Introdução às Medidas em Física (4300152)

Aula 03 (30/03/2023)

Material gentilmente cedido por Prof^a Paula R. P. Allegro

Matheus Souza Pereira- T47

mathsouza@usp.br

Na aula de hoje:

- Resumo dos principais pontos da aula anterior
- Conceitos:
 - Medidas indiretas
 - Medida da densidade de sólidos.
 - Noções de estatística:
 - Propagação de Incertezas
 - Compatibilidade entre medidas
- Experiência 2.1: Densidade de Sólidos
 - Realizar medidas de diferentes objetos
 - Identificar os tipos de plásticos através da comparação das medidas (+incertezas) com valores tabelados

Referências para a aula de hoje:

- Apostila do curso (página principal do moodle):
 - Capítulo 3: Instrumentos de Medidas
 - Experiência II (Aulas 03 e 04): Densidade de Sólidos.

- Texto: Conceitos Básicos da Teoria de Erros (aba Material Didático / arquivos 2023)
 - Capítulo 2: Propagação de Erros e Incertezas

Da aula anterior:

- Pode-se afirmar que toda medida experimental apresenta um erro, que precisa ser estimado e compreendido:
 - Erros sistemáticos: afetam igualmente todos os dados medidos, independe de quantos dados tenham sido tomados.
 - Erros aleatórios: afetam de maneira diferente cada um dos dados medidos, causando variações dos valores obtidos em medições repetidas
- Representação e interpretação dos dados para verificação dos erros aleatórios:
 - Histogramas
 - o Média, desvio padrão e desvio padrão da média

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$
 $s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}}$ $s_m = \frac{S}{\sqrt{N}}$

Aula de hoje: avaliação das incertezas

- Tipos de incerteza que influenciam uma medida:
 - o Instrumental
 - Aquela associada à precisão do instrumento utilizado para realizar a medida direta de uma grandeza
 - Estatística
 - Incerteza associada à flutuação no resultado de uma mesma medida
 - Sistemática
 - Aquela onde a medida é desviada em uma única direção, tornando os resultados viciados

Incertezas instrumentais

- Precisão do instrumento de medida:
 - o Instrumentos analógicos (ex. régua): é a metade da menor divisão
 - Cuidado com instrumentos que possuem escalas auxiliares tipo nônio (ex: paquímetro): a incerteza é a menor divisão do nônio
 - Instrumentos digitais (ex: multímetro): 1 unidade na escala do último dígito dísponivel
- Dificuldade de leitura
 - Posicionamento objeto/instrumento ou estabilidade de leitura (digital)
 - A incerteza instrumental pode ser definida maior do que a precisão do instrumento de medida.

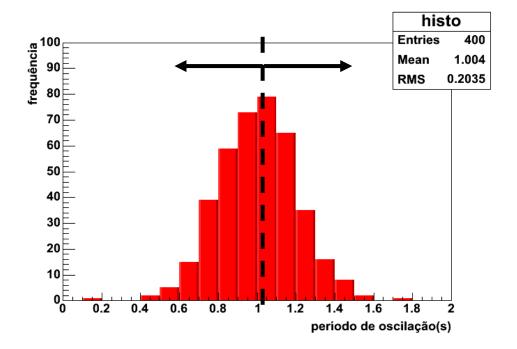
Incertezas estatísticas

- Flutuação no resultado das medidas
 - \circ Representação do resultado de N medidas x_i : média (\bar{x})

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

 $_{\circ}$ Incerteza estatística do resultado das medidas: desvio padrão da média (s_m)

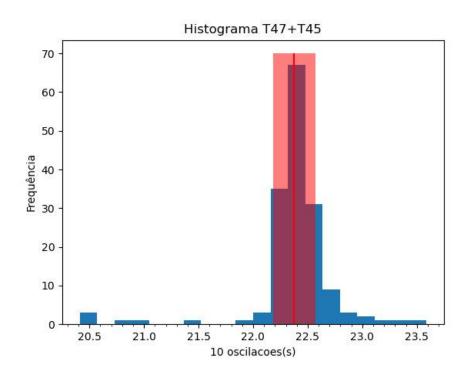
$$s_m = \frac{s}{\sqrt{N}}$$

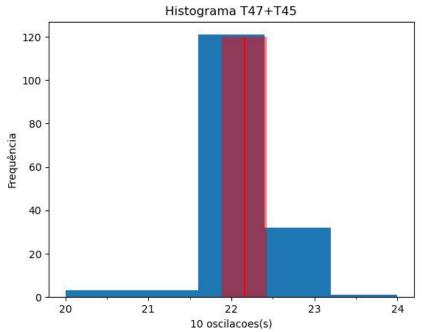

Sendo s o desvio padrão:

$$s = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N - 1}}$$

Equações válidas para medidas realizadas nas mesmas condições e que possuem as mesmas incertezas (instrumental + aleatórias)

Incertezas Estatísticas


- Distribuição de dados:
 - o simétrica em torno de um certo valor:
 - Valor médio = valor mais provável
 - decresce ao se afastar desse valor.



Incertezas sistemáticas

- A medida é desviada em uma única direção:
 - Ex: uma régua onde o primeiro mm está faltando e o experimentador não percebe
 - Todas as medidas serão 1 mm maiores do que deveriam
 - o Ex: uma balança descalibrada e/ou com o zero deslocado
- Esse tipo de incerteza, em geral, só é percebida quando um resultado difere do esperado
 - Devem ser corrigidas ou refeitas

Dados aula passada (2 turmas)

Precisão 0.01s Média = 22.3748125 s Desvap=0.38759 s Resultado final 22.37(3) ou 22.37 ±0.03 s Precisão 1s Média=22.15625 s Desvap=0.54252 s Resultado final 22.16(4) ou 22.16 ± 0.04 s

Qual é a incerteza total de uma medida?

• Incertezas resultantes do ato de medir:

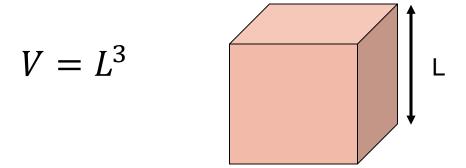
 \circ Instrumental: σ_{inst}

 $_{\circ}$ Estatística: σ_{estat}

• Incerteza total da medida (σ): combinação de todas as incertezas

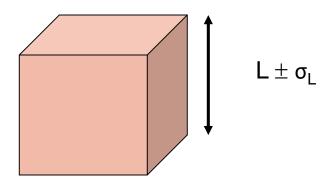
$$\sigma = \sqrt{\sigma_{inst}^2 + \sigma_{estat}^2}$$

- Caso um tipo de incerteza seja dominante, pode-se desprezar a outra:
 - Período do pêndulo medido com o relógio de pulso:


Incerteza instrumental > estatística

• Período do pêndulo medido com o cronômetro de 0,01s

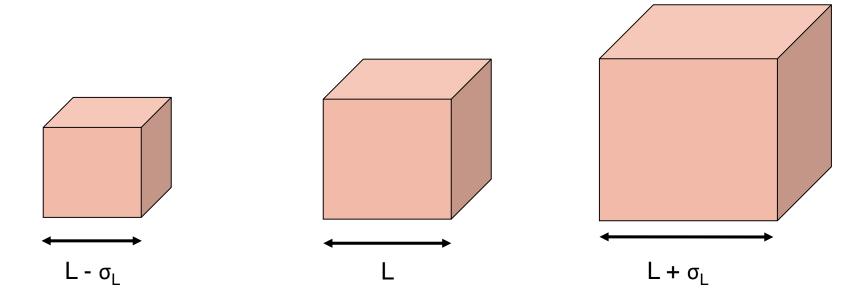
Incerteza estatística > instrumental


Uma medida obtida de outra medida tem incerteza?

• Por exemplo, vamos determinar o volume de um cubo:

Uma medida obtida de outra medida tem incerteza?

• Inicialmente medimos o tamanho de sua aresta L com uma régua (que tem incerteza).



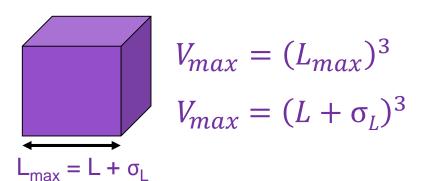
• Depois calculamos seu volume: $V = L^3$

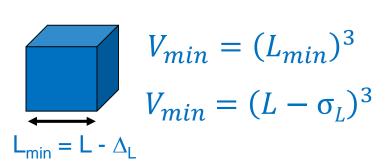
O volume do cubo tem uma incerteza?

Uma medida obtida de outra medida tem incerteza?

- A incerteza de uma medida se propaga para as grandezas obtidas a partir do valor dessa medida.
- No caso do cubo:
 - A incerteza na medida da aresta (L) se propaga para a medida do volume V

Como calcular essa incerteza?

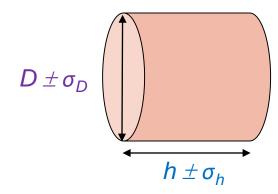

No exemplo do cubo, temos:


$$V = L^3$$
 onde: $L \pm \sigma_L$ é a aresta do cubo medida com a régua e sua incerteza.

• A incerteza no volume do cubo (σ_V) pode ser inicialmente obtida considerando os volumes máximo (V_{max}) e mínimo (V_{min}) possíveis:

$$\Delta V = \frac{V_{max} - V_{min}}{2}$$

Sendo:



- E se uma grandeza depende de outras duas medidas, como por exemplo, na medida do volume de um cilindro? O que fazer?
- O volume (V) de um cilindro é dado por:

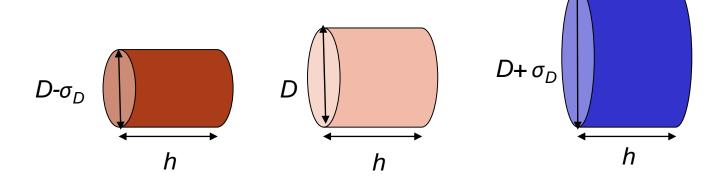
$$V = \pi \left(\frac{D}{2}\right)^2 h$$

Onde:

D é o diâmetro do cilindro \pm incerteza (σ_D) h é a altura do cilindro \pm incerteza (σ_h)

- A incerteza final (σ_{\vee}) no volume \vee do cilindro depende:
 - $_{\circ}$ da incerteza no volume $\left(\sigma_{V_{\sigma_D}}\right)$ devido à incerteza (σ_D) no diâmetro do cilindro
 - $_{\circ}$ da incerteza no volume ($\sigma_{V_{\sigma_h}}$) devido à incerteza (σ_h) na altura do cilindro
- Assim:

$$\sigma_{V} = \sqrt{\left(\sigma_{V_{\sigma_{D}}}\right)^{2} + \left(\sigma_{V_{\sigma_{h}}}\right)^{2}}$$

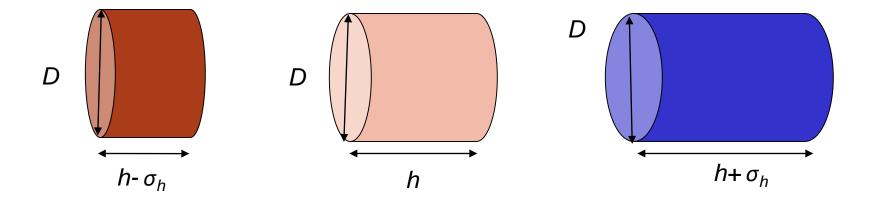

Assumindo que a incerteza devido ao diâmetro $\left(\sigma_{V_{\sigma_D}}\right)$ é independente da incerteza devido à altura $\left(\sigma_{V_{\sigma_h}}\right)$

• Calculando a incerteza no volume $(\sigma_{V_{\sigma_D}})$ devido à incerteza (σ_D) no diâmetro do cilindro:

$$\sigma_{V_{\sigma_D}} = \frac{V_{\text{máximo (devido a }\sigma_D)} - V_{\text{mínimo (devido a }\sigma_D)}}{2}$$

Com:

$$V_{minimo\ (devido\ a\ \sigma_D)} = \pi \left(\frac{(D - \sigma_D)}{2}\right)^2 h$$
 $V_{maximo\ (devido\ a\ \sigma_D)} = \pi \left(\frac{(D + \sigma_D)}{2}\right)^2 h$



• Calculando a incerteza no volume $(\sigma_{V_{\sigma_h}})$ devido à incerteza (σ_h) na altura do cilindro:

$$\sigma_{V_{\sigma_h}} = \frac{V_{m\acute{a}ximo\ (devido\ a\ \sigma_h)} - V_{m\acute{n}imo\ (devido\ a\ \sigma_h)}}{2}$$

Com:

$$V_{minimo\ (devido\ a\ \Delta h)} = \pi \left(\frac{D}{2}\right)^2 (h - \sigma_h)$$
 $V_{maximo\ (devido\ a\ \Delta h)} = \pi \left(\frac{D}{2}\right)^2 (h - \sigma_h)$

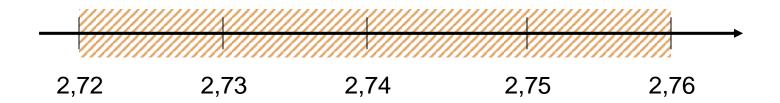
Incerteza relativa

• Incerteza absoluta (σ_{abs}): Valor apresentado no resultado

Volume =
$$27.4 \pm 0.5 \text{ cm}^3$$

• Incerteza relativa (σ_{rel}): Porcentagem da incerteza sobre o valor principal

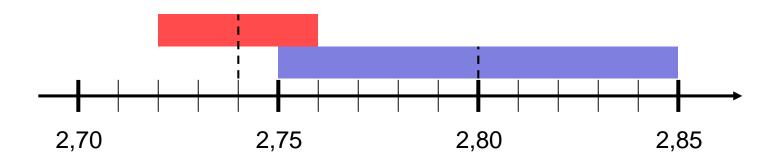
$$\sigma_{rel} = \frac{\sigma_{abs}}{\text{valor principal}} = \frac{0.5}{27.4} = 0.018 \text{ ou } 1.8\%$$


Assim, se o valor da incerteza representa 5% do valor medido:

$$\sigma_{abs}$$
 = valor principal x 0,05
 σ_{abs} = 27,4 x 0,05 = 1,4

Como interpretar o significado da incerteza?

• O que significa dizer que minha medida, é 2,74 \pm 0,02 mm?


 Eu tenho confiança que o valor verdadeiro da grandeza medida está entre (2,74 - 0,02) e (2,74 + 0,02)

Como comparar os resultados de duas medidas?

- É preciso sempre se levar em consideração a incerteza da medida.
 - Por isso perguntamos se as medidas são compatíveis ao invés de "iguais"

 \circ Exemplo: 2,74 \pm 0,02 mm é compatível com 2,80 \pm 0,05 mm ?

• Um aluno calculou o valor do volume do cilindro obtendo o seguinte valor:

$$V = 6,3302 \text{ cm}^3$$

• Sabendo que a incerteza relativa é de 5%, qual é o valor da incerteza do volume ?

• Um aluno calculou o valor do volume do cilindro obtendo o seguinte valor:

$$V = 6,3302 \text{ cm}^3$$

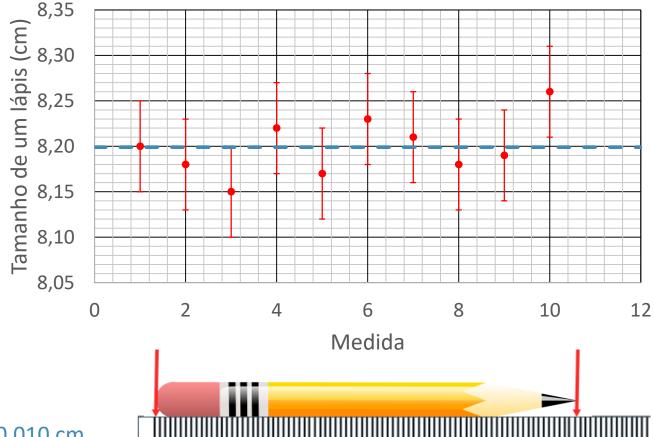
• Sabendo que a incerteza relativa é de 5%, qual é o valor da incerteza do volume ?

$$\sigma_V =$$
6,3302 x 0,05 = 0,3 cm³

 Verifique a compatibilidade dos conjuntos de valores apresentados abaixo testando a superposição dos intervalos representados pelas medidas.

Compatível?	Aluno 2	Aluno 1	
	$1,23 \pm 0.01$	$1,20 \pm 0.01$	Medida
	_/	_,	
Compatível?	Aluno 2	Aluno 1	
	1.24 ± 0.04	1.20 ± 0.09	Medida

 Verifique a compatibilidade dos conjuntos de valores apresentados abaixo testando a superposição dos intervalos representados pelas medidas.


	Aluno 1	Aluno 2	Compatível?
Medida	$1,20 \pm 0.01$	$1,23 \pm 0.01$	Não

	Aluno 1	Aluno 2	Compatível?
Medida	1.20 ± 0.09	1.24 ± 0.04	Sim

Representando valores: gráfico

Vamos considerar as seguintes medidas:

Medida	Tamanho de um lápis (cm)
1	8,20 ± 0,05
2	8,18 ± 0,05
3	8,15 ± 0,05
4	8,22 ± 0,05
5	8,17 ± 0,05
6	8,23 ± 0,05
7	8,21 ± 0,05
8	8,18 ± 0,05
9	8,19 ± 0,05
10	8,26 ± 0,05

Tamanho lápis: 8,199 ± 0,010 cm

Atividade prática

Medida da Densidade de Sólidos

Objetivo

 Identificar os diferentes tipos de plásticos que compõem um conjunto de objetos

Identificação

 Comparação das medidas de densidade (+incertezas) com valores tabelados de diferentes tipos de plásticos

Densidade

• A densidade (d) de materiais sólidos homogêneos é dada por:

$$d = \frac{m}{V}$$

Onde:

m é a massa do cilindro \pm incerteza (σ_{m})

V é o volume do cilindro \pm incerteza ($\triangle V$)

Necessário medir a massa e o volume do objeto!

Cálculo da incerteza da densidade

- Apesar das incertezas da massa e do volume serem independentes, vamos utilizar a seguinte aproximação:
 - Propagação simultânea dos valores das incertezas do volume e da massa:

$$\sigma_{d} = \frac{d_{+} - d_{-}}{2} = \frac{1}{2} \left| \frac{(m + \sigma_{m})}{(V - \sigma_{v})} - \frac{(m - \sigma_{m})}{(V + \sigma_{v})} \right|$$

Volume e incerteza do cilindro

• O volume (V) de um cilindro é dado por:

$$V = \pi \left(\frac{D}{2}\right)^2 h$$

$$D \in \text{o diâmetro do cilindro } \pm \text{incerteza } (\sigma_D)$$

$$h \in \text{a altura do cilindro } \pm \text{incerteza } (\sigma_h)$$

- Cálculo da incerteza (o_v):
 - Apesar das incertezas do diâmetro e da altura serem independentes, vamos utilizar a seguinte aproximação:
 - Propagação simultânea dos valores das incertezas do diâmetro e da altura:

$$\sigma_{V} = \frac{(V_{+} - V_{-})}{2} = \frac{\pi}{4} \left(\frac{(D + \sigma_{D})^{2} (h + \sigma_{h}) - (D - \sigma_{D})^{2} (h - \sigma_{h})}{2} \right)$$

Procedimento Experimental 1

- Medidas dos cilindros da caixa:
 - Grupos de 3: dois alunos medem 2 peças e 1 aluno mede 1 peça
 - Grupos de 2: um aluno mede 3 peças e o outro mede 2 peças

ANOTAR NÚMERO DA CAIXA (VAI SER USADA NA PRÓXIMA AULA)!
NÃO MISTUREM CILINDROS DE CAIXAS DIFERENTES!

- Medir as dimensões necessárias para determinar o volume + incerteza das peças.
- Medir a massa usando a balança digital da sala de aula

Análise dos dados 1

- Calcular:
 - o volume + incerteza de cada peça
 - o densidade + incerteza de cada peça

- Colocar os valores das medidas de massa, diâmetro e altura no guia e na planilha online:
 - o link da planilha:

https://drive.google.com/drive/folders/1KJwxSm-eWm0AoQBpjGQO2BpfPpwsc0Ng?usp=share_link

Conclusão Parcial

 É possível determinar quantos tipos de plástico nas peças da turma?

Determinação dos tipos de plásticos

 Como seria possível saber quantos tipos de plástico nas peças da turma?

Determinação dos tipos de plásticos

 Como seria possível saber quantos tipos de plástico nas peças da turma?

Melhorando a precisão do experimento, ou seja, diminuindo as incertezas nas densidades.

Procedimento Experimental 2

- Melhorar a medida de massa das peças
 - Medir novamente todas as peças, mas desta vez usando uma balança analítica (disponível na sala dos técnicos)
 - Anotar os valores no guia e na planilha online

Análise de dados 2

- Calcular novamente a densidade do objeto estudado e sua incerteza com as novas medidas
- Comparar os valores novos com os antigos. É possível dizer quantos tipos de plástico existem na turma?

Para a próxima aula (14/04):

- Entrega do Guia 2.1 (um por grupo)
- No moodle (aba Experimento # 2- Densidade de sólidos):
 - Exercício individual (até dia 13/04).
- Texto: Instrumentos de Medidas (aba Material Didático / arquivos 2023)
- Lembrando: dia 06/04/23 não haverá aula (Semana Santa)