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Ghrelin, CCK, GLP-1, and PYY(3–36): Secretory Controls and Physiological Roles in
Eating and Glycemia in Health, Obesity, and After RYGB. Physiol Rev 97: 411–463,
2017. Published December 21, 2016; doi:10.1152/physrev.00031.2014.—The
efficacy of Roux-en-Y gastric-bypass (RYGB) and other bariatric surgeries in the man-

agement of obesity and type 2 diabetes mellitus and novel developments in gastrointestinal (GI)
endocrinology have renewed interest in the roles of GI hormones in the control of eating, meal-
related glycemia, and obesity. Here we review the nutrient-sensing mechanisms that control the
secretion of four of these hormones, ghrelin, cholecystokinin (CCK), glucagon-like peptide-1 (GLP-
1), and peptide tyrosine tyrosine [PYY(3–36)], and their contributions to the controls of GI motor
function, food intake, and meal-related increases in glycemia in healthy-weight and obese persons,
as well as in RYGB patients. Their physiological roles as classical endocrine and as locally acting
signals are discussed. Gastric emptying, the detection of specific digestive products by small
intestinal enteroendocrine cells, and synergistic interactions among different GI loci all contribute
to the secretion of ghrelin, CCK, GLP-1, and PYY(3–36). While CCK has been fully established as
an endogenous endocrine control of eating in healthy-weight persons, the roles of all four hormones
in eating in obese persons and following RYGB are uncertain. Similarly, only GLP-1 clearly contrib-
utes to the endocrine control of meal-related glycemia. It is likely that local signaling is involved in
these hormones’ actions, but methods to determine the physiological status of local signaling
effects are lacking. Further research and fresh approaches are required to better understand
ghrelin, CCK, GLP-1, and PYY(3–36) physiology; their roles in obesity and bariatric surgery; and
their therapeutic potentials.

I. INTRODUCTION 411
II. GI MOTOR FUNCTION 415
III. GHRELIN 420
IV. CHOLECYSTOKININ 425
V. GLUCAGON-LIKE PEPTIDE-1 429
VI. PYY(3–36) 435
VII. DISCUSSION 440

I. INTRODUCTION

A. Background

The first hormones, secretin (66), gastrin (229), and chole-
cystokinin (CCK) (362), were discovered in the early 20th

century. These discoveries provided a novel signaling mech-
anism for the control of gastrointestinal (GI) physiology,
which supplanted Pavlov’s “nervism” doctrine (44, 401,
566a). From this beginning, endocrinology rapidly grew
into a discipline crucial to virtually all of physiology and
medicine.

The contributions of GI hormones to insulin secretion and
glycemic regulation were identified in the 1960s (109, 782).
The discovery of CCK’s satiating effect in the 1970s (278)
ushered GI hormones into the physiology of eating. By the
2000s, at least a dozen GI hormones had been hypothesized
to contribute to eating (836). GI hormones secreted in re-
sponse to eating, however, were mainly considered to be
phasic signals sculpting the timing and size of individual
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meals and were not thought to be relevant for the tonic
control of total energy intake and body-weight regulation
(e.g., Refs. 172, 521, 672, 837). This view soon changed. In
2002, Cummings et al. (174) reported that levels of the
gastric hormone ghrelin, which had been shown to increase
eating when infused intravenously in humans (839), were
inversely related to body adiposity in healthy-weight, obese,
and weight-reduced humans, consistent with a tonic signal-
ing function. Recent clinical trials indicate that treatment
with long-acting glucagon-like peptide-1 (GLP-1) receptor
agonists such as liraglutide [Victoza for type 2 diabetes
mellitus (T2DM) and Saxenda for weight control, Novo
Nordisk, Bagsvaerd, Denmark] leads to weight loss and
amelioration of T2DM (335, 414, 581). Finally, changes in
GI hormone secretion provide plausible mechanisms for the
remarkable therapeutic efficacy of bariatric surgery, espe-
cially Roux-en-Y gastric bypass (RYGB), to reduce adipos-
ity and improve glycemic control (113, 310, 421, 513, 551,
712).

In light of this, we review, 1) the secretion of ghrelin, CCK,
GLP-1, and peptide tyrosine tyrosine [PYY(3–36)] around
meals; 2) the contributions of these hormones to the control
of meal size, meal timing, and meal-related glycemia, but as
explained below, not to hedonics; 3) because it is an increas-

ingly important issue in GI endocrinology, whether the hor-
mones’ mode of signaling in these situations is classically
endocrine or local; 4) given the close relationship of GI
endocrine and GI motor physiology, the role of GI motility
in the hormones’ effects; 5) whether obesity [i.e., body mass
index (BMI); weight in kg/(height in m)2 �30 kg/m2], alters
the hormones’ effects on eating or glycemic control, and 6)
because of the marked alterations in nutrient delivery into
the small intestines and contact with enteroendocrine cells
after RYGB (FIGURE 1), the hormones’ contributions to the
effects of RYGB on eating and glycemic control.

B. Approach

1. Why focus on meals?

Total amount eaten and glycemic control are critically de-
pendent on the control of and physiological responses to
individual meals, and a significant component of these func-
tions is thought to be mediated by ghrelin, CCK, GLP-1,
and PYY(3–36) secretion, as schematized in FIGURE 2.

The timing, size, and content of meals provide a complete
description of what, when, and how much (in terms of g,
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FIGURE 1. Schematic depictions of the localization of enteroendocrine cells and changes after RYGB.
A: distribution of enteroendocrine cells secreting ghrelin, CCK, GLP-1, and PYY in the stomach (pink),
duodenum (yellow), jejunum (green), and ileum (violet). Black areas indicate the relative densities of expression
of enteroendocrine cells producing the hormones indicated. Enteroendocrine cells secreting particular hor-
mones were initially categorized histologically, e.g., I cells for CCK, L cells for enteroglucagons and PYY, etc.
(166, 567, 591). It is now clear, however, that this categorization is not a reliable guide to hormone secretion.
Rather, individual enteroendocrine cells secrete variable mixtures of hormones (231, 303, 597, 738).
Bottom salmon rectangle, proximal large intestine. B: intact gastrointestinal tract (left) and gastrointestinal
rearrangement after RYGB (right). Pink areas are stomach, salmon areas are large intestine (�1.5 m long in
healthy adults), yellow is duodenum (typically �25 cm long), green is jejunum (�2–3 m), and violet is ileum
(�3–4 m). For RYGB, the stomach is divided into a small upper pouch with a volume of �25 ml and an isolated
gastric remnant, the small intestine is divided �50 cm from the pylorus, and the distal limb of the small
intestine (Roux or alimentary limb) is brought up to the gastric pouch and connected to it by an end-to-side
gastroenterostomy. As a result, ingested food enters the small gastric pouch and empties directly into the
jejunum. The gastric remnant and isolated �50 cm of small intestine (“biliopancreatic limb”) is connected
to the jejunum �150 cm distal to the gastroenterostomy. The small intestine distal to the anastomosis is
called the common channel.
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kcal, or macronutrients) is eaten. Meal patterns are pro-
duced by species-specific physiological controls as well as
environmental, social, and cultural contingencies. The con-
trol of meal size is disturbed in psychiatric eating disorders
(271, 483, 743). In addition, obese individuals eat larger
meals than healthy-weight individuals (5, 74, 189, 497)
(healthy body weight is BMI �18.5 and �25 kg/m2). Thus
the physiology of individual meals is crucial for understand-
ing normal and disordered eating, including the chronic
overeating that has led to the obesity epidemic (368, 741,
792). Smith (702) referred to the recognition of the central
role of meals in the physiology of eating as “a paradigm

shift from nutritional homeostasis to behavioral neurosci-
ence.”

Ghrelin, CCK, GLP-1, and PYY(3–36) contribute to three
of the putative motivational processes that provide the basic
unconditioned control of meal initiation and meal size (85,
86, 271): 1) hunger, which refers to the process energizing
the acquisition of food and meal initiation; 2) satiation,
which leads to ending the meal; and 3) postprandial satiety,
which inhibits eating after meals and prolongs the intermeal
interval. The hormones’ possible roles in a fourth meal-
control process, flavor hedonics, and the central neural
mechanisms integrating their effects are not reviewed, as
these topics have been adequately reviewed elsewhere (for
reviews of the hormones’ hedonic effects, see Refs. 24, 212,
467, 499, 571, 699, 700, 827; for reviews of their central
processing, see Refs. 75, 76, 291, 524, 623, 625).

It has long been known that meal-stimulated insulin release
accounts for about half of total daily insulin secretion (408,
592, 593). More recently, measurement of glycated hemo-
globin A1c (HbA1c) in T2DM patients with well-controlled
glucose levels (HbA1c �7.3%), i.e., patients most closely
resembling metabolically healthy persons, revealed that
meal-related increases in blood glucose account for �70%
of the total increment in diurnal blood glucose levels over
fasting levels (509, 621). (“Meal related” indicates both
during and after meals and is clearer than “prandial,”
which sometimes is used to indicate only during meals.)
Two of the principal factors related to meal-related in-
creases in blood glucose are GI functions: 1) gastric empty-
ing, which determines the rate of appearance of glucose in
the small intestines, and, ordinarily, in the blood, and 2) the
release of incretin hormones, i.e., GI hormones that stimu-
late insulin secretion (472). Thus, because CCK and
PYY(3–36) contribute to gastric emptying, because GLP-1
is one of the principal incretin hormones (together with
glucose-dependent insulinotropic peptide, GIP), and be-
cause ghrelin, CCK, GLP-1, and PYY(3–36) may have other
effects that influence meal-related glycemia, meal physiol-
ogy is an integral component of glycemic control.

2. Why a “physiological” approach?

Since its beginning, endocrinology has been organized
around specific empirical criteria to identify hormones and
their normal physiological functions (59, 156, 293, 489,
833). The first criteria were stated implicitly by Bayliss and
Starling in 1902 (66) in their description of the discovery of
secretin (TABLE 1). In their “crucial experiment,” they ob-
served that pancreatic secretion was stimulated both by acid
introduced into a denervated loop of an anesthetized dog’s
jejunum and by intravenous injection of an extract of jeju-
nal mucosa. This effectively began a new chapter in physi-
ology. Starling coined the term hormone, from the Greek
for I arouse or excite, in 1905 (711) based on the secretin
work, on earlier studies of the pressor effect of adrenal
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Small-intestinal nutrient sensing
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FIGURE 2. Overview of the hypothesized physiological roles of ghre-
lin, CCK, GLP-1, and PYY(3–36) in the control of eating and of meal-
related glycemia. Gastric emptying, which controls the rate of appear-
ance of ingested food in the small intestine, intestinal transit, rate of
digestion, and small intestinal nutrient sensing are the major deter-
minants of the inhibition of ghrelin secretion and the stimulation of
CCK, GLP-1, and PYY(3–36) secretion during and after meals. Left:
changes in hormone levels lead to GI and central nervous system
events whose outcome is to inhibit eating. Right: changes in hor-
mone levels lead GI, pancreatic, hepatic, and central nervous sys-
tem events whose outcome is to dampen postprandial increases in
blood glucose. All four hormones have been hypothesized to contrib-
ute to each type of outcome. MS, monosaccharides; FFA, free fatty
acids; AA, amino acids.
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epinephrine by Oliver and Schäfer (556), and on his belief in
the importance of chemical control in physiology (320). In
the subsequent decades, isolating hormones from gland tis-
sue was a major enterprise and was organized around ad-
ditional criteria, such as Doisy’s (218, 833) (TABLE 1). The
development of radioimmunoassay and other accurate as-
say methods beginning in the mid-20th century brought
additional criteria, based on appropriate changes in plasma
hormone levels, such as Grossman’s (293) (TABLE 1). Ra-
dioactive (and other) molecular-labeling methods also en-
abled the study of hormone receptors, and criteria based on
receptor function were added (267, 270, 703), as discussed
further below.

It is now clear that many hormones signal locally as well as
via the classic blood-borne, endocrine mode (163, 463,
611). Local signaling in the GI tract can take three forms.
First, hormones may act in a paracrine mode, i.e., be re-
leased as usual into the GI lamina propria and act on neigh-
boring nonneural cells before absorption. Second, they may
act in a neuroendocrine-like mode if they affect neural af-
ferents in the laminal propria. Third, they may act in a
neurocrine-like mode following release from axonlike cyto-
plasmic extensions of the enteroendocrine cells, called neu-
ropods (90, 418). CCK- and PYY-containing neuropods,
ending mainly in close apposition to glial cells of the enteric
nervous system, were recently described in mice (92, 93).
Neuropods appear to have a synapse-like function because
there are accumulations of secretory vesicles near the appo-
sitions, the neuropods and target cells express characteristic

pre- and postsynaptic proteins, and rabies virus moves ret-
rogradely through them. This neuropod mode of action
presumably mediates more specific cell-to-cell signaling
than paracrine mechanisms. One possibility is that this sig-
naling contributes to enteric nervous system reflexes linking
the proximal and distal small intestine, which, as described
below, appear important in the control of GI hormone se-
cretion. FIGURE 3 summarizes the signaling modes of GI
hormones.

The criteria used here for normal, endogenous physiologi-
cal function are listed in TABLE 2. Criteria 1 and 2 address
the plausibility that the candidate signal controls a particu-
lar function, criteria 3–5 concern the candidate signal’s suf-
ficiency, and criterion 6 concerns its necessity. For hor-
mones acting via an endocrine mode, endocrine tests of
criterion 1 may be based on concentrations of the molecule
in the blood and at its site of action, and criteria 3, 4, and 6
may be tested with intravenous infusions (unless blood-
borne agonists or antagonists do not readily access the re-
ceptors, for example because of the blood-brain barrier).
Plasma levels and intravenous infusions, however, do not
provide adequate tests of paracrine or neuropod signaling.
This is because intravenous infusion of a hormone, even if it
matches the hormone’s meal-related changes in the blood,
may not mimic its concentration at paracrine or neuro-
pod sites of action, i.e., in the lamina propria or at the site
of close appositions with other cells, respectively. The
same goes for agonist or antagonist administration.
Thus, for paracrine or neuropod modes of action, the
criteria remain theoretical possibilities, at least in hu-
mans, because, at present, there are no validated means
to deliver hormones locally into the lamina propria or the
close appositions formed by neuropods, or to measure
their concentrations at such sites. In animals, however,
these limitations soon may be surmounted, for example,
by targeting the lamina propria with infusions into intes-
tinal lumen (147).

A related issue is that multiple parameters of hormone se-
cretion other than plasma concentrations may encode feed-
back signals controlling eating. These include times of onset
of changes in plasma levels, rates of change, pulsatility,
and effects of sustained or integrated levels versus mo-
mentary levels. Unfortunately, the parameters that actu-
ally serve as endogenous physiological signals have not
been intensively studied. Rather, researchers have mod-
eled mainly a single parameter, the peak plasma level,
and peaks have been modeled only crudely by continuous
infusions that do not consider the duration or timing of
the peaks. Therefore, for the purposes of evaluating cri-
terion 1, “physiological” endocrine doses are provision-
ally defined as those reproducing the peak plasma levels
produced by mixed-nutrient meals (TABLE 3). As limited
as this definition is, it is at present the state of the art and
has proven quite useful.

Table 1. Evolution of endocrine criteria

A. William Bayliss and Ernest H. Starling (1902)
1. The adequate stimulus produces the response after

complete denervation of the hormone-producing tissue.
2. Intravenous injection of an extract of the hormone-

producing tissue produces the response.
B. Edward A. Doisy (1936)

1. Identification of the tissue that produces a hormone.
2. Development of bioassay methods to identify the

hormone.
3. Preparation of active extracts that can be purified,

using the relevant bioassay.
4. Isolation, identification of structure, and synthesis of

the hormone.
C. Morton I. Grossman (1973)

1. The adequate stimulus produces a response in a
distant target.

2. The response persists after cutting all nerves
connecting the site of stimulation and the target.

3. The response is produced by an extract of the
hormone-producing tissue.

4. The effect is produced by infusing exogenous hormone
in amounts and molecular forms that copy the increase in
blood concentrations produced by the adequate stimulus for
endogenous release.

See text for references and discussion.
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The ability to analyze hormone function with agonists and
antagonists (criterion 6) is linked to developments in recep-
tor pharmacology and receptor-subtype analyses. The use
of antagonists in particular is now considered one of the
cardinal criteria for physiological function. These tools also
demand careful interpretation if the biological half-life, re-
ceptor affinity, relative access to receptors beyond the
blood-brain barrier, etc., differ between the hormone and
the agonist or antagonist. For example, the eating-inhibi-
tory effects of the long-lasting GLP-1 agonist exendin-4
differ markedly from those of native GLP-1.

3. Why consider GI motor function?

GI endocrine function and GI motor function are so closely
related that one cannot be understood without the other.
Gastric emptying and intestinal transit determine which en-
teroendocrine cells are exposed to chyme and for how long.
This in turn affects GI hormone secretion, which feeds back

onto gastric emptying. Therefore, the review begins with an
introduction to the effects of GI motor function on eating
and glycemia in health, obesity, and after RYGB.

II. GI MOTOR FUNCTION

A. Gastric Accommodation and Emptying

Physical digestion of solid food begins in the mouth, but is
primarily a gastric function (126, 127, 318, 341, 366, 481,
578, 724). Gastric volume during the meal usually exceeds
the volume of ingesta due to gastric secretions and swal-
lowed saliva and air (118, 282). Vago-vagal gastric-accom-
modation reflexes increase gastric volume as meals prog-
ress, avoiding significant increases in intragastric pressure
or gastric-wall tension (43, 405). The lack of stimulation of
gastric-tension receptors ensures that accommodation does
not lead to aversive sensations, although they do appear
sufficient to elicit a pleasant sensation of fullness (215, 464).
Accommodation reflexes are triggered mainly by gastric
mechanoreceptors and intestinal nutrient receptors and are
mediated in part by CCK (43, 246).

Endocrine
Digested
nutrients

Lumen Lamina
propria

IE LMM

1

Neurocrine2

Paracrine3

Neuropod4

Afferent

Efferent

FIGURE 3. Schematic of the small intestinal mucosa showing po-
tential modes of action of CCK, GLP-1, and PYY. The mucosa in-
cludes the epithelial cell layer (IE) on the luminal side, the lamina
propria, and the lamina muscularis mucosae (LMM), which limns
the submucosa and underlying serosa (not shown). The epithelium
consists of enterocytes (tan), which are specialized for nutrient
absorption, enteroendocrine cells (blue, villi not shown), which se-
crete GI hormones, and other cell types (not shown). Digested nu-
trients activate specific nutrient receptors and transporters (orange
�) expressed on the apical surface of enteroendocrine cells, leading
to secretion of CCK, GLP-1, and PYY from the basolateral side of
enteroendocrine cells. Four modes of action are diagrammed. Mode
1 is the classical endocrine mode, in which hormones diffuse from
the lamina propria into mesenteric capillaries (salmon), which drain
into the hepatic-portal vein and finally the systemic circulation, allow-
ing hormones to act on distant targets. Modes 2–4 show variations
of local actions. Mode 2 is a neuroendocrine mode, in which hor-
mones in the lamina propria activate vagal afferents (green arrow),
which in turn stimulate brain-mediated responses. Mode 3 is the
paracrine mode, in which hormones in the lamina propria act on
receptors (black �) on nearby cells, either neuroendocrine cells or
other cell types. Mode 4 shows the anatomical basis for a neuropod
mode of action, which has been described for enteroendocrine CCK
and PYY cells, and may exist for other GI hormones. This involves
hormone release from enteroendocrine-cell neuropods that end in
synapse-like appositions to glial cells of the enteric nervous system
and other cell types. Note that the hormone concentrations involved
in these different modes vary: hormone concentrations in the small
gap between neuropods and adjacent cells are likely to be highest,
paracrine and vagal neuroendocrine signaling may be the next high-
est hormone concentrations, endocrine signaling in the liver involves
moderate hormone concentrations, and endocrine signaling in
which hormones reach their receptors via the systemic circulation
involves relatively low hormone concentrations. Hormones also en-
ter the lymph from the lamina propria via bulk flow (not shown), but
this is not known to be functionally relevant. Although ghrelin secre-
tion is not stimulated directly by nutrients, secreted ghrelin may act
in the modes shown here.
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Ingested liquids are distributed evenly throughout the stom-
ach and begin emptying almost immediately. In contrast,
ingested solids are initially restricted mainly to the fundus
and move gradually to the antrum, where they are mixed
with gastric secretions and reduced in size by antral tritura-
tion, i.e., by churning and grinding movements that pro-

duce semi-solid chyme. When chyme particles reach a size
of �1–2 mm, they are emptied through the pylorus into the
duodenum, a process that involves coordinated antropylo-
ric propulsive pressure waves, pyloric-sphincter relaxation,
and duodenal pressure waves. The delay until the first emp-
tying of solid food, known as the lag phase, can last from a
few minutes to over an hour, depending on the physical
characteristics of the food. Once in the proximal small in-
testine, chyme initiates several neural and GI-hormonal re-
flexes that decelerate emptying.

When gastric emptying is measured for intervals approxi-
mating the normal intermeal interval, beginning after the
lag phase for solids and ignoring pulsatile pyloric chyme
propulsion, exponential curves provide good fits (FIGURE 4)
(118, 123, 126, 129, 158, 314, 349, 481, 663, 693, 744,
795, 855). The Weibull or “power-exponential” function
fits the lag phase as well (118, 126, 234, 347, 372, 452, 645,
772).

Emptying patterns are affected by meal volume, osmotic
pressure, energy density, digestibility, and macronutrient
adaptation (97, 162, 175, 176, 340). When meals contain
both liquids and solids, the two phases empty differentially,
although each affects the other, with liquids generally emp-
tying faster (345, 481, 643). Gastric emptying is somewhat
slower in women than men (73, 187, 200, 295, 350, 394),
although whether it is affected by the menstrual-cycle phase
is not clear (101, 200). Normal aging apparently has little
effect (606). As a result of these factors, there is consider-
able interindividual variability in gastric emptying rate. In

Table 2. Criteria to assess physiological status of GI
hormones in meal-related functions

1. Concentrations of the hormone change at the site of
action in a pattern consistent with the effect.*
2. Cognate receptors for the hormone are expressed at its
site(s) of action.
3. Exogenous administration of the hormone in amounts
duplicating the meal-related changes in endogenous
patterns at the site of action produces the effect.
4. Administration of secretagogues for the hormone
produce effects similar to the effect of the hormone.
5. The hormone’s effect occurs in the absence of abnormal
behavioral, physiological, or subjective effects.
6. Administration of selective agonists and antagonists of
the hormone’s receptors produce effects that are
consistent with their receptor pharmacologies.†‡

*These criteria extend earlier versions (265, 268, 696) to accom-
modate paracrine and neuropod signaling as well as endocrine sig-
naling, as described in the text. †At a minimum, the change in
concentrations of the proposed signal should precede the effect;
see Geary (265) for discussion. For example, administration of spe-
cific and potent receptor antagonists should delay or reduce eating
in the case of a hunger signal or increase eating in the case of a
satiation signal. ‡We do not include phenotypic evaluation of global
transgenic or spontaneous genetic loss-of-function models in this
criterion. These are valuable research tools, but complications due
to developmental compensatory effects, pleiotropic actions, and
species differences preclude their use as a “necessity” criterion for
physiological function. Rapidly inducible, tissue-specific reductions in
gene function, however, may complement the use of receptor an-
tagonists in establishing necessity.

Table 3. Physiological endocrine doses of ghrelin, CCK, GLP-1,
and PYY(3–36) in healthy-weight humans

Hormone
Physiological Dose,
pmol·kg�1·min�1 Reference Nos.

Ghrelin ? (�0.3)* 441, 759
CCK 0.2–0.7 54, 297, 433, 435
GLP-1 0.3–0.90† 69, 253, 299, 659
PYY(3–36) ? (�0.2)‡ 10, 192, 196, 421

Physiological endocrine doses (pmol·kg�1·min�1) are those re-
ported to reproduce the peak plasma levels produced by mixed-
nutrient meals [CCK, GLP-1, PYY(3–36) or premeal levels (ghrelin)].
*In one study, infusion of 0.3 pmol·kg�1·min�1 acyl ghrelin increased
plasma total ghrelin levels 2.2-fold to about the fasting level (759); in
another study, infusion of the same dose after breakfast increased
acyl ghrelin 2.4-fold above the fasting level (441); the effects of
lower doses have not been reported. †Physiological GLP-1 doses are
based on across-study comparisons. ‡Physiological PYY(3–36)
doses are based on one study of meals and infusions (196) and
separately reported meal and infusion effects (10, 192, 421); ef-
fects of doses �0.2 pmol·kg�1·min�1 on eating have not been
reported.
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FIGURE 4. Typical patterns of gastric emptying of solid (green) and
liquid (red) foods in relation to meals and intermeal intervals. De-
pending on the physical digestibility of solid foods, emptying during
the first several minutes is very slow (the lag phase), whereas it is
uncontrolled and rapid for liquids. The overall shapes of the gastric
emptying curves for solid food after the lag phase and for liquid foods
are exponential, although significant extents of each approximate
linear functions. As described in the text, gastric emptying plays
important roles in the control of eating and meal-related glycemia.
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contrast, intraindividual variability is low under laboratory
conditions (532).

Neural and endocrine reflexes are generally thought to syn-
ergize in the control of gastric emptying (126, 216, 555).
The importance of the vagal contribution is underscored by
the decrease in emptying of solid foods after vagotomy
(405). The roles of ghrelin, CCK, GLP-1, and PYY(3–36)
are reviewed in section IIC.

B. Small Intestinal Motility

The contributions of segmentation, mixing, and propulsion
of chyme in the small intestine to intestinal nutrient sensing
and the control of eating and glycemia are not well under-
stood. Challenges include: 1) present methods to measure
segmentation, mixing, and propulsion of chyme are limited,
although novel approaches may soon accelerate progress
(30, 33, 87, 220); and 2) the simultaneous changes in gastric
accommodation, gastric emptying, and GI-hormone secre-
tion are difficult to control (641, 681, 682, 718). Multivar-
iate statistics, such as the approaches of Seimon et al. (683)
and Acosta et al. (5), provide a useful strategy to dissect
these diverse factors functionally.

Two pharmacological studies suggest an important role for
small intestinal motility in incretin hormone secretion. In
both, healthy-weight subjects received intraduodenal infu-
sions of glucose, and intraduodenal pressure and flow
events were assessed by manometry and impedance mea-
surements. Pretreatment with hyoscine butylbromide (137)
increased intraduodenal waves for 10 min and reduced flow
events for 60 min. This was associated with decreased
plasma level GIP at 10 and 20 min, suggesting that normal
GIP release depends on the spread of glucose through duo-
denum and proximal jejunum. In contrast, pretreatment
with metoclopramide (411) stimulated duodenal pressure
waves, but did not affect flow events. Metoclopramide pro-
duced marked increases in plasma GLP-1 and GIP, suggest-
ing that increased mixing of the luminal contents increased
their contact with enteroendocrine cells, thus increasing in-
cretin secretion. By extension, small intestinal motility may
also affect ghrelin, CCK, and PYY secretion.

When the stomach is empty, small intestinal peristaltic ac-
tivity is controlled by phase III activity of the migrating
motor complex (MMC), which originates in the stomach in
humans, rats, and mice (203, 266, 748, 853) and appears to
be stimulated by motilin (203).

C. Roles of Ghrelin, CCK, GLP-1, and
PYY(3–36)

Supraphysiological doses of ghrelin accelerated gastric
emptying (429) and reversed the inhibition of gastric emp-

tying elicited by intragastric lipid infusion (374), but
whether reproducing endogenous amounts and patterns of
ghrelin is sufficient to stimulate gastric emptying and
whether ghrelin antagonists inhibit gastric emptying have
not been tested in humans. Thus ghrelin does not yet fulfill
criteria 3 and 6 (TABLE 2) for having an endocrine role in
gastric emptying. Similarly, a supraphysiological ghrelin in-
fusion elicited phase III MMC activity, but smaller doses
did not (203, 748), and endogenous phase III MMC activity
was not temporally associated with plasma ghrelin concen-
trations (although phase III MMC activity was associated
with motilin levels) (204). Thus these tests did not produce
evidence that ghrelin fulfills criteria 1 or 3 (TABLE 2) for an
endocrine effect on GI motility.

Several studies indicate that CCK meets both criteria 1 and
6 (TABLE 2) for having an endocrine role in gastric emptying
of liquid food (262, 263, 436, 447, 495, 674; but see Ref.
433 for a negative report). Animal studies indicate that
CCK slows gastric emptying via vago-vagal reflexes stimu-
lated by both endocrine and paracrine signaling (216, 555,
823). CCK also fulfilled criteria 1, 4, and 6 for endocrine
roles in the increases in tonic and phasic pyloric pressures
and reductions in antral and duodenal pressures stimulated
by intraduodenal lipids (102, 190, 259, 316, 584), re-
sponses that presumably contribute to CCK’s inhibitory
effect on gastric emptying (382). One study in humans
failed to detect an effect of CCK-receptor antagonism on
small intestinal transit time (495).

There is also support for GLP-1 as an endocrine control of
gastric emptying. Physiological doses of GLP-1 slowed
emptying of liquid meals (541, 822), supporting criterion 3
(TABLE 2), and administration of the GLP-1 receptor antag-
onist exendin(9–39) accelerated gastric emptying in two
studies (41, 196), supporting criterion 6. Exendin(9–39)
failed to affect gastric emptying in three other studies (531,
546, 650), however, suggesting that differences in test meal
characteristics, plasma glucose levels, or other situational
variable may contribute to GLP-1’s influence on gastric
emptying. Exendin(9–39) also stimulates PYY(3–36) secre-
tion, which may slow gastric emptying and contribute to
these variable results (41, 230, 665, 670, 721, 843). Intra-
venous infusion of physiological doses of GLP-1 also stim-
ulated tonic and phasic pyloric pressures and reduced antral
and duodenal pressure waves (662), and infusion of exen-
din(9–39) abolished glucose-induced changes in antropylo-
roduodenal pressures (664), indicating a role for GLP-1 in
small intestinal motility.

Supraphysiological PYY(3–36) infusions slowed gastric
emptying in two studies (26, 834). Savage et al. (659) re-
ported that emptying of a non-nutrient liquid meal was
slowed by infusion of 0.4 pmol·kg�1·min�1 PYY(3–36).
They measured only 0.18 pmol·kg�1·min�1 PYY(3–36) at
the tip of the catheter, however, PYY(3–36) may meet the
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physiological-dose criterion (criterion 2, TABLE 2) for hav-
ing a physiological endocrine role in gastric emptying. Stud-
ies with PYY(3–36) antagonists have not yet been reported.
PYY(3–36) has been hypothesized to mediate the “ileal
brake” on gastric emptying, a term referring to the ability of
nutrients in the ileum to slow gastric emptying. In support
of this, intra-ileal infusions of triglycerides, free fatty acids,
sucrose, or casein increased plasma PYY(3–36) levels and
slowed gastric emptying in several studies (585, 708, 709,
787). Whether endocrine, paracrine, or neuropod PYY(3–
36) signaling mediates this effect is not known. Whether
PYY(3–36) affects small intestinal motility has not been
studied in humans. Intravenous infusion of PYY(3–36) and
ileal infusion of a mixed-nutrient solution similarly in-
creased the cycle length of phase III MMC in dogs (819),
but the relevance of this for humans is uncertain because the
control of the phase III MMC differs in dogs and humans
(554).

In summary, different degrees of evidence support the phys-
iological roles for ghrelin, CCK, GLP-1, and PYY(3–36) in
GI motility. An important feature of these relationships is
that gastric volume, gastric emptying, intestinal-nutrient
sensing, and the secretion of these four hormones are linked
in negative-feedback loops (FIGURE 5).

D. Eating

Perhaps the oldest mechanistic explanation for eating is
Galen’s suggestion that hunger results from gastric “pangs
and gnawing sensations” (7, 482). These sensations may
result from phase III MMC. 1) In 12 h-fasted subjects, sub-
jective hunger ratings were closely associated with the in-
tensity of gastric motility during both spontaneous phase III
MMC and phase III MMC elicited by erythromycin, a mo-
tilin agonist. 2) Erythromycin infusion elicited meal re-
quests (205, 746). When spontaneous eating was measured
in another study, however, no premeal increases in gastric
motility occurred (728). In addition, under other condi-
tions, erythromycin decreased rather than increased food
intake (770). Furthermore, phase III MMC develop only
when the stomach is nearly empty, which usually occurs
only after overnight fasts, yet subjective hunger is usually
quite low in the morning (660) and breakfast is typically the
smallest meal of the day. Thus the role of gastric motility in
hunger remains doubtful.

Several lines of evidence support the hypothesis that in-
creased gastric volume contributes to satiation. 1) Ratings
of fullness were correlated with total gastric volume and
with antral cross-sectional area after both liquid and solid
test meals (201, 282, 351, 373, 474, 655, 730, 794). 2)
Manipulations designed to selectively increase gastric vol-
ume increased fullness ratings and decreased eating (331,
475, 630–632). 3) Inflation of an intragastric balloon dur-
ing meals also increased fullness ratings and decreased meal

size (273). 4) Pharmacological inhibition of the gastric-ac-
commodation reflex decreased gastric volume during a
meal and decreased meal size (747). 5) Rapid intragastric
glucose infusions increased fullness more than intraduode-
nal infusions roughly matched to the rate of gastric empty-
ing (719), although it was not clear whether this was due to
gastric-volume detection because the intragastric infusions
also increased GLP-1 and PYY(3–36) secretion more than
the intraduodenal infusions. Interestingly, gastric-volume
effects appear to synergize with postgastric satiation signals
because oral nutrient preloads together with intraduodenal
nutrient infusions (133, 480, 552), CCK infusions (528), or

A

B

+–

+–

Meal 1

Gastric emptying high
Gastric volume high

Meal 2

Gastric emptying low
Gastric volume low

IMI

Gastric
emptying

Small-intestinal
nutrient sensing

CCK
GLP-1

PYY(3-36)Ghrelin

FIGURE 5. Gastric volume, gastric emptying, and ghrelin, CCK,
GLP-1, and PYY(3–36) secretion in relation to meals. A: eating a
meal increases gastric volume-related mechanoreception (bold
green arrows), which increases satiation signaling via neural affer-
ents, and increases gastric emptying and the delivery of ingested
nutrients into the small intestine (bold red arrow), which increases
satiation and satiety signaling and decreases hunger signaling. As
the intermeal interval (IMI) progresses, volume sensing and gastric
emptying progressively decrease (thin red and green arrows).
B: gastric emptying determines the rate of appearance of nutrients
into the small intestine and, together with the rate of digestion and
small-intestinal motility, controls small intestinal-nutrient sensing. For
most meals, small intestinal-nutrient sensing inhibits ghrelin secretion
(red arrow, �) and stimulates CCK, GLP-1, and PYY secretion (green
arrows, �). In turn, ghrelin stimulates (green arrow, �) and CCK,
GLP-1, and PYY(3–36) inhibit (red arrows, �) gastric emptying.
Note that each feedback loop is negative, as indicated by the change
in sign (e.g., red to green) between (small intestinal-nutrient
sensing)–(hormone secretion) and (hormone secretion)–(gastric
emptying).
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GLP-1 infusions (199) each decreased eating more than the
individual manipulations.

Gastric-volume signals are thought to control eating via
mechanoreceptors that are tuned to both tension and
stretch or length (294, 366, 560, 579) and are linked to the
CNS by vagal and spinal visceral (splanchnic) afferents
(272, 791, 809). In rats, these include polymodal vagal
afferents whose response can be increased severalfold by
combinations of gastric fill and CCK infusion (671) or in-
fluenced oppositely by CCK and ghrelin treatment (217).
Thus neural information processing controlling GI function
and eating appears to begin at the level of the vagal affer-
ents.

As mentioned above, negative-feedback loops link gastric
volume and gastric emptying to intestinal nutrient sensing
and to ghrelin, CCK, GLP-1, and PYY(3–36) secretion (FIG-
URE 5). The relationship of these feedback loops to satiation is
complex because both gastric and postgastric signals contrib-
ute to satiation. Thus, depending on the circumstances, accel-
erating gastric emptying may either decrease satiation by de-
creasing gastric-volume signals or increase satiation by in-
creasing postgastric signals. This point is underscored by
the report (770) that erythromycin accelerated gastric emp-
tying and decreased rather than increased meal size in a
group of overweight (i.e., BMI �25 and �30 m/kg2) and
obese (BMI �30 kg/m2) subjects. Finally, recent data sug-
gest functional roles for gastric nutrient-sensing receptors,
which may include roles in eating (see sect. IIIC).

E. Glycemic Control

Gastric emptying contributes importantly to the regulation
of meal-related glycemia and, thus, to overall glucose ho-
meostasis (472). For example, in both healthy subjects and
patients with T2DM, intersubject variability in emptying of
an oral glucose load accounted for significant amounts of
the variability in plasma glucose increments (342, 470). In
addition, pharmacological manipulation of gastric empty-
ing of a solid-liquid mixed-nutrient meal produced corre-
sponding glycemic changes in patients with T2DM (285).
Variation in factors that affect gastric emptying, such as
decreasing dietary fiber content (369, 771), would presum-
ably increase the relative contribution of gastric emptying
to meal-related glycemia; conversely, manipulating post-
gastric factors, such as incretin-hormone secretion, would
reduce it. Small intestinal nutrient transport also may affect
meal-related glycemia. For example, pharmacological slow-
ing of intestinal flow of intraduodenally infused glucose
slowed glucose absorption and reduced blood glucose
(137).

F. Obesity

In several small-scale studies, gastric emptying was compa-
rable (562, 681), faster (295, 794, 797), or slower (338,

497) in obese relative to healthy-weight people. These in-
consistent results may be related to several differences
among the studies, including differences in the nutrient
composition of the test meals and methodological differ-
ences (e.g., scintigraphy vs. less direct measures). In con-
trast, a large scintigraphic study (389 subjects) demon-
strated clearly that overweight and obesity are associated
with increased gastric emptying rates of both solid and liq-
uid foods (5). Interestingly, the degrees of increase were
similar in overweight, obese, and morbidly obese (i.e., BMI
�35 kg/m2) subjects (decreases of �20% in solid-meal half-
emptying time and �30% in liquid-meal half-emptying
time in each group). This suggests increased gastric-empty-
ing rate is more likely to be a permissive rather than an
effective cause of obesity.

Manipulations of gastric volume may contribute to obesity
therapy. Consistent with this possibility, some data relate
the eating-inhibitory, weight-reducing, and glycemic effects
of the GLP-1 receptor agonist liraglutide to reduced gastric
emptying (343, 789). Furthermore, implantable devices de-
signed to electrically stimulate the vagus in a way that
blocks vagal signaling reduced subjective hunger, increased
fullness, decreased body weight, and improved glycemic
regulation in clinical trials (89, 134, 353, 654, 656, 689).
The most compelling of these was a randomized, double-
blind, sham-controlled trial involving 239 obese patients
(353). Those receiving vagal blockade lost 24% of their
excess weight in 1 year, versus 16% in the sham-operated
group. The mechanism underlying the efficacy of vagal
blockade is unknown. One possibility is that slowed gastric-
emptying rate is involved (134, 405). In the patients de-
scribed above, gastric emptying was reportedly unchanged,
but because gastric emptying was measured after the pa-
tients had undergone more than a year of vagal stimulation,
it is possible that there was tachyphylaxis of an earlier effect
(658). In other studies, vagal blockade increased ghrelin
secretion and reduced secretion of CCK and GLP-1 (153,
154), effects that presumably would oppose any decrease in
eating. An alternative hypothesis that deserves investigation
is that vagal blockade reduces gastric accommodation dur-
ing meals, leading to increased distension and early satia-
tion. Because the blockade prevents vagal afferent signal-
ing, this hypothesis requires that distension is adequately
sensed by spinal-visceral afferents (82, 146).

G. RYGB

Due to a greatly reduced gastric lumen (FIGURE 1), only a
fraction of the normal gastric volume can be accommo-
dated, and antral trituration and pyloric control of empty-
ing are absent after RYGB. As a result, RYGB markedly
accelerates gastric emptying of liquids and solids (although
emptying of small, solid meals with volumes not exceeding
the pouch volume may be slower) (213, 244, 339, 518, 536,
802, 808). This, in turn, often leads to bloating, nausea, and
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dumping in RYGB patients (307, 377, 545, 695, 745). Glu-
cose solutions, as used in glucose-tolerance tests, may
empty almost immediately in RYGB patients, leading to the
appearance of �300 kcal in the jejunum within 1–2 min
(544). Such rapid increases in small intestinal nutrient con-
tent are likely to contribute to the increased meal-related
secretion of CCK, GLP-1, PYY(3–36), and insulin after
RYGB, as described in the next sections. For example, in-
fusion of glucose at a high physiological rate (4 kcal/min)
into the Roux limb of RYGB patients and into the duode-
num of healthy subjects elicited comparable increases in
GLP-1, whereas oral glucose loads (200 kcal/150 ml) pro-
duced larger GLP-1 responses in the RYGB patients (544).

Three additional studies reveal further contributions of
RYGB-induced alterations of GI function to changes in eat-
ing and body weight: 1) faster pouch emptying on postop-
erative day 1 was associated with a �4 kg increase in 1 year
weight loss (21); 2) pouch size was negatively correlated
with weight loss after 6 months and 1 year (626); and 3)
thresholds for detection of inflation of a balloon placed in
the Roux limb were negatively correlated with spontaneous
meal sizes 6 months and 1 year postoperatively (81). Re-
learning to eat comfortably is likely to be important in some
of these effects, but such learning has not yet been studied
much in either humans (108, 177) or animals (424, 690).
For example, a questionnaire follow-up indicated that meat
was the food most often linked to food aversions after
RYGB (288), which may be due to the challenge of digest-
ing meat without a stomach.

H. Summary

GI motor function and gastric emptying are closely regu-
lated. Neural gastric-volume detection contributes to the
inhibitory control of eating, and gastric emptying contrib-
utes to meal-related glycemic control. CCK, GLP-1, and
PYY(3–36) contribute to the control gastric emptying, and
ghrelin may do so. Intestinal-nutrient sensing links the se-
cretion of ghrelin, CCK, GLP-1, and PYY(3–36) to gastric
emptying and gastric volume (FIGURE 5). Loss of normal
gastric accommodation, food storage, food trituration, and
emptying are likely to play important roles in the effects of
RYGB on eating and glycemic control.

III. GHRELIN

A. Introduction

Ghrelin is a 28-amino acid peptide hormone discovered in
1999. Ghrelin is produced by closed-type enteroendocrine
cells in the oxyntic glands of the gastric fundus (184, 397)
(FIGURE 6A), as well as by some small intestinal enteroen-
docrine cells, pancreatic-islet cells, and neurons in various
brain areas, including the arcuate nucleus of the hypothal-

amus (Arc) (184, 398, 524, 597, 742, 799, 826). Ghrelin
O-acyltransferase (GOAT) catalyzes the conversion of
ghrelin into its biologically active acylated forms, octanoyl-
and decanoyl-ghrelin (together referred to as acyl-ghrelin,
in contrast to unacylated or des-acyl-ghrelin). GOAT phys-
iology has emerged as an important modulator of ghrelin
function (58, 389, 524, 847). Less than 10% of circulating
ghrelin is acyl-ghrelin, which together with the difficulty in
assaying it, complicates studies of endogenous ghrelin (390,
596, 707). The ghrelin receptor was described in 1996 as
the growth hormone-secretagogue receptor-1A (GHSR1A)
(348). It is widely expressed peripherally and centrally (398,
524, 799). Des-acyl-ghrelin has little affinity for GHSR1A
but may have metabolic effects via other receptors (524).

B. Secretion

Plasma concentrations of total and acyl-ghrelin increase
before meals, decline precipitously after meals, and then
increase gradually until the next meal (173, 326, 707). For
example, when acyl-ghrelin was sampled frequently
throughout the day in subjects adhering to a controlled
sleep-wake, activity and meal protocol (707), acyl-ghrelin
maxima were �110 pM before breakfast and �100 pM
before lunch and dinner, and post-meal minima were �70
pM. Importantly, the ratio of circulating acyl- to total ghre-
lin may change around meals (707). Because ghrelin’s
plasma half-life is �30 min (20, 800), postprandial acyl-
ghrelin dynamics presumably primarily reflect inhibition of
secretion. There is also a gradual decrease in acyl-ghrelin
after midnight, which probably reflects an inhibitory effect
of sleep; the pre-breakfast increase begins only after awak-
ening (707). These patterns suggest that habitual sleep-
wake cycles and the timing of breakfast modulate morning
ghrelin levels. This complicates any definition of “basal”
plasma ghrelin and indicates that across-group compari-
sons of pre-meal plasma ghrelin concentrations should con-
sider the times of sampling with respect to habitual meal
times. Average daily ghrelin levels might provide a useful
alternative. Cummings et al. (173) reported 1) a correlation
of 0.95 between the 0930 h ghrelin level (i.e., the post-
breakfast minimum) and the 24 h ghrelin area under the
curve (AUC), and 2) a correlation of 0.87 between the 0600
h ghrelin level (the pre-breakfast minimum) and the 24 h
AUC, indicating that both measures accurately reflect the
integrated or average daily ghrelin level.

The mechanisms stimulating ghrelin secretion during
fasting are poorly understood. In one study, ghrelin levels
were elevated after a 3-day fast and did not change
around meals, although the nocturnal increase was unaf-
fected (139). Autonomic efferents contribute to the stim-
ulation of ghrelin secretion in both humans (107) and
animals (346, 852). Cephalic-phase reflexes activated by
the sight, smell, and taste of food (i.e., elicited by modi-
fied sham feeding) were reported to both stimulate (511,
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512, 696) and inhibit ghrelin secretion (35) in humans.
Time cues also increase pre-meal ghrelin levels in sched-
ule-fed rats (180, 494).

Ghrelin secretion after meals is inhibited by GI signals that
are recruited rapidly by nutrient ingestion. Conditioned
(167) and cephalic-phase reflexes (315) may contribute.
There appears to be no gastric phase to post-meal ghrelin
inhibition because 1) intragastric water or liquid-diet infu-
sions had no effect on ghrelin levels in rats when infusates
were confined to the stomach with a pyloric cuff (558, 829),
2) plasma ghrelin concentrations were reduced comparably
by intragastric and intraduodenal glucose infusions in
healthy-weight men and women (563, 719), and 3) in con-
trast to most enteroendocrine cells, gastric ghrelin cells are
closed type, i.e., do not directly contact to the GI lumen
(FIGURE 6A). Nevertheless, gastric ghrelin cells express sev-
eral nutrient-sensing receptors that may affect ghrelin secre-
tion (207, 237, 311, 367, 457, 524, 824, 825) (TABLE 4,
which includes the full and the former names of the nutrient
receptors discussed below). Because these are expressed
mainly on the basolateral aspects of ghrelin cells, they are

probably stimulated mainly by metabolites entering the
laminal propria from the circulation, as discussed below.
There is some evidence, however, that they can be stimu-
lated by gastric contents. Lu et al. (457), for example, found
that mouse ghrelin cells express the free fatty acid receptor
4 (Ffar4), that fatty acids inhibited ghrelin secretion in
vitro, and that intragastric lipid loads reduced serum ghre-
lin levels in mice with ligated pylori. Similar results were
obtained in rat gastric explants (22, 692). These data are
inconsistent with the rat pyloric cuff data described above
(558, 829), and relevant studies remain to be done in hu-
mans. Few human enteroendocrine ghrelin cells express
GNAT3, TAS1R1/TAS1R3, or FFAR4, although nearby
cells do, suggesting the possibility of a gastric paracrine
chemosensory control of ghrelin secretion (825).

The intestinal phase of post-meal ghrelin inhibition is well
established (169, 248, 563, 640, 719). The critical site for
inhibition by glucose appears to be distal to the duodenum
and proximal jejunum because ghrelin secretion (60 min
AUC) was not inhibited by intraduodenal infusions of glu-
cose that were limited to only the proximal 60 cm of the

A Ghrelin cells are closed-type B CCK, GLP-1 and PYY cells are open-type
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FIGURE 6. Schematic of the organization of ghrelin, CCK, GLP-1, and PYY entroendocrine cells. A: gastric
ghrelin cells (blue) are closed-type. Their apical aspects are enclosed by epithelial cells (tan) so that they have
no direct contact with the gastric lumen. 1) Neural signals provide the major stimulatory control of ghrelin
secretion. 2) Secreted ghrelin (red dots) diffuses through the lamina propria (yellow) into gastric capillaries
(salmon) and is transported into the hepatic-portal vein and systemic circulation. 3) Ghrelin cells express a
number of nutrient receptors, mainly on the basal and lateral aspects (orange �). These are probably
stimulated mainly by metabolites reaching them by diffusion from the gastric capillaries through the lamina
propria, although some nutrients may reach them directly from the stomach. 4) CCK, PYY(3–36), perhaps
other small intestinal hormones, and other humoral stimuli reach ghrelin cells via the circulation and inhibit
ghrelin secretion. Paracrine signals (not shown) may also be involved. B: CCK, GLP-1, and PYY cells (blue) are
open-type, with direct contact with the small intestinal lumen. 1) Each expresses a number of nutrient
receptors, mainly on the apical and lateral aspects (orange �). These are probably the major controls of
secretion of these hormones. The nutrient receptors expressed by ghrelin, CCK, GLP-1, and PYY cells are
listed in TABLE 4, which also indicates the extensive overlap in the nutrient receptors expressed by the these
cell types. 2) Secreted hormones (red dots) diffuse through the lamina propria (yellow) into small-intestinal
capillaries (salmon) and are transported into the hepatic-portal vein and systemic circulation. 3) Metabolites,
hormones, and other humoral factors reach CCK, GLP-1, and PYY cells by diffusion from mesenteric capillaries
through the lamina propria (yellow) or from nearby small-intestinal epithelial cells (tan). 4) Neural inputs also
control CCK, GLP-1, and PYY secretion.
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small intestine to glucose by an inflated balloon, but was
inhibited when glucose was also allowed access to the more
distal small intestine (445). The underlying mechanisms are
unknown.

Circulating metabolites and hormones may also contribute
to the inhibition of ghrelin secretion. Intravenous glucose
infusion, alone or together with insulin, reduced ghrelin
levels under several conditions (254, 506, 526, 644, 688).
Insulin may be the key factor, as meals did not reduce ghre-
lin levels in patients with type 1 diabetes mellitus (T1DM)
in the absence of insulin therapy, but did so following rein-
statement of basal euinsulinemia (526). In contrast to glu-
cose infusions, intravenous lipid infusions failed to affect
plasma ghrelin levels (506). Increases in peripheral concen-
trations of lactate and short-chain fatty acids resulting from
colonic fermentation of poorly digestible carbohydrates
(46, 523, 753, 758) may be sensed by hydrocarboxylic acid
receptor 1 (HCAR1) and FFAR2, respectively, because the
corresponding receptors are expressed by gastric ghrelin
cells in mice (237). Plasma lactate also increases following
many meals (694, 734) as well as during exercise and hyp-
oxia (135, 286, 815), and both exercise and hypoxia de-
crease plasma ghrelin levels in rats and humans (135, 815).
Finally, circulating amino acids may inhibit ghrelin secre-
tion via calcium-sensing receptor (CASR) (237).

All three macronutrients inhibit ghrelin secretion after
meals. Consumption of carbohydrate and protein reduced
ghrelin levels during the next 3 h more than did isoenergetic
lipid loads (258, 510). Whether carbohydrates and proteins
differentially affect ghrelin secretion is less clear. 1) In over-
weight and obese men, �250 kcal oral loads containing
80% energy as lactose, whey or casein reduced ghrelin lev-
els more than similar glucose loads 120–180 min after in-
gestion (96). 2) In healthy-weight and overweight men and
women, �500 kcal oral protein and glucose loads reduced
ghrelin levels similarly for �3 h, but protein reduced ghrelin
levels more effectively subsequently (258). 3) In healthy-
weight women, no differences in ghrelin levels were de-
tected during 24 h trials comparing a 10% protein-energy
diet, a 60% carbohydrate-energy diet, and a 30% protein-
and 40% carbohydrate-energy diet (427). Carbohydrate
type is also important: oral glucose reduced ghrelin levels
less than lactose (96), but more than fructose (755). Because
none of the studies reviewed above assessed gastric empty-
ing, differential rates of small intestinal appearance of in-
gested nutrients may have contributed as well as direct ef-
fects of specific intestinal nutrient sensors.

Lipids and di- or polysaccharides require digestion to in-
hibit ghrelin secretion fully because tetrahydrolipstatin, a
lipase inhibitor, and arcabose, an �-glucosidase inhibitor,

Table 4. Nutrient receptors expressed by enteroendocrine ghrelin, CCK, GLP-1, and PYY cells

Nutrient Receptor Ghrelin CCK GLP-1 PYY

CASR (CaR) X X X X
CD36 X
FFAR1 (GPR40) X
FFAR2 (GPR43) X X
FFAR3 (GPR41) X
FFAR4 (GPR120) X X X
GNAT3 (gustducin) X X
GPR119 X
HCAR1 (GPR81) X
LPAR5 (GPR93) X
SLC2A1 (GLUT1) X
SLC2A2 (GLUT2) X
SLC2A5 (GLUT5) X
SLC5A1 (SGLT1) X
SLC15A1 (PEPT1) X X
TAS1R1/TAS1R3 (T1R1/T1R3) X X
TAS1R2/TAS1R3 (T1R2/T1R3) X X
TAS1R3 (T1R3) X

The table is based on the evidence of receptor expression in mice, rats, or humans discussed in the text.
Former names of the receptors are given in parentheses. CaR, calcium receptor; CASR, calcium-sensing
receptor; CD36, thrombospondin receptor; FFAR, free fatty acid receptor; GLUT, glucose transporter;
GNAT3, guanine nucleotide-binding protein, alpha transducing 3; GPR, G protein-coupled receptor; HCAR1,
hydroxycarboxylic acid receptor 1; LPAR5, lysophosphatidic acid receptor 5; PEPT1 and SLC15A1, solute
carrier family 15 (oligopeptide transporter), member 1; TAS1R1 and T1R1, taste receptor, member 1;
TAS1R2 and T1R2, taste receptor, member 2; TAS1R3 and T1R3, taste receptor, member 3 (T1R1/T1R3).
Note that abbreviations are for the human genes, although many of the receptors indicated have been
identified on the respective enteroendocrine cells so far only in mice or rats.
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decreased the inhibition of ghrelin secretion by intraduode-
nal lipid infusions and sucrose drinks, respectively (197,
248, 250, 749). These studies also revealed that only fatty
acids with a chain length greater than or equal to C12
inhibit ghrelin secretion (197, 250).

The neuroendocrine reflexes mediating post-meal ghrelin
inhibition by intestinal nutrient sensing are poorly under-
stood. The vagus nerve seems unnecessary in rats because
vagotomy did not affect post-meal ghrelin inhibition in rats
(830). CCK and PYY(3–36) may be involved because intra-
venous infusions of each reduced plasma ghrelin levels in
humans (61, 104, 198), whereas GLP-1 infusion did not
(104). We are aware of only one test of the physiological
relevance of these potential endocrine controls of ghrelin
secretion: CCKA-receptor blockade abolished long-chain
fatty acid-induced ghrelin inhibition in healthy subjects,
suggesting that the mechanism involves CCK (197). Finally,
although fasting plasma ghrelin levels correlated with basal
leptin levels (240), leptin infusion failed to reinstate normal
meal-related ghrelin patterns in healthy-weight men who
had fasted 3 days (139).

C. Eating

Changes in plasma ghrelin levels around meals fulfill crite-
rion 1 of TABLE 2 for an endocrine role in hunger signaling.
1) Plasma ghrelin levels increase progressively before meal
onset and fall precipitously afterwards (173, 276, 390, 707,
778). 2) Hunger ratings were closely related to the drops
and subsequent increases of total ghrelin levels between
lunch and a spontaneous dinner in healthy-weight, time-
blinded men (171) as well as between breakfast and a lunch
offered at a set time in overweight and obese men and
women (276). 3) Breakfast-to-lunch intermeal intervals in
healthy-weight, time-blinded men who were served dinner
upon request were correlated with post-breakfast decreases
in total ghrelin and with the AUC of the breakfast-to-lunch
ghrelin response (84) [although these correlations were not
detected in non-time-blinded men (124)]. 4) Ghrelin con-
centrations at meal onset correlated with meal size in
healthy-weight and overweight men and women offered
lunch at a set time (276). Tests of ghrelin infusions, how-
ever, have hitherto failed to fulfill criterion 3 of TABLE 2.
Intravenous infusion of 0.3 pmol·kg�1·min�1 ghrelin, a
near-physiological dose (TABLE 3), that began 1 h after a
standard meal did not affect subjective hunger, the sponta-
neous intermeal interval, or the size of the following spon-
taneous meal (444). Pre-meal infusion of 1–5 pmol·
kg�1·min�1 ghrelin, however, did stimulate eating in two
tests in which meals were offered at set times (221, 839).
Interestingly, supraphysiological ghrelin infusions also in-
creased neural activity in response to pictures of food, as
detected by functional magnetic-resonance imaging (fMRI),
in brain regions associated with food reward (284, 465).
This suggests that ghrelin may affect eating primarily via

changes in food hedonics rather than hunger, a hypothesis
supported by neuropharmacological data in animals (211,
370). For example, in rats and mice, injection of ghrelin into
the ventral tegmental area, a reward area, activated dopa-
mine neurons, and injection of a ghrelin-receptor antago-
nist into the ventral tegmental area prevented the stimula-
tion of eating by peripheral ghrelin administration (4).

Animal studies also link ghrelin signaling to brain networks
thought to be related primarily to homeostatic eating. For
example, in mice, ghrelin administration into the Arc
acutely stimulated eating and altered the activities of Arc
neuropeptide Y, agouti-related peptide, and pro-opiomela-
nocortin neurons (145, 164, 810). Ghrelin also appears to
act in the Arc to reduce serotonin 2C receptor-mediated
inhibition of eating (661). Finally, initial reports that the
vagus nerve was required for ghrelin to stimulate eating (36,
185, 186) were not replicated when a more selective lesion
method was used, which also supports a central action of
ghrelin on eating (34).

An unresolved challenge to the hypothesis that ghrelin sig-
nals hunger is that transgenic mice with reduced ghrelin
signaling do not display a tonic increase in eating (524).
Some such transgenics do develop obesity, especially when
fed a high-fat diet (524), but this may be secondary to
decreases in fatty acid oxidation and increases in lipid de-
position in response to changes in autonomic nervous sys-
tem activity (484, 524, 572, 757). As a consequence, ghrelin
is currently considered to be a stronger candidate for the
development of pharmacotherapies for metabolic disease
than for overeating.

D. Glycemic Control

Ghrelin may affect glycemic control by accelerating gastric
emptying, inhibiting insulin secretion, or stimulating secre-
tion of glucagon or other counterregulatory hormones
(106, 152, 170, 202, 524, 530, 750, 799). In one study,
intravenous infusion of a near-physiological dose of 0.3
pmol·kg�1·min�1 ghrelin, reduced insulin levels in response
to intravenous glucose infusion and increased growth hor-
mone and cortisol, but not glucagon, epinephrine, or nor-
epinephrine, levels (767). Studies in mice indicate that the
insulin-inhibitory effect of ghrelin is mediated by a direct
action on pancreatic �-cells (208, 413). The modulation of
ghrelin acylation by dietary levels of C8 and C10 fatty acids
may provide a mechanism for brain nutrient sensing and the
neural regulation of glucose metabolism (389), although
given the low levels of these fatty acids in most diets, this
seems unlikely to be a physiological endocrine effect under
most conditions.

E. Obesity

GHRL polymorphisms were associated with BMI variation
in several human populations (430). Although significant,
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the effects are quite small [for example, a GHRL polymor-
phism at rs35683 accounted for �0.3% of the variance in
BMI in a sample of 2,000 European-Americans (430)], and
the functional pathways that contribute to the effects are
unknown.

Fasting plasma ghrelin levels are decreased in obese subjects
and increased by diet-induced weight loss (174, 240, 390,
779). Because obesity increases fasting insulin levels, the
inhibitory effect of insulin on ghrelin secretion (see sect.
IIID) may contribute to obesity’s effect on fasting ghrelin.
Shiiya et al. (688), however, did not detect any effect of
T2DM on fasting plasma ghrelin in obese subjects. Post-
prandial drops in plasma ghrelin were reduced in some
(239, 240, 497, 574), but not all (103, 174, 403), studies of
obese subjects.

We are aware of one study of the effect of ghrelin on eating
in obese humans (221), which was inconclusive. Acute in-
travenous infusions of supraphysiological doses of ghrelin
(1 and 5 pmol·kg�1·min�1) appeared to increase eating
more in obese than in healthy-weight subjects, but whether
the differences were statistically significant was not tested.

F. RYGB

Fasting and post-meal ghrelin levels are reduced in the first
2 wk after RYGB, but the longer-term effects are contro-
versial (174, 310, 390, 403, 574, 712). Peterli et al. (574)

reported that in obese subjects who had elevated fasting
ghrelin levels and no post-meal ghrelin drops, RYBG ini-
tially reduced fasting ghrelin, but that by 1 year post-
RYGB, fasting ghrelin levels were no longer reduced and
there were typical post-meal drops. Such gradual normal-
ization of ghrelin secretion after RYGB may result either
from weight loss or from dynamic adaptation of the GI tract
(678). RYGB increased ghrelin levels in some rodent studies
(31, 780, 854), but decreased them in others (731, 735).
Stylopoulos et al. (731) suggested that this apparent dis-
crepancy may be attributable to an effect of the initial rapid
postsurgical weight loss to increase ghrelin levels combined
with a sustained decrease in ghrelin secretory capacity due
to the gastric resection. Interestingly, in their rat model,
weight loss 3 months after surgery was correlated with the
pre- to postsurgery decrease in ghrelin levels (731). In an-
other rat study (691), in which there were no consistent
changes in pre-meal ghrelin levels tested 12–16 wk after
RYGB, ghrelin levels decreased more after meals in RYGB
than control rats, and the magnitude of the effect was cor-
related with weight loss.

G. Summary

FIGURE 7 summarizes ghrelin physiology around meals.
Ghrelin secretion increases during fasting and is inhibited
by cephalic- and intestinal-phase reflexes during and after
meals. Sensing of all three macronutrients contributes to the
intestinal phase of ghrelin inhibition. Pre-meal ghrelin levels

Stomach

Small intestine

Ghrelin

1

3

2

   Gastric emptying

   Eating

   Insulin secretionCCK
PYY(3-36)
Nutrients

FIGURE 7. Some features of ghrelin
physiology. Ghrelin is secreted from closed-
type enteroendocrine cells (blue) dispersed
in the epithelial layer (tan) of the gastric
mucosa. Ghrelin diffuses through the lam-
ina propria (yellow) and into gastric capillar-
ies (salmon). 1) Ghrelin’s potential physio-
logical effects include acting in the brain to
stimulate eating, acting in the stomach to
stimulate gastric emptying, and acting on
the pancreatic �-cells to inhibit insulin se-
cretion. 2) Ghrelin secretion is stimulated
mainly by neural controls. 3) Feedback
from small-intestinal nutrient sensing, me-
diated in part by open-type CCK and PYY(3–
36) cells, inhibits ghrelin secretion during
and after meals.
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are correlated with hunger sensations and meal size, but if
ghrelin has a causal endocrine role in hunger is unclear.
Ghrelin may contribute to glycemic control via several
mechanisms. Indeed, it has been hypothesized that ghrelin’s
major function is to prepare the organism for the nutrient
repletion and storage (389, 524). Studies to date of ghrelin
physiology in obese individuals and after RYGB have not
produced consistent results. Ghrelin antagonists and in-
verse agonists suitable for human use (78, 125) may soon
resolve many of these outstanding questions.

IV. CHOLECYSTOKININ

A. Introduction

CCK cells are open-type cells, i.e., their apical surfaces are
exposed to the intestinal lumen (FIGURE 6B). Initial electron
microscopy and immunocytochemistry studies suggested
that they were a unique species of enteroendocrine cells,
called I-cells (590). Contemporary methods, however, indi-
cate that, at least in rodents, many enteroendocrine CCK
cells also express and secrete ghrelin, GLP-1, PYY, GIP,
neurotensin, or secretin (231, 303, 597, 738, 742). In hu-
mans, swine, and rats, enteroendocrine CCK cells are
densely expressed in the duodenum and proximal jejunum,
less dense in the distal jejunum, and sparse in the ileum (45,
478, 503).

CCK circulates predominantly in a 58-amino acid form
(CCK-58) (243, 431, 612, 722). Importantly, many CCK
assays that involve plasma formation recover �20% of en-
dogenous CCK, so they provide accurate relative, but not
absolute, levels (243, 431, 722). Additionally, most tests of
exogenous CCK use CCK-8, which is rare or absent in the
plasma. This may be important because the liver clears
CCK-8 faster than larger forms (287, 404) and CCK-8 had
slightly different effects than CCK-33 or CCK-58 in animal
models (607, 608), including in tests of eating in rats (232,
279, 281).

There are two CCK receptors, CCKAR (or CCK1R) and
CCKBR (CCK2R) (216, 514, 515, 612). CCKAR is more
abundant peripherally than centrally and requires the seven-
amino carboxy-terminal segment and sulfation of the ty-
rosine residue at position 7 for full activation. CCKBR, or
the gastrin receptor, is sensitive to unsulfated CCK hexa-
peptides and is abundant both peripherally and centrally,
where CCK-8 is a neurotransmitter.

B. Secretion

Mixed-nutrient meals increase CCK secretion. Using a well
validated radioimmunoassay, Rehfeld et al. (609) found
that a 1,470 kcal mixed-nutrient meal increased plasma
CCK from a fasting level of �1 to �3 pM at 30 min and �5

pM at 60–90 min. Similarly, using the state-of-the-art
RAPID method, Eysselein et al. (242) found a 1,600 kcal
mixed-nutrient meal increased plasma CCK from a fasting
level �2.5 to �7 pM at 60 min. A number of studies involv-
ing isoenergetic loads of highly digestible nutrients that
were infused intraduodenally to control gastric-emptying
effects indicate that, with respect to both peak values and
AUC, 1) oral lipids stimulate CCK secretion most per kcal,
proteins are intermediate, and carbohydrates stimulate
CCK secretion least; and 2) plasma levels increase in 10–15
min (327, 337, 446, 584, 641, 682).

Hydrolysis of proteins and triglycerides is required for nor-
mal CCK secretion (55, 159, 247, 325, 479, 718). Addi-
tionally, fatty acids with chain length greater than or equal
to C12 stimulate CCK secretion much more than fatty acids
less than C12 (249, 479, 486, 487), and less saturated long-
chain fatty acids stimulated CCK secretion more than
highly saturated fatty acids (67). Carbohydrate digestion
may not be required, as the �-glucosidase inhibitor acar-
bose had little or no effect on the CCK response to mixed-
nutrient meals (236, 751, 784).

Consistent with the higher density of enteroendocrine CCK
cells in the proximal small intestine, intraduodenal glucose
infusions that were prevented from transiting more than 60
cm distal to the pylorus by an inflated balloon stimulated
CCK secretion as much as infusions done without balloon
inflation (445). This is likely also to be the case for fat and
protein. Intraileal lipid infusion also increased CCK secre-
tion (466), but whether this was due to a direct action on
ileal CCK cells or to an indirect, presumably endocrine,
distal-to-proximal reflex is unknown.

Intraluminal nutrients directly and indirectly stimulate
CCK secretion. Direct nutrient effects are mediated by a
variety of nutrient receptors expressed on the apical surface
of CCK cells (FIGURE 6B AND TABLE 4, which includes the
full and the former names of the nutrient receptors dis-
cussed below). In humans, free fatty acids act on FFAR1
(443), FFAR4 (752), and the fatty-acid transporter CD36
(733); oligopeptides and amino acids act on CASR (161,
328, 811), LPAR5 (149), TAS1R1/TAS1R3 (160, 182,
543) and, perhaps, SLC15A1 (183). The presence of tran-
scripts for TAS1R2/TAS1R3 and GNAT3 on CCK-secret-
ing mouse enteroendocrine STC-1 cells suggests that sweet-
receptor signaling may contribute to glucose-induced CCK
release in mice (228, 849). This may not be the case in
humans, however, because intragastric and intraduodenal
infusions of the sweet-receptor inhibitor lactisole that re-
duced glucose-induced GLP-1 and PYY secretion did not
affect CCK secretion (275). Intraluminal nutrients also
stimulate CCK secretion indirectly via the CCK-releasing
factors “pancreatic monitor peptide” and “intestinal lumi-
nal CCK-releasing factor” (456, 504, 812). This occurs in
part due to binding of proteases to proteins and lipids,
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which reduces protease-induced degradation of CCK-re-
leasing factors (168, 432).

C. Eating

CCK is the best-established GI endocrine satiation signal in
humans. First, in three studies (54, 299, 438), intravenous
infusions of physiological doses of CCK reduced meal size
without adverse physical or subjective effects in men and
women, which fulfills criteria 3 and 5 of TABLE 2. The study
by Lieverse et al. (438) is especially interesting because the
test food, bananas, did not elicit CCK secretion under their
conditions (440), so that the infused CCK did not synergize
with endogenous CCK, as probably happens in most satia-
tion tests. Second, intravenous infusions of the CCKAR
antagonist loxiglumide increased premeal hunger feelings,
reduced fullness feelings during the meal, increased meal
size, and blocked the satiating effects of intraduodenal lipid
infusion (70, 439, 480), which fulfills criteria 4 and 6 of
TABLE 2. These studies, summarized in FIGURE 8, have
made CCK paradigmatic for the study of the endocrine
control of eating.

In addition, 1) human CCKAR polymorphisms are associ-
ated with increased meal size, increased food intake, and

obesity (192, 473, 501), suggesting that endogenous CCK is
also important for the tonic control of eating. 2) fMRI
following intragastric lauric acid loads with or without
loxiglumide indicated that CCK signaling is crucial for nor-
mal brain responses to this fatty acid (419) (because lauric
acid is uncommon in Western diets, the generality of this
finding is uncertain). 3) CCK doses substantially above
physiological (i.e., �1.8 to �3.5 pmol·kg�1·min�1, TABLE
3) inhibited eating without eliciting adverse effects (100,
269, 290, 391). Interestingly, CCK infusions reduced meal
size �30–50% in these studies without affecting fullness or
other meal-related sensations compared with the control
condition, suggesting that CCK had an effect on conscious-
ness indistinguishable from the presumably more complex
afferent activation produced by the larger quantity of food
eaten in the control condition. 4) In most of these studies,
CCK infusions began after a small preload to capitalize on
the synergy between gastric mechanoreception and CCK
(528), described in section IIC.

Attempts to relate endogenous CCK levels with subjective
measures of appetite have been less informative than studies
of manipulation of CCK. 1) In the sole study of intrameal
effects, plasma CCK increased more during meals in women
than in men, but hunger and fullness ratings did not differ;
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FIGURE 8. Evidence that endogenous CCK signals satiation in healthy humans. A: intravenous infusion of a
physiological dose of CCK inhibited eating. Ten healthy-weight women [body mass index (BMI) 22 � 3 kg/m2]
and 8 obese women (BMI 39 � 2 kg/m2) received 60 min intravenous (IV) infusions of 0.24 pmol·kg ideal body
weight�1·min�1 CCK-33 or saline (SAL) beginning at 0800 after an overnight fast. At 0900, a 132 kcal
preload of bananas was served, and at 0915, a banana-shake meal was served in excess; bananas were used
because they did not elicit CCK secretion. CCK significantly reduced meal size (*) without physical or subjective
side effects. [From Lieverse et al. (438), with permission from BMJ Publishing Group Ltd.] B: the CCKA
receptor antagonist loxiglumide (LOX) antagonized the satiating action of endogenous CCK stimulated by
intraduodenal (ID) infusion of a fat emulsion. Healthy-weight adult males began a midday lunch buffet 4 h after
a standard breakfast, 90 min after onset of an IV infusion of 10 �mol·kg�1·h�1 LOX or SAL, 60 min after an
ID infusion of 0.4 ml/min corn oil (FAT) or SAL, and 20 min after an oral preload of 400 ml of a low-fat banana
milkshake. Infusions were continued throughout the meal. ID fat infusion significantly reduced the size of the
lunch meal (�), and that this was reversed by LOX (*); no physical or subjective side effects occurred in any
condition. [From Matzinger et al. (480).] C: antagonism of CCK signaling with the CCKA receptor antagonist
LOX stimulated eating. Healthy-weight adult males began a midday lunch buffet 4 h after a standard breakfast
and 60 min after beginning an IV infusion of 22 �mol·kg�1·h�1 LOX or SAL. Infusions were continued
throughout the meal. LOX significantly increased meal size (*) without physical or subjective side effects. [From
Beglinger et al. (70).]
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women gave higher ratings of “sickness” early in the meal,
but not later when CCK levels increased more, nor did they
spontaneously report illness or display signs of illness (549).
The small sample size (four of each sex) further limits this
study. 2) Postprandial CCK levels and hunger and fullness
ratings were significantly correlated in a group of nine men,
but the relationships were not detected in all individuals (3
of 9 for hunger and 4 of 9 for fullness) (260). 3) Meals
containing different fats differentially increased postpran-
dial plasma CCK levels in eight women, and these were
mirrored by subjective hunger and fullness ratings; but nei-
ther CCK responses nor appetite ratings differed in seven
men (119). 4) Meals containing different fat-to-carbohy-
drate ratios differentially increased postprandial plasma
CCK levels in 16 overweight and obese men and women,
but no associations with subjective appetite were detected;
there was also no difference in the size of meals offered 3 h
later, but by this time CCK levels had returned to basal
(277). Because CCK appears to signal satiation, but not
postprandial satiety, it is unfortunate that there are not
more studies of the relationships among differential in-
trameal plasma CCK levels, appetite, and meal size.

Reproductive physiology may affect CCK satiation.
Women spontaneously eat progressively less during the fol-
licular phase of the menstrual cycle, reaching a nadir in
daily food intake during the periovulatory phase that is
�275 kcal/day less than the luteal-phase maximum (38).
Rats and mice also display a decrease in food intake during
the periovulatory phase, due in part to an increase in the
satiating potency of CCK related to estrogen signaling in the
nucleus of the solitary tract (NTS) (38).

Studies in rodents suggest that CCK inhibits eating via both
local and endocrine modes of action. In support of local
action, intravenous infusion of the small-molecule CCKAR
antagonist devazepide, which presumably diffused from the
capillaries into the small intestinal-lamina propria, in-
creased food intake, but infusions of a CCK antibody,
which would not escape the vasculature so as to selectively
block endocrine effects, did not (616). Infusion studies in-
dicate that the most likely physiological site of CCKAR
mediating satiation is the proximal small intestine (165,
814). In addition, the satiating action of intraperitoneal
injections of CCK is mediated by vagal afferent fibers (165,
426, 704, 705), and most small intestinal vagal afferents
terminate within the crypt and villous lamina propria, but
not in close apposition to enteroendocrine CCK cells, indic-
ative of a paracrine action (77). Nevertheless, some vagal
afferents terminate with 5 �m of CCK cells (77), and CCK
neuropods appear to signal via enteric glial cells (90) (de-
scribed in section IB3 and FIGURE 3) so that neurocrine or
neuropod satiation signaling is also possible.

Other data in rats and mice support an endocrine mode of
action. 1) CCKAR in the pyloric muscle layers contribute to

the satiating effect of exogenous CCK (516). As little or no
food reaching the pylorus is digested sufficiently to stimu-
late CCK secretion and the CCKAR are localized in the
muscle layer rather than the mucosal layer (565), the pyloric
contribution to CCK satiation is likely to be endocrine. 2)
Vagotomy studies suggest that endocrine CCK may also act
in the brain to inhibit eating (615, 850). For example, in-
travenous infusions of devazepide, which enters the brain,
stimulated eating after vagotomy, whereas infusions of a
larger-molecule CCKAR antagonist that penetrates periph-
eral capillaries, but not the blood-brain barrier, did not
(615). The site of the brain CCKAR mediating these effects
is not known. The NTS (83, 330), to which vagal afferents
project, and the dorsomedial nucleus of the hypothalamus
(79) are candidates.

Whether CCK’s physiological satiating effect in humans
involves local or endocrine action is unclear. That infusions
mimicking systemic levels reached during meals are suffi-
cient to reduce eating even when endogenous CCK secre-
tion is minimized (438, 440) suggests, but does not prove,
that local signaling is not responsible. This is because GI
hormones diffuse down a steep concentration gradient from
the lamina propria into the mesenteric veins and are then
successively diluted in the hepatic-portal circulation and
systemic circulation (FIGURE 3). Thus, although the exact
difference between lamina propria and systemic CCK con-
centrations is unknown, it seems likely that physiological
intravenous CCK infusions are not sufficient to reproduce
the CCK concentrations in the lamina propria that occur
during meals.

D. Glycemic Control

No direct role has been established for CCK in glycemic
control in humans. Infusion of a physiological CCK-8 dose
(0.4 pmol·kg�1·min�1) reduced plasma glucose after an
oral glucose load, but not after an intraduodenal glucose
infusion that mimicked the gastric-emptying rate of the oral
glucose (437), suggesting that CCK reduces blood glucose
indirectly via inhibition of gastric emptying. In two studies,
however, the CCKAR antagonist loxiglumide failed to af-
fect plasma glucose despite accelerating gastric emptying
(263, 323). Physiological levels of CCK do not appear to
lower blood glucose by increasing insulin secretion because
infusion of 0.2–0.4 pmol·kg�1·min�1 CCK-8 did not in-
crease the insulin response to co-infusion of glucose (637).
Physiological infusions of CCK did, however, increase the
insulin response produced by amino-acid infusions in two
(324, 637) of three (253) studies. But several attempts to
demonstrate a direct insulinotropic effect of CCK using
various CCKAR antagonists and various nutrient stimuli
failed (65, 263, 323, 324, 400, 434, 547, 667, 673).

CCK secretion was reduced in patients with longstanding
T2DM (112, 636), perhaps due to the autonomic neuropa-
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thy and reduced rates of gastric emptying typical of these
patients (344). CCK-8 infusion further slowed gastric emp-
tying and improved postprandial insulinemia and glycemia
in patients with T2DM (18, 580, 636). Thus CCK agonists
may be useful in diabetes therapy.

Studies in rats indicate that CCK affects glucose metabolism
by reducing hepatic glucose production via a vagal-vagal
reflex (98, 99, 147, 605). CCK was infused intraduodenally
in amounts that failed to increase CCK concentration in the
hepatic-portal vein to mimic the local action of CCK in the
lamina propria, thus providing unique evidence for a para-
crine action. This method seems feasible for human studies
and may lead to better understanding of the relative roles of
local and endocrine signaling in GI hormone function.

E. Obesity

Whether obesity affects CCK secretion is controversial.
Fasting CCK levels were reduced in obese subjects in one
study (57), but not two others (103, 725). CCK responses to
intraduodenal oleic acid infusions tended to be delayed and
reduced in overweight or obese compared with healthy-
weight subjects in one study (725), but CCK responses to
high-fat, high-carbohydrate, and high-protein meals were
comparable in obese and healthy-weight subjects in another
(103), and CCK responses to ingestion of high-fat meals
were larger in obese than healthy-weight subjects in a third
study (261). Whether these contrasting results were due to
differences in the specific nutrient stimuli used, in gastric
emptying, which was not assessed, or other factors is not
known.

Some defects in CCK signaling can lead to obesity. As men-
tioned above, human CCKAR polymorphisms are associ-
ated with increased meal size, increased food intake, and
obesity (192, 473, 501), suggesting that CCK-signaling de-
fects can contribute to obesity etiology. In addition, allelic
variations in CCK were significantly more prevalent in
obese persons who habitually ate very large meals than
those who did not (the “extreme discordant phenotype”
approach) (192).

We know of only one study comparing the satiating action
of CCK infusions in healthy-weight and obese humans
(438). No difference was obtained (infusion of 0.24
pmol·kg�1·min�1 CCK-33 reduced meal size �18% in 10
healthy-weight women and �20% in 8 obese women).

Obesity produced by high-fat feeding may interfere with
CCK satiation. 1) CCK injections and balloon distension in
isolated jejunal segments elicited smaller vagal-afferent
electrophysiological responses in mice made obese by feed-
ing a high-fat diet than in chow-fed mice (181). 2) The CCK
responsivity of vagal afferents was reduced in high-fat fed,
leptin-resistant rats (193). 3) Fat-induced CCK secretion,

the satiating effect of exogenous CCK, and the de-satiating
effect of devazepide were reduced in rats fed a high-fat diet
(225, 739).

Reports that rats that received intraperitoneal infusions of
CCK during every spontaneous meal for 6 days (821) and
mice with transgenic null mutations of Cckar (402) in-
creased meal frequency and failed to gain weight contrib-
uted to the views that CCK (and by extension other GI
hormones) does not contribute significantly to tonic energy
homeostasis and is a poor candidate for obesity pharmaco-
therapy. [The OLETF rat, which also bears a Cckar null
mutation, is obese, but this is apparently due to loss of
hypothalamic Cckar rather than vagal Cckar (79).] Recent
preclinical data are more promising. First, stabilized forms
of CCK that resist enzymatic degradation reduced food in-
take and body weight in various mouse obesity models
(357, 359, 582). Second, native and stabilized CCK and
CCKAR agonists increased the anorectic and weight-low-
ering actions of a GLP-1 receptor agonist, amylin, leptin, or
amylin plus leptin in various rat and mouse obesity models
(358, 776, 777), as did a CCK/GLP-1 agonist hybrid pep-
tide (360). These promising results suggest that increased
CCK signaling may contribute effectively to obesity phar-
macotherapy.

F. RYGB

CCK has not been a focus of RYGB research because RYGB
prevents ingesta from contacting the majority of CCK-se-
creting cells. Nevertheless, intraileal lipid infusions in-
creased CCK secretion in healthy-weight subjects (466),
and postprandial CCK levels were normal (383, 622, 634)
or increased (364, 574) following RYGB. For example, Pe-
terli et al. (574) found that CCK levels 30 min after a mixed-
nutrient meal were increased approximately twofold 1 wk,
3 mo, and 1 yr after RYGB. That the increase occurred just
1 wk post-RYGB suggests that it does not require prolifer-
ation of CCK cells. The larger increases at later points may
be related to the proliferation of CCK cells, which was
reported in the Roux and common limbs of RYGB rats
(525). The effect of RYGB on CCK secretion is an interest-
ing and under-researched phenomenon that may lead to
new opportunities for obesity therapy.

RYGB reduced food intake and body weight in obese
OLETF rats (305), indicating that Cckar signaling is not
necessary for some response to RYGB in this model. As no
ad libitum-fed, genetically normal RYGB rats were in-
cluded in the experiment, however, it is unclear whether the
OLETF rats were normally responsive to RYGB. We know
of only one test of acute CCKAR antagonism in RYGB rats
(37), which failed to reveal any effect of RYGB on endoge-
nous CCK satiation.
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G. Summary

CCK is secreted in response to the products of carbohy-
drate, lipid, and protein digestion. It has been clearly estab-
lished as a satiation signal in humans and may contribute to
the control of meal-related glycemia both indirectly, via its
effect on gastric emptying, and directly via control of he-
patic glucose production. The satiating effect in humans
may result from both local and endocrine actions, although
the latter appear more likely. These actions of CCK are
summarized in FIGURE 9. Pathophysiology of CCK signal-
ing may contribute to overeating, to obesity and T2DM in
some patients, and to early satiation after RYGB. Preclini-
cal studies indicate that CCK is a candidate for obesity
pharmacotherapy, especially in combination with other en-
docrine-based therapies.

V. GLUCAGON-LIKE PEPTIDE-1

A. Introduction

GLP-1 is secreted by open-type enteroendocrine cells (FIG-
URE 6B), originally identified as L cells (114, 589), located
in both the small and the large intestine (336, 597). Most
GLP-1 cells in the distal jejunum and ileum coexpress and
secrete PYY; in addition, some GLP-1 cells coexpress CCK,
GIP neurotensin, or secretin (231, 303, 568, 597, 738,
742). GLP-1 is also produced by a small group of neurons
located in the NTS (72, 128, 222, 336). Two equipotent
molecular forms circulate, GLP-1(7–37) and GLP-1(7-
36NH2); the latter predominates in humans. Dipeptidyl
peptidase-4 (DPP-4), a proline/alanine-specific peptidase
found on the luminal surface of capillary endothelial cells,
in the liver, and in the blood, rapidly degrades active GLP-1
to inactive forms, GLP-1(9–37) and GLP-1(9-36NH2). In
swine, only �25% of active GLP-1 secreted from the intes-
tine reaches the portal circulation, and only �10–15%
reaches the systemic circulation (336).

GLP-1 receptors (GLP-1R) are expressed in the GI tract,
pancreas, cardiac atrium, abdominal vagal afferents, and
many brain areas (28, 115, 128, 336, 450, 623, 783). In
some animals, GLP-1 degradation products appear to sig-
nal via non-GLP-1 receptors (766). Whether these peptides
have physiological functions in humans is not known.

B. Secretion

Available GLP-1 assay methods usually yield similar rela-
tive changes, but often different absolute concentrations
(49, 410). Due to the rapid degradation of active GLP-1,
GLP-1 secretion is best estimated by the sum of active and
inactive GLP-1 in plasma (336, 508). Plasma GLP-1 con-
centrations are at their lowest levels after overnight fasts,
increase rapidly during meals, and usually do not return to

the morning level between meals (130, 235, 322, 557, 681,
804, 805). For example, when healthy-weight men and
women ate 524 kcal breakfasts and, 4 h later, mixed-nutri-
ent lunches containing 511, 743, or 1034 kcal, active
GLP-1 increased from �5 pM to �8, �12, and �16 pM,
respectively, after 30 min and then decreased to �7 pM
after 180 min (27).

Oral loads of glucose and several other carbohydrates usu-
ally result in monophasic increases in plasma GLP-1, with
onsets after 5–15 min, peak values after 15–30 min, and

CCK

Digested
nutrients

Satiation1

Meal-related
glycemia

2

Gastric emptying3

FIGURE 9. Some features of CCK physiology. CCK (red dots) se-
cretion is stimulated by the digestive products of all three macronu-
trients acting on nutrient receptors on the apical aspects of en-
teroendocrine CCK cells (blue) dispersed in the epithelial layer (tan)
of the small intestinal mucosa. CCK acts in an endocrine mode by
diffusing through the lamina propria (yellow) and into intestinal cap-
illaries (salmon) to reach distant target organs (red arrows), or acts
locally. 1) CCK’s physiological effects include stimulating satiation.
This may occur via endocrine actions in the pyloric area of the
stomach that produce signals relayed to the brain via vagal afferents
(green arrow) or via local actions on vagal afferents in the lamina
propria. An endocrine action in the brain may also contribute. 2)
CCK lowers meal-related glycemia via an endocrine effect on gastric
emptying and perhaps via a vagal-vagal reflex. 3) Similarly, CCK
slows gastric emptying via a direct endocrine effect and perhaps via
a vagal-vagal reflex. Solid lines indicate well-established effects, and
dashed lines indicate less well established effects.
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initial values regained after 3–4 h (130, 235, 322, 399, 663,
714, 759, 793, 805). Oral fructose, however, was only
about half as potent a GLP-1 secretogogue as oral glucose,
both on a molar basis (409) and when matched for per-
ceived sweetness (716). Oral protein and lipid typically pro-
duce slower-onset, more sustained increases than does glu-
cose (95, 122, 128, 131, 195, 235, 336, 442, 600, 762). Due
to the complex patterns of GLP-1 secretion described be-
low, however, it is unclear whether any macronutrient
should be considered to be the most potent GLP-1 secreta-
gogue. Both fasting and glucose-stimulated GLP-1 secretion
are pulsatile, with a period of �8 min (50); the controls and
consequences of this are not known.

GLP-1 levels after mixed-nutrient meals sometimes display
biphasic patterns (130, 235, 604), with secondary peaks
after 60–120 min. Differences in rates of gastric emptying
and other differences in digestibility of the meal compo-
nents are likely to contribute to this, but are not their sole
cause because biphasic patterns also occurred after oral
loads of individual nutrients (130, 322).

There may be sex-specific effects on GLP-1 secretion. Oral
glucose and mixed-nutrient meals increased GLP-1 levels
more in women than men in two studies (763, 805), but not
in two others (132, 385). In addition, oral glucose increased
GLP-1 levels less during the follicular phase than during the
luteal phase, apparently due to slower gastric emptying
(101).

Several mechanisms may contribute to the rapid initial
GLP-1 response: 1) GLP-1-cells are expressed in the duode-
num and proximal jejunum (148, 365, 738, 759), so direct
stimulation of GLP-1 secretion occurs as soon as ingesta
pass the pylorus. 2) The initial rate of gastric emptying of
glucose solutions, especially in fasted subjects, may produce
glucose concentrations that exceed the absorption capacity
of the proximal small intestine, so that glucose may reach
more distal GLP-1 cells within 5–10 min after meals (50,
663). 3) The rate of increase in plasma GLP-1 may exceed
the rate of increase of plasma glucose, suggesting that neu-
roendocrine reflexes may stimulate GLP-1 secretion in ad-
dition to direct stimulation of GLP-1 cells by glucose (508).

Intraduodenal-infusion studies, similar to oral-loading
studies, indicate that carbohydrate increases plasma GLP-1
levels faster than either protein or lipid (71, 247, 249, 412,
446, 550, 583) and that biphasic responses sometimes oc-
cur (446, 583). In addition, 1) for each macronutrient, in-
creasing caloric load increased GLP-1 levels (446, 583,
640). 2) GLP-1 responses were greater during initially faster
and subsequently slower nutrient infusions compared with
identical loads infused at constant rates, suggesting that
increases in the initial intraluminal nutrient load dispropor-
tionally increase GLP-1 secretion (136, 550). Because gas-
tric emptying rates are highest initially, this suggests that

gastric empting contributes to the control of GLP-1 secre-
tion.

The distal small intestine usually plays the leading role in
sustained GLP-1 secretion. This was first indicated by com-
parisons of GLP-1 secretion and glucose absorption. The
threshold intraduodenal glucose infusion rate for sustained
increases in plasma GLP-1 was between 1 and 2 kcal/min in
two studies (663, 774) and between 2 and 4 kcal/min in
another study (583). Because the absorptive capacity of the
duodenum and first 25–30 cm of jejunum is �0.9–1.4 kcal/
min (334, 505, 575), glucose probably reached the more
distal jejunum in these studies only when at least �1.5
kcal/min glucose was infused, which suggests that stimula-
tion of more distal GLP-1 cells is required to elicit sustained
GLP-1 secretion. Two experiments confirm this suggestion.
The first (159) involved intraduodenal infusion of 3.5 kcal/
min glucose 2 cm distal to the pylorus, aspiration of the
intestinal contents 60 cm distal to the pylorus, inflation of
an occluding balloon just distal to the aspiration site, and
intrajejunal infusion of glucose or saline distal to the occlu-
sion, 75 cm distal to the pylorus. Plasma GLP-1 levels in-
creased when glucose was infused intrajejunally in amounts
matching the aspirated glucose, but not when saline was
infused intrajejunally. In the second (844), 2 kcal/min glu-
cose was infused either via intraduodenal catheters that
ended 12 cm distal to the pylorus or via intrajejunal cathe-
ters that ended 50 cm distal to the pylorus; in this condition
a balloon was inflated 30 cm distal to the pylorus to exclude
reflux. Plasma GLP-1 levels increased markedly more when
glucose was infused intrajejunally than intraduodenally.
These two experiments demonstrate that small intestinal
glucose stimulation �50–75 cm distal to the pylorus is
necessary for GLP-1 secretion and that small intestinal glu-
cose stimulation �50–60 cm distal to the pylorus is not
sufficient for it.

Further observations also attest to the importance of distal
small intestinal GLP-1 cells in GLP-1 secretion. 1) Reducing
intestinal nutrient transit with hyoscine decreased GLP-1
secretion in response to glucose (137). 2) GLP-1 secretion
was increased when carbohydrates were administered with
the acarbose, which slows digestion of starch and disaccha-
rides and increases the amounts of carbohydrates reaching
the more distal small intestine (274, 601, 680, 784, 785). 3)
GLP-1 secretion was increased more by lower glycemic load
foods, i.e., less digestible, than by higher glycemic load
foods (635), again presumably by increasing the amounts of
carbohydrates reaching the more distal small intestine. 4)
Delivery of small amounts of lauric acid to the ileum and
colon by enteric-coated pellets increased meal-induced
GLP-1 secretion (459). 5) GLP-1 responses to intraduode-
nal infusions of amino acids and fatty acids are slow in
onset (71, 718), which, because no digestion is required in
these situations, indicates that GLP-1 cells in the proximal
small intestine are not sufficient for the responses. 6) That
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GLP-1 cells are more dense in the distal jejunum and ileum
than in the more proximal small intestine in humans (233)
also supports the importance of the distal small intestine in
GLP-1 secretion.

Many products of digestive hydrolysis directly stimulate
GLP-1 secretion via membrane receptors on the apical sur-
faces of enteroendocrine GLP-1 cells (TABLE 4, which in-
cludes the full and the former names of the nutrient recep-
tors discussed below). Intragastric infusion of lactisole, an
inhibitor of the TAS1R2/TAS1R3 sweet receptor, reduced
the GLP-1 response to intragastric glucose in humans (275,
717), suggesting that GLP-1 cells express these receptors
(228). TAS1R2/TAS1R3 receptors do not appear to be suf-
ficient for GLP-1 secretion, however, because artificial
sweeteners that stimulate them had no effect (716, 845,
849). Glucose absorption via the glucose transporters
SLC5A1 and SLC2A2 may be required because selective
inhibitors of both transporters reduced GLP-1 secretion in
animals (461, 519). SLC2A1 and SLC2A5 have also been
found on GLP-1 cells (618); the latter suggests a mechanism
for the stimulation of GLP-1 secretion by fructose men-
tioned above.

There is indirect evidence that protein hydrolysis is required
for GLP-1 secretion (142, 302, 322, 461, 718, 760). Oligo-
peptides and amino acids may be sensed by CASR (210,
461). Phenylalanine, tryptophan, asparagine, arginine, and
glutamine each stimulated GLP-1 in isolated rat small intes-
tine, and this was abolished in the absence of extracellular
Ca2� or the presence of a CASR inhibitor (461).

As for ghrelin and CCK, the effect of lipids on GLP-1 secre-
tion depends on digestive hydrolysis and the presence of
fatty acids with chain length greater than or equal to C12
(71, 249). The free fatty-acid receptors FFAR2, FFAR3, and
FFAR4 are densely expressed on distal small intestinal
GLP-1 cells (329, 380, 715, 754), which may contribute to
the slower-onset, more sustained GLP-1 responses after
lipid ingestion. Carbohydrates reaching the large intestine
are fermented to short-chain fatty acids, which are sensed
by FFAR2 and FFAR3 (206, 617) and contribute to the
later phase of GLP-1 secretion (376, 765). For example,
oral loads of xylose, a poorly absorbed sugar, led to greater
increases in GLP-1 than did glucose from 60 to 180 min
after loading (793). GLP-1 cells also express GPR119,
which mediates responses to oleoethylamine (151, 420,
618), a long-chain fatty acid derivative formed during ab-
sorption.

Nutrients may also stimulate GLP-1 secretion indirectly by
increasing bile secretion. Bile acids appear to control GLP-1
secretion in two ways. First, circulating bile acids diffuse
into the lamina propria and reach GPBAR1 on the basolat-
eral aspects of GLP-1 cells, which stimulates GLP-1 secre-
tion in mice (105, 564, 761). Second, the nuclear bile-acid

receptor FXR appears to inhibit GLP-1 production because
treatment with a bile-acid sequestrant improved glucose
tolerance and increased ileal GLP-1 expression in wild-type
mice, but not Fxr knockout mice (773). The importance of
bile acids for human GLP-1 secretion is not clear. 1) Bile
acid and GLP-1 responses were correlated in one study
(627). 2) Intrajejunal infusion of taurocholic acid did not
affect GLP-1 secretion by itself, but increased glucose-stim-
ulated GLP-1 secretion beginning after �90 min (841). 3)
Intraduodenal infusion of chenodeoxycholic acid had only
a small effect on plasma GLP-1 levels (496).

There appear to be several reflexive controls of GLP-1 se-
cretion. 1) The nicotinic cholinergic antagonist trimeth-
aphan did not reduce the early increase in GLP-1 after a
mixed-nutrient meal, but did reduce the increases in insulin
and pancreatic polypeptide, suggesting that cephalic-phase
reflexes did not contribute to the GLP-1 response (17). A
preprandial cephalic-phase GLP-1 reflex, however, was
demonstrated in rats (180, 786). 2) The muscarinic cholin-
ergic antagonist atropine reduced the GLP-1 response to an
oral glucose load (50). 3) Mouse GLP-1 cells express the
melanocortin 4 receptor (Mcr4), whose activation in-
creased GLP-1 secretion (561).

The afferent limbs of GLP-1 reflexes may involve gastric-
phase signals because intragastric infusion of glucose or a
mixed-nutrient solution led to greater plasma GLP-1 levels
than matched intraduodenal infusions (719), although it is
also possible that the initial rate of gastric emptying may
have exceeded the rate of intraduodenal infusions, leading
to greater direct stimulation of GLP-1 release. An intestinal-
phase reflex appears to contribute to GLP-1 secretion in
response to intraduodenal fat infusions because GLP-1 did
not increase after CCKAR antagonism (71). Finally, re-
search in rats indicates that vagal signaling contributes im-
portantly to reflexive GLP-1 release (29, 110, 628).

C. Eating

GLP-1 fulfills criterion 3 of TABLE 2 for an endocrine sati-
ation signal in humans because intravenous infusion of
physiological doses of GLP-1 (0.3–0.9 pmol·kg�1·min�1)
reduced meal size in the absence of adverse effects in
healthy-weight men (199, 255, 299, 301). Test context may
affect GLP-1 satiation, however, because a physiological
dose failed to inhibit eating in another test (100), and sup-
raphysiological doses (1.2–1.5 pmol·kg�1·min�1 GLP-1)
reduced meal size in one (301), but not in another study
done under different conditions (454). The site(s) of the
GLP-1R mediating this satiating effect is unknown. As ex-
plained in section IVC, we conclude that positive results
with physiological endocrine doses suggest that GLP-1 acts
via an endocrine mode of action, rather than signaling lo-
cally, to inhibit eating in these tests.
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With respect to criterion 6 of TABLE 2, GLP-1R antagonism
with exendin(9–39) failed to increase test meal size in
healthy humans tested under five distinct experimental con-
ditions (492, 721) and in two groups of RYGB patients
tested 3–12 mo after surgery, when their mean BMI was
�34 kg/m2 (737). In contrast, exendin(9–39) did increase
test meal size in one of the RYGB-patient groups in a pre-
operative test (737). Several factors may have contributed
to these disparate results. 1) The positive result was ob-
tained with a primed infusion and a higher maintenance
dose of exendin(9–39). 2) Meal-related GLP-1 secretion
was markedly increased in the patients tested after RYGB,
so even the higher exendin(9–39) dose may not have been
sufficient. 3) Patients were heavier before RYGB (�40 kg/
m2) than after (�34 kg/m2), suffered from T2DM, and were
receiving insulin treatment (after RYGB only 2 of 12 pa-
tients had T2DM, and treatment was not specified). 4) Ex-
endin(9–39) led to unusually high levels of PYY(3–36) in
healthy subjects (721) and in patients tested after RYGB,
but failed to increase PYY(3–36) in patients tested before
RYGB (737).

Intravenous GLP-1 infusions failed to inhibit eating in men
with truncal vagotomy and pyloroplasty (588), suggesting
that GLP-1 acts in the abdomen to inhibit eating. Many
data in rats also support a vagal mechanism (1, 313, 407,
639), although capsaicin lesions of unmyelinated abdomi-
nal afferents failed to block GLP-1’s eating-inhibitory effect
in one study (613).

Additional rat and mouse data also indicate that intestinal
GLP-1 acts locally to inhibit eating in these species. 1)
Meals failed to increase systemic active GLP-1 levels in rats
(598, 691) [although meals did lead to GLP-1 increases in
mice (15, 297)]. 2) Infusion of 0.5 nmol/kg GLP-1 via the
cranial-mesenteric artery, which supplies much of the small
and large intestines, reduced meal size more than identical
infusions via the hepatic-portal vein or femoral artery in
rats (832). 3) Hepatic-portal vein infusion of 1 nmol/kg
GLP-1, which was near the threshold for an eating-inhibi-
tory effect under the conditions tested in rats, increased
active GLP-1 in portal-vein plasma to �20-fold the maxi-
mum level observed after a meal under the same conditions
(599, 639). 4) Intraperitoneal injections of an GLP-1-albu-
min conjugate, which is unlikely to enter the brain, inhib-
ited eating in mice (48). 5) In chow-fed rats, intravenous
infusions of GLP-1R antagonists failed to increase eating
(387, 638, 832), whereas intraperitoneal injections of
GLP-1R antagonists did so in several (37, 828, 831), al-
though not all (3, 179, 832), tests. The inconsistent eating-
stimulatory effect of intraperitoneal GLP-1-antagonist ad-
ministration suggests that locally acting GLP-1 may be an
endogenous satiation signal in rats only under particular
conditions. Dietary fat content may be one factor that
downregulates the eating-inhibitory effect of GLP-1 (224,
595, 831).

Animal studies have also identified a number of brain sites
where GLP-1 may act to inhibit eating, including the area
postrema, NTS, lateral parabrachial nucleus, ventral teg-
mental area, paraventricular nucleus of the hypothalamus,
and nucleus accumbens (23, 219, 499, 500, 599, 619, 620,
652). Because the data reviewed above suggest that GLP-1
does not increase in the systemic circulation after meals in
rats and that intestinal GLP-1 does not control eating in rats
via an endocrine mechanism, however, these sites are prob-
ably physiologically stimulated by neuronal GLP-1 in rats,
which originates in neurons in the caudal brain stem that
project to all the areas listed above and more (450, 623).
Because postprandial GLP-1 levels are relatively high in the
systemic circulation in humans, it is possible that endocrine
GLP-1 does affect these brain areas in humans. GLP-1 ap-
pears to enter the brain by simple diffusion (381). Finally,
rat studies indicate that GLP-1 signaling in the NTS affects
satiation in part by modulating the processing of signals
related to gastric fill (312, 806), although whether endo-
crine or neurocrine GLP-1 is involved is unclear.

GLP-1 may contribute to postprandial satiety as well as to
satiation. 1) As described above, GLP-1 levels are often
increased for several hours postprandially. 2) In a test of
healthy-weight subjects who consumed fixed-size, high-fat,
low-carbohydrate test meals (276), plasma GLP-1 levels
60–180 min later were correlated with both hunger ratings
and the size of meals offered at 180 min (neither correlation
was present 0–60 min after the fixed-size meals). 3) In rats,
chronic intrajejunal infusions of linoleic acid increased
GLP-1 levels and selectively reduced meal frequency, and
intraperitoneal exendin(9–39) infusion reversed the reduc-
tion in meal frequency (179).

GLP-1 may affect eating in other ways. 1) GLP-1 may con-
tribute to flavor hedonics (24, 212, 499, 699, 827). Many of
the effects on rats’ eating produced by central GLP-1 ma-
nipulations described above related to “hedonic eating,”
and the effects of GLP-1 on human fMRI responses to pic-
tures of foods also occurred in brain areas related to the
generation of hedonic judgments (788). 2) GLP-1 signaling
in the caudal brain stem (624) and in the amygdala (388)
may be involved in the aversive control of eating in rats. 3)
GLP-1 may have physiological roles in thirst and in sodium
and water homeostasis (298, 485), which may influence
eating under some conditions. Future research should care-
fully consider these possibilities.

There are two interesting distinctions between the eating-
inhibitory effects of chronic GLP-1 treatments in animals
versus in humans. 1) The site of action in humans is un-
known. Chronic GLP-1-agonist treatments that produce
weight loss in rats do so by acting centrally (379, 677, 698),
whereas the long-lasting GLP-1 agonist liraglutide had low
uptake into the cerebrospinal fluid in humans (150). 2)
Visceral illness is not a serious side effect of GLP-1-agonist
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treatment in humans (335, 414, 581), but reliably accom-
panies the reductions in food intake and body weight pro-
duced by chronic GLP-1-agonist treatment in rats (379).
GLP-1 agonist-induced illness in rats is apparently medi-
ated by a subset of central GLP-1R sites (378). Better un-
derstanding of these phenomena is important for advancing
GLP-1 obesity pharmacotherapy.

D. Glycemic Control

GLP-1 appears to contribute to meal-related glycemic con-
trol by stimulating insulin secretion, inhibiting glucagon
secretion, slowing gastric emptying, and reducing hepatic
glucose metabolism (128, 222, 336, 653). GLP-1 may also
contribute to glycemic control in the fasting state. The latter
is suggested by recent studies employing pancreatic clamps,
i.e., somatostatin infusion and glucagon and insulin re-
placement, that suggest that GLP-1 reduces endogenous
glucose production during the fasting state in both metabol-
ically healthy individuals (594) and those with T2DM
(679). Studies in mice suggest that these effects are due in
part to an insulin-independent effect GLP-1R in the hepatic
portal vein or liver (117).

GLP-1, together with GIP, mediates the incretin effect by
exerting dose-related, glucose-dependent insulinotropic ef-
fects on �-cells (128, 223, 336, 406). Infusions of physio-
logical endocrine doses of GLP-1 are sufficient to increase
insulin secretion in fasting subjects and during glucose in-
fusions (406, 537, 803). Furthermore, a physiological dose
of GLP-1 infused during isoglycemic glucose infusions, i.e.,
infusions leading to identical glycemic profiles as oral glu-
cose, reproduced the insulin response to oral glucose (537).
These data indicate that GLP-1 meets criterion 3 of TABLE 2
for a physiological endocrine incretin effect. Infusion of the
GLP-1R antagonist exendin(9–39) decreased insulin secre-
tion after oral glucose loads, after meals, during intraduo-
denal glucose infusions, and during hyperglycemic glucose
clamps (546, 650, 664, 721), indicating that GLP-1 meets
also criterion 6 for a physiological endocrine incretin effect.

Additional important aspects of the incretin effect in meta-
bolically healthy individuals include 1) comparisons of in-
sulin or C-peptide secretion in response to oral glucose or
isoglycemic intravenous glucose infusions indicate that the
incretin effect increases with increasing glucose loads and,
thus, limits meal-related glucose excursions even after large
glucose loads (47, 490, 539). 2) GLP-1 synergizes with GIP
to increase insulin secretion (537, 803), but 3) intraduode-
nal glucose infusions at rates in the physiological range of
gastric emptying of glucose solutions indicated that GIP
was the predominant incretin during infusion of �2 kcal/
min glucose, whereas GLP-1 predominated during infusion
of either 3 or 4 kcal/min glucose (471, 774).

Although glucose stimulated GLP-1 and GIP secretion nor-
mally in patients with T2DM (47, 121, 460, 542), the in-

cretin effect was diminished (47, 128, 223, 472). This ap-
parently reflects a decrease in the �-cell response to GLP-1
and, more importantly, a near lack of response to GIP (332,
392, 476, 491, 493, 538, 764, 842). As a result, GLP-1 may
contribute relatively more to the incretin effect in T2DM
patients than in metabolically healthy persons (835). The
defect in the incretin effect in T2DM is reversible: improv-
ing glucose levels in patients with T2DM for only 4 wk
improved C-peptide secretion in response to both GLP-1
and GIP infusions markedly (332). Thus GLP-1 agonists
hold great promise for the treatment of T2DM. GLP-1-
based therapy, however, may not be advantageous for all
T2DM patients. For example, the discovery of gene poly-
morphisms that affect incretin hormone secretion and ac-
tion in T2DM patients (527) and that affect GLP-1’s insuli-
notropic effect in healthy individuals (657) suggest that de-
fects in incretin function may be a primary pathophysiology
in some patients.

GLP-1’s glucagonostatic action also contributes to meal-
related glycemic control. Physiological infusions of 0.25–
0.4 pmol·kg�1·min�1 GLP-1 inhibited glucagon secretion
and reduced glucose levels in both healthy subjects and
T2DM patients (309, 352), and exendin(9–39) markedly
elevated glucagon secretion and increased glucose levels in
healthy subjects (230, 546, 721).

As described in section IIC, GLP-1 slows gastric emptying,
which also improves glycemic control (448, 541, 659, 834).
Comparisons of the relative contributions of GLP-1’s di-
verse effects on glycemia suggest that its glucagonostatic
and gastric-emptying inhibitory effects are more important
than its insulinotropic effect in healthy subjects (541, 546).
Several aspects of GLP-1’s effect on GI motility are relevant
for the treatment of T2DM. 1) The slowing of gastric emp-
tying by exogenous GLP-1 displayed tachyphylaxis during
sustained (�24 h) GLP-1 infusions in healthy subjects (540,
781). 2) Shorter-acting GLP-1 agonists have a more sus-
tained effect on gastric emptying and thereby reduce meal-
related glycemia more than longer-acting GLP-1 agonists
(577). 3) A short-acting GLP-1 agonist also reduced duode-
nal motility and flow, suggesting an additional mechanism
by which GLP-1 may reduce meal-related glycemia (756).

Additional mechanisms also may contribute to GLP-1’s gly-
cemic effects. A study in truncally vagotomized human sub-
jects indicated that the vagus is involved in GLP-1’s effect
on GI glucose disposal, but not in its incretin effect, al-
though a limitation was that the subjects had pyloroplasty
together with vagotomy (587). This effect of GLP-1 on
glucose disposal may involve GLP-1R in the hepatic-portal
vein, which animal studies indicate activate neural reflexes
that increase glucose clearance without affecting insulin se-
cretion (117, 355, 548). The role of these reflexes in normal
meal-related glucose control remains unclear. Mice with
global deletion of GLP-1R in which GLP-1R were selec-

PRANDIAL PHYSIOLOGY OF GHRELIN, CCK, GLP-1, AND PYY(3–36)

433Physiol Rev • VOL 97 • JANUARY 2017 • www.prv.org
Downloaded from journals.physiology.org/journal/physrev at CAPES-USP (143.107.006.230) on March 9, 2020.



tively reconstituted in the pancreas displayed normal oral
and intraperitoneal glucose tolerance (417), suggesting
the endocrine mechanism is sufficient and neural and
other mechanisms are not necessary. Other data suggest
that brain GLP-1R also may contribute GLP-1’s glycemic
effects: 1) GLP-1 infusions into the third cerebral ventri-
cle increased insulin secretion in rats and mice (393, 652)
and decreased gastric-emptying rates in rats (354); 2)
exendin(9 –39) infusions into the third cerebral ventricle
increased muscle glucose utilization independent of insu-
lin signaling in mice (393); and 3) GLP-1 infusions di-
rectly into the Arc reduced hepatic glucose production in
rats (652). Whether these central effects reflect actions of
enteroendocrine GLP-1 or neural GLP-1, however, is un-
clear.

E. Obesity

The peak and AUC of meal-stimulated GLP-1 secretion
were reduced in several studies of obese persons (6, 130,
458, 497, 603, 798), although not all (245, 681, 794).
These decreases appear to be secondary to obesity because
meal-stimulated GLP-1 secretion increased to near that of
healthy-weight individuals in obese patients following
weight loss (from mean BMI of 39 to 33 kg/m2) achieved by
caloric restriction (798). Obesity does not appear to influ-
ence GLP-1’s incretin effect because the �-cell response to
GLP-1 infusion during hyperglycemic clamps increased in
proportion to insulin resistance in individuals without
T2DM identically in healthy-weight and morbidly obese
subjects (42). Postprandial circulating bile-acid levels are
reduced in obesity (570), which may contribute to the re-
duction in GLP-1 secretion.

A polymorphism in GLP1R at rs2268641 was associated
with BMI in a European-American sample, although it ac-
counted for �0.3% of the variance (430), suggesting that
defects in GLP-1 signaling contribute to obesity risk in some
individuals. Tests of GLP-1’s effects on eating in children
who are at high familial risk for obesity before they become
hyperphagic and overweight (see Ref. 726) would be useful
in analyzing this.

Intravenous infusion of physiological doses of GLP-1 inhib-
ited eating in obese subjects in three studies (256, 300, 534)
and failed to do so in one, apparently underpowered study
(535). Although these studies did not include nonobese con-
trol groups, an across-study analysis of 72 normal-weight
and 43 overweight and obese subjects, some with T2DM,
failed to detect any change in the dose-effect relations of
infusions of 0.4–1.5 pmol·kg�1·min�1 GLP-1 (796). As de-
scribed in section VC, exendin(9–39) increased test meal
size in morbidly obese patients with T2DM, but no longer
did so after RYGB (737).

F. RYGB

Meal-related GLP-1 secretion is substantially increased af-
ter RYGB (94, 310, 574, 846). Although fasting GLP-1
levels are usually unchanged, meal-related GLP-1 increases
within 2 days of surgery, increases progressively for at least
6 mo, and persists apparently indefinitely. As described in
section IIG, increased gastric empting may account for
these increases in GLP-1 secretion when highly digestible
nutrients enter the Roux limb rapidly, as in the case of oral
glucose challenges (544). Increases in meal-related GLP-1
secretion may contribute to the beneficial effects of RYGB
on eating, body weight, and glycemic regulation: 1) the
magnitude of meal-related GLP-1 responses has been asso-
ciated with weight loss (214, 425) and remission of T2DM
(533); and 2) patients bearing the MC4R variant I251L lost
more weight after RYGB (502), which may reflect increased
GLP-1 secretion (469).

Tests of acute somatostatin treatment support the involve-
ment of GLP-1 and PYY(3–36) on RYGB’s eating effects. 1)
Somatostatin treatment decreased meal-related GLP-1 and
PYY(3–36) levels, decreased fullness rating during a test
meal, and increased test-meal size in RYGB patients; it was
not established that these effects were specific to RYGB,
however, as no unoperated control subjects were tested
(191, 425). 2) Somatostatin failed to affect pre-meal hunger
ratings but did increase progressive-ratio responding for
chocolate sweets in RYGB patients more than it did in con-
trol subjects, an effect the authors interpreted in terms of
hedonics rather that satiation (283). 3) In a rat study, so-
matostatin injection appeared to increase eating more in
RYGB than in control animals, although the difference was
not tested statistically (251). In view of the myriad effects of
somatostatin, whether these effects were due to changes in
GLP-1, PYY(3–36), or other effects is uncertain. Similarly,
simultaneous antagonism of GLP-1R with exendin(9–39)
and inhibition of PYY(3–36) synthesis with sitagliptin
(Januvia or Sitagliptin, Merck, Kenilworth, NJ) increased
test meal size �20% in RYGB patients, although neither
treatment alone affected test meal size (737). These data
suggest that GLP-1 and PYY(3–36) have a synergistic sati-
ating action after RYGB. Again, however, it was not estab-
lished that the effect of the combination treatment was in-
creased by RYGB because no unoperated control subjects
were tested.

Studies of the role of GLP-1 in RYGB in rodents produced
mainly negative results. 1) In RYGB rats, acute administra-
tion of exendin(9–39) increased eating in one test (3), but
not in two others (37, 477). 2) The GLP-1R agonist exen-
din-4 had comparable effects in RYGB and sham-operated
rats (251). 3) Meals increased systemic GLP-1 levels in
RYGB rats (691), suggesting that brain GLP-1R may medi-
ate RYGB’s eating-inhibitory effect. But chronic infusions
of exendin(9–39) into the lateral cerebral ventricle in-
creased food intake and weight gain similarly in RYGB and
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sham-operated rats, suggesting that central GLP-1R are
not involved in the effects of RYGB (848). Unfortunately,
the effects of peripheral GLP-1 were not assessed, so it
was possible that peripheral GLP-1 signaling contributed
to the observed effects of RYGB. 4) RYGB had compa-
rable weight-loss and eating-inhibitory effects in mice
with transgenic deletions of GLP-1R (Glp1r�/�) or
Gnat3 (�-Gust�/�), which do not secrete GLP-1 in re-
sponse to oral glucose, and wild-type mice (507, 848).
Thus the preponderance of evidence from animal models
argues strongly against the hypothesis that GLP-1 con-
tributes importantly to the eating-inhibitory and weight-
loss effects of RYGB (the Glp1r�/� and �-Gust�/� mod-
els are discussed further below).

In marked contrast to the eating data, there is compelling
evidence that GLP-1 contributes in several ways to the ben-
eficial effects of RYGB on glycemic regulation in humans.
The clearest evidence is that exendin(9–39) markedly re-
duced insulinemia and increased glycemia after consump-
tion of mixed-nutrient meals or glucose solutions tested 1
wk to 5 yr after RYGB (371, 375, 648–650, 684, 736). This
also occurred in RYGB patients with T2DM (371, 375).
Additionally, exendin(9–39) increased glucagon secretion
(375, 650, 736) and accelerated gastric emptying rate in one
study (684), although not another (650). In contrast to
these increased effects of GLP-1, RYGB did not appear to
increase the contribution of GIP to meal-related glycemic
control (736). A dual-isotope glucose-tracing study indi-
cated that GLP-1 was not involved in the reduction of en-
dogenous glucose production and the increase in glucose
disposal after RYGB (375). Increased GLP-1 secretion after
RYGB also contributed to the development of meal-related
hyperinsulinemic hypoglycemia in some patients (647–649;
for reviews of these and related data, see Refs. 468, 646,
653). It is also important to note that reduced eating also
contributes importantly to the improvements in glycemic
control after RYGB (361, 363, 415).

Exendin(9–39) treatment also reversed the improvements
in glucose tolerance and insulin secretion after RYGB in a
rat model (138). There is a disconnect, however, between
the demonstrations with exendin(9–39) of the importance
of GLP-1 for glycemic regulation after RYGB and a report
(507) that Glp1r�/� and �-Gust�/� mice with RYGB and
wild-type RYGB mice had similar glucose tolerance, insulin
tolerance, and glucose-stimulated insulin release [�-
Gust�/� mice, which do not secrete measureable GLP-1,
were used to test the role of GLP-1’s degradation products
GLP-1(9–36)amide and GLP-1(28–36)amide, which may
improve glucose homeostasis via GLP-1R-independent
mechanisms]. The resolution of this apparent paradox is
unclear. It is possible that there are important species dif-
ferences. In addition, because these were germline trans-
genic animals, mechanisms compensating for the lack of
GLP-1 signaling may have developed during the animals’

maturation. In any case, these data provide an important
challenge to the human literature.

RYGB increases meal-stimulated circulating bile-acid levels
(157, 570, 740), which might contribute to RYGB-induced
increases in GLP-1 secretion and to RYGB’s therapeutic
effects. Consistent with this hypothesis, meal-stimulated
bile-acid and GLP-1 responses were associated in several
studies done 4 mo or more after RYGB (396, 566, 668,
820). But meal-stimulated bile-acid levels did not increase
in tests 1 wk, 1 mo, or 3 mo after RYGB (16, 720). Thus,
because meal-related GLP-1 levels are markedly increased
at these times, any contribution of elevated bile-acid levels
to GLP-1 secretion or the effects of RYGB are likely to be
late-developing mechanisms. Finally, mouse models sup-
port the hypothesis that changes in bile acids contribute to
the effects of bariatric surgery. 1) Diversion of bile to the
ileum increased circulating bile acids 10-fold and led to
decreases in food intake, glycemia, and body weight that
were similar to those produced by RYGB and appeared to
be at least in part independent of fat malabsorption; unfor-
tunately, the role of GLP-1 was not assessed (257). 2) A
transgenic mouse-model study (642) implicated FXR in the
efficacy of vertical-sleeve gastrectomy; again, the impor-
tance of GLP-1 was not assessed. Furthermore, although
vertical-sleeve gastrectomy increased circulating bile acids
in mice (529), the human data are mixed (157).

G. Summary

GLP-1 is secreted in response to the products of carbohy-
drate, lipid, and protein digestion. It may act as an endo-
crine satiation signal in healthy humans, but antagonist
studies have not yet confirmed this. Intestinal and brain
GLP-1 also may have other effects on ingestive behavior,
but these are not established in humans. Intestinal GLP-1
reduces meal-related increases in glycemia by stimulating
insulin secretion (i.e., acting as an incretin), by inhibiting
glucagon secretion, by slowing gastric emptying, and, per-
haps, other effects. The effects of GLP-1 on eating and
glycemic control are summarized in FIGURE 10. Defects in
GLP-1 secretion or signaling may contribute to overeating
in obesity. Although GLP-1’s effectiveness in glycemic con-
trol decreases in individuals with insulin resistance or
T2DM, it remains a crucial contributor, and GLP-1 ago-
nists are already in use in T2DM and obesity therapy.
GLP-1 contributes to improved glycemic control after
RYGB; its role in eating after RYGB is unclear.

VI. PYY(3–36)

A. Introduction

Endocrine PYY is synthesized and secreted by open-type
enteroendocrine cells (FIGURE 6B). Enteroendocrine PYY
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cells are located predominately in the distal small intestine
and colon and often coexpress and secrete GLP-1 and, less
frequently, CCK, GIP, neurotensin, or secretin (8, 10, 25,
231, 303, 597, 738, 742). Plasma PYY is a mix of PYY(1–
36), the secreted form, PYY(3–36), the active endocrine
form, which results from cleavage of the tyrosine-proline
residue from the NH2-terminal of PYY(1–36) by DPP-4 in
the lamina propria (296, 451), capillary endothelial cells,
liver and blood (51, 289, 488), and some breakdown frag-
ments (768, 769). As discussed in section IB2, mouse intes-
tinal PYY cells appear to release some PYY from axon-like
cytoplasmic extensions, or neuropods, that end in close ap-
position to glial cells of the enteric nervous system (92, 93).

PYY is also expressed in the endocrine pancreas, where
PYY(1–36) may have paracrine intraislet actions (573). Fi-
nally, PYY is expressed by neurons in the gigantocellular
reticular nucleus of the rostral medulla, which have wide-
spread central projections (280).

PYY(1–36) activates several neuropeptide Y-family recep-
tors, including NPY1R (or Y1R), NPY2R, NPY4R, and
NPY5R, whereas PYY(3–36) is selective for NPY2R (120,
226, 697, 807). NPY2R are expressed throughout the body,
including in several brain regions, the GI tract, and vagal
afferents.

B. Secretion

Difficulties in assaying PYY(3–36) complicate studies of its
physiology (467, 768, 769). Therefore, the plasma levels
described here refer to total PYY. Plasma PYY levels gen-
erally begin to increase �15–30 min after meals, reach max-
ima �60–90 min after meals, and remain elevated for sev-
eral hours so that morning fasting levels are not reached
until several hours after evening meals (51, 61, 64, 198,
241, 276, 326, 453, 713). Morning fasting PYY levels are
typically 10–20 pM, and peak levels after moderate-size
meals are �15–30 pM (10, 198, 276). Postprandial PYY
and GLP-1 profiles are often dissimilar because DPP-4 ac-
tivates PYY, but inactivates GLP-1 (233, 520), and because,
at least in rodents, the enteroendocrine cells that express
PYY are located more distally than those that express
GLP-1 (597, 738).

Orally ingested lipids lead to larger and more sustained
elevations in plasma PYY than glucose ingestion (10, 103,
241, 276, 319, 462); the relative effect of protein is less clear
(10, 64, 317, 319, 787). The PYY effects in these studies
were relatively variable, possibly reflecting assay variabil-
ity, differences in gastric emptying, time of day (317), test-
food digestibility, or subject variables, including differences
in DPP-4 activity (467).

Lipid-induced PYY secretion is dependent on hydrolysis
and fatty-acid chain length greater than or equal to C12
(197, 250). Amino acids stimulated PYY release (718), but
whether PYY release requires protein hydrolysis has not
been assessed directly. Acarbose increased PYY levels after
a mixed-nutrient meal (265), suggesting that secretion is
increased when carbohydrates reach the distal small intes-
tine or proximal colon, where the densities of PYY cells are
higher. This suggestion is consistent with the increased PYY
levels in patients with dumping syndrome, tropical sprue,
small-intestinal resection, or RYGB (12–14, 467, 574).

The stimulation of enteroendocrine PYY secretion via
membrane nutrient receptors has been less extensively stud-
ied than for ghrelin, CCK, and GLP-1 (TABLE 4, which
includes the full and the former names of the nutrient re-

GLP-1

Digested
nutrients

Satiation

β α

1

Meal-related
glycemia

2

Gastric emptying3

FIGURE 10. Some features of GLP-1 physiology. GLP-1 secretion
is stimulated by the digestive products of all three macronutrients
acting on nutrient receptors on the apical aspects of enteroendo-
crine GLP-1 cells (blue) dispersed in the epithelial layer (tan) of the
small intestinal mucosa. GLP-1 acts in an endocrine mode by diffus-
ing through the lamina propria (yellow) and into intestinal capillaries
(salmon) to reach distant target organs (red arrows), or acts locally.
1) GLP-1 stimulates satiation. Data in rats indicate GLP-1 signals
satiation via a local action on vagal afferents (green arrow) in the
lamina propria. GLP-1 may also act in the brain to affect satiation or
postprandial satiety. 2) GLP-1 improves meal-related glycemia by
increasing pancreatic �-cell insulin secretion in a glucose-dependent
manner, by inhibiting pancreatic �-cell glucagon secretion, and by
inhibiting gastric emptying; all three appear to be endocrine effects
of GLP-1. 3) GLP-1 slows gastric emptying via a direct endocrine
effect and perhaps via a vagal-vagal reflex. Solid lines indicate well
established effects, and dashed lines indicate less well established
effects.
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ceptors discussed below). Carbohydrate (glucose in most
studies) appears to stimulate PYY secretion in part via stim-
ulation of TAS1R1/TAS1R3 sweet receptors (228, 275,
717), but because equally sweet artificial sweeteners did not
trigger PYY release, other mechanisms must be also in-
volved (461, 716, 732, 849). Whether FFAR1 or FFAR4
contributes to PYY secretion has not been studied to our
knowledge, but given that many enteroendocrine cells pro-
duce both GLP-1 and PYY (304), it is likely that they do so.
CASR appears to contribute to the stimulation of PYY se-
cretion by oligopeptides and amino acids because their ef-
fects on PYY secretion in isolated loops of rat small intes-
tine were reduced by a CASR inhibitor and dependent on
extracellular Ca2� (461).

Neurohumoral reflexes also appear to contribute to PYY
release, especially its early phase (51, 227, 586). 1) Intrave-
nous CCK infusions increased plasma PYY in humans
(102). 2) GLP-1 infusion decreased (104) and exendin(9–
39) infusion increased (230, 721) PYY secretion, perhaps
reflecting an autoregulatory mechanism in GLP-1/PYY
cells. 3) Bile acids may be an important mediator, particu-
larly of lipid-stimulated PYY secretion (9, 11, 569, 840). 4)
Animal studies implicated vasoactive intestinal polypeptide
and the vagus nerve in PYY secretion (9, 51–53, 264, 685).
5) Some mouse PYY cells express Mc4r, which appears to
facilitate PYY secretion (561).

C. Eating

The eating-inhibitory effect of peripheral PYY is mediated
by PYY(3–36) (62, 144, 172, 676). 1) Intravenous infusion
of PYY(3–36) inhibited eating �10-fold more potently than
infusions of PYY(1–36) in rats and, comparing across ex-
periments, �4- to 8-fold more potently in humans (69, 198,
701). 2) Central administration of PYY(1–36) stimulated
eating in rats.

Potential roles of PYY(3–36) in both satiation and post-
prandial satiety have been investigated. Four studies (62,
194, 423, 701) modeled PYY(3–36)’s postprandial satiety
effect using intermeal infusions that began after standard
meals (62, 194, 423, 701) or after an overnight fast (701)
and ended before the test meal. 1) In one test, infusion of a
supraphysiological dose of 0.8 pmol·kg�1·min�1 PYY(3–
36) for 90 min increased peak plasma PYY(3–36) concen-
tration from �8 to �44 pM and reduced the size of a buffet
meal presented 2 h after the infusion ended (62). The au-
thors concluded that this was a physiological effect because
in a previous study, meals of 530, 870, and 4500 kcal in-
creased PYY to from �8–10 pM to �12, �25, and �55
pM, respectively (10). 2) In another test, the threshold for a
significant decrease in meal size was 0.7 pmol·kg�1·min�1

PYY(3–36), although infusion of 0.5 and 0.6 pmol·
kg�1·min�1 PYY(3–36) increased fullness and tended to
decrease eating. These infusions increased peak plasma

PYY to �45–60 pM, more than the �40 pM produced by
a 3000 kcal meal in the same study (423). 3) Infusion of
lower PYY(3–36) doses, 0.2–0.3 pmol·kg�1·min�1, failed
to affect subsequent meal size (194, 701). Thus doses of
PYY(3–36) that inhibited eating in these studies increased
plasma PYY levels more than all but extremely large meals,
suggesting that the effects of PYY(3–36) on postprandial
satiety do not meet criterion 3 of TABLE 2 for a physiological
endocrine dose. This conclusion is consistent with the re-
port (276) that the 3 h total PYY AUC after high-carbohy-
drate, low-fat breakfasts or low-carbohydrate, high-fat
breakfasts were not significantly correlated with the sizes of
the following lunches, even though ghrelin and GLP-1 AUC
after each breakfast were significantly correlated with lunch
sizes. In addition, although adverse effects were not re-
ported when 0.8 pmol·kg�1·min�1 PYY(3–36) was infused
following standard meals (62, 194, 423), when infused in
fasting subjects, this dose elicited “severe malaise or nau-
sea” in half the subjects in two studies (701, 768). These
data suggest that criterion 5 of TABLE 2, that the effect of
PYY(3–36) on satiety effect be selective, requires further
testing. In addition, in all these studies the test meals were
offered at fixed times; thus future tests in which subjects are
asked to report when they wish to initiate meals may reveal
effects of PYY(3–36) on the duration of the intermeal inter-
val, which is hypothesized to be under the control of post-
prandial satiety processes (see sect. IB1).

Only one study of the satiating effect of intrameal PYY(3–
36) infusions has been reported (198). This revealed 1) the
threshold dose for a significant reduction in meal size was
between 0.2 and 0.4 pmol·kg�1·min�1 PYY(3–36); 2) infu-
sion of 0.2 and 0.4 pmol·kg�1·min�1 PYY(3–36) increased
plasma total PYY from the fasting level of �10 to �25 and
�31 pM, respectively, which was more than the level of
�13 pM achieved after a 1500 kcal mixed-nutrient meal;
and 3) 0.4 pmol·kg�1·min�1 PYY(3–36) often led to nau-
sea. These data suggest that the eating-inhibitory effects of
intra-meal PYY(3–36) infusions in this experiment were
pharmacological, rather than physiological, and were due
in part to aversive effects, i.e., they failed to meet criteria 3
and 5 of TABLE 2. Furthermore, because only slightly sup-
raphysiological intravenous doses of PYY(3–36) elicited ill-
ness and because such doses presumably elicit infraphysi-
ological paracrine levels of PYY(3–36) in the lamina pro-
pria, it is difficult to see how PYY(3–36) could have a
physiological paracrine action on eating. Perhaps, however,
current methods either fail to mimic a crucial aspect of
endogenous PYY(3–36) dynamics or fail to provide some
aspect of normal meals that prevents endogenous PYY(3–
36) from provoking illness.

Studies in animals do not strongly support a physiological
role for PYY(3–36) in eating. Intramuscular injections of
PYY(3–36) reduced eating in monkeys, but how the doses
administered compared with endogenous levels was unclear
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(517). In one study, hepatic-portal infusions of PYY(3–36)
inhibited eating in rats without signs of illness (710), but
systemic intravenous infusions of PYY(3–36) that inhibited
eating in rats did produce illness (143, 144), as did intra-
peritoneal injections of PYY(3–36) in mice (306). Interest-
ingly, however, intravenous infusions of a peripherally act-
ing NPY2R antagonist reduced the eating-inhibitory effects
of intravenous infusions of PYY(3–36) and of smaller, but
not larger, intragastric loads of protein and fat in rats (614),
suggesting that PYY(3–36) fulfills criterion 6 of TABLE 2
under some conditions. Infusion of the NPY2R antagonist
by itself failed to increase eating, however, which fails to
provide support for criterion 6 of TABLE 2. Studies of mice
with transgenic deletions of Pyy also provide only weak
support for a role in eating (441). In one Pyy�/� mouse line,
male mice were hyperphagic and females were not tested
(64); in another, females but not males were hyperphagic
(88); and in two others no eating phenotype was detected
(669, 838). Ectopic Pyy overexpression in adult mice failed
to affect body weight, but slightly decreased eating after a
24 h fast (686). As none of these transgenic methods dis-
criminated between effects of PYY(1–36) and PYY(3–36),
it is possible that more refined molecular genetic tools will
provide more useful information. Finally, although knock-
out of peripheral NPY2R in mice increased eating under
some conditions, it appeared that this was secondary to
metabolic effects (687, 851).

Whether PYY(3–36) acts peripherally or centrally to inhibit
eating is unclear. In support of peripheral action, 1) subdi-
aphragmatic vagotomy reduced or abolished the eating-
inhibitory effect of peripherally administered PYY(3–36) in
rats (56, 395), 2) conjugating PYY(3–36) to albumin to
prevent it from crossing the blood-brain barrier reduced its
eating-inhibitory potency (56), and 3) an NPY2R antago-
nist that does not cross the blood-brain barrier blocked
the eating-inhibitory effect of peripherally administered
PYY(3–36) (614). In support of central action, 1) injections
of PYY(3–36) directly into the Arc reduced eating in rats
(2), 2) injections of an NPY2R antagonist into the Arc re-
duced the eating-inhibitory effect of peripherally adminis-
tered PYY(3–36) in rats (2), 3) PYY(3–36) inhibited eating
in vagotomized mice (306), and 4) PYY(3–36) inhibited
eating in rats with capsaicin lesions of unmyelinated ab-
dominal afferents (613).

In conclusion, present data fail to support the hypothesis
that PYY(3–36) physiologically inhibits eating in humans
or animals. Further efforts to determine whether PYY(3–
36) infusions that better model the dynamics of human and
animal PYY secretion around meals have physiological eat-
ing-inhibitory effects are required to determine whether
PYY(3–36) is a plausible candidate physiological satiation
or postprandial satiety signal. Studies of antagonism of
PYY(3–36)-NPY2R signaling are also necessary, but spe-
cific antagonists for human use are not available. Further-

more, as described in section IB2, some PYY is apparently
released from neuropods (92, 93), and analysis of the po-
tential effects of this is beyond available physiological meth-
ods. Finally, Batterham and colleagues (64, 467) hypothe-
sized that PYY is involved in protein-induced satiety and in
exercise-induced anorexia, which have not been extensively
tested, and in food reward, which has been tested in a num-
ber of human functional brain imaging studies that we do
not review (63, 194, 818).

D. Glycemic Control

There is little evidence that PYY(3–36) affects insulin secre-
tion in humans. Infusion of 1 or 5 pmol·kg�1·min�1

PYY(3–36) failed to affect the insulin response to a bolus
intravenous glucose infusion in fasting women (19), and
PYY(3–36) infusions during meals failed to increase plasma
insulin levels (61, 62), except when the doses elicited illness
(701, 834).

In contrast, animal studies suggest that PYY affects glycemic
regulation in two apparently opposing ways. 1) PYY(3–36)
may indirectly stimulate nutrient-induced insulin secretion in
rodents. PYY(3–36) reduced postprandial glycemia without
affecting fasting glycemia, an effect mimicked by a NPY2R
agonist, and this was blocked by peripheral, but not central,
administration of a NPY2R antagonist (140, 467). This effect
of PYY(3–36) appeared to be mediated by GLP-1 because
exendin(9–39) blocked the glucose-lowering effects of
PYY(3–36) (140, 467). 2) PYY(1–36) may directly inhibit in-
sulin secretion via a paracrine mode of action. In mice, PYY is
expressed in pancreatic �- and �-cells, Npy1r and Npy4r, but
not Npy2r, are expressed in �-cells, and PYY(1–36), but not
PYY(3–36), dose-dependently reduced glucose-stimulated in-
sulin release from �-cells in vitro (116, 140, 467, 573, 651,
790). Furthermore, this was absent in cells derived from
Pyy��/� or Npy1r�/� mice, and both mutants were hyperin-
sulinemic (88, 116).

PYY may contribute to glycemic regulation via two further
actions. 1) Endocrine intestinal PYY(3–36) may improve in-
sulin sensitivity, at least under some conditions, because intra-
venous infusion of PYY(3–36) increased glucose uptake in
muscle and adipose tissue of high-fat fed mice during a hyper-
insulinemic-euglycemic clamp (790). 2) Paracrine pancreatic
PYY(1–36) may tonically stimulate islet-cell proliferation and
inhibit �-cell apoptosis in mice (573, 651). 3) Any decrease in
gastric emptying produced by PYY(3–36) may lead to reduc-
tions in glycemia.

Interestingly, oral fat loads and mixed-nutrient meals ap-
pear to stimulate less PYY secretion in patients with T2DM
(238, 252, 856). To investigate whether this precedes
T2DM, Viardot et al. (801) compared subjects with strong
family histories of T2DM with subjects matched for insulin
sensitivity, age, and BMI, but without family histories of
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T2DM. PYY responses to high-carbohydrate meals were
impaired in the subjects at risk for T2DM, suggesting that
defective PYY secretion may be causally linked with
T2DM.

E. Obesity

The relationship between obesity and PYY secretion is un-
clear. 1) Although several studies detected decreases in fast-
ing total PYY levels in obese patients (61, 64, 423, 633,
856), other similarly powered studies did not (333, 385,
576, 727, 794). 2) Weight reduction was reported to in-
crease fasting total PYY in obese children (633), but to
decrease it in obese adults (576), although in both studies
the weight and PYY changes were small. 3) Postprandial
PYY secretion was reduced in obese patients in six studies
(61, 64, 422, 423, 497, 727, 856), but not in four others
(103, 333, 385, 794). 4) In the one comparison of PYY(3–
36)’s eating-inhibitory effect in obese and healthy-weight
subjects to date, no difference was detected (61).

F. RYGB

There are several reports that postprandial plasma PYY
levels increase at various times after RYGB, with little or no
change in fasting levels (39, 213, 310, 425, 846). As yet,
however, there is a dearth of knowledge concerning the time
courses or physiological consequences of these increases.
For example, in one study (94), 3 h AUC of PYY after a 420
kcal mixed-nutrient meal was not significantly increased
until 3 mo after RYGB, whereas in another (574), both
maximum postprandial PYY levels and 3 h PYY AUC after
424 kcal mixed-nutrient meals were increased more 1 wk
postoperatively than 3 or 12 mo postoperatively.

We know of only one test of the eating-inhibitory effect of
PYY(3–36) in RYGB patients, in which inhibition of PYY(3–
36) synthesis with sitagliptin failed to increase test meal size
(737). But somatostatin treatment (191, 425) and simultane-
ous exendin(9–39) and sitagliptin treatment (737) both in-
creased test meal size in RYGB patients, suggesting that GLP-1
and PYY(3–36) synergize to decrease eating after RYGB (these
data were reviewed in sect. VF). Because neither test included
unoperated control subjects, whether RYGB increased the ef-
fects is uncertain.

Two additional rodent studies of PYY(3–36)’s involvement
in RYGB produced mixed results: 1) chronic infusions of a
NPY2R antagonist into the lateral cerebral ventricle failed
to affect food intake or weight gain in either RYGB or
sham-operated rats (848). Although this fails to support a
role for central NPY2R signaling in the effects of RYGB, it
should be noted that the test was done 5 mo after surgery,
when RYGB and sham-operated animals were eating simi-
lar amounts. It is possible that the outcome may have been

different if tested when RYGB reduced eating. 2) Pyy�/�

mice lost less weight than wild-type mice during the initial
10 days after surgical bypass of the duodenum and proxi-
mal jejunum; unfortunately, food intakes were not reported
(141). Finally, as noted in section VIF, increases in PYY(3–
36) secretion in patients bearing the MC4R variant I251L
(469) could explain their better weight-loss outcomes after
RYGB (502).

G. Summary

PYY(3–36) is secreted in response to the products of carbo-
hydrate, lipid, and protein digestion during and after meals.
As summarized in FIGURE 11, PYY(3–36) may contribute to

PYY(3-36)

Digested
nutrients

Satiation1

Meal-related
glycemia

2

Gastric emptying

?

3

FIGURE 11. Some features of PYY(3–36) physiology. PYY secretion
is stimulated by the digestive products of all three macronutrients
acting on nutrient receptors on the apical aspects of enteroendocrine
PYY cells (blue) dispersed in the epithelial layer (tan) of the small-
intestinal mucosa. PYY is transformed into PYY(3–36) beginning in the
lamina propria. PYY(3–36) acts in an endocrine mode by diffusing
through the lamina propria (yellow) and into intestinal capillaries
(salmon) to reach distant target organs (red arrows), or acts locally. 1)
The role of PYY(3–36) in eating is uncertain. It may inhibit eating via a
local action on vagal afferents (green arrow) in the lamina propria or by
acting directly in the brain. 2) Whether PYY(3–36) improves meal-
related glycemic control is uncertain. 3) PYY(3–36) appears to slow
gastric emptying via a direct endocrine effect on the stomach; whether
vagal-vagal reflexes contribute is unknown. Solid lines indicate well es-
tablished effects, and dashed lines indicate less well established
effects.
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gastric emptying via the ileal brake mechanism, to the inhi-
bition of eating, and to the control of meal-related glycemia,
but the evidence that these are physiological actions re-
mains thin. Similarly, PYY(3–36)’s role in RYGB remains
unclear. This modest progress may be due in part to the
difficulties of PYY(3–36) research, including the low
threshold for eliciting illness with PYY(3–36) infusions, the
lack of NPY2R antagonists for human use, and the possi-
bility of neuropod PYY signaling.

VII. DISCUSSION

The act of eating sets in motion an intricately coordinated
series of GI responses that, via central and peripheral influ-
ences, contribute importantly to the control of eating and
meal-related glycemia. The control of secretion of GI hor-
mones by small-intestinal nutrient sensing is a cornerstone
of these functions. The hormones control exposure of the
small intestine to nutrients via their effects on GI motility,
especially gastric emptying, and thereby modulate their
own secretion. Here we reviewed the nutrient-secretory
controls and contributions to eating, meal-related glycemia,
and GI motility of ghrelin, CCK, GLP-1, and PYY(3–36), in
healthy-weight and obese humans as well as in RYGB pa-
tients. The primary focus was on normal endogenous or
“physiological” endocrine function in humans because cur-
rently available methods make its determination feasible
(TABLE 2).

As TABLE 5 indicates, despite considerable research effort,
at present there are many more questions than answers
regarding ghrelin, CCK, GLP-1, and PYY(3–36) as physio-
logical endocrine signals in humans in the functions reviewed.
Indeed, only CCK has been fully established as a physiological
endocrine control of eating and only GLP-1 as a physiological
endocrine control of meal-related glycemia in healthy-weight
individuals. There is incomplete support for endocrine roles of
CCK in meal-related glycemia and gastric emptying, for
GLP-1 in eating and gastric emptying, and for PYY(3–36) in
gastric emptying in humans. Moreover, animal research fills
only a few of the gaps indicated in TABLE 5 (an important
exception is that GLP-1R antagonism does increase eating in
rats under many conditions; see sect. VD).

In view of this decidedly modest estimation of the state of
proof of physiological endocrine function for ghrelin, CCK,
GLP-1, and PYY(3–36), one may question whether the cri-
teria for physiological function (TABLE 2) are overly rigor-
ous or whether the criterion-based approach is misguided.
The answer to each question is no. As reflected in TABLE 1,
criteria for endocrine function have evolved in step with
advances in understanding and methodology during the
century-plus history of endocrinology and have shaped the
logical and programmatic course of endocrinology and its
contributions to medical diagnosis and treatment (59, 292,
449, 489, 610, 833). That knowledge at each stage is hard

won is not a criticism of the strategy. Rather, criteria for
physiological function should continue to guide GI hor-
mone research. Identifying truly physiological endocrine
functions of GI hormones can only facilitate understanding
of eating, GI motor function, and meal-related glycemic
control and development of therapies for their disorders.

Perhaps the most pressing issue facing ghrelin, CCK,
GLP-1, and PYY(3–36) physiology is the need to determine
the roles of non-endocrine, i.e., local, signaling, which has
been implicated in several of the effects reviewed. The need
to develop methods enabling tests of local-signaling hy-
potheses against the criteria of TABLE 2 is especially urgent.
As mentioned in section IVD, intraintestinal hormone infu-
sions might selectively target the lamina propria (147), and
hormone concentrations in the lamina propria can be esti-
mated from assays of lymph. The temporal resolution of
lymph assays, however, is poor due to its slow flow. Nor
have the results of tests of meal-related hormone changes in
the lymph been straightforward. For example, post-meal
concentrations of GLP-1 were reported to be �6-fold
higher in lymph than in hepatic portal-vein plasma in rats
(178) and �8-fold higher in lymph than in orbital-plexus
plasma in mice (553), but �10-fold lower in lymph in he-
patic portal-vein plasma in swine (308).

An additional, related challenge for GI-hormonal physiol-
ogy is to encompass the emerging picture of integrated hor-
monal and electric signaling in the GI tract. Electrically
excitable GI cells form what Bohórquez and Liddle (91) call
the gut connectome, comprised of enteroendocrine cells,
neurons and glia of the enteric nervous system, intrinsic GI
neurons, and peripheral ganglia innervating the GI tract.
Finally, a third challenge is to better link GI-hormonal phys-
iology to the study of information processing in the brain,

Table 5. Physiological status of ghrelin, CCK, GLP-1, and
PYY(3–36) in the endocrine control of eating, GI motility, and

meal-related glycemic control in healthy humans

Eating GI Motility*
Meal-Related

Glycemic Control

PD/A PD/A PD/A

Ghrelin ?/? ?/? ?/?
CCK YES/YES Yes/Yes† YES/No
GLP-1 YES/No‡ Yes/Yes YES/YES
PYY(3–36) No/? Yes/? ?/?

Experimental support for the two cardinal criteria of physiological
endocrine function, i.e., the “physiological-dose” criterion (PD) and
“antagonism” criterion (A), is rated as convincing (YES), partial (Yes),
negative (No), or unknown (?) for each hormone and function. See
text for details and references. *GI motility refers to gastric emptying
and small-intestinal motor function. †Cholecystokinin (CCK) antago-
nism slowed gastric emptying of liquid food, but not solid food. ‡In
two studies (489, 714), premeal administration of the GLP-1 recep-
tor antagonist exendin-9 failed to increase eating, although in one
study (714) subjective ratings of appetite increased.
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as understood using functional imaging methods in humans
and neuropharmacological and molecular-genetic methods
in animals. Present progress in humans is limited largely to
studies of the telencephalic mechanisms of food hedonics,
which have been reviewed elsewhere (references are given in
sect. IA). Advances in the spatial resolution of functional
imaging methods should allow this kind of work to address
the diencephalic and brain-stem mechanisms that are
clearly crucial for the effects of GI hormones on other as-
pects of eating as well as for the control of GI motility and
metabolic function. Increased back-and-forth translation
between human and animal studies should also accelerate
progress in unraveling central mechanisms mediating the
functions of ghrelin, CCK, GLP-1, and PYY(3–36).

Future research should also widen the range of designs used in
GI hormone physiology. Studies of meal size and timing in
particular have used remarkably similar experimental ap-
proaches, which may contribute to some of the negative data
reviewed. As discussed in section IB2, few GI hormone-infu-
sion studies have interrogated parameters other than peak
plasma levels. Studies of rate ascent of plasma hormone con-
centration, the timing of the infusion in relation to the course
of the meal or intermeal interval, or other parameters may
unveil physiological effects or explain some apparent para-
doxes, such as why apparently physiological doses of PYY(3–
36) elicit illness (see sect. VID). Similarly, few studies address
synergistic effects (268). Gastric volume may synergize with
pharmacological doses of CCK or GLP-1 to elicit satiation (see
sect. IID), but whether this reflects a physiological synergy has
not been studied. Synergy analyses may also illuminate some
failures of antagonist effects. For example, failures of GLP-1R
antagonism to increase eating in humans may be due to in-
creases in glucagon or PYY(3–36) rather than the absence of a
satiating effect of GLP-1 (see sect. VD), and multi-antagonist
approaches may provide useful tests of this hypothesis. Adap-
tation to consumption of particular food types can affect gas-
tric emptying (see sect. IIA) and, presumably, other GI hor-
mone-mediated responses. Finally, experience eating leads to
learning of several types (e.g., Refs. 68, 80, 111, 155, 188, 321,
602, 675, 723, 813). Such learning may overshadow uncon-
ditioned GI-hormonal effects, despite the fact that these were
probably the basis for the learning in the first place. A hypo-
thetical example is shown in FIGURE 12. In sum, both im-
proved methods and more varied experimental approaches
are likely to enlarge the current restricted view of the contri-
butions of ghrelin, CCK, GLP-1, and PYY(3–36) to eating and
meal-related glycemic control.

We find little evidence that pathophysiology of ghrelin,
CCK, GLP-1, or PYY(3–36) function contributes to obe-
sity, with the exception of rare individuals bearing genetic
polymorphisms. But the extremely heterogeneous nature of
human obesity should caution against a strong interpreta-
tion of these negative data. The participants in obesity stud-
ies often have wide ranges in several variables that may

influence the GI responses under study, including BMI
range, sex, age, race, duration of obesity, age of obesity
onset, pattern of adipose-tissue distribution (intra-abdomi-
nal, abdominal subcutaneous, gluteo-femoral subcutane-
ous, etc.), gustatory capacity, dietary habits (large meals,
snacking, habitual levels of sugar and fat intake, etc.), eat-
ing traits (dietary restraint, binge-eating propensity, etc.),
and a host of additional psychological traits (in addition to
the discussion of these in the preceding sections, see Refs.
32, 38, 40, 60, 498, 522, 706, 729, 817). Although studies
with sufficient power to resolve the influence of such a far-
rago of factors are rare, positive results (e.g., Ref. 5) encour-
age the view that the issues are tractable. Alternatively, one
may isolate and study specific subsets of individuals. One
approach to this is exemplified by the study of de Krom et
al. (192) of obese individuals who habitually took unusu-
ally large meals or unusually frequent snacks. A number of
multivariate subgroup-analysis methods also can be used to
search for reliable variation in the absence of a phenotypic
or genetic starting point (384). One may also search directly
for consistent individual differences in responses to GI hor-
mones. This can be done using the repeated-randomization
design, in which trials are repeated in the same individuals
to identify subgroups with consistently larger or smaller
responses (455), which then can be used in mechanistic
follow-up studies. Although not a focus here, synergistic
interactions involving GI hormones, such as those among
CCK, GLP-1, amylin, and leptin (775, 776), are promising
platforms for development of obesity therapies. Similarly,
the expanding roster of molecular nutrient sensors that con-
trol secretion of multiple GI hormones (TABLE 4) seems to
present especially attractive targets. Finally, as mentioned

Unfamiliar Food

Saline

-40%   
-20%   

Same Food,
Now Familiar 

CCK Saline CCK

FIGURE 12. A thought experiment depicting how learning may
influence the control of eating by GI hormones. Left: when an indi-
vidual is served a palatable but unfamiliar food, meal size is deter-
mined mainly by unconditioned satiation signals related to gastric
volume, CCK and GLP-1 secretion, etc., as discussed in the review.
Under these conditions, CCK infusion during the meal might exert its
full unconditioned effect, indicated by the 40% reduction in meal
size. Right: if the same individual is tested after extensive experience
eating the test food, meal size might be the same as initially, but will
now be under the control of conditioned responses such as expected
satiation (111), portion-size estimation (629), etc., that override
unconditioned signals, and because conditioned eating controls are
resistant to physiological feedback, the same CCK infusion might
now reduce meal size less, indicated by the 20% effect.
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in several sections, the potential of GI hormones in obesity
pharmacotherapy does not depend on whether or not they
contribute to obesity pathophysiology.

RYGB and related bariatric-surgery procedures substan-
tially decrease ghrelin secretion and increase CCK, GLP-1,
and PYY(3–36) secretion, especially in the first months after
surgery. But whether these changes mediate the procedures’
therapeutic effects remains uncertain, with the exception of
the contribution of increased GLP-1 secretion to improved
meal-related glycemia after RYGB (see sect. VF) or vertical-
sleeve gastrectomy (678). In particular, extensive tests of
GLP-1’s role in reduced eating after RYGB in animals have
failed to produce positive evidence. Some promising effects
(see sect. VF) suggest that several hormones may contribute
synergistically to the reduction in eating after RYGB, but
this remains to be tested.

In conclusion, although research aimed at understanding
the physiological effects of GI hormones in humans is
expensive, technically demanding, and labor-intensive, it
should remain a high priority. Animal research indicates
that local signaling plays a key role in the effects of GI
hormones. Although there are presently few methods to
study the physiology of such effects, emerging technolo-
gies for miniaturization, telemetry, and molecular-ge-
netic methods applicable to humans (209, 416, 428, 559,
816) may soon create new opportunities. These, as well
as more sophisticated testing designs, should be exploited
to expand basic physiological knowledge and to help
meet the continuing challenges of the epidemics of obe-
sity and T2DM.
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