99 Exemplos de Aplicações Pneumáticas
Direitos exclusivos para a língua portuguesa

© 2001 by Festo AG & Co.
Ruiter Strasse 82
D-73734 Esslingen
Federal Republic of Germany
Tel. 0711 347-0
Fax 0711 347-2155

A organização de textos, ilustrações e desenhos deste livro são de propriedade intelectual da Festo AG & Co. e, portanto, da sua propriedade legal. De acordo com os direitos autorais assegurados à Festo pela legislação pertinente, é proibida a reprodução, total ou parcial por qualquer meio ou processo sem a devida autorização prévia da Festo AG & Co. Os direitos de tradução são reservados à Festo AG & Co.
Revisão técnica: L. C. Iorio
Há algum tempo foi realizada uma enquete com centenas de empresas com o objetivo de saber qual é a meta principal de uma empresa. Resultado: o maior desafio de uma empresa é obter uma produção eficiente.

Mas o que significa exatamente uma produção eficiente? Na prática, significa baixo custo de máquina, alta qualidade com ótima relação custo/benefício, velocidade de reposição e disponibilidade de máquina. Tudo isto é obtido por meio da mecanização e da automação ou, em outras palavras, com a aplicação de dispositivos técnicos e processos que substituem parcialmente ou completamente as funções do homem.

Dentro deste processo, a tecnologia de automação pneumática assumiu o papel principal e o campo de sua aplicação vem se expandindo cada vez mais. A razão para isso é que a pneumática pode oferecer uma série ilimitada de componentes comprovadamente otimizados, disponíveis em tamanhos bastante compactos e especificações que possibilitam a montagem rápida dos equipamentos dentro do princípio modular. Oferece tudo o que o usuário precisa e, inclusive, o suporte informatizado disponível em um único fornecedor.

Naturalmente não se pode deixar de considerar as aplicações dos componentes pneumáticos e as soluções oferecidas nas quais eles têm um papel preponderante. A descrição completa é quase impossível; nem mesmo a elaboração de uma coleção completa contendo centenas de casos estudados seria suficiente. Os 99 exemplos deste livro, entretanto, mostram o que a pneumática pode fazer, apresentando as soluções de forma simplificada e de maneira que desperte a imaginação e estimule novas ideias. O conteúdo deste livro é orientado aos usuários desta prática tecnológica, responsáveis pela racionalização e também àqueles que estão dando os “primeiro passos” no mundo da pneumática. O livro não é uma coletânea de receitas patenteadas, uma vez que cada problema tem o seu próprio ambiente e, frequentemente, requer uma solução bastante específica. Se esta coletânea puder servir como um guia de racionalização com ar comprimido e vácuo, então, terá atingido seu objetivo e não será apenas um compêndio sobre ar quente (em outros termos, ar comprimido)!

Stefan Hesse
<table>
<thead>
<tr>
<th>Conteúdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Seleção dos componentes de automação</td>
</tr>
<tr>
<td>2 Exemplos de aplicações pneumáticas</td>
</tr>
<tr>
<td>Alinhar</td>
</tr>
<tr>
<td>Montar</td>
</tr>
<tr>
<td>Dobrar</td>
</tr>
<tr>
<td>Armazenar</td>
</tr>
<tr>
<td>Chanfrar</td>
</tr>
<tr>
<td>Fixar</td>
</tr>
<tr>
<td>Transportar</td>
</tr>
<tr>
<td>Cortar</td>
</tr>
<tr>
<td>Rebarbar</td>
</tr>
<tr>
<td>Repuxar</td>
</tr>
<tr>
<td>Desempilhar</td>
</tr>
<tr>
<td>Furar</td>
</tr>
<tr>
<td>Ejetar</td>
</tr>
<tr>
<td>Extrair</td>
</tr>
<tr>
<td>Alimentar</td>
</tr>
<tr>
<td>Separar</td>
</tr>
<tr>
<td>Avançar</td>
</tr>
<tr>
<td>Colar</td>
</tr>
<tr>
<td>Pegar</td>
</tr>
<tr>
<td>Manipular</td>
</tr>
<tr>
<td>Depositar e alimentar</td>
</tr>
<tr>
<td>Indexar</td>
</tr>
<tr>
<td>Inserir</td>
</tr>
<tr>
<td>Erguer</td>
</tr>
<tr>
<td>Encadear</td>
</tr>
<tr>
<td>Carregar</td>
</tr>
<tr>
<td>Detectar</td>
</tr>
<tr>
<td>Orientar</td>
</tr>
<tr>
<td>Embalar</td>
</tr>
<tr>
<td>Paletizar</td>
</tr>
<tr>
<td>Posicionar</td>
</tr>
<tr>
<td>Embutir</td>
</tr>
<tr>
<td>Prensar</td>
</tr>
<tr>
<td>Imprimir</td>
</tr>
<tr>
<td>Perfilar</td>
</tr>
<tr>
<td>Propulsar</td>
</tr>
<tr>
<td>Reorientar</td>
</tr>
<tr>
<td>Reposicionar</td>
</tr>
<tr>
<td>Serrar</td>
</tr>
<tr>
<td>Proteger</td>
</tr>
<tr>
<td>Reter</td>
</tr>
<tr>
<td>Cortar</td>
</tr>
<tr>
<td>Classificar</td>
</tr>
<tr>
<td>Parar</td>
</tr>
<tr>
<td>Termo</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>Tensionar</td>
</tr>
<tr>
<td>Controlar</td>
</tr>
<tr>
<td>Transferir</td>
</tr>
<tr>
<td>Transportar</td>
</tr>
<tr>
<td>Girar</td>
</tr>
<tr>
<td>Descarregar</td>
</tr>
</tbody>
</table>

Literatura adicional

Glossário de termos técnicos
A coleção de exemplos tem a vantagem de possibilitar aplicações de componentes que podem ser demonstrados de forma clara junto com as sugestões de montagem. Este conceito não é novo. Já em 1869 H.T. Brown, de Nova York, publicou um livro intitulado “Movimentos Mecânicos”, uma coleção de nada menos do que 507 exemplos de conversão de movimentos (Figura 1). A maioria destes é orientado cinematicamente e explicado por meio de diagramas esquemáticos. Os exemplos de pneumática foram baseados na antiguidade, o que não é para causar espanto, uma vez que o que entendemos por “pneumática industrial” hoje foi desenvolvido na Europa desde 1960. Foi na Europa, também, que iniciou-se o processo de normalização completa dos componentes pneumáticos. Estimava-se que sem a normalização o custo dos processos técnicos seria cerca de 40% mais caro.

Figura 1: A coleção de exemplos não é uma criação de hoje

O objetivo destes exemplos é, acima de tudo, estimular a imaginação dos técnicos e apresentar sugestões para que encontrem soluções de alta qualidade para seus próprios problemas. Os exemplos, entretanto, não podem gerar receitas patenteadas de solução. A razão para isso é que certos parâmetros, que podem ser facilmente negligenciados, acabam influenciando decisivamente os conceitos de solução. Toda solução deve, portanto, ser examinada de forma crítica e orientada à prática atual. Resumindo: sugestões de soluções não são garantia de sucesso, mas, apenas meios para se pensar.

Os exemplos são apresentados de forma simplificada para possibilitar a visualização mais rápida possível do ponto central da solução. As ilustrações portanto, estão bem “enxutas” e cabe ao leitor imaginar a existência dos cabos e linhas de conexão de energia e de sinais.
Muitas ilustrações contidas nesta coleção utilizam símbolos funcionais da tecnologia de manipulação. O objetivo é ajudar o leitor a pensar nas funções e explicar as soluções apresentadas. Para cada função (símbolo) existe uma série de geradores. Nem sempre é fácil encontrar o gerador de função correto (componente de automação). Qual é a melhor maneira de proceder?

Passo 1
Considerar quais são as funções necessárias dentro da sequência e a interdependência. Quais são os pré-requisitos e que condições secundárias influenciam a solução? Um esquema de manipulação pode ajudar neste caso.

Passo 2
Inúmeras ações precisam ser realizadas, tais como: deslocar, girar, fixar, pressionar, prensar e posicionar. Que componentes de atuação devem ser utilizados para isso? Os fatores mais importantes são: tamanho, tecnologia de construção, forças e velocidades.

Passo 3
Como os atuadores selecionados serão controlados? É possível utilizar válvulas de controle direcional, controle de vazão, fechamento e reguladoras de pressão que possam ser acionadas ou atuadas manual, mecânica, elétrica ou pneumática. Os fatores a serem considerados são a vazão e a fixação dos componentes, por exemplo, a montagem em linha ou em base.

Passo 4
Como criar as conexões necessárias entre os cilindros e as válvulas? Aqui é necessário incluir as conexões, tubos flexíveis e rígidos, silenciadores e suprimento de energia e a especificação dos tamanhos nominais e roscas.

Passo 5
Como é possível chegar ao tipo “certo” de ar? Isto implica em considerar as necessidades específicas, responsabilidade da aplicação e tecnologia dos componentes utilizados na solução.

Passo 6
Como é possível estruturar as seqüências de movimento dentro de um conceito de controle geral? Isto requer uma avaliação eletrônica e dispositivos de controle, sensores e sistemas de bus e, não raro, equipamentos para conectar sinais eletrônicos, pneumáticos e elétricos e fazer a conexão destes sistemas de controle de alto nível.
É necessário também considerar, com a “cabeça fria”, qual operação deve ser automatizada e qual o grau de automação deve ser implantado. O maior teórico em automação, John Diebold, fez a seguinte declaração em seu livro publicado em 1951 “A fabrica automática”:

“Um trabalho de automatização de 80 a 90% pode reduzir bastante o custo. Caso se tentasse automatizar os 10 a 20% restantes do projeto, todo o sistema poderia se tornar economicamente inviável.”

Isto se aplica ainda hoje. Trata-se, na verdade, de acertar o grau de automação. Automação demais pode implicar em altos gastos!

O grau de automação é o quociente do total ponderado de funções automatizadas e o total ponderado de todas as funções. Os fatores de ponderação consideram o período em que as funções são utilizadas e a sua importância dentro do processo. O grau de automação pode ser utilizado, por exemplo, como um índice de comparação dos diferentes conceitos de projeto.

Basicamente, aplica-se o seguinte:
- Quanto maior a idade do produto (módulo, peça de trabalho);
- Quanto mais confiável a expectativa de longa vida útil;
- Quanto maior o volume de produção desejado, maior pode ser o grau de automação.

Naturalmente, aplica-se também:
- Quanto mais variável a estrutura do produto;
- Quanto mais imprevisível o comportamento do cliente;
- Quanto mais complexa a gama de produtos e os ciclos de fornecimento, maior o grau de flexibilidade necessário.

Flexibilidade é a capacidade de adequar todo o sistema de produção às alterações exigidas pela produção, seja no que se refere à auto-adaptação ou adaptação externa (intervenção manual).

Produção flexível significa, portanto:
- Produção de custo acessível de diferentes peças, em qualquer sequência desejada e em quantidades variadas.

Alto grau de automação e flexibilidade são coisas completamente distintas. O desafio, então, é obter uma automação capaz de oferecer um grau de flexibilidade economicamente viável. Isto é fácil falar, mas é difícil de fazer. Qual é a razão para estas dificuldades? Vivemos em uma era em que os sistemas de produção estão passando por mudanças cruciais. Os produtos estão se tornando cada vez mais complexos, o número de versões estão aumentando constantemente, clientes estão exigindo cada vez mais agilidade e rapidez de fornecimento e os ciclos de vida de um produto estão se tornando cada vez menores. Além disso, os custos de fabricação tendem a diminuir (isto está apresentado nos diagramas de tendência da figura 2), em consequência da redução do trabalho manual direto com o produto.
Se tivéssemos que atender apenas parte das exigências deste processo, então haveríamos de colocar toda a solução do projeto em risco. Como já se sabe mediante estudos de sistemas criados pela natureza: não é o resultado da otimização de uma função individual qualquer do sistema que pode fazer um sistema sobreviver em larga escala, mas sim o fato de que o resultado obtido atende suficientemente o maior números de funções possíveis. A lição a ser aprendida aqui é que nós não devemos pensar em funções, mas em processos e devemos ter uma abordagem holística sobre o desenvolvimento dos conceitos de solução.

Figura 2:
Estas são tendências que possuem maior influência na tecnologia de produção.
Os exemplos oferecem soluções para os problemas que foram simplificados após retirados de um contexto complexo. Se eles tiverem que ser utilizados para outros propósitos, terão que ser adaptados no que se refere aos detalhes e os componentes deverão ser selecionados de tal forma que possam operar corretamente dentro de um ambiente específico. Para isso a Festo oferece uma grande variedade de componentes de automação. Conforme os principais grupos de componentes, disponibilizamos os seguintes elementos:

Cilindros
- pressão de operação de 0,1 a 12 bar
- cursos de 1 a 17.000 mm
- hastes nos diâmetros de 1 a 63 mm
- diâmetros de 2,5 a 320 mm
- força de avanço a 6 bar de 2,7 a 43.400 N
- velocidades de 5 a 15.000 mm/s
- posições de aproximação de 2 a 4 posições

Atuadores rotativos
- diâmetro de 6 a 100 mm
- ângulo de rotação de 1 a 360°
- torque a 6 bar de 0,15 a 150 Nm
- pressão de operação de 0,5 a 12 bar

Válvulas
- conexões de M3 a G1 1/2
- vazão nominal de 4 a 30.000 l/min.
- funções de 2 a 8 vias
- pressão de operação de 0 a 12 bar
- passagens nominais de 0,4 a 40 mm.

Se compararmos os atuadores pneumáticos com outros tipos, poderemos ver que a pneumática pode abranger uma ampla gama de aplicações. Se for necessária a aplicação de grandes forças de atuação, a hidráulica é vantajosa, enquanto a elétrica é a opção para movimentos bastante lentos. Isto pode ser visto na Figura 3.

Figura 3:
Campo de aplicação dos atuadores pneumáticos

- **H** Hidráulica
 - (100 a 10.000 N,
 100 t a 10.000 mm/s)
- **M** Combinação motor e fuso
 - (0,5 a 2.000 N)
- **P** Pneumática
 - (0,1 a 5.000 N,
 10 a 15.000 mm/s)
- **S** Motor de passo
Em muitos exemplos, as sequências de operação de manipulação têm sido mostradas como símbolos. Seus significados são apresentados na Figura 4. Como distinguir entre símbolos básicos (manipulação, verificação e produção), símbolos para funções elementares (separar, combinar, girar, deslizar, segurar, liberar e testar) e funções complementares, tais como armazenamento aleatório (depósitos alimentadores) e transporte. Os símbolos definidos e funções facilitam a descrição de sequências e também servem, por outro lado, para representar as funções nas descrições de problemas específicos.

Figura 4: Símbolos de manipulação

<table>
<thead>
<tr>
<th>Número</th>
<th>Símbolo e Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manipulação (símbolo básico)</td>
</tr>
<tr>
<td>2</td>
<td>Armazenamento ordenado (magazine)</td>
</tr>
<tr>
<td>3</td>
<td>Armazenamento aleatório/não ordenado (depósito alimentador)</td>
</tr>
<tr>
<td>4</td>
<td>Armazenamento semi-ordenado (empilhamento)</td>
</tr>
<tr>
<td>5</td>
<td>Ramificação</td>
</tr>
<tr>
<td>6</td>
<td>Agrupamento</td>
</tr>
<tr>
<td>7</td>
<td>Fixação</td>
</tr>
<tr>
<td>8</td>
<td>Soltar</td>
</tr>
<tr>
<td>9</td>
<td>Reter (sem ação de força)</td>
</tr>
<tr>
<td>10</td>
<td>Girar</td>
</tr>
<tr>
<td>11</td>
<td>Bascular</td>
</tr>
<tr>
<td>12</td>
<td>Distribuição (das peças de trabalho)</td>
</tr>
<tr>
<td>13</td>
<td>Posicionamento</td>
</tr>
<tr>
<td>14</td>
<td>Deslocar</td>
</tr>
<tr>
<td>15</td>
<td>Classificação/Separação</td>
</tr>
<tr>
<td>16</td>
<td>Transporte</td>
</tr>
<tr>
<td>17</td>
<td>Transporte guiado (manutenção constante da direção correta da peça)</td>
</tr>
<tr>
<td>18</td>
<td>Verificação</td>
</tr>
<tr>
<td>19</td>
<td>Processo de produção (símbolos básicos)</td>
</tr>
<tr>
<td>20</td>
<td>Alteração do formato (corte, transformação)</td>
</tr>
<tr>
<td>21</td>
<td>Tratamento (revestimento, alteração das propriedades do material)</td>
</tr>
<tr>
<td>22</td>
<td>Montar</td>
</tr>
<tr>
<td>23</td>
<td>Dar forma</td>
</tr>
<tr>
<td>24</td>
<td>Controlar (símbolo básico)</td>
</tr>
</tbody>
</table>

99 exemplos de aplicações pneumáticas
Alinhamento das placas empilhadas

a) Ajuste de parada automática
b) Ajuste por manivela

1 Unidade linear eletromecânica com acionamento do fuso
2 Suporte
3 Pilha de painéis
4 Mesa de trabalho
5 Cilindro pneumático
6 Alavanca angular
7 Placa de pressão
8 Parafuso
9 Armação
10 Manivela

A ilustração apresenta uma solução cinemática para o alinhamento dimensional dos materiais em placas, em especial os painéis de fixação. No caso de máquinas de corte de painel de fixação automáticas utilizadas na indústria de móveis, os painéis devem ser precisamente alinhados para obter um corte preciso. Uma vez que os painéis são necessários em diferentes quantidades e dimensões, é preciso dispor de um sistema de regulagem para efetuar um ajuste programável do sistema de parada (CNC) nas dimensões requeridas. O tope de alinhamento (posicionamento) é atuado por um cilindro pneumático. Resumindo: o sistema consiste de duas engrenagens com acionamentos independentes e um atuador pneumático para aplicar força.

Componentes recomendados:
- Cilindro normalizado DNG...
- Flange oscilante SNG...
- Articulação esférica SGS...
- Válvula pneumática VL...
- Sensor de proximidade SME...
- Acionamento linear eletromecânico DGE...
- Controlador de eixo SPC...
- Válvula reguladora de fluxo GR...
Antes de embalar, transportar e amarrar painéis, eles devem ser devidamente arrumados em pilhas, ou seja, com as bordas niveladas. Isto pode ser feito utilizando-se uma base contínua, composta, por exemplo, de roletes de parada posicionados sobre a esteira de transporte. No exemplo estão sendo utilizados cursores acionados pneumaticamente. Como as peças também devem ser paradas brevemente na direção da alimentação da esteira, o comando de abertura pode ser utilizado para o espaçamento regular. No caso de solução com a cinta lateral “rolante”, é possível também em condições favoráveis, tais como peças de trabalho lisas, obter um alinhamento em pilhas de dois eixos (longitudinal e transversal). A operação de alinhamento deve ser acionada por um sensor de detecção da peça (não aparece no desenho).

Componentes recomendados:
- Cilindro antigiro (êmbolo obilongo) DZF...
- Cilindro de curso reduzido (com guias incorporadas) ADVUL...
- Cilindro de curso reduzido (com haste quadrada) ADVULQ...
- Cilindro gêmeo DPZ..., instalado diretamente na altura da esteira (sem o braço)
- Válvula pneumática simples piloto VL...
- Sensor de proximidade SME...
- Sensor de reflexão de luz SOEG...
- Totalizador PZA...
Seqüência funcional

Na montagem de buchas encaixadas longitudinalmente por compressão, é importante que o alinhamento axial dos dois componentes seja preciso entre si. Por isso, no exemplo apresentado uma bucha de fixação de encosto é colocada na base do componente e um mandril para centrar avança até a bucha alocada do outro lado. Esta operação gera um alinhamento axial bastante preciso dentro da faixa de tolerância. A bucha, portanto, é pressionada para dentro do furo. Todos os movimentos são gerados através de atuadores pneumáticos, incluindo a separação das buchas do magazine de alimentação vertical e a fixação do componente de base por meio de duas unidades lineares. Em seguida, inicia-se a montagem real das duas peças, empurrando-se o mandril de centragem para trás, retornando finalmente para a posição inicial. A fixação da peça básica evita que forças não admitidas sejam aplicadas sobre o sistema de deslocamento ou carregador. No final da operação, as duas unidades lineares retornam a sua posição inicial, possibilitando que o carregador da peça se mova sem obstrução.

Componentes recomendados:
- Cilindro normalizado ESN...
- Cilindro DSW...
- Guia linear integrada com cilindro DFM...
- Válvula simples piloto pneumática
- Sensor de proximidade SM...
- Fixações e acessórios de montagem
A redução do tamanho dos produtos e módulos no campo da engenharia que utiliza técnicas de precisão, ótica e eletrônica requer versões minituarizadas das unidades de manipulação, unidades de montagem, sistemas de alimentação e garra. A garra com ventosa é o tipo mais encontrado nas máquinas de montagem miniaturizadas, tais como máquinas de inserção de componentes em circuitos SMD. As versões miniaturizadas das garras de fixação, entretanto, são utilizadas também conforme apresentado no exemplo acima. Trata-se de uma microgarra angular com compensador de curso. Novos designs de garras para componentes miniaturizados estão sendo utilizados constantemente, incluindo designs que exploram os efeitos de aderência e funções criogênicas (congelamento das peças). A fim de aumentar a velocidade do ciclo, as funções de fixação e montagem, na configuração apresentada na Figura a, são realizadas simultaneamente. Para esta solução, montou-se uma miniguia integrada com cilindro sobre um atuador giratório, gerando assim uma unidade de montagem com dois braços.

Componentes recomendados:
- Módulo oscilante DSM...
- Unidade giratória DRQD...
- Válvula simples piloto pneumática
- Ventosa em fole VASB...
- Sensor de proximidade SM...
- Miniguia linear integrada com cilindro DFC...
- Microgarra HGWM...
- Acessórios de montagem e fixações
Anéis de retenção frequentemente são utilizados para reter componentes em módulos de montagens mecânicas e vários mecanismos têm sido desenvolvidos para possibilitar essas montagens. Nos exemplos acima, os anéis de retenção são separados do magazine por meio de um cursor, trazidos para a estação de expansão e cada um é encaixado no dispositivo expansor. Quando o anel entra em contato com os módulos de montagem, o dispositivo expansor se contrai e se encaixa na ranhura no final do eixo. É importante evitar que o anel de retenção sofra um estiramento excessivo durante esta operação, o que poderia levar a uma deformação plástica. Logo, a abertura das castanhas da garra deve ser devidamente controlada por meio de uma válvula. A garra radial define simultaneamente o centro do eixo, no qual o dispositivo de manipulação é alinhado. O cabeçote de fixação pode, portanto, ser montado em um dispositivo pneumático de manipulação.

Componentes recomendados:
- Garra de 3 pontos HGD...
- Cilindro compacto ADVUL...
- Regulador de pressão LR...
- Válvula simples piloto pneumática
- Cilindro ESN... ou
- Guia superflat SLG...
- Sensor de proximidade SM...
- Fixações e acessórios de montagem
Montagem

Estação de montagem para operação de embuchar

a) Visão em corte da estação de montagem
b) Mandril de centrar

1 Cilindro para centrar
2 Cilindro de prensar
3 Suporte
4 Cilindro de fixação
5 Guia
6 Roldana transportadora
7 Cilindro de indexação
8 Peça básica
9 Cilindro de apoio
10 Plataforma de alimentação, transporte
11 Magazine
12 Peça a ser montada
13 Cilindro alimentador
14 Anel de compressão
15 Movimento de alimentação
16 Mandril de centrar
17 Apoio para a peça básica
18 Haste do cilindro de apoio
19 Movimento de avanço do cilindro de apoio

O sistema de transporte desta instalação é composto de plataformas de montagem que circulam em trilhos. Dentro da estação as plataformas são indexadas e fixadas utilizando-se recursos da pneumática. A peça a ser montada é mantida na posição de espera. Antes de embuchar, os eixos, centro das peças, devem ser precisamente alinhados e um mandril de centrar faz o alinhamento. Além disso, um cilindro de apoio avança para fazer a compensação da força de montagem, aliviando assim a carga sobre a plataforma de montagem. O acionamento para o deslocamento da unidade de transporte não está sendo mostrado. Este acionamento pode, por exemplo, ter a forma de uma corrente circulante. Há também transportadores com o seu próprio motor elétrico de acionamento.

Componentes recomendados:
• Cilindro normalizado DSNU...
• Cilindro compacto ADVC...
• Cilindro compacto AEVC... ou
• Sistemas de fixação com alavanca articulada CTLF...
• Cilindro compacto ADVU...S20
• Cilindro pneumático
• Sensor de proximidade SM...
• Acessórios de montagem
• Fixações
Os anéis de retenção são encaixados em um magazine em forma de tubo. Para evitar que se enganchem um no outro, conforme se movimentem, é injetado ar que sai através dos orifícios no tubo, diminuindo o atrito entre os anéis de retenção e o tubo magazine. O cursor do distribuidor traz cada anel de retenção para baixo da prensa. A matriz se desloca prendendo o anel de retenção, que deixa a guia no final do avanço e salta para a ranhura anular na peça.

O carregador da peça é centrado e, ao mesmo tempo, fixado por vários pinos cônicos. Os pinos cônicos precisam apenas efetuar um avanço curto a fim de prender ou soltar os carregadores da peça.

Componentes adequados:
- Cilindro compacto ADVUL...
- Sensor de proximidade SM...
- Miniguia SLF...
- Válvula simples piloto pneumática
- Cilindro compacto ADVU...
- Acessórios de montagem
- Fixações
Este exemplo apresenta uma instalação de montagem com transferência e avanço do carregador da peça. Com um módulo concluído, este é movido para o final da linha de montagem e o carregador da peça é fixado por baixo por ventosas. Em seguida, ele é abaixado e transportado pela parte inferior da linha até o ponto inicial, sendo então, elevado e colocado no início da linha de montagem. Como todas as peças ficam imediatamente justapostas sem lacunas dentro dos carregadores, consequentemente, toda a sequência de trabalho é deslocada uma a uma para frente de forma compassada. Na solução de montagem mostrada aqui, este princípio monta peças pequenas, utilizando, em grande parte, componentes padrão.

Componentes recomendados:
- Cilindro sem haste com acoplamento mecânico DGPL...
- Acessórios de montagem
- Ventosa VAS...
- Fixações
- Sensor de proximidade SM...
- Guia linear integrada com cilindro DFM...
- Módulo linear HMP...
- Válvula com sucção de vácuo ISV...
- Gerador de vácuo VADM...
- Garra HG...
- Módulo oscilante SM...
Dobras em peças podem ser produzidas com facilidade sem a necessidade de uma prensa excêntrica ou hidráulica, utilizando-se componentes disponíveis comercialmente para criar uma solução. Os componentes pneumáticos fazem os movimentos necessários em várias direções. A ilustração apresenta a sequência de dobra. As ferramentas das dobras laterais só serão ativadas após o movimento vertical ter sido completado. O sistema de controle de seqüência, portanto, requer sinais emitidos por sensor de proximidade. A peça acabada deve ser empurrada para fora da matriz. No caso de automação completa, a inserção de uma nova peça pode ser sincronizada com a ejeção da peça acabada. Se um cilindro não puder aplicar a força necessária, utiliza-se, então, cilindros tandem.

Componentes recomendados:
- Cilindro de dupla ação ADVU...
- Cilindros tandem ADVUT...
- Acoplamento compensado angular FK...
- Cilindro normalizado DNGL...
- Sensor de proximidade SME...
- Válvula simples piloto pneumática VL...
- Acessórios de montagem
Os armazenamentos são um complemento útil ao sistema de fluxo de material para fazer o desacoplamento das estações de trabalho ou máquinas. Para aumentar a capacidade, vários magazines podem ser instalados paralelamente, conforme o exemplo acima. Níveis de enchimento devem ser monitorados através de sensores (não apresentados na figura). Os magazines são ativados por meio de acionamentos pneumáticos, tais como cilindros de múltiplas posições ou mesas giratórias pneumáticas. Em cada etapa da passagem em zig-zag, conforme magazine apresentado na Figura a, as peças de trabalho são alinhadas, possibilitando encher um magazine vazio. Na solução apresentada na Figura b, por exemplo, existem 4 magazines para componentes cilíndricos.

Componentes recomendados:
- Cilindro padrão DNC...
- Kit de multiposicionamento DPVU...
- Cilindro compacto ADVU...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática
- Válvula reguladora de fluxo GR...
- Articulação esférica SGS...
- Mesa giratória
- Acessórios de montagem
- Fixações
As estações modernas de linhas de produção geralmente são interligadas livremente entre si, uma vez que isto possibilita uma produção maior do que no caso de montagens fixas. A razão para isto é que no caso de mau funcionamento de uma estação, as outras podem se manter operando, pelo menos por um certo tempo. Para que isso ocorra, os buffers que não estão operando corretamente devem ser instalados entre as estações. Em condições normais, o carregador da peça passa diretamente. Caso, entretanto, a estação com o fluxo de descida não esteja funcionando corretamente, o carregador da peça de trabalho é deslocado para fora da linha de transferência e armazenado. Isto significa que será necessário desligar a estação de subida somente quando o depósito estiver cheio. A ilustração apresenta a solução de montagem que propicia esta operação. Para que as operações de enchimento e esvaziamento funcionem sem problemas, os carregadores das peças de trabalho devem ser parados brevemente por meio de cilindros pneumáticos. As ações de elevar, travar e parar os carregadores da peça são muito bem desempenhadas, utilizando-se os cilindros pneumáticos. O posicionamento do buffer deve ser estratégico para a linha de transferência.

Componentes recomendados:
- Cilindro de parada STA...
- Sensor de proximidade SM...
- Válvulas simples piloto pneumática
- Cilindros compactos ADVULQ...
- Válvula reguladora de fluxo
- Acessórios de montagem
- Conexões
Os depósitos intermediários possuem a função de compensar a diferença dos ciclos das estações de trabalho, propiciando um encadeamento livre que resulte em uma performance de sistema geral em caso de mau funcionamento específico de uma parte ou peça da instalação. A ilustração apresenta um depósito intermediário que aceita material (por exemplo, com diâmetros de 10 a 30 mm e comprimentos de 150 a 600 mm) da esteira transportadora. Faz o armazenamento temporário e a expedição para a máquina quando necessário. Todos os movimentos podem ser gerados utilizando-se componentes pneumáticos. As peças provenientes dos rolos transportadores são levadas ao deposito intermediário. Um separador se encarrega de retirar uma só peça e um manipulador de três eixos a entrega, para a máquina seguinte. O sistema é capaz de trabalhar com ciclos de 5 segundos.

Components recomendados:
- Cilindro compacto AEVU...
- Cilindro DNC...
- Fixação por pés HNC...
- Acionamento semigiratório DSR...
- Unidade linear DPZJ...
- Garra paralela HGP...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática
- Acessórios de montagem e fixações
Com freqüência é necessário cortar tubos de diversos comprimentos e chanfrar suas extremidades. Esta máquina especial pode efetuar as operações, depois de realizar-se o ajuste do comprimento necessário. O sistema de manipulação utilizado para inserir e retirar as peças de trabalho pode ter uma montagem relativamente simples, utilizando-se atuadores pneumáticos. No exemplo apresentado, os tubos são retirados do magazine transportador e, após a usinagem são transferidos para outro magazine. Os tubos são fixados durante a usinagem e a ferramenta executa o movimento necessário. O movimento do carro de usinagem pode ser bem uniforme se uma frenagem hidráulica for instalada.

Componentes recomendados:
- Unidade linear SLT... ou DFM...
- Unidade linear DGPL...-HD...
- Válvula simples piloto pneumática VL...
- Acionamento semi-rotativo DSR...
- Sensor de proximidade SME...
- Cilindro de amortecimento hidráulico YDR...
- Flange de montagem YSRF...
- Cilindro de avanço reduzido ADVU...
- Cilindro giratório DSEU...
- Acessórios de montagem

Máquina especial para chanfrar
1 Cilindro de fixação
2 Estrutura da máquina
3 Peça de trabalho usinada
4 Transportador de roletes
5 Distribuidor
6 Unidade linear
7 Magazine transportador
8 Cilindro pneumático
9 Braço
10 Acionamento giratório
11 Extrator
12 Cabeçote de usinagem
13 Motor elétrico
14 Unidade de fuso
15 Tope de parada
16 Frenagem hidráulica
A fixação é uma função fundamental em processos de produção. Uma fixação correta é responsável por grande parte da qualidade da peça. Um dispositivo de fixação por pressão com placa de pressão flutuante assegura que a força para sujeitar a peça no prisma de fixação permaneça constante. Uma alavanca articulada produz uma força elevada \(F \) ao final do avanço da haste do cilindro. Esta força é distribuída entre duas peças, fazendo com que cada uma delas seja fixada com a força \(F/2 \). Com a unidade de fixação aberta, deve haver espaço suficiente para a alimentação das peças. A unidade deve ser estruturada também para garantir um bom fluxo para o cavaco da usinagem. Além disso, os pontos de fixação devem ser limpos. Nesta aplicação pode ser utilizado um sistema de fixação de alavanca articulada pronto, protegido e comprovado, que pode simplificar bastante o trabalho de montagem do sistema. O ângulo de operação do braço de fixação pode ser ajustado entre 15º e 135º.

Componentes recomendados:
- Cilindro tandem ADVUT...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática
- Garfo SG...
- Cavalete LBG...
- Acessórios de montagem
- Conexões
Unidade de fixação para peças retangulares

- a) Vista da unidade de fixação
- b) Versão de mecanismo para fechar o encosto
- c) Módulo de fixação por membranas

1 Parede lateral
2 Encosto de fixação
3 Mecanismo de trava
4 Módulo de fixação
5 Rebaixo para facilitar a limpeza
6 Peça
7 Caixa de fixação
8 Parafuso de trava
9 Tensor de membrana
10 Placa de fixação

Estes sistemas devem fixar bem as peças, além de proporcionarem facilidade de alimentação e limpeza. O exemplo mostra um mecanismo de fixação de peças a serem usinadas. A força de fixação é gerada por componentes pneumáticos montados no encosto de fixação. O ângulo de abertura do encosto é bastante grande, possibilitando que as peças sejam facilmente retiradas. Um dispositivo de travamento simples, conforme apresentado na Figura b, é suficiente para este tipo de aplicação. A parte posterior no interior da caixa tem uma abertura que possibilita que as aparas de usinagem sejam retiradas facilmente. As membranas são protegidas por placas metálicas para evitar o desgaste por abrasão. A aplicação de módulos de sujeição proporciona uma fixação bastante simples. Estes módulos podem ser redondos ou retangulares.

Componentes recomendados:
- Módulo de fixação EV...
- Placa de fixação EV... DP
- Válvulas pneumáticas
- Acessórios de montagem
- Fixações
Fixar

Para que as peças sejam usinadas é necessário, antes de mais nada, fixá-las. Para isso deve-se recorrer aos mais diversos tipos de dispositivos. O exemplo acima mostra como utilizar um sistema pneumático para gerar a força de fixação necessária. O curso de fixação útil é determinado pelas características do fuso e pelo ângulo de giro do atuador. A força de fixação \(F \) é calculada a partir do torque \(M \) e o passo do fuso \(h \), sendo \(F = M/h \) menos a força de atrito gerada no fuso. Uma vez que a unidade giratória só suporta uma força axial reduzida, é necessário fazer fluir a força para a placa de base através da porca de fixação do fuso. Desta maneira, o atuador giratório não tem que suportar a força axial de resposta do eixo motriz. O fuso é autotravante. A desvantagem desta solução é que o curso útil de fixação é bastante reduzido, pois o acionamento semi-rotativo só consegue efetuar meia volta. Por outro lado, tem a vantagem de oferecer uma montagem bastante simples.

Componentes recomendados:
- Atuador giratório DSR...
- Fixação por pés HSR...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática
- Acessórios de montagem
- Fixações
Os sistemas de fixação múltiplos são normalmente utilizados para cortar peças como as que são apresentadas no exemplo (barras, perfis de alumínio). O exemplo acima mostra os perfis de alumínio com 3 peças sendo cortadas longitudinalmente de uma só vez. A fixação múltipla, entretanto, requer componentes de fixação capazes de compensar leves diferenças dimensionais. Jogos de mola-prato podem ser instalados para este propósito. Esta solução apresenta um sistema hidráulico passivo. A propósito, isto é importante para garantir que o êmbolo se encontre na posição final quando o óleo começar a entrar na câmara; caso contrário, o volume disponível será insuficiente para efetuar o avanço dos êmbolos e transmitir energia. Se o adaptador pode ser trocado, é conveniente fazer um pequeno estoque de adaptadores, que deverão estar sempre à mão, para atender diferentes dimensões de perfis. Isto aumenta a flexibilidade da unidade de fixação.

Componentes disponíveis:
- Cilindro compacto ADVUL...
- Válvula simples piloto pneumática
- Sensor de proximidade SM...
- Acessórios de montagem
- Fixações
Com os sistemas de fixação múltiplos é possível economizar tempo, uma vez que eles possibilitam executar todas as funções de manipulação como colocar, fixar, soltar e retirar várias peças de uma só vez, aumentando, assim, a produtividade. Consequentemente, as unidades de fixação múltiplas são utilizadas em operações de alto volume de produção. No exemplo acima, os sistemas de fixação de alavancas articuladas são utilizados para aplicar forças simultaneamente. O design compacto dos elementos que integram o sistema tornam a montagem bastante simples. A ferramenta de trabalho acessa facilmente as peças posicionadas acima, vantagem esta que a maioria dos sistemas não oferece. O ângulo de abertura dos braços é bastante grande, por isso este sistema é muito adequado para a alimentação automática das peças através do sistema de manipulação tipo pick & place.

Componentes adequados:
- Sistema de fixação com alavanca articulada CTLF...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática
- Acessórios de montagem
- Fixações

Sistema de fixação múltiplo para peças em formato de cubo

1. Peça
2. Corpo do sistema de fixação
3. Braço de fixação
4. Alavanca articulada
5. Peça de centragem
Transportar

Os sistemas de transporte com ramo de acumulação reagem ao material acumulado, sendo que, na alimentação por esteira rolante, por exemplo, a reação é desconectar o acionamento da parte da esteira onde está ocorrendo o acúmulo de peças. A esteira de transporte se move continuamente e é pressionada contra os rolos, fazendo com que estes rodem. A esteira transportadora é dividida em partes, normalmente com comprimentos de 2,5 m, cada qual equipada com uma válvula 3/2 vias de rolete. Estas válvulas agem via temporizadores pneumáticos (estrangulamentos) e elementos E para comandar os cilindros elevadores. Os cilindros são pressurizados em um trecho específico somente quando as duas válvulas direcionais DCV1 e DCV2 são acionadas. Quando DCV2 é despressurizada, aplica-se ar nos cilindros Z2, fazendo com que esta parte do rolamento seja acionada novamente. Mesmo as peças leves (containers vazios) podem ativar a força de acionamento, o que significa que as lacunas entre as peças são eliminadas. A esteira transportadora pode ser operada como uma área de coleta.

Componentes recomendados:
- Cilindro de parada STA...
- Válvula simples solenóide M 5/2 vias
- Cilindro compacto ADVU...
- Acessórios de montagem
- Válvula de rolete R-3...
- Elemento E ZK...
- Sensor de proximidade SM...

Alimentação dinâmica

a) Avanço
b) Acúmulo

1 Cilindro pneumático
2 Válvula de rolete
3 Esteira transportadora
4 Rolos transportadores
5 Cilindro de parada
6 Material transportado

(1A+2A+3A+4A+)5A+(3A-4A-)5A-(3A+4A+)(1A-2A-3A-4A-)
Neste exemplo são utilizados sensores especiais para orientar as peças posicionadas nos transportadores dinâmicos. Sensores ópticos de reflexão com filtro eletrônico contra interferências tipo parasita (exclusão da luz de fundo) e válvula pneumática formam uma unidade de montagem que pode ser facilmente instalada nos espaços entre os roletes transportadores. Deste modo é possível ativar, por exemplo, cilindros de parada que fazem o bloqueio das peças transportadas nos trechos de acúmulo. Os roletes giram até entrar em contato com a cadeia (Figura b). Se os roletes são acionados por motor, este pode ser desligado no trecho apropriado enquanto o acúmulo de peças persistir. As válvulas são equipadas com acionamento auxiliar manual. Em se tratando de vias transportadoras de 350 a 500 mm, o sensor deve ser instalado com uma leve inclinação em direção ao eixo dos rolos de transporte. É possível abrir a passagem para deslocar uma ou várias peças de uma vez. Estes sensores também se aplicam muito bem ao exemplo 26.

Componentes recomendados:
- Cilindro de parada STA...
- Sensor de proximidade SM...
- Sensor SOV...
- Módulo de alimentação SOV-Z-EM
- Válvula pneumática
- Acessórios de montagem
- Fixações

Transportador dinâmico controlado por sensor

a) Posição dos sensores
b) Avanço por rolete com acoplamento deslizante

1 Cilindro de parada
2 Rolos de avanço
3 Sensor
4 Linha de fornecimento de ar comprimido
5 Cadeia de acionamento
6 Roda dentada
7 Mola de pressão
8 Anel de retenção
9 Eixo
10 Disco de arraste
11 Estrutura
12 Peças transportadas
13 Válvula pneumática
Para guiar as peças transportadas a granel em tubulações, é necessário utilizar sistemas de fechamento acionados elétrica, hidráulica ou pneumaticamente. O exemplo apresentado acima possibilita a aplicação de unidades lineares e giratórias. O produto a granel é deslocado pneumaticamente, ou seja, é impulsionado pela corrente de ar comprimido. A unidade de fechamento alocada atrás de um dos reservatórios tem que trabalhar constantemente e vedar a entrada de pressão. Como é difícil conseguir tudo isso em uma só unidade, então, foram montados dois dispositivos separados conforme apresentado na Figura a. Primeiro o cursor lateral fecha a passagem do material a granel e, então, a válvula tipo borboleta veda o duto de entrada de pressão. Entre os materiais a granel para os quais um sistema deste tipo pode ser utilizado, incluem-se os granulados, aparas de usinagem, produtos em pó em geral, carne moída, aveia, cimento, aditivos, etc. O fator mais importante é que o material em questão tenha as características apropriadas para não impedir o fluxo de transporte.

Componentes recomendados
- Atuador giratório COPAR, DR...
- Atuador linear COPAC, DLP...
- Articulação esférica SGS...
- Válvula NAMUR M...
- Sensor de proximidade SM...
- Acessórios de montagem
- Fixações
Em determinadas prensas, como, por exemplo, prensas hidráulicas, não é possível variar a pressão para criar novos movimentos. Neste caso os acionamentos pneumáticos são uma boa opção. Na aplicação apresentada acima, a lâmina é utilizada para cortar sobras de material de usinagem. O atuador pneumático selecionado deve dispor da força necessária para efetuar o corte. Além disso, é recomendável que a lâmina tenha o formato de guilhotina para que o corte seja efetuado dentro de uma distância maior, reduzindo assim a força de corte necessária (embora não o trabalho em si). Se a prensa não for equipada com roletes, pode-se instalar elementos pneumáticos (combinando-se módulo de sujeição e unidade linear). Forma-se, assim, um alimentador no qual os módulos de sujeição ocupam pouco espaço e executam em sincronismo as operações de fixar - soltar, enquanto que a unidade linear realiza movimentos alternados de avanço e retorno, para alimentação de material. Em termos gerais, é possível constatar que os componentes pneumáticos são bastante flexíveis para incorporar posteriormente funções adicionais dentro do sistema já existente.

Componentes recomendados:
- Cilindro tandem ADVUT...
- Unidade linear DPZJ...
- Sensor SM...
- Válvula pneumática
- Válvula de rolete RIO...
- Módulo de fixação EV...
- Acessórios de montagem
- Fixações
O exemplo apresenta o sistema de alimentação de peças para uma prensa. A garra da unidade de manipulação pega as peças da esteira e as coloca sobre a prensa. Depois de rebarbadas, as peças caem pela ação do próprio peso dentro do coletor. A unidade giratória está equipada com um contrapeso para evitar um desgaste prematuro das guias devido à aplicação de uma carga descentralizada. Os cilindros de amortecimento hidráulico regulável freiam o movimento nas posições finais. Esta sequência de movimentos poderia, logicamente, também ser obtida, utilizando-se outras configurações de acionamentos pneumáticos, tais como unidades de manipulação multieixo com coordenadas cartesianas aplicando-se eixos lineares.

Componentes recomendados:
- Atuador DRQD...
- Garra paralela HGP...
- Sensor de proximidade SM...
- Válvula simples piloto VL... ou
- Terminal de válvula CP...
- Guia linear integrada com cilindro DFM... ou
- Miniguia SLT...
- Acessórios de montagem
- Fixações
Para realizar o trabalho de repuxo com uma prensa de simples ação da mesma maneira que uma prensa de dupla ação, a prensa deve ser equipada com uma matriz de repuxo pneumática. Existem matrizes sem regulagem (no exemplo, o sistema no martelo da prensa) e com regulagem (no exemplo, na mesa de prensa). O controle ocorre por meio dos sinais emitidos pelo eixo de comando (virabrequim ou árvore de manivela) ou pelos cames. Funcionamento com sistema regulado: quando a matriz encosta na placa de repuxo, esta aplica uma pressão reduzida através do DCV2. Ao continuar o processo de repuxo, os cilindros são acionados, aplicando-se uma força moderada ou até a força total através dos DCV1 e DCV3. A ejeção, então, ocorre atuada através do DCV2, quando a prensa está no seu ponto morto, superior.

Operação sem a placa de repuxo: DCV1 é fechado e DCV2 e DCV3 são abertos. Ejeção controlada: quando a matriz se ergue, a placa de repuxo sobe para ejectar a peça repuxada, sem que para isso seja aplicada muita força (operação controlada por VW2). Finalmente, a placa volta a descer uma vez que a prensa está no ponto morto.

Componentes recomendados:
- Cilindro compacto AEVU...
- Cilindro tandem ADVUT...
- Sensor de proximidade SM...
- Válvula anti-retorno HGL...
- Válvula 3/2 vias
- Válvula 2/2 vias
- Acessórios de montagem
- Conexões
- Reservatório de ar comprimido VZS...
Nas linhas de produção de peças para móveis, por exemplo, é necessário retirar individualmente as placas que estão na pilha (placas de material plástico, tábua de madeira prensada ou de fibra) e colocá-las sobre a esteira de transporte. Isto pode ser feito sem problemas, utilizando-se ventosas, desde que o material em questão não seja muito poroso. Neste exemplo, um sistema de transporte contínuo é utilizado para trazer a pilha para o ponto de alimentação. Um sensor emite um sinal para que o sistema pare no momento exato para o recolhimento da placa. A quantidade e o tamanho das ventosas dependem do peso da placa e, consequentemente, da força necessária para erguê-la. As ventosas são montadas com compensadores de altura para compensar a diferença de espessura (até 5 mm).

Componentes recomendados:
- Cilindro normalizado DNC... com unidade de guia FEN... ou Miniguia SLT...
- Gerador de vácuo VAD...
- Válvula pneumática ou Terminal de válvula CP...
- Distribuidor FR...
- Cilindro sem haste com acoplamento mecânico DGPL...
- Compensador de altura VAL...
- Sensor de proximidade SME...
- Sensor de barreira SOEG...
- Acessórios de montagem
- Ventosa VAS...
- Sensor
- Válvula de serviço para vácuo ISV...
No exemplo, uma máquina está sendo alimentada com placas. As ventosas são fixadas a um braço duplo, possibilitando, assim, realizar as operações de pegar e colocar simultaneamente. A execução simultânea de várias operações reduz o tempo de produção. A pilha de painéis é elevada passo a passo, de modo que a altura permaneça aproximadamente constante. É recomendável que as ventosas sejam equipadas com compensadores. Uma desvantagem neste tipo de aplicação é que a máquina não recebe as placas enquanto a plataforma estiver sendo carregada. O tempo de parada é consequência do tempo que a plataforma necessita para retornar e ser carregada. Se este tempo de parada não for aceitável, será necessário montar uma unidade elevadora de pilhas de placas.

Componentes recomendados:
- Cilindro sem haste DGPL... ou
- Miniguia SLT...
- Válvulas VL...
- Eixo linear DGE...
- Sensor
- Acessórios de montagem
- Atuador giratório DRQ
Furar, cortar e chanfrar grandes lotes de peças pequenas são tarefas comuns na linha de produção. Sendo assim, pode valer a pena desenvolver unidades especiais para estas operações. O sistema de recolhimento de peças está equipado com unidades de fixação. Estas aplicam grandes forças que, com a ajuda de um prato divisor, executam movimentos cíclicos mediante um eixo horizontal. As unidades pneumáticas pick & place são utilizadas para carregar e descarregar peças. Se o sistema está equipado com uma furadeira ou fresa com eixo ou fuso de operação vertical, então, é possível operar também na posição de carregamento. Para regular lentamente o movimento de avanço pode-se utilizar uma frenagem hidráulica montada paralelamente.

Componentes recomendados:
- Mandril de fixação
- Válvulas pneumáticas VL... ou
- Terminal de válvulas CP... ou
- Terminal de válvulas tipo 03
- Unidade linear SLZ...
- Cilindro de amortecimento hidráulico YDR...
- Módulo linear HMP...
- Garra paralela HGP... ou
- Garra de 3 pontos HGD...
- Unidade linear sem haste DGPL...
- Sensor de proximidade SM...
- Prato divisor pneumático
Os sistemas capazes de fixar várias peças de uma só vez possibilitam economizar tempo. A figura acima apresenta um sistema com várias unidades de fixação de grande força montadas sobre um suporte giratório. Estas unidades são operadas pneumaticamente e geram forças de fixação de até 70 kN sob uma pressão de 6 bar. As peças são furadas em dois lados: primeiramente, no plano longitudinal e, girando-se a base em 90°, no plano transversal. Para garantir uma operação precisa, pode-se instalar um cilindro pneumático adicional que, através de um pino côncico (montado lateralmente ou em baixo do sistema), mantém a peça na posição desejada. A ilustração, que mostra a garra e a unidade de fixação em corte, possibilita ver que a mudança do movimento do êmbolo mediante acoplamento côncico é capaz de multiplicar consideravelmente a força. Este tipo de unidades de fixação é bastante robusto.

Componentes recomendados:
- Pinças pneumáticas
- Sensor de proximidade SM...
- Cilindro compacto ADVU...
- Válvulas pneumáticas VL...
- Atuador giratório DRQ... ou
- Atuador giratório DRQD...
- Montagem por pés HQ...
- Acessórios de montagem
Esta unidade é utilizada para usinar dois furos radiais numa mesma posição de fixação. Estas peças se encontram em uma rampa com roletes. Em seguida, elas rolam para dentro da unidade de fixação em formato V (prisma), instalada logo abaixo justamente com este propósito. Transcorrido o tempo de espera (acionamento de retardo), a peça é fixada e, então, furada. Em seguida, a furadeira passa para a próxima posição e efetua a furação novamente. As posições finais da unidade linear devem ser ajustadas em função das dimensões das peças. A unidade de alimentação e de fixação V (prisma) se move, então, novamente para baixo. A peça, entretanto, é retida na posição superior e pode deste modo, rolar para a rampa de saída. Os ciclos são controlados por sinais emitidos pelos cilindros e sensores.

Componentes recomendados:
- Unidade linear DPZJ...
- Válvula simples piloto pneumática VL... ou
- Válvula solenóide MFH...
- Sensor de proximidade SM...
- Cilindro compacto com guia ADVUL...

Furadeira para usinagem lateral de peças redondas
1 Sensor de proximidade
2 Unidade de alimentação e furação
3 Guia da furadeira
4 Peça
5 Base inclinada
6 Unidade linear
7 Estrutura
8 Prisma elevador
9 Cilindro de fixação e de avanço
Se os painéis utilizados nas indústrias de móveis são perfurados de baixo para cima, então, fica fácil retirar os cavaços. A figura mostra um sistema de furação, também denominado estação de usinagem, que opera por este princípio. Para efetuar o avanço, tudo que é necessário é um atuador pneumático de curso reduzido sobre o qual é instalada a furadeira. A posição pode ser corrigida mediante o sistema de fixação. O movimento de alimentação pode se tornar mais suave e homogêneo utilizando-se uma frenagem hidráulica que atua no sentido do avanço. O retorno pode ser mais rápido. Durante a furação da peça, os roletes pressionam a tábua para compensar a força da(s) furadeira(s). Um cilindro de parada se encarrega de evitar que a tábua continue avançando. Em alguns casos recomenda-se alinhar a tábua, fazendo-se com que ela se desloque até um tope de parada permanente e fique fixada na posição desejada.

Componentes recomendados:
- Cilindro compacto ADVUL...
- Unidade de guia DFM...
- Válvula pneumática VL...
- Frenagem hidráulica YDR...
- Sensor de proximidade SME...
- Flange de fixação YSRF...
- Cilindro de frenagem STA...
- Acessórios de montagem
Nesta furadeira as peças são colocadas e retiradas manualmente e a fixação é feita por uma alavanca articulada. Depois de usinado o primeiro furo, a furadeira se desloca para a segunda posição. O movimento correspondente é controlado por meio de um cilindro de frenagem hidráulico. Este equipamento é composto por uma série bastante grande de componentes facilmente encontrados no mercado. Um só operador é suficiente para controlar vários equipamentos deste tipo ou outros similares, como aqueles utilizados para operações de controle e para rotulação (etiquetas de identificação).

Componentes recomendados:
- Cilindro sem haste DGPL...
- Acessórios de montagem das válvulas pneumáticas VL...
- Válvulas pneumáticas VL...
- Flange de fixação YSRF...
- Sistema de alavanca articulada CTLF...
- Frenagem hidráulica YDR...
- Sensor de proximidade SME...
- Unidade linear DPZJ...
- Bloco de comando bimanual
As prensas utilizadas para conformar peças, seja dobrando ou repuxando, costumam ter um sistema de ejeção automático (por exemplo, depois da dobra ou repuxo). A figura mostra dois exemplos. Para aplicar uma força retilínea a fim de ejectar as peças, é necessário que a parte inferior da peça tenha uma superfície plana. Caso não seja possível atender a esta exigência, deve-se optar pela ejeção com movimento de expulsão angular. Sendo assim, os cilindros pneumáticos podem atuar diretamente para ejectar as peças ou, opcionalmente, atuar indiretamente, acionando uma alavanca basculante. Nesta aplicação é recomendável que os componentes pneumáticos realizem um movimento brusco, pois, assim, as peças são impulsionadas sem a necessidade de utilizar cilindros pneumáticos maiores. Deste modo, o solavanco pode ser aplicado na parte inferior da peça para que possa ser ejetada. Em alguns casos, basta utilizar um jato de ar para ejectar as peças.

Componentes recomendados:
- Cilindro DSEU...
- Válvula pneumática VL...
- Sensor de proximidade SME...
- Sensor indutivo SIEN...
- Cilindro antigiro DZH...
- Flange oscilante SZSB...
- Articulação esférica SGS...
- Acessórios de montagem
A figura ilustra a ejeção de uma peça em uma máquina. Na parte inferior da máquina se encontra um mecanismo de alavanca que se encarrega de elevar a peça para que esta deslize pela rampa. Uma correia transportadora recolhe a peça. O mecanismo de alavancas é acionado por um atuador pneumático. A operação de ejeção é ativada por um sensor que detecta o movimento alternativo da ferramenta. Também são muito difundidos os sistemas de manipulação, que se encarregam de introduzir várias ventosas na zona de trabalho na máquina, para elevar a peça e colocá-la em uma pilha.

Componentes recomendados:
- Cilindro normalizado DNC...
- Fixação por pés HNC...
- Garfo SG...
- Válvula pneumática VL...
- Sensor de proximidade SME...
- Acessórios de montagem
Os tubos de aspiração têm a função de sugar, da forma mais eficaz possível, substâncias nocivas como gases, vapores, pó e respingos de tinta. O exemplo mostra a soldagem de buchas. Na estação de trabalho, os módulos são retirados da esteira de transporte e girados em 360°. Ao mesmo tempo, a proteção do sistema de aspiração é abaixada pneumaticamente até ficar próxima ao ponto de emissão. Antes de continuar o processo, retira-se a proteção para não obstruir os movimentos seguintes. Dependendo do tamanho e do peso da unidade de aspiração, deve-se verificar a necessidade de se instalar uma guia ou se as forças transversais que atuam sobre a haste estão dentro do limite admitido.

Componentes recomendados:
- Cilindro normalizado DNC...
- Válvula 5/3 vias MFH...
- Garfo SG...
- Conexões de montagem
- Sensor de proximidade SME...
- Unidade linear SPZ...
Nos dispositivos utilizados para trabalhos nas superfícies de peças como, por exemplo, impressão ou aplicação de etiqueta adesiva, é necessário que as peças sejam colocadas sobre a esteira de transporte em sequências bastante rápidas. Para efetuar esta operação, em muitos casos, não basta utilizar um sistema convencional do tipo pick & place cuja função é pegar e depois colocar a peça. No exemplo apresentado aqui, optou-se por um sistema de alimentação alternado com dois magazines que executam simultaneamente os movimentos de pegar e colocar. As duas unidades verticais utilizadas estão montadas sobre o mesmo carro. Caso seja necessário executar a operação em sequências mais curtas, pode-se empregar uma unidade Soft Stop, que possibilita reduzir até 30% do tempo em comparação com os atuadores pneumáticos convencionais. Se é necessário colocar as peças em determinados lugares da esteira, deve-se, então, sincronizar os movimentos do sistema de alimentação com o movimento da esteira de transporte.

Componentes recomendados:
- Cilindro normalizado DSNU...
- Unidade de guia FEN...
- Unidade de acionamento DFM...
- Cilindro sem haste DGPL...
- Soft Stop com DGPL...
- Transdutor de posição MLO-POT...
- Válvula direcional pneumática MPYE-S...
- Válvula pneumática VL...
- Terminal de válvula CP...
- Sensor de proximidade SME...
- Ventosa VAS...
- Gerador de vácuo VAD...
- Válvula de serviço para vácuo ISV...

Diagrama de sequência funcional:

Estrutura
1 A
2 Unidade linear pneumática
3 Carro
4 Cilindro sem haste
5 Magazine
6 Entrada da esteira de transporte na linha de produção

1A + 2A + 1A - 2A -
A alimentação de peças pequenas e planas é uma operação muito freqüente para prensa de estampar, perfurar, moldar e cortar etc. Para posicionar as peças com precisão na ferramenta, utiliza-se, neste exemplo, uma placa de aspiração ao invés de várias ventosas. Desta maneira a peça permanece totalmente na posição horizontal, o que é importante em se tratando de uma estrutura fixa. Os braços giratórios se encarregam de recolher e colocar as peças. Cada um dos braços está conectado a uma unidade linear giratória. Os magazines têm a função de elevar e abaixar as peças através de um fuso (haste). Vários sensores controlam o nível dos magazines, monitorando se estão cheios ou não; caso não estejam, os sensores se encarregam de ativar as operações necessárias para enchê-los. Os lados de carga e descarga são idênticos. Se as duas operações são controladas por uma única unidade de manipulação, elas ficam mais lentas, porque não é possível executá-las simultaneamente. Cabe destacar, no entanto, que esta é uma solução simples e barata.

Componentes recomendados:
- Unidade linear e giratória DSL...
- Amortecedor YSR...
- Válvula pneumática VL... ou
- Terminal de válvulas CP...
- Sensor de proximidade SME...
- Sensor óptico de reflexão direta SOEG...
- Gerador de vácuo VAD...
- Válvula de serviço para vácuo ISV...
- Acessórios de fixação
A figura mostra uma unidade de alimentação de peças redondas até um torno automático e a posterior retirada destas peças. Um elemento em formato V tem a função de recolher uma peça do carregador e elevá-la até ficar centrada na altura do mandril. Nesta posição ela é empurrada para dentro do mandril (não aparece na ilustração). Depois de usinar, a peça de trabalho acabada cai na bandeja e é conduzida ao canal de saída para a unidade de armazenamento. A unidade inteira é montada sobre uma base e pode ser fixada nas máquinas-ferramentas. Durante a usinagem, todos os componentes com a função de alimentar e recolher as peças são afastados para a posição de espera.

Componentes recomendados:
- Cilindro normalizado ESN...
- Cilindro normalizado DNG... ou
- Cilindro normalizado DNC...
- Sensor de proximidade SM...
- Cilindro pneumático
- Cavalete LBG...
- Articulação esférica SGS...
- Válvula de comando unidirecional GR...
- Cavalete LNZ...
- Acessórios de montagem
- Conexões roscadas
A laminação de rosca é um processo que não gera cavacos, por isso é recomendável automatizar todo o processo de alimentação das peças. A ilustração apresenta uma solução possível. As peças são transportadas, de forma ordenada, do sistema de alimentação até o magazine da esteira rolante da máquina. A geometria engenhosa do segmento de alimentação tornou possível realizar a operação com um só atuador. O movimento de descida compassado possibilita orientar as peças de forma que cheguem na posição correta na área de trabalho. As peças acabadas chegam ao coletor naturalmente, uma vez que elas se deslocam pelo próprio processo de roscar. O sistema de alimentação pode ser modificado para aplicação com peças de geometria desigual ou com cabeça.

Componentes recomendados:
- Cilindro normalizado DNC...
- Sensor de proximidade SM...
- Articulação esférica SGS...
- Cavalete LSNG...
- Válvula reguladora de fluxo GR...
- Acessórios de montagem
- Conexões roscadas
Os sistemas modernos de alimentação de peças devem ser, acima de tudo, versáteis (para serem utilizados em combinação com diversas máquinas e ajudar a acelerar os processos e controlá-los melhor). Atendendo estes objetivos, possibilitam aproveitar melhor o rendimento das máquinas. A ilustração apresenta um sistema de alimentação simples de chapas ou painéis que pode ser montado, posteriormente, em uma outra máquina. As peças são retiradas do magazine através de um gancho ajustável (se as peças são largas, pode-se utilizar vários ganchos) e empurradas até os roletes de avanço. Eles deslocam a peça para posicioná-las abaixo de uma ferramenta ou uma máquina aplicadora de cola (não aparece no desenho). Os roletes estão revestidos de borracha para reduzir o atrito e não danificar as peças. O trinquete ou gancho tem que sobressair alguns milímetros para pegar a peça. O cursor de alimentação se desloca sobre os trilhos de formato V ou U até que o pino de acionamento ativa o sensor e inverte o movimento. Esta inversão também pode ser acionada por um sensor de proximidade.

Componentes recomendados:
- Cilindro normalizado DNC...
- Articulação esférica SGS...
- Fixação por pés LSNG...
- Sensor de proximidade SM...
- Válvula de controle de fluxo GR...
- Acessórios de montagem
- Conexões
Chapas têm que ser alimentadas uma a uma para a prensa de repuxo. Em se tratando de peças ferromagnéticas, é possível utilizar uma combinação de ventosas e ímãs para transportá-las. Na solução apresentada acima, a peça que está mais acima da pilha é removida por meio de ventosas. O sistema consiste de várias esteiras de transporte paralelas e as ventosas executam um movimento vertical. Quando a chapa se encontra totalmente erguida, ela é fixada magnéticamente contra a esteira de transporte; pendurada na esteira, é, então, transportada. Os ímãs permanentes são seguidos por vários eletroímãs, que se se desconectam quando a chapa se encontra exatamente sobre a mesa com roletes. Ao desconectar os eletroímãs, a chapa cai e o carro a transporta até a prensa. Para evitar a fixação de duas chapas de uma vez, um ímã separador a carrega para o início do processo.

componentes recomendados:
- Atuador linear sem haste DPGL...
- Sensor de proximidade SM...
- Válvula reguladora de fluxo GR...
- Gerador de vácuo VAD...
- Válvula para eficiência do vácuo ISV...
- Cilindro pneumático
- Ventosa VAS...
- Acessórios de montagem
- Conexões
Em numerosas máquinas-ferramentas é necessário alimentar eixos, tubos etc. Esta operação costuma ser automática. Na ilustração acima é possível ver um carregador de barras empilhadas do qual sai uma peça de cada vez. O tamanho do carregador pode se adaptar ao comprimento das peças. Na saída do carregador há uma alavanca basculante (vibratória) para evitar o acúmulo de peças (provocado pelo atrito e pelo peso das peças). Este sistema poderia ser utilizado, por exemplo, para alimentar peças para uma retificadora. A figura b mostra uma opção diferente para o carregador de peças empilhadas, também denominado carregador vertical, com saída através de alavanca basculante. Neste caso trata-se de um carregador com saída através de um segmento que recolhe uma peça de cada vez do magazine.

Componentes recomendados:
- Cilindro normalizado DNC...
- Fixação por pés HNC...
- Sensor de proximidade SM...
- Válvula pneumática...
- Válvula reguladora de fluxo GR...
- Cilindro compacto ADVU...
- Flange oscilante SUA...
- Articulação esférica SGS...
- Acessórios de montagem
- Conexões
Barras de seção redonda ou tubos alimentados em lotes devem ser separados um por um para possibilitar a alimentação para a máquina correspondente. O sistema apresentado na ilustração acima se encarrega de executar esta operação da seguinte maneira: em primeiro lugar, o recipiente que contém as peças desce, o braço de retenção se afasta, as barras rolam através da rampa e uma delas é separada até atingir a via rolante onde continua a ser transportada. A solução apresentada na Figura b utiliza dois braços giratórios, para conseguir, assim, fazer a transferência das barras de materiais em várias fases para uma pista rolante. A força provocada pelo peso das barras acumuladas é menor, sendo que a operação de separação é mais simples. O sistema supõe que os atuadores pneumáticos executam seus movimentos de modo sincronizado.

Componentes recomendados:
- Cilindro normalizado DNC...
- Sensor de proximidade SM...
- Articulação esférica SGS...
- Flange oscilante SNCS...
- Cavalete LBG...
- Válvula pneumática
- Válvula reguladora de fluxo GR...
- Acessórios de montagem
- Conexões roscadas
Para retirar uma peça moldada que se encontra em uma pilha ou em um magazine, não se pode recorrer simplesmente a uma guia alimentadora: o formato da peça impede o seu deslizamento. A ilustração acima apresenta uma solução que utiliza uma alavanca de bloqueio. Quando a unidade de deslizamento avança, a alavanca abre a passagem, possibilitando que o conteúdo do magazine caia. Então, a alavanca volta a bloquear a passagem. Consequentemente, só uma peça se encontra sobre a superfície do cursor de alimentação. Quando este retrocede, a peça fica posicionada sobre a superfície moldada do cursor. O cursor agora avança novamente e desloca a peça para a unidade de manipulação que se encarrega de levá-la para a máquina.

Componentes recomendados:
- Cilindro sem haste DGPL...
- Sensor de proximidade SM...
- Válvula pneumática
- Válvula reguladora de fluxo GR...
- Garra paralela HGP...
- Jogo de adaptadores HAPG...
- Cilindro compacto AEVU...
- Flange oscilante SUA...
- Articulação esférica SGS...
- Unidade linear DPZJ...
- Acessórios de montagem
- Conexões
Em geral, dentro da produção as peças devem ser alimentadas uma de cada vez. Consequentemente, é necessário executar a separação prévia. A ilustração acima apresenta duas soluções típicas. Na solução da Figura a, as peças planas avançam até o tope e permanecem nesta posição até que a placa basculante suba e separe a peça, que, em seguida, desliza para a rampa. Ao mesmo tempo fica bloqueada a passagem das peças seguintes. O sistema da Figura b mostra como separar peças redondas para, em seguida, colocá-las no elemento de fixação da máquina. Um bloqueio evita que as peças, que se encontram no magazine, avancem. A operação de separar peças também deve ser realizada através de componentes pneumáticos.

Componentes recomendados:
- Cilindro compacto AEVU...
- Flange articulada SUA...
- Articulação esférica SGS...
- Cilindro normalizado DNC...
- Fixação por pés HNC...
- Sensor de proximidade SM...
- Válvula pneumática
- Válvula reguladora de fluxo GR...
- Acessórios de montagem
- Fixações
A unidade apresentada acima foi desenvolvida para coletar peças pequenas na posição longitudinal. Em seguida, estas peças são alimentadas para um equipamento de medição. Ao mesmo tempo, ela se encarrega de armazenar um número pequeno de peças, conferindo, assim, mais versatilidade à máquina. Além disso, é possível encher o magazine à mão quando necessário. Em seguida, as peças são separadas através de uma unidade basculante em forma de garfo acionada por um atuador giratório. Tanto o magazine como o segmento basculante podem acolher peças de diversos comprimentos (ajuste prévio correspondente). O canal de saída entra nos segmentos giratórios do garfo separador, fazendo com que a peça deslize obrigatoriamente pelo canal de saída. Mesmo possibilitando uma regulagem em função do comprimento das peças, se estas trocam de diâmetros, subentende-se que será necessário montar um outro magazine e segmento basculante.

Componentes recomendados:
- Acionamento semi-giratório DSR...
- Fixação por pés HSR...
- Sensor de proximidade SM...
- Válvula simples piloto pneumática ... ou
- Integrada ao terminal de válvula CP...
- Acessórios de montagem
- Fixações
Em sistemas de montagem, controle, alimentação e em outras instalações de produção, é muito frequente a operação de avanço compassado das peças. O sistema apresentado na Figura a é bastante simples e não requer nada mais do que um cilindro de curso reduzido. Quando este avança, as ranhuras se deslocam fazendo com que todas as peças redondas avancem uma posição, rolando no sentido indicado (9). Também o exemplo com a correia de transporte é bastante simples (Figura b). O acionamento utilizado neste caso é um cilindro pneumático. O pino de trava côncico bloqueia a correia e, ao mesmo tempo, consegue alocar as peças na posição correta sobre os elos correspondentes.

Componentes recomendados:
- Cilindro compacto ADVUL...
- Sensor de proximidade SM...
- Válvula pneumática
- Válvula reguladora de fluxo GR...
- Acessórios de montagem
- Conexões roscadas
A união de peças utilizando-se cola é um método cada vez mais difundido devido à existência de colas específicas para cada tipo de material. A ilustração mostra a aplicação da cola em uma fenda em forma de anel. Para isso deve-se erguer a peça, separá-la do suporte e fazê-la girar, enquanto o tubo, acionado por um cilindro, posiciona-se corretamente e aplica a cola. O suporte da peça, por sua vez, permanece retido através de um cilindro de parada.

A velocidade do giro tem que possibilitar a regulagem precisa. O prato giratório também pode ser acionado eletricamente.

Componentes recomendados:
- Cilindro compacto ADVUL...
- Válvula pneumática...
- Sensor de proximidade SM...
- Atuador giratório DRQD...
- Cilindro plano DZF... ou
- Cilindro normalizado DSNUL... ou
- Miniguias SLT/SLS...
- Conexões
- Acessórios de montagem
- Cilindro de parada STA...
Por serem robustas e de tecnologia relativamente simples, as garras pneumáticas são utilizadas em todos os segmentos industriais. No entanto, existem garras fabricadas em série, que precisam ser adaptadas pelos usuários para se ajustar a formatos de peças específicos. A engenhosidade, neste caso, é preponderante para se conseguir uma manipulação confiável. No caso de manipulação de eixos com dois diâmetros, por exemplo, pode ser aconselhável montar paralelamente as garras com mordentes triangulares (para fixar peças redondas), conforme apresentado na Figura b. A outra ilustração mostra garras com mordentes prolongados para a manipulação de tubos. Esta solução evita a aplicação de torques ao se executar os movimentos de manipulação. Esta medida impede que ocorram desvios devido à fixação incorreta das peças. De qualquer maneira é importante observar os diagramas de cargas admitidas para cada uma das garras a fim de se obter a vida útil prevista. Em caso de dúvidas quanto à garra mais recomendável, deve-se selecionar a garra maior.

Componentes recomendados:
- Garra paralela HGP...
- Válvula pneumática
- Sensor de proximidade SM...
- Jogos de adaptadores HAPG...
- Conexões roscadas
- Acessórios de montagem
Para interligar várias prensas em uma linha de produção, costuma-se recorrer a unidades de manipulação para transportar as peças de uma prensa a outra. Eventualmente, é necessário montar depósitos intermediários para interligar longas distâncias, ou seja, caso as prensas estejam longe uma das outras. As peças são fixadas por garras pneumáticas, cuja força é multiplicada, utilizando-se uma alavanca. No exemplo acima as peças apresentadas são seguras pelas bordas pelas garras com mordentes. Os movimentos das garras são efetuados por robôs, manipuladores industriais ou, como no exemplo acima, através de um eixo linear. Os cilindros pneumáticos sem haste, dispostos individualmente ou paralelamente, são uma solução adequada para executar movimentos rápidos e superar assim distâncias relativamente grandes. O exemplo mostra um sistema com duas garras que podem se deslocar sobre a barra conforme o tamanho da peça que será fixada. A superfície de fixação das garras é de metal duro (pontas individuais ou superfície recartilhada pontiaguda) para garantir uma fixação firme. Sabe-se que essas garras deixam marcas na chapa, por isso, esta aplicação só é recomendável se o processo de fabricação prevê que a parte afetada da chapa seja cortada.

Componentes recomendados:
- Unidade linear sem haste DGPL...
- Sensor de proximidade SM
- Válvula pneumática
- Conexões roscadas
- Cilindro compacto ADVU... ou
- Cilindros normalizados DNG...
- Acessórios de fixação
Para fixar peças grandes ou volumosas, costuma-se utilizar garras especiais. O músculo pneumático oferece possibilidades bastante inovadoras. Na figura a o músculo não apenas fixa a peça, como também, ao contrair-se, provoca a elevação por tração. Para evitar que se dobrem, os exemplos de fixação estão equipados internamente com uma barra guiada. Garras deste tipo têm uma estrutura simples e pesam menos do que aquelas equipadas com cilindros pneumáticos ou hidráulicos. Além disso, não danificam a superfície das peças, por isso, são altamente confiáveis para fixar peças com superfícies acabadas, por exemplo, superfícies pintadas, polidas ou blindadas. No caso da garra apresentada na Figura b, ao aumentar o diâmetro do músculo pneumático, a força é transmitida para o mordente através de elementos mecânicos. O músculo pneumático é capaz de realizar, no mínimo, 10 milhões de movimentos e tem a vantagem de consumir menos energia do que os cilindros próprios para desempenhar essa função, além de serem resistentes à sujeira, água e pó, terem menor peso e desenvolverem elevadas forças.

Componentes recomendados:
- Músculo pneumático MAS...
- Válvula pneumática
- Conexões roscadas
- Acessórios de montagem
Este exemplo mostra como os discos podem ser alimentados do magazine para a máquina-ferramenta. As peças estão empilhadas de tal forma que o braço elevador pode se encaixar debaixo da pilha. O recolhimento e a entrega dos discos são feitos por um braço giratório duplo, com o qual as operações podem ser efetuadas simultaneamente. Se as peças não têm orifício central, é possível utilizar uma ventosa simples. Entretanto, se tiver orifício, pode-se empregar duas ventosas de fole ou também uma ventosa anelar (Figura à direita na parte inferior do desenho).

Componentes recomendados:
- Unidade linear/giratória DSL...
- Ventosa VAS... ou ventosa em fole VASB...
- Eixo eletromecânico DGEL...-SP...
- Motor de passo VRDM... e unidade de posicionamento EPS...
- Sensor de proximidade SM...
- Unidade giratória DSM...
- Válvula pneumática
- Sensor de reflexão SOEG...
- Acessórios
- Conexões

Alimentação de discos delgados
1 Unidade de trabalho
2 Prato divisor
3 Unidade giratória e linear
4 Estrutura
5 Braço giratório
6 Ventosa em forma de fole
7 Discos empilhados
8 Unidade giratória
9 Eixo de posicionamento
10 Sensor de proximidade
11 Barra para empilhamento
12 Braço de elevação
13 Suporte
14 Placa de magazine
15 Ventosa
16 Peça para cobrir o orifício central dos discos a fim de manter o vácuo
Para a montagem, controle e embalagem de peças pequenas existem inúmeros sistemas que executam a função de pegar e colocar as peças (conhecidos pelo termo em inglês pick & place). Em geral, estas unidades podem efetuar um número restrito de posições dentro de uma superfície de trabalho limitada, mesmo que haja sistemas que executem movimentos de 3 eixos. Na Figura a é apresentada uma solução que utiliza uma unidade giratória e linear. O movimento giratório da unidade é convertido em movimento linear através do sistema de engrenagem tipo cremalheira e pinhão, que faz com que o atuador gere movimentos cíclicos. A montagem é relativamente simples e pode ser montada, utilizando-se poucas peças. O segundo exemplo mostra 3 unidades lineares que foram interligadas por hastes de suporte, obtendo-se assim uma estrutura "semi-hexápode". Ao utilizar uma unidade de posicionamento final, as garras naturalmente podem abranger $2^3 = 8$ posições. Entretanto, recorrendo-se a eixos lineares servopneumáticos ou elétricos livremente programáveis, o número de posições possíveis é ilimitado. Os eixos pneumáticos possibilitam executar movimentos bastante rápidos.

Componentes disponíveis:
- Unidade linear/giratória DSL...
- Conexões
- Válvula pneumática
- Sensor de proximidade SM...
- Unidade linear sem haste DGP... ou
- Eixo de posicionamento DGE... com comando multieixo MPS
- Ventosa VAS... ou
- Garra HG...
Muitas operações de pegar e colocar requerem movimentos em um só plano, cuja única exigência é atingir as posições finais com precisão. Unidades pick & place equipadas com atuadores pneumáticos são mais do que suficientes para executar essas funções. Os exemplos acima mostram um movimento giratório principal. As peças são recolhidas do magazine e colocadas, por exemplo, na unidade de fixação do prato divisor.

Na solução apresentada na Figura a, as operações pick & place não são totalmente verticais, devido ao ponto de giro da barra principal, a menos que os pontos A e B fiquem verticalmente sobrepostos. Na solução apresentada na Figura b, o movimento é circular. Neste caso ambas as operações pick & place são realizadas verticalmente. Em ambos os casos são utilizadas unidades giratórias pneumáticas.

Componentes recomendados:
- Atuador giratório DSR...
- Garra HG... ou
- Ventosa VAS...
- Sensor de proximidade SM...
- Válvula pneumática
- Conexões
- Acessórios de montagem
Neste tipo de depósito, as peças ou o material de formas irregulares é armazenado sem uma ordem definida. A Figura a mostra como o material é expelido através da barra perfilada. As duas articulações do mecanismo basculante estão equipadas com sensores para medir a quantidade armazenada. Assim é possível recorrer a lotes diferentes do material cujo peso foi previamente determinado. Na Figura b aparece um sistema para ordenar e alimentar esferas simétricas, cuja orientação é simples. O sistema coloca as esferas debaixo das ventosas que, por sua vez, têm a função de agarrá-las e levá-las até a estação de montagem e embalagem. Os êmbolos apresentam um rebaixo côncico na parte superior. Este princípio oferece uma solução simples e de baixo custo.

Componentes adequados:
- Cilindro normalizado DNC...
- Acessórios de fixação
- Flange oscilante SSNG...
- Mangueiras de ar comprimido para sensores de cilindro SM...
- Conexões de válvula pneumática VL...
- Atuador giratório DRQD...
- Ventosa tipo fole VASB...
- Válvula para eficiência do vácuo ISV...
- Gerador de vácuo VAD...
- Guia linear integrada com cilindro DFM...
Para descarregar ou carregar peças normalmente é necessário utilizar uma unidade de manipulação para efetuar o posicionamento em dois eixos. O sistema se torna mais simples utilizando-se um tambor com cames para transmitir as posições de um eixo. A distância entre os cames corresponde à distância entre as fileiras de peças. Movimentando-se o tambor, o magazine avança uma fileira. A posição central do tambor (terceira posição) possibilita a passagem livre do magazine. Naturalmente, se as peças são coletadas uma de cada vez (e não em fileiras), será necessário instalar um eixo de posicionamento para a unidade de manipulação. Esta solução também seria possível utilizando-se, ao invés de um tambor de came, um sistema de tope com cilindros planos. Para distâncias maiores, pode-se utilizar cilindros de parada.

Componentes adequados:
- Cilindro de multiposicionamento ADVUP...
- Jogo de montagem DPVU...
- Garra paralela HGP...
- Sensor de proximidade SM...
- Válvula pneumática
- Módulo linear HMP...
- Eixo de posicionamento elétrico DGE... e controlador de posicionamento de eixo simples EPS...
- Acessórios de montagem
- Conexões
O exemplo mostra um processo bastante comum nas áreas de montagem: inserir um pino no orifício de uma base ou em uma unidade para transportá-los. Para recolher as peças por fileira, a unidade linear pneumática tem várias posições intermediárias. As unidades utilizadas para transportar as peças avançam através da esteira circulante equipada com um mecanismo tipo catraca. Embora o procedimento completo consista de várias sequências, a operação pode ser realizada de forma bastante confiável, utilizando-se componentes pneumáticos simples. Os topes proporcionam boa repetibilidade.

Componentes recomendados:
- Minicursor SLT...
- Módulo linear HMP...
- Kit de adaptadores HAPG...
- Garra paralela HGP...
- Atuador giratório DSR...
- Sensor de proximidade SM...
- Válvula pneumática VL... mas, geralmente, um terminal de válvula CP...
- Fixação por pés HSR...
- Mecanismo tipo catraca FLSR...
- Acessórios de fixação
- Conexões roscadas
Em qualquer fábrica e oficina é necessário elevar objetos, paletes, materiais e equipamentos de diversos tipos. Hoje, o mercado dispõe de muitos sistemas de aplicação para este propósito. Entretanto, para determinados casos específicos é necessário utilizar um sistema elevador especial. Uma solução pode utilizar vários cilindros pneumáticos ligados a um paralelogramo de braços de tal maneira que se obtenham sistemas tipo guindastes. Os músculos pneumáticos possibilitam executar soluções relativamente simples. Na Figura b o carregador de carga é ligado à unidade através de um rolamento móvel. Deste modo se duplica o curso útil do músculo pneumático que é de apenas 20% do seu comprimento em condição de repouso. Montando-se os músculos paralelamente é claro que a força de elevação se duplica. Ambos estão montados em uma mesa giratória, possibilitando efetuar deslocamentos circulares. Mesmo que este sistema seja menos eficiente do que outros, devido a sua capacidade limitada de elevação vertical, cabe lembrar que existem numerosas aplicações que não exigem grande deslocamento. No que se refere ao avanço vertical, este tipo de unidade de deslocamento não tem como competir com outros. Ambos os sistemas apresentados aqui podem ser montados no teto de uma oficina ou de uma fábrica.

Componentes recomendados:
- Cilindro normalizado DNG... ou DNC...
- Articulação esférica SGS...
- Cavalete LSNG...
- Válvula pneumática
- Sensor de proximidade SM...
- Músculo pneumático MAS...
- Acessórios de fixação
- Conexões
O tipo de mecanismo balanceador do exemplo é utilizado para compensar a força de gravidade, evitando que os operários realizem esforços físicos. Os movimentos não estão programados. A força de compensação necessária em geral está a cargo de um cilindro pneumático. Também seria possível utilizar um músculo pneumático, uma vez que ele reduz a carga móvel, fazendo com que os movimentos se tornem mais dinâmicos. O sistema apresentado aqui aplica apenas uma força. Entretanto, também existem sistemas que possibilitam selecionar uma força entre várias forças definidas preliminarmente. Para manipular diversas peças de diferentes pesos, o sistema tem que dispor de uma balança entre o mordente e o sistema de elevação para regular a “contraforça” pneumática necessária em cada caso. Esses balanceadores se tornaram muito comuns nos últimos anos.

Componentes recomendados:
- Cilindro normalizado DNG... ou DNC...
- Válvula pneumática
- Sensor de proximidade SM...
- Válvula reguladora de fluxo GRLA...
- Regulador de pressão LRP...
- Válvula anti-retorno H...
- Elemento OU OS...
- Acessórios de fixação
- Conexões
Na máquina 1, as peças A e B são colocadas uma atrás da outra na ferramenta indicada na ilustração. A operação de montagem não está sendo mostrada. Em seguida, a peça montada é coletada através das ventosas e transportada até a máquina 2, onde são montadas as peças C e D. Quando as peças chegam à máquina, as peças acabadas são colocadas simultaneamente no carregador correspondente. As 3 unidades de elevação são montadas em um carro fixado na máquina 2, tendo em vista as distâncias necessárias para as operações de recolher e entregar. As unidades lineares avançam até 3 posições cada uma. A unidade de entrega (carro) de peças para a máquina 2 só avança até as posições finais. Para possibilitar a alimentação das máquinas à mão, seria até recomendável projetar uma posição intermediária para estacionar o carro em referência.

Componentes recomendados:
- Atuador linear sem haste DGPL...
- Sensor de proximidade SM...
- Unidade linear SLE...
- Cilíndro normalizado DSN...
- Válvula pneumática
- Ventosa VAS...
- Gerador de vácuo VAV...
- Válvula para eficiência do vácuo ISV...
- Acessórios de montagem
- Conexões

Encadeamento de duas máquinas de montagem
1. Carro longitudinal
2. Atuador linear sem haste
3. Cilíndro de curso longo para executar o encadeamento
4. Carro elevador
5. Ventosa
6. Ferramenta
7. Unidade de avanço
8. Magazine de peças acabadas

A, B, C, D Peças para a operação de montagem
A ilustração apresenta uma sequência de movimentos das unidades de manipulação que pode ser aplicada no exemplo 59. As ventosas pintadas de preto são as que aparecem agarrando peça. As peças completamente acabadas estão identificadas com ABCD, enquanto os subgrupos aparecem identificados com AB.
Mesas inclinadas deste tipo têm que ser muito robustas para suportar o peso das peças. As barras rolam até a alavanca distribuidora. Esta se encarrega de elevar uma barra para que possa passar e chegar até o transportador. Se a força de um cilindro pneumático não for suficiente, pode-se recorrer a uma alavanca articulada. A força da alavanca pode ser ajustada em função dos diferentes diâmetros de material em barra (e esta é a única operação de ajuste necessária). Os roletes de guia sobem automaticamente quando a barra se encontra sobre os roletes de apoio. Assim, a barra fica centrada na via de transporte enquanto avança. Ao baixar a alavanca, avança-se a barra seguinte até o tope e, em seguida, repete-se a operação ao terminar o processo de usinagem da barra anterior. A alavanca poderia ser substituída por um músculo pneumático, tal como aparece na Figura b. Neste caso, o músculo se encontra submerso em uma ranhura que tem o mesmo comprimento que as barras.

Componentes recomendados:
- Cilindro tandem ADVUT... ou Acessórios de montagem
- Cilindro normalizado DNG... ou DNC... Conexões
- Músculo pneumático MAS...
- Válvula pneumática
- Flange oscilante SUA...
- Garfo SG...
- Sensor de proximidade SM...

Mesa inclinada para carregamento de peças redondas

a) Entrega das peças mediante alavanca distribuidora
b) Músculo pneumático para carregamento

1 Rolete rolamento lateral regulável
2 Alavanca para abrir e fechar a passagem
3 Peças arredondadas (barras)
4 Mesa inclinada para as barras
5 Vía de roletes
6 Cilindro pneumático
7 Estrutura
8 Músculo pneumático
Em sistemas automáticos de fabricação é imprescindível controlar o bom estado das ferramentas. Para isto já foram criadas soluções engenhosas. Na Figura a aparece uma solução para efetuar o controle sem contato. Se a broca estiver quebrada, o jato de ar pode passar livremente e pode ser medido. O furo do bico apresenta um diâmetro de 1 mm e o comprimento calibrado é de aproximadamente 4 mm. Na solução apresentada na Figura b, por outro lado, vemos uma possibilidade de controle mediante contato mecânico. Se a alavanca não oscila e não encontra resistência na broca, abre-se a passagem na tubulação e a diferença da pressão indica que a broca está quebrada. A vantagem deste sistema é que o ponto de contato pode ser regulado com uma precisão de décimos de milímetros. Entretanto, antes de realizar a medição, é recomendável limpar a broca com um jato de ar ou líquido refrigerante. Para constatar que a alavanca não está encontrando resistência na broca, pode-se utilizar também sensores indutivos montados no módulo giratório.

Componentes recomendados:
- Barreira de ar
- Módulo giratório DSM...
- Gerador de vácuo VAS...
- Conjunto de peças para a montagem WSM...
- Sensor de proximidade SM...
- Válvula reguladora de pressão LR...
- Sensor a vácuo VADM...
- Acessórios de montagem
- Conexões
Se todas as operações executadas em um sistema estão a cargo de elementos pneumáticos, é claro que as operações de monitoramento também utilizam-se de ar para realizar suas funções. Uma solução bastante simples consiste em utilizar um parafuso de tope oco em formato de tubo. Se o carro chega até o parafuso, ocorre uma alteração de pressão, que é detectada pelo pressostato. Assim, o parafuso passa a ser um elemento que reúne as funções de ajuste de posição e de monitoramento da peça. O exemplo da Figura b mostra como as peças se mantêm em uma posição de fixação através da aspiração de ar. Se tal posição está vazia ou se a peça está ladeada de cavacos, por exemplo, não haverá vácuo; este fato pode ser detectado e monitorado. Se o vácuo criado por geradores a ar comprimido não for suficiente para garantir a fixação da peça no carregador, deve-se utilizar, então, uma bomba de alta performance.

Componentes recomendados:
- Gerador de vácuo VA...
- Sensor de pressão PEV...
- Válvula 2/2-vias MEBH...
- Sensor a vácuo VADM...
- Acessórios de montagem
- Conexões

Verificação e monitoramento com ar.

a) Monitoramento da posição final
b) Controle da posição das peças

1 Base do tope
2 Carro ou parte móvel de uma máquina
3 Parafuso de tope
4 Tope flexível e amortecimento
5 Pressostato
6 Peça
7 Placa de fixação a vácuo
8 Vacuostato
9 Bico de Venturi

\[P_1 \text{ Pressão de alimentação} \]

\[P_2 \text{ Pressão dinâmica} \]
É relativamente simples conseguir que as peças sejam orientadas em função do seu eixo longitudinal, utilizando-se sistemas de avanço por vibração ou outros meios. Entretanto, se tais peças têm formatos geometricamente desiguais (ranhuras, roscas, achatamentos, furos de um lado) é necessário incluir uma operação adicional para que as peças sejam orientadas adequadamente. A ilustração acima apresenta um sistema deste tipo. A peça, neste caso, é apenas um exemplo que representa qualquer peça de formas diferentes em seus extremos. A diferença geométrica é detectada quando a peça passa por uma câmara de vídeo que identifica os segmentos da peça. Os dados correspondentes são avaliados para constatar as assimetrias e emitir os sinais de controle necessários. As peças têm que chegar até a unidade de orientação uma de cada vez e a uma certa distância entre si. O sistema possibilita a passagem livre das peças que estão orientadas corretamente. As que não estão são retiradas da esteira por meio de um jato de ar e o rotor se encarrega de girá-las em 180°. Em seguida, as peças continuam avançando enquanto o rotor volta para a sua posição inicial.

Componentes recomendados:
- Módulo giratório DSM...
- Cilindro normalizado ESN...
- Flange de fixação FBN...
- Inspeção óptica Checkbox
- Sensor de proximidade SM...
- Acessórios de montagem
- Fixações
As peças de perfil redondo ou em formato V (prisma) têm que receber uma determinada orientação antes de chegar à estação de montagem. Para conseguir isso, pode-se utilizar sensores opto-eletrônicos ou, opcionalmente, bicos injetores pneumáticos. Bicos injetores pneumáticos têm a vantagem de serem auto-limpantes e, portanto, menos vulneráveis à entrada de sujeira. 2 sinais pneumáticos possibilitam obter $2^2 = 4$ informações, suficientes para executar as operações necessárias para que a peça possa ser orientada corretamente. No exemplo da Figura a, a interrupção da barreira de ar possibilita medir a modificação da pressão dinâmica. A configuração do equipamento apresentado na Figura b é mais simples e a pressão dinâmica é medida em dois lugares definidos. O sistema oferece a vantagem de poder detectar não apenas a orientação incorreta, mas também as peças com defeito. Isto pode ser visto nas tabelas acima. A escolha do sistema mais adequado depende do conjunto de instalações, mesmo que seja preferível a aplicação de sensores elétricos.

Componentes recomendados:
- Sensor de barreira de ar
- Bico injetor pneumático
- Sensor de pressão dinâmica
- Portas lógicas com funções E/OU
- Válvula com rolete escamoteável KH...
- Conexões
- Acessórios de montagem
As áreas problemáticas para a retirada das peças do depósito são sempre os pontos de transição das peças orientadas aleatoriamente para o canal de saída. No exemplo apresentado acima não se confiou na possibilidade de deixar as peças escorregando por si só sobre uma rampa e, assim, o sistema apresentado dispõe de uma haste empurradora para ejetar as peças da tubulação pneumática. Neste ponto elas passam pelo campo de visão da câmera que detecta a orientação e as saídas das peças separadamente. Um atuador giratório é instalado para este propósito. Este sistema é versátil e pode também ser utilizado para outras peças similares. O perfil superior do dispositivo, que recolhe as peças, tem forma triangular e deve ser aproximadamente 5 a 8 vezes maior do que o comprimento da peça. O comprimento das peças deve ser 2 a 5 vezes maior do que o seu diâmetro. Nas aplicações com pequenas peças de trabalho, também é possível utilizar o Checkbox da Festo, que possibilita a detecção ótica das características das peças.

Componentes recomendados:
• Cilindro sem haste DGPL...
• Sensor de proximidade SM...
• Válvulas pneumáticas
• Atuador giratório DSM...
• Checkbox
• Conexões
• Acessórios de montagem
O equipamento apresentado acima é utilizado para empacotar latas ou objetos similares. Em cada ciclo são transportadas quatro latas, no qual é possível utilizar atuadores que apenas avançam até as suas posições finais. A caixa de embalagem avança passo a passo e para essa função pode-se utilizar um cilindro pneumático equipado com um gancho, que se fixa à correia de transporte ao atingir o movimento necessário. Além disso, também é possível utilizar um atuador giratório com uma roda livre, desde que seja suficiente para completar o giro necessário. A operação de desempacotar é, a princípio, a mesma. Esta instalação também pode utilizar garras ao invés de ventosas.

Componentes recomendados:
- Cilindro sem haste DGPL...
- Fixação por pés HP...
- Cilindro de parada STA...
- Atuador giratório DSR... ou
- Atuador giratório DRQD...
- Ventosa VAS... ou
- Garra mecânica HG...
- Sensor de proximidade SM...
- Válvula pneumática
- Miniguias SLE... ou SLT...
- Cilindro normalizado DSN...
- Gerador de vácuo VAD...
- Válvula de serviço para vácuo ISV...
- Acessórios de montagem
- Conexões
No final dos processos de fabricação, muitos produtos são colocados em paletes. As sequências dos movimentos e as quantidades de produtos dependem da configuração dos paletes. A ilustração mostra os paletes avançando em ciclos que correspondem às fileiras dos produtos e os cilindros de parada são instalados de tal forma que os paletes avançam um de cada vez. Os rolos na parte inferior se encarregam de guiar o palete entre as guias longitudinais. Se o palete é plano na parte inferior, os roletes de guia têm que ser instalados lateralmente. Os paletes avançam por movimento giratório executado pelos roletes do sistema de transporte. O sistema de ventosas múltiplo é capaz de recolher e colocar uma fileira completa de produtos. Consequentemente, as unidades lineares pneumáticas não têm que deslocar-se até suas posições finais. O carro elevador é duplo para aumentar a capacidade de carga.

Componentes recomendados:
- Cilindro sem haste DGPL...
- Cilindro gêmeo DPZ...
- Eixo soft stop completo (SPC 10)
- Ventosa VAS...
- Conexões
- Cilindro de parada STA...
- Acessórios de montagem
- Válvula pneumática...
- Gerador de vácuo VAD...
- Unidade de guia DFP...
- Válvula ISV...
- Compensador de altura VAL...
- Sensor de proximidade SM...
Utilizando-se atuadores giratórios como eixos 1 e 2 é possível configurar sistemas de manipulação simples. A quantidade de posições depende das posições previstas em cada atuador giratório. Em se tratando de 2 atuadores giratórios que só podem avançar até posições finais, o total de posições que pode ser realizado com o sistema de posicionamento é de $2^2 = 4$ posições, conforme apresentado na ilustração. O elemento de trabalho (garra com aplicações especiais; ventosas neste caso) está unido aos discos montados nos eixos dos atuadores giratórios através de barras de acoplamento. Se os pontos de conexão são reguláveis (por exemplo, através de ranhuras longitudinais) é possível modificar a trajetória do movimento da ventosa. Esta aplicação possibilita, por exemplo, colocar peças em diversas esteiras de transporte ou alimentar parafusos em 4 ferramentas.

Este sistema tem a vantagem de ser muito compacto em comparação com os outros sistemas de posicionamento e, além disso, possibilita trocar de posições rapidamente.

Componentes recomendados:

- Atuador giratório DSR...
- Flange FWSR...
- Sensor de proximidade SM...
- Válvula pneumática
- Cilindro normalizado ESN...
- Ventosa VAS... ou
- Garra HG...

- Gerador de vácuo VAD...
- Válvula ISV...
- Conexões
- Acessórios de montagem
O posicionamento de um objeto ou peça sobre uma superfície bidimensional X-Y pode ser realizado por atuadores capazes de executar movimentos transversais, tais como se apresenta na ilustração. Os diagramas indicam que os atuadores têm que ser ativados para que a peça execute movimentos em determinados sentidos. Subentende-se que para as inúmeras posições é necessário recorrer a eixos de posicionamento livremente programáveis. As dimensões da superfície de trabalho dependem dos elementos móveis. O sistema pode ser utilizado tanto na posição vertical, como na horizontal. A escolha das guias lineares depende das forças que têm que suportar. O objeto ou peça pode ser, por exemplo, revólver para pintar, parafusadeira, chave de boca para apertar porcas, furadeiras, etiquetador ou uma câmera de inspeção... Uma vez que os atuadores são fixos e a correia dentada por si só não é pesada, é possível executar movimentos extremamente dinâmicos. Para trabalhar com precisão é recomendável utilizar sistemas de fixação adicionais no carro ou, respectivamente, na guia horizontal de trabalho.

Componentes recomendados:
- Atuador de posicionamento DGE...SP ou DGE...ZR
- Eixo servopneumático DGPI...
- Garra HG...
- Controlador de posicionamento multiéixo MPS...
- Válvula pneumática
- Acessórios de montagem
- Conexões

Manipulador para posicionamento transversal

1. Cursos com peças de fixação para fixar correia dentada
2. Superfície de trabalho
3. Unidade linear em conformidade com as exigências de posicionamento
4. Eixo horizontal guiado por roletes duplos
5. Esteira dentada e roletes de inversão
Algumas peças sofrem uma leve deformação ao serem fixadas ou processadas. Consequentemente, para manter a precisão e evitar as deformações, elas devem momentaneamente ser equipadas com uma bucha de fixação. O sistema semi-automatizado descrito aqui mostra o processo correspondente. As buchas são colocadas à mão no suporte. Entretanto, as peças são colocadas na posição de fixação até que encostem no cilindro da direita, que possui maior força. Em seguida, a bucha é comprimida. Depois de concluir esta operação, o cilindro de parada (amortecimento/tope) retrocede novamente, possibilitando que o cilindro da esquerda desbloqueie as peças para a esteira de transporte. As buchas de fixação devem ser retiradas novamente após o processamento. Finalmente, as peças são retiradas manualmente das esteiras de transportes e colocadas sobre a bandeja lateral.

Componentes recomendados:
- Cilindro antigiro DZH...
- Acessórios de fixação
- Cilindro ADVUT...
- Bloco de comando bimanual
- Válvula pneumática VL...
- Sensor de proximidade SM...
- Conexões roscadas
- Cilindro normalizado DNC....
- Cilindro normalizado DNC-Q...
- Fixação por pés HNG...

Componentes recomendados:
- Cilindro antigiro DZH...
- Acessórios de fixação
- Cilindro ADVUT...
- Bloco de comando bimanual
- Válvula pneumática VL...
- Sensor de proximidade SM...
- Conexões roscadas
- Cilindro normalizado DNC....
- Cilindro normalizado DNC-Q...
- Fixação por pés HNG...

99 exemplos de aplicações pneumáticas
Mesmo que hoje, no mercado, as escadas costumem ser de alumínio, as escadas de madeira tradicionais não deixaram de ser produzidas. Os degraus são embutidos através de cilindros pneumáticos, que sempre aplicam a mesma força. Para que os degraus se encaixem bem é necessário que sejam colocados em ângulo reto e, para isso, é recomendável utilizar dispositivos com molas de aço. O sistema é muito simples e pode servir de exemplo para embutir outros tipos de produtos. Utilizando-se vários cilindros, o sistema pode ser utilizado, por exemplo, para fabricar móveis em carpintarias. Para que o sistema adquira maior versatilidade é recomendável projetar diversas possibilidades de ajuste, por exemplo, através da montagem dos cilindros de modo variável sobre uma placa com base perfurada ou sobre peças angulares laterais.

Componentes recomendados:
- Cilindro normalizado DNG... ou
- Cilindro ADVUT...
- Sensor de proximidade SM...
- Válvula pneumática VL...
- Fixação por pés HNG...
- Bloco de comando bimanual
- Acessórios de fixação
- Conexões
A montagem de peças de maior tamanho (por exemplo, montagem de rolamentos) frequentemente é realizada em estações intercaladas em uma linha de montagem. Além disso, é uma operação frequente em caso de reparos. Consequentemente, tais prensas costumam ser móveis e ficam penduradas em balancins na linha de montagem. O cilindro que produz a compressão está montado no arco de prensagem e a força é aplicada através de uma alavanca. A força é compensada através do contra-apoio alocado no lado oposto. Ao invés do cilindro pneumático, também é possível utilizar o moderno músculo pneumático que tem a vantagem de reduzir o peso e o volume total do dispositivo, ficando mais fácil para movimentá-la de um lugar ao outro. Na ilustração não é possível ver o segundo músculo pneumático atrás do primeiro. Todos os elementos de comando estão ao alcance da mão. A rebitadeira ou prensa, pode ser utilizada para operações de montagem e desmontagem, conforme a ferramenta utilizada.

Componentes recomendados:
- Cilindro ADVUT...
- Sensor de proximidade SM...
- Válvula pneumática
- Módulo de acionamento bimanual
- Músculo pneumático MAS...
- Garfo SG...
- Acessórios de fixação
- Conexões
Na indústria têxtil são utilizadas as mais diversas prensas para passar, fazer pregas e vincos. Estas prensas se diferenciam por ter sistemas de alavancas articuladas para executar os movimentos necessários. Por exemplo, as placas superiores têm que abrir de forma rápida e ampla e, ao se fechar, a superfície de apoio tem que ser capaz de distribuir a pressão uniformemente. Na solução apresentada na Figura a, os movimentos executados através do cilindro são transmitidos para a placa da prensa mediante um sistema de acoplamento de 6 partes. O ângulo de abertura é de 70°. No caso da prensa apresentada na Figura b, os acoplamentos 7 e 8 formam uma alavanca articulada. Quando esses elementos são estendidos, anulam-se os movimentos através do qual a placa superior encontra-se na posição horizontal. Em seguida, ativam-se os cilindros para pressionar a placa inferior sobre a superior.

Componentes recomendados:
- Cilindro de múltiplas posições ADVUT...
- Conexões
- Válvula pneumática
- Cilindro pneumático ADVU...
- Sensor de proximidade SM...
- Garfo SG...
- Flange oscilante SUA...
- Cavalete LN...
- Acessórios de fixação
Prensagem longitudinal é uma operação relativamente comum na linha de montagem e para isso utilizam-se prensas de montagem nas quais as peças são fixadas à mão ou automaticamente. Em muitas aplicações basta utilizar prensas pneumáticas, especialmente se são equipadas com cilindros tandem. A ilustração apresenta uma prensa deste tipo. A altura do suporte de fixação pode ser ajustada através de pinos de posicionamento. A pressão de operação é fornecida por um multiplicador de pressão (booster). No caso de peças alimentadas manualmente, deve-se fixar um módulo bimanual por razões de segurança.

Componentes recomendados:
- Cilindro ADVUT...
- Cilindro compacto AEVU...
- Multiplicador de pressão...
- Módulo de comando bimanual
- Sensor de proximidade SM...
- Válvula de base SV...
- Acessórios de fixação
- Conexões
Métodos manuais ainda são frequentemente utilizados para fazer a impressão de peças por tampografia. Isso significa que a automatização deste processo é essencial para efeito de racionalização. Além disso, o sistema automático proporciona uma imagem muito mais homogênea. Para obter um resultado de alta qualidade é necessário que a pintura passe o mais rapidamente possível do estêncil para a superfície do produto. A impressão costuma ser realizada aplicando-se uma força superior a 1000 N. Na solução apresentada neste exemplo, a peça, que já está impressa de um lado, é fixada no mordente e em seguida, é elevada, separando-se do sistema de transporte; então, é girada e volta a ser colocada sobre os pinos do sistema de transporte. Na estação seguinte repete-se a operação de impressão. A peça eleva-se um pouco durante esta operação para evitar que a corrente de transporte receba uma carga muito grande. É bom ressaltar que se trata de uma impressão bilateral; a precisão de repetição tem que ser superior a ±0,01 mm.

Componentes recomendados:
- Unidade de guia DFM...
- Sensor de proximidade SM...
- Garra paralela HGP...
- Válvula pneumática VL... ou
- Válvula simples solenóide MFH...
- Conjunto de adaptadores HAPG...
- Acessórios de fixação

- Atuador giratório DSR... ou DSM
- Conexões
Operações de perfilar e chanfrar são bastante frequentes nas oficinas de carpintaria e podem ser facilmente automatizadas, uma vez que o único problema é a colocação das placas de modo preciso e em intervalos regulares. Se o sistema é automático, só é necessário um operário que dedique uma terça parte do seu trabalho para fazer o controle da máquina. As tiras se encontram em um magazine (que foi carregado à mão). O cilindro com o empurrador entra em ação uma vez que a válvula com o rolete abre a passagem para a tira seguinte. Em seguida, a esteira articulada se encarrega de continuar o transporte enquanto o cilindro volta para a sua posição inicial ao receber o sinal correspondente da válvula de alavanca. Isto pode ser feito, também, utilizando-se recursos elétricos como um sensor no cilindro. Após a fresagem, as tiras podem ser depositadas em outro carregador. É recomendável que tanto o primeiro como o segundo carregador (que não aparece no desenho) sejam ajustáveis, para que possam coletar peças de comprimentos diferentes.

Componentes recomendados:
- Cilindro normalizado DNC...
- Válvula 3/2-vias...
- Válvula 4/2-vias...
- Unidade de conservação
- Válvula reguladora de fluxo
- Sensor de proximidade SM...
- Acoplamento flexível FK...
- Acessórios de fixação
- Conexões
Os componentes pneumáticos são também muito utilizados em equipamentos de pesquisa, simulação e treinamento. O robô hexápode parecido com um inseto de 6 pernas (conforme design de Baudoin, de Bruxelas) lembra externamente a máquina autopropulsionada ODEX de Odetics (Califôrnia). A máquina é utilizada para analisar os movimentos humanos aplicados a um robô. O robô, neste caso, tem a função de evitar ou saltar obstáculos que estão no seu caminho. Uma vez que cada uma das pernas da máquina pode efetuar 3 movimentos guiados, a máquina tem um alto grau de liberdade de movimento F=18. Os movimentos verticais das pernas são executados separadamente dos horizontais. A máquina pode avançar de diversas maneiras. Os movimentos executados pelos cilindros são suaves, aplicam-se válvulas reguladoras de fluxo. Um sistema de detecção de imagens possibilita que a máquina avance por si só. Aplicações possíveis: operações militares ou trabalhos em áreas contaminadas.

Componentes recomendados
- Atuador giratório DSR...
- Válvula reguladora de fluxo GRLA...
- Sensor de proximidade SM...
- Cilindro giratório DSW...
- Fixação por cavalete SBS...
- Válvula pneumática
- Acessórios de fixação
- Conexões
Em determinadas circunstâncias existe a necessidade de orientar as peças de forma alternada antes de embalar ou de continuar seu processamento. A ilustração apresenta uma solução que muda a orientação do processamento a cada duas peças. As peças planas são retiradas do carregador e são depositadas na aleta giratória. Depois de girar 180°, a peça é recolhida e depositada no carregador II. Entretanto, após a segunda peça, a peça é retirada e depositada no carregador II sem efetuar o giro. A aleta giratória tem um sistema de aspiração para fixar a peça durante o movimento de giro. As peças depositadas no carregador II são empilhadas de tal forma que a parte de trás de uma peça encosta na parte da frente da outra peça. Todos os movimentos necessários podem ser executados utilizando-se componentes pneumáticos normalizados. As peças são manipuladas para que as peças não sejam danificadas. O avanço dos magazines verticais é dimensionado para que se possa ter acesso até o fundo dos carregadores.

Componentes recomendados:
• Cilindro sem haste DGPL...
• Cilindro normalizado DNC... e unidade de guia FEN... ou
• Guia linear integrada com cilindro DFM...
• Válvula para eficiência do vácuo ISV...
• Gerador de vácuo VADM...

• Válvula pneumática ou
• Terminal de válvula CP...
• Sensor de proximidade SM...
• Atuador giratório DSR...
• Ventosa VAS...
• Ventosa oval
• Acessórios de montagem
• Conexões
Reorientação das garrafas

a) Visão geral da instalação
b) versão que utiliza haste antigiro

1 Estação engarrafadora
2 Garrafa
3 Cilindro de parada
4 Esteira de transporte
5 Zona de acumulação
6 Estação de colocação de tampas
7 Sensor
8 Cilindro pneumático
9 Empurrador
10 Barra antigiro

Ao mudar a direção das peças é necessário mudar também a disposição das peças sobre a esteira de transporte (por exemplo, formação de grupos para efetuar a embalagem). A ilustração mostra como as garrafas formam grupos de 3 unidades depois de haver passado pela estação engarrafadora e de colocação das tampinhas. O empurrador avança ao receber o sinal correspondente do detector, confirmando que o grupo de 3 unidades está completo. Em determinados casos é possível dispensar o tope de parada, uma vez que o empurrador também pode assumir esta função (Figura b). O sistema pode ser simplificado, utilizando-se cilindros com haste antigiro, com êmbolo oval ou oblongo.

Componentes recomendados:
- Cilindro normalizado ESN...
- Cilindro antigiro DZF...
- Cilindro compacto AEVU...
- Cilindro compacto AEVULQ...
- Sensor de proximidade SM...
- Válvula reguladora de fluxo GR...
- Sensor de reflexão direta SOEG...
- Acessórios de montagem
- Conexões
Reposicionar

O equipamento de retirada, reorientação e colocação de placas de vidro consiste em uma série de mecanismos, como acoplamento tipo manivela e articulações com uma unidade de tração. Uma vez que a correia dentada é fixa, ao movimentar o braço gera-se um movimento basculante do bastidor com ventosas da posição de retirada até a posição de entrega. As placas de vidro empilhadas são deslocadas passo a passo através de um atuador de posições múltiplas. A plataforma de avanço transversal está apoiada no chão e o carro se desloca sobre ela guiado por um trilho. Para efetuar o movimento basculante de reorientação das peças é possível aplicar outras soluções, por exemplo, utilizando uma ou duas unidades giratórias.

Componentes recomendados:
- Cilindro DNC... ou
- Atuador giratório DRQ... ou
- Eixo de posicionamento elétrico DGE...SP com controlador de posicionamento de eixo simples EPS...
- Válvula para eficiência do vácuo ISV...
- Compensador de altura VAL...
- Ventosa VAS...
- Sensor de proximidade SM...
- Válvula pneumática
- Válvula reguladora de fluxo GR...

Unidade de reposicionamento de placas de vidro

a) Equipamento estacionário de reorientação
b) Carro transportador das placas

1 Bastidor com ventosas
2 Esteira de transporte
3 Atuador
4 Mecanismo de pinhão e cremalheira
5 Correia dentada ou corrente (sem acionamento)
6 Mecanismo de guia
7 Pilha de placas de vidro
8 Carro com estrutura para transporte
9 Plataforma de deslizamento transversal
10 Eixo de posicionamento
Reposicionar

Unidade para colocar latas em outra esteira de transporte

a) Representação esquemática do sistema
b) Mecanismo com 4 articulações (vista superior)

1 Bastidor de transporte
2 Ventosas
3 Esteira de transporte
4 Peças (latas)
5 Cinta de transporte
6 Cilindro elevador
7 Trajeto do movimento
8 Braço articulado

Mesmo em uma época na qual os atuadores controlados eletronicamente estão sendo cada vez mais requisitados, por muito tempo continuaremos a utilizar sistemas de mecanismos com interligações variadas, graças a sua precisão de repetitividade e baixo custo. O exemplo acima mostra uma aplicação em que as latas são transferidas em grupos de uma esteira transportadora para outra, que, por sua vez, avança muito mais lentamente. As latas podem ser retiradas através de ventosas que fazem a sucção pela parte superior da peça, portanto, não há problema nenhum se a pintura da superfície das latas ainda estiver úmida. O sistema apresentado conta com apenas uma aplicação e, conseqüentemente, é pouco versátil. Ao invés de cilindros com curso reduzido, também pode-se utilizar sistemas de aspiração especiais (ventosas montadas em êmbolos que descem e só voltam a subir se a ventosa tiver criado vácuo ao entrar em contato com uma peça.

Componentes recomendados:
- Ventosa de fole VASB... ou combinação de cilindro e ventosa
- Gerador de vácuo VAD... ou Gerador de vácuo com impulso ejetor VAK...
- Válvula para eficiência do vácuo ISV...
- Cilindro compacto ADVU...
- Sensor de proximidade SM...
- Acessórios para montagem
- Conexões
O atuador acionado hidравлически проводил идеально для применения в деревообработку, благодаря его прочной конструкции. Для применений, таких как позиционирование X/Y, фиксация, направление и перемещение деталей и инструментов, также могут быть использованы пневматические зуммеры с хорошими результатами. Преимущества несравнимы — быстрый срок выполнения и инфляционность данного продукта. Пример выше показывает циркулярную. Она используется для резки сырой древесины, то есть, круглые доски в определенных размерах. Рука приводится в действие двумя цилиндрами установленными параллельно. Если необходимо использовать больше энергии, также можно использовать также мультипликатор давления (booster).

Componentes recomendados:
- Цилиндр нормальный DNG... или DNC...
- Клапан пропорциональный MPYE...
- Валык LGB...
- Артикул сфера SGS...
- Цилиндр компакт ADVU...
- Клапан регулятор давление LR...
- Клапан ретенция H...
- Датчик промежуточный SM...
- Цилиндр пневматический
- Мультипликатор давления
- Аксессуары фиксации
- Соединения

Serra circular balancante

a) Princípio construtivo da serra circular
b) Dispositivo para fixação
1 Cobertura de proteção
2 Lâmina de serra
3 Tronco
4 Rolamentos
5 Braço basculante
6 Cilindro de operação
7 Válvula proporcional
8 Ponte de fixação
9 Cilindro pneumático

O atuador acionado hidráulicamente provou ser ideal para aplicação na indústria madeireira, graças ao seu design robusto. Para aplicações tais como posicionamento X/Y, fixação, guia e movimentação das peças de madeira e ferramentas, os atuadores pneumáticos também podem ser utilizados com bons resultados. As vantagens incomparáveis da pneumática são o tempo rápido de atuação e a inflamabilidade do fluido em questão. O exemplo acima mostra uma serra circular. Ela é utilizada para cortar madeira bruta, ou seja, troncos em comprimentos determinados. O braço é acionado por dois cilindros montados paralelamente. Se for necessário aplicar mais energia é possível utilizar também um multiplicador de pressão (booster).

Componentes recomendados:
- Cilindro normalizado DNG... ou DNC...
- Válvula proporcional MPYE...
- Cavalete LBG...
- Articulação esférica SGS...
- Cilindro compacto ADVU...
- Válvula reguladora de pressão LR...
- Válvula de retenção H...
- Sensor de proximidade SM...
- Válvula pneumática
- Multiplicador de pressão
- Acessórios de fixação
- Conexões
Uma das tarefas freqüentemente necessárias é cortar barras e diversos perfis e materiais em comprimentos determinados previamente. Na Figura a é possível ver uma serra em que a folha é guiada verticalmente; uma frenagem hidráulica conectada paralelamente é encarregada de controlar a velocidade do movimento. Os topes são constituídos de cilindros de parada ajustados para os comprimentos de peças mais frequentes. Antes da operação de corte, deve-se fixar a barra e, em geral, também se fixa a peça a ser obtida no corte.

A Figura b apresenta uma serra montada em um braço (em geral acionado hidraulicamente) que avança horizontalmente. Em determinadas circunstâncias e se a configuração do sistema permite, é possível combinar um cilindro pneumático, uma frenagem hidráulica e um multiplicador de pressão (booster).

Componentes recomendados:
- Cilindro compacto ADVU...
- Controlador hidráulico de velocidade YDR...
- Unidade linear pneumática DGPL...HD
- Cilindro de parada STA...
- Sensor de proximidade SM...
- Cilindro normalizado DNC...
- Válvula direcional pneumática
- Acessórios de fixação
- Conexões
Para abrir ou fechar rapidamente grades de segurança, utilizadas para garantir a integridade física, pode-se instalar cilindros sem haste, especialmente se os avanços horizontais ou verticais são relativamente amplos. É evidente que todos os regulamentos de prevenção de acidentes devem ser observados. No caso de aplicações de baixo risco, basta contar com sistemas de fechamento com sensor de monitoramento de posição para controlar as posições do elemento protetor. Entretanto, se as máquinas são de alto risco, é necessário utilizar dois detectores para controlar separadamente a posição “aberta” e “fechada” do elemento de proteção. Caso se trate de uma grade que abre verticalmente, a unidade linear sem haste pode ser equipada adicionalmente com uma unidade de bloqueio. A função de fixar é ativada ao se diminuir a pressão e é mantida mesmo havendo um corte no fornecimento de pressão. Desta maneira é possível assegurar que a grade se mantenha elevada em caso de corte de energia.

Componentes recomendados:
- Cilindro sem haste DGPL...
- Unidade de bloqueio DGPK...
- Sensor de proximidade SM...
- Válvula pneumática
- Fixação por pés HP...
- Acessórios de fixação
- Conexões
Os cilindros de parada têm uma haste reforçada que pode ser utilizada para desempenhar a função de bloqueio adicional. A Figura a mostra que a engrenagem continua em operação enquanto houver energia; a haste permanece retraída. Se faltar energia, a força da mola faz com que a haste avance e trave a transmissão/engrenagem. A velocidade do bloqueio depende da quantidade de furações de trava. Para este tipo de bloqueio é recomendável selecionar uma roda dentada com momento de giro pequeno. Outra aplicação similar consiste em bloquear uma carga que se encontra erguida dentro de um tubo ou recipiente. Para isso utilizam-se, 4 cilindros de parada montados ao redor da carga. Na solução apresentada na Figura b, a haste está montada com uma peça cônica. Um sensor de proximidade determina quanto a haste deve avançar. O cilindro de parada pode ser montado de diversas maneiras, para que possa ser adaptado sem problemas a qualquer estrutura.

Componentes recomendados
- Cilindro de parada STA...
- Válvula pneumática
- Sensor de proximidade SM...
- Sensor de proximidade SIE...
- Fixação por pés
- Acessórios de fixação
- Conexões
Tanto na indústria têxtil, quanto em vários setores da engenharia, sempre há necessidade de cortar produtos, artigos de tapeçaria, tecidos industriais etc. O exemplo acima apresenta um equipamento relativamente simples. Um cilindro sem haste se encarrega de deslocar transversalmente o dispositivo de corte. A velocidade de corte pode ser regulada por meio de estrangulamento do ar de escape. O êmbolo fica preso entre a entrada livre de ar comprimido e a saída estrangulada do ar de escape, possibilitando a execução de movimentos mais uniformes. Além disso, o carro pode retroceder mais rapidamente a sua posição inicial. O rolo fica pendurado em cada um dos braços e a tela é puxada manualmente. O cortador circular se desloca dentro de uma ranhura ao longo da mesa. É claro que o deslocamento da tela também pode ser automatizado, mas isto só vale a pena no caso de grandes quantidades de corte. Neste caso poderia ser utilizado um sistema de avanço por roletes ou garras.

Componentes recomendados:
- Cilindro sem haste DPGL... ou
- Eixo eletromecânico DGE...ZR com controlador de posicionamento de eixo simples
- Sensor de proximidade SM...
- Válvula reguladora de fluxo GR...
- Válvula pneumática
- Acessórios de fixação
- Conexões
Para cortar tubos finos sem desperdiçar material, pode-se utilizar discos cortantes. O perfil côncico das lâminas possibilita efetuar o corte sem gerar cavacos. O corte deve ser efetuado de tal maneira que cada uma das lâminas penetre até o interior do tubo. Dois dos 3 discos cortantes estão montados em alavanças acionadas por uma cunha (a cunha desce fazendo com que o disco se fixe no ponto de corte). Assim sendo, o acionamento das 3 lâminas fica a cargo de um cilindro grande ou de um cilindro de posições múltiplas. O avanço dos 3 discos cortantes até o interior do tubo é efetuado mecanicamente. A velocidade do avanço é regulada mediante estrangulamento do ar de escape. Depois de cada corte a peça é depositada sobre uma rampa inclinada e o tubo avança através do mandril até o tope para efetuar o corte seguinte.

Componentes recomendados:
- Cilindro tandem ADVUT...
- Válvula reguladora de fluxo GR...
- Sensor de proximidade SM...
- Válvula pneumática
- Acessórios de fixação
- Conexões roscadas
O objetivo da aplicação apresentada acima é alimentar uma máquina, por exemplo, uma forja. As peças têm que estar a uma temperatura mínima específica. Elas são retiradas do magazine e colocadas no tubo de aquecimento. No momento em que a peça é inserida, a anterior sai e cai sobre a aleta. Uma vez ali, mede-se a temperatura. Se a peça não tem a temperatura necessária, a aleta abre a passagem para que a peça caia. Se a temperatura é a correta, a peça é transportada até a máquina (que não aparece na ilustração). A aleta tem uma guia separada, pois o atuador giratório deve aplicar um momento de giro sem ter que compensar a força correspondente ao peso da peça.

Componentes recomendados:
- Cilindro normalizado ESN...
- Sensor de proximidade SM...
- Atuador giratório DSR...
- Cilindro normalizado ESW...
- Cavalete LBN...
- Garfo SG...
- Válvula pneumática
- Acessórios de fixação
- Conexões
Em diversas operações de montagem é necessário unir peças com a mesma classe de tolerância. Consequentemente, antes da operação de montagem deve-se efetuar uma medição e classificar as peças segundo os grupos de classes de tolerância. A ilustração apresenta um sistema de medição de diâmetros em função do eixo de rotação. O empurrador separa as peças e as introduz no sistema de medição. Estes sistemas de medição podem ser efetuados de diversas maneiras, com medição por contato ou sem contato. Ao retroceder, o empurrador abre a lingüeta (comporta), possibilitando que a peça desça em direção aos tubos que recolhem as peças segundo a classificação. Dependendo dos resultados da medição, abre-se a aleta do tubo correspondente para possibilitar a passagem da peça. O cilindro pneumático tem uma guia integrada, de modo que o empurrador não necessitará de uma guia adicional. Também é possível utilizar alternativamente outros cilindros pneumáticos com haste antigo.

Componentes recomendados:
- Unidade de guia DFP...
- Cilindro compacto ADVULQ...
- Atuador giratório DSM...
- Sensor de proximidade SM...
- Válvula pneumática
- Conexões roscadas
- Acessórios de fixação
Em sistemas de montagem automáticos, as peças têm que ser transportadas de uma estação para outra. Toda vez que são colocadas na estação, o elemento que as transporta pode ser retido e em seguida fixado na posição especificada. A ilustração apresenta os diferentes sistemas de retenção. No caso do sistema equipado com um cilindro de parada, a haste reforçada avança e resiste ao impacto do conjunto em movimento. A solução através de um empurrador giratório constitui uma alternativa viável, uma vez que os elementos que transportam a peça estão equipados com um rolete de parada na parte inferior (Figura b). Este rolete bate com o empurrador giratório, que gira a 90º para voltar a abrir quando necessário. Quando os carregadores são leves, a unidade giratória pode ser utilizada sem suporte adicional. Em todo caso é melhor que o empurrador giratório fique apoiado na estrutura e possa utilizar o torque da unidade giratória. A escolha do sistema mais adequado depende da tecnologia e da estrutura do todo o sistema. No caso de sistemas com rolete de parada, obviamente, estes são utilizados para outros propósitos e não apenas para efetuar a parada.

Componentes recomendados:
- Cilindro de parada STA...
- Atuador giratório DSM... ou DSR...
- Sensor de proximidade SM...
- Válvula pneumática
- Acessórios de fixação
- Conexões
A ilustração apresenta uma aplicação muito comum para cilindros de parada. Eles são utilizados para efetuar a parada dos carregadores (porta-peças) sobre esteiras duplas, roletes ou sistemas de transporte contínuo.

As hastes dos cilindros de parada são reforçadas para resistir aos esforços causados pela carga em movimento. A versão com rolete simplifica o controle do cilindro de parada. A haste equipada com rolete pode, neste caso, avançar enquanto o carregador não tenha deixado completamente a estação. A solução com gatilho é mais apropriada cineticalemente. Uma vez que o carregador encosta no gatilho, parte da energia cinética é transmitida ao amortecedor hidráulico integrado antes de chegar até a posição final da parada. A alavanca articulada é bloqueada mecanicamente para evitar o aparecimento de uma força contrária. Quando o cilindro de parada retrocede, a alavanca é desbloqueada. Os roletes permanecem na posição avançada se os cilindros estão despressurizados.

Componentes recomendados:
- Cilindro de parada STA...
- Cilindro pneumático
- Cilindro de parada STA...R com rolete
- Acessórios de montagem
- Cilindro de parada STA...K com gatilho
- Sensor de proximidade SM...
- Sensor de proximidade SIEN...
- Conexões
As esteiras de transporte geralmente são equipadas com roletes/rolamentos de acionamento, de desvio, de estiramento e de guia. Para que uma esteira transportadora opere corretamente, deve-se garantir duas características de funcionamento: um deslocamento bem direcionado e um estiramento preciso da esteira. Para guiar adequadamente a esteira, pode-se utilizar rolamentos levemente côncavos, mas o melhor método mesmo é utilizar rolamentos que possibilitam efetuar o ajuste de ângulo. Neste caso basta um ajuste de 20 a 40 mm. Para conseguir que a esteira seja guiada corretamente, também é possível empregar sistemas mecânicos (colocando-se duas guias de borda nos cantos da esteira ou uma no centro através de uma ranhura longitudinal, tal como aparece nas Figuras c e d, respectivamente). Há também inúmeras soluções técnicas para tracionar a esteira. No exemplo apresentado aqui, a esteira se desloca sobre os dois rolamentos, efetuando um trajeto em forma de S. Variando-se a pressão que atua sobre os rolamentos ou roletes, consegue-se que a esteira fique devidamente tracionada. Além disso, também existem sistemas que reúnem as duas funções (guiar e tracionar).

Componentes recomendados:
- Cilindro tandem ADVUT...
- Regulador de pressão LR...
- Sensor de proximidade SM...
- Cilindro normalizado DNG... ou DNC...
- Garfo de fixação SG...
- Válvula pneumática
- Acessórios de montagem
- Conexões roscadas
- Cavalete LBG...

Figuras:
- a) Tensionar por meio de rolete regulável
- b) Tensionar por meio de roletes
- c) Guiar através de guias laterais
- d) Guiar através de guia central

Unidade de tração e guia para esteiras de transporte

1. Esteira transportadora
2. Rolo tensor
3. Mancal de rolimento articulado
4. Mola de compressão
5. Cilindro tandem
6. Cilindro pneumático
7. Braço de tração com roletes
A qualidade das peças de superfícies grandes (por exemplo, bandejas de cozinha) tem que ser testada após a operação de refluxo e/ou serigrafia. No exemplo, tal controle está a cargo de um sistema de inspeção visual. As peças com defeito são retiradas da esteira de transporte e, posteriormente, são descarregadas. As peças que atendem aos critérios de qualidade são empilhadas em um magazine. A altura da pilha se mantém sempre constante; ela é controlada através de um sensor óptico (reflexão difusa). As peças são leves, possibilitando a aplicação de garras paralelas com mordentes prolongados.

Componentes recomendados:
- Guia linear integrada com cilindro DFM...
- Atuador giratório DSR...
- Válvula pneumática
- Garra paralela HGP...
- Eixo de posicionamento DGE...SP
- Unidade de controle de posicionamento de eixo simples EPS...
- Sensor de proximidade SM...
- Sensor de reflexão direta SOEG...
- Acessórios de fixação
- Conexões
O deslocamento de peças de um ponto (A) a outro (B) é uma operação muito frequente e, não raro, os dois pontos estão muito distanciados entre si. Existem muitas soluções para esta tarefa. O exemplo apresenta uma solução duplicando-se o curso do cilindro pneumático. O segredo está na inversão do princípio do rolamento livre. O curso do cilindro (curso 2) é utilizado para produzir o curso de operação (curso 1). A correia que se desloca sobre os roletes é fixada pelas pontas, gerando-se simultaneidade de movimentos (êmbolo do cilindro e correia de transporte). Unidades especiais ainda são necessárias para a alimentação de entrada e saída das máquina M1 e M2. Um cilindro sem haste seria adequado para ser utilizado como acionamento.

Componentes recomendados:
- Cilindro normalizado DNC...S2 ou
- Atuador linear pneumático DGP...
- Sensor de proximidade SM...
- Válvula reguladora de fluxo GR...
- Válvula pneumática
- Acessórios de fixação
- Conexões
Em uma linha de produção, componentes de radiadores avançam sobre uma esteira de transporte. Para transferí-los para a máquina seguinte é necessário girá-los 90°. Um detector emite um sinal para que as duas garras fixem, ergam e girem as peças e as coloquam na esteira de transporte seguinte, que avança com maior velocidade. As garras estão equipadas com mordentes ou castanhas revestidas de borracha para evitar que as peças sejam raspadas e, portanto, danificadas. As sequências de operação de manipulação poderiam incluir, além disso, a alimentação de uma estação de controle ou de distribuição para o transporte das peças até as máquinas.

Componentes recomendados:
- Cilindro sem haste DGPL...
- Atuador giratório DSRL...
- Garra angular HGW...
- Sensor de proximidade SM...
- Válvula pneumática
- Guia linear integrada com cilindro DFM...
- Válvula reguladora de fluxo GR...
- Acessórios de fixação
- Conexões
Painéis grandes só podem ser transportados um de cada vez e por várias pessoas ou, então, por um guindaste ou dispositivo de levantamento. No exemplo aparece uma outra alternativa. Trata-se de uma “aranha” de ventosas para transportar painéis de até 250kg. Os painéis podem ser feitos de diversos materiais (metal, plástico, papelão). Se a chapa é muito fina, devem ser utilizadas mais ventosas para evitar que o material dobre. Cada uma das ventosas pode ser ajustada em várias posições. Além disso, é recomendável que a parte de suporte seja flexível para se adaptar melhor às chapas que dobram facilmente durante a operação de elevação. Assim, fica muito fácil o transporte dos painéis dentro da fábrica e, além disso, o perigo de acidente é muito menor em comparação com o transporte à mão ou através de outros meios. A empilhadeira não sofre alterações de nenhum tipo e, assim, pode continuar sendo utilizada em outras operações de rotina. A bomba para vácuo com o acumulador correspondente está instalada na estrutura do equipamento elevador.

Componentes recomendados:
• Ventosa VAS...
• Bomba para vácuo...
• Válvula para eficiência do vácuo ISV...
• Compensador de altura VAL...
• Acessórios para vácuo
• Acessórios de fixação
• Conexões
Girar

Para efetuar o transporte até as próximas estações de trabalho, com frequência é necessário girar as peças em 90° a 180°. Na ilustração apresenta-se uma solução em que a peça é erguida levemente, apoiando-a perto do seu centro de gravidade para, em seguida, fixá-la, comprimindo-a contra um prato. Em seguida o sistema gira a peça e a coloca na próxima esteira de transporte. O cilindro de parada se encarrega de reter a peça. É recomendável que este cilindro seja ajustável em função dos diversos tamanhos de peças. Opcionalmente, uma mesa de rolamentos e, além dela, um atuador giratório poderia ser utilizado. Neste caso a peça plana é pressionada por cima contra os roletes e, em seguida, realiza-se um movimento giratório. Uma vez que o movimento é executado, aplicando-se pressão dos lados, é necessário que o coeficiente de atrito entre a peça e o prato seja suficientemente alto.

Componentes recomendados:
• Atuador giratório DSL...
• Cilindro de parada STA...
• Válvula pneumática VL...
• Sensor de proximidade SM...
• Acessórios de fixação
• Conexões
Para aumentar a produtividade operacional é necessário retirar as chapas o mais rapidamente possível da prensa. No sistema apresentado aqui, uma chapa é introduzida na prensa aberta e um empurrador expulsa a peça. Ela é retirada e ao chegar à sua posição final é inclinada, fazendo com que a peça deslize. Para que a placa possa ser introduzida na área de trabalho da prensa, duplicou-se o avanço através de um sistema de pinhão e cremalheira. Para obter este resultado, também pode-se recorrer a outros sistemas, por exemplo, utilizando-se um cilindro sem haste. O sistema do exemplo é móvel, assim sendo, pode ser utilizado em diversas prensas. Existem robôs de dois braços montados em prensas. Estes se encarregam de manipular as peças através de garras e ventosas. A solução mais adequada depende das condições específicas.

Componentes recomendados:
- Cilindro normalizado DNC...
- Flange oscilante SNCS...
- Sensor de proximidade SM...
- Válvula pneumática VL...
- Garfo SG...
- Acessórios de fixação
- Conexões
Existem dois tipos de operações associadas com as máquinas injetoras, e é recomendável que sejam realizadas de modo automático. Primeiramente deve-se alimentar as peças (em geral inserts metálicos, adaptadores); em seguida é necessário retirar as peças acabadas. Para executar a segunda operação normalmente, basta utilizar um equipamento de manipulação do tipo pick & place, no qual é possível combinar unidades lineares, adaptando-se os mais diversos avanços. Entretanto, é possível utilizar unidades giratórias, conforme apresentado na ilustração acima. Depois que a ferramenta se abre, a peça moldada fica acessível e pode ser apanhada através de uma ventosa ou garra. O braço está apoiado de tal modo que a unidade giratória aplica apenas um giro, sem ficar exposta a forças axiais ou de inclinação. O eixo 1 é responsável pela operação de moldagem.

Componentes recomendados:
- Atuador giratório DRQ...
- Garra angular HGW... ou
- Ventosa VAS...
- Unidade linear SLZ...
- Válvula pneumática VL...
- Sensor de proximidade SME/SMT...
- Cilindro normalizado DNG...
- Flange oscilante SSNG...
- Garfo SG...
Literatura adicional

Deppert, W.; Stoll, K.: Aplicações pneumáticas – reduzindo custos com a pneumática, publicado pela editora Vogel, Würzburg 1990

Deppert, W.; Stoll, K.: Comandos pneumáticos (Pneumatic Control Systems), publicado pela editora Vogel, Würzburg 1994

Hesse, S.: Aplicações de garras (Grippers And Their Applications), da série “Blue Digest On Automation”, published by FESTO, Esslingen 1997

Hesse, S.: Prática da tecnologia de manipulação em 36 lições (Practical Handling Technology In 36 Lessons), publicada pela Expert Verlag, Renningen 1996

Hesse, S.: Fixação com ar comprimido e vácuo (Clamping With Compressed Air And Vacuum), da coleção “Blue Digest On Automation”, publicada pela FESTO, Esslingen 1999

Hesse, S.: Glossário de tecnologia de manipulação e robótica industrial (Lexicon Of Handling Devices And Industrial Robotics), publicada pela editora expert, Renningen 1995

Hesse, S.: Garras na prática (Grippers in Practice), publicada pela Vogel Verlag, Würzburg 1991

Hoffman, E.; Stein, R.: Pneumática para projetos (Pneumatics For Designers), publicada pela editora Vogel Verlag, Würzburg 1987

Steinsiek, E.: Sistemas de alimentação para automação industrial – manual de operação (Feed Systems for Production Automation – A Practical Guide), publicada pela editora TÜV Rheinland, Cologne 1989
A	Acoplamento deslizante	34
	Aleta de reorientação	93
	Alimentação	16, 17, 19, 20, 21, 22
	Alimentação alternada	49
	Alimentação de prensa	50
	Alimentação do magazine	51, 55
	Alimentador giratório	40
	Anéis de retenção	19, 21
	“Aranha” de ventosas	111
	Armazenamento de peças com defeito	25
	Armazenamento intermediário	24, 59
B	Balanceador	72
	Barreira de ar	76, 79
	Braço com rolamento	72
	Braço de fixação	28, 32
	Braço de retenção	56
	Braço duplo	40
	Braço giratório	40, 50, 65, 67
	Bucha de fixação	17, 85
C	Câmera CCD	108
	Carregador da peça	17, 21, 22, 25, 105
	Carro transportador de placas de vidro	95
	Chanfradura nas extremidades de tubos	27
	Cilindro de apoio	20
	Cilindro de parada	34, 44, 61, 78, 81, 82, 85, 94, 98, 100, 105, 106, 112
	Circuito de segurança	99
	Cobertura de proteção móvel	99
	Comando bimanual	89
	Controle da esteira de transporte	107
	Controle da posição das peças	77
	Cortador	101
	Cortador pneumático de sobras de usinagem	36
	Corte transversal	101
D	Depósito do material a granel	68
	Depósito intermediário	25, 26
	Disco cortante	102
	Disco de indexação	100
E	Ejetor por alavanca	47
	Empacotamento	81
	Encadeamento	73
	Estação de giro	112
	Estação de montagem	17, 20, 21, 68
	Estação de solda	48
	Estação de teste e classificação	108
Estação de usinagem ... 44
Estação engarrafadora .. 94
Esteira transportadora .. 26, 33, 39, 81, 96, 107, 108, 112

F Ferramenta de dobra .. 23
Fixação múltipla das peças ... 42
Fixação V ... 43
Flexibilidade .. 11
Fluxo da força de fixação ... 30
Furadeira especial ... 41

G Garra com mordentes/castanhas 63
Garra de mordente/castanha paralela 62
Garra especial ... 64
Garras .. 17, 18, 62, 63, 64, 66, 81, 101, 108, 110, 113
Garras de fixação .. 18, 63
Garras para manipulação de chapas 63
Grade deslizante .. 99
Grau de automação .. 11
Guias de alimentação ... 57, 91

I Ímã permanente .. 54
Impressão bilateral por tampografia 90

L Laminação de rosca .. 52
Lâminas com perfil cônico para corte 102
Linha de transferência ... 22, 25

M Magazine ... 24
Magazine de alimentação .. 55, 91
Magazine giratório .. 24
Magazine vertical .. 26, 55, 58, 59, 108
Mandril de centragem ... 17
Manipulador para posicionamento transversal 84
Máquina autopropulsada ... 92
Máquinas de montagem ... 18, 73
Mecanismo com 4 articulações .. 96
Mecanismo tipo catraca ... 70
Medição de diâmetros ... 104
Mesa de avanço ... 54
Mesa inclinada para carregamento de peças redondas 75
Mesas de carregamento .. 75
Mini-unidade de manipulação .. 18
Mini-unidade de manipulação com 2 braços 18
Módulo de fixação por membrana 29
Monitoramento do estado de ferramenta 76
Monitoramento para quebra de broca 76
Monitoramento pneumático para quebra de broca 76
Monitoramento/controle da posição final 77
Montagem hexápode ... 66, 92
Montagem das pernas ... 92
Mordente com encaixe triangular 62
Multiplicador de pressão .. 89
Músculo pneumático ... 64, 71, 72, 75, 87

O Organizar em paletes .. 82
Orientação de peças ... 78, 79, 80, 93
Orientação de peças provenientes de um depósito 80

P Palete .. 71, 82
Placa de aspiração .. 50
Plataforma de montagem ... 20
Porta móvel .. 99
Prensa ... 21, 23, 36, 37, 38, 39, 46, 50, 54, 86, 88, 89, 113
Prensa para remoção de rebarbas 37
Prensa pequena ... 89
Prensas articuladas para produtos textil 88
Prensas suspensas .. 88
Pressão longitudinal ... 85, 89

R Reorientação ... 93, 94, 95
Reorientação das garrafas 94
Rolos transportadores ... 33
Rotor de orientação das peças 78

S Sensor de pressão .. 77
Serra ... 97, 98
Serra circular basculante ... 97
Símbolos de manipulação 14
Sistema de alavanca articulada 32, 45
Sistema de alimentação de peças 37, 103
Sistema de aquecimento de peças por indução 103
Sistema de avanço sequencial 60
Sistema de detecção com vídeo - câmera 78, 80
Sistema de ejeção de chapas de metal 46
Sistema de parada .. 15
Sistema de ventosas múltiplas 82
Sistema mecânico de elevação 71, 72
Sistema para retirar peças moldadas 114
Sistemas de fixação múltiplos 31, 32

T Tambor indexado .. 69
Tambor para indexar porta-peças 69
Transferência de montagem 22
Transferência de peças com duplicação do curso 109
Transportador dinâmico ... 34
Transportador dinâmico controlado por sensor 34
Transporte de produtos .. 35
Trava de transmissão ... 100
Tubos carregadores ... 21

Unidade de acoplamento 88
Unidade de alimentação .. 24, 36, 41, 43, 51, 59
Unidade de alimentação com roletes 53
Unidade de alimentação giratória 26, 59
Unidade de alinhamento 16
Unidade de aplicação de cola 61
Unidade de armazenamento 51
Unidade de aspiração .. 48
Unidade de avanço .. 60, 69, 73, 90
Unidade de avanço de peças redondas 60
Unidade de elevação de pilhas 40
Unidade de fechamento 35
Unidade de fixação ... 26, 28, 29, 42, 43, 67
Unidade de fixação dupla 28
Unidade de orientação ... 78
Unidade de remoção de pilha 39
Unidade de reposicionamento de placas de vidro 95
Unidade de saída .. 113
Unidade de separação ... 58
Unidade de tração e guia para esteiras de transporte 107
Unidade de tração para esteira de transporte 107
Unidade de transferência 109, 110
Unidade de usinagem ... 44, 45
Unidade linear/giratória 65, 112
Unidade para elevar chapas 111
Unidade para posicionamento 83
Unidade para transportar latas 96
Unidade pick & place .. 18, 22, 66, 67
Unidade pneumática móvel para montar por compressão 87
Unidades de fixação de grande força 42

Ventosa anelar .. 65
Ventosa tipo fole ... 18, 68