Introdução às Medidas em Física (Turma 43)

Aula 12 30/06/2023

Gisell Ruiz Boiset

gisell@if.usp.br

Bloco F - Conjunto Alessandro Volta - sl. 209

Material preparado com base no material gentilmente cedido pela Profa. Dra. Paula R. F Allegro

Na aula de hoje

Conceitos:

Análise de dados

Análise Gráfica - escala logarítmica

Dedução empírica de uma lei física

• Experiência 7: Cordas vibrantes-Continuação

Referências para a aula de hoje:

- Apostila do curso (página principal do moodle):
 - Experiência VII (aulas 11 e 12) Cordas Vibrantes

- Aba Experimento # 7 Cordas vibrantes:
 - Tabela densidades linear dos fios.

Dependência das frequências de ressonância

- Os parâmetros principais são
 - ∘ Modo de vibração (n)
 - Comprimento do fio (L)
 - Densidade (μ)
 - Vamos usar a densidade linear $\mu = m/L$
 - ∘ Tensão aplicada (T)
- Como correlacionar a frequência com esses parâmetros?
 - o Tomar os dados e analisá-los
 - Estudar variação da frequência com cada parâmetro

Descrição empírica

•Como obter uma expressão para a frequência de ressonância?

•Hipótese:

 Supor que a frequência depende de um parâmetro como uma potência deste parâmetro

$$f(x) = A \cdot x^b$$

 No caso dos nossos parâmetros, supor uma combinação de potências

$$f_n = C n^{\alpha} L^{\beta} T^{\gamma} \mu^{\delta}$$

Descrição empírica

- •Determinar os valores dos coeficientes α , β , γ , δ a partir dos dados. Como?
- Para um determinado parâmetro, com todos os outros fixos, podemos escrever que:

$$f(x) = A \cdot x^b$$

Por exemplo: para todos os parâmetros fixos e variando apenas n :

$$f_n = Bn^{\alpha}$$

$$B = cte = CL^{\beta}T^{\gamma}\mu^{\delta}$$

Descrição empírica

• Fixar todos os parâmetros e variar somente *n* :

$$f_n = Bn^{\alpha}$$
 , onde: $B = cte = CL^{\beta}T^{\gamma}\mu^{\delta}$

- Como determinar B e α?
 - Extrair o logaritmo da expressão acima:

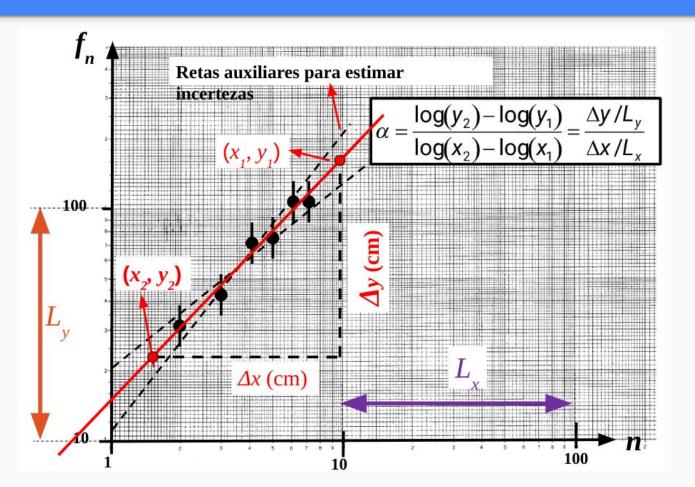
$$\log(f_n) = \log(Bn^\alpha)$$

$$\log(f_n) = \log(B) + \alpha \cdot \log(n)$$

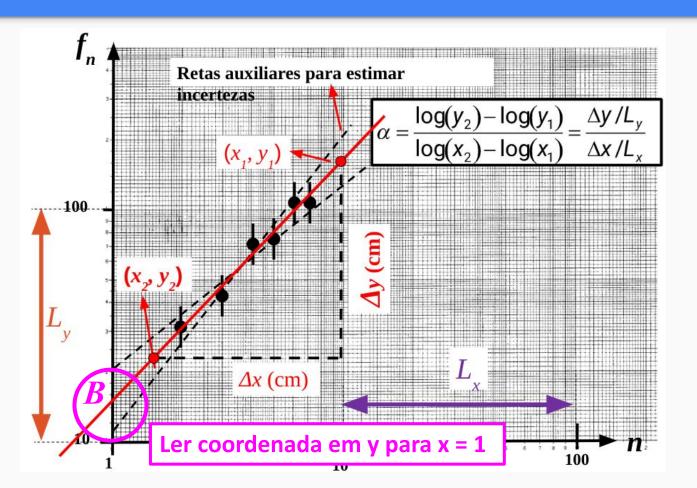
$$y = a + b \cdot x$$

$$y = \log(f_n) \qquad x = \log(n) \qquad a = \log(B) \qquad b = \alpha$$
função variavel Coef. inear Coef ang

Dilog: Coeficientes angular e linear



Dilog: Coeficientes angular e linear



Dilog: Coeficiente linear

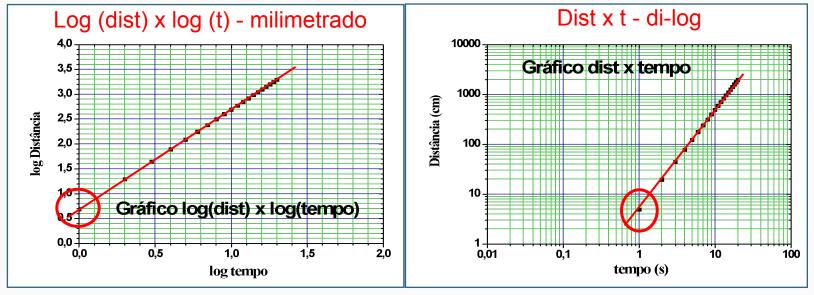
Função:
$$d = \frac{1}{2}gt^2$$

Linearização:

$$\log(d) = \log\left(\frac{1}{2}g\right) + 2\log(t)$$

$$y = a + b x$$

Coef. linear = log da constante multiplicativa



Valor log(y) para log(x) = 0

Esc. logarítmica log(x) = 0 para x = 1 10

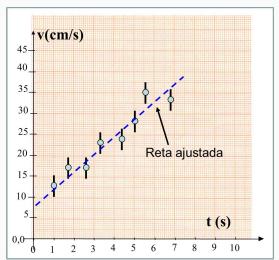
Unidades dos coeficientes angular e linear

Papel Milimetrado

- [coef ang.] = Unid Y / unid X
- [coef linear] = Unid Y

$$V(t) = v_0 + g \cdot t$$

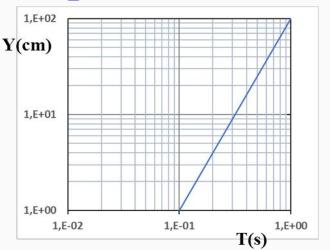
$$[v_0] = cm/s$$
 $[g] = (cm/s)/s = cm/s^2$



Dilog

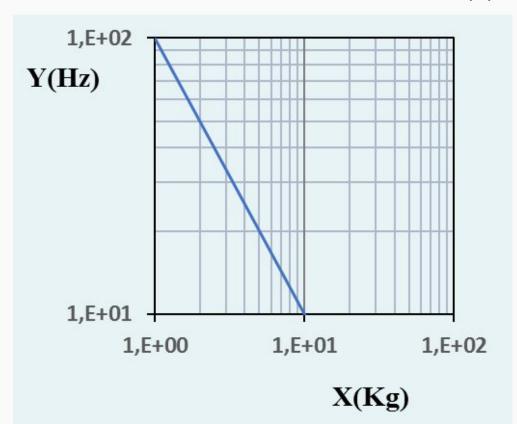
- [coef ang.] = sem unidade
- [coef linear]= Unid Y/ Unid X^{expoente}

$$Y = \frac{1}{2}gT^2 \qquad [g] = \text{cm / s}^2$$



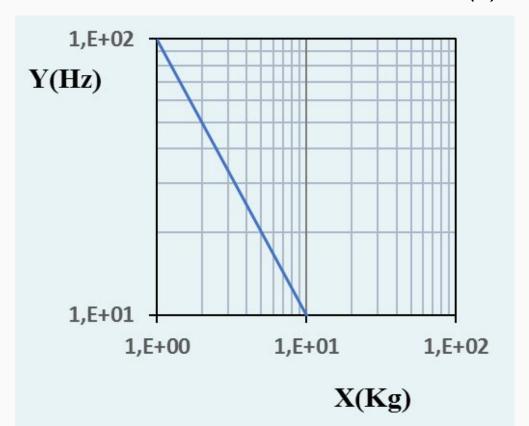
Exercício em aula

Avalie a unidade do coeficiente linear (a) da expressão: Y=aX^b



Exercício em aula

Avalie a unidade do coeficiente linear (a) da expressão: Y=aX^b



1) Determinar o expoente através de:

$$EXP = \frac{\Delta Y/L_y}{\Delta X/L_x}$$

$$EXP = 2$$

2) Definir a unidade de a:

$$Un(a) = \frac{Un(Y)}{Un(X)^b}$$

$$[a] = Hz/Kg^2$$

Análise di-log

O papel di-log é uma linearização especial de uma equação do tipo:

$$y = Ax^B$$

Para nosso caso, temos:
$$f_n = Bn^{\alpha}$$
 onde, $B = cte = CL^{\beta}T^{\gamma}\mu^{\delta}$ $\log(f_n) = \log(B) + \alpha \cdot \log(n)$ $y = a + b \cdot x$ $y = \log(f_n)$ $x = \log(n)$ $a = \log(B)$ $b = \alpha$ função variavel Coef. inear Coef. ang

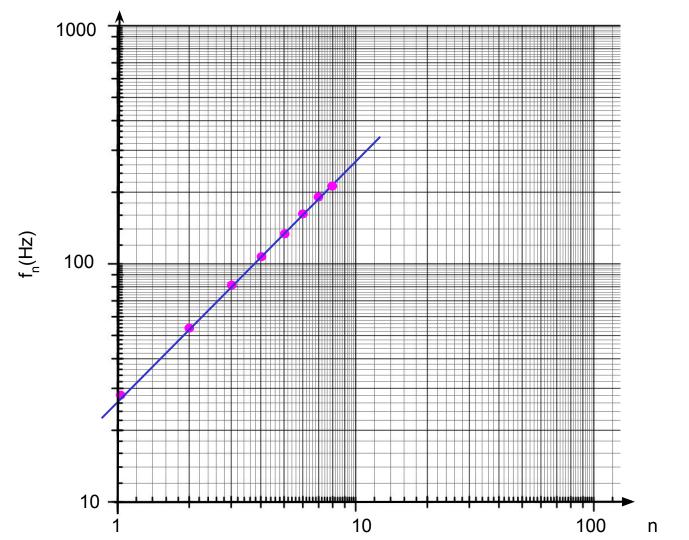
Assim em um gráfico no papel dilog de f x n, o coeficiente linear será numericamente igual ao expoente.

Usando o papel dilog não é necessário calcular os logaritmos dos valores, e a curva obtida será uma reta.

Gráficos de f_n x n utilizando o papel dilog Extrair os parâmetros α e B de um ajuste de reta 1.

f =	B	n^{α}
-----	---	--------------

n	f _n (Hz)	σ f _n (Hz)
1	28	1
2	54,0	0,5
3	80,8	0,4
4	107	1
5	134	1
6	160	1
7	187,0	0,5
8	212,0	0,5



Vamos extrair os parâmetros $\alpha \in \mathbf{B}$ do ajuste da reta.

Para o coeficiente linear:

LEIA A COORDENADA DO PONTO diretamente na escala logarítmica no qual a reta cruza o eixo da função y para x = 1. O coeficiente linear será numericamente igual a **B**.

$$B = 26 \pm 1 Hz$$

Para o coeficiente angular:

<u>Método 1</u> (mais simples para calcular as incertezas)

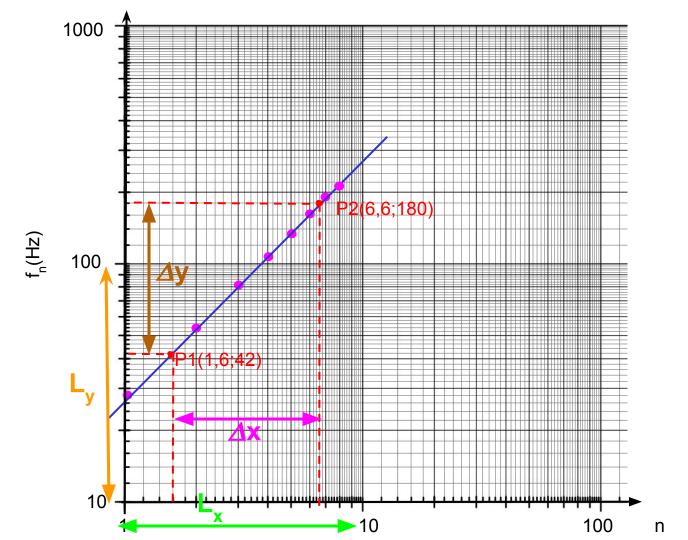
Escolha dois pontos (de preferência afastados entre si).

Usando a régua **MEÇA A DISTÂNCIA** tanto na vertical (Δy) como na horizontal (Δx) entre os pontos P1 e P2.

MEÇA AS DISTÂNCIAS para a variação de uma década na escala logarítmica tanto para y (L_v) como para x (L_x) .

Calcule o coeficiente angular α como:

$$\alpha = \frac{\Delta y/L_y}{\Delta x/L_x}$$



Pontos escolhidos:

P1(1,6;42) P2(6,6;180)

 $\Delta y = 5.40 \pm 0.05$ cm - Distância na vertical entre os pontos P1 e P2

 $\Delta x = 5.25 \pm 0.05$ cm - Distância na horizontal entre os pontos P1 e P2

 $L_y = 8,55 \pm 0,05$ cm - Distância para a variação de uma década na escala log em y

L´ = 8,55 ± 0,05 cm - Distância para a variação de uma década na escala log em x

$$\alpha = \frac{\Delta y/L_y}{\Delta x/L_z} = \frac{5,40/8,55}{5,25/8,55} = 1,0286$$

Vamos calcular a incerteza de α :

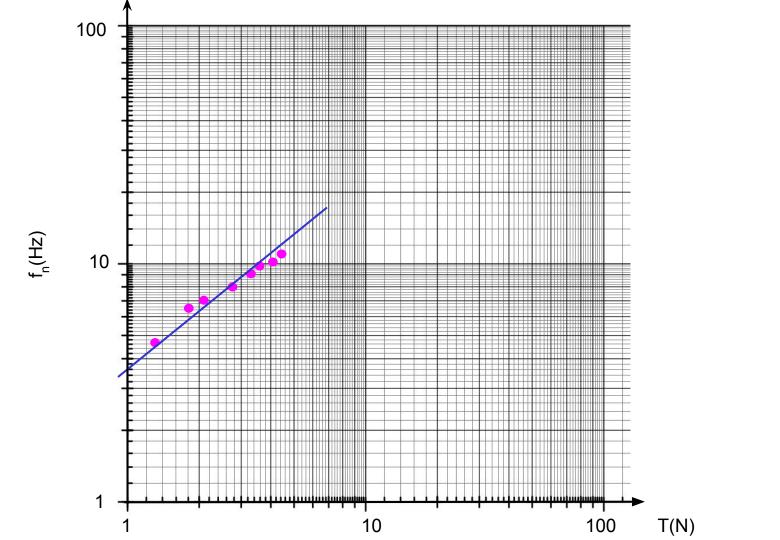
$$\boldsymbol{\sigma}_{\boldsymbol{\alpha}} = \boldsymbol{\alpha} \cdot \sqrt{\left(\frac{\boldsymbol{\sigma}_{\Delta y}}{\Delta y}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{\Delta x}}{\Delta x}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{L y}}{L_{y}}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{L x}}{L_{x}}\right)^{2}}$$
$$\boldsymbol{\sigma}_{\boldsymbol{\alpha}} = 0.016$$

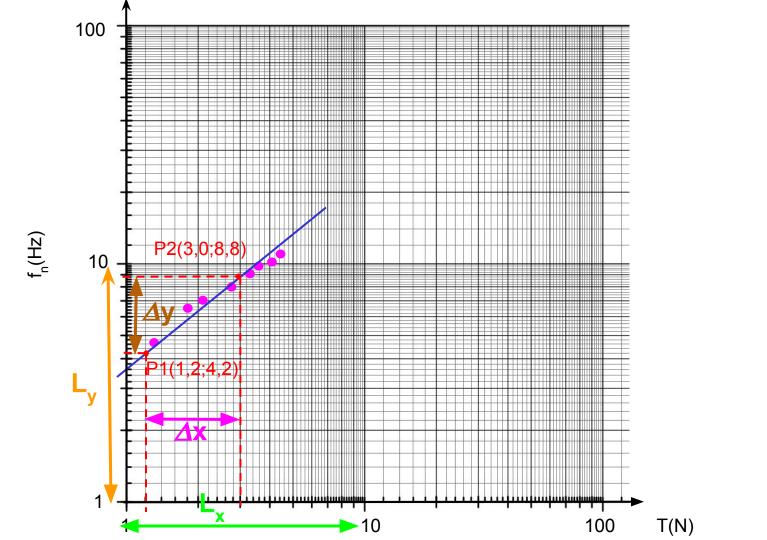
$$\alpha = 1,03 \pm 0,02$$

Gráficos de $f_n \times T$ utilizando o papel dilog Extrair o parâmetro γ

 $f = AT^{\gamma}$

T(N)	$\sigma_{_{\!T}}$ (N)	f _n (Hz)	σ f _n (Hz)
1,318	0,001	5,7	0,2
1,835	0,001	6,8	0,3
2,069	0,001	7,0	0,1
2,708	0,001	7,9	0,4
3,263	0,001	8,8	0,2
3,574	0,001	9,2	0,3
4,136	0,001	9,8	0,4
4,737	0,001	10,5	0,3





Pontos escolhidos:

P1(1,2;4,2)
$$\Delta y = 2,30 \pm 0,05$$
 cm - Distância na vertical entre os pontos P1 e P2 $\Delta x = 3,40 \pm 0,05$ cm - Distância na horizontal entre os pontos P1 e I

 $\Delta x = 3,40 \pm 0,05$ cm - Distância na horizontal entre os pontos P1 e P2 $L_y = 8,55 \pm 0,05$ cm - Distância para a variação de uma década na escala log em y $L_x = 8,55 \pm 0,05$ cm - Distância para a variação de uma década na escala log em x

$$p = \frac{\Delta y/L_y}{\Delta x/L_z} = \frac{2,30/8,55}{3,40/8,55} = 0,676$$

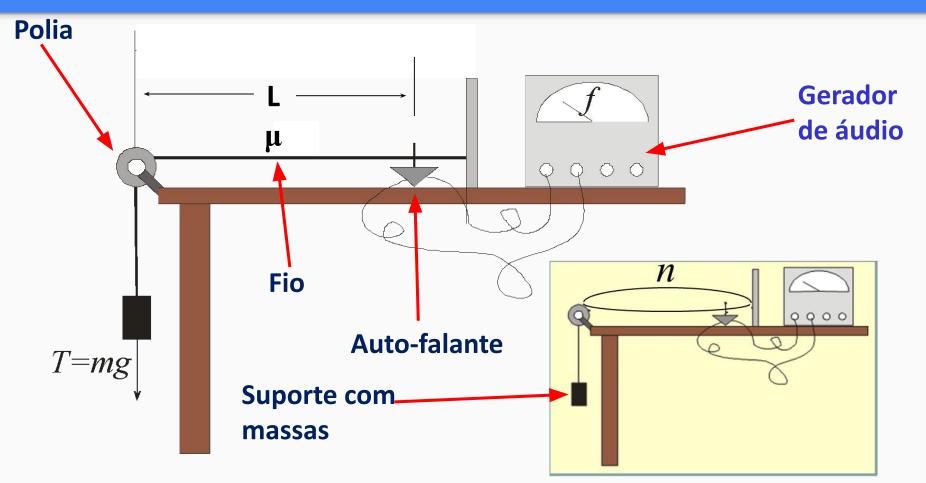
Vamos calcular a incerteza de γ :

$$\boldsymbol{\sigma}_{\boldsymbol{\nu}} = \boldsymbol{\nu} \cdot \sqrt{\left(\frac{\boldsymbol{\sigma}_{\Delta y}}{\Delta y}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{\Delta x}}{\Delta x}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{L y}}{L_{y}}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{L x}}{L_{x}}\right)^{2}}$$

$$\sigma_{\nu} = 0.019$$

Atividade prática

Arranjo experimental



Procedimento experimental

- Quatro parâmetros a serem estudados: n, L, μ e T
 - 。 Obter dados da dependência da frequência
 - Frequência em função de um parâmetro
 - Manter outros 3 parâmetros fixos.
 - Medidas
 - Dependência da frequência com n
 - $_{\circ}$ Fixos: μ do fio de nylon, comprimento do fio e massa
 - Dependência da frequência com T (massa)
 - $_{\circ}$ Fixos: μ do fio de nylon, comprimento do fio e n (2)
 - Dependência da frequência com μ
 - Fixos: massa, comprimento do fio e n (2)
 - Dependência da frequência com L
 - 。 Fixos: μ do fio de nylon, massa e n (2)

Aula anteriori

Aula de hoje

Procedimento experimental

Medidas

- Dependência da frequência com L
 - Fixos: μ do fio de nylon, massa (m~100g) e n (2)
 - Pelo menos 5 valores, entre ~40 e 185 cm (+ equidistantes).
- Dependência da frequência com μ
 - Fixos: massa, comprimento do fio e n (2)
 - Ajustar comprimento L ~185 cm para todas montagens.
 - Fazer rodízio entre as montagens (pelo menos 5, incluindo a espessura menor (~0,2mm) e a maior (~0,9mm).
 - Levar as massas fixas (~100 g) escolhidas pelo grupo.

Análise dos dados – aula de hoje

- Fazer o gráfico di-log das frequências de ressonância como função dos parâmetros medidos:
 - Gráfico 1: f vs comprimento do fio (L)
 - _ο Gráfico 2: f vs densidade linear (μ)
 - Grupos de 2 alunos: aluno 1 faz o gráfico 1.
 - aluno 2 faz o gráfico 2.
 - Grupos de 3 alunos: aluno 1 faz o gráfico 1.
 - aluno 2 faz o gráfico 2.
 - aluno 3 também faz o gráfico 1.
- Os dados realmente são uma reta no papel di-log?
 - Calcular os coeficientes angulares (com incerteza) para os dados acima.

Análise dos dados - relatório

- Apresentar o gráfico di-log das frequências de ressonância como função dos parâmetros medidos:
 - ∘ f vs modo de vibração (n)
 - ∘ f vs tensão no fio (m)
 - ∘ f vs comprimento do fio (L)
 - $_{\circ}$ f vs densidade linear (μ)
- Ajuste de reta no papel di-log:
 - Todos os gráficos: calcular os coeficientes angulares
 - Gráfico f vs modo de vibração (n): calcular também o coeficiente linear
 - Calcular o valor da constante C

Não esqueça de avaliar as incertezas (graficamente) para todos os gráficos!

Incerteza do valor de C

Função original: $f = C n^{\alpha} L^{\beta} T^{\gamma} \mu^{\delta}$

Fixos para essas medidas

Ajuste no gráfico dilog: $f = B n^{\alpha}$

Coef linear =
$$B = C L^{\beta} T^{\gamma} \mu^{\delta} \implies C = \frac{B}{L^{\beta} T^{\gamma} \mu^{\delta}}$$

Cálculo de C: Utilizar Parâmetros no SI e g = (9,7865 ± 0,0001) m/s²

Incerteza de \subset (σ_C): Sem considerar as incertezas dos expoentes

$$\frac{\sigma C}{C} = \sqrt{\left(\frac{\sigma B}{B}\right)^2 + \left(\beta \frac{\sigma L}{L}\right)^2 + \left(\gamma \frac{\sigma m}{m}\right)^2 + \left(\delta \frac{\sigma \mu}{\mu}\right)^2} \quad \text{Utilizar: } \sigma \mu = 0,02 \ \mu$$

Discussão

 Comparação dos valores obtidos com a fórmula proposta (fator Z – usar valores dos expoentes obtidos nas duas aulas):

$$f=\frac{1}{2}\frac{n}{L}\sqrt{\frac{T}{\mu}}$$

- Ajuste de reta foi a melhor opção nos gráficos dilog?
 - o Pontos realmente estão alinhados?
- Avaliação das incertezas e método
 - o Arranjo ou procedimento precisa ser melhorado?

Para a próxima aula (07/07):

- No moodle (aba Experimento # 7 Cordas Vibrantes):
 - Exercício de casa Sexta de manhã (até dia 07/07).

- Entrega do Relatório (um por grupo)
- Lembrando: dia 07/07/23 PROVA 2

Gisell Ruiz Boiset gisell@if.usp.br

Bloco F – Conjunto Alessandro Volta – sl. 209

Relembrando

Incertezas instrumentais

- Precisão do instrumento de medida:
 - o Instrumentos analógicos (ex. régua): é a metade da menor divisão
 - Cuidado com instrumentos que possuem escalas auxiliares tipo nônio (expaquímetro): a incerteza é a menor divisão do nônio
 - o Instrumentos digitais (ex: multímetro): 1 unidade na escala do último dígito dísponivel

Incertezas estatísticas

- Flutuação no resultado das medidas
 - $_{\circ}$ Representação do resultado de N medidas x_{i} : média (\bar{x})

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

 \circ Incerteza estatística do resultado das medidas: desvio padrão da média (σ_m)

$$\sigma_m = \frac{\sigma}{\sqrt{N}}$$

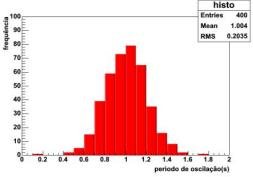
Sendo s o desvio padrão:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \overline{x})^2}{N-1}}$$

Equações válidas para medidas realizadas nas mesmas condições e que possuem as mesmas incertezas (instrumental +

aleatórias)

- Distribuição de dados:
 - o simétrica em torno de um certo valor:
 - Valor médio = valor mais provável
 - o decresce ao se afastar desse valor.



Incertezas sistemáticas

- A medida é desviada em uma única direção:
 - o Ex: uma régua onde o primeiro mm está faltando e o experimentador não percebe
 - Todas as medidas serão 1 mm maiores do que deveriam
 - o Ex: uma balança descalibrada e/ou com o zero deslocado
- Esse tipo de incerteza, em geral, só é percebida quando um resultado difere do esperado
 - Devem ser corrigidas ou refeitas

Incerteza total de uma medida

- Incertezas resultantes do ato de medir:
 - $_{\circ}$ Instrumental: σ_{inst}
 - $_{\circ}$ Estatística: σ_{estat}
- Incerteza total da medida (σ): combinação de todas as incertezas

$$\sigma = \sqrt{\sigma_{inst}^2 + \sigma_{estat}^2}$$

Representação dos resultados: algarismos significativos

Regra geral:

- Só faz sentido colocar um (em alguns casos dois) algarismo significativo na incerteza
- E a incerteza é que determina o número de algarismos significativos da medida

Forma correta: $(2,74 \pm 0,05)$ cm

Incerteza absoluta e relativa

• Incerteza absoluta (σ_{abs}): Valor apresentado no resultado

Volume =
$$27,4 \pm 0,5 \text{ cm}^3$$

• Incerteza relativa (σ_{rel}): Porcentagem da incerteza sobre o valor principal

$$\sigma_{rel} = \frac{\sigma_{abs}}{\text{valor principal}} = \frac{0.5}{27.4} = 0.018 \text{ ou } 1.8\%$$

o Assim, se o valor da incerteza representa 5% do valor medido:

$$\sigma_{abs}$$
 = valor principal × 0,05
 σ_{abs} = 27,4 × 0,05 = 1,4

Critério para compatibilidade

- Superposição em 1σ = compatíveis
 - o Superposição em 2σ ou 3σ
 - Compatíveis com menor probabilidade
- Teste Z indica essa probabilidade
 - $_{\circ}$ Comparação entre (a $\pm \sigma_{a}$) e (b $\pm \sigma_{b}$)

$$Z = \frac{\left| a - b \right|}{\sqrt{\sigma_a^2 + \sigma_b^2}}$$

 $0 < Z \le 1$, compatíveis ao nível de 1σ $1 < Z \le 2$, compatíveis ao nível de 2σ $2 < Z \le 3$, compatíveis ao nível de 3σ Z > 3, discrepantes

Propagação de incerteza

- Para medidas indiretas:
 - Calcular a influência da incerteza da medida primária para a grandeza calculada

Medida:
$$x \pm \sigma_x$$

Grandeza calculada:

$$w = w(x) \pm \sigma_w = \sqrt{\left(\frac{\partial w}{\partial x} \sigma_x\right)^2}$$

Se a função f (x,y,z,t....) calculada depende de várias variáveis:

$$x \pm s_x$$
; $y \pm s_y$; $z \pm s_z$; $t \pm s_t$;

$$\sigma_{w} = \sqrt{\left(\frac{\partial w}{\partial x} \sigma_{x}\right)^{2} + \left(\frac{\partial w}{\partial y} \sigma_{y}\right)^{2} + \left(\frac{\partial w}{\partial z} \sigma_{z}\right)^{2} + \left(\frac{\partial w}{\partial t} \sigma_{t}\right)^{2} + \cdots}$$

Propagação de incerteza

$$f = x \pm y \Rightarrow \sigma_f = \sqrt{\sigma_x^2 + \sigma_y^2}$$

$$o = Pos_{lente} - Pos_{fonte}$$

$$\sigma o = \sqrt{(\sigma P_L)^2 + (\sigma P_f)^2}$$

$$f = \frac{x^a y^b}{z^c} \Rightarrow \frac{\sigma_f}{f} = \sqrt{\left(a\frac{\sigma_x}{x}\right)^2 + \left(b\frac{\sigma_y}{y}\right)^2 + \left(c\frac{\sigma_z}{z}\right)^2}$$

$$d = \frac{m}{V} = \frac{4m}{\pi D^2 h}$$

$$\frac{\sigma_d}{d} = \sqrt{\left(\frac{\sigma_m}{m}\right)^2 + \left(2\frac{\sigma_D}{D}\right)^2 + \left(\frac{\sigma_h}{h}\right)^2}$$

Média simples e Média ponderada

Média simples

Quando se faz **várias determinações de uma grandeza** e cada valor tem **incertezas iguais**

média (\bar{x})

$$\bar{x} = \frac{\sum_{i=1}^{N} x_i}{N}$$

desvio padrão
$$\sigma = \sqrt{\frac{\sum_{i=1}^{N} (x_i - \bar{x})^2}{N-1}}$$

desvio padrão da média (σ_m)

$$\sigma_m = \frac{\sigma}{\sqrt{N}}$$

Média ponderada

Quando se faz várias determinações de uma grandeza e cada valor tem incerteza diferente

$$\bar{f}_{pond} = \frac{\sum p_i f_i}{\sum p_i}$$

onde:
$$p_i = \frac{1}{\sigma_{f_i}^2}$$

• E a incerteza de f_{pond} é dada por:

$$\sigma_{f_{pond}} = \sqrt{\frac{1}{\sum p_i}}$$

Histograma

Como fazer um Histograma

• 1^a etapa : decidir a escala e a largura do canal do histograma

```
 mínimo : 2 s máximo: 7 s
```

o largura do canal: 1 s

• 2ª etapa : calcular a frequência com que os dados aparecem em cada intervalo

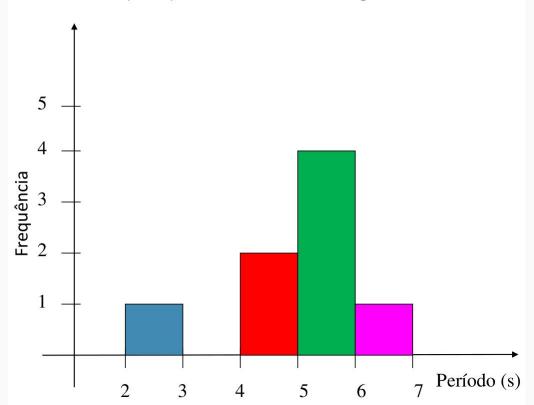
$$[2,3[\rightarrow 1]$$

 $[3,4[\rightarrow 0]$
 $[4,5[\rightarrow 2]$
 $[5,6[\rightarrow 4]$
 $[6,7[\rightarrow 1]$

medida	período (s)			
1	2,4			
2	5,3			
3	5,8			
4	6,1			
5	5,5			
6	4,7			
7	4,1			
8	5,2			

Como fazer um Histograma

• 3ª etapa : preencher o histograma



medida	período (s)			
1	2,4			
2	5,3			
3	5,8			
4	6,1			
5	5,5			
6	4,7			
7	4,1			
8	5,2			

frequência

$$[2,3[\rightarrow 1] \\ [3,4[\rightarrow 0] \\ [4,5[\rightarrow 2] \\ [5,6[\rightarrow 4] \\ [6,7[\rightarrow 1] \\]$$

Propriedades Gráficas

Média Valor + provável

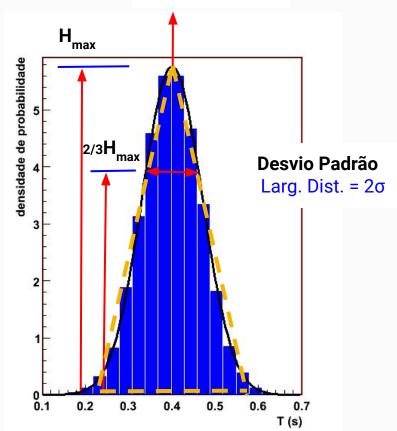
- Média
 Valor mais provável
- Desvio Padrão (σ)
 1/2 largura a 2/3 da altura máxima(H_{max})
- Total aproximado de eventos N

 Área do triângulo ajustado na distribuição

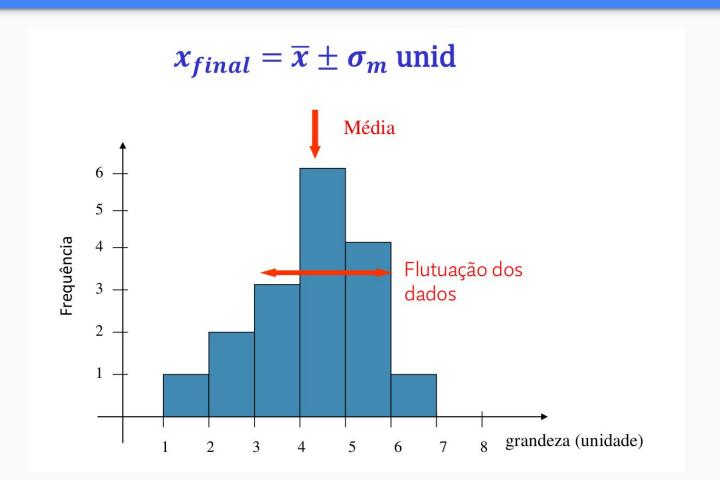
$$N_{dist} = \frac{(N_{max} \cdot N_{colunas})}{2}$$

Incerteza da média
 Incerteza estatística

$$\sigma_m = \frac{\sigma}{\sqrt{N}}$$



Representação de dados



Modelo Linear

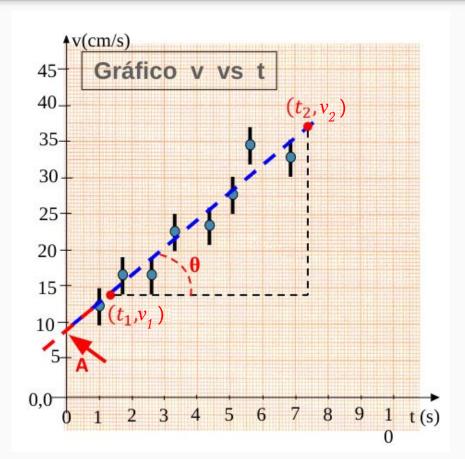
Ajuste de reta

• Modelo linear:

$$Y = A + B X$$

- Determinação dos coeficientes angular (A) e linear (B):
 - Coeficiente linear A: ponto em y que a reta cruza o eixo vertical (x=0)
 - Coeficiente angular B:
 - Escolher pontos distantes sobre a reta, que NÃO sejam pontos experimentais

$$B = \tan \theta = \frac{\Delta Y}{\Delta X} \Big|_{reta} = \frac{\Delta v}{\Delta t} \Big|_{reta}$$
$$= \frac{v_2 - v_1}{t_2 - t_1}$$

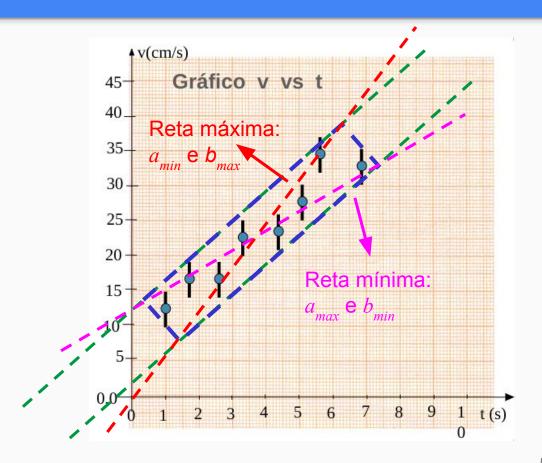


Incertezas

- A incerteza de A e B também é obtida graficamente:
 - o Estimar a reta de menor inclinação possível que ainda descreve os pontos, o que determina os parâmetros máximo A_{max} e mínimo B_{min} ;
 - o Estimar a reta de maior inclinação possível que ainda descreve os pontos, o que determina os parâmetros mínimo A_{min} e máximo B_{max} ;

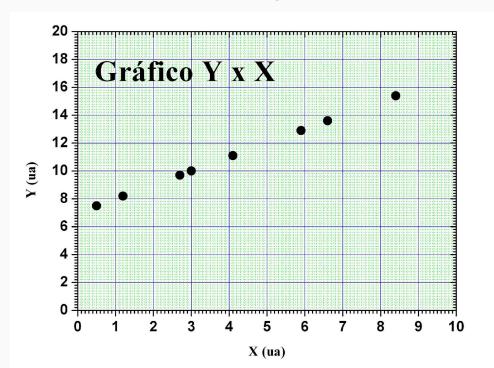
$$\sigma_{A} = \frac{A_{m\acute{a}ximo} - A_{m\'{i}nimo}}{2}$$

$$\sigma_{B} = \frac{B_{m\acute{a}ximo} - B_{m\'{i}nimo}}{2}$$



Incertezas

- Para incertezas pequenas e pontos bem alinhados:
 - o Usar precisão da leitura no gráfico, se não for possível traçar um retângulo.



No exemplo: 1/2 da menor divisão da escala.

Escala em x - σ_x = 0,05 ua Escala em y - σ_y = 0,1 ua

Análise mono-log

O papel monolog é uma linearização especial de uma equação do tipo:

$$y = Ae^{Bx}$$

Para nosso caso, temos:

$$\Delta T = T - T_R = \Delta T_0 e^{-t/\tau}$$

$$\log(\Delta T) = \log(\Delta T_0) + (-1/\tau)\log(e)t$$

$$Y = a + bt$$

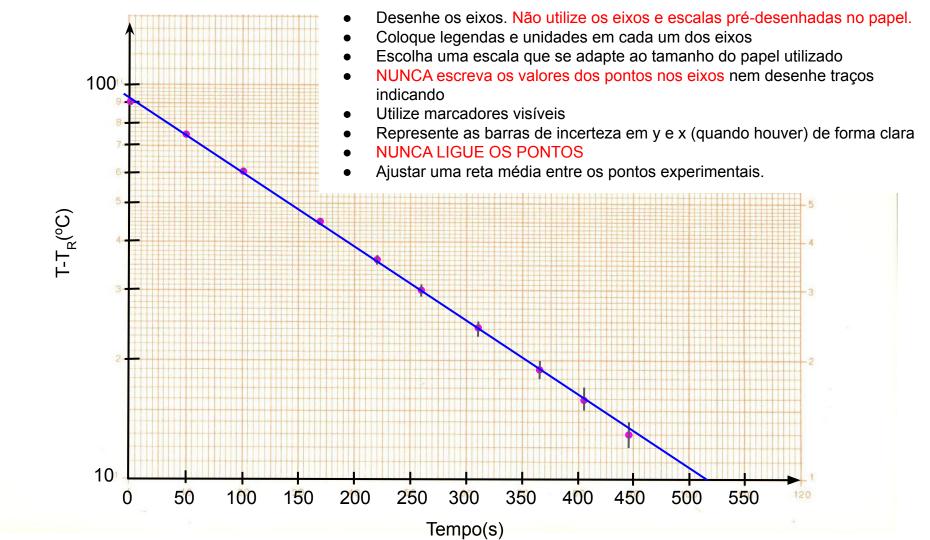
Assim em um gráfico no papel monolog de $\Delta T \times t$, o coeficiente linear será numericamente igual a ΔT_0 enquanto que o coeficiente angular será numericamente igual a $(-1/\tau)\log(e)$

Usando o papel monolog não é necessário calcular os logaritmos dos valores, e a curva obtida será uma reta.

1. Gráficos de temperatura × tempo utilizando o papel monolog

Extrair os parâmetros ΔT_0 e au de um ajuste de reta

Pontos	tempo (seg)	$oldsymbol{\sigma}$ tempo (seg)	∆ T (°C)	Ø ∆T (ºC)
1	0,00	0,01	90	1
2	49,65	0,01	75	1
3	102,97	0,01	60	1
4	170,49	0,01	45	1
5	220,14	0,01	36	1
6	262,07	0,01	30	1
7	311,94	0,01	24	1
8	364,95	0,01	19	1
9	404,41	0,01	16	1
10	448,54	0,01	13	1

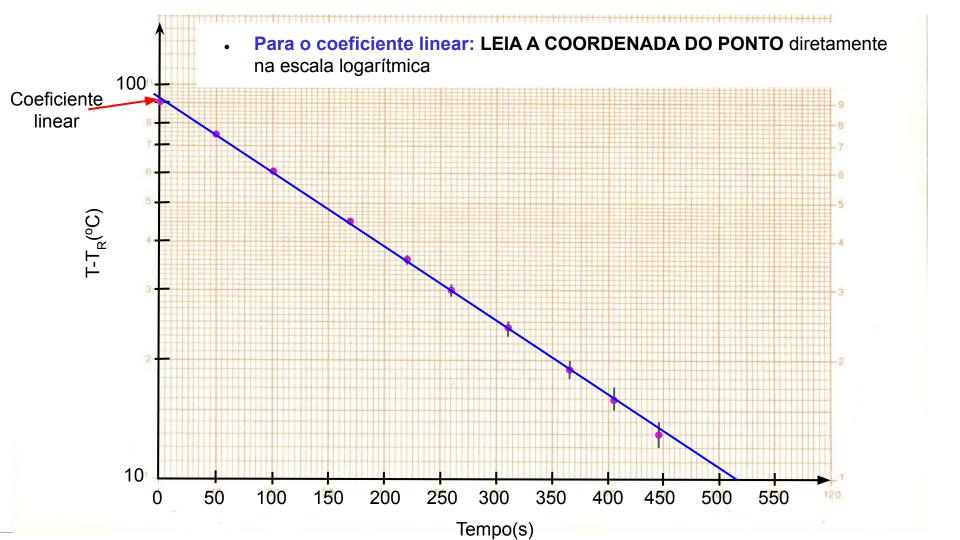


Vamos extrair os parâmetros ΔT_0 e τ do ajuste da reta.

Para o coeficiente linear:

LEIA A COORDENADA DO PONTO diretamente na escala logarítmica no qual a reta cruza o eixo da função y para x = 0. O coeficiente linear será numericamente igual a ΔT_0

$$\Delta T_0 = 92 \pm 1 \,^{\circ}C$$



Para o coeficiente angular:

Método 1 (mais simples para calcular as incertezas)

Escolha dois pontos (de preferência afastados entre si). Primeiro **LEIA AS COORDENADAS X DOS PONTOS**: no exemplo seriam os valores de tempo para o P1 e tempo para o P2.

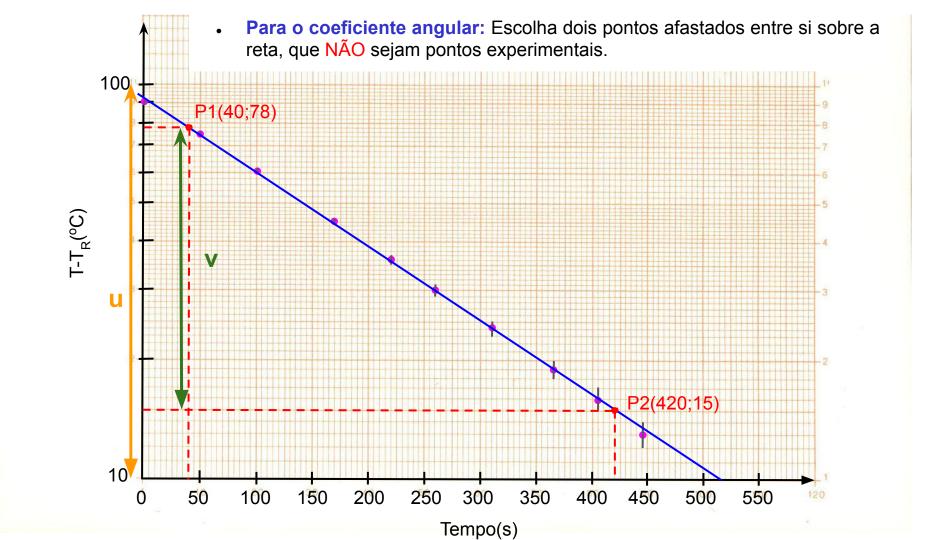
Usando a régua MEÇA A DISTÂNCIA NA VERTICAL ENTRE OS PONTOS P1 e P2 (que chamaremos de v) e meça a distância para a variação de uma década na escala logarítmica (chamaremos de u).

Calcule o coeficiente angular **b** como:

$$b = \frac{v/u}{t_2 - t_1}$$

que será igual a:

$$b = \frac{-\log(e)}{\tau}$$



Pontos escolhidos:

P1(40;78)

u = 9,05 ± 0,05 cm - Distância para a variação de uma década na escala log

$$v = 6,50 \pm 0,05$$
 cm - Distância na vertical entre os pontos P1 e P2

O sinal - é colocado por conta da inclinação da reta.

Vamos calculator incerteza de b:

 $b = \frac{v/u}{t_0 - t_1} = \frac{6,50/9,05}{420 - 40} = \frac{0,718}{380} = -0,00189 \,\mathrm{s}^{-1}$

$$\boldsymbol{\sigma}_{b} = b \sqrt{\left(\frac{\boldsymbol{\sigma}_{v}}{v}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{u}}{u}\right)^{2} + \left(\frac{\boldsymbol{\sigma}_{\Delta t}}{\Delta t}\right)^{2}} \qquad \text{onde:} \qquad \frac{\Delta t = t_{2} - t_{1}}{\boldsymbol{\sigma} \Delta t = \sqrt{\boldsymbol{\sigma}_{t1}^{2} + \boldsymbol{\sigma}_{t2}^{2}}} \qquad \boldsymbol{\sigma}_{t1} = \boldsymbol{\sigma}_{t2} = \boldsymbol{\sigma}_{t}$$

$$\boldsymbol{\sigma} \boldsymbol{\Delta} t = \sqrt{\boldsymbol{\sigma}_{t1}^2 + \boldsymbol{\sigma}_{t2}^2} \qquad \boldsymbol{\sigma}_{t1} = \boldsymbol{\sigma}_{t2} = \boldsymbol{\sigma}_{t}$$
$$\boldsymbol{\sigma}_{t} = \frac{50/10}{2} = 2,5 \approx 3s$$

Como os pontos estão alinhados usamos metade da menor divisão da escala em x

$$\sigma \Delta t = \sigma \sqrt{2} = 3\sqrt{2} = 4.2 \approx 4s$$

$$\sigma_b = 0.00189 \sqrt{\left(\frac{0.05}{6.50}\right)^2 + \left(\frac{0.05}{9.05}\right)^2 + \left(\frac{4}{380}\right)^2} = 0.000027 \approx 0.00003 \,\mathrm{s}^{-1}$$

$$b = -0,00189 \pm 0,00003 \,\mathrm{s}^{-1}$$

Vamos calcular **T**:

$$b = \frac{-\log(e)}{r}$$

$$r = \frac{-\log(e)}{b} = \frac{0,4342}{0,00189} = 229,735 s$$

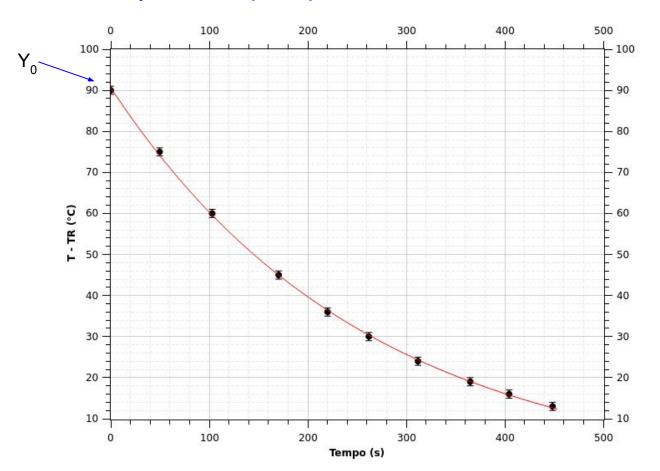
Vamos calcular incerteza de **T**:

$$\frac{\boldsymbol{\sigma}_{r}}{\boldsymbol{\tau}} = \frac{\boldsymbol{\sigma}_{b}}{b} \longrightarrow \boldsymbol{\sigma}_{r} = \boldsymbol{\tau} \frac{\boldsymbol{\sigma}_{b}}{b} = 229,735 \frac{0,00003}{0,00189} = 3,6 \approx 4 s$$

$$\tau = (230 \pm 4) s$$

Exponencial decrescente

Dados experimentais ($\Delta T x t$)



Exponencial: $Y = Y_0 e^{-At}$

Determinação de Y₀:

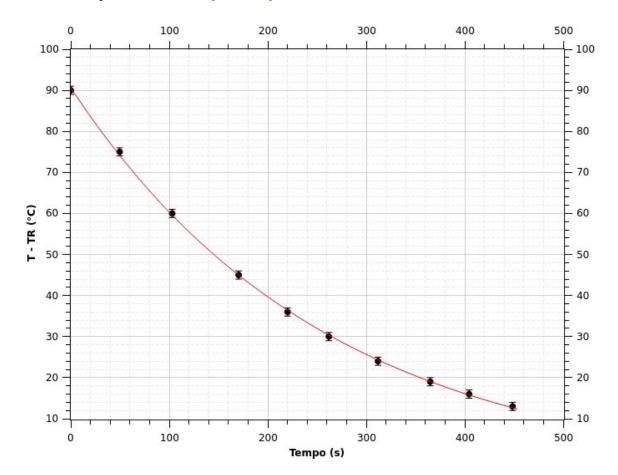
$$Y_0 = Y para t = 0$$

Para nosso caso:

$$\Delta T = \Delta T_0 e^{-t/\tau}$$

$$\Delta T_0 = (91 \pm 1)^{\circ} C$$

Dados experimentais ($\Delta T x t$)



Exponencial: $Y = Y_0 e^{-At}$

Determinação de A:

Conceito de meia vida

é o tempo que leva para a
quantidade inicial reduzir-se à
metade.

$$\frac{Y_0}{2} = Y_0 \cdot e^{-A \cdot t_{1/2}}$$

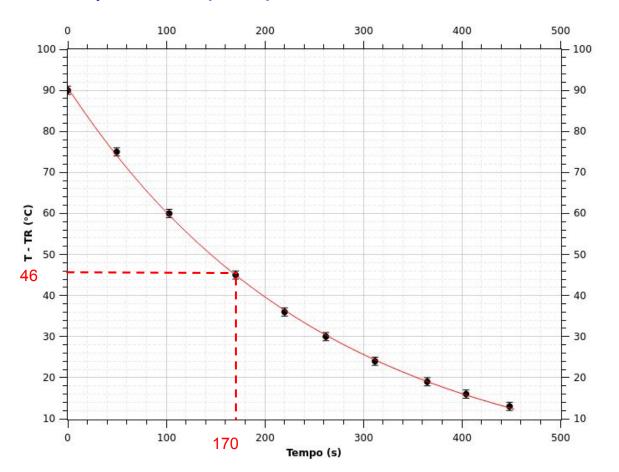
$$\ln\left(\frac{1}{2}\right) = \ln\left(e^{-A \cdot t_{1/2}}\right)$$

$$\ln\left(\frac{1}{2}\right) = -A \cdot t_{1/2}$$

$$\ln(2) = A \cdot t_{1/2}$$

$$A = \frac{\ln(2)}{2}$$

Dados experimentais ($\Delta T x t$)



Exponencial: $Y = Y_0 e^{-At}$

Para nosso caso:

$$\Delta T = \Delta T_0 e^{-t/\tau}$$

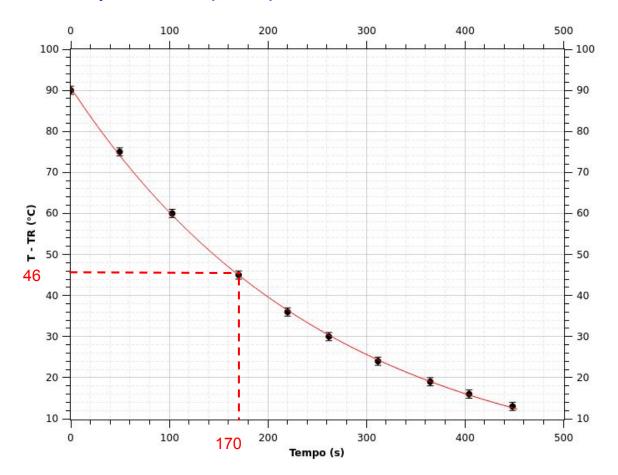
$$A = \frac{\ln(2)}{t_{1/2}} = \frac{\ln(2)}{170} = 0,0040 \text{ s}^{-1}$$

$$\frac{\boldsymbol{\sigma}_A}{A} = \frac{\boldsymbol{\sigma} t_{1/2}}{t_{1/2}}$$

$$\sigma_A = A \frac{\sigma t_{1/2}}{t_{1/2}} = 0,0040 \frac{10}{170} = 0,0002 \text{ s}^{-1}$$

$$A = (0,0040 \pm 0,0002) s^{1}$$

Dados experimentais ($\Delta T \times t$)



Exponencial: $Y = Y_0 e^{-At}$

Para nosso caso:

$$\Delta T = \Delta T_0 e^{-t/\tau}$$

$$A = (0,0040 \pm 0,0002) s^{1}$$

Temos que:

$$\tau = \frac{1}{A} = \frac{1}{0,0040} = 245,26 \,\mathrm{s}$$

$$\sigma_r = \tau \frac{\sigma_A}{A} = 245,26 \frac{0,0002}{0.0040} = 12 \text{ s}$$

$$r = (245 \pm 12) s$$

Questão:

A taxa de decaimento da ocorrência de uma certa doença é descrita pela equação:

 $N(t) = N_0 e^{-kt}$

Na Tabela 1 temos alguns valores do número de ocorrências da doença em função do número de anos.

Tabela 1. Ocorrências de uma certa doença para alguns anos.

t (anos)	1,1	2	4,7	5,5	6,7
N(t)	50	33	10	7	4

Determine os parâmetros N_O e k, a partir de uma análise gráfica desse conjunto de dados.