
https://doi.org/10.1007/s10707-021-00455-w

Porting disk-based spatial index structures
to flash-based solid state drives

Anderson Chaves Carniel1 ·George Roumelis2 ·Ricardo R. Ciferri1 ·
Michael Vassilakopoulos2 ·Antonio Corral3 ·Cristina D. Aguiar4

Received: 26 April 2020 / Revised: 9 December 2020 / Accepted: 13 October 2021 /

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Indexing data on flash-based Solid State Drives (SSDs) is an important paradigm recently
applied in spatial data management. During last years, the design of new spatial access
methods for SSDs, named flash-aware spatial indices, has attracted the attention of many
researchers, mainly to exploit the advantages of SSDs in spatial query processing. eFIND
is a generic framework for transforming a disk-based spatial index into a flash-aware one,
taking into account the intrinsic characteristics of SSDs. In this article, we present a sys-
tematic approach for porting disk-based data-driven and space-driven access methods to
SSDs, through the eFIND framework. We also present the actual porting of representatives
data-driven (R-trees, R*-trees, and Hilbert R-trees) and space-driven (xBR+-trees) access
methods through this framework. Moreover, we present an extensive experimental evalu-
ation that compares the performance of these ported indices when inserting and querying
synthetic and real point datasets. The main conclusions of this experimental study are that
the eFIND R-tree excels in insertions, the eFIND xBR+-tree is the fastest for different types
of spatial queries, and the eFIND Hilbert R-tree is efficient for processing intersection range
queries.

Keywords Spatial Indexing · Spatial Access Methods · Flash-aware Spatial Index ·
Flash-based Solid State Drive

1 Introduction

Many database applications require the representation, storage, and management of spatial
or geographic information to enrich data analysis. Spatial database systems and Geographic
Information Systems (GIS) provide the foundation for these applications and often employ
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spatial index structures to speed up the processing of spatial queries [1–3], such as inter-
section range queries and point queries. The goal of a spatial index is to reduce the search
space by avoiding the access of objects that certainly do not belong to the final answer of
the query. In general, near spatial objects are grouped into index pages that are organized in
a hierarchical structure. To this end, two main approaches are employed [1]: (i) data parti-
tioning, and (ii) space partitioning. Spatial indices based on the first approach organize the
hierarchy oriented by the groups formed from the spatial objects; thus, they are termed data-
driven access methods. Examples include the R-tree [4] and its variants like the R*-tree [5]
and the Hilbert R-tree [6]. Spatial indices belonging to the second approach organize the
hierarchy oriented by the division of the space in which the objects are arranged; thus, they
are termed space-driven access methods. For instance, Quadtree-based indices [7] such as
the xBR+-tree [8].

The efficient indexing of multidimensional points has been the main focus of several
indices because of the use of points in real spatial database applications [1–3]. In general,
the majority of these indices assume that the point objects should be indexed in magnetic
disks (i.e., Hard Disk Drives - HDDs). Hence, they are termed disk-based spatial indices
since they consider the slow mechanical access and the high cost of search and rotational
delay of disks in their design.

On the other hand, advanced database applications are interested in using modern storage
devices like flash-based Solid State Drives (SSDs) [9–11]. This includes spatial database
systems that employ spatial indices to efficiently retrieve spatial objects (i.e., points) stored
in SSDs [12–15]. The main reason for this interest is because SSDs, in contrast to HDDs,
have a smaller size, lighter weight, lower power consumption, better shock resistance, and
faster reads and writes.

However, SSDs have introduced a new paradigm in data management because of their
intrinsic characteristics [16–20]. A well-known characteristic is the asymmetric cost of
reads and writes, where a write requires more time and power consumption than a read.
Further, SSDs are able to write data to empty pages only, which means that updating data
in previously written pages requires an erase-before-update operation. Other factors that
impact SSD performance are the processing of interleaved reads and writes, and the exe-
cution of reads on frequent locations. These factors are related to the internal controls of
SSDs, such as its internal buffers and read disturbance management [19].

To deal with the intrinsic characteristics of SSDs, spatial indices specifically designed
for SSDs, termed here as flash-aware spatial indices, have been proposed in the literature.
Among existing flash-aware spatial indices (see Section 2), eFIND-based indices [21, 22]
distinguish themselves. eFIND is a generic framework that transforms a disk-based spatial
index into a flash-aware spatial index. It is based on a distinct set of design goals that
provides guidelines to deal with the intrinsic characteristics of SSDs. The effectiveness of
these guidelines has been validated through experimental evaluations. Another advantage
of eFIND is that its data structures do not change the structure of the index being ported,
requiring a low-cost integration when implementing eFIND in spatial database systems and
GIS.

Although the advantages of eFIND, designing an efficient flash-aware spatial index
remains a challenging task. In fact, there are three open problems. First, it is still unclear
how to systematically port disk-based spatial indices to SSDs in a way that they exploit the
advantages of SSDs. This leads to the second problem, how in-memory structures of eFIND
should be adapted to fit well with the structure of the underlying index, which might be a
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data- or space-driven access method. Finally, the third problem refers to the lack of a per-
formance study that identifies the best index to handle points on SSDs. That is, a study that
identifies the best hierarchical structure for building indices and for processing spatial queries.

In this article, our goal is to solve these problems by introducing a novel systematic
approach for porting disk-based spatial index structures to SSDs. The systematic approach
is based on the characterization of the types of operations that different indexing strategies
(i.e., data partitioning and space partitioning) can perform on index pages. In this sense,
we focus on identifying when reads and writes are performed by index operations, such
as insertions and queries. With this characterization, we leverage an extended and gener-
alized version of the eFIND’s data structures and algorithms to implement our systematic
approach. We analyze and validate our systematic approach by porting an expressive set of
disk-based spatial index structures to SSDs: (i) the R-tree, (ii) the R*-tree, (iii) the Hilbert
R-tree, and (iv) the xBR+-tree. Since they are hierarchical structures, in the remainder of
this article, we use node as an equivalent term to index page.

As a result, we highlight the main contributions of this article as follows:

– development of a systematic approach that provides the needed guidelines to port a
disk-based spatial index to SSDs;

– application of the systematic approach using eFIND for porting the disk-based spatial
indices R-tree, R*-tree, Hilbert R-tree, and xBR+-tree to SSDs; thus, we show the cre-
ation of the flash-aware spatial indices eFIND R-tree, eFIND R*-tree, eFIND Hilbert
R-tree, and eFIND xBR+-tree;

– analysis of an extensive experimental evaluation that compares the performance of the
flash-aware spatial indices when inserting and querying points from synthetic and real
datasets;

– identification of the eFIND R-tree as the best flash-aware spatial index to handle inser-
tions, the eFIND xBR+-tree as an efficient structure to execute several types of spatial
queries, and the eFIND Hilbert R-tree as an efficient indexing scheme for processing
intersection range queries.

The rest of this article is organized as follows. Section 2 surveys related work. Section 3
summarizes the spatial index structures employed in this article and a running example.
Section 4 generalizes eFIND aiming at its incorporation into our systematic approach.
Section 5 presents our systematic approach for porting disk-based spatial indices to SSDs.
Section 6 details the conducted experiments. Finally, Section 7 concludes the article and
presents future work.

2 Related work

This article introduces a systematic approach, which follows the movement of general
methods for indexing data, such as GiST [23, 24] and SP-GiST [25]. We present a brief
overview of them in Section 2.1. In Section 2.2, we discuss some approaches that port one-
dimensional index structures to SSDs. Then, we survey flash-aware spatial indices based on
their underlying design: (i) approaches designed for porting a specific type of disk-based
spatial index to SSDs (Section 2.3), and (ii) approaches that are generic and thus port any
disk-based index structure to SSDs (Section 2.4).

255Geoinformatica (2022) 26:253–298



2.1 Generalized search trees

GiST is a data structure that is extensible in terms of data types and definition of index
operations. GiST requires the registration of six key methods that encapsulate the structures
and behavior of the underlying index structures. For instance, a spatial database system can
implement R-trees and variants by registering (i.e., implementing) such methods of GiST.
GiST mainly assumes data-driven access methods. To implement space-driven access meth-
ods in a general way, SP-GiST can be deployed. SP-GiST defines a set of methods that take
into account the similarities of the space-driven access methods, which are mainly related
to the internal structure of the tree. In addition, it specifies a set of methods associated with
the behavior of the underlying index. GiST and SP-GiST offer algorithms to manipulate the
index structures, such as queries, insertions, and deletions, by invoking their key methods
as needed.

Similar to GiST and SP-GiST, our systematic approach describes general algorithms for
manipulating index operations in data-driven and space-driven access methods. However,
differently from them, our systematic approach focuses on indexing spatial objects in SSDs
by identifying how nodes are manipulated by the index operations. With this, we are able
to provide implementations that take into account the intrinsic characteristics of SSDs. In
this article, eFIND is deployed to implement such manipulations since eFIND exploits the
advantages of SSDs and shows good performance results compared to FAST, its closest
competitor. More details on eFIND and FAST are given in Section 2.4.

2.2 Approaches to porting one-dimensional index structures to SSDs

Index structures are widely employed to accelerate information retrieval. Such structures
applied to alphanumeric data lead to one-dimensional index structures. For HDDs, we
can cite the traditional B-tree and its variants, the B+-tree and the B*-tree, as exam-
ples [26]. With the advances of SSDs, approaches to port one-dimensional index structures
to these storage devices have been proposed in the literature; we call them flash-aware one-
dimensional indices. A common strategy employed by flash-aware one-dimensional indices
is to mitigate the negative effects of the poor performance of random writes. Here, we
describe key ideas of some existing one-dimensional index structures that port the B-tree
(or some variant) to flash memory or SSDs (see [11] for a survey).

The Lazy-Adaptive tree [27] ports the B+-tree to raw flash devices by logging updates
in data structures stored in the flash memory. Each data structure is associated with a node
of the B+-tree. Updates of a node are appended as log records, which are later mapped in
a table to facilitate their access. Hence, this flash-aware one-dimensional index increases
the number of access to recover a node for reducing the number of random writes since the
updates are possibly scattered in the flash memory. Other one-dimensional indices store the
updates in a write buffer and flush them in a batch when space is needed. The B-tree over
the FTL [28] is based on the Flash Translation Layer (FTL) [29]. This index performs a
mapping between logical addresses of the FTL and the modified nodes of the B-tree in order
to organize the write buffer. Then, the modified nodes are packed in blocks, based on the
logical blocks of the FTL, in order to perform a flushing operation. The FD-tree [30] orga-
nizes the write buffer in different levels of the tree, respecting ascending order. However,
depending on the height of the B-tree, the search time may be negatively impacted. Some
improvements of the FD-tree are also introduced in [31], which focus on the concurrent
control of B-trees in SSDs. The read/write optimized B+-tree [32] also ports the B+-tree to
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SSDs. It allows overflowed nodes to reduce random writes and leverages Bloom filters to
reduce extra reads to these overflowed nodes.

This article differs from these works since we propose a systematic approach to port
multidimensional access methods to SSDs. Our approach takes into account spatial index
structures based on space and data partitioning.

2.3 Specific approaches to porting spatial index structures to SSDs

The flash-aware spatial indices created by the specific approaches widely employ a write
buffer to avoid random writes. Whenever the write buffer is full, a flushing operation is
performed. We detail the main characteristics of these flash-aware spatial indices as follows.

The RFTL [33] ports the R-tree to SSDs and its write buffer is based on the mapping
provided by the FTL. That is, it correlates the logical flash pages managed by the FTL with
the modified entries of a node of the R-tree. However, the main problem of RFTL is its
flushing operation because it flushes all modifications stored in the write buffer, requiring
high elapsed times.

The MicroGF [34] ports the grid-file [35] to flash-based sensor devices. Due to the low
processing capabilities of sensor devices, this index deploys a write buffer only and does
not provide solutions for other aspects inherent to SSDs, such as the interference between
reads and writes.

The LCR-tree [36] leverages a write buffer by using a log-structured format. The benefit
of this format is that retrieving a node from the R-tree is optimized and consequently the
spatial query processing is improved. However, the log-structured format requires an extra
cost of management. Also, the LCR-tree faces the same problems as the RFTL, such as the
execution of expensive flushing operations.

The F-KDB [37] ports the K-D-B-tree [38] to SSDs by employing a write buffer that
stores modified entries as log entries. Logging entries of a node might be stored in different
flash pages. Hence, a table in the main memory is used to keep the correspondence between
logging entries and its node. The main problem of the F-KDB is that retrieving nodes is a
complex operation, requiring a possibly high number of random reads to access the logging
entries.

The FOR-tree [39] modifies the structure of the R-tree by allowing overflowed nodes
and thus, it abolishes split operations. It also defines a specialized flushing operation that
picks some modified nodes to be written to the SSD based on their number of modifications
and recency of their modifications. The main problem of the FOR-tree is the management
of overflowed nodes. Whenever a specific number of accesses in an overflowed node is
reached, a merge-back operation is invoked. This operation eliminates overflowed nodes by
inserting them into the parent node, growing up the tree if needed. However, the number
of accesses of an overflowed root node is never incremented in an insert operation. As a
consequence, the construction of a FOR-tree, inserting one spatial object by time, forms an
overflowed root node instead of a hierarchical structure. This critical problem disallowed us
to create spatial indices over large and medium spatial datasets.

The Grid file for flash memory and LB-Grid [40, 41] employ a buffer strategy based on
the Least Recently Used (LRU) [42] replacement policy to port the grid file to SSDs. They
store indexed spatial objects in buckets whose modifications are managed by a logging-
based approach; thus, they deploy a write buffer. The buffering scheme is divided into
different regions. The first region, called hot, stores recently accessed pages, whereas
the second region, called cold, stores the remaining pages. A flushing operation writes

257Geoinformatica (2022) 26:253–298



to the SSD only those pages that are classified as cold pages. However, the quantity of
modifications is not considered, leading to a possibly high number of flushing operations.

Unfortunately, many intrinsic characteristics of SSDs are not taken into account by the
aforementioned flash-aware spatial indices. First, they do not mitigate the negative impact
of interleaved reads and writes. Second, they assume that reads are the fastest operations
in SSDs. However, this is not always the case because of the read disturbance manage-
ment of SSDs. This management requires an extra computational time of SSDs to avoid
read disturbances, which occur if multiple reads are issued on the same flash page without
any previous erase. Consequently, such reads can require a long latency comparable to the
latency of writes, as experimentally showed in [19]. Another problem is the lack of data
durability. This means that the modifications stored in the write buffer are lost after a system
crash or power failure. On the other hand, we propose a generic approach to porting disk-
based spatial indices to SSDs that is based on eFIND (see Section 2.4). Thus, such ported
indices do not face these problems.

Other approaches in the literature propose specific flash-aware algorithms for the xBR+-
tree, such as spatial batch-queries [43] and bulk-loading strategies [44]. Given a set of spatial
queries, an algorithm for spatial batch-queries organizes the nodes to be visited in order to
read them as batch operations. Given a set of points, an algorithm for bulk-loading creates an
index as an atomic operation attempting to optimize the tree structure. Thus, such studies are
focused on very specific types of algorithms involving the xBR+-tree. On the other hand, in
this article, we focus on providing a systematic approach to port any spatial index to SSDs.
Hence, our solutions can be employed to process transactions like insertions, deletions, and
queries in spatial database systems and GIS.

Our previous work [45, 46] ports the xBR+-tree to SSDs using the generic frameworks
eFIND and FAST (Section 2.4); thus creating the flash-aware spatial indices eFIND xBR+-
tree and FAST xBR+-tree, respectively. The experiments show that the eFIND xBR+-tree
provides the best results because it fits well with the properties and structural constraints of
the xBR+-tree (see Section 3.4). However, to accomplish this porting, some modifications
in the eFIND’s data structures are performed. A limitation of the previous work is that these
modifications are not generalized in a form that can be applied to other disk-based spatial
index structures. Other limitations are related to the use of eFIND, as detailed in Section 2.4.

2.4 General approaches to porting spatial index structures to SSDs

Generic frameworks are promising tools for porting disk-based spatial indices to SSDs. In
general, they generalize the write buffer to be used by any underlying index. Further, they
also provide solutions for guaranteeing data durability by sequentially storing index modifi-
cations contained in the write buffer into a log-structured file. This file is then employed to
reconstruct the write buffer after a fatal problem. Further, generic frameworks do not change
the structure of the underlying index, requiring a low-cost integration with spatial database
systems and GIS. Due to these advantages, this article leverages generic frameworks.

FAST [47] mainly focuses on reducing the number of writes. Hence, FAST provides a
specialized flushing algorithm that picks a set of nodes, termed flushing unit, to be written to
the SSD. A flushing unit is selected by using a flushing policy. However, FAST faces several
problems. First, its flushing algorithm might pick nodes without modifications, resulting
in unnecessary writes. This is due to the static creation of flushing units as soon as nodes
are created in the index. Second, its write buffer stores the modifications in a list possibly
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containing repeated entries, impacting negatively the performance of retrieving modified
nodes. Third, FAST does not improve the performance of reads. Finally, it does not provide
a solution to reduce the negative impact of interleaved reads and writes.

eFIND [21, 22] is based on a set of design goals that consider the intrinsic characteris-
tics of SSDs to exploit the advantages of these storage devices. To accomplish the design
goals, eFIND includes: (i) a generic write buffer that deploys efficient data structures to
handle index modifications, (ii) a read buffer that caches frequently accessed nodes (i.e.,
index pages), (iii) a temporal control that avoids interleaved reads and writes, and (iv) a
log-structured approach that guarantees data durability. Further, eFIND specifies a flushing
operation that dynamically creates flushing units to be written to the SSD. Because of these
data algorithms and strategies, experimental evaluations show that eFIND is more efficient
than FAST. However, it is still unclear how to use eFIND to port disk-based spatial indices
based on different techniques, such as data partitioning and space partitioning. This is due
to the use of eFIND for porting only two indices, the R-tree [22] and the xBR+-tree [45,
46]. Finally, there is a lack of a performance study that indicates the most efficient spatial
index structure ported by eFIND.

Differently from [21, 22], which propose a framework for specifying flash-aware spatial
index structures based on disk-based structures, and going beyond our previous works [45,
46], which port a specific space-driven access method to SSDs, in this article:

– We propose a novel systematic approach for porting disk-based data-driven and space-
driven access methods to SSDs, in general. For this, we characterize how the index
operations perform reads from and writes to the SSD.

– We implement the systematic approach by using FAST and eFIND. We particularly
focus on describing how eFIND fits in the systematic approach due to its superior
performance compared to FAST (see Section 6).

– We extend and generalize eFIND’s data structures and algorithms in order to implement
the systematic approach. The extensions and generalizations are not focused on one
type of spatial index only (such as in [22, 46]). They are conducted to deal with different
aspects of the underlying disk-based spatial index structures. For instance, the sorting
property of nodes’ entries of the Hilbert R-tree and the xBR+-tree. Hence, the data
structures are extended to store groups of attributes that are needed to process internal
algorithms of the underlying index and to process algorithms of eFIND.

– We show how to apply the systematic approach implemented by eFIND to port the R-
tree, the R*-tree, the Hilbert R-tree, and the xBR+-tree by using a running example. As
a result, we specify the eFIND R-tree, the eFIND R*-tree, the eFIND Hilbert R-tree,
and the eFIND xBR+-tree.

– We conduct an extensive experimental evaluation that compares the implementation of
our systematic approach by using FAST and eFIND when porting the R-tree, the R*-
tree, the Hilbert R-tree, and the xBR+-tree. This performance evaluation considers: (i)
two real datasets, (ii) two synthetic datasets, (iii) two SSDs, and (iv) three different
types of workload.

3 An overview of spatial index structures

In this section we summarize four spatial index structures employed in this article. They
are: (i) the R-tree (Section 3.1), (ii) the R*-tree (Section 3.2), (iii) the Hilbert R-tree
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(Section 3.3), and (iv) the xBR+-tree (Section 3.4). For each spatial index, we provide its
underlying structure and key points for manipulating the indexed spatial objects. Finally, we
deploy them to our running example (Section 3.5).

3.1 The R-tree

The R-tree [4] is a classical spatial index that organizes the minimum bounding rectangles
(MBRs) of the indexed spatial objects in a hierarchical structure; thus, it is a data-driven
access method. Figure 1a depicts the hierarchical representation of an R-tree that indexes 18
points (i.e., p1 to p18), while Fig. 1b and c depict the hierarchical and graphical representa-
tion of an R-tree that indexes a modified set of 18 points according to our running example
(i.e., the previous set of points from which p19 and p20 have been added, and p6 and p2
have been removed).

A node has a minimum and a maximum number of entries indicated by m and M

respectively, where m ≤ M
2 . Entries are in the format (id, r). For leaf nodes, id is a

unique identifier that provides direct access to the indexed spatial object represented by
its MBR r . As for internal nodes, id is the node identifier that supplies the direct access
to a child node, and r corresponds to the MBR that covers all MBRs in the child node’s
entries.

The searching algorithm of the R-tree descends the tree examining all nodes that satisfy
a given topological predicate considering a search object. A typical query is the intersec-
tion range query (IRQ), which returns all spatial objects that intersect a rectangular-shaped

(a) Initial hierarchical representation (b) Final hierarchical representation

(c) Final graphical representation

Fig. 1 An R-tree in hierarchical representation (a) and the R-tree resulting after applying a set of modifica-
tions on it in hierarchical (b) and graphical (c) representations. The hierarchical representation highlights the
performed modifications in gray
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object called query window. Inserting a spatial object into an R-tree first involves the choice
of a leaf node to accommodate its corresponding entry (id, r). The entry is directly inserted
in the chosen leaf node if it has enough space. Otherwise, a split operation is performed,
resulting in the creation of a new leaf node that is later inserted as a new entry in the parent
node of the chosen leaf node. A chain of splits might be performed along with the levels of
the R-tree, requiring the creation of a new root node if needed.

3.2 The R*-tree

The R*-tree [5] is a well-known R-tree variant that aims at improving the hierarchical
organization of the indexed spatial objects. Figure 2 depicts the hierarchical and graphical
representations of the R*-tree that are analogous to the R-tree ones of Fig. 1. The nodes of
the R*-tree have the same structure as the R-tree.

The R*-tree attempts to minimize: (i) the area covered by a rectangle of an entry, (ii)
the overlapping area between rectangles of entries, (iii) the margin of the rectangle of an
entry, and (iv) the storage utilization. To accomplish them, the R*-tree improves the insert
operation of the R-tree and provides a different split algorithm.

In special, the R*-tree establishes a reinsertion policy (usually 30%), which picks a set
of entries of an overflowed node and reinserts them into the tree instead of performing a
split. The searching algorithm of the R-tree is not changed.

(a) Initial hierarchical representation (b) Final hierarchical representation

(c) Final graphical representation

Fig. 2 An R*-tree in hierarchical representation (a) and the R*-tree resulting after applying a set of modifi-
cations on it in hierarchical (b) and graphical (c) representations. The hierarchical representation highlights
the performed modifications in gray
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3.3 The Hilbert R-tree

The Hilbert R-tree [6] is another R-tree variant that employs the Hilbert curve when index-
ing spatial objects. The Hilbert R-tree extends the structure of internal nodes of the R-tree
(Section 3.1). An internal node consists of entries in the format (id, r, lhv), where id and r

have the same meaning as the entries of internal nodes of the R-tree and lhv is the largest
Hilbert value among the child node’s entries. Leaf nodes of the Hilbert R-tree have the same
format as the leaf nodes of the R-tree but are sorted by the Hilbert values of their MBRs.

Figure 3 depicts the hierarchical and graphical representations of a Hilbert R-tree in a
similar way to the Figs. 1 and 2. Because of the extra element in internal nodes and con-
sidering that every node has a fixed number of bytes, the maximum capacity of an internal
node might be lesser than the maximum capacity of a leaf node. This can be noted in Fig. 3,
where each internal node can store at most 2 entries.

The structure of the Hilbert R-tree permits that the searching algorithm is the same as
the R-tree, and that the insertion is similar to the insertion of a B-tree [42]. It also includes a
specific algorithm for handling overflows, which either involves the redistribution of entries
among s cooperating siblings of the overflowed node or the execution of an s-to-s + 1 split
policy. Usually, s is equal to 2.

(b) Final hierarchical representation

(c) Final graphical representation

(a) Initial hierarchical representation

Fig. 3 A Hilbert R-tree in hierarchical representation (a) and the Hilbert R-tree resulting after applying a set
of modifications on it in hierarchical (b) and graphical (c) representations. The hierarchical representation
highlights the performed modifications in gray
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3.4 The xBR+-tree

The xBR+-tree [8] is a hierarchical spatial index based on the regular decomposition of
space of Quadtrees [7] able to index multi-dimensional points. Hence, it is a space-driven
access method. For two-dimensional points, the xBR+-tree decomposes recursively the
space by 4 equal quadrants, called sub-quadrants.

Figure 4 depicts the hierarchical and graphical representations of an xBR+-tree on the
same objects of Figs. 1, 2, and 3. Differently from the R-tree-based indices previously dis-
cussed (Sections 3.1-3.3), the coordinates on the vertical axis (i.e., y) are incremented from
top to bottom. Hence, its origin point is the top-leftmost point in the space (as indicated in
Fig. 4c).

Leaf nodes of the xBR+-tree contain entries in the format (id, p), where p is the point
object and id is a pointer to the register of p. These entries are sorted by x-axis coordi-
nates of the points. Internal nodes consist of entries in the following format (id, DBR, qside,
shape). Each entry of an internal node refers to a child node that is pointed by id and repre-
sents a sub-quadrant of the original space, minus some smaller descendent sub-quadrants,

(a) Initial hierarchical representation (b) Final hierarchical representation

(c) Final graphical representation

Fig. 4 An xBR+-tree in hierarchical representation (a) and the xBR+-tree resulting after applying a set
of modifications on it in hierarchical (b) and graphical (c) representations. The hierarchical representation
highlights the performed modifications in gray
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i.e., ones corresponding to the next entries of the internal node. DBR refers to the data
bounding rectangle that minimally encompasses the points stored in such a sub-quadrant.
qside stores the side length of the sub-quadrant of the entry. Last, shape is a flag that indi-
cates if the sub-quadrant is either a complete or non-complete square. Each internal node
also stores additional metadata in the format (o, s), where o is the origin point of the sub-
quadrant and s is the side length. The entries of an internal node are sorted by the Quadtree
addresses of their sub-quadrants. Each address is formed by directional digits 0, 1, 2, and 3
that respectively symbolize the NW, NE, SW, and SE sub-quadrants of a relative space.

The searching algorithm of the xBR+-tree is similar to the R-tree, starting from the
root, it descends the tree examining all nodes that satisfy the search criterion. Inserting a
point into an xBR+-tree first involves the choice of a leaf node to accommodate its cor-
responding entry (id, p). If the chosen node has enough space, it is directly inserted in
the correct position. Otherwise, the overflowed node is partitioned into two parts accord-
ing to a Quadtree-like hierarchical decomposition, and this change is propagated upwards,
recursively.

3.5 Running example

In the remainder of this article, we make use of a running example to illustrate how our
systematic approach works. This running example consists of the following sequence of
index operations applied to the R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-tree
shown in Figs. 1a, 2a, 3a, and 4a, respectively:

1. Insertion of two points, p19 and p20;
2. Deletion of two points, p6 and p2;
3. Execution of an IRQ that retrieves the points p1 and p5;

Figures 1{b, c}-4{b, c} depict the R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-
tree after applying the index operations. In these figures, the query window of the IRQ is
represented by a dashed rectangle. In Sections 4 and 5 we discuss how the aforementioned
index operations are performed by using our systematic approach.

4 Generalizing and adapting the eFIND for the systematic approach

In this article, we employ the efficient Framework for spatial INDexing on SSDs (eFIND) in
our systematic approach aiming at porting disk-based spatial index structures to SSDs due to
its sophisticated algorithms and data structures (Section 2.4). To this end, we generalize the
eFIND’s data structures in Section 4.1, and shortly describe the eFIND’s main algorithms
in Section 4.2.

4.1 Data structures

eFIND is based on five design goals that exploit the benefits of SSDs. It leverages specific
data structures to achieve a design goal. Here, we go further by generalizing some of these
data structures to deal with the different spatial index structures, such as those introduced
in Section 3.

Write buffer Its main goal is to avoid random writes to the SSD by storing the modifica-
tions of nodes that were not applied to the SSD yet (design goal 1). eFIND leverages a hash
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table named Write Buffer Table to implement the write buffer. In this article, we general-
ize this data structure to deal with any type of disk-based spatial index as follows. A hash
entry stores the modifications of a node and is represented by the tuple 〈page id, (M, F, E)〉.
page id is the search key of the hash entry and consists of the identifier of a node. Thus, a
hash function (e.g., Jenkins hash function [48]) gets the value of page id as input to deter-
mine the place (i.e., bucket) in the Write Buffer Table where its corresponding value should
be stored. The value of a hash entry is formed by (M, F, E), where each element is a list of
attributes defined as follows.

M consists of the attributes that store the metadata of the node required for processing
internal algorithms of the underlying index. Thus, the attributes may vary. Considering the
spatial indices detailed in Section 3, M is empty if the underlying index is the R-tree, the
R*-tree, and the Hilbert R-tree. If the underlying index is the xBR+-tree, M is an attribute
named header that consists of the pair (o, s) corresponding to the metadata stored in internal
nodes, where o is the origin point and s is the side length of the sub-quadrant of the node,
respectively. Since this pair only applies to internal nodes, M assumes NULL if the node is
a leaf node (see Fig. 5d).

F includes the needed data for using the flushing policy in the flushing operation (design
goal 2). For the flushing policy, the required attributes may vary. Performance tests showed
better results when applying a flushing policy based on the number of modifications using
the height of the nodes as a weight [22]. That is, this flushing policy requires the attributes
h and mod count for storing the height of the node and its quantity of in-memory modi-
fications, respectively. For the flushing algorithm, eFIND requires the attribute timestamp,
which stores when the last modification of the node was performed. Hence, in this article F
consists of the tuple (h,mod count, timestamp).

E refers to the essential attributes to manage the modifications of the node; it consists of
the pair (status,mod tree). status stores the type of modification made on the node and can
be NEW, MOD, or DEL for representing that the node is a newly created node in the buffer,
a node stored in the SSD but with modified entries, or a deleted node, respectively. mod tree
assumes NULL, if status is equal to DEL. Otherwise, it is a red-black tree storing the most
recent version of the node’s entries. Each element of this red-black tree is a pair (k, e),
where k is the search key and corresponds to the unique identifier of the entry and e stores
the latest version of the entry, assuming NULL if it is removed from the node. We employ
red-black trees for storing the node’s entries because of its amortized cost of executing
insertions, deletions, and searches. Further, it allows that only the latest version of an entry
be stored in the Write Buffer Table; thus, the space of the write buffer is better managed with
a low cost of retrieving the most recent version of a node (see Section 5). More importantly,
the red-black tree maintains a specific order among the node’s entries, an essential aspect
when dealing with spatial indices that require a special sorting property (e.g., the Hilbert
R-tree and the xBR+-tree). Hence, the design of the comparison function of the red-black
trees should consider the sorting property of the underlying index. Considering the spatial
indices detailed in Section 3, we provide the following base ideas for implementing their
corresponding comparison functions as follows:

– The R-tree and the R*-tree. Their comparison functions implement the ascending
order of id, which is an element that either gives direct access to the indexed spatial
object (if the node is a leaf node) or points to a child node (if the node is an internal
node).

– The Hilbert R-tree. If the node is a leaf node, its comparison function computes the
ascending order of the Hilbert values calculated from r (i.e., the MBR). Otherwise, its
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(a) The write buffer for the eFIND R-tree (Figure 1)

(b) The write buffer for the eFIND R*-tree (Figure 2)

(c) The write buffer for the eFIND Hilbert R-tree (Figure 3)

(d) The write buffer for the eFIND xBR+-tree (Figure 4)

Fig. 5 Write buffers for storing the modifications of the disk-based spatial indices the R-tree, the R*-tree,
the Hilbert R-tree, and the xBR+-tree transforming them to the eFIND R-tree (a), the eFIND R*-tree (b), the
eFIND Hilbert R-tree (c), and the eFIND xBR+-tree (d)
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comparison function implements the ascending order of lhv, which is an element of
internal nodes that stores the largest Hilbert value of a child node. In both cases, ties
are resolved by sorting the entries by id.

– The xBR+-tree. If the node is a leaf node, its comparison function implements the
ascending order of the x-axis coordinates of the points where ties are resolved by sorting
the entries by their y-axis coordinates and then by their id. Otherwise, its comparison
function implements the ascending order of the directional digits of the entries (using
the qside and DBR), considering the metadata of the internal node (i.e., the pair (o, s)).

It is important to emphasize the role of the comparison function in the cost of perform-
ing operations in red-black trees. In our running example, the comparison functions for
the R-tree and R*-tree have a constant cost. On the other hand, the Hilbert R-tree and the
xBR+-tree require the computation of additional values when evaluating their comparison
functions. As a consequence, it may impact the performance evaluations, as discussed in
Section 6.

Figure 5 shows the Write Buffer Tables for each spatial index of our running example. In
this figure, MBR is a function for computing the rectangle that encompasses all entries of a
node by considering current modifications in the write buffer. For instance, the first line of
the hash table in Fig. 5a shows that I1, located in the height 2, has the status MOD to store
the entry (I3,MBR(I3)). Note that this entry now corresponds to the most recent version of
the first entry of I1 in the eFIND R-tree depicted in Fig. 1. This modification occurred in the
timestamp 10 and is derived from the adjustment of the node I3 after the reinsertion of the
point p8. The other write buffers (Fig. 5b-d) store the needed modifications performed on
their corresponding spatial indices to process the index operations of our running example,
which are further detailed in Section 5.

Read buffer Its main goal is to avoid excessive random reads by caching the nodes stored
in the SSD (design goal 3). eFIND leverages another hash table named Read Buffer Table
to implement the read buffer. It does not employ the same hash table of the write buffer
because the read buffer has a different purpose and requires a read buffer replacement pol-
icy to decide which node should be replaced when the Read Buffer Table is full. This buffer
is very similar to the classical buffer managers employed by database management sys-
tems [49] and is extended to deal with the specific constraints of the underlying index. In
this article, we generalize the Read Buffer Table to deal with any type of disk-based spatial
index. A hash entry corresponds to a node stored in the Read Buffer Table and consists of
a tuple 〈page id, (M, R, entries)〉. page id is the search key of the hash entry and stores the
identifier of the node. The hash value has the following format (M, R, entries), where each
element is defined as follows. M consists of the same attributes as M of the definition of a
hash entry in the Write Buffer Table. That is, it stores the metadata of the node.

R includes the needed data for executing the read buffer replacement policy. For instance,
the height of the node stored in an attribute named h for implementing the LRU replace-
ment policy prioritizing the nodes near to the root of the tree [21]. If the replacement policy
does not require any additional data, then R is empty, optimizing the space of the Read
Buffer Table. This is the case when adopting the simplified 2 Queues (S2Q) [50] replace-
ment policy, which showed good performance results because it mitigates the problem of
loading nodes from the SSD to the main memory [22]. Hence, R is empty in our running
example.

entries refers to a list storing the node’s entries. Since the Read Buffer Table caches nodes
stored in the SSD, this list does not consider the modifications stored in the write buffer. An
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element of the entries has the same format as an entry of the node. The order of the elements
of this list corresponds to the order in which they are stored in the SSD. This means that it
respects the properties and structural constraints of the underlying index.

Figure 6 shows the Read Buffer Tables for each spatial index of our running example. In
this figure, MBRS is a function for computing the rectangle that encompasses all entries of a
node by considering entries stored in the SSD only. Thus, it does not consider modifications
stored in the write buffer. For instance, the read buffer for the eFIND R*-tree (Fig. 6b)
contains the cached version of the nodes R, I1, and I3, corresponding to the same entries
shown in Fig. 2a.

Temporal control Two queues named RQ and WQ are responsible for implementing the
temporal control of eFIND (design goal 4). Each queue is a First-In-First-Out (FIFO) data
structure. RQ stores identifiers of the nodes read from the SSD, while WQ keeps the identi-
fiers of the last nodes written to the SSD. Figure 6 shows the queues of the temporal control
for each spatial index of our running example. For instance, last read nodes are R, I3, I6,
and I8, and the last flushed nodes are L1, L8, I9, and I5 for the eFIND Hilbert R-tree.

Log file eFIND sequentially writes to a log file the modifications that are performed on
the underlying index before storing it in the Write Buffer Table to ensure data durability

(a) The read buffer and temporal control for the eFIND R-tree (Figure 1) 

(b) The read buffer and temporal control for the eFIND R*-tree (Figure 2) 

(c) The read buffer and temporal control for the eFIND Hilbert R-tree (Figure 3) 

(d) The read buffer and temporal control for the eFIND xBR+-tree (Figure 4) 

Fig. 6 Read buffers and queues of the temporal control for the eFIND R-tree (a), the eFIND R*-tree (b), the
eFIND Hilbert R-tree (c), and the eFIND xBR+-tree (d)
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(design goal 5). Since we generalize the Write Buffer Table, we also generalize the log
file as follows. The log-structured approach of eFIND is based on the write-ahead logging
employed by database systems and indexing structures, such as surveyed in [51]. The main
goal here is to store only the needed data to recover the Write Buffer Table. In the following,
we describe the compatibility between a log entry and a hash entry of the write buffer. A
log entry consists of a tuple 〈page id, (M, P, T)〉, where page id stores the identifier of the
node and each element in (M, P, T) respectively corresponds to an element of the definition
of a hash entry of the Write Buffer Table.

M is the same M from that used in each hash entry of the Write Buffer Table. P is a subset
of F. In this article, it consists of a single attribute named h that stores the height of the
node. The other attributes of F (i.e., timestamp and mod count) are not stored in the log file
because they are calculated in the main memory every time that a modification is stored in
the Write Buffer Table (e.g., see Section 5.1).

T is a subset of E and consists of a pair (type mod, result), where type mod is similar to
the status, assuming MOD if the entry is added to or removed from the node and NEW if
the node is a newly created node, and result is equivalent to an element of the red-black tree
of the node in the mod tree. That is, the pair (k, e). Because only one element of mod tree
is stored by log entry, several log entries may be needed to store all elements of the red-
black tree. Nodes flushed to the SSD are also appended to the log file. This strategy allows
the compaction of the log, that is, the exclusion of already flushed modification from the
log file, reducing its size (Section 4.2). In this case, status assumes the value FLUSH, result
stores the list of flushed nodes, and NULL is assigned to the remaining attributes.

Figure 7 shows the log file for each spatial index of our running example. In this figure,
the first column (log#) refers to the sequence of the processed modification. Thus, we can
follow the sequence of modifications performed to process the index operations of our run-
ning example. For instance, the first modification of the eFIND R-tree is the creation of
the node N1 (timestamp equal to 1 in Fig. 5a) that contains the points p1 and p13. This
sequence is stored in the first three log entries in Fig. 7a. Section 5 further details how the
modifications are appended in the log files of each spatial index.

4.2 General Algorithms

eFIND provides algorithms to execute the following operations: (i) maintenance operation,
which is responsible for reorganizing the index whenever modifications are made on the
underlying spatial dataset (i.e., insertions, deletions, and updates); (ii) search operation,
which is responsible for executing spatial queries; (iii) flushing operation, which picks a set
of modifications stored in the write buffer to be written to the SSD according to a flushing
policy; and (iii) restart operation, which rebuilds the write buffer after a fatal problem and
compacts the log file. To employ eFIND in our systematic approach, we generalize the
maintenance and search operations considering our characterization of node handling (see
Section 5). We did not change the flushing and restart operations of eFIND, which are
detailed in [22] and shortly described as follows.

The flushing operation is responsible for sequentially writing some modified nodes to
the SSD. The modified nodes are picked after applying a flushing policy to the flushing
units created from a list of the oldest modified nodes stored in the Write Buffer Table that
satisfy the criteria of the temporal control of writes such as a sequential or semi-sequential
pattern of previous writes made on the SSD. While a flushing unit groups a set of sequential
modified nodes, a flushing policy implements the criteria to choose a flushing unit to be
written to the SSD. Experiments show the best results when applying a flushing policy
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(a) The log file for the eFIND 
      R-tree (Figure 1)

(b) The log file for the eFIND
      R*-tree (Figure 2)

(d) The log file for the eFIND 
      xBR+-tree (Figure 4)

(c) The log file for the eFIND Hilbert R-tree (Figure 3)

Fig. 7 Log files for guaranteeing data durability for the eFIND R-tree (a), the eFIND R*-tree (b), the eFIND
Hilbert R-tree (c), and the eFIND xBR+-tree (d)
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that uses the height of the modified node as a weight on its number of modifications [22].
After writing the picked flushing unit, this operation is also registered as a log entry for
guaranteeing data durability. Further, frequently accessed nodes are possibly pre-cached in
the Read Buffer Table according to the temporal control of reads.

The restart operation reconstructs the Write Buffer Table after a system crash, fatal error,
or failure power. This means that eFIND guarantees data durability. This is performed by
recovering all the modifications that were not effectively applied to the index stored in the
SSD. For this, eFIND reads the log file in reverse order since the modifications and the
flushed nodes are written to the log as append-only operations. During this traversal, the
modifications of flushed nodes can be ignored since they were already written to the SSD.
The idea of removing the modifications of flushed nodes from the log is also employed to
compact it. This compaction requires some additional processing for handling maintenance
operations and different factors like the write buffer size, log size, and node size affect its
performance (as discussed in [47] and [22]).

5 Porting disk-based spatial indices to SSDs

In this section, we detail our systematic approach by focusing on the following oper-
ations: (i) insert (Section 5.1), (ii) delete (Section 5.2), and (iii) search (Section 5.3).
For each operation, we provide its generic algorithm and characterize how the nodes
are modified and accessed when implementing the operation. Then, we propose a set
of algorithms, including their complexity analysis, that manage the generalized eFIND’s
data structures in order to deal with this characterization. To illustrate how our algo-
rithms work, we also provide examples of executions based on our running example
(Section 3.5).

5.1 Insert operations

General algorithm Considering a spatial index SI being ported by eFIND (i.e., an R-tree,
an R*-tree, a Hilbert R-tree, and an xBR+-tree), Algorithm 1 inserts a new entry E into
SI as follows. First, a leaf node L is selected according to the particular properties of SI
(line 1). For instance, the R-tree chooses a leaf node by prioritizing the path of the tree that
minimizes the coverage area of the nodes. This step involves the retrieval of nodes. For this,
the underlying index has to employ Algorithm 9, which is discussed in Section 5.3. Then,
the entry E is inserted into L, leading to two possible cases: either (i) a direct insertion, or
(ii) treatment of an overflow. In both cases, a pair P = (sn, n), where sn is a set of nodes
and n is a node, is formed and later used to adjust the tree after the insertion of E (line 2).
The first case is if L has enough space to accommodate the entry E (lines 3 to 6). Hence, the
entry E is inserted into L according to the structural constraints of SI (line 4), this insertion
is registered by eFIND (line 5), and P assumes the pair ({L}, NULL) where its first element
is a set containing L with the new entry and its second element is NULL since there are no
other modified nodes.

The second case is if L has its maximum capacity reached (lines 7 to 9); thus, the over-
flowed node has to be treated by the underlying index SI (line 8). Some indices attempt to
apply a redistribution to the entries of L and s sibling nodes instead of executing a split
operation. This is the case for the Hilbert R-tree. Thus, the first element of P is the set of
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modified nodes (i.e., a set H containing L and its s sibling nodes) and the second element
of P is NULL. If the redistribution is not possible and for other indices (e.g., the R-tree,
the R*-tree, and the xBR+-tree), a split operation is directly performed, leading to the cre-
ation of a new node. Then, the entries are distributed among the available nodes. In this
case, the first element of P is the set of modified nodes (i.e., H is L and its s sibling nodes
for the Hilbert R-tree, and only L for the remaining indices) and the second element of P

is the newly created node. After processing the overflow, the pair P is saved by eFIND
(line 9).

After inserting the entry E, the tree is adjusted in order to preserve its structural con-
straints and particular properties (line 10). For this, the tree is traversed from the leaf node
L to the root node, adjusting the needed entries in this path. It may include the propagation
of split operations because of overflow handling. eFIND is called to register the modifica-
tions resulted from these adjustments (Algorithm 2) and to save every pair resulted from
the propagation of split operations (Algorithm 3). Finally, Algorithm 1 checks whether the
propagation reached the root node (line 11). In this case, a new root node is created (line
12) and saved by eFIND (line 13).

Handling nodes with eFIND The computation of Algorithm 1 can invoke five specialized
algorithms of eFIND to manipulate nodes of the underlying index. They are called by the
following characterized cases: (i) the retrieval of nodes (line 1), (ii) the direct insertion of the
new entry E into a chosen leaf node (line 5), (iii) the treatment of overflowed nodes (lines
9 and 10), (iv) the adjustment of entries (line 10), and (v) the creation of a new root node
(line 13). In this section, we discuss the algorithms responsible for executing the last four
characterized cases, whereas the first characterized case is discussed in the spatial query
processing (Section 5.3).
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Algorithm 2 shows how the extended eFIND processes a node modification. Its inputs
are the type of modification to be handled (O), the entry (E) being manipulated, and its node
(N). This algorithm is employed to execute the cases (ii) and (iv). For the case (ii), the algo-
rithm is handling an insert operation (O) of an entry E into a node N; for the case (iv), the
algorithm is dealing with an adjustment operation (O) of an entry E that is contained in a
node N. First, an auxiliary entry (line 1) is used to adequately process the operation, such
as a delete operation (Section 5.2). Here, this auxiliary entry points to the input entry (line
5). Next, the modification is registered in the log file in order to guarantee data durability
(line 6). This is a main step of the algorithm because it permits to recover the modification
if any fatal error occurs before its accomodation in the Write Buffer Table. Then, two main
cases are alternately possible (lines 8 to 18). The first case is if the node has a correspond-
ing hash entry in the Write Buffer Table (lines 8 to 14). Thus, the entry is either replaced
(line 10) or inserted (line 12) in its mod tree. This guarantees that only its most recent ver-
sion is stored in the write buffer. In the sequence, other values of the hash entry are updated,
such as the moment of the operation (line 13) and the increment of the number of modi-
fications (line 14). The second case is if the node is receiving its first modification (lines
16 to 18). Thus, the algorithm creates a new hash entry (line 16) to be stored in the Write
Buffer Table (line 17) and stores the modified entry as the first element of its mod tree (line
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18). Finally, the algorithm checks whether a flushing operation has to be executed (lines
19 and 20). This flushing algorithm is the same as presented and discussed in [22] (see
Section 4.2).

Algorithm 3 depicts how eFIND saves the pair P resulted from the overflow handling
of the underlying index. This algorithm is employed to execute the case (iii). In princi-
ple, if there exists a newly created node (line 1), this node is saved in the Write Buffer
Table by using Algorithm 4. Next, for each node contained in R of P (line 3), Algorithm 3
deletes its previous version (line 4) and then stores this node as a newly created node in
the Write Buffer Table (line 5). This strategy redefines the hash entries in the write buffer
that are related to nodes affected by a redistribution after handling an overflow. Thus, we
store the most recent version of the node instead of expending time to save their partic-
ular differences. As a result, it improves the management of the write buffer. This also
contributes to simplifying the retrieval of nodes by avoiding the execution of merging
operations (see Section 6.3) since the node can be completely modified after handling an
overflow.

Algorithm 4 depicts how eFIND stores a newly created node in its Write Buffer Table.
This algorithm is employed to execute the case (v) and to help the execution of Algorithm 3.
First, the newly created node is registered as a new log entry in the log file for data durability
purposes (line 1). Note that only the intention of creating a node is registered and not its
entries yet. Then, the algorithm uses an auxiliary variable that corresponds to the hash entry
of the newly created node in the write buffer (line 2). By using this variable, two main
cases are alternately possible (lines 3 to 8). The first case is if the node has a corresponding
hash entry in the Write Buffer Table (lines 4 and 5). The entry is effectively stored in the
write buffer if it was previously deleted. The second case refers to the non-existence of the
hash entry of the newly created node in the write buffer; thus, the algorithm sets the values
of the new hash entry (line 7) and stores it in the Write Buffer Table (line 8). Afterward,
the algorithm adds each entry of the newly created node in the created hash entry of the
write buffer if it is not empty (lines 9 to 14). The sequence of operations in this loop is to
firstly append a corresponding log entry to guarantee data durability (line 11), to insert the
entry in the red-black tree of the hash entry (line 12), and then to increase the number of
modifications (line 13). After inserting all entries, the timestamp of the hash entry is also
updated (line 14). Finally, the algorithm executes the flushing operation of [22] if the write
buffer is full (lines 15 and 16).
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Complexity Analysis Our goal is not to analyze the complexity of algorithms belonging to
the underlying spatial index since it goes beyond the scope of this article (see [52, 53] for
complexity analysis of R-trees). In this sense, we analyze the complexity of Algorithms 2
to 4 as follows. The time complexity of Algorithm 2 can be determined by Calg2 = Ws +
H + O(log n), where Ws is the average cost of one sequential write to the SSD in order
to log the modification, H refers to the cost of accessing an element from the hash table
that implements the write buffer (i.e., usually O(1)), and O(log n) is the average cost of
updating an element of the red-black tree with n elements. Note that red-black trees have an
amortized update cost, as discussed in [54], which is particularly useful for implementing
the write buffer. In addition, the time complexity of Algorithm 2 can also include the cost
of a flushing operation, as detailed in [22].

The time complexity of Algorithm 3, in the worst case, is determined by Calg3 = Calg4 +
kCalg7 + kCalg4, where k is the number of nodes in R. Algorithm 4 has a time complexity
similar to Algorithm 2; the difference is that there is the cost of logging and inserting each
entry of the newly created node. Hence, Calg4 is given by Ws+H+eWs+O(e log n), where
e is the number of entries of the newly created node. The time complexity of Algorithm 7 is
presented in Section 5.2.

With respect to the space complexity, Algorithms 2 and 4 have the space complexity of
O(2n), where n is the total number of modified entries. This is due to the data durability,
which requires that a copy of each modification be stored in the log file. The space com-
plexity of the write buffer is O(a), where a is the number of elements (i.e., nodes) in the
buffer since it is implemented as a hash table. A red-black tree has a space complexity of
O(b) for storing b (modified) entries of a particular node. It does not require extra space
since its keys are based on the identifier of the entry (i.e., a value greater than zero). Hence,
the color information can be stored by using the sign bit of the keys. The space complexity
of Algorithm 3 is constant.
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Examples of Execution Our running example inserts the points p19 and p20 into each spa-
tial index depicted in Figs. 1a–4a. After applying Algorithm 1, a set of modifications is
appended to the log file and stored in the write buffer of each spatial index ported to the
SSD. Instead of repeating the explanation of the algorithm by showing its execution line by
line, we highlight the sequence of the modifications performed in the ported spatial indices
after each insertion operation as follows:

– The R-tree (Fig. 1a). A split operation on the node L1 is performed to insert the point
p19, creating the new node N1. After this operation, the newly created node N1 contains
the points p1 and p13 (log# 1 to 3 in Fig. 7a and the fourth line in Fig. 5a), and after the
recreation of the node L1, it contains the points p16 and p19 (log# 4 to 7 in Fig. 7a and
the fifth line in Fig. 5a). Next, two adjustments are made in the node I3 (log# 8 and 9 in
Fig. 7a and the second line in Fig. 5a). First, a new entry that points to the node N1 is
created and inserted into the node I3. Second, the entry pointing to the node L1 has its
MBR adjusted. The point p20 is directly inserted into the node L6 (log# 10 in Figure 7a
and the sixth line in Fig. 5a).

– The R*-tree (Fig. 2a). It executes a split operation to accommodate the point p19,
creating the new node N1 that stores the points p16 and p19 (log# 1 to 3 in Fig. 7b and
the fifth line in Fig. 5b). Further, the node L2 is recreated to store the points p8 and
p18 (log# 4 to 7 in Fig. 7b and the sixth line in Fig. 5b). Then, similar to the R-tree,
two adjustments are made in the node I3 (log# 8 and 9 in Fig. 7b and the second line in
Fig. 5b). The point p20 is directly inserted into the node L6 (log# 10 in Fig. 7b and the
seventh line in Fig. 5b).

– The Hilbert R-tree (Fig. 3a). It executes two 2-to-3 split operations to accommodate
the point p19. First, it creates the new node N1 containing the point p13 (log# 1 and 2 in
Fig. 7c and the twelfth line in Fig. 5c), and then redistributes the points p8, p18, and p3
to the node L1 (log# 3 to 7 in Fig. 7c and the tenth line in Fig. 5c) and the points p16,
p19, and p6 to the node L2 (log# 8 to 12 in Fig. 7c and the eleventh line in Fig. 5c),
according to their Hilbert values. Next, it adjusts the MBR of the entry pointing to
the node L2 (log# 13 in Fig. 7c and the sixth line in Fig. 5c). The second 2-to-3 split
occurs when inserting the node N1 into the node I6. Thus, it creates the new node N2
containing the entry pointing to L4 (log# 14 and 15 in Fig. 7c and the eighth line in
Fig. 5c), and then redistributes the entries among the nodes I6 and I7 (log# 16 to 25
in Fig. 7c and the sixth and seventh lines in Fig. 5c), according to their largest Hilbert
values. To accommodate the new node N2, another new node is created, named N3 (log#
26 and 27 in Fig. 7c and the fourth line in Fig. 5c). Then, two entries of the node I1 are
adjusted accordingly (log# 28 and 29 in Fig. 7c and the first line in Fig. 5c), concluding
the insertion of the point p19. The insertion of the point p20 requires the creation of a
new corresponding entry in the node L6 (log# 30 in Fig. 7c and the thirteenth line in
Fig. 5c). As a consequence, its MBR is adjusted in the parent entry’s node I9 (log# 31
in Fig. 7c and the ninth line in Fig. 5c).

– The xBR+-tree (Fig. 4a). To insert the point p19, the new sub-quadrant 00* that also
accommodates the point p8 is created (log# 1 to 3 in Fig. 7d and the second line in
Fig. 5d). This sub-quadrant is derived from a split operation on the node L5, which
then stores the points p18, p3, and p6 (log# 4 to 8 in Fig. 7d and the fourth line in
Fig. 5d). The node I2 is modified to accommodate the newly created node and to store
the adjusted DBR of the node L5 (log# 9 and 10 in Fig. 7d and the first line in Fig. 5d).
The point p20 is directly inserted into the node L2 (log# 11 in Fig. 7d and the third line
in Fig. 5d).
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Note that Figs. 1b–4b show the resulting hierarchical representation after also removing
two points. Thus, the aforementioned modifications represent an intermediary result of the
running example.

5.2 Delete operations

General algorithm Considering a spatial index SI being ported by eFIND (i.e., an R-tree,
R*-tree, a Hilbert R-tree, and an xBR+-tree), Algorithm 5 deletes an entry E from SI as
follows. First, an exact match query is executed to retrieve the leaf node L containing the
entry E (line 1). To this end, the underlying index has to employ the general search algorithm
(Algorithm 9), which is discussed in Section 5.3. Next, the entry E is deleted from L,
leading to two possible alternately cases: either (i) a direct deletion, or (ii) treatment of an
underflow. In both cases, a pair P = (sn, d) is defined, where sn is a set of nodes with
adjustments and d is a node to be deleted from SI (line 2). This pair is also used to propagate
further adjustments in the tree after the deletion of E. The first case is if the minimum
capacity of L is not affected after removing the entry E (lines 3 to 6). Hence, the entry
E is removed from L according to the structural constraints of SI (line 4), the deletion is
registered by eFIND (line 5), and P assumes the pair ({L}, NULL) where its first element
is a set containing L after the deletion and its second element is NULL since there are no
other modified nodes.

The second case is if an underflow occurs in L after removing the entry E (lines 7 to
9); this case is then treated by the underlying index SI (line 8). Considering the indices of
this article (Section 3), we shortly describe how they handle an underflow. The R-tree and
the R*-tree directly delete L and save its entries in a queue stored in the main memory.
Then, these entries are reinserted in the tree by using the corresponding insertion algo-
rithm (Section 5.1). The Hilbert R-tree attempts to apply a redistribution to the entries
of L and s − 1 sibling nodes instead of deleting L. If the redistribution is not possible,
this index deletes L and redistributes the remaining entries of L among its s − 1 sibling
nodes. The xBR+-tree deletes L if there exists one sibling node representing the ancestor
or descendant of L with available space, it inserts the remaining entries of L in this sib-
ling node. In general, these indices can delete L and possibly modify other sibling nodes.
Because of this behavior, these modifications are stored as the pair P that is saved by eFIND
(line 9).

After deleting the entry E, the tree is adjusted in order to preserve its structural con-
straints and particular properties (line 10). For this, the tree is traversed from the leaf level
to the root node, adjusting the needed entries in this path (e.g., the minimum boundary rect-
angles). It may include the propagation of deletions because of underflow handling. That is,
every time that a node is deleted, its corresponding entry in its parent has to be also deleted.
eFIND is called to register the modifications resulted from these adjustments (Algorithm 2)
and to save every pair resulted from the propagation of deletion operations (Algorithm 6).

Finally, Algorithm 5 checks whether the propagation reached the root node and this
node has only one element (line 11). If this is the case, its child node turns the new root
node (lines 12 and 13) and is saved by eFIND (line 14). Then, the algorithm executes
additional treatment after deleting an entry. This is the case for indices like the R-tree
and the R*-tree since they require the reinsertion of entries that were contained in deleted
nodes.
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Handling nodes with eFIND The execution of Algorithm 5 can invoke four special-
ized algorithms of eFIND to manipulate nodes of the underlying index in the follow-
ing cases: (i) the retrieval of nodes (line 1), (ii) the direct deletion of the entry E

from a leaf node (line 5), (iii) the treatment of nodes with underflow (lines 9 and
10), (iv) the adjustment of entries (line 10), and (v) the deletion of a root node (line
14). In this section, we discuss eFIND’s algorithms responsible for executing the cases
(iii) and (v). The cases (ii) and (iv) are covered by the algorithms introduced in the
insert operations (Section 5.1), while the case (i) is discussed in the search operations
(Section 5.3).

Algorithm 6 depicts how eFIND saves the pair P resulted from the underflow handling of
the underlying index. This algorithm is employed to execute the case (iii). The idea behind
this algorithm follows the same principle as Algorithm 3. That is, Algorithm 6 firstly saves
the deletion by using Algorithm 7 if there exists a deleted node (lines 1 and 2). Next, for
each modified node in H (line 3), this algorithm deletes the old version of the modified
node (line 4) and then stores the modified node as a newly created node (line 5), improving
the space utilization and future search operations.
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Algorithm 7 depicts how eFIND stores a deleted node in its Write Buffer Table. This
algorithm is employed to execute the case (v) and to help the execution of Algorithm 6.
First, the deleted node is registered as a new log entry in the log file for data durability
purposes (line 1). Next, an auxiliary variable corresponding to the hash entry of the deleted
node is defined (line 2). By using this variable, two main cases are alternately possible
(lines 3 to 10). In the first case, the node has a corresponding hash entry in the Write Buffer
Table (lines 4 to 7). Hence, previous modifications are deleted from the write buffer (line
4), creating space for storing other modifications. Then, the status (line 5), the number of
modifications (line 6), and the timestamp (line 7) of the hash entry are updated accordingly.
The second case is executed if the deleted node has not a corresponding hash entry in the
write buffer; thus, the algorithm sets the values of the new hash entry (line 9) and stores it
in the Write Buffer Table (line 10). Finally, the algorithm executes the flushing operation, if
the write buffer is full (lines 11 and 12).

Complexity Analysis The complexity analysis of Algorithm 5 depends on the underlying
index being ported. Hence, we focus on understanding the complexity of Algorithms 6
and 7. The time complexity of Algorithm 6 is similar to the complexity of Algorithm 3
(Section 5.1). In the worst case, its complexity is given by Calg6 = Calg7 + pCalg7 + pCalg4,
where p is the number of nodes in D. The time complexity of Algorithm 7 is given by
Calg7 = Ws +H+F , where F refers to the cost of freeing the red-black tree of the deleted
node, if any. In addition, the time complexity of Algorithm 7 can also include the cost of a
flushing operation, as detailed in [22]. As for the space complexity, Algorithm 6 does not
require extra space and Algorithm 7 always registers the deletion in the log file one time
only.

Examples of Execution Our running example deletes the indexed points p6 and p2 after
inserting the two points p19 and p20 (Section 5.1). By applying Algorithm 5 to process these
operations, a set of modifications are appended to the log file and stored in the write buffer
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of each spatial index ported to the SSD. We highlight the sequence of the modifications
after each delete operation as follows:

– The R-tree. To delete the point p6, it processes an underflow operation on the node
L2, deleting it (log# 11 and 12 in Fig. 7a and the seventh and second lines in Fig. 5a)
and adjusting the MBR of the entry pointing to the node I3 (log# 13 in Fig. 7a
and the first line in Fig. 5a). Then, the point p8 is reinserted into the R-tree in the
node L1 (log# 14 in Fig. 7a and the fifth line in Fig. 5a). This reinsertion pro-
vokes one adjustment in its parent entry (log# 15 in Fig. 7a and the second line in
Fig. 5a) and another adjustment in an entry of the node I1 (log# 16 in Fig. 7a and
the first line in Fig. 5a). The point p2 is directly removed from the node L8 that
has its MBR adjusted (log# 17 and 18 in Fig. 7a and the last and third lines in
Fig. 5a).

– The R*-tree. Similarly to the R-tree, it processes an underflow operation on the node
L1 to delete the point p6 (log# 11 and 12 in Fig. 7b and the eighth and second lines
in Fig. 5b), adjusting its parent entry (log# 13 in Fig. 7b and the first line in Fig. 5b).
Next, it reinserts the point p13 into the R*-tree (log# 14 in Fig. 7b and the ninth line
in Fig. 5b), requiring two adjustments in the upper levels of the tree (log# 15 and 16 in
Fig. 7b and the third and first lines in Fig. 5b). The deletion of the point p2 is directly
performed on the node L8 (log# 17 in Fig. 7b and the last line in Fig. 5a), which has its
corresponding parent entry adjusted afterwards (log# 18 in Fig. 7b and the fourth line
in Fig. 5b).

– The Hilbert R-tree. It deletes the point p6 from the node L2 (log# 32 in Fig. 7c and the
eleventh line in Fig. 5c), adjusting the MBR of entries in the two levels upwards (log#
33 and 34 in Fig. 7c and the sixth and third lines in Fig. 5c). Then, it deletes the node
L7 when removing the point p2 (log# 35 and 36 in Fig. 7c and the last line in Fig. 5c).
This consequently provokes the adjustment of entries in the nodes I4 and I2 (log# 37
and 38 in Fig. 7c and the fifth and second lines in Fig. 5c).

– The xBR+-tree. It deletes the points p6 and p2 directly from their respective
nodes L5 and L2 (log# 12 and 13 in Fig. 7d and the fourth and third lines in
Fig. 5d).

5.3 Search operations

General algorithm Considering a spatial index being ported by eFIND (i.e., an R-tree,
R*-tree, a Hilbert R-tree, and an xBR+-tree), Algorithm 8 returns a list R containing the
entries after traversing the tree by starting from its root node N . For this, a search object
S and a topological predicate T (e.g., contains, intersects) are employed. The algorithm
starts checking whether the current node being traversed is internal or leaf (lines 1 to 9). For
internal nodes (lines 1 to 5), Algorithm 8 chooses the path in the tree whose entry satisfies
the topological predicate for the search object S (line 3). In this case, the node pointed by
this entry is retrieved by eFIND (line 4) and then Algorithm 8 is called recursively. For
leaf nodes (lines 6 to 9), only those entries satisfying the criterion of the search operation
is appended in the list of entries (lines 8 and 9). Algorithm 8 can be optimized by the
underlying index of eFIND. For instance, the xBR+-tree offers some specialized algorithms
to deal with different types of spatial queries [55].
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Handling nodes with eFIND The execution of Algorithm 8 invokes the specialized algo-
rithm of eFIND responsible for retrieving nodes from the underlying index (line 4).
Furthermore, Algorithms 1 and 5 also employ this specialized algorithm when traversing
nodes in order to insert or delete entries. In this section, we discuss how to retrieve a node
by using eFIND.

Algorithm 9 specifies the procedure employed by eFIND to retrieve a node and is
equivalent to the algorithm presented in [22]. We included this algorithm in the article
for completeness purposes. First, the algorithm takes the identifier of a node as input
and returns the most recent version of this node. There are three alternative cases. The
first one is whether the node is stored in the Write Buffer Table with status equal to
NEW or DEL (lines 1 and 2); thus, it is directly returned by using the pointer stored
in the write buffer since it does not contain further modifications (line 3). The second
case refers to a not modified node; the algorithm verifies if this node contains a cached
version in the Read Buffer Table (lines 4 to 7), avoiding a read operation to be per-
formed on the SSD (returning the node in line 14). Otherwise, the node is read from
the SSD and inserted in the Read Buffer Table (lines 8 to 10, and returning the node
in line 14). In both cases, the Read Buffer Table is possibly reorganized by the read
buffer replacement policy (line 11). The last case is if the node has modifications stored
in the write buffer. Here, a merge operation is needed in order to combine the entries
stored in the modification tree and the existing entries of the node (lines 12 and 13).
After applying this merging, the algorithm returns the most recent version of the node
(line 14).

In this article, we extend and better analyze an important aspect not studied in our previ-
ous work: the merge operation (line 13). Algorithm 10 returns the most recent version of a
node N and takes two sorted arrays L1 and L2 as input respectively representing the mod-
ified entries stored in the Write Buffer Table, and the entries stored in the previous version
of N . Note that these two arrays are not empty. The first array would be empty if N has not
modifications; but in this case, Algorithm 9 directly returns N either from the Read Buffer
Table (line 7) or from the SSD (line 9). The second array would be empty if there exists
a hash entry of N in the Write Buffer Table with status equal to NEW; but in this case,
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Algorithm 9 directly returns the node pointed by the entry of the write buffer (line 3). Both
arrays are sorted since the first flushing operation on a node always happens when its status
in the Write Buffer Table is equal to NEW. Hence, the comparison function employed by the
red-black tree of the node guarantees that its entries are sorted, and this sorting is preserved
after a flushing operation.

The merge operation is based on the classical merge operation between sorted files [56].
Let i, j be two integer values, where i indicates the position in the first array and j indicates
the position in the second array (line 1). Let also N be an empty node (line 2). A loop is
then processed, starting with i = j = 0 (lines 3 to 10). First, the algorithm evaluates the
order of the current entries being analyzed (line 4), that is, L1[i] and L2[j ], by executing the
comparison function employed by the red-black trees of the underlying index (Section 4.1).
It guarantees the structural constraints and properties of nodes of the underlying index. If
L1[i] goes before L2[j ] (line 5), this means that the merge operation appends L1[i] to N

and increments i by 1 (line 6) since an element of the first array has been processed. If
the inverse happens, that is, L2[j ] goes before L1[i] (line 7), the merge operation appends
L2[j ] to N and increments j by 1 (line 8). If L1[i] and L2[j ] point to the same entry
(i.e., their unique identifier are equal), the merge operation appends only L1[i] to N if
its value (i.e., mod result in the mod tree) is different to NULL and increment both i and
j by 1 (line 10). This is done because the result should only maintain the latest version
of the entry and non-null entries. The loop is finished if i (j ) is equal to the number of
entries in the first (second) list. Finally, the entries that were not evaluated by the loop are
appended to N (lines 11 to 14), which is returned as the final step of the merge operation
(line 15).
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Complexity Analysis Since the complexity of Algorithm 8 depends on the underlying
index, we focus on analyzing the complexity of Algorithms 9 and 10. The time complexity
of Algorithm 9, in the best case, is the cost of accessing the hash table that implements the
write buffer. That is, Calg9 = H. In the worst case, the time complexity of Algorithm 9 is
given by Calg9 = 2H+R+Calg10, where R refers to the average cost of a read operation to
the SSD. Note that Algorithm 9 may have the time complexity of 2H or 2H+R (i.e., they
occur if the node has not modification). The time complexity of Calg10 can determined by
O(l1 + l2), where l1 and l2 represent the number of entries stored in the main memory and in
the SSD, respectively. Recall that the use of the comparison function defined by the under-
lying index (Section 4.1), which checks the order of entries, also impacts the complexity of
Algorithm 10.

As for the space complexity, Algorithm 9 does not require extra space. On the other hand,
Algorithm 10 requires additional memory to keep the merged c entries of the node. Thus, it
can assume the space complexity O(c).

Examples of Execution Our running example executes one IRQ in each ported spatial
index, after applying the insertions (Section 5.1) and deletions (Section 5.2). Algorithm 8 is
employed to execute this IRQ in each spatial index, resulting in the following sequence of
operations:

– The R-tree. It starts reading the its root node R from the Read Buffer Table (first line
in Fig. 6a). Then, it descends the tree by accessing the node I1 since the IRQ intersects
its MBR. For this, a merging operation (Algorithm 10) between the entries stored in the
mod tree of the I1 and the entries stored in the SSD is performed, resulting in the most
recent version of this node. That is, this merge operation returns the node containing the
modified version of the entry I3 (stored in the first line in Fig. 5a) and the stored version
of the entry I4. Next, the node I3 is read from the SSD, which has also modifications
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stored in its corresponding mod tree to be merged (Algorithm 10). Afterward, the leaf
node N1 is directly accessed from the Write Buffer Table since it is a newly created
node. It stores the point p1 in the result of the spatial query. Then, recursively the node
I4 is read from the SSD because its MBR also intersects the query window of the IRQ.
The last accessed node is L4, read from the SSD. Then, the point p5 is appended to the
final result of the query.

– The R*-tree. It firstly reads the root node R and then its child node I1, both stored
in the Read Buffer Table (first two lines in Fig. 6b). Next, it accesses the node I4. For
retrieving this node, a merging operation (Algorithm 10) is performed to integrate the
modified entries stored in the Write Buffer Table (third line in Fig. 5b) and the stored
entries. Then, the node L3 is read from the SSD since it does not contain modifications.
From this node, the point p5 is added to the result. Afterward, its sibling node L4 is
retrieved by performing the merging operation (considering the modified entry in the
ninth line in Fig. 5b), adding the point p1 to the result.

– The Hilbert R-tree. Starting from the root node R, it descends the tree by accessing
the node I1. These nodes are retrieved from the Read Buffer Table (first two lines in
Fig. 6c). Then, two paths are followed. The first path descends the tree by retrieving the
nodes I3, I7, and L3. Except for node L3 that is read from the SSD, the remaining nodes
have modifications merged (Algorithm 10) to their stored versions (using the third and
seventh lines in Fig. 5c). After reading the leaf node of this path, it adds the point p1
to the result of the spatial query. The second path accesses the newly created nodes N3
and N4 directly from the Write Buffer Table (fourth and eighth lines in Fig. 5c), and
then retrieve the node L4 that is read from the SSD. It finishes by adding the point p5
to the result.

– The xBR+-tree. It follows a single path to solve the spatial query. It starts from the
root node R and then reads the node I1, both cached in the Read Buffer Table (first
two lines in Fig. 6d). Next, the leaf nodes L1 and L3 are accessed because their data
bounding rectangles intersect the query window of the IRQ. Since they do not have
modifications and are not cached in the read buffer, they are directly read from the SSD.
After accessing each leaf node, the points p1 and p5 are returned.

6 Experimental evaluation

In this section, we empirically measure the efficiency of porting disk-based spatial index
structures by using our systematic approach. For this, we port the R-tree, the R*-tree, the
Hilbert R-tree, and the xBR+-tree by using eFIND and FAST. It shows that our systematic
approach can be deployed by using different frameworks. In particular, FAST-based spa-
tial indices are considered the main competitors of the eFIND-based spatial indices, which
were discussed in this article. To create the FAST-based spatial indices, we adapted the
FAST’s data structures and algorithms in a similar way to the adaptations performed on
eFIND. Section 6.1 shows the experimental setup. Performance results when building spa-
tial indices, performing spatial queries, and computing mixed operations are discussed in
Sections 6.2, 6.3, and 6.4, respectively.

6.1 Experimental setup

Datasets. We used four spatial datasets, stored in PostGIS/PostgreSQL [57]. Two of them
contain real data collected from OpenStreetMaps following the methodology in [58]. The
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first one is a real spatial dataset, called brazil points2019, containing 2,139,087 points inside
Brazil (approximately, 156MB). The second one, called us midwest points2019, contains
2,460,597 points inside the Midwest of the USA (approximately, 180MB). The other two
spatial datasets are synthetic, called synthetic1 and synthetic2, containing respectively 5 and
10 million points (approximately, 326MB and 651MB, respectively). Each synthetic dataset
stores points equally distributed in 125 clusters uniformly distributed in the range [0, 1]2.
The points in each cluster (i.e., 40,000 points for synthetic1 and 80,000 points for synthetic2)
were located around the center of each cluster, according to Gaussian distribution. It follows
the same methodology as the experiments conducted in [55]. The use of spatial datasets with
different characteristics and volume allows us to analyze the spatial indices under distinct
scenarios.

Configurations We employed our systematic approach to creating different configurations
of the ported spatial index structures based on the frameworks eFIND and FAST. As a result,
we evaluated the following flash-aware spatial indices: (i) the eFIND R-tree, (ii) the eFIND
R*-tree, (iii) the eFIND Hilbert R-tree, (iv) the eFIND xBR+-tree, (v) the FAST R-tree, (vi)
the FAST R*-tree, (vii) the FAST Hilbert R-tree, and (viii) the FAST xBR+-tree. The R-tree
used the quadratic split algorithm, the R*-tree employed the reinsertion policy of 30%, and
the Hilbert R-tree leveraged the 2-to-3 split policy. We varied the employed node (i.e., page)
sizes from 2KB to 16KB. The buffer and log sizes were 512KB and 10MB, respectively. We
employed the best parameter values of FAST, as reported in [47]: the FAST* flushing policy.
We also employed the best parameter values of eFIND, as reported in [22]: the use of 60%
of the oldest modified nodes to create flushing units, the flushing policy using the height
of nodes as weight, the allocation of 20% of the buffer for the read buffer, and flushing
unit size equal to 5. Hence, we built and evaluated 32 different configurations. We did not
include non-ported spatial indices (e.g., original R-tree) since other works in the literature
have shown that the number of reads and writes of such indices is high and negatively impact
on the SSD performance [33, 39, 47, 59].

Workloads We executed three types of workloads on each spatial dataset: (i) index con-
struction by inserting point objects one-by-one, (ii) execution of 1,000 point queries and
3,000 intersection range queries (IRQs), and (iii) execution of insertions and queries. A
point query returns the points that are equal to a given point. An IRQ retrieves the points
contained in a given rectangular query window, including its borders. Three different sets of
query windows were used, representing respectively 1,000 rectangles with 0.001%, 0.01%,
and 0.1% of the area of the total extent of the dataset being used by the workload. We gen-
erated different query windows for each dataset using the algorithms described in [58]. This
method allows us to measure the performance of spatial queries with distinct selectivity
levels. We consider the selectivity of a spatial query as the ratio of the number of returned
objects and the total objects; thus, the three sets of query windows built IRQs with low,
medium, and high selectivity, respectively. For each configuration and dataset, the work-
loads were executed 5 times. We avoided the page caching of the system by using direct
I/O. For computing statistical values of insertions, we collected the average elapsed time.
For computing statistical values of spatial queries, we calculated the average elapsed time
to execute each set of query windows.

Running Environment We employed a server equipped with an Intel Core� i7-4770 with a
frequency of 3.40GHz and 32GB of main memory. We made use of two SSDs: (i) Kingston
V300 of 480GB, and (ii) Intel Series 535 of 240GB. The Intel SSD is a high-end SSD that
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provides faster reads and writes than the low-end Kingston SSD. We employed the Intel
SSD to execute all the workloads and configurations. This provided us an overview of the
performance behavior of the underlying framework implementing our systematic approach.
Next, we used the Kingston SSD to compare eFIND-based configurations, allowing us to
analyze the performance of eFIND-based spatial indices by considering different architec-
tures of SSDs. The operating system used was Ubuntu Server 14.04 64 bits. We also used
FESTIval [60] to execute the workloads.

6.2 Building spatial indices

Figure 8 shows that eFIND fits well in our systematic approach since a particular disk-
based spatial index ported by eFIND provided better performance than the same disk-based
spatial index ported by FAST. The eFIND R-tree delivered the best results in most cases, fol-
lowed by the eFIND xBR+-tree, which provided the second-best results. Compared to the
FAST R-tree, the eFIND R-tree showed performance gains ranging from 40% to 70.3%. A
performance gain shows how much a configuration reduced the elapsed time from another
configuration. We highlight the long processing times of the FAST xBR+-tree (mainly in
the dataset synthetic2) due to the complexity of adapting FAST to deal with the special
constraints of the xBR+-tree, as discussed in [46]. Since the eFIND-based spatial indices
provided the best results, our analysis focuses on detailing their performance behavior,
including experiments conducted in the Kingston SSD.

Figure 9 depicts the performance results obtained in the Kingston SSD. We can note
that the underlying characteristics of the ported index structures (Section 3) exert a strong
influence on the experiments. For the real spatial datasets, two different behaviors were
observed. Compared to the other eFIND-based spatial indices and considering the node sizes
from 2KB to 8KB, the eFIND R-tree provided performance gains from 33.8% to 79.1% for
the Intel SSD and from 5.2% to 80.4% for the Kingston SSD. On the other hand, for the
node size equal to 16KB, the eFIND xBR+-tree overcame the eFIND R-tree with reductions
up to 7.6% for the Intel SSD and up to 28.3% for the Kingston SSD. Analyzing the cost
of building spatial indices using this size is particularly useful when considering the spatial
query processing (see Section 6.3).

Fig. 8 Performance results when building the flash-aware spatial indices in the Intel SSD. Note that the
FAST xBR+-tree presented long processing times for building indices on the dataset synthetic2; thus, we
have cut the y-scale in this case to better visualize the results. The eFIND-based spatial indices showed better
performance than FAST-based spatial indices. The eFIND R-tree and the eFIND xBR+-tree delivered the
best results in several situations
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Fig. 9 Performance results when building the eFIND-based spatial indices in the Kingston SSD. In most
cases, the eFIND R-tree showed the best results

As for the synthetic spatial datasets, the eFIND R-tree was the fastest spatial index in
both SSDs. Its performance gains against the other eFIND-based spatial indices were very
expressive. It ranged from 36.4% to 92.9% for the Intel SSD (Fig. 8), and from 37.6% to
79.9% for the Kingston SSD (Fig. 9).

The poor performance of the eFIND R*-tree and the eFIND Hilbert R-tree is related
to the management of overflowed nodes. The overhead of the eFIND R*-tree is due to its
reinsertion policy, requiring more reads in insert operations compared to the R-tree. As
discussed in the literature (see Section 2), the excessive number of reads impairs the perfor-
mance of applications in SSDs. Concerning the eFIND Hilbert R-tree, its bad performance
is because of the redistribution policy. It is comparable to the cost of a split operation of
the R-tree since s sibling nodes should be written together with a possible adjustment of
their parent node. Further, the split operation of the eFIND Hilbert R-tree possibly requires
four writes because of the 2-to-3 split policy. Thus, the eFIND Hilbert R-tree required long
processing times to build spatial indices in both SSDs.

Another important observation is that the special constraints of the underlying index may
impair the performance when retrieving nodes by using the eFIND’s algorithms and data
structures. For instance, the requirement of a sophisticated comparison function to guarantee
the sorting property among entries of internal and leaf nodes. We note this influence when
analyzing the experimental results of the Hilbert R-tree and xBR+-tree. They require that
nodes’ entries are sorted by their Hilbert values and directional digits, respectively. eFIND
makes use of this comparison function every time that a modified node is recovered by the
index (Algorithm 9). Hence, it mainly impacts the performance of the insertions. To improve
it, there are efforts in the literature that propose specific bulk-insertions and bulk-loading
algorithms. For xBR+-trees, examples of such algorithms are given in [44].

Several configurations presented the best results by employing the node size of 2KB.
This is due to the high cost of writing flushing units with larger index pages (e.g., 16KB)
since a write made on the application layer can be split into several internal writes to the
SSD. Further, the data volume also impacted the construction time, as expected. Hence,
building flash-aware spatial indices required more time as the node size and the data volume
also increased.

6.3 Query processing

Figure 10 shows that eFIND-based spatial indices outperformed their corresponding FAST-
based spatial indices. The eFIND xBR+-tree delivered the best results when processing the
point queries, whereas the eFIND Hilbert R-tree, in most cases, provided the best results
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(a) Point queries

(b) IRQs using query windows with 0.001%

(c) IRQs using query windows with 0.01%

(d) IRQs using query windows with 0.1%

Fig. 10 Performance results when executing the point queries and IRQs in the Intel SSD. It showed that the
best results were delivered by the eFIND-based spatial indices

when processing the IRQs. Note that the FAST xBR+-tree delivered the best performance
results among the FAST-based spatial indices to process the point queries. This reveals that
the space partitioning strategy of the xBR+-tree distinguishes itself by delivering lesser
elapsed times for computing point queries on SSDs. To process the point queries, the eFIND
xBR+-tree showed performance gains ranging from 16.4% to 44.2%, if compared to the
FAST xBR+-tree. As for the IRQs, the eFIND Hilbert R-tree showed reductions up to
17.6%, 17%, and 16.3% for the low, medium, and high selectivity levels, respectively, if
compared to the FAST Hilbert R-tree. Due to the superior performance of the eFIND-based
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spatial indices, our next analysis focuses on detailing their performance results, including
experiments conducted in the Kingston SSD.

Figure 11 shows the performance results when processing the spatial queries in the
Kingston SSD. As for the point queries, the eFIND xBR+-tree showed performance gains
from 3.6% to 89.5% for the Intel SSD and from 15% to 94.4% for the Kingston SSD, if
compared to the other eFIND-based spatial indices. In general, a point query requires the

(a) Point queries

(b) IRQs using query windows with 0.001%

(c) IRQs using query windows with 0.01%

(d) IRQs using query windows with 0.1%

Fig. 11 Performance results when executing the point queries and IRQs in the Kingston SSD. As for the
point queries, the eFIND xBR+-tree overcame the other configurations. As for the IRQs, the best results
were obtained when employing the node size of 16KB. In this case, the eFIND Hilbert R-tree and the eFIND
xBR+-tree delivered the best results
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traversal of a small number of paths in the tree. Thus, processing point queries using node
sizes equal to 4KB and 8KB provided better results.

Concerning the execution of IRQs, all configurations showed better performance when
employing the node size equal to 16KB because more entries are loaded into the main
memory with a few reads. Hence, we consider this node size in the following. We can note
that the eFIND Hilbert R-tree and the eFIND xBR+-tree overcame the other flash-aware
spatial indices. Due to the differences in the underlying structure of the SSDs, we obtained
different performance behaviors. For the Intel SSD, the eFIND xBR+-tree outperformed
the eFIND Hilbert R-tree to process IRQs with low selectivity in most cases (Fig. 10b),
with performance gains up to 30.9%. On the other hand, the eFIND Hilbert R-tree imposed
reductions between 10.1% and 17.4% for the other selectivity levels (Fig. 10c and d). For
the Kingston SSD (Fig. 11), the eFIND Hilbert R-tree was better than the eFIND xBR+-
tree in the majority of cases by gathering reductions up to 18.9%, 21.1%, and 20.2% for the
low, medium, and high selectivity levels, respectively.

In most cases, processing IRQs on the synthetic datasets required much less time than on
the real datasets because of their specific spatial distribution. IRQs returning more points
(i.e., with high selectivity) exhibited higher elapsed times. This is due to the traversal of
multiple large nodes in the main memory, requiring more CPU time than queries with low
selectivity. Hence, the performance behavior of IRQs is quite different from the performance
behavior of the point queries.

6.4 Mixing insertions and queries

In this section, we analyze the performance of the configurations to handle insertions and
queries by gradually increasing the volume of the spatial dataset. To this end, we executed
a workload that has three sequential steps; the workload sequentially (i) indexes 20% of the
point objects stored in the spatial dataset, (ii) computes the point queries, and (iii) executes
the IRQs. This sequence is repeated until all the point objects of the corresponding dataset
are indexed. Thus, the workload has 5 phases of insertions and queries, where each phase
means that the data volume increases 20%. We executed this workload by using the ported
spatial indices with eFIND and FAST in the Intel SSD.

Figures 12, 13, and 14 depict the performance results considering the node sizes equal
to 8KB and 16KB only. Thus, we can analyze the performance of the flash-aware spatial
indices in each step of the workload, that is, the execution of insertions (Fig. 12), point
queries (Fig. 13), and IRQs (Fig. 14). The use of the node size equal to 8KB allows us to
deliver a good balance between the performance of insertions and queries, whereas the node
size equal to 16KB shows better performance when executing queries, such as discussed in
Section 6.3.

The results of the experiments reported in this section show similar behavior to the per-
formance results in Sections 6.2 and 6.3. In general, a disk-based spatial index ported by
eFIND outperformed its corresponding FAST version. In this sense, we highlight eFIND-
based spatial indices that showed good performance results in each phase of the workload.
In most cases, the eFIND R-tree provided the best performance to index point objects
(Fig. 12). Compared to the other eFIND-based spatial indices, the eFIND R-tree showed
reductions up to 82.1% for the real datasets and up to 76.9% for the synthetic datasets in
each step of the workload. The eFIND xBR+-tree often gathered the best results to execute
point queries (Fig. 13). It provided a reduction up to 96.6% for the real datasets and up to
78.3% for the synthetic datasets in each step, if compared to the other eFIND-based spatial
indices. Finally, the fastest processing times for processing the IRQs were also acquired by
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Fig. 12 Performance results for inserting point objects by gradually increasing the data volume. Each spatial
dataset and node size are showed in the header of each chart. In most cases, the eFIND R-tree provided the
fastest processing time

the eFIND Hilbert R-tree and the eFIND xBR+-tree. A similar behavior indicates that the
proposed approach to porting spatial index structures to SSDs is consistent when increasing
the handled data volume.

Fig. 13 Performance results for executing point queries by gradually increasing the data volume. Each spatial
dataset and node size are showed in the header of each chart. The point queries were executed after inserting
the point objects (Fig. 14). The eFIND xBR+-tree delivered the best elapsed times
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(a) Execution of the IRQs using query windows with 0.001%

(b) Execution of the IRQs using query windows with 0.01%

(c) Execution of the IRQs using query windows with 0.1%

Fig. 14 Performance results for executing IRQs with different sizes of query window by gradually increasing
the data volume. Each spatial dataset and node size are shown in the header of each chart. The IRQs were
executed after computing the point queries. In general, the best results were obtained by the eFIND Hilbert
R-tree and the eFIND xBR+-tree
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7 Conclusions and future work

In this article, we have proposed a novel systematic approach for porting disk-based spatial
indices to SSDs. To this end, we have characterized how the index nodes are written and read
in index operations like insertions, deletions, and queries. We have used this characterization
in an expressive set of disk-based spatial index structures, including the R-tree, the R*-tree,
the Hilbert R-tree, and the xBR+-tree.

We have described how our systematic approach is deployed by eFIND due to its per-
formance advantages showed in our experiments. Hence, we have presented how the data
structures and algorithms of eFIND were generalized and extended to fit in our system-
atic approach. In our running example, we have created the following flash-aware spatial
indices: (i) the eFIND R-tree, (ii) the eFIND R*-tree, (iii) the eFIND Hilbert R-tree, and (iv)
the eFIND xBR+-tree. To the best of our knowledge, this is the first work that shows how
to port different spatial index structures to SSDs by using the same underlying framework.

Our systematic approach can also be applied to other data- and space-driven access meth-
ods. For this, two main steps are needed. The first step is to identify the additional attributes
to be stored in the underlying data structures of eFIND (i.e., write and read buffers, and
log file). This includes the design of the comparison function that accomplishes the sorting
property of the underlying index if any. The second step is to generalize and characterize the
modifications made on the nodes of the underlying index in order to fit the specialized algo-
rithms implemented by using eFIND. This step can be based on our generalization, which
provides general algorithms for insertions, deletions, and queries, as well as, other general-
izations like GiST and SP-GiST. As a result, our systematic approach can be used to port
disk-based spatial indices that were not included in this article, such as the R+-tree [61], the
K-D-B-tree [38], and the X-tree [62].

Our experiments analyzed the efficiency of the ported spatial indices through an exten-
sive empirical evaluation that also implemented the systematic approach by using FAST.
Hence, we have evaluated the R-tree, the R*-tree, the Hilbert R-tree, and the xBR+-tree
ported by FAST and eFIND. They were evaluated by using two real spatial datasets and two
synthetic spatial datasets, and by executing three different types of workloads. We highlight
the following results:

– The eFIND fits well in the systematic approach and the spatial index structures ported
by it provided the best performance results;

– The eFIND R-tree delivered the best results when executing insertions;
– The eFIND xBR+-tree was very efficient when processing point queries;
– The eFIND Hilbert R-tree, followed by the eFIND xBR+-tree, gathered the most

preeminent results when processing IRQs.

We also highlight that such findings were consistent when gradually increasing the data
volume of the spatial datasets. Further, the use of the node size equal to 8KB allowed us to
deliver a good balance between the performance of insertions and queries, whereas the node
size equal to 16KB showed better performance when executing queries. Hence, the choice
of the node size depends on the focus of the application.

Future work will deal with many topics. The approach proposed in this article was
designed to take advantage of the intrinsic characteristics of the SSDs. The first topic of our
future work is to analyze how the systematic approach implemented by eFIND performs on
HDDs by conducting theoretical and empirical studies and by including possible adapta-
tions. We also plan to study the performance of spatial indices ported to SSDs by using large
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spatial datasets and evaluating other common spatial queries, like k-nearest neighbors. In
addition, we plan to provide support for the ACID properties [63], allowing us the complete
integration of our approach into spatial database systems. Further, we aim at conducting per-
formance evaluations by employing flash simulators [59, 64], which emulate the behavior
of real SSDs in the main memory. Future work also includes the extension of our system-
atic approach to port spatial index structures to non-volatile main memories (NVMM) like
ReRAM, STT-RAM, and PCM [65]. These memories are byte-addressable, allowing us to
access persistent data with CPU load and store instructions. Finally, the last topic of future
work is to apply the proposed systematic approach, with its integration with eFIND, to port
one-dimensional index structures to SSDs and NVMMs. This includes the generalization of
data structures and algorithms to deal with one- and multi-dimensional data.
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