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13-years ago: First Vision-based Autonomous Flight

Bloesch, Weiss, Scaramuzza, Siegwart, Vision Based MAV Navigation in Unknown and Unstructured Environment, ICRA’10 [PDF]

European Micro Aerial Vehicle competition, Sep. 9, 2009

http://rpg.ifi.uzh.ch/docs/ICRA10_bloesch.pdf
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Today

NASA Ingenuity helicopter performing autonomous vision-based flight on Mars
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Today

Skydio drones use vision-based navigation for autonomous person following and 3D mapping



5

What’s Next?



6Davide Scaramuzza – University of Zurich – sdavide@ifi.uzh.ch

LEXUS commercial, 2013

What does it take to fly as good as or better than human pilots?

WARNING! This drone is NOT autonomous; it is operated by a human pilot.
Human pilots take years to become agile! 
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Why do bother about Agile Flight?

• Making drones faster increases their 
range (limited by battery life) [1,2]

[1] Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, IEEE RAL, 2022. PDF.

[2] Karydis, Kumar, Energetics in robotic flight at small scales, Interface Focus, 2017. PDF.

Optimal speed

http://rpg.ifi.uzh.ch/docs/Arxiv21_Bauersfeld.pdf
https://royalsocietypublishing.org/doi/pdf/10.1098/rsfs.2016.0088
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Why Agile?

• Making drones faster increases their range 
(limited by battery life) [1,2]

• Applications: search & rescue, delivery, 
exploration, inspection, space

• Raises fundamental challenges for robotic 
research: perception, planning, learning, control

• Pushes the limits of vision-based navigation Search & rescue Delivery

Exploration & Inspection SpacePersonal air vehicles
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Eye Tracker Display

Pfeiffer, Scaramuzza (2021) Human-piloted drone racing: Perception and control, RAL’21. PDF. Dataset.

How do Human Pilot Control Drones? Vision-based!

• We recorded eye-gaze and control commands of expert pilots 

• Our finding: Sensorimotor reaction time of 220 ms (i.e., brain processing + behavioral response)

The human brain is incredibly is slow but better than machines in complex situations!

http://rpg.ifi.uzh.ch/docs/RAL21_Pfeiffer.pdf
https://osf.io/gvdse/
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Intel RealSense T265
for visual-inertial measurements

Intel RealSense D435
for depth maps

NVIDIA Jetson TX2
for neural network 

inference and flight control

Weight: 900g
Maximum Thrust: 70N
Thrust-to-Weight: 5
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Teacher-Student distribution shiftTraditional Drone Control Architecture

Perception Planning Control

Commands

Images
IMU 

Key issues with this architecture:

• Sensitive to inaccurate models of sensors, actuators, environment, battery voltage, aerodynamic effects

• Very sensitive to imperfect perception due to high-speed motion: motion blur, limited FOV

• Ignores perception & action coupling

• High latency due to sequential structure 
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Teacher-Student distribution shiftCan we Learn a Navigation Policy?

Commands

Images
IMU 

Neural Network

Key issues with this architecture:

• Too sample inefficient to be trained on a physical drone

• Limited interpretability

How can we augment the traditional robotic cycle with learning-based methods?
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• Should we train it with or without supervision?

• How do we get enough training data?

• Can we learn in simulation?

• How do we address the simulation to reality gap?

Key Questions

Tasks

Autonomous Drone Acrobatics Navigation in the wild Autonomous Drone Racing
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Deep Drone Acrobatics

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video. Code

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Code available

http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
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Trained only in simulation: One-Shot Sim-to-Real Transfer

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video. Code

Source code: https://github.com/uzh-rpg/deep_drone_acrobatics
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http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
https://github.com/uzh-rpg/deep_drone_acrobatics
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[1] Zhou et al., Does computer vision matter for action?, Science Robotics, 2019. PDF. Video.
[2] Sax et al., Mid-Level Visual Representations for Improving Generalization and Sample Efficiency of Visuomotor Policies, CORL’19. PDF.
[3] Chen et al., Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation, CORL’20. PDF.

How do we address the Simulation-to-Reality Gap?

Simulated Real

Neural networks fed with intermediate representations train faster, achieve higher task performance, 
and generalize better to previously unseen environments!

https://arxiv.org/abs/1905.12887
https://youtu.be/4MfWa2yZ0Jc
https://arxiv.org/abs/1812.11971
https://arxiv.org/pdf/2011.06698
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Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Simulated Real Feature tracks

Which Sensory Abstraction Reduces the Sim-to-Real Gap?

We prove that sensory abstractions reduce the Wasserstein distance between 
observation models in simulation and reality

http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
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Teacher-Student distribution shiftTrained via Privileged Imitation Learning

Temporal CNN

N-MPC
Perfect State
of Robot and 
Environment

Imitate

“Student”

“Expert”

Commands

Feature tracks

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Commands

http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
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The learned end-to-end control policy outperforms by up to 25% the traditional baseline of 
state-estimation and control (VIO+MPC)

Comparison against Traditional Baselines

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
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• How do we get enough training data?

• Can we learn in simulation?

• How do we address the simulation to reality gap?

Key Questions

Tasks

Autonomous Drone Acrobatics Navigation in the wild Autonomous Drone Racing



21

Learning High-Speed Flight in the Wild (40 km/h)

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics, 2021
PDF. Video. Code & Datasets

Code available

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
https://github.com/uzh-rpg/agile_autonomy
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Trained only in simulation: One-Shot Sim-to-Real Transfer

[1] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics. PDF. Video. Code & Data
[2] Simulator used: Song, Flightmare: A Flexible Quadrotor Simulator, CORL’20, PDF Video Website

Code available

Simulator: 

Flightmare

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
https://github.com/uzh-rpg/agile_autonomy
http://rpg.ifi.uzh.ch/docs/Arxiv20Flightmare_Yunlong.pdf
https://youtu.be/m9Mx1BCNGFU
https://uzh-rpg.github.io/flightmare/


23

Simulation

Real-World

RGB

Depth map

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics., 2021
PDF. Video. Code & Datasets

Which Sensory Abstraction Reduces the Sim-to-Real Gap?

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
https://github.com/uzh-rpg/agile_autonomy
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CNN

Monte Carlo 

sampling
Collision-free trajectories 

(1 sec receding horizon)

Perfect State

of Robot and 

Environment

Imitate

“Student”

“Expert”

Collision-free trajectories 

(1 sec receding horizon)

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics., 2021
PDF. Video. Code & Datasets

N-MPC
Control 

commandsDepth 
map

Velocity & Attitude

Desired direction

Trained via Privileged Imitation Learning

Code available

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
https://github.com/uzh-rpg/agile_autonomy
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Comparison against Baselines

• Up to 6x more efficient than baselines
• At 10 m/s the success rate only dropped to 60% → We can fly 2x faster than baselines

• [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL’19
• [Reactive] Florence, Carter, Tedrake, Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps, WAFR’20
• [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021
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With sensor noise, the performance only drops by 5%

• [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL’19
• [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021

OursFastPlannerer

Comparison against Baselines
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Learning High-Speed Flight in the Wild (40 km/h)

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics, 2021
PDF. Video. Code & Datasets

http://rpg.ifi.uzh.ch/docs/Loquercio21_Science.pdf
https://youtu.be/m89bNn6RFoQ
https://github.com/uzh-rpg/agile_autonomy


Takeaways

• Pros:
• Complex navigation strategies can be distilled into efficient deep sensorimotor 

policies

• Learning-based policies are more robust against sensing noise and have lower latency

• Abstraction of policy inputs enables robust transfer from simulation to reality

• Cons:
• The presented approaches still rely on labeled expert data. What if we cannot create 

such an expert?

28
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Key Questions

• How do we get enough training data?

• Can we learn in simulation?

• What’s the expert?

• What sensory and control abstractions reduce the simulation to reality gap?

Tasks

Autonomous Drone Acrobatics Navigation in the wild Autonomous Drone Racing



Human pilot: Marvin, Swiss champion. Age: 15



In racing, drones are constantly pushed to their physical limits. 
Any small mistake can lead to a crash!



In racing, drones are constantly pushed to their physical limits. 
Any small mistake can lead to a crash!
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Autonomous Drone Racing: Problem Definition

Find control inputs 𝑢(𝑡) that minimize flight time through a series of gates

𝑚𝑖𝑛𝑢න
0

𝑇

𝑑𝑡

subject to:

• System dynamics

• Input constraints

• State constraints

• Physical constraints



34

• Agent based on PPO

• Parallel sampling using 100 quadrotors

• Distributed initialization strategy

• 500s of flight time per update step

• Typical training requires ~1,400h of 
flight time or 2-3h of wall clock time

Song, Steinweg, Kaufmann, Scaramuzza, Autonomous Drone Racing with Deep Reinforcement Learning, IROS’21. PDF. Video.
Kaufmann, Bauersfeld, Scaramuzza, A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight, ICRA’22. PDF. Video

Autonomous Drone Racing with Deep Reinforcement Learning

Position
Velocity

Orientation
Body rates

Gate observations

Commands

https://rpg.ifi.uzh.ch/docs/IROS21_Yunlong.pdf
https://youtu.be/Hebpmadjqn8
https://rpg.ifi.uzh.ch/docs/ICRA22_Kaufmann.pdf
https://www.youtube.com/watch?v=zqdfVq2uWUA


This AI-controlled drone is fully autonomous and uses onboard vision and computation
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Improving Physics simulation: Aerodynamic Effects

• Rotor-to-rotor interactions

• Turbulences

[1] Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS’21. PDF. Video. Code & Datasets.
[2] Torrente et al., Data-Driven MPC for Quadrotors, RAL’21. PDF. YouTube. Code 37

http://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://www.youtube.com/watch?v=Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html
http://rpg.ifi.uzh.ch/docs/RAL21_Torrente.pdf
https://youtu.be/FHvDghUUQtc
https://github.com/uzh-rpg/data_driven_mpc
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NeuroBEM: Hybrid Aerodynamic Quadrotor Model

• We use  a neural network to model residual forces and torques unexplained by Blade 
Element Momentum Theory.

• Improves physics realism wrt classic drone simulators by up to 60%.

Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS’21. PDF. Video. Code & Datasets.

http://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://www.youtube.com/watch?v=Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html
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• Deep Sensorimotor Policies allow to push robotic platforms to their limits, even with 
onboard sensing and computation.

• Simulation-to-Reality transfer can be facilitated using:

• Abstraction of policy inputs
• Feature tracks

• Depth images

• Choice of control modality
• Collective thrust and body rates achieve high agility while being robust to domain shift [1]

• By improving simulation of aerodynamic effects from real-world data

Conclusions

[1] Kaufmann, Bauersfeld, Scaramuzza, A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight, ICRA’22. PDF. Video

https://rpg.ifi.uzh.ch/docs/ICRA22_Kaufmann.pdf
https://www.youtube.com/watch?v=zqdfVq2uWUA
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Thanks!

Code, datasets, videos, and publications, slides: http://rpg.ifi.uzh.ch/

I am hiring PhD students and Postdocs in AI

ailabRPG @davsca1 @davidescaramuzza

http://rpg.ifi.uzh.ch/
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• We evaluate on different acrobatic maneuvers: Power Loop, Barrell Roll, Matty Loop, Combo

• The maneuvers require acceleration up to 3g.

Maneuvers Catalogue

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

http://rpg.ifi.uzh.ch/docs/RSS20_Kaufmann.pdf
https://youtu.be/r4zzdFw87CY
https://github.com/uzh-rpg/deep_drone_acrobatics
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With sensor noise, the performance only drops by 5%

• [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL’19
• [Reactive] Florence, Carter, Tedrake, Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps, WAFR’20
• [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021

OursFastPlannerer Reactive

Comparison against Baselines
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Song, Steinweg, Kaufmann, Scaramuzza, Autonomous Drone Racing with Deep Reinforcement Learning, IROS’21. PDF. Video.

Racing in Uncertain Tracks

https://rpg.ifi.uzh.ch/docs/IROS21_Yunlong.pdf
https://youtu.be/Hebpmadjqn8
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Song, Steinweg, Kaufmann, Scaramuzza, Autonomous Drone Racing with Deep Reinforcement Learning, IROS’21. PDF. Video.

Generalization to Different Tracks

https://rpg.ifi.uzh.ch/docs/IROS21_Yunlong.pdf
https://youtu.be/Hebpmadjqn8




Vision-Based Autonomous Drone Racing

46

C
o

n
ca

t

Command
IMU

Sampler
(100 Hz)

Detection

Grayscale Input

𝑐
𝜔𝑥

𝜔𝑦

𝜔𝑧

Reward:



Imitation Learning vs Model-Free RL

Imitation Learning

• Simple to train (few 
hyperparameters to tune)

• Relatively data-efficient

• Requires access to an expert 
policy to imitate

47

Model-Free RL

• High-Level task description 
might be enough

• No need for expert design

• Sensitive to hyperparameter 
tuning

• Less data efficient → efficient 
simulation
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Outlook: Head-to-Head AI vs. human

AI Drone

Human

Marvin is a 15-y.o. 

world class drone-racing pilot
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Outlook: Learning to Race Autonomously

This AI-controlled drone is fully autonomous and uses onboard vision and computation

[1] Foehn et al., Time-Optimal Planning for Quadrotor Waypoint Flight, Science Robotics, 2021. PDF. Video. Code. Featured on Forbes magazine.
[2] Foehn et al., AlphaPilot: Autonomous Drone Racing, RSS 2020, Best Systems Paper Award. PDF Video. 2nd place at AlphaPilot Challenge
[3] Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA’19. PDF. Video 1st place at IROS’18 Drone race. Video.
[4] Loquercio, et al., Deep Drone Racing, IEEE Transactions on Robotics 2020. Best Paper Award finalist. PDF. Video
[5] Song et al, Autonomous Drone Racing with Deep Reinforcement Learning, IROS’21. PDF. Video
[6] Simulator used: Song et al., Flightmare: A Flexible Quadrotor Simulator, CORL’20, PDF Video Website

http://rpg.ifi.uzh.ch/docs/ScienceRobotics21_Foehn.pdf
https://youtu.be/ZPI8U1uSJUs
https://github.com/uzh-rpg/rpg_time_optimal
https://www.forbes.com/sites/davidhambling/2021/07/23/swiss-ai-drone-racer-is-faster-than-human-pilots/
http://rpg.ifi.uzh.ch/docs/RSS20_Foehn.pdf
https://youtu.be/DGjwm5PZQT8
http://rpg.ifi.uzh.ch/docs/ICRA19_Kaufmann.pdf
https://youtu.be/UuQvijZcUSc
https://www.youtube.com/watch?v=9AvJ3-n-82w
https://arxiv.org/pdf/1905.09727
https://youtu.be/vdxB89lgZhQ
http://rpg.ifi.uzh.ch/docs/IROS21_Yunlong.pdf
https://youtu.be/Hebpmadjqn8
http://rpg.ifi.uzh.ch/docs/Arxiv20Flightmare_Yunlong.pdf
https://youtu.be/m9Mx1BCNGFU
https://uzh-rpg.github.io/flightmare/
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Improving Physics simulation: Aerodynamic Effects

• Rotor-to-rotor interactions

• Turbulences

[1] Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS’21. PDF. Video. Code & Datasets.
[2] Torrente et al., Data-Driven MPC for Quadrotors, RAL’21. PDF. YouTube. Code 51

http://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://www.youtube.com/watch?v=Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html
http://rpg.ifi.uzh.ch/docs/RAL21_Torrente.pdf
https://youtu.be/FHvDghUUQtc
https://github.com/uzh-rpg/data_driven_mpc
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NeuroBEM: Hybrid Aerodynamic Quadrotor Model

• We use  a neural network to model residual forces and torques unexplained by Blade 
Element Momentum Theory.

• Outperforms state of the art models by up to 60%.

Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS’21. PDF. Video. Code & Datasets.

http://rpg.ifi.uzh.ch/docs/RSS21_Bauersfeld.pdf
https://www.youtube.com/watch?v=Nze1wlfmzTQ
http://rpg.ifi.uzh.ch/NeuroBEM.html
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BBC: “How sparrowhawks catch garden birds”
https://youtu.be/Ra6I6svXQPg

https://youtu.be/Ra6I6svXQPg
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The agility of a robot is limited by the latency sensing pipeline perception-action pipeline

time

frame next frame

command command

Processing
latency

computation

Sensing latency

To go faster, we need faster sensors and algorithms

Can we create a low-latency, low-discretization perception pipeline?

Yes, using event cameras

time
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• It is camera that measures only motion in the scene

• Key advantages:

1. Low-latency (~ 1 μs)

2. No motion blur

What is an Event Camera?

event

camera

output:
time

event stream

time
frame next frame

[1] Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15µs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008. PDF
[2] Gallego et al., Event-based Vision: A Survey, T-PAMI, 2020. PDF.

https://pdfs.semanticscholar.org/9def/c75da5ea17ff8af18dc5c6e49467db9de0ad.pdf
http://rpg.ifi.uzh.ch/docs/EventVisionSurvey.pdf


Opportunities

• Low latency: AR/VR, automotive, robotics (<10ms)

• Low energy: AR/VR, always-on devices (see Synsense)

• Low memory storage: AR/VR, automotive, robotics 

• HDR & No motion blur

56

Event camera + Speck spiking-network neuromorphic processor from Synsense:
can recognize faces at 50Hz while consuming < 1mW (also demoed at CVPR 2019)

https://www.synsense-neuromorphic.com/


Who sells event cameras and how much are they?

• Prophesee & SONY:
• ATIS sensor: events, IMU, absolute intensity at the event pixel
• Resolution: 1M pixels
• Cost: ~5,000 USD

• Inivation & Samsung
• DAVIS sensor: frames, events, IMU. 
• Resolution: VGA (640x480 pixels)
• Cost: ~5,000 USD

• CelePixel Technology & Omnivision:
• Celex One: events, IMU, absolute intensity at the event pixel
• Resolution: 1M pixels
• Cost: ~1,000 USD

• Cost to sink to <5$ when killer application found
(recall first ToF camera (>10,000 USD) today <5 USD), 
e.g., Samsung SmartThings Vision sensor 

57

$180

https://www.prophesee.ai/
https://inivation.com/buy/
https://www.celepixel.com/
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Event Cameras enable Continuous-Time Visual Measurements 
in the Blind Time between frames

• [1] Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, TRO’18. PDF
• [2] Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios, RAL’18 Best Paper Award 

Honorable Mention PDF. Video. IEEE Spectrum.
• [3] Gehrig et al., EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, IJCV 2019. PDF,   YouTube,   Evaluation Code, Tracking Code

http://rpg.ifi.uzh.ch/docs/TRO18_Mueggler.pdf
http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/jIvJuWdmemE
http://spectrum.ieee.org/automaton/robotics/drones/drone-with-event-camera-takes-first-autonomous-flight
http://rpg.ifi.uzh.ch/docs/IJCV19_Gehrig.pdf
https://youtu.be/ZyD1YPW1h4U
https://github.com/uzh-rpg/rpg_feature_tracking_analysis
https://github.com/uzh-rpg/rpg_eklt
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Standard camera Event camera

Estimated trajectory

[1] Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM, RAL’18 Best Paper Award Hon. Mention. PDF. Video. IEEE Spectrum.
[2] Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, T-RO’18. PDF

Application 1: SLAM in high-speed scenarios

http://rpg.ifi.uzh.ch/docs/RAL18_VidalRebecq.pdf
https://youtu.be/jIvJuWdmemE
http://spectrum.ieee.org/automaton/robotics/drones/drone-with-event-camera-takes-first-autonomous-flight
http://rpg.ifi.uzh.ch/docs/TRO18_Mueggler.pdf
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Sun, Cioffi, de Visser, Scaramuzza, Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events , IEEE RAL’2021. 
PDF. Video. Code. 1st place winner of the NASA TechBrief Award (out of 700 participants)

• Quadrotors subject to full rotor failure require accurate position estimates to avoid crashing
• SOTA systems used external position tracking systems (e.g., GPS, Vicon, UWB)
• We achieve this with only onboard cameras. With event cameras, we can make it work in very low light!

Application 2: Keeping drones Flying when a Rotor Fails

http://rpg.ifi.uzh.ch/docs/RAL21_Sun.pdf
https://youtu.be/Ww8u0KH7Ugs
https://github.com/uzh-rpg/fault_tolerant_control
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• Perception latency: 3.5 ms
• Works with relative speeds of up to 10 m/s

Application 3: Dodging Dynamic Objects

[1] Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video. Featured in IEEE Spectrum
[2] Sanket et al., EVDodgeNet: Deep Dynamic Obstacle Dodging with event cameras, ICRA’20, PDF. Video. Code. 
[3] Falanga et al. How Fast is too fast? The Role of Perception Latency in High-Speed Sense and Avoid, IEEE RAL’19. PDF. Video. 

http://robotics.sciencemag.org/cgi/content/full/5/40/eaaz9712?ijkey=1Hv6p.mM6b6CI&keytype=ref&siteid=robotics
https://youtu.be/BzykucxFddI
https://spectrum.ieee.org/automaton/robotics/drones/event-camera-helps-drone-dodge-thrown-objects?fbclid=IwAR0KwIqBfEwDEgf3uYrqUBFOoJzB_YyMlW_2ML7nmf66lptWjTo65Qpadlk
https://arxiv.org/pdf/1906.02919
https://youtu.be/NSwK1ZEsTOo
https://github.com/prgumd/EVDodgeNet
http://rpg.ifi.uzh.ch/docs/RAL19_Falanga.pdf
http://youtu.be/sbJAi6SXOQw
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Events in the image domain (𝑥, 𝑦) Events in the space-time domain (𝒙, 𝒚, 𝒕)

Events generate surfaces in the space-time domain

Events generated by the ball



Application 4: Slow Motion Video

• Goal: Upsample low-framerate RGB video using events 

• Results: we achieve 50-times upsampling with only 1/40th of the memory footprint!

63Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code. Featured on Two-Minute-Papers: Video.

Code & Datasets: http://rpg.ifi.uzh.ch/timelens

http://rpg.ifi.uzh.ch/docs/CVPR21_Gehrig.pdf
https://youtu.be/dVLyia-ezvo
https://github.com/uzh-rpg/rpg_timelens
https://youtu.be/G00A1Fyr5ZQ
http://rpg.ifi.uzh.ch/timelens
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• Goal: Upsample low-framerate RGB video using events 

• Results: we achieve 50-times upsampling with only 1/40th of the memory footprint!
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Code & Datasets: http://rpg.ifi.uzh.ch/timelens

Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code. Featured on Two-Minute-Papers: Video.

http://rpg.ifi.uzh.ch/timelens
http://rpg.ifi.uzh.ch/docs/CVPR21_Gehrig.pdf
https://youtu.be/dVLyia-ezvo
https://github.com/uzh-rpg/rpg_timelens
https://youtu.be/G00A1Fyr5ZQ


Application 4: Slow Motion Video

• Goal: Upsample low-framerate RGB video using events 

• Results: we achieve 50-times upsampling with only 1/40th of the memory footprint!

• Outperforms SOTA methods using standard cameras (e.g., DAIN)

65
Code & Datasets: http://rpg.ifi.uzh.ch/timelens

Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR’21. PDF. Video. Code. Featured on Two-Minute-Papers: Video.

http://rpg.ifi.uzh.ch/timelens
http://rpg.ifi.uzh.ch/docs/CVPR21_Gehrig.pdf
https://youtu.be/dVLyia-ezvo
https://github.com/uzh-rpg/rpg_timelens
https://youtu.be/G00A1Fyr5ZQ


66

Outlook: Event-driven Control on Neuromorphic Processors

• Motivation: agile maneuvers require low perception latency and high controller bandwidth

• Goal: map single events directly to control commands

• Method: Spiking Network (SNN) running on Intel Loihi neuromorphic chip 

• Advantage: low-latency perception, high-bandwidth control

[1] Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA’21. PDF. Video.
[2] Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA’20, PDF YouTube

events
Control 

commandsNeural Network

http://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://youtu.be/uGEK8eT9Qb0
http://rpg.ifi.uzh.ch/docs/arXiv19_Dimitrova.pdf
https://www.youtube.com/watch?v=KfY9j3XAiDU&feature=youtu.be
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Outlook: Event-driven Control on Neuromorphic Processors

[1] Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA’21. PDF. Video.
[2] Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA’20, PDF YouTube

events
Control 

commandsNeural Network

Reflex control task: mimic 1D rotation of a disc 

http://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://youtu.be/uGEK8eT9Qb0
http://rpg.ifi.uzh.ch/docs/arXiv19_Dimitrova.pdf
https://www.youtube.com/watch?v=KfY9j3XAiDU&feature=youtu.be
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Outlook: Event-driven Control on Neuromorphic Processors

[1] Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA’21. PDF. Video.
[2] Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA’20, PDF YouTube

events
Control 

commandsNeural Network

Reflex control task: mimic 1D rotation of a disc 

http://rpg.ifi.uzh.ch/docs/ICRA21_Vitale.pdf
https://youtu.be/uGEK8eT9Qb0
http://rpg.ifi.uzh.ch/docs/arXiv19_Dimitrova.pdf
https://www.youtube.com/watch?v=KfY9j3XAiDU&feature=youtu.be
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• Autonomous vision-based agile flight as a new research topic (at least 10 years to solve it)

• Pushes the limit of existing algorithms in extreme situations

• Raises fundamental problems for robotics research

• Learning-based methods are more robust to imperfect perception and exhibit lower latency than 
traditional ones

• Simulation to Reality  transfer possible with appropriate input/output abstraction.

• Event cameras significantly reduce perception latency and motion blur and, if coupled with 
neuromorphic chips, allow low-latency, high-bandwidth control

Conclusions and Takeaways
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Thanks!

Code, datasets, videos, and publications, slides: http://rpg.ifi.uzh.ch/

I am hiring PhD students and Postdocs in AI

ailabRPG @davsca1 @davidescaramuzza

http://rpg.ifi.uzh.ch/
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This drone uses AI to race against a human

Goal: beat a human in a time race by passing through a sequence of gates in a given order 
in the least possible time.

AI Drone

Human

Marvin is a 15-y.o. 
world class drone-racing pilot

Foehn et al., Time-Optimal Planning for Quadrotor Waypoint Flight, Science Robotics, 2021. PDF. Video. Code. Featured on Forbes magazine.

http://rpg.ifi.uzh.ch/docs/ScienceRobotics21_Foehn.pdf
https://youtu.be/ZPI8U1uSJUs
https://github.com/uzh-rpg/rpg_time_optimal
https://www.forbes.com/sites/davidhambling/2021/07/23/swiss-ai-drone-racer-is-faster-than-human-pilots/
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Events in the image domain (𝑥, 𝑦) Events in the space-time domain (𝒙, 𝒚, 𝒕)

Events generate surfaces in the space-time domain

Events generated by the ball
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64mW, 27gram, 8cm size, GAP8-powered Autonomous Drone

Palossi, Loquercio, Conti, Flamand, Scaramuzza, Benini, A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones
IEEE Internet of Things Journal, 2019. PDF. Video. Code.

Image credit: Paul Beuchat

https://rpg.ifi.uzh.ch/docs/IoT19_Palossi.pdf
https://youtu.be/57Vy5cSvnaA
https://github.com/pulp-platform/pulp-dronet/
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Sun, Cioffi, de Visser, Scaramuzza, Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events , IEEE RAL’2021. 
PDF. Video. Code. 1st place winner of the NASA TechBrief Award (out of 700 participants)

• Quadrotors subject to full rotor failure require accurate position estimates to avoid crashing
• SOTA systems used external position tracking systems (e.g., GPS, Vicon, UWB)
• We achieve this with only onboard cameras. With event cameras, we can make it work in very low light!

Application 2: Autonomous Flight despite Rotor Failure 

http://rpg.ifi.uzh.ch/docs/RAL21_Sun.pdf
https://youtu.be/Ww8u0KH7Ugs
https://github.com/uzh-rpg/fault_tolerant_control

