PSI-5761 Introdução aos Processos de Fabricação em Microeletrônica

Laboratório de Microeletrônica Escola Politécnica Universidade de São Paulo

Decapagem (etching) Úmida e Seca

Fernando J. Fonseca sala C2-65 (fernando.epusp@gmail.com)
Roberto K. Onmori sala C2-70 (rkonmori@lme.usp.br)

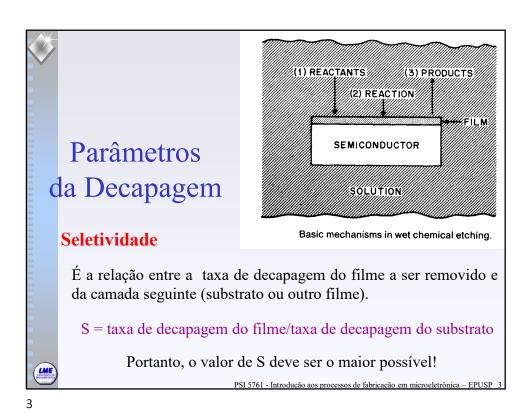
1

Tipos de decapagem

- DECAPAGEM ÚMIDA Única até a década de 80.

Decapagem por processos químicos úmido (reagente líquido)

- DECAPAGEM SECA Início na década de 80. Principal


método atualmente.

Processo de decapagem por fase gasosa ("dry etching")

Normalmente utiliza-se a DECAPAGEM ÚMIDA ou SECA para a remoção PARCIAL de material.

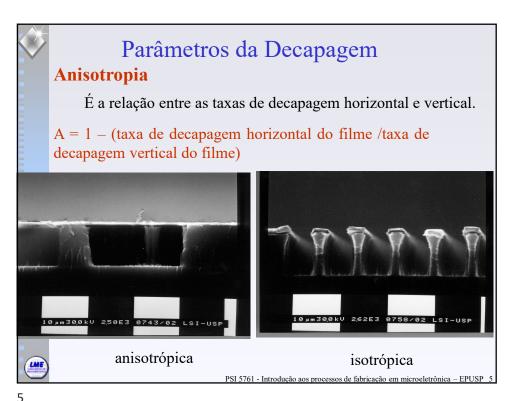
Quando utiliza-se os mesmos processos para remoção TOTAL do material a etapa é denominada "STRIPING".

PSI 5761 - Introdução aos processos de fabricação em microeletrônica – EPUSP 2

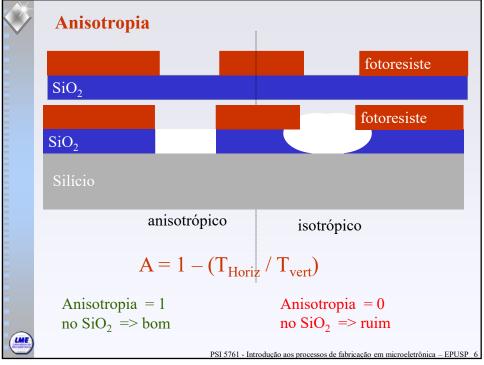
Seletividade

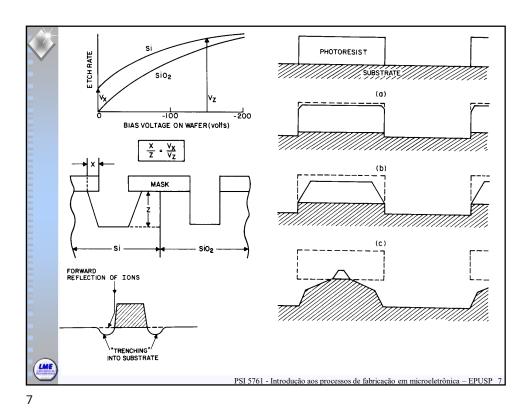
SiO₂

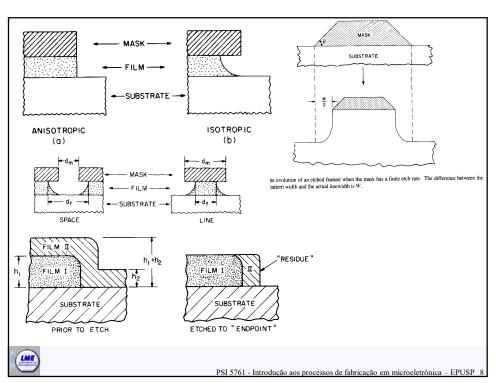
Silício

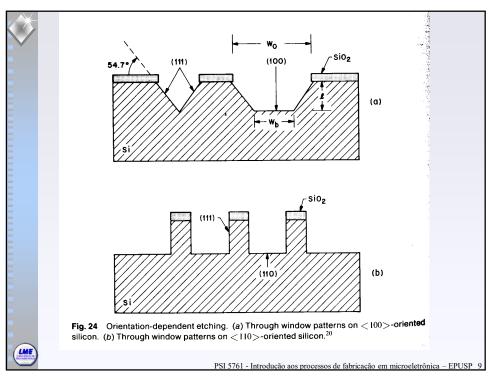

fotoresiste

SiO₂


Silício


Seletividade <<1entre o SiO₂ e o silício => bom


PSI 5761 - Introdução aos processos de fabricação em microeletrônica = EPUSP 4



_

Decapagem Úmida

Vantagens:- Ainda é uma técnica utilizada em processos de baixo custo e alternativa em processos menos críticos;

- Simplicidade;
- Confiabilidade;
- Pode ser muito seletivo;
- isotrópico e anisotrópico;
- utilizado como limpeza de lâminas

Desvantagens: - Falta de Anisotropia;

- Controle dificil durante a operação;
- Gera particulado (sólido);
- Depende da orientação cristalográfica.

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 10

Algumas receitas de decapagens úmidas

- ÓXIDO DE SILÍCIO (SiO₂)

Ácido Fluorídrico (HF) com ou sem Fluoreto de Amônia.

- NITRETO DE SILÍCIO (Si $_2\mathrm{N}_3)$

Ácido Fluorídrico (HF) com ou sem Fluoreto de Amônia. Ácido Fosfórico aquecido a 195 °C.

- SILÍCIO MONO E POLICRISTALINO

Ácido Fluorídrico com Ácido Nítrico. Hidróxido de Potássio.

- ALUMÍNIO

Ácido Fosfórico com Ácido Nítrico.

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 11

11

Semi- Conductor	Etchant	Purpose	Composition	Etch Rate (μm/min)
Si	CP-4A	Polishing or lapping	3 ml HF 5 ml HNO ₃ 3 ml CH ₃ COOH	34.8
	CP-8	Polishing	1 ml HF 5 ml HNO ₃ 2 ml CH ₃ COOH 0.3 g I ₂ /250 ml solution	7.4
	Junction- staining etch	Measurement of Junction depth	HF + 0.1% HNO ₃	_
	Orientation- dependent etch	Groove etching	23.4 wt% KOH 13.3 wt% Propyl alcohol 63.3 wt% H ₂ O	$0.6 \text{ for } < 100 >$ $6 \times 10^{-3} \text{ for } < 111 >$
GaAs	H ₂ SO ₄ -H ₂ O ₂ - H ₂ O System	Polishing	8 ml H ₂ SO ₄ 1 ml H ₂ O ₂ 1 ml H ₂ O	0.8 for <111>-Ga 1.5 for all other
	H ₃ PO ₄ –H ₂ O ₂ – H ₂ O System	Polishing	3 ml H ₃ PO ₄ 1 ml H ₂ O ₂ 50 ml H ₂ O	0.4 for <111>-Ga 0.8 for all other

Material	Etchant Composition	Etch Rate
	28 ml HF	
SiO ₂	170 ml H ₂ O Buffered HF	1000 Å/mir
	113 g NH ₄ F	
	15 ml HF	
	10 ml HNO ₃ P-Etch	120 Å/min
	300 ml H ₂ O	
Si ₃ N ₄	Buffered HF	5 Å/min
	H ₃ PO ₄	100 Å/min
Al	1 ml HNO ₃	350 Å/min
	4 ml CH₃COOH	
	4 ml H ₃ PO ₄	
	1 ml H ₂ O	
Au	4 g KI	l μm/min
Мо	40 ml H ₂ O 5 ml H ₃ PO ₄	0.5 / i
Мо	2 ml HNO ₃	0.5 μm/mir
	4 ml CH ₃ COOH	
	150 ml H ₂ O	
Pt	1 ml HNO ₃	500 Å/min
	7 ml HCl	
	8 ml H ₂ O	
W	34 g KH ₂ PO ₄	1600 Å/mir
	13.4 g KOH	
	33 g K ₃ Fe(CN) ₆ H ₂ O to make 1 liter	

Decapagem Seca (Dry etching)

O aumento nas aplicações dos processos utilizando plasmas, é devido a redução das dimensões dos dispositivos eletrônicos.

A redução é tão grande, que os dispositivos atuais não podem ser obtidos por decapagem úmida.

É um processo que pode ser puramente químico ou químico mais físico. vai depender do tipo de reator utilizado.

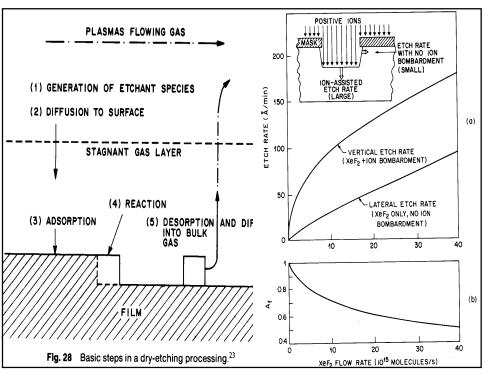
LME

PSI 5761 - Introdução aos processos de fabricação em microeletrônica – EPUSP 14

Quando um filme apresenta problemas para ser removido por decapagem úmida, a decapagem seca consegue remover normalmente.

Por exemplo:

- Fotoresiste;
- Silício Policristalino
- Carbono


Parâmetros Importantes da Decapagem Seca

- potência de RF aplicada
- pressão total
- vazão dos gases
- temperatura do eletrodo
- tensão de VDC

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - FPLISP 15

15

LME

Vantagens da decapagem SECA sobre a ÚMIDA:

- menor sensibilidade a variações de temperatura;
- maior facilidade de interrupção do processo;
- melhor repetibilidade;
- mantém estruturas de pequenas dimensões;
- pode ter menor presença de particulados;
- produz menos resíduo químico;
- Independe da orientação cristalográfica.

Reatores utilizados na Decapagem SECA

- PE PLASMA ETCHIG
- RIE REACTIVE ION ETCHING
- ECR ELECTRON CYCLOTRON RESSONANCE

- ICP - INDUCTEVELY COUPLED PLASMA

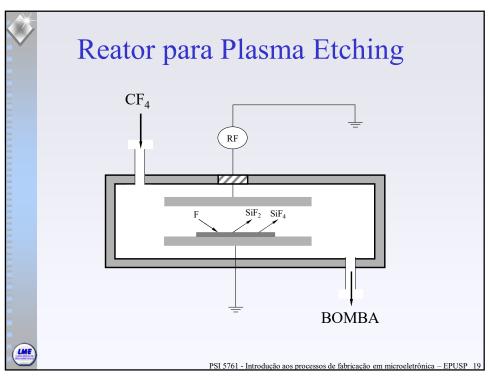
PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 17

17

PLASMA ETCHING - PE

Foi o primeiro reator introduzido na Microeletrônica no início da década de 70.

É baseado em média pressão (10⁻¹ - 10¹ torr), baixa potência de geração de plasma, livre caminho médio das espécies no plasma é baixo comparado com o tamanho do reator.


Dessa forma, a decapagem depende primariamente da reação química entre as espécies reativas do plasma do que ataque iônico.

Pode-se dizer que o processo é semelhante à decapagem úmida.

Geralmente é um processo de decapagem isotrópico. (ruim!!)

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 18

Mecanismo no PE – Decapagem de silício

A superfície da amostra é atingida por radicais ou átomos.

Íons positivos chegam com baixa energia e não contribuem para a decapagem.

$$2 e^{-} + 2 CF_{4} \longrightarrow CF_{3} + CF_{2} + 3 F + 2 e^{-}$$

$$F + CF_2 \longrightarrow CF_3$$
 (recombinação)

$$4 F + Si \longrightarrow SiF_4$$
 (decapagem do Si)

$$n \; CF_2 + superficie \; \longrightarrow \! (CF_2)_n \qquad \quad (polimerização)$$

Dessas espécies, a espécie atômica encontra-se em maior concentração.

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 20

RIE - REACTIVE ION ETCHING

É a técnica mais largamente utilizada em decapagem seca.

É baseada na combinação de atividade química das espécies reativas geradas no plasma com efeitos físicos causados por bombardeamento iônico.

O bombardeamento iônico ocorre devido a polarização negativa que é gerada no eletrodo da amostra por aplicação de RF. Dessa forma, íons positivos são atraídos com alta energia. esse efeito é semelhante ao *sputtering*.

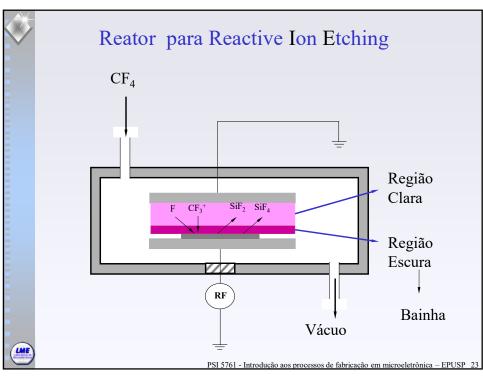
Os íons possuem alta energia devido às menores pressões utilizadas no RIE, de 10 - 200 mtorr.

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 21

21

Mecanismo no RIE

No processo RIE, a superfície da amostra está exposta a íons positivos, radicais ou átomos. O efeito dos radicais e átomos é o mesmo que no *plasma etching*.


O bombardeamento iônico auxilia a reação química, da ordem de até **duas ordens de magnitude**.

O bombardeamento iônico ajuda através da:

- formação de ligações incompletas
- criação de "sítios ativos"
- reorganização de moléculas
- remoção de produtos voláteis da superfície

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 22

Exemplo de reações com RIE

Decapagem de fotoresiste

$$C_xH_yO_z + O_2 \longrightarrow CO + CO_2 + H_2O +$$

Processo químico, por isso não necessita de bombardeamento iônico.

Decapagem de Óxido de Silício

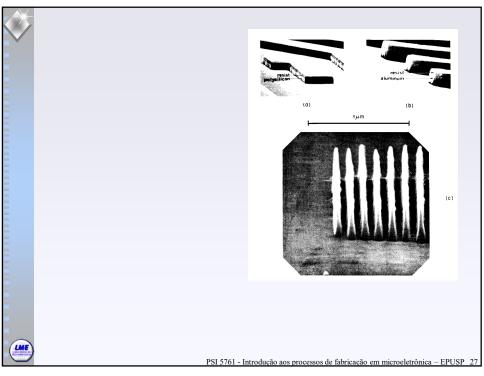
Em geral a taxa de corrosão do silício é MAIOR do que a do ÓXIDO DE SILÍCIO. Para AUMENTAR a Seletividade é utilizado polímero, gerado durante a própria corrosão, para PROTEGER as paredes do silício.

$$CF_4 + H_2 + e^- \longrightarrow C_X H_Y F_3 + F + e^-$$

 $SiO_2 + 4 F \longrightarrow SiF_4 + 2 O$

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 24

A taxa de deposição de polímero é função da relação c/f, da pressão, da potência, da área exposta de fotorresiste e da taxa de liberação de oxigênio.


Comumente é usado o $CF_4 + H_2$, que aumenta a taxa de corrosão do óxido, mantendo a seletividade com o silício.

PSI 5761 - Introdução aos processos de fabricação em microeletrônica – EPUSP

25

Decapagem de Silício Utilizado na decapagem de porta de silício policristalino SILÍCIO POLI Decapagem mais efficiente através da utilização de gases fluorados: CF₄, SF₆. PSI 5761 - Introdução aos processos de fabricação em microeletrônica – EPUSP 26

Decapagem de Alumínio

$$A1 + CCl_4 \longrightarrow AlCl_3 +$$

Os produtos AlF₃ E AlBr₃ não são voláteis, por isso apenas gases clorados podem ser utilizados.

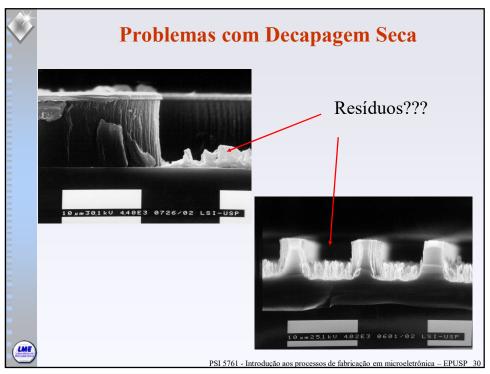
O principal problema deste tipo de decapagem é a remoção do Al₂O₃, que é bastante fino mas muito estável, sendo difícil de ser removido.

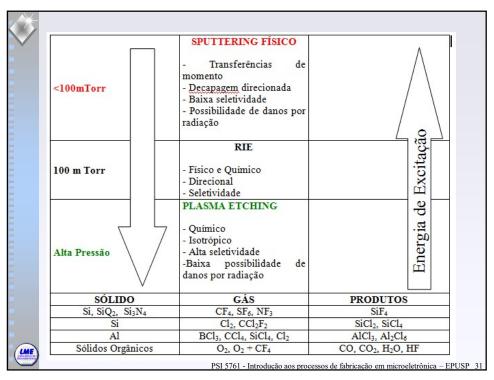
Problema a ser evitado é a formação de HCl, da reação do Cl e vapor d'água do ambiente.

LIME

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 28

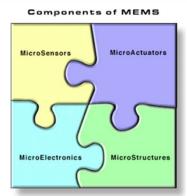
Caracterização do Plasma


Independente da finalidade do plasma, este pode ser caracterizado por:


- cor do plasma visual
- espectrometria de massa
- espectroscopia de emissão
- fluorescência induzida por laser
- sonda de Langmuir

PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 29

20



MEMs – Microelectromechanical system

Sistemas microeletromecânicos

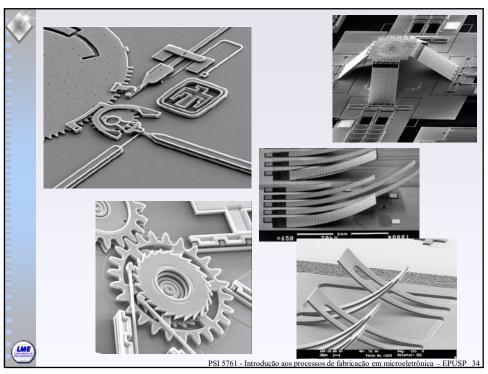
(MEMS) é a tecnologia de dispositivos microscópicos, particularmente aqueles com partes móveis. Ela funde a escala nano em sistemas nanoeletromecânicos (NEMS) e nanotecnologia.

É uma tecnologia que de forma geral pode ser definida como sendo elementos mecânicos e electro-mecânicos miniaturizados (isto é, dispositivos e estruturas) que são feitos usando as técnicas de microfabricação.

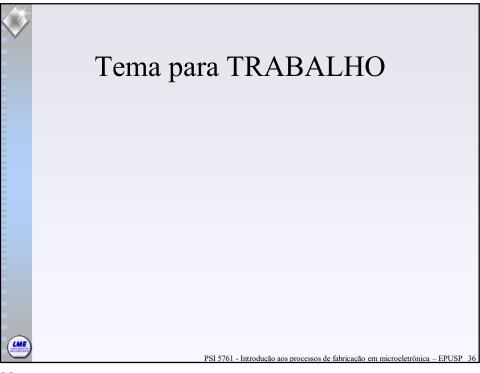
PSI 5761 - Introdução aos processos de fabricação em microeletrônica - EPUSP 32

MEMs

As dimensões físicas críticas dos dispositivos de MEMS podem variar de **bem abaixo de um mícron** na extremidade inferior do espectro dimensional, até vários milímetros.


Da mesma forma, os tipos de dispositivos MEMS podem variar de estruturas relativamente simples, sem elementos móveis, a sistemas eletromecânicos extremamente complexos, com múltiplos elementos móveis sob o controle de microeletrônica integrada.


O principal critério de MEMS é que tenha **pelo menos** alguns elementos com algum tipo de **funcionalidade mecânica**, independentemente de esses elementos poderem ou não se mover.


Nos MEMs a decapagem adquire um papel central na fabricação dos dispositivos.

33

