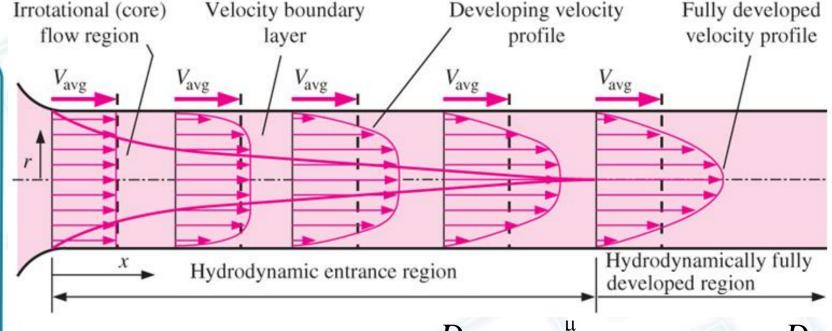
ENGENHARIA DE BIOSSISTEMAS — FZEA / USP ZEB1027 FENÔMENOS DE TRANSPORTE

TRANSFERÊNCIA DE CALOR: CONVECÇÃO FORÇADA INT.


- ESCOAMENTO INTERNO: CAMADA LIMITE
- ESCOAMENTO INTERNO EM REGIME LAMINAR
- **ESCOAMENTO INTERNO EM REGIME TURBULENTO**

Escoamento interno: camada limite

N° de Reynolds:
$$\operatorname{Re}_{D} = \frac{\rho v_{\operatorname{avg}} D_{h}}{\mu} \xrightarrow{v = \frac{\mu}{\rho}} \operatorname{Re}_{D} = \frac{v_{\operatorname{avg}} D_{h}}{v}$$

Nº de Prandtl:
$$Pr = \frac{v}{\alpha}$$

Laminar: $Re_D < 2000-2400$

Turbulento: $Re_D > 4000$

Escoamento em regime laminar

	b/a	Nu _T	Nu _{H1}	Nu _{H2}
		3.657	4.364	4.364
	1	3.34	4.002	3.862
		2.47	3.111	1.892
b a	1	2.976	3.608	3.091
b a	1/2	3.391	4.123	3.017
<i>a</i>	1/4	3.66	5.099	4.35
b = a	1/8	5.597	6.490	2.904
<i>a</i>	0	7.541	8.235	8.235
<i>a</i>	0	4.861	5.385	_

Número de Nusselt p/ escoamento laminar desenvolvido (hidrodinâmica e termicamente) no interior de dutos com diferentes seções transversais, para as seguintes condições térmicas junto à parede externa do duto:

Nu_T: temperatura superficial uniforme

Nu_{H1}: fluxo de calor uniforme em duto de material bom condutor

Nu_{H2}: fluxo de calor uniforme em duto de material mau condutor

Escoamento em regime laminar

	a/b	Nusselt Number		Friction Factor
Tube Geometry	or θ°	$T_s = Const.$	$\dot{q}_s = \text{Const.}$	f
Circle	1	3.66	4.36	64.00/Re
Rectangle	<u>a/b</u> 1 2 3	2.98 3.39	3.61 4.12	56.92/Re 62.20/Re
→ a →	3 4 6 8	3.96 4.44 5.14 5.60 7.54	4.79 5.33 6.05 6.49 8.24	68.36/Re 72.92/Re 78.80/Re 82.32/Re 96.00/Re
Ellipse	2 4 8 16	3.66 3.74 3.79 3.72 3.65	4.36 4.56 4.88 5.09 5.18	64.00/Re 67.28/Re 72.96/Re 76.60/Re 78.16/Re
Isosceles Triangle	θ 10° 30° 60° 90° 120°	1.61 2.26 2.47 2.34 2.00	2.45 2.91 3.11 2.98 2.68	50.80/Re 52.28/Re 53.32/Re 52.60/Re 50.96/Re

Escoamento em regime turbulento

Tubos hidraulicamente lisos

— Correlação de Colburn
$$\begin{cases} {\rm Re_D}>10^4 &, \quad 0.7<{\rm Pr}<160\\ L/D_{\rm h}>60 &, \quad T=T_{\rm m\acute{e}dia} \end{cases}$$

$$Nu_D = 0.023 Re_D^{4/5} Pr^{1/3}$$

— Correlação de Dittus-Boelter $\begin{cases} {\rm Re_D}>10^4 &, \quad 0.7<{\rm Pr}<160\\ L/D_{\rm h}>60 &, \quad T=T_{\rm m\acute{e}dia} \end{cases}$

$$Nu_{D} = 0.023 Re_{D}^{4/5} Pr^{n}$$
, $n = \begin{cases} 0.4 \text{ se } T_{s} > T_{\infty} \\ 0.3 \text{ se } T_{s} < T_{\infty} \end{cases}$

Escoamento em regime turbulento

Tubos hidraulicamente lisos / tubos rugosos

– Exemplo: correlação de Petukhov
$$\begin{cases} 10^4 < Re_{_D} < 5 \times 10^6 \\ 0.5 < Pr < 2000 \end{cases}$$

$$Nu_{D} = \frac{(f/8) Re_{D} Pr}{1.07 + 12.7(f/8)^{1/2} (Pr^{2/3} - 1)} \qquad (T = T_{m\text{\'edia}})$$

– Exemplo: correlação de Gnielinski $\begin{cases} 3000 < \text{Re}_{\text{D}} < 5 \times 10^6 \\ 0.5 < \text{Pr} < 2000 \end{cases}$

$$Nu_{D} = \frac{(f/8)(Re_{D} - 1000) Pr}{1 + 12.7(f/8)^{1/2}(Pr^{2/3} - 1)} \qquad (T = T_{m\text{\'edia}})$$

Fator de atrito f → diagrama de Moody / correlações empíricas

