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• The characteristics of a plasma in thermodynamic equilibrium can be 
understood from the kinetic Boltzmann equation 

- Note that, in the collision operator sum,    also takes the value of   

• In a closed system, and in the absence of external forces, the equilibrium state 
is spatially homogeneous. In this case, the kinetic equation reduces to simply 

- Where                              is the relative velocity between particles 

• Therefore, in such an equilibrium, one has 
- There are no changes in the distribution function as a result of collisions 

between particles

Under equilibrium conditions, collisions between particles do not 
result in changes of the distribution function

∂fα
∂t

+ v ⋅ ∇fα +
qα

mα
(E + v × B) ⋅ ∇v fα = ∑

β

Ccoll[ fα, fβ]

∑
β

Ccoll[ fα, fβ] = ∑
β

∫Ω ∫vβ
[fα(v′ α) fβ(v′ β) − fα(vα) fβ(vβ)] gαβ σαβ (gαβ, Ω) dΩ d3vβ = 0

gαβ = |vα − vβ |

fα(v′ α) fβ(v′ β) = fα(vα) fβ(vβ)

β α
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• The condition                                          can be understood on the basis of the 
general principle of detailed balance 
- Under equilibrium conditions, the effect of each type of collision is exactly 

compensated by the effect of the corresponding inverse collision

In thermodynamic equilibrium, a given collision process is perfectly 
balanced by its respective inverse collision process

fα(v′ α) fβ(v′ β) = fα(vα) fβ(vβ)

d3vα d3vβ

d3r

d3r d3vα d3r d3vβ

r

vα vβ

[fα(r, vα) d3r d3vα][ fβ(r, vβ) d3r d3vβ] = [fα(r, v′ α) d3r d3v′ α][ fβ(r, v′ β) d3r d3v′ β]
Collision Process

Inverse Collision Process

fα(vα) fβ(vβ) = fα(v′ α) fβ(v′ β)

d3vα d3vβ = d3v′ α d3v′ β

Mostre que (Bittencourt Chap. 21, Sec. 2.2):

fα(r, vα, t) =
d6Nα

d3r d3vα
→ d6Nα = fα(r, vα, t) d3r d3vα
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• The condition                                          has a profound meaning: 
- The sum of the logarithms of the distribution function is conserved during 

elastic collisions 

• There are four independent combinations of particle velocities whose sum 
remains unchanged during elastic collision 

- Conservation of linear momentum: 

- Conservation of energy (no internal states):  

• Obviously,              must be a linear combination:

In thermodynamic equilibrium, a given collision process is perfectly 
balanced by its respective inverse collision process

fα(v′ α) fβ(v′ β) = fα(vα) fβ(vβ)

fα(vα) fβ(vβ) = fα(v′ α) fβ(v′ β)

ln[fα(vα) fβ(vβ)] = ln[fα(v′ α) fβ(v′ β)]
ln fα(vα) + ln fβ(vβ) = ln fα(v′ α) + ln fβ(v′ β)

mαvα + mβvβ = mαv′ α + mβv′ β

1
2

mαv2
α +

1
2

mβv2
β =

1
2

mαv′ 2α +
1
2

mβv′ 2β

ln fα(vα)

ln fα = a0 + a1xmαvαx + a1ymαvαy + a1zmαvαz −
a2

2
mαv2

α
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• Starting from                                                  , one can show that 

• Defining                                      and               , one obtains 

- This expression is know as the Maxwell-Boltzmann, or Maxwellian, equilibrium 
distribution function

Collisions always tend to evolve a distribution function to the 
Maxwellian equilibrium distribution function

ln fα = mα (a0 +
a2

1

2a2 ) −
1
2

mαa2 vα −
a1

a2

2

ln C = mα (a0 +
a2

2a2 ) v0 =
a1

a2

fα = C exp (−
1
2

mαa2 |vα − v0 |2 )

ln fα = a0 + mαa1 ⋅ vα −
a2

2
mαv2

α
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• Normalize the Maxwellian distribution function using 

and show that

Exercise (Chap. 7, Sec 1.4)

fα(vα) = nα ( mα

2 π kB Tα )
3/2

exp (−
mα |vα − uα |2

2 kB Tα )

nα = ∫vα

fα d3vα (Particle number density)

uα =
1
nα ∫vα

vα fα d3vα (Mean fluid velocity)

3
2

nαkBTα =
1
2

mα nα < |vα − v0 |2 > =
1
2

mα ∫vα

|vα − v0 |2 fα d3vα (Mean kinetic energy)



G.P. Canal, 29 March 203

• Thermodynamic equilibrium states 
- Distribution function of plasmas in thermodynamic equilibrium 
- General principle of detailed balance and binary collisions 
- The Maxwell distribution function (particles without internal states) 
- The Boltzmann distribution function (particles with internal states) 
- Equilibrium in the presence of an external force 

• Degree of ionization and the Saha equation

PGF5112 - Plasma Physics I



G.P. Canal, 29 March 203

• To account for inelastic collisions, one must take into consideration the 
possibility of a change in the internal state of the particles 
- The energy conservation equation must now take the total energies of the 

particles,                             , with  being its internal energy in state j 

• This leads to 

• Following the same steps as before leads us to 

- The constant A can be found from the normalization condition: 

• Mostre que

ℰαj

In thermodynamic equilibrium, inelastic collisions change the 
internal state of the particles

Eαj =
1
2

mαv2
α + ℰαj

ln fα = a0 + mα a1 ⋅ vα − a2 ( 1
2

mαv2
α + ℰαj)

fα(vα, jα) = A exp (−
mα |vα − uα |2

2 kB Tα ) exp (−
ℰαj

kB Tα )
nα = ∫vα

fα d3vα

A = ( mα

2 π kB Tα )
3/2

∑
j states

exp (−
ℰαj

kB Tα )
−1

= ( mα

2 π kB Tα )
3/2

∑
j energy levels

gj exp (−
ℰαj

kB Tα )
−1
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• Substituting the normalization constant A yields the equilibrium distribution 
function, which can be written as                                 , where 
-  is the Maxwellian distribution over the velocities of the particles and 
-   determines the distribution over the internal states of the particles, with 

• Therefore, the equilibrium distribution of velocities remains Maxwellian even 
when inelastic collisions occur 

• At the same time, inelastic collision lead to equilibrium distribution among the 
various internal states of the atoms and ions

fv(vα)
fj( j)

In thermodynamic equilibrium, inelastic collisions change the 
internal state of the particles

fα(vα, jα) = fv(vα) fj( j)

fj( j) =
exp (−

ℰαj

kB Tα )
∑

k states
exp (− ℰαk

kB Tα )
=

gj exp (−
ℰαj

kB Tα )
∑

k energy levels
gk exp (− ℰαk

kB Tα )
(  and  are the statistical 

weights determining the 
degeneracy of that 

particular energy level)

gj gk
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• Let’s now calculate the equilibrium distribution while accounting for the 
presence of an external conservative force  
- Under this assumption, the kinetic equation becomes 

• Let’s now assume that the velocity distribution is given by a Maxwellian 
distribution with  and with  (local equilibrium): 

- Under this assumption, the collision operator vanishes and the kinetic 
equation becomes

Fα = − ∇Uα(r)

u = 0 nα = nα(r)

External forces can cause the equilibrium distribution function to be 
non-homogeneous

v ⋅ ∇fα +
Fα

mα
⋅ ∇v fα = ∑

β

Ccoll[ fα, fβ]

fM (v ⋅ ∇nα) − nα
∇Uα ⋅ ∇v fM

mα
= 0

fα(r, vα) = nα(r)( mα

2 π kB Tα )
3/2

exp (−
mα |vα |2

2 kB Tα ) = nα(r) fM(vα)
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• Using the fact that                                 , the equation can be written as 

- Since , one has that 

- This exponential factor, responsible for the inhomogeneity, is the so-called 
Boltzmann factor 

• An importante example is for  being the electrostatic energy 
- In this case, the plasma density varies as

dU = ∇U ⋅ dr

Uα(r) = qα Φ(r)

External forces can cause the equilibrium distribution function to be 
non-homogeneous

∇v fM = −
mαvα

kB Tα
fM

fM v ⋅ (∇nα +
nα

kB Tα
∇Uα) = 0 →

∇nα

nα
= −

∇Uα

kB Tα

dnα

nα
= −

dUα

kB Tα
→ nα(r) = nα0 exp [−

Uα(r)
kB Tα ]

nα(r) = nα0 exp [−
qα Φ(r)
kB Tα ]
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• From statistical mechanics, one can determine the degree of ionization of a 
gas (or plasma) in thermal equilibrium at some temperature T 

• A considerable degree of ionization can be achieved even when the average 
thermal energy of the particles is far below the ionization potential 

• From statistical mechanics, one has that 

- Here,     and     are the statistical weights (degeneracy factor) associated  
to the energies      and

na

nb
=

ga

gb
exp [− (Ua − Ub)

kBT ]

Degree of ionization of a gas or a plasma

ga gb
Ua Ub
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• For the particular case of a system having only 2 energy levels, the fraction of 
particles that are in the higher energy state (    ) is 

• Which can be written as 

• For the ionization problem, state    is taken as that of the electron-ion pair, state 
is taken as that of the neutral atom, and                        is the ionization energy  
- The temperature for which               is equal to

α = (ga /gb) exp (−U/kBT)
(ga /gb) exp (−U/kBT) + 1

Degree of ionization of a gas or a plasma

Ua

U = Ua − Ub

α =
na

na + nb
=

na

nb ( na

nb
+ 1)

−1

a b

α = 0.5

(ga /gb) exp (−U/kBT1/2) = 1 → T1/2 =
U

kB ln (ga /gb)
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(       is the electron thermal de Broglie wavelength)λth,e

• The range in which    changes from nearly zero to nearly one is defined as 

• Therefore, 

• Since              , the curve usually looks                                                                     
like a step function near  

• From quantum mechanics, one can estimate (h is the Planck’s constant)

ΔT =
4T1/2

kB ln (ga /gb)
=

4U

[kB ln (ga /gb)]
2

Degree of ionization of a gas or a plasma

α
dα
dT T1/2

=
1

ΔT

ga ≫ gb
T1/2

ga

gb
=

1
λ3

th,e ne
= ( 2πmekBT

h2 )
3/2 1

ne
= 2.405 × 1021 T3/2

ne
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• From quantum mechanics, one can estimate (T in Kelvin and ni in m-3) 

• Using this results, one can write 
- This equation is known as the Saha equation  

• Since 1 eV = 11,600 K, the Saha equation can                                                           
also be written as (  in eV and  in m-3)T ne

The Saha equation

ga

gb
= ( 2πmekBT

h2 )
3/2 1

ne
= 2.405 × 1021 T3/2

ne

ni

nn
= ( 2πmekB

h2 )
3/2 T3/2

ne
exp (−

U
kBT )

ni

nn
= 3.00 × 107 T3/2

ne
exp (−

U
T )

α =
ni

nn (1 +
ni

nn )
−1
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• Air at room temperature 

• Tokamak 

• Plasma torch

Degree of ionization for some particular cases

ni

nn
= 2 × 10−122 ≪ 1

nn = 3 × 1025 m−3 T = 300 K U = 14.5 eV (Nitrogen)

ni

nn
= 2.4 × 1013 ≫ 1

ne = ni = 1 × 1020 m−3 T = 1 × 108 K U = 13.6 eV (Hydrogen)

ni

nn
= 3 × 10−4 ≪ 1

nn = 3 × 1025 m−3 (1 Atm) T = 1 × 104 K U = 13.6 eV (Hydrogen)
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• Solar corona 

• Sun’s core

Degree of ionization for some particular cases

ni

nn
= 2.4 × 1018 ≫ 1

ne = ni = 1 × 1012 m−3 T = 1 × 106 K U = 13.6 eV (Hydrogen)

ni

nn
= 1.5

ne = ni = 1 × 1032 m−3 T = 1 × 107 K U = 13.6 eV (Hydrogen)

(Fully ionized plasma!!!!!)

(Surprisingly, the sun’s core is not fully ionized, , but 
anyway nuclear fusion reactions can occur)

α = 0.6

Note that, from our previous definitions, the gas does not need to be fully 
ionized to be considered a plasma, as far as collective effects are present
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