
Journal of the American College of Cardiology Vol. 58, No. 20, 2011
© 2011 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00
STATE-OF-THE-ART PAPER

Omega-3 Fatty Acids and Cardiovascular Disease
Effects on Risk Factors, Molecular Pathways, and Clinical Events

Dariush Mozaffarian, MD, DRPH,*†‡ Jason H. Y. Wu, PHD†§

Boston, Massachusetts; and Perth, Australia

We reviewed available evidence for cardiovascular effects of n-3 polyunsaturated fatty acid (PUFA) consumption,
focusing on long chain (seafood) n-3 PUFA, including their principal dietary sources, effects on physiological risk
factors, potential molecular pathways and bioactive metabolites, effects on specific clinical endpoints, and exist-
ing dietary guidelines. Major dietary sources include fatty fish and other seafood. n-3 PUFA consumption lowers
plasma triglycerides, resting heart rate, and blood pressure and might also improve myocardial filling and effi-
ciency, lower inflammation, and improve vascular function. Experimental studies demonstrate direct anti-
arrhythmic effects, which have been challenging to document in humans. n-3 PUFA affect a myriad of molecular
pathways, including alteration of physical and chemical properties of cellular membranes, direct interaction with
and modulation of membrane channels and proteins, regulation of gene expression via nuclear receptors and
transcription factors, changes in eicosanoid profiles, and conversion of n-3 PUFA to bioactive metabolites. In pro-
spective observational studies and adequately powered randomized clinical trials, benefits of n-3 PUFA seem
most consistent for coronary heart disease mortality and sudden cardiac death. Potential effects on other car-
diovascular outcomes are less-well-established, including conflicting evidence from observational studies and/or
randomized trials for effects on nonfatal myocardial infarction, ischemic stroke, atrial fibrillation, recurrent ven-
tricular arrhythmias, and heart failure. Research gaps include the relative importance of different physiological
and molecular mechanisms, precise dose-responses of physiological and clinical effects, whether fish oil pro-
vides all the benefits of fish consumption, and clinical effects of plant-derived n-3 PUFA. Overall, current data
provide strong concordant evidence that n-3 PUFA are bioactive compounds that reduce risk of cardiac death.
National and international guidelines have converged on consistent recommendations for the general population
to consume at least 250 mg/day of long-chain n-3 PUFA or at least 2 servings/week of oily fish. (J Am Coll
Cardiol 2011;58:2047–67) © 2011 by the American College of Cardiology Foundation
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In vitro studies, animal experiments, observational studies,
and randomized clinical trials (RCTs) have examined the
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cardiovascular effects of seafood consumption and long-
chain n-3 polyunsaturated fatty acids (PUFAs) (Fig. 1)
(1,2). Although much has been learned, several questions
remain, including the precise physiological effects and mo-
lecular mechanisms that account for the observed benefits,
the magnitudes and dose-responses of effects on specific
clinical outcomes, and the potential heterogeneity in differ-
ent populations. Several recent clinical trials of n-3 PUFA
have also had mixed findings, raising concern about the
consistency of the evidence.

We reviewed the current evidence for cardiovascular
disease (CVD) effects of seafood and n-3 PUFA consump-
tion, including the principal dietary sources; effects on
physiological risk factors; potential molecular pathways of
effects; and scientific evidence, including conflicting evi-
dence, for effects on specific clinical endpoints. We also
considered various dietary guidelines for fish and n-3 PUFA
consumption and, based on evidence reviewed herein, sug-
gest potential dietary recommendations for patients and
populations. We focused principally on long-chain
(seafood-derived) n-3 PUFA; promising but more limited

evidence for plant-derived n-3 fatty acids is briefly dis-
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cussed. Finally, we highlight
gaps in current knowledge and
key areas for future research. The
information presented in this re-
view is intended to provide a
useful framework for scientists,
health practitioners, and policy-
makers to consider the contempo-
rary evidence for effects of seafood
and n-3 PUFA consumption on
cardiovascular health.

Dietary Sources

Fish (used hereafter to refer to
finfish and shellfish) is the major
food source of long-chain n-3
PUFA, including eicosapenta-
enoic acid (EPA) (20:5n-3) and
docosahexaenoic acid (DHA)
(22:6n-3) (Table 1). Docosapen-
taenoic acid (DPA) (22:5n-3), a
long-chain n-3 PUFA metabo-
lite of EPA, is present in smaller
amounts in fish (Table 1) (3).
Circulating DPA levels correlate
weakly with fish consumption
(4), suggesting that DPA levels
in humans are predominantly de-
termined by endogenous metab-
olism rather than diet. Although
DPA might have relevant physi-
ological effects (3), relatively little
is known about its clinical effects;
a few studies have observed in-
verse associations between circu-

lating DPA and risk of coronary events (4–6). In addition to
long-chain n-3 PUFA, fish provide specific proteins, vitamin
D, selenium, and other minerals and elements (7–9).

Alpha-linolenic acid (ALA) (18:3n-3) is the plant-
derived n-3 fatty acid found in a relatively limited set of
seeds, nuts, and their oils (Table 1). Alpha-linolenic acid
cannot be synthesized in humans and is an essential dietary
fatty acid. Biochemical pathways exist to convert ALA to
EPA and EPA to DHA, but such endogenous conversion is
limited in humans: between 0.2% and 8% of ALA is
converted to EPA (with conversion generally higher in
women) and 0% to 4% of ALA to DHA (10–14). Thus,
tissue and circulating EPA and DHA levels are primarily
determined by their direct dietary consumption. Some
effects on physiological risk factors and observational studies
of clinical endpoints suggest that ALA might have cardio-
vascular benefits, but overall evidence remains mixed and
inconclusive (Fig. 2) (15–20). Thus, plant sources of n-3
fatty acids cannot currently be considered as a replacement

Abbreviations
and Acronyms

AA � arachidonic acid

AF � atrial fibrillation

ALA � alpha-linolenic acid

CHD � coronary heart
disease

CI � confidence interval

CVD � cardiovascular
disease

DHA � docosahexaenoic
acid

DNL � de novo lipogenesis

DPA � docosapentaenoic
acid

EET � epoxyeicosatrienoic
acid

EPA � eicosapentaenoic
acid

HR � heart rate

ICD � implantable
cardioverter-defibrillator

MEFA � mono-epoxides
from eicosapentaenoic acid
and docosahexaenoic acid

PCB � polychlorinated
biphenyl

PUFA � polyunsaturated
fatty acid

RCT � randomized
controlled trial

VT/VF � ventricular
tachycardia/ventricular
fibrillation
for seafood-derived n-3 PUFA (15). Additional studies of h
ALA’s effects are urgently needed, because of the lower cost
and greater potential global supply of ALA as opposed to
EPA�DHA. The remainder of this report focuses on the
much larger body of evidence for cardiovascular effects of
EPA and DHA (referred to as simply n-3 PUFA hereafter).

In addition to potential cardiovascular benefits of fish
consumption, concerns have been raised over potential harm
from contaminants present in some fish species, such as
methylmercury, dioxins, and polychlorinated biphenyls
(PCBs) (21–28). In most fish species, mercury levels are
quite low; selected few species contain moderate levels (e.g.,
albacore tuna, approximately 0.36 �g/g) or higher levels

ear the U.S. Food and Drug Administration action level of
�g/g (e.g., tilefish [golden bass], swordfish, shark, Gulf of
exico King mackerel) (29). At exposure levels common in

he United States, mercury exposure from fish consumption
as no relations with higher CVD risk (30). Most commer-
ially sold fish contain low levels of PCBs and dioxins, and
verall fish consumption contributes a minority of dietary
xposure compared with other foods (in 1 U.S. analysis,
pproximately 9% of total dietary exposure) (31). In some
ocal waters, recreationally caught sport fish might contain
elatively higher levels of PCBs/dioxins. For the general
opulation of adults, risk–benefit analyses conclude that the
ealth benefits of modest fish consumption significantly
utweigh the potential risks (1,15,32,33). Thus, this present
eview of cardiovascular risk does not further focus on
ontaminants. Specific guidance is available for sensitive
ubpopulations such as women of childbearing age and
oung children (15).

The environmental impact and long-term sustainability
f aquaculture and commercial fishing are relevant (34–37).
uch concerns are not unique to seafood but also exist for
gricultural, forestry, freshwater, atmospheric, and energy
esources (38,39). A review of the complex environmental
onsiderations related to fish and fish oil consumption is
eyond the scope of this report. Based on evidence for the
mportance of fish and n-3 PUFA consumption in health,
nvironmental concerns must be addressed to ensure sus-
ainable, environmentally sound, and financially viable com-
ercial fishing and aquaculture practices into the future.
owever, environmental and health aspects of fish con-

umption should not be conflated: accurate and distinct
nformation on each should be provided to consumers and
olicy makers to permit informed decision-making.

ardiovascular Risk Factors

lasma triglycerides. n-3 PUFA have multiple CVD-
elated physiological effects (Fig. 3). Lowering of plasma
riglycerides is well recognized (40). Reduced hepatic very
ow-density lipoprotein synthesis contributes to this effect,
ith implicated mechanisms including reduced fatty acid

vailability for triglyceride synthesis due to decreased de
ovo lipogenesis (DNL) (the process of converting carbo-

ydrates into fat), increased fatty acid beta-oxidation, and
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reduced delivery of nonesterified fatty acids to the liver;
reduced hepatic enzyme activity for triglyceride synthesis;
and increased hepatic synthesis of phospholipids rather than
triglycerides (40–45). In experimental models and human
studies, reduced DNL appears to be particularly important
(40,41,45– 49). Triglyceride-lowering is linearly dose-
dependent across a wide range of consumption but with
variable individual responses, including greater absolute
reductions among individuals with higher baseline levels
(Fig. 4). At typical dietary doses, only modest triglyceride-
lowering occurs and it is unlikely that this contributes
appreciably to the reduced clinical risk seen with lower-dose
fish oil supplements in randomized trials or habitual fish
consumption in observational studies (see the following
text). Conversely, accrued modest benefits of reduced he-
patic DNL, sustained over time from habitual n-3 PUFA
consumption, could partly contribute to lower cardiovascu-
lar risk, for example mitigating development of hepatic
steatosis and hepatic insulin resistance (46–52).
Heart rate and blood pressure. n-3 PUFA consumption
reduces resting heart rate (HR) and systolic and diastolic
blood pressure (53,54). Experimental studies suggest that
HR lowering could result from direct effects on cardiac
electrophysiological pathways (55–57). n-3 PUFA might
also lower HR by more indirect effects, such as by improving
left ventricular diastolic filling (see the following text) or
augmenting vagal tone (58). In short-term trials, n-3 PUFA
consumption increases nitric oxide production, mitigates
vasoconstrictive responses to norepinephrine and angioten-

Figure 1 Structure of n-3 PUFA

Alpha-linolenic acid is an 18-carbon essential n-3 polyunsaturated fatty acid (P
acid (EPA) and docosahexaenoic acid (DHA), predominantly derived from seafo
smaller amounts in seafood and also synthesized endogenously from EPA. The
ble bond in the n-3 position result in complex and unique 3-dimensional config
sin II, enhances vasodilatory responses, and improves arte-
rial compliance (59–70). Such effects could contribute to
lowering of systemic vascular resistance and blood pressure.
Thrombosis. n-3 PUFA are commonly considered to have
anti-thrombotic effects, based on increased bleeding times
at very high doses (e.g., 15 g/day). Conversely, in human
trials, n-3 PUFA consumption has no consistent effects on
platelet aggregation or coagulation factors (71–73). Overall,
at doses of at least up to 4 g/day (and perhaps higher),
anti-thrombotic effects are unlikely to be a major pathway
for lower CVD risk, although subtle effects cannot be
excluded. No excess clinical bleeding risk has been seen in
RCTs of fish or fish oil consumption, including among
people undergoing surgery or percutaneous intervention
and/or also taking aspirin or warfarin (74–76).
Endothelial and autonomic function. Several trials have
demonstrated improved flow-mediated arterial dilation, a
measure of endothelial function and health, after n-3 PUFA
supplementation (62,64–66,77–80). Because endothelial
health is strongly linked to endothelial nitric oxide synthesis
(81), experimental effects of n-3 PUFA on related biomark-
ers provide plausible biological mechanisms for such effects
(61,82–85). Several although not all trials have also found
that n-3 PUFA consumption lowers circulating markers of
endothelial dysfunction, such as E-selectin, vascular cell
adhesion molecule-1, and intercellular adhesion molecule-1
(86–88). Thus, normalization of endothelial function could
partly mediate protective effects of n-3 PUFA against CVD.
Observational studies and small trials of n-3 PUFA and HR
variability—a marker of autonomic function, circadian

erived from plant sources. Long-chain n-3 PUFA include eicosapentaenoic
sumption, as well as docosapentaenoic acid (DPA) that is contained in
hydrocarbon backbones, multiple double bonds, and location of the first dou-
s that contribute to the singular biological properties of these fatty acids.
UFA) d
od con
long

uration
rhythms, and underlying cardiac health—have produced
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mixed findings, perhaps owing to variable statistical power,
n-3 PUFA dosing, durations of consumption, and methods
for HR variability assessment (58,89–100). Overall, these
studies suggest that n-3 PUFA might improve autonomic
function, especially related to augmentation of vagal activity
or tone, but further confirmation of such effects and their
dose-responses is required.
Cardiac filling and myocardial efficiency. Animal exper-
iments and growing evidence in human studies suggest that
n-3 PUFA consumption improves cardiac filling and myo-
cardial efficiency. In animal models, including among non-
human primates; in observational studies of habitual fish
consumption; and in short-term experimental trials of fish
oil in healthy adults and in patients with chronic heart
failure, n-3 PUFA consumption augments both early
(energy-dependent) and late (compliance-dependent) left
ventricular diastolic filling (101–105). Such effects could

Food Sources of Long-Chain n-3 PUFATable 1 Food Sources of Long-Chain n-3 PUFA

Common Dietary Sources EPA, mg/100 g DPA, mg/100 g DHA, mg/

Anchovy 763 41 1,29

Herring, Atlantic 909 71 1,10

Salmon, farmed 862 393 1,10

Salmon, wild 411 368 1,42

Mackerel, Atlantic 504 106 69

Bluefish 323 79 66

Sardines, Atlantic 473 0 50

Trout 259 235 67

Golden bass (tilefish) 172 143 73

Swordfish 127 168 77

Tuna, white (albacore) 233 18 62

Mussels 276 44 50

Striped bass 169 0 58

Shark 258 89 43

Pollock, Atlantic 91 28 45

Oysters, wild 274 16 21

King Mackerel 174 22 22

Tuna, light (skipjack) 91 17 23

Snapper 48 22 27

Flounder and sole 168 34 13

Clams 138 104 14

Grouper 35 17 21

Halibut 80 20 15

Lobster 117 6 7

Scallops 72 5 10

Blue Crab 101 9 6

Cod, Pacific 42 5 11

Shrimp 50 5 5

Catfish, farmed 20 18 6

Eggs 0 7 5

Chicken breast 10 10 2

Beef 2 4

Pork 0 10

Data from the U.S. Department of Agriculture National Nutrition Database for Standard Reference
temporal, and sample-to-sample differences.

ALA � alpha-linolenic acid; DHA � docosahexaenoic acid; DPA � docosapentaenoic acid; EPA
partly relate to long-term improvements in ventricular
compliance due to reduced systemic vascular resistance.
Conversely, the relatively rapid improvement in early dia-
stolic filling in some studies suggests a degree of functional
or metabolic rather than simply structural benefit. In animal
experiments and at least 1 RCT in humans, fish oil
consumption also improves myocardial efficiency, reducing
workload-specific myocardial oxygen demand without re-
ducing peak performance (106,107). In 2 recent placebo-
controlled trials, n-3 PUFA consumption also improved left
ventricular ejection fraction in patients with established
heart failure (102,108).
Insulin resistance and diabetes. In some observational
cohorts, estimated fish or n-3 PUFA consumption was
associated with modestly higher incidence of type 2 diabetes
(109,110). However, such positive associations were not
seen in other observational studies (111–115) and protective
associations were seen in a study utilizing objective circu-

EPA�DHA, mg/100 g Common Dietary Sources ALA, g/100 g

2,055 Flaxseed (linseed) oil 53.3

2,014 Canola (rapeseed oil) 9.1

1,966 Walnuts, English 9.1

1,840 Butternuts 8.7

1,203 Soybean oil, nonhydrogenated 6.8

988 Mustard oil 5.9

982 Soybean oil, hydrogenated 2.6

936 Walnuts, black 2.0

905 Beechnuts 1.7

899 Pecans 1.0

862 Seaweed, Spirulina, dried 0.8

782 Soybeans, boiled 0.6

754 Navy beans, boiled 0.2

689 Kale, raw 0.2

542 Kidney beans, boiled 0.1

484

401

328

321

300

284

248

235

195

176

168

160

102

89

58

30

3

2

se 23, 2010 (274). These are average values that might vary due to methodological, geographic,

sapentaenoic acid; PUFA � polyunsaturated fatty acid.
100 g

2

5

4

9

9

5

9

7

3

2

9

6

5

1

1

0

7

7

3

2

6

3

5

8

4

7

8

2

9

8

0

1

2

Relea
lating n-3 PUFA biomarkers (116). In trials, n-3 PUFA
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consumption does not substantially alter biomarkers of
glucose-insulin homeostasis. In a meta-analysis of 26
RCTs, fish oil supplementation (2 to 22 g/day) slightly
raised fasting glucose in patients with non–insulin-
dependent diabetes (�0.4 mmol/l, 95% CI: 0.0 to 0.9)
nd lowered fasting glucose in patients with insulin-
ependent diabetes (�1.9 mmol/l, 95% CI: �0.6 to

�3.1); hemoglobin A1c levels were not significantly
affected (117). Two additional meta-analyses of 18 and
23 RCTs found no overall effects of fish oil (0.9 to 18
g/day) on fasting glucose or hemoglobin A1c in patients
with non–insulin-dependent diabetes (118,119). n-3
PUFA directly regulate hepatic genes (see the following
text), suppressing triglyceride production by means of
decreased DNL as well as other possible effects
(40,41,45,47– 49,52). We wonder whether this decrease
in triglyceride synthesis from carbohydrates as a substrate
could in some individuals result in modestly increased
shunting of carbohydrates and/or glycerol to glucose
production, which could raise fasting plasma glucose
levels but reduce hepatic steatosis and insulin resistance
and not adversely affect peripheral insulin resistance or
systemic metabolic dysfunction (50 –52,120 –122). Fur-
ther investigation is needed, but at present it is unclear
whether n-3 PUFA has clinically relevant effects on
insulin resistance or diabetes risk in humans.
Inflammation. Although the biological effects of n-3
PUFA could alter several inflammatory pathways (see the
following text), it remains unclear whether such anti-
inflammatory effects are clinically meaningful, especially

Figure 2 Meta-Analyses of Observational Studies and Results F

Relatively few prospective cohort studies (PCs) have evaluated the relationship be
these studies suggest no significant association with total CHD and a trend towar
significant effect of ALA supplementation (1.9 g/day) in patients with history of my
received placebo, with the other one-half receiving long-chain n-3 PUFA (EPA�DHA
not reported; RR � relative risk; other abbreviations as in Figure 1.
at usual dietary doses. In several trials, n-3 PUFA s
supplementation reduced plasma and urine levels of
eicosanoids such as leukotriene E4 (123–126). Findings
or other circulating inflammatory biomarkers, such as
nterleukin-1– beta and tumor necrosis factor-alpha, are

ixed (79,127–133). Fish oil is a proposed adjunctive
herapy for inflammatory diseases such as rheumatoid
rthritis (134), and meta-analyses of placebo-controlled
rials found that high-dose n-3 PUFA supplementation
1.7 to 9.6 g/day) reduced morning stiffness and joint
ain in patients with rheumatoid arthritis (135). Eicosa-
entaenoic acid and DHA could also have local anti-
nflammatory effects that might be difficult to detect with
irculating biomarkers. In particular, n-3 PUFA are
recursors to resolvins, protectins, and other inflammation-
esolving mediators that, based on emerging evidence,
ight have potent anti-inflammatory properties and assist

n the resolution of inflammation (see the following text)
136). The influence of dietary fish consumption or usual
sh oil supplement doses on levels of these inflammation-
esolving mediators and the clinical relevance of such
otential effects represent promising areas for further study.
rrhythmia. Among the most intriguing potential physi-
logical effects of n-3 PUFA and also among the most
hallenging to document in humans is antiarrhythmia. In
itro and animal experiments suggest that n-3 PUFA
irectly influence atrial and ventricular myocyte electrophys-
ology, potentially mediated by effects on membrane ion
hannels or cell–cell connexins (see the following text)
55,56,137–140). Confirmation of such effects in humans
as been limited by absence of reliable physiological mea-

a Large RCT of ALA Consumption and Risk of CVD Outcomes

consumption of ALA and risk of coronary heart disease (CHD). Meta-analyses of
r risk of CHD death (16,18). A recent randomized controlled trial (RCT) found no
ial infarction, although only one-half of the patients in the comparison group
lements (17). CI � confidence interval; CVD � cardiovascular disease; NR �
rom

tween
d lowe
ocard
) supp
ures or biomarkers to quantify antiarrhythmic potential. In
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observational studies and in 1 large open-label RCT, n-3
PUFA consumption reduced risk of sudden cardiac death
(see the following text), suggesting that anti-arrhythmic
effects seen in experimental studies could extend to humans.
Several smaller trials have attempted to address this hypoth-
esis by studying patients at higher risk for arrhythmias,
including patients with implantable cardioverter-defibrillators
(ICDs) for recurrent tachyarrhythmias, patients with recur-

Figure 3 Physiological Effects of n-3 PUFA That Might Influenc

n-3 polyunsaturated fatty acid (n-3 PUFA) affects a wide range of physiological fun
Dose-responses of these effects seem to vary. In vitro and animal experiments sh
reductions in heart rate and arrhythmic risk (top right). Growing evidence suggest
vagal tone. n-3 PUFA reduce plasma triglyceride levels in a dose-dependent fashio
tion rate. Several mechanisms have been implicated, including effects on hepatic
such as increased fatty acid beta-oxidation (top left). These hepatic effects might
which could raise plasma glucose levels but reduce hepatic steatosis and insulin
dysfunction. In the vasculature, n-3 PUFA reduces systemic vascular resistance an
responses (bottom left). These changes together contribute to the established bl
platelet function, but no clinical effects on bleeding or thrombosis have been seen
reduce production of arachidonic acid-derived eicosanoids and increase synthesis
tain, particularly at typical dietary doses (bottom right). CVD � cardiovascular dis
rent paroxysmal atrial fibrillation (AF), and patients under-
going cardiac surgery. As reviewed in the following text,
findings have been mixed, with some trials demonstrating
lower risk of arrhythmias and others finding no significant
effects (141–147). Overall, although evidence from in vitro
studies, animal-experiments, and at least some human
studies remains compelling, confirmation of clinically rele-
vant anti-arrhythmic effects of n-3 PUFA has remained
elusive. It is also unclear whether such benefits, if present,

D Risk

in multiple tissues, including the heart, liver, vasculature, and circulating cells.
t n-3 PUFA directly modulate cardiac electrophysiology, which could contribute to
n-3 PUFA might improve myocardial efficiency, left ventricular diastolic filling, and
h is at least partly due to reduced hepatic very low-density lipoprotein produc-
xpression that down-regulate de novo lipogenesis and possibly other effects

ead to modest shunting of carbohydrates and/or glycerol to glucose production,
nce and not adversely affect peripheral insulin resistance or systemic metabolic

roves endothelial dysfunction, arterial wall compliance, and vasodilatory
essure-lowering effects of n-3 PUFA. n-3 PUFA supplementation alters ex vivo
t perhaps at very high doses (e.g., 15 g/day) (bottom left). n-3 PUFA also
PUFA metabolites, although clinical effects of these alterations remain uncer-
e CV
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ow tha
s that
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gene e
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resista
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of n-3
ease.
are due to direct effects on myocyte electrophysiology or
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more indirect influences such as improvements in myocar-
dial efficiency, autonomic tone, local inflammatory re-
sponses, and the like.

Molecular Mechanisms

Fatty acids play important and diverse roles in cellular and
organelle membrane structure and function, tissue metabo-
lism, and genetic regulation. With unique chemical struc-
tures and 3-dimensional configurations (Fig. 1), n-3 PUFA
influence multiple relevant molecular pathways (Fig. 5),
which individually or in sum might contribute to the
observed effects on physiological risk factors and clinical
events.
Cell and organelle membrane structure and function.
Cellular and organelle functions are strongly influenced by
membrane lipid environments. Lipid microdomains—for
example, cholesterol and sphingolipid enriched “rafts” and
caveolae in membranes—function as operational “plat-
forms” to modulate numerous cellular functions, including
signal transduction, protein and membrane trafficking, and
ion channel kinetics (148–150). In cell culture and animal
studies, the incorporation of n-3 PUFA into membrane

Figure 4 Dose-Response Effects of n-3 PUFA Consumption
on Fasting Plasma Triglycerides in RCTs

Based on 55 placebo-controlled trials of n-3 PUFA consumption for 2 or more
weeks as extracted from a prior systematic review (276) as well as 3 addi-
tional RCTs of fish or n-3 PUFA consumption (169,277,278) to provide addi-
tional dose-response information at doses of �1 g/day EPA�DHA. Each point
represents the change in plasma triglycerides from baseline for each individual
study arm, as compared with control. The solid line represents the line of best
fit calculated from linear regression. Overall, each 1-g/day increase of
EPA�DHA reduced triglycerides by �5.9 mg/dl (95% confidence interval [CI]:
�2.5 to �9.3 mg/dl). This effect was significantly greater in trials of individu-
als with higher starting triglyceride levels (p interaction �0.001). Among trials
of individuals with mean baseline triglycerides below the median (�83 mg/dl),
each 1 g/day EPA�DHA decreased triglycerides by �1.7 mg/dl (95% CI: �3.1
to �0.2 mg/dl). Among trials of individuals with mean baseline triglycerides
above the median (�83 mg/dl), each 1 g/day EPA�DHA decreased triglycerides
by �8.4 mg/dl (95% CI: �13.7 to �3.2 mg/dl). Abbreviations as in Figure 1.
phospholipids alters the physicochemical properties of
membrane rafts and caveolae, thereby influencing membrane-
associated protein localization and function. Many such
experimentally observed effects have been seen, including
changes in caveolae-associated signaling protein H-Ras
(151); suppression of protein kinase C-theta signaling and
production of interleukin-2 (152,153); and disruption of
dimerization and recruitment of toll-like receptor-4 with
subsequent inhibition of lipopolysaccharide-induced in-
flammation (154,155). Membrane-bound n-3 PUFA might
also enhance protein signaling efficiency as exemplified by
the interaction between DHA and rhodopsin, a G-protein–
coupled receptor critical in the visual system (156,157).
Incorporation of n-3 PUFA into cellular membranes with
subsequent alteration of protein function and signaling
might contribute to potential anti-inflammatory and anti-
arrhythmic effects (see the following text).
Ion channels and electrophysiology. In animal-experimental
and in vitro studies, n-3 PUFA directly affect myocyte
electrophysiology (e.g., altering the function of membrane
sodium channel, L-type calcium channel, and sodium–
calcium exchanger) (158–165). Such effects might contrib-
ute to reduced myocyte excitability and cytosolic calcium
fluctuations, particularly in ischemic or damaged cells sus-
ceptible to partial depolarization and triggered arrhythmia
(56). However, specific effects in experimental studies have
not always been consistent and might depend on experi-
mental models used (e.g., type of animal species) or method
of n-3 PUFA administration (e.g., acute intravenous vs.
long-term dietary incorporation into tissues) (166,167).
Accumulating evidence suggests that lipid microenviron-
ments modulate ion channel function (150). Thus, as
described previously, incorporation of n-3 PUFA into and
resultant changes in lipid membranes could contribute to
effects on ion channels. Additionally, some evidence suggests
that n-3 PUFA might also directly interact with membrane
channels and proteins (156,162,168). For example, the inhib-
itory effects of EPA on the human cardiac sodium cation
channels were reduced by a single amino acid point muta-
tion in the protein alpha-subunit, suggesting a potential
direct interaction between EPA and the ion channel (162).
Whereas modulation of ion channels would be consistent
with anti-arrhythmic effects seen in animal models (55) and
suggested by at least some human studies (146,169–171),
the potential relevance of these experimentally observed
influences on ion channels to health effects in humans is not
established.
Nuclear receptors and transcription factors. n-3 PUFA
are natural ligands of several nuclear receptors and transcrip-
tion factors that regulate gene expression in multiple tissues
(122,172). Nonesterified n-3 PUFA or their acyl-CoA
thioesters can bind and directly modulate activities of such
receptors (173–176). Cytoplasmic lipid-binding proteins
likely play important regulatory roles in this process by
shuttling free fatty acids or fatty acyl-CoA into the nucleus
to interact with the receptors (177,178). These receptors are

central regulators of vital cellular functions related to CVD,
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Figure 5 Molecular Pathways Affected by n-3 PUFA

n-3 polyunsaturated fatty acids (n-3 PUFA) modulate multiple molecular pathways that together contribute to their physiological effects. First, the physicochemical proper-
ties of cellular and organelle membranes are influenced by their lipid composition (center). Incorporation of n-3 PUFA into these membranes alters membrane fluidity
and biophysics of lipid rafts that modulate protein function and signaling events. For example, enrichment of cellular membranes with n-3 PUFA disrupts dimerization and
recruitment of toll-like receptor-4, which might contribute to anti-inflammatory effects by down-regulation of nuclear factor-kappaB (NF-�B) activation. Ion channels such as
sodium (Na�), L-type calcium (Ca2�), and Na�–Ca2� exchangers might be similarly modulated by n-3 PUFA incorporation into lipid membranes. Second, n-3 PUFA seem
to directly interact with membrane channels and proteins (center). For example, direct modulation of ion channels or G-protein-coupled receptor 120 (GPR 120) might
contribute to anti-arrhythmic or anti-inflammatory effects, respectively. Third, n-3 PUFA directly regulate gene expression via nuclear receptors and transcription factors
(lower right). n-3 PUFA are natural ligands of many key nuclear receptors in multiple tissues, including peroxisome proliferator-activated receptors (PPAR; -alpha, -beta,
-delta, and -gamma), hepatic nuclear factors (HNF-4; -alpha and -gamma), retinoid X receptors (RXR), and liver X receptors (alpha and beta). Interactions between n-3
PUFA and nuclear receptors are modulated by cytoplasmic lipid binding proteins (e.g. fatty acid [FA] binding proteins) that transport the FAs into the nucleus. n-3 PUFA
also alter function of transcription factors such as sterol regulatory element binding protein-1c (SREBP-1c). Such genetic regulation contributes to observed effects of n-3
PUFA on lipid metabolism and inflammatory pathways. Fourth, after release from phospholipids by cytosolic phospholipase A2 (cPLA2), PUFA including n-3 PUFA are con-
verted to eicosanoids by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP450) enzymes (lower left). n-3 PUFA displace arachidonic acid (AA) in
membrane phospholipids, reducing the production of AA-derived eicosanoids (e.g., prostaglandin E2 [PGE2]) while increasing those generated from n-3 PUFA. This
altered eicosanoid profile might influence inflammation, thrombosis, and vascular function. Fifth, emerging evidence suggests that n-3 PUFA play an important role in
inflammation resolution via specialized pro-resolving mediators (SPMs), including resolvins or protectins that are n-3 PUFA metabolites derived from actions of COX and
LOX (top). Biosynthesis of SPMs seems to require involvement of 2 or more cell types (“transcellular biosynthesis”), with 1 cell type converting the n-3 fatty acid to met-
abolic intermediates, and the second cell type converting these intermediates into the SPMs. n-3 PUFA-derived SPMs seem to be key drivers of inflammation resolution
programs that reduce chronic inflammation in a wide range of animal models. The roles of each of these molecular pathways in the cardiovascular protection of n-3
PUFA represent promising areas for future investigation. DNA � deoxyribonucleic acid; ERK � extracellular signal-regulated kinase; mRNA � messenger ribonucleic acid;
PMN � polymorphonuclear leukocyte.
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including lipid metabolism, glucose-insulin homeostasis,
and inflammation. For example, effects of n-3 PUFA on
these pathways likely contribute to triglyceride-lowering
(3,179,180) and increased production of beneficial adipocy-
tokines (181,182). n-3 PUFA can also affect activation of
transcription factors (Fig. 5) (3,122,179). For example, by
means of peroxisome proliferator-activated receptor-gamma
activation or reduced protein kinase-C translocation to the
plasma membrane, n-3 PUFA can reduce translocation of
nuclear factor-kappaB to the nucleus and inflammatory
cytokine generation (183,184).
AA-derived eicosanoids. Eicosanoids are bioactive lipid

ediators derived from metabolism of PUFA by cyclooxy-
enases, lipoxygenases, cytochrome P450s, and non-
nzymatic pathways. Although the term “eicosanoids” has
raditionally referred to the n-6 PUFA AA and its 20-
arbon metabolites, it has also been applied to similar n-3
UFA–derived metabolites (185), a practice we will follow.
-3 PUFA consumption decreases production of AA-
erived 2-series prostaglandins, thromboxanes, and 4-series

eukotrienes in humans (123,126,186–192) (Fig. 5).
Because several AA-derived eicosanoids are considered to

e pro-inflammatory or pre-thrombotic (e.g., leukotriene-
4, thromboxane-A2), their lowering by n-3 PUFA has

been considered important for health benefits. Growing
evidence argues that this hypothesis is overly simplistic.
First, the anti-inflammatory effects of n-3 PUFA may be
independent of AA (e.g., via direct interactions with
G-protein-coupled receptors [168]). Furthermore, several
AA-derived eicosanoids, such as epoxyeicosatrienoic acid
(EET) and lipoxins, may protect against CHD. EETs and
lipoxins exhibit anti-inflammatory activities; lipoxins also
function as pro-resolution mediators of inflammation (136)
(see the following text), and EETs are also potent vasodi-
lators and modulate several ion channels (193). Higher
EET levels protect against hypertension and cardiac injury
in several animal models (194). In support of the benefits of
AA-derived metabolites, higher AA levels were associated
with lower systemic inflammation and lower CHD risk in
some prospective observational studies (195,196). Thus, the
significance and consequences of altered AA-derived me-
tabolites following n-3 PUFA consumption appears com-
plex. Future studies must investigate the interplay between
n-3 PUFA and both traditional and novel AA-derived
metabolites, as well as eicosanoids generated from n-3
PUFA themselves (see the following text).
n-3 PUFA-derived eicosanoids. Recently identified classes
of n-3 PUFA-derived eicosanoids (e.g., specialized pro-
resolving mediators [SPMs] [136] and CYP450-generated
mono-epoxides from EPA and DHA [MEFAs] [197])
possess unique bioactivities that might influence CVD (Fig. 5).
Traditionally, it was thought that the breakdown of local
pro-inflammatory mediators (e.g., prostaglandins, thrombox-
anes) was sufficient to end the inflammatory response (198).
However, specific cellular “resolution programs” have recently

been identified, the efficient functioning of which appears to be
essential to ensure timely inflammation resolution and return
to tissue homeostasis (136). Both n-3 PUFA-derived SPMs,
such as resolvins, protectins, and maresins, and AA-derived
lipoxins are key drivers of these resolution programs. SPMs
and lipoxins reduce chronic inflammation in a range of animal
models; models of CHD are still limited (136,199). MEFAs
are potent vasodilators (200–203), modulate several ion chan-
nels (200,202,204–206), and reduce inflammation (207) in
vitro, with similar or stronger potency than analogous AA-
derived EETs. In recent experiments, n-3 PUFA-derived
MEFAs possessed nearly 1,000-fold greater potency than their
parents EPA or DHA in reducing effects of calcium overload
in rat ventricular myocytes; interestingly, AA-derived EETs
antagonized this effect (208). Short-term n-3 PUFA con-
sumption (4 g/day for 4 weeks) increased EPA- and DHA-
derived MEFAs by �5- and 2-fold, respectively (123). Robust
effects of SPMs and MEFAs in multiple tissues and animal
models suggest that they could play a key role in cardiovascular
protection of n-3 PUFA—a highly promising area for future
research.

Cardiovascular Outcomes

CHD mortality. More prospective observational studies
and large RCTs have investigated potential effects of fish or
n-3 PUFA consumption on CVD outcomes than any other
food or nutrient. Numerous meta-analyses have been per-
formed (Fig. 6) (1,18,20,141,209–215). Overall, the find-
ings indicate that consumption of fish or fish oil signifi-
cantly reduces CHD mortality, including fatal myocardial
infarction and sudden cardiac death, in populations with
and without established CVD (1,209,214,215). In meta-
analyses of RCTs of n-3 PUFA (1,214,215), significant
reductions or trends toward reductions have been seen for
total mortality, with effect sizes consistent with expected
benefits if n-3 PUFA consumption were to reduce CHD
death but have little effect on other causes of mortality.
These studies, together with ecologic evidence of n-3
PUFA consumption and CHD death rates across popula-
tions (216,217), provide strong concordant evidence that
consumption of fish or n-3 PUFA reduces CHD mortality.
More modest relationships have been seen with total CHD
or nonfatal coronary syndromes, suggesting that, at usual
dietary doses, n-3 PUFA might principally reduce ischemia-
related cardiac death (218). The final common pathway for
most cardiac deaths is arrhythmia. In in vitro and animal
models, n-3 PUFA stabilize partially depolarized ischemic
myocytes, reducing susceptibility to triggered ventricular
arrhythmias (55,56). These findings are consistent with
clinical reductions in cardiac death. Other modest physio-
logic benefits of n-3 PUFA, such as on blood pressure,
triglycerides, or inflammation, could over many years or at
higher doses alter chronic atherogenesis and/or acute plaque
rupture, modestly lowering nonfatal coronary syndromes
(1,209,218). However, clinical effects on nonfatal coronary

events cannot yet be considered established.
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Figure 6 Meta-Analyses of Studies of Fish or Long-Chain n-3 PUFA Consumption and Risk of CVD Outcomes

Numerous PCs and RCTs from around the world have investigated the potential effects of fish or n-3 PUFA consumption on CVD outcomes. Meta-analyses of these stud-
ies indicate that fish and n-3 PUFA consumption reduce the risk of CHD events, primarily due to prevention of CHD death (1,18,20,140,206–212). Potential effects on
total CVD events or total mortality are more modest, consistent with anticipated benefits that would occur from reduced CHD mortality alone. Results of PCs also dem-
onstrate inverse associations between fish consumption and stroke, in particular ischemic stroke, but RCTs of n-3 PUFA supplementation have not confirmed these ben-
efits, perhaps related to few numbers of strokes in these trials. Potential effects of fish or n-3 PUFA consumption on other outcomes, such as atrial fibrillation, recurrent
ventricular arrhythmias, or congestive heart failure, require further investigation; few studies with relatively limited numbers of events have evaluated these endpoints.
Abbreviations as in Figures 1 and 2.
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There is currently little evidence that effects of n-3 PUFA
on CHD differ by sex, age, or race/ethnicity. Prospective
cohort studies among both men and women, in those of
middle age and older adults, and in different races/
ethnicities have demonstrated similar findings (1). Women
convert ALA to EPA in modestly greater amounts (10), but
the clinical significance of this is not established.
Conflicting evidence for CHD mortality. Not all RCTs
have demonstrated reductions in CHD mortality with n-3
PUFA consumption (Table 2) (17,169,219–224). These
include the Alpha-Omega (17), Omega (219), JELIS (Ja-
pan EPA Lipid Intervention Study) (220), DART (Diet
and Reinfarction Trial) 2 (221), and SU.FOL.OM3 (Sup-
plementation en Folates et Omega-3) (224) trials. Among
these, only the DART 2 trial, an open-label, dietary advice
trial among men with stable angina, was adequately pow-
ered to detect such effects (Table 2). Several limitations of
this trial were reported, including lack of participant blind-
ing, inadequate funding that interrupted recruitment over 7
years, little follow-up to reinforce dietary advice or evaluate
long-term compliance, and no evaluation of changes in
medications or other behaviors. Additionally, the control
group was provided “sensible eating” advice, which resulted
in similar or better outcomes in comparison with all inter-
vention groups, which included dietary advice to consume
fish in 1 arm and oats, fruits, and vegetables in another arm.
These limitations make it difficult to interpret this trial’s

RCTs of n-3 PUFA and Clinical Cardiovascular EventsTable 2 RCTs of n-3 PUFA and Clinical Cardiovascular Events

Trials, Year
(Ref. #) Population Intervention

DART, 1989 (222) 2,033 men with recent
(average �1 month
prior) MI

Advice to consume fatty fish
2 servings/week vs. usual car

GISSI-Prevenzione
Trial, 1999 (169)

11,324 men with recent
(�3 months prior) MI

882 mg/day EPA�DHA vs.
usual care

DART 2, 2003
(221)

3,114 men with angina Advice to consume fatty fish
2 servings/week vs. usual car

JELIS, 2007 (220) 18,645 men and women
with total cholesterol
�6.5 mmol/l

1.8 g/day EPA vs. usual care

GISSI-Heart Failure
2008 (223)

6,975 patients with chronic
congestive heart failure

882 mg/day EPA�DHA vs. place

Alpha-Omega,
2010 (17)

4,837 patients with a
history of past (average
�4.3 yrs prior) MI

376 mg/day EPA�DHA vs. a
combined control group recei
either placebo or ALA 1.9 g/d

Omega, 2010 (219) 3,851 patients with recent
(�2 weeks prior) MI

840 mg/day EPA�DHA vs. place

SU.FOL.OM3,
2010 (224)

2,501 patients with a
history of past (average
�100 days prior) acute
coronary or cerebral
ischemic event

600 mg/day EPA�DHA vs. a
combined control group recei
either placebo or B vitamins
(5-methyltetrahydrofolate, 56
B-6, 3 mg; and B-12, 20 �g)

*On the basis of the actual number of events, 2-sided alpha � 0.05, and a relative risk (RR) redu
CHD � coronary heart disease; CI � confidence interval; DART � Diet and Reinfarction Trial; IHD

� randomized controlled trial; SU.FOL.OM3 � Supplementation en Folates et Omega-3; other abb
null findings.
The JELIS, Alpha-Omega, Omega, and SU.FOL.OM3
trials were each substantially underpowered to detect effects
on CHD mortality (Table 2), although the JELIS trial did
find modest benefits for nonfatal coronary events (see the
following text). Also, due to lower than expected event rates,
the Alpha-Omega trial compared the effects of low-dose
EPA�DHA (376 mg/day) not with placebo, but with a
combined control group that received either placebo or
active treatment with the plant-derived n-3 ALA (1.9
g/day). In this European study, subjects also consumed
relatively high background dietary EPA�DHA (median
120 to 130 mg/day), which could minimize effects of the
additional low-dose n-3 PUFA supplement, on the basis of
evidence for a threshold of benefit for CHD mortality at
approximately 250 mg/day (1). Both the Omega and
SU.FOL.OM3 trials were markedly underpowered, with
57 and 40 CHD deaths, respectively (219,224), providing
only approximately 17% and approximately 14% power to
detect a 25% risk reduction.

Overly optimistic estimates of benefits of n-3 PUFA
could continue to foster implementation of small, under-
powered RCTs, which would contribute to further confu-
sion about cardiovascular effects of these fatty acids. Potent
drugs such as statins produce modest (25% to 30%) reduc-
tions in CVD risk (225); expectations that n-3 PUFA
should have much larger benefits are unrealistic, especially
in patients receiving modern medical and interventional
therapies. The apparent nonlinear dose-responses for some

Duration of
Follow-Up,

yrs Events RR (95% CI)
Achieved
Power*

2 IHD events, n � 276
IHD deaths, n � 194

0.84 (0.66–1.07)
0.68 (0.49–0.94)

0.69
0.57

3.5 Cardiac deaths, n � 520
Sudden deaths, n � 286

0.78 (0.65–0.92)
0.74 (0.58–0.93)

0.91
0.69

3–9 Cardiac deaths, n � 319
Sudden deaths, n � 120

1.26 (1.00–1.58)
1.54 (1.06–2.23)

0.65
0.26

5 Major coronary events, n � 586
Coronary deaths, n � 60
Sudden deaths, n � 35

0.81 (0.69–0.95)
0.94 (0.57–1.56)
1.06 (0.55–2.07)

0.93
0.17
0.13

3.9 Total mortality, n � 1,969
Cardiovascular death, n � 1,477
Sudden deaths, n � 632

0.91 (0.83–0.99)
0.90 (0.81–0.99)
0.93 (0.79–1.08)

�0.99
�0.99

0.94

3.3 Major cardiovascular events, n � 671
CHD deaths, n � 138

1.01 (0.87–1.17)
0.98 (0.68–1.32)

0.96
0.36

1 Major cardiovascular events, n � 331
Sudden deaths, n � 57

1.21 (0.96–1.52)
0.95 (0.56–1.60)

0.72
0.17

4.2 Major cardiovascular events, n � 157
CHD deaths, n � 40

1.08 (0.79–1.47)
Not reported

0.4
0.14

f 25% for n-3 fatty acid treatment.
emic heart disease; JELIS � Japan EPA Lipid Intervention Study; MI � myocardial infarction; RCT

ons as in Table 1.
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health effects of n-3 PUFA are also relevant to trial design.
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Observational studies typically compare risk among individ-
uals consuming higher levels of fish or n-3 PUFA versus
individuals having little or no consumption. In contrast,
RCTs generally enroll a broad cross-section of subjects,
resulting in placebo groups that include comparatively high
background levels of dietary fish and n-3 PUFA intakes.
Because at least some benefits of n-3 PUFA seem to
diminish as consumption increases (Fig. 3), including for
CHD mortality (1), this difference in the comparison group
of observational studies versus trials will necessitate greater
numbers of subjects in trials to detect additional benefits of
n-3 PUFA supplementation above and beyond background
diet. These issues could be relevant to interpreting ongoing
n-3 PUFA trials, including the ORIGIN (Outcome Reduc-
tion with an Initial Glargine Intervention) trial, Risk and
Prevention Study, and VITAL (Vitamin D and Omega-3
Trial) (226–228).

In comparison with other isolated nutrients for which
RCTs of clinical CVD events have been null (e.g., folate/B
vitamins, vitamin D, vitamin E) or with other well-
established behavioral and dietary targets for which no
RCTs of clinical CVD events have even been performed
(e.g., smoking cessation, physical activity, obesity reduction,
salt or trans-fat reduction, or consumption of dietary fiber,
fruits, vegetables, or whole grains), the presence of several
confirmatory clinical trials of n-3 PUFA and CVD events
lends considerable support to the total body of findings.
Overall, there is concordance of evidence from experimental
studies, controlled trials of physiological risk factors, pro-
spective observational studies of clinical endpoints, and
adequately powered RCTs of clinical endpoints that modest
n-3 PUFA consumption—compared with little or no con-
sumption—reduces CHD mortality.
Ischemic stroke. In comparison with CHD mortality,
effects of n-3 PUFA on other CVD outcomes are less well
established. For instance, meta-analyses of observational
studies suggest that fish consumption reduces risk of isch-
emic stroke (210), but stroke incidence has not been
significantly affected in fish oil trials (212,229). Reasons for
these differing findings remain unclear, with possibilities
including residual confounding (bias) in the observational
studies, inadequate statistical power in the trials (which
were not designed to evaluate stroke as an endpoint),
insufficient duration of treatment in the trials, or benefits for
stroke from other nutrients present in fish but not fish oil.
Established effects on several risk factors (Fig. 2) provide
biological plausibility that n-3 PUFA could reduce stroke.
Appropriately powered RCTs of fish or fish oil consump-
tion and ischemic stroke are needed.
AF. In vitro and animal experiments suggest that n-3

UFA could reduce onset of AF (230–235). Mechanisti-
ally, such effects could derive from putative direct anti-
rrhythmic effects or favorable changes in left ventricular
erformance, autonomic tone, or inflammation (see the
receding text). A growing number of human studies are

valuating n-3 PUFA and AF. Estimated fish or dietary n-3
PUFA consumption was associated with lower AF inci-
dence in some (236) but not other (237–239) large obser-
vational cohorts. In a prospective evaluation of plasma n-3
PUFA biomarkers, DHA levels were inversely associated
with incident AF (240). Five small RCTs have evaluated
perioperative n-3 PUFA supplementation and post-
operative AF after cardiac surgery (142–145,147). Two
trials found benefit and the other 3 showed no effect, with
the varying designs and small sizes (n � 108 to 200)
limiting strong conclusions. Another trial demonstrated no
effects of n-3 PUFA supplements on AF recurrence in 663
patients with pre-existing paroxysmal AF (241). A second
similar trial is ongoing (242), which we believe similarly
may not demonstrate benefits due to the low likelihood that
n-3 PUFA (or most any treatment) can appreciably coun-
teract the pro-arrhythmogenic cardiac structural changes
already present in patients with pre-existing AF. To date,
the mixed evidence limits inference about whether n-3
PUFA can prevent AF. The ongoing OPERA (Omega-3
Fatty Acids for the Prevention of Post-operative Atrial
Fibrillation) trial is a large, double-blind, placebo-
controlled, multicenter RCT that will help answer this
important question (76,243).
Recurrent ventricular tachyarrhythmias. Based partly on
antiarrhythmic effects in animal experiments, 3 placebo-
controlled RCTs have evaluated whether n-3 PUFA reduce
recurrent ventricular tachycardia or fibrillation (VT/VF) in
patients with ICDs and pre-existing VT/VF. One of these
trials showed 31% reduction in definite or probable recur-
rent VT/VF (p � 0.03) (244), whereas 2 others showed no
statistically significant effects (245,246); meta-analysis of all
3 trials found significant pooled effects (141,247). Hetero-
geneity of results could relate to varying patient populations
or n-3 PUFA dosing (from 0.8 to 2.6 g/day EPA�DHA).
Overall, the relatively small sizes (n � 200 to 546) and brief
treatment durations (1 to 2 years) of these trials limit
definitive conclusions for effects of n-3 PUFA on recurrent
VT/VF in patients with ICDs. Benefits seen in at least 1 of
these trials, when considered with in vitro and animal-
experimental evidence, lend further support to anti-
arrhythmic effects of n-3 PUFA. Confirmation of such
effects would be important for this patient subset and also
mechanistically relevant. However, the presence or absence
of effects on recurrent VT/VF (or recurrent AF) might have
relatively little generalizability to effects of fish or n-3 PUFA
consumption on primary arrhythmias in less-selected pop-
ulations, for example, ischemia-induced ventricular fibrilla-
tion that causes the majority of sudden cardiac deaths and
fatal myocardial infarctions in CHD patients and the
general population.
Congestive heart failure. Physiological effects in humans
(248) and animal models (107,249,250) suggest that n-3
PUFA could prevent heart failure. Fish or dietary n-3
PUFA consumption has been associated with lower inci-
dence of heart failure in 4 of 5 prospective observational

studies (251–255). A recent investigation using objective
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circulating biomarkers found this relationship to be stron-
gest for EPA, with 50% lower incidence of CHF in the
highest versus lowest quartile (RR: 0.52, 95% CI: 0.38 to
0.72, p trend � 0.001) (256). In a double-blind, placebo-
ontrolled clinical RCT among nearly 7,000 patients with
stablished heart failure, n-3 PUFA supplementation (1
/day) reduced total mortality by 8% (p � 0.009) (223),
ccompanied by significant improvements in left ventricular
jection fraction (102), when given in addition to maximal
odern drug therapies. On the basis of this trial, recom-
endations for fish consumption or fish oil use should be

onsidered in patients with established heart failure. Poten-
ial effects of n-3 PUFA on preventing heart failure inci-
ence require further study.

ish Versus Fish Oil

ost studies of CHD death in generally healthy popula-
ions have evaluated fish consumption, not fish oil supple-
entation. As described in the preceding text, fish contain

everal potentially beneficial nutrients not contained in fish
il. Thus, we agree with clinical and policy recommenda-
ions that focus on dietary n-3 PUFA from fish consump-
ion rather than from supplements. For individuals who
annot consume sufficient amounts of fish or who consume
sh but wish to further supplement their dietary n-3 PUFA
onsumption, use of fish oil is reasonable.

Many over-the-counter supplements and 1 prescription
ormulation are available. Depending on the brand, the
ombined content of EPA plus DHA per 1 g capsule varies
rom approximately 300 to 850 mg (257–259). Among
ommonly sold brands, quality assessments have confirmed
hat listed and actual contents of n-3 PUFA are similar
257,258). Fish oil supplements contain no mercury (which
s tightly protein-bound) and contain low absolute quanti-
ies of dioxins/PCBs (because fish oil is consumed only in g
uantities). Thus, the choice among different brands can be
etermined by other factors such as price, availability, and
for flavored brands) taste. If significant triglyceride-
owering is a goal, then concentrated over-the-counter or
rescription formulations are preferable to facilitate suffi-
iently high doses (�3 g/day EPA�DHA) with reasonable
aily numbers of capsules.
A common symptom from fish oil is “fishy” taste or

ructation. From our experience, taking the capsule frozen,
witching to a different formulation, or taking the capsule
ith meals or at a different time of day can minimize this

ymptom in most people.

ietary Guidelines

everal national and international organizations have rec-
mmended minimum levels of fish or n-3 PUFA consump-
ion for the general population (Table 3) (15,87,260–272).
ecommendations for ALA or total n-3 consumption are

enerally based on prevention of essential fatty acid defi-
ciency; available evidence does not allow more specific
recommendations for CVD or other chronic diseases (15).
Recommendations for EPA�DHA are typically based on
the prevention of CHD mortality. There is remarkable
convergence of these guidelines to recommending at least
250 mg/day EPA�DHA or at least 2 servings/week of fish,
preferably oily fish. For women who are or might become
pregnant and nursing mothers and young children, addi-
tional specific recommendations are available for avoidance
of selected higher-mercury fish species (15) as well as for
minimum DHA consumption (272) to optimize brain
development in their children.

Dietary guidelines for n-3 PUFA consumption are oth-
erwise not different by sex or race/ethnicity. The American
Heart Association 2020 Strategic Impact Goals defined
consumption of at least 2 3.5-oz servings/week of fish,
preferably oily fish, as 1 of 5 primary dietary metrics that
characterized ideal cardiovascular health (271). The 2010
U.S. Dietary Guidelines for Americans recommended that
individuals at both higher and average CVD risk consume 2
4-oz seafood servings/week, with types of fish selected to
provide an average of at least 250 mg/day EPA�DHA
(1,750 mg/week) (15) On the basis of the available evidence
for prevention of CHD death, we agree with these recom-
mendations. As additional prospective studies and clinical
trial data are obtained, dietary guidelines might require
updating to reflect dose-responses for other specific CVD
endpoints. Data are insufficient on relative importance of
EPA versus DHA or any specific “ratio” of their intakes for
CVD benefits, and thus guidelines are based on their
combined consumption.

Current consumption levels in most countries do not
meet recommended intakes. Among U.S. adults in 2005 to
2006, mean EPA�DHA intakes were approximately 125
mg/day in non-Hispanic whites, approximately 160 mg/day
in blacks, and approximately 130 mg/day in Hispanics
(273). Because many people do not consume seafood at all,
median EPA�DHA intakes are far lower, with approxi-
mately one-half of U.S. adults consuming �60 mg/day.

Conclusions

n-3 PUFA consumption improves vascular and cardiac
hemodynamics, triglycerides, and possibly endothelial func-
tion, autonomic control, inflammation, thrombosis, and
arrhythmia. Experimental studies confirm multiple relevant
molecular effects, including on membrane structure and
associated functions, ion channel properties, genetic regu-
lation, eicosanoid synthesis, and production of novel
inflammation-resolving mediators. Further experimental
studies will be valuable to improve our understanding of
which molecular mechanisms relate to specific effects of n-3
PUFA on risk factors and clinical endpoints. Not all trials of
n-3 PUFA have demonstrated reductions in CVD, but

several adequately powered clinical trials have documented
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significant benefits. When combined with the robust global
evidence from observational studies, the documented effects
on risk factors in short-term trials, and the experimental and
mechanistic evidence, it is clear that n-3 PUFA are bioactive
nutrients that play an important role in cardiovascular
health, in particular for reducing risk of cardiac mortality.
Additional appropriately designed and powered clinical
trials are needed to assess effects of n-3 PUFA on other
cardiovascular endpoints, including nonfatal coronary
events, ischemic stroke, recurrent ventricular arrhythmias,
AF, and heart failure. If the apparent nonlinear dose-

National and International Recommendations for Consumption of nTable 3 National and International Recommendations for Cons

Recom

Source (Ref. #) Year EPA�DHA

International Society for the
Study of Fatty Acids and
Lipids Workshop (269)

1999 Target: 650 mg/day
Adequate: �220 mg/da
Adequate: �220 mg/da

European Commission
Eurodiet Core Report (260)

2000 Target: 200 mg/day

Health Council of
Netherlands (262)

2001 Adequate: 200 mg/day

U.S. National Academy of
Sciences (263)

2002 AMDR: 0.06%–0.12% en

French Agency for Food
Environmental and
Occupational Health Safety
Omega-3 Report (261)

2003 Target: 400–500 mg/da
100–120 mg/day DH

European Society of
Cardiology (270)

2003 Recommendation: �1 g

Joint United Nations Food and
Agricultural Organization/
World Health Organization
Expert Consultation. Diet,
Nutrition and the
Prevention of Chronic
Diseases (264)

2003 Target: 400–1,000 mg/d
(1–2 fish servings/we

International Society for the
Study of Fatty Acids and
Lipids Policy Statement 3
(265)

2004 Minimum: 500 mg/day

United Kingdom Scientific
Advisory Committee on
Nutrition (266)

2004 Minimum: 450 mg/day
(�2 fish servings/wee

American Heart
Association (87,268,271)

2002,
2006,
2010

Minimum: 2 3.5-oz fish s
especially oily fish �1

National Health and Medical
Research Council
(Australia and New
Zealand) (267)

2006 Adequate: 90–160 mg/d
Target: 430–610 mg/da

United Nations Food and
Agricultural Organization
Report on Fats and Fatty
Acids in Human
Nutrition (272)

2008 AMDR: 250–2,000 mg/d

U.S. Department of
Agriculture, 2010 Dietary
Guidelines for
Americans (15)

2010 Minimum: 2 4-oz fish se
providing an average
�250 mg/day

Adapted, with updates, from Harris (275). *For secondary prevention of CHD. †Consumption of at
nursing mothers.

AA � arachidonic acid; AMDR � Acceptable Macronutrient Distribution Range; other abbreviat
response for CHD mortality extends to these other CVD
outcomes, such trials might be most effective in individuals
with little or no background fish intake. Additional studies
should also address the potential of ALA and DPA to
improve CVD risk factors and outcomes. As part of
achieving a healthier overall dietary pattern that includes
fruits, vegetables, whole grains, nuts, vegetable oils, and
dairy (271), physicians should recommend fish consumption
for their patients, and government and public health agen-
cies should implement strategies to improve attainment of
the recommended levels of fish and n-3 PUFA consump-
tion to reduce population burdens of CHD mortality and

FA in the General Populationion of n-3 PUFA in the General Population

ations

ALA Total n-3 PUFA

Target: 2.2 g/day Target: 1.3% energy

Target: 2 g/day

Adequate: 1% energy

AMDR: 0.6%–1.2% energy

ding AA; Target: 1.6–2 g/day Target: 1% energy

Target: 1%–2% energy

Target: 0.7% energy

s/week,
*

Adequate: 0.8–1.3 g/day
Target: 2.7 g/day

Minimum: 0.5% energy AMDR: 0.5%–2% energy

week, 0.6%–1.2% energy

00 mg/day EPA�DHA, with at least 200 mg being DHA, is recommended for pregnant women or

in Tables 1 and 2.
-3 PUumpt

mend

y EPA
y DHA

ergy

y, inclu
A

/day*

ay
ek)

k)

erving
g/day

ay
y

ay†

rvings/
of

least 3
sudden cardiac death.
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