Modelos Comportamentais

Projeto e Simulação no Agilent Advanced Design System

PSI3481 – Sistemas Ópticos e de Micro-ondas

Prof.ª Fatima Salete Correra

Objetivos desta aula

Conhecer Modelos Comportamentais de componentes usados em simulação de sistemas

A - FILTROS

- 1) Inicie o programa Agilent Advanced Design System (ADS)
- 2) Crie um novo espaço de trabalho ou abra um espaço de trabalho já existente
- 3) Crie uma nova janela de esquemático com o nome "Filtros"
- 4) Na palheta lateral (Palette) da janela de esquemático localize o menu **Filters-Bandpass**, clique no ícone do filtro passa-faixa tipo Butterworth, e insira o mesmo na janela de esquemático. **Chbshv** (modelo comportamental do filtro passa-faixa Chebyshev).

- 5) Faça a simulação de parâmetros S desse filtro e observe sua resposta em frequência (S21(dB) e S11(dB).
- 6) Altere os valores dos parâmetros do filtro e veja como afetam a resposta em frequência.
- 7) Repita a simulação para o filtro passa-faixa dos tipos Chebsehev e elíptico.

B – Componentes não-lineares: amplificador e mixer

- 1) Crie uma nova janela de esquemático com o nome "Componentes_nao_lineares"
- 2) Na palheta (Palette) da janela de esquemático selecione o menu Systems Amps & Mixers.
 - No menu de **Systems Amps & Mixers** clique nos ícones do amplificador e de mixer apresentados a seguir, e insira os mesmos na janela de esquemático.

C – Simulação não-linear – Harmonic Balance (HB)

- 1) No menu de **Sources-Freq Domain** clique no ícone listado a seguir, e insira o mesmo na janela de esquemático.
 - P_1Tone (Fonte que gera uma única frequência)

OSC (Oscilador local com impedância interna e ruído de fase)

P_1Tone (Fonte que gera uma única frequência)	OSC (oscilador local)
P_1Tone	OSCwPhNoise
PORT3	OSC2
Num=3	Freq=1 GHz
Z=50 Ohm	P=dbmtow(0)
P=polar(dbmtow(0),0	Rout=50 Ohm
Freq=1 GHz	PhaseNoise=list(10Hz,-20dB, 100Hz,-40dB, 1KHz,-50

2) No menu de **Simulation HB** clique nos ícones listados a seguir, e insira os mesmos na janela de esquemático.

HB (controle da simulação)	Term (terminação)
HARMONIC BALANCE	Term
HarmonicBalance HB2 Freq[1]=1.0 GHz Order[1]=5	Num=2 Z=50 Ohm

D - Simulação HB do amplificador com potência de entrada fixa

- 1) Crie um esquemático com o nome "Amplificador_1", como apresentado abaixo.
- 2) Edite os blocos com os valores dos parâmetros com os valores mostrados.
- 3) Adicione rótulos na entrada e saída do amplificador (Amp_in e Amp_out, por exemplo). Clique com o botão direito do mouse sobre o fio na saída do bloco, selecione Wire/Pin Label, digite o nome desejado e clique novamente no fio. Repita para o fio da entrada.
- 4) Edite os valores dos blocos e controlador de simulação como na figura abaixo.

- 5) Execute a simulação
- 6) Visualize o espectro de frequência 1 dos sinais na entrada e na saída do amplificador em gráfico cartesiano: Potência(dBm) versus frequência (GHz)
- 7) Coloque marcadores nos sinais e entrada e de saída e verifique o ganho do amplificador
- 8) Crie gráficos dos sinais de entrada e saída em função do tempo (Time domain signal)
- 9) Varie a potência de entrada manualmente e veja o que ocorre com o ganho, com os sinais do espectro de saída e com o sinal de saída no domínio do tempo
- 10) Varie o valor de TOI e veja o que ocorre com a terceira harmônica na saída do amplificador
- 11) No amplificador, coloque o valor SOI =50, e veja o que isso afeta no sinal de saída
- 12) Varie o valor de SOI e verifique como esse parâmetro afeta o sinal de saída