting lattice planes which produced the line.

Conversely, if the shape and size of the unit cell of the crystal are known, the
position of all possible diffraction lines on the film can be predicted. The line of low-
est 260 value is produced by diffraction from planes of the greatest spacing. In the
cubic system, for example, d is a maximum when (4 + k* + ) is a minimum, and
the minimum value of this term is /, corresponding to (hkl) equal to (100). The 100
reflection is accordingly the one of lowest 26 value. The next possible reflection will
have indices hkl corresponding to the next higher value of (h* + k* + I?), namely 2,
in which case (hkl) equals (110), and so on.

The reciprocal lattice of a randomly oriented powder sample consists of a series
of reciprocal lattice (rel) shells centered on the origin of the reciprocal lattice.
Remembering that all orientations are equally likely for a random powder sample,
constructing the reciprocal lattice representing the powder is straight-forward: first
draw the reciprocal lattice for a single grain and second rotate the reciprocal lattice
points through all possible orientations. Each reciprocal lattice point hkl for the
crystal becomes, therefore, a sphere of radius 1/d,,,, centered on the reciprocal lat-
tice origin (Fig. 20a). For an incident beam S, and Bragg angles 6,,,, a number of S,

8 Most authors term this technique the Debye—Scherrer method, but it seems reasonable to acknowl-
edge the independent and more-or-less simultaneous development in the US and Germany during the
First World War.
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Figure 18 Hull/Debye-Scherrer powder method: (a) relation of film to specimen and incident beam; (b)
appearance of film when laid flat.
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Figure 19 Hull/Debye—Scherrer powder patterns of copper (FCC), tungsten (BCC), and zinc (HCP).
Filtered copper radiation, camera diameter = 5.73 cm.
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A b2

(a)

Ewald sphere

(b)

Figure 20 (a) Reciprocal lattice shells with radii 1/d,, 1/d,, 1/d; and 1/d,, and (b) diffraction cones from
the intersection of a reciprocal lattice shell and the Ewald sphere. When P, is rotated about the recip-
rocal lattice origin, it intersects the Ewald sphere at P,, P; and other points of a circle.

simultaneously satisfy Bragg’s law. The loci of S;,, are determined by the intersec-
tion of the rel shells and the Ewald sphere and consist of a series of cones centered
on S, (diffraction in the forward direction) or on -S, (diffraction in back-reflection).
The formation of one such cone is illustrated in Fig. 20b, but for clarity the Ewald
sphere is pictured and the reciprocal lattice shells are omitted. Instead, reciprocal
lattice point P on one shell is rotated through all possible orientations. The result-
ing intersection of the shell and the Ewald sphere is a circle, and the locus of S, is
a cone.

The x-ray spectrometer can be used as a tool in diffraction analysis. This instru-
ment is known as a diffractometer when it is used with x-rays of known wave-length
to determine the unknown spacing of crystal planes [13], and as a spectrometer in
the reverse case, when crystal planes of known spacing are used to determine
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source

diffraction
cones

Figure 21 Illustration of the role of the slit on the detector in measuring diffraction peaks in powder
diffractometry. Two diffraction cones are shown, Ngis the normal to the sample, DA is the diffractome-
ter rotation axis; and S,, Ngand the portions of S, and S, (portions of the cones intersecting the slit) are
coplanar.

unknown wavelengths. The diffractometer is always used with monochromatic radi-
ation and measurements may be made on either single crystals or polycrystal line
specimens (early developments are outline in [G.17 and G.18]), the detector inter-
cepts and measures only a short arc of any one cone of diffracted rays (Fig. 21).
Note that the diffractometer’s receiving slit is essential to the observation of dif-
fraction peaks of randomly-oriented, fine-grained powders. The diffraction cones
are always present;in fact, cones for all possible ikl are present simultaneously. The
receiving slit is necessary to eliminate all diffracted radiation except that passing
through this very narrow angular window.

Different powder diffraction techniques sample different portions of reciprocal
space, and a complete understanding of diffraction phenomena from a reciprocal
space perspective requires rigorous definition of the reciprocal space sampling
region for each technique. Developing such an understanding is beyond the scope
of this book, and the reader is referred to more comprehensive treatments of recip-
rocal space [5].

The Hull/Debye—Scherrer and other camera methods and the diffractometer are
very widely used. Powder diffraction is, of course, the only method that can be
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employed when a single-crystal specimen is not available, and this is the case more
often than not in materials work. The method is especially suited for determining
lattice parameters with high precision and for the identification of phases, whether
they occur alone or in mixtures such as polyphase alloys, corrosion products, refrac-
tories, and rocks.

9 EXPERIMENTAL VISUALIZATION OF THE RECIPROCAL LATTICE

The preceding section discussed how the rotating crystal method allowed imaging
of the distribution of reciprocal lattice points in space. Transmission electron
microscopy (TEM) also images the reciprocal lattice directly: planes through the
reciprocal lattice can be seen in certain TEM operating modes. In TEM there are a
series of three or more lenses following the sample and providing the high magni-
fications which make the TEM so useful for materials characterization. The wave-
like properties of electrons allow them to diffract from crystalline samples.
Typically in TEM, electrons are accelerated to 100 keV or higher and have wave-
lengths of 0.037 A or lower. This acceleration allows the electrons to be transmitted
through samples whose thicknesses are on the order of 1000 A. Because electrons
carry a charge, magnetic lenses are effective at focusing electrons (unlike the case
of x-rays where lenses can deflect the photons only a minescule fraction of a
degree.) It is important to note that most materials’ TEM imaging of materials
relies on diffracted electrons to provide image contrast.

The very small wavelength of the electrons means that the radius of the corre-
sponding Ewald sphere is very large compared to the spacing between reciprocal
lattice points or compared to the Ewald sphere diameter for x-rays. For 0.037 A
radiation, the Ewald sphere radius is 25 A" compared to ~1 A for x-rays and to
~0.5 A" for the reciprocal lattice spacing. This means that the curvature of the
Ewald sphere is gradual compared to the reciprocal lattice spacings, and that, in the
vicinity of the origin of the reciprocal lattice, the Ewald sphere is essentially a plane
cutting through the reciprocal lattice (Fig.22). As will be seen in Ch. 4, the sample’s
thinness produces reciprocal lattice points which are elongated along the thin axis
of the sample, i.e., rel rods or reciprocal lattice rods, and the rods intersect the
Ewald sphere over quite a large range of 1/d. This section of the reciprocal lattice

L] L] L
re
L] L] L
Figure 22 Reciprocal lattice of the v
orthorhombic crystal shown in Fig. 6 with the
Ewald spheres and radii r, for Cu Ka x-rays
and r, for 100 keV electrons. e o o o o o o o o o
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imaged by the TEM is termed a diffraction pattern and is normally identified by the
direction of incidence of the electrons, i.e., by the normal to the reciprocal lattice
plane.

The TEM ray diagram pictured in Fig. 23 shows how an image of the sample or
an image of the sample’s diffraction pattern is obtained. The incident electrons are
indicated by the arrows at the top of the figure, and one diffracted beam G and the
transmitted beam O originating from each of three points (A, B and C) in the sam-
ple illustrate the electron-sample interactions of interest here. The diffracted and
transmitted beams pass through the objective lens whose optic axis is BB". Parallel
rays are brought to a focus in the diffraction plane, and rays diverging from a point
are recombined in the image plane. In other words, the three rays G from A, B and
C are combined at G in the diffraction plane, and the rays G and O from A recom-
bine at A’ in the image plane. If the other lenses of the TEM are focussed on the
diffraction plane, the essentially planar section of the reciprocal lattice is imaged. If
focussing is on the image plane, an image of the sample results. In other words, par-
allel directions are mapped onto a single point in the diffraction plane in just as all
(hkl) in direct space were mapped onto point Akl in reciprocal space.

Figure 24 shows a diffraction pattern recorded from a grain of NiAl with the
electron beam parallel to [100]. The four-fold symmetry expected along <100> in
the CsCl structure is clearly seen. Multiple orders of each diffraction vector are
seen simultaneously, an apparent contradiction of Bragg’s law: for a single wave-
length Bragg’s law predicts that first and second order diffraction (hkl and 24 2k 2/)
occur at angles 6, and 6,,,,,, given, for cubic axial systems, by

A B _C OBJECT
—

OBJECTIVE LENS

G O DIFFRACTION PLANE

Figure 23 TEM ray diagram showing the dif- IMAGE PLANE
fraction plane and image plane. C B’ A
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Figure 24 001 diffraction pattern from a grain of NiAl

\/isinehkl = Sin 02h2k21'

The question is how first and second order diffraction can occur simultaneously for
the same angle of incidence of S, if small rotations from the Bragg angle destroy
constructive interference. Stated in other terms, the derivation of Bragg’s law
implicitly assumed that the diffraction peaks are delta functions, i.e., that the crys-
tal has an infinitely narrow range of reflection.

The resolution to this apparent contradiction lies in the fact that Bragg’s law
describes diffraction incompletely. Very small crystal or grain dimensions have very
wide diffraction ranges as a direct consequence of their small size. In other words,
significant diffracted intensity occurs at angles off the exact Bragg condition, but
development of an understanding of the factors governing diffracted intensity must
precede discussion of how far a crystal must rotate before diffracted intensity drops
to zero.

10 DIFFRACTION UNDER NONIDEAL CONDITIONS

In Sec 9, the discussion of diffraction patterns illustrated one consequence of devi-
ation for “ideality”. Before going any further, it is important to consider other
aspects of the derivation of Bragg’s law given in Sec. 2 in order to understand pre-
cisely under what conditions it is strictly valid. In the derivation certain ideal con-
ditions were assumed, namely a perfect crystal and an incident beam composed of
perfectly parallel and strictly monochromatic radiation. These conditions never
actually exist. For example, the incident x-ray beam in most powder diffractometers
is divergent and the characteristic lines from x-ray tubes have finite spectral widths.
Also implicit is that once x-ray photons are diffracted they will not be re-directed;
this assumption, the basis of kinematical diffraction theory, holds except for dif-
fraction from thick, highly perfect crystals.

Imperfections in the crystal(s) making up a sample can broaden the diffraction
peaks. Only the infinite crystal is really perfect and small size alone, of an otherwise
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perfect crystal, can be considered a crystal imperfection, and can lead to peak
broadening. The presence of large numbers of dislocations (i.e., strain) in the grains
of a sample can produce significant peak broadening. The inference of sample
strain or crystallite size from peak widths (or shapes) is an important part of dif-
fraction analysis of materials.

PROBLEMS

1 A transmission Laue pattern is made of a cubic crystal having a lattice parameter
of 4.00 A. The x-ray beam is horizontal. The [010] axis of the crystal points along the
beam towards the x-ray tube, the [100] axis points vertically upward, and the [001]
axis is horizontal and parallel to the photographic film. The film is 5.00 cm from the
crystal.

a) What is the wavelength of the radiation diffracted from the (310) planes?

b) Where will the 310 reflection strike the film?
*2 A transmission Laue pattern is made of a cubic crystal in the orientation of Prob.
1. By means of a stereographic projection similar to Fig. 12, show that the beams dif-
fracted by the planes (210), (213), and (211), all of which belong to the zone [120],
lie on the surface of a cone whose axis is the zone axis. What is the angle ¢ between
the zone axis and the transmitted beam?
3 Determine, and list in order of increasing angle, the values of 26 and (hkl) for the
first three lines (those of lowest 20 values) on the powder patterns of substances
with the following structures, the incident radiation being Cu Ka:

a) simple cubic (a = 3.00 A),

b) simple tetragonal (a = 2.00 A, ¢ = 3.00 A),

¢) simple tetragonal (a = 3.00 A, ¢ = 2.00 A),

d) simple rhombohedral (a = 3.00 A, a = 80°).
4 Plot the reciprocal lattice for a polycrystalline sample of a material with a simple
tetragonal structure and lattice parameters a = 4.0 A and ¢ = 5.0 A. (Use a two-
dimensional section through the three-dimensional space).
5 Sketch the Ewald sphere construction for 200 diffraction with Mo K« radiation
and a polycrystalline specimen of a simple cubic substance with a = 3.30 A.
Graphically determine the angular rotation required to orient the sample for 300
diffraction if a 6 — 26 diffractometer is being used.
6 Diffractometers typically can scan up to, but not beyond, 165° 26. For the sample
in Problem 4, what are the indices (i.e., hkl) of the highest angle reflection if (a)
Ag Ka radiation is used, (b) Cu Ke radiation is used and c¢) Cr K« radiation is
used?
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