

Learning Agile Vision-based Flight

Davide Scaramuzza

Elia Kaufmann

Antonio Loquercio

Leonard Bauersfeld

Yunlong Song

http://rpg.ifi.uzh.ch/

13-years ago: First Vision-based Autonomous Flight

European Micro Aerial Vehicle competition, Sep. 9, 2009

Bloesch, Weiss, Scaramuzza, Siegwart, Vision Based MAV Navigation in Unknown and Unstructured Environment, ICRA'10 [PDF]

Today

NASA Ingenuity helicopter performing autonomous vision-based flight on Mars

Today

Skydio drones use vision-based navigation for autonomous person following and 3D mapping

What's Next?

What does it take to fly as **good as or better** than human pilots?

WARNING! This drone is NOT autonomous; it is operated by a human pilot. Human pilots take years to become agile!

Why do bother about Agile Flight?

• Making drones faster increases their range (limited by battery life) [1,2]

[1] Bauersfeld, Scaramuzza, Range, Endurance, and Optimal Speed Estimates for Multicopters, IEEE RAL, 2022. PDF.

[2] Karydis, Kumar, Energetics in robotic flight at small scales, Interface Focus, 2017. PDF.

Why Agile?

- Making drones faster increases their range (limited by battery life) [1,2]
- **Applications**: search & rescue, delivery, exploration, inspection, space
- Raises fundamental challenges for robotic research: perception, planning, learning, control
- Pushes the limits of vision-based navigation

Search & rescue

Delivery

Exploration & Inspection

Personal air vehicles

Space

How do Human Pilot Control Drones? Vision-based!

- We recorded eye-gaze and control commands of expert pilots
- Our finding: Sensorimotor reaction time of 220 ms (i.e., brain processing + behavioral response)
 - The human brain is incredibly is slow but better than machines in complex situations!

Pfeiffer, Scaramuzza (2021) Human-piloted drone racing: Perception and control, RAL'21. PDF. Dataset.

NVIDIA Jetson TX2 for neural network inference and flight control

........

124

K58179-100 K50020012304

Intel RealSense T265 for visual-inertial measurements

> Intel RealSense D435 for depth maps

Weight:900gMaximum Thrust:70NThrust-to-Weight:5

Traditional Drone Control Architecture

Key issues with this architecture:

- Sensitive to inaccurate models of sensors, actuators, environment, battery voltage, aerodynamic effects
- Very sensitive to imperfect perception due to high-speed motion: motion blur, limited FOV
- Ignores perception & action coupling
- High latency due to sequential structure

Can we Learn a Navigation Policy?

Key issues with this architecture:

- Too sample inefficient to be trained on a physical drone
- Limited interpretability

How can we augment the traditional robotic cycle with learning-based methods?

Key Questions

- Should we train it with or without supervision?
- How do we get enough training data?
- Can we learn in simulation?
- How do we address the simulation to reality gap?

Tasks

Autonomous Drone Acrobatics

Navigation in the wild

Autonomous Drone Racing

Deep Drone Acrobatics

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video. Code

Trained only in simulation: One-Shot Sim-to-Real Transfer

Source code: <u>https://github.com/uzh-rpg/deep_drone_acrobatics</u>

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video. Code

How do we address the Simulation-to-Reality Gap?

Simulated

Science Robotics.

Does computer vision matter for action?

Brady Zhou^{1,*}, Philipp Krähenbühl^{1,2} and Vladlen Koltun¹ + See all authors and affiliations

Science Robotics 22 May 2019: Vol. 4, Issue 30, eaaw6661 DOI: 10.1126/scirobotics.aaw6661

Abstract

Controlled experiments indicate that explicit intermediate representations help action.

Neural networks fed with intermediate representations train faster, achieve higher task performance, and generalize better to previously unseen environments!

[1] Zhou et al., *Does computer vision matter for action?*, Science Robotics, 2019. <u>PDF</u>. <u>Video</u>.

[2] Sax et al., Mid-Level Visual Representations for Improving Generalization and Sample Efficiency of Visuomotor Policies, CORL'19. PDF.

[3] Chen et al., Robust Policies via Mid-Level Visual Representations: An Experimental Study in Manipulation and Navigation, CORL'20. PDF.

Which Sensory Abstraction Reduces the Sim-to-Real Gap?

We prove that sensory abstractions reduce the Wasserstein distance between observation models in simulation and reality

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Trained via Privileged Imitation Learning

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Comparison against Traditional Baselines

The **learned end-to-end control policy outperforms by up to 25**% the traditional baseline of state-estimation and control (VIO+MPC)

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Key Questions

- How do we get enough training data?
- Can we learn in simulation?
- How do we address the simulation to reality gap?

Tasks

Autonomous Drone Acrobatics

Navigation in the wild

Autonomous Drone Racing

Learning High-Speed Flight in the Wild (40 km/h)

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, *Learning High Speed Flight in the Wild*, Science Robotics, 2021 PDF. Video. Code & Datasets

Trained only in simulation: One-Shot Sim-to-Real Transfer

[1] Loguercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High Speed Flight in the Wild, Science Robotics. PDF. Video. Code & Data [2] Simulator used: Song, Flightmare: A Flexible Quadrotor Simulator, CORL'20, PDF Video Website

GitHub

Simulator:

Which Sensory Abstraction Reduces the Sim-to-Real Gap?

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, *Learning High Speed Flight in the Wild*, Science Robotics., 2021 <u>PDF</u>. <u>Video</u>. <u>Code & Datasets</u>

Trained via Privileged Imitation Learning

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, *Learning High Speed Flight in the Wild*, Science Robotics., 2021 <u>PDF</u>. <u>Video</u>. <u>Code & Datasets</u>

Comparison against Baselines

- Up to **6x more efficient** than baselines
- At 10 m/s the success rate only dropped to $60\% \rightarrow$ We can fly 2x faster than baselines

- [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL'19
- [Reactive] Florence, Carter, Tedrake, Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps, WAFR'20
- [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021

Comparison against Baselines

With sensor noise, the performance **only drops by 5%**

• [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL'19

• [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021

Learning High-Speed Flight in the Wild (40 km/h)

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, *Learning High Speed Flight in the Wild*, Science Robotics, 2021 PDF. Video. Code & Datasets

Takeaways

• Pros:

- Complex navigation strategies can be distilled into efficient deep sensorimotor policies
- Learning-based policies are more robust against sensing noise and have lower latency
- Abstraction of policy inputs enables robust transfer from simulation to reality

• Cons:

• The presented approaches still rely on **labeled expert data**. What if we cannot create such an expert?

- How do we get enough training data?
- Can we learn in simulation?
- What's the expert?
- What sensory and control abstractions reduce the simulation to reality gap?

Tasks

Autonomous Drone Acrobatics

Navigation in the wild

Autonomous Drone Racing

Human pilot: Marvin, Swiss champion. Age: 15

LIVI

後半

In racing, drones are constantly pushed to their physical limits. Any small mistake can lead to a crash!

In racing, drones are constantly pushed to their physical limits. Any small mistake can lead to a crash!

Autonomous Drone Racing: Problem Definition

Find control inputs u(t) that minimize flight time through a series of gates

 $min_u \int_0^t dt$

subject to:

- System dynamics
- Input constraints
- State constraints
- Physical constraints

Autonomous Drone Racing with Deep Reinforcement Learning

- Agent based on **PPO**
- Parallel sampling using 100 quadrotors
- Distributed initialization strategy
- 500s of flight time per update step
- Typical training requires ~1,400h of flight time or 2-3h of wall clock time

Song, Steinweg, Kaufmann, Scaramuzza, Autonomous Drone Racing with Deep Reinforcement Learning, IROS'21. <u>PDF</u>. <u>Video</u>. Kaufmann, Bauersfeld, Scaramuzza, A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight, ICRA'22. <u>PDF</u>. <u>Video</u>

This AI-controlled drone is fully autonomous and uses onboard vision and computation

Improving Physics simulation: Aerodynamic Effects

- Rotor-to-rotor interactions
- Turbulences

[1] Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS'21. PDF. Video. Code & Datasets.
[2] Torrente et al., Data-Driven MPC for Quadrotors, RAL'21. PDF. YouTube. Code

NeuroBEM: Hybrid Aerodynamic Quadrotor Model

- We use a **neural network** to **model residual forces and torques** unexplained by Blade Element Momentum Theory.
- Improves physics realism wrt classic drone simulators by up to 60%.

Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS'21. PDF. Video. Code & Datasets.

Conclusions

- Deep Sensorimotor Policies allow to push robotic platforms to their limits, even with **onboard sensing** and computation.
- Simulation-to-Reality transfer can be facilitated using:
 - Abstraction of policy inputs
 - Feature tracks
 - Depth images
 - Choice of control modality
 - Collective thrust and body rates achieve high agility while being robust to domain shift [1]
 - By improving simulation of aerodynamic effects from real-world data

[1] Kaufmann, Bauersfeld, Scaramuzza, A Benchmark Comparison of Learned Control Policies for Agile Quadrotor Flight, ICRA'22. PDF. Video

Thanks!

Code, datasets, videos, and publications, slides: <u>http://rpg.ifi.uzh.ch/</u>

I am hiring PhD students and Postdocs in AI

@davidescaramuzza

Maneuvers Catalogue

- We evaluate on different acrobatic maneuvers: Power Loop, Barrell Roll, Matty Loop, Combo
- The maneuvers require acceleration up to 3g.

Kaufmann et al., Deep Drone Acrobatics, RSS 2020. Best Paper Award Finalist. PDF. Video.Code

Comparison against Baselines

With sensor noise, the performance **only drops by 5%**

• [FastPlanner] Zhou, Gao, Wang, Liu, Shen, Robust and efficient quadrotor trajectory generation for fast autonomous flight, RAL'19

- [Reactive] Florence, Carter, Tedrake, Integrated perception and control at high speed: Evaluating collision avoidance maneuvers without maps, WAFR'20
- [Ours] Loquercio, Kaufmann, Ranftl, Mueller, Koltun, Scaramuzza, Learning High-Speed Flight in the Wild, Science Robotics, 2021

Racing in Uncertain Tracks

Song, Steinweg, Kaufmann, Scaramuzza, Autonomous Drone Racing with Deep Reinforcement Learning, IROS'21. PDF. Video.

Generalization to Different Tracks

Experiment 3: Racing on Random Tracks

(Illustration of six randomly generated track layouts)

Vision-Based Autonomous Drone Racing

Grayscale Input

Reward: $r_t = r_t^{\text{prog}} + r_t^{\text{perc}} - r_t^{\text{crash}}$

Imitation Learning vs Model-Free RL

Imitation Learning

- Simple to train (few hyperparameters to tune)
- Relatively data-efficient
- Requires access to an expert policy to imitate

Model-Free RL

- High-Level task description might be enough
- No need for expert design
- Sensitive to hyperparameter tuning
- Less data efficient → efficient simulation

Outlook: Head-to-Head Al vs. human

Outlook: Learning to Race Autonomously

This AI-controlled drone is fully autonomous and uses onboard vision and computation

[1] Foehn et al., *Time-Optimal Planning for Quadrotor Waypoint Flight*, Science Robotics, 2021. PDF. Video. Code. Featured on Forbes magazine.

[2] Foehn et al., AlphaPilot: Autonomous Drone Racing, RSS 2020, Best Systems Paper Award. PDF Video. 2nd place at AlphaPilot Challenge

[3] Kaufmann et al., Beauty and the Beast: Optimal Methods Meet Learning for Drone Racing, ICRA'19. PDF. Video 1st place at IROS'18 Drone race. Video.

[4] Loquercio, et al., Deep Drone Racing, IEEE Transactions on Robotics 2020. Best Paper Award finalist. PDF. Video

[5] Song et al, Autonomous Drone Racing with Deep Reinforcement Learning, IROS'21. PDF. Video

[6] Simulator used: Song et al., Flightmare: A Flexible Quadrotor Simulator, CORL'20, PDF Video Website

Improving Physics simulation: Aerodynamic Effects

- Rotor-to-rotor interactions
- Turbulences

[1] Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS'21. PDF. Video. Code & Datasets.
[2] Torrente et al., Data-Driven MPC for Quadrotors, RAL'21. PDF. YouTube. Code

NeuroBEM: Hybrid Aerodynamic Quadrotor Model

- We use a **neural network** to **model residual forces and torques** unexplained by Blade Element Momentum Theory.
- Outperforms state of the art models by up to 60%.

Bauersfeld et al. NeuroBEM: Hybrid Aerodynamic Quadrotor Model, RSS'21. PDF. Video. Code & Datasets.

BBC: "How sparrowhawks catch garden birds" <u>https://youtu.be/Ra6l6svXQPg</u>

To go faster, we need faster sensors and algorithms

The agility of a robot is limited by the **latency sensing pipeline perception-action pipeline**

Can we create a low-latency, low-discretization perception pipeline?

Yes, using event cameras

What is an Event Camera?

- It is camera that measures only motion in the scene
- Key advantages:
 - 1. Low-latency (~ 1 μ s)
 - 2. No motion blur

[1] Lichtsteiner, Posch, Delbruck, A 128x128 120 dB 15μs Latency Asynchronous Temporal Contrast Vision Sensor, IEEE Journal of Solid-State Circuits, 2008. PDF
[2] Gallego et al., Event-based Vision: A Survey, T-PAMI, 2020. PDF.

Opportunities

- Low latency: AR/VR, automotive, robotics (<10ms)
- Low energy: AR/VR, always-on devices (see Synsense)
- Low memory storage: AR/VR, automotive, robotics
- HDR & No motion blur

Event camera + Speck spiking-network neuromorphic processor from Synsense: can recognize faces at 50Hz while consuming < 1mW (also demoed at CVPR 2019)

Who sells event cameras and how much are they?

- <u>Prophesee</u> & SONY:
 - ATIS sensor: events, IMU, absolute intensity at the event pixel
 - Resolution: 1M pixels
 - Cost: ~5,000 USD
- Inivation & Samsung
 - DAVIS sensor: frames, events, IMU.
 - Resolution: VGA (640x480 pixels)
 - Cost: ~5,000 USD
- <u>CelePixel Technology</u> & Omnivision:
 - Celex One: events, IMU, absolute intensity at the event pixel
 - Resolution: 1M pixels
 - Cost: ~1,000 USD
- Cost to sink to <5\$ when killer application found (recall first ToF camera (>10,000 USD) today <5 USD), e.g., Samsung SmartThings Vision sensor

SONY

SAMSUNG

SmartThings Vision

S A M S U N G

Event Cameras enable Continuous-Time Visual Measurements in the Blind Time between frames

- [1] Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, TRO'18. PDF
- [2] Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM in HDR and High Speed Scenarios, RAL'18 Best Paper Award Honorable Mention PDF. Video. IEEE Spectrum.
- [3] Gehrig et al., EKLT: Asynchronous, Photometric Feature Tracking using Events and Frames, IJCV 2019. PDF, YouTube, Evaluation Code, Tracking Code

Application 1: SLAM in high-speed scenarios

Standard camera

Event camera

Estimated trajectory

[1] Rosinol et al., Ultimate SLAM? Combining Events, Images, and IMU for Robust Visual SLAM, RAL'18 Best Paper Award Hon. Mention. PDF. Video. IEEE Spectrum.
[2] Mueggler et al., Continuous-Time Visual-Inertial Odometry for Event Cameras, T-RO'18. PDF

Application 2: Keeping drones Flying when a Rotor Fails

- Quadrotors subject to full rotor failure require accurate position estimates to avoid crashing
- SOTA systems used external position tracking systems (e.g., GPS, Vicon, UWB)
- We achieve this with **only onboard cameras. With event cameras**, we can make it work in very low light!

Sun, Cioffi, de Visser, Scaramuzza, Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events, IEEE RAL'2021. <u>PDF</u>. <u>Video</u>. <u>Code</u>. **1**st place winner of the NASA TechBrief Award (out of 700 participants)

Application 3: Dodging Dynamic Objects

- Perception latency: 3.5 ms
- Works with relative speeds of up to 10 m/s

[1] Falanga et al., Dynamic Obstacle Avoidance for Quadrotors with Event Cameras, Science Robotics, 2020. PDF. Video. Featured in IEEE Spectrum
[2] Sanket et al., EVDodgeNet: Deep Dynamic Obstacle Dodging with event cameras, ICRA'20, PDF. Video. Code.
[3] Falanga et al. How Fast is too fast? The Role of Perception Latency in High-Speed Sense and Avoid, IEEE RAL'19. PDF. Video.

Events generate surfaces in the **space-time** domain

Events in the **image domain** (x, y)

Events in the **space-time** domain (*x*, *y*, *t*)

Application 4: Slow Motion Video

- Goal: Upsample low-framerate RGB video using events
- Results: we achieve **50-times upsampling** with **only 1/40th of the memory** footprint!

Code & Datasets: http://rpg.ifi.uzh.ch/timelens

Application 4: Slow Motion Video

- Goal: Upsample low-framerate RGB video using events
- Results: we achieve **50-times upsampling** with **only 1/40th of the memory** footprint!

Code & Datasets: http://rpg.ifi.uzh.ch/timelens

Tulyakov et al., TimeLens: Event-based Video Frame Interpolation, CVPR'21. PDF. Video. Code. Featured on Two-Minute-Papers: Video.

Application 4: Slow Motion Video

- Goal: Upsample low-framerate RGB video using events
- Results: we achieve 50-times upsampling with only 1/40th of the memory footprint!
- Outperforms SOTA methods using standard cameras (e.g., DAIN)

low framerate video input

Time Lens (this work)

Code & Datasets: <u>http://rpg.ifi.uzh.ch/timelens</u>

Tulyakov et al., TimeLens: *Event-based Video Frame Interpolation*, CVPR'21. <u>PDF</u>. <u>Video</u>. <u>Featured on Two-Minute-Papers</u>: <u>Video</u>.

Outlook: Event-driven Control on Neuromorphic Processors

- Motivation: agile maneuvers require low perception latency and high controller bandwidth
- Goal: map single events directly to control commands
- Method: Spiking Network (SNN) running on Intel Loihi neuromorphic chip
- Advantage: low-latency perception, high-bandwidth control

[1] Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA'21. <u>PDF</u>. <u>Video</u>.
[2] Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA'20, <u>PDF</u> <u>YouTube</u>.

Outlook: Event-driven Control on Neuromorphic Processors

Reflex control task: mimic 1D rotation of a disc

Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA'21. <u>PDF</u>. <u>Video</u>.
Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA'20, <u>PDF</u> <u>YouTube</u>

Outlook: Event-driven Control on Neuromorphic Processors

Reflex control task: mimic 1D rotation of a disc

Vitale et al., Event-driven Vision and Control for UAVs on a Neuromorphic Chip, ICRA'21. <u>PDF</u>. <u>Video</u>.
Sugimoto et al., Towards Low-Latency High-Bandwidth Control of Quadrotors using Event Cameras, ICRA'20, <u>PDF</u> <u>YouTube</u>68

Conclusions and Takeaways

- Autonomous vision-based agile flight as a new research topic (at least 10 years to solve it)
 - **Pushes the limit of existing algorithms** in extreme situations
 - Raises **fundamental problems** for robotics **research**
- Learning-based methods are more robust to imperfect perception and exhibit lower latency than traditional ones
- Simulation to Reality transfer possible with appropriate input/output abstraction.
- Event cameras significantly reduce perception latency and motion blur and, if coupled with neuromorphic chips, allow low-latency, high-bandwidth control

Thanks!

Code, datasets, videos, and publications, slides: <u>http://rpg.ifi.uzh.ch/</u>

I am hiring PhD students and Postdocs in AI

@davidescaramuzza

This drone uses AI to race against a human

Goal: beat a human in a time race by passing through a sequence of gates in a given order in the least possible time.

Foehn et al., Time-Optimal Planning for Quadrotor Waypoint Flight, Science Robotics, 2021. PDF. Video. Code. Featured on Forbes magazine.

Events generate surfaces in the **space-time** domain

Events in the **image domain** (x, y)

Events in the **space-time** domain (*x*, *y*, *t*)

64mW, 27gram, 8cm size, GAP8-powered Autonomous Drone

Image credit: Paul Beuchat

Palossi, Loquercio, Conti, Flamand, Scaramuzza, Benini, A 64mW DNN-based Visual Navigation Engine for Autonomous Nano-Drones IEEE Internet of Things Journal, 2019. <u>PDF</u>. <u>Video</u>. <u>Code</u>.

Application 2: Autonomous Flight despite Rotor Failure

- Quadrotors subject to full rotor failure require accurate position estimates to avoid crashing
- SOTA systems used external position tracking systems (e.g., GPS, Vicon, UWB)
- We achieve this with **only onboard cameras. With event cameras**, we can make it work in very low light!

Sun, Cioffi, de Visser, Scaramuzza, Autonomous Quadrotor Flight despite Rotor Failure with Onboard Vision Sensors: Frames vs. Events, IEEE RAL'2021. <u>PDF</u>. <u>Video</u>. <u>Code</u>. **1**st place winner of the NASA TechBrief Award (out of 700 participants)