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Directional  Couplers  Made of Nonidentical 
Asymmetric  Slabs.  Part I: Synchronous  Couplers 

DIETRICH  MARCUSE, FELLOW, IEEE 

Abstract-We discuss TE and TM mode directional couplers made 
of nonidentical asymmetric slab waveguides. Approximate expressions 
are provided for the coupling coefficients of synchronous (no grating) 
couplers and their accuracy is checked by comparison with exact so- 
lutions that are based on solving the guided mode problem of the total 
structure consisting of the two slabs considered to be a single wave- 
guide. 

D 
INTRODUCTION 

IRECTIONAL  couplers  are important for many ap- 
plications in  integrated  optics [ 11. Sometimes it is 

desirable to make directional  couplers of two nonidentical 
asymmetric slab (or thin-film) waveguides. Without dif- 
fraction  gratings  the  two waveguides can exchange energy 
efficiently whenever they are  in  synchronism; that is, 
when in  the  absence  of  coupling, both of them  have  the 
same propagation constants.  We  speak of “accidental  de- 
generacy” when the  propagation  constants of the  two 
waveguides are not equal due  to a symmetry of the  struc- 
ture. 

Waveguides that  are not in synchronism can be coupled 
by providing a diffraction grating whose period is equal 
to the beat wavelength between the  two nonsynchronous 
waveguides. Grating-assisted directional couplers will be 
discussed in the second part of this paper. 

Synchronous directional couplers, the subject of the first 
part of this paper,  can be analyzed in different ways. An 
exact treatment begins by computing the compound modes 
of the combined structure  consisting of the two slabs [2], 
For synchronous slabs  there  are  always  two solutions of 
the compound mode problem that have propagation con- 
stants that are nearly identical with those of the two modes 
of the isolated slabs.  These  two modes of the compound 
structure would have  even  and  odd symmetry if both slabs 
were identical.  However,  even  for nonidentical synchro- 
nous slabs the  two modes can  be superimposed so that  at 
the input end of the  coupler  their fields nearly cancel in 
one slab while they reinforce each other in the opposite 
slab.  This field pattern represents  the initial launching 
condition where light is inserted predominantly into  only 
one  waveguide.  Since both modes have slightly different 
propagation constants PI and PZ, their relative phases will 
reverse at a  distance L = n / ( P2 - PI ). At this point the 
mode fields reinforce each other in the opposite sense, 
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accounting for  the  exchange of light  power between the 
two waveguides of  the  coupler. 

An alternate,  approximate method for  treating  direc- 
tional couplers  uses  two coupled first order differential 
equations for  the  amplitudes of the  two coupled modes, 
one in each slab [ 3 ] .  The  coupling coefficient entering 
these equations can approximately be expressed  as  an 
overlap  integral [4]. This  approach is much  simpler to use 
and works for  directional  couplers with and without dif- 
fraction  gratings. 

COMPOUND MODES OF THE ASYMMETRIC SLAB COUPLER 
The  directional  coupler  consisting of two  asymmetric 

slab waveguides placed in close proximity to each  other 
is schematically shown in Fig. 1. The two slabs have  di- 
electric  core regions of thickness d2 and d4 with refractive 
index n2 and n4. It  is assumed that rz2 > n l ,  n3 and rz4 > 
n3, n5.  The  spacing between the  slab  cores is 2S3. 

We  describe TE and TM modes of the compound struc- 
ture consisting of the five dielectric media by introducing 
a field function F which represents  the Ey component of 
the  electric field for  TE modes and  the Hy component of 
the magnetic field for  TM  modes.  In  the five regions of 
space, F is defined as follows: 

for x 2 S3 + d2 

+ A7 sin + s3 + 3 1 ,  
for -S3 I x I -S3 - d4 

= exp [ y s ( x  + ~3 + d4)1, 

for x I -(S3 + d4).  (1) 
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L 
Fig. 1. Schematic of slab  directional  coupler. 

The  time and z-dependence of the modes is given by 
the common factor  exp [ i ( wt - p,) 1. The  parameters K~ 

and y j  appearing in (1) are defined as 

K .  1 = m, j = 2,4 (2) 

y j  = @T$F, j = 1, 3, 5 (3) 

with the  free-space propagation constant k = 27r/X. 
With no field variation in y-direction the  slab modes 

have three nonvanishing field components.  The y-com- 
ponents of the  electric and magnetic fields for TE and TM 
modes are given by (1). The other nonvanishing field 
components are obtained by differentiation [5] .  For  TE 
modes : 

and for  TM modes: 

Seven of the  eight  amplitude coefficients Aj appearing 
in (1) and the propagation constant p are obtained from 
eight homogeneous equations  that result from the bound- 
ary conditions requiring continuity of the  y and z directed 
field components. In matrix notation the boundary con- 
ditions lead to  the  equation system 

8 

CA = 0 or cYpAp = 0,  v = 1, 2 8.  (6 )  
p =  1 

The nonvanishing matrix elements  are 

- 
x 
I 
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Fig. 2. Even  and  odd TE modes of a symmetrical directional coupler with 
n ,  = n3 = n5 = 3.2, n2 = n4 = 3.3, d2 = d4 = 1 pm, X = 1.5 pm. 

with mj = 1 ( j = 1-5) for  TE modes and mj = n j  for 
TM  modes. 

The homogeneous equation system has solutions only 
when its system determinant  vanishes I C I = 0. It is cus- 
tomary to expand the determinant so that an explicit ei- 
genvalue equation can  be written down.  However,  this 8 
X 8 determinant  does not yield a simple expansion,  even 
though 36 of its 64 elements  are  zero.  Thus it is actually 
easier  to obtain numerical solutions directly by searching 
for zeros of the unexpanded determinant, particularly if a 
determinant  evaluation routine is available  on  the  com- 
puter system.  Once  the  eigenvalues b have been found from 
1 C 1 = 0, we may set A ,  = 1 and omit the eighth equation 
in (6). (Instead of A ,  any other  amplitude coefficient can 
be set to unity and any other  equation can be omitted from 
(6)). With  the help of numerical matrix routines,  the  re- 
maining inhomogeneous equation  system can now easily 
be solved for Aj with j = 2 through 8 .  

One word of caution is in  order. If,  for example, n4 > 
n2, it can happen that K~ of (2) becomes imaginary. In that 
case,  the  cosine  and  sine functions with argument ~~d~ /2 ,  
appearing in (1) and (7), convert  to hyperbolic functions. 
Overall,  the field expressions  and remain real, but this 
possibility must be anticipated when writing the computer 
program. If /3 becomes so small that either y1 or y5 can 
no longer be real, there are no longer any real solutions 
of /3 so that the  modal fields become leaky (that is lossy) 
modes. The synchronous directional  coupler shown in 
Fig. 1 would not function  in  this  case. 

DISCUSSION OF NUMERICAL EXAMPLES 

It is interesting to see  the field distributions of com- 
pound modes of the  slab  directional  coupler. As a first 
example  we  consider  a symmetrical strwture with n l  = 
n3 = n5 = 3.2 and n2 = n4 = 3.3. d2 = d4 = 1 pm, X = 
1.5 pm and a spacing between the two slabs of 2S3 = 1 
pm.  The Ey components of two TE modes of the com- 
pound structure  are shown in Fig. 2. The dotted line rep- 
resents the  symmetric,  the solid line  the antisymmetric 
solution of this symmetric structure.  The two modes can 
be superimposed to yield an initial  excitation of the slab 
on the  left,  as shown in  Fig.  3(a). One  exchange length 
further down the  structure,  at z = L with 
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Fig.  3.  (a)  The  modes  shown in Fig. 2 have  been  superimposed to cancel 
each  other on the  right  slab  and  reinforce  each  other on the  left.  (b)  The 
field distribution  at  the  power  exchange  length z = L. 

L =  
n- 

I P 2  - P1 I 

( PI and P2 are  the propagation constants of the.two com- 
pound modes),  the  power has been coupled over to the 
other  slab so that  Fig. 3(b) results.  It is apparent that al- 
most complete  exchange of light energy is  possible. How- 
ever,  Fig. 3(a) and (b) also makes it clear  that  the  super- 
position of the  two guided modes of lowest order is not 
sufficient for an  exact  representation of an  input field il- 
luminating only one of the  two  slabs.  To  cancel out the 
small amount of residual energy existing  in  the  opposite 
slab would require adding radiation modes to the super- 
position of guided modes. The radiation modes would 
carry away some of the light energy.  Thus,  some  power 
is lost  in  the  attempt of exciting just  one of the  two  slabs 
at z = 0. 

As a second example  we  consider  a  structure consisting 
of two nonidentical slabs with nl = n3 = n5 = 3.2, n2 = 
3.3, n4 = 3.35, and d2 = 1 pm.  To  achieve synchronism 
of the  two slabs at  the  wavelength X = 1.5 pm requires 
that d4 = 0.4734  pm  for TE modes (d4 = 0.49474  pm 
for TM modes). The slab  separation is once  more 25' = 1 
pm. 

The Ey field components of TE modes of the compound 
structure are shown in Fig. 4. Again,  we  see  two modes 
which,  even though they lack  perfect  symmetry, resemble 
symmetric and antisymmetric functions. These two modes 
can be superimposed to yield an excitation of predomi- 
nantly the  left  slab,  as  shown in  Fig.  5(a).  Compared  to 
Fig.  3(a),  the  cancellation of light energy on  the right slab 
is somewhat poorer  in  this  example.  But, as Fig. 5(b) 
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Fig.  4. TE modes of a  coupler  made of two  nonidentical  slabs  with n, = 
n3 = n5 = 3.2, nz = 3.3, n4 = 3.35, dz = 1 pm, d4 = 0.4734  pm, A 
= 1.5  pm. 
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Fig. 5 .  (a)  Superposition  of  the  modes  of  Fig.  4  to  yield  excitation  of  the 

left  slab. (b) Field  distribution  at z = L. 

shows,  after  traversing  one half beat  wavelength L = 200 
pm, almost  all  the  light energy is once  more  coupled  over 
to  the right slab. 

Finally, we consider  two slabs whose fundamental 
modes are not synchronous.  Fig. 6 shows  the  two  funda- 
mental modes of the  asymmetrical compound structure  for 
n1 = 1 ,  n3 = n5 = 3.2, n2 = 3.3, n4 = 3.5, d2 = 1 pm, 
and d4 = 0.3  pm.  Fig. 6 shows that each of the  two modes 
favors one of the  two  slabs.  Thus, each mode  is  more 
nearly equal to  the  mode of one or the  other  slab  taken in 
isolation.  Whereas  the  solid  line has a  slight  relative  ex- 
tremum in the region of the  core of slab 2, the  mode rep- 
resented by the dotted line  lacks  this  feature,  because K~ 
is imaginary so that  the  mode  remains  evanescent  within 
the  core of slab 1 .  Superposition of the  two modes again 
makes it possigle to represent field excitation of the  left 
slab  as  shown  in  Fig.  7(a).  However,  at z = T /  ( P2 - 
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Fig. 6.   The  TE modes of two  nonsynchronous  slabs  with n ,  = 1, n3 = n5 

Note  that  each  mode  resembles  the  corresponding  mode of an  isolated 
= 3 . 2 ,  n2 = 3.3 ,  n4 = 3.5, d2 = 1 pm, d4 = 0.3 pm, X = 1.5 pm. 
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Fig. 7. (a) The modes of Fig. 6 have been  superimposed to yield excitation 

of the left slab. (b)  Field  distribution  at z = L .  

P I )  the  light energy still resides mostly on  the  left  slab, 
as shown in  Fig.  7(b). No substantial  exchange of light 
energy is taking place when the two slabs lack phase syn- 
chronism. 

COUPLING  COEFFICIENTS OF ASYMMETRIC SLAB 
COUPLER 

The exact solutions of the compound modes of the di- 
rectional coupler yield the  energy  exchange length L of 
(8) as  the (inverse) difference of the propagation constants 
of two modes. This result is exact  but its evaluation re- 
quires relatively complicated  computations.  For this rea- 
son we present approximate,  yet highly accurate coupling 
coefficients which yield the  same  information. 

Since essentially only two guided modes are involved 
in describing the  exchange of energy on  a directional cou- 
pler,  it is possible  to  write down two simultaneous differ- 
ential equations for  their field amplitudes [3], [4] 

3 = -iBal + ca2 
dz 

da2 - = -@a2 - cal. 
dz 

This equation system holds for  the  two synchronous 
modes of a  directional  coupler without a diffraction grat- 
ing. The coupling coefficient c appearing in (9) is defined 
as r41 

In this formula eo is  the  electric permittivity of vacuum, 
w is the  circular frequency of the  light, P is a normaliza- 
tion constant which represents the unit of power,  The a:- 
tual power carried on slabj is given as I aj I2P. El and E2 
are  the  electric field vectors of the modes of slab 1 and 
slab 2, respectively. Thus, we are now dealing with modes 
of the isolated slabs  instead of with compound modes of 
the whole system. The interaction between the two slabs 
is mediated by the  coupling process incorporated into the 
equations (9). The  expressions  for the modal fields of iso- 
lated slabs can be found in [ 5 ] .  The eigenvalue equations 
for  the isolated slabs can conveniently be written in the 
form [5] 

K~ = - NT + arctan - - 
d2 7 (:: ::) 
+ arctan (' :)I. (11) 

We have again mi = 1 for TE modes and mj = n: for TM 
modes.  The  integer N is  the  mode number and assumes 
the values 0, 1, 2, etc., N = 0 is  the dominant TE or TM 
mode. The  eigenvalue  equation was written for the modes 
of slab 1. The modes of slab 2 follow by replacing nl --f 

n5, n2 -+ n4, d2 -+ d4. The evaluation of (1 1) is most easily 
accomplished by iteration.  That is we choose a trial value 
of K~ to compute an iterated  value by substitution into  the 
right-hand side of the equation.  The only tricky part in 
this  procedure is to  ensure  that none of the  y-parameters 
becomes imaginary during the iteration process, which can 
happen when the desired solution belongs to a  mode near 
cutoff. 

Evaluation of (10) is straightforward (if a  little tedious) 
and results in  the  following  expression  for  the coupling 
coefficient of TE modes 
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The coupling coefficient for  TM  modes is far  more  com- 
plicated (TM modes  always are!) and is thus presented in 
the following way 

I I I 1 I , 

100 + 
- 10 

io00 - 

with 

and 

+ -  n$z; K$ + yg 
y5 n$i + nly: ' (15) 

Like  any  system of linear differential equations with 
constant coefficients, (9) has normal  mode solutions 

P , = O - c  (16) 

p 2  = B + c. (17) 

and 

These  normal  modes  correspond to the compound  modes 
of the directional coupler.  Thus,  we  see that the difference 
of the propagation constants of the compound  modes is 
equal to twice the coupling coefficient 

P2 - PI = 2c  (18) 
so that the power  exchange length (8) becomes 

(19) 

I , 1 I I I I J 
0 2  0 4  0 6  0.8 10 1.2 1.4 

I I l i I  I 

100 + 
10 

1 

0.1 

0.01 
1 

To compute the length of the directional coupler re- 
quired for complete  exchange of energy thus involves 
solving the  eigenvalue equation (1 1) for  one slab and using 
the eigenvalues 8, kj , and -yj to compute  the  coupling coef- 
ficients from (12) or (13).  Since  synchronism of the  two 
slabs is required, it is necessary (for nonidentical slabs) 
to solve (1 1) for  one slab and  compute the slab width dj 
( j = 2  or 4) for  the  other  slab  from the corresponding 
equation  solved  for d j .  If dj is already specified, one of 
the refractive indices must  be adjusted to achieve  phase 
synchronism. 

COMPARISON OF APPROXIMATE AND EXACT  POWER 
EXCHANGE  LENGTHS 

Fig.  8(a)  shows the power  exchange lengths L  (broken 
lines with  scale on left),  computed  from (8), as functions 
of the slab separation 2S3 for  TE  and  TM  modes  for the 
example  used in Figs. 4 and 5.  Also plotted on the same 
figure are  the relative errors 100 X A L / L  (solid lines 
with scale on right) of the approximate relation (19)-rel- 

1 '  

zS3(prn) 

(b) 
Fig. 8. (a)  Power  exchange  length L (dotted  line)  and  error of approximate 

coupling  formulas  (solid  lines)  as  functions of the  slab  separation for the 
slab  coupler  used  in  Fig. 4. (b)  Same  as  (a)  for n l  = 1, n3 = n5 = 3.2, 
n, = 3.3 ,  nq = 3.5, d2 = 1 wm, d4 = 0.1633 wm, X = 1.5 pm. 

ative to the exact result (8). In this example,  the  exchange 
lengths for TE and  TM  modes  are so similar that only  one 
curve  is  shown,  and  the  approximations (12), (13), and 
(19) are accurate to better than' 1 percent.  The difference 
between TE and  TM  modes is more apparent in the ex- 
ample  shown in Fig. 8(b) with: n1 = 1, n3 = n5 = 3.2, 
n2 = 3.3, 124 = 3.5, d2 = 1 pm, d4 = 0.1633  pm for TE 
modes  and d4 = 0.1791 pm  for TM modes. We see that 
in this second  example  the  error stays below 10 percent 
for  TE modes  even  for  extremely  close slab spacings, 
barely exceeding this value for TM  modes. 
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COUPLER BANDWIDTH 
Nonidentical directional couplers can exchange energy 

only at those wavelengths where the propagation con- 
stants of two  modes,  one on each  slab,  become  identical. 
That means that  these  devices  are bandpass filters. The 
(wavelength) full width at half maximum is approxi- 
mately given by the  expression [6] ,  [7] 

5 
AA = (20) 

4 3 2  4% l d h  -XI 
where p1 and p2  are  the propagation constants of the  two 
coupled modes and L is the  power  exchange length of the 
coupler.  The wavelength derivatives of the propagation 
constants can be computed numerically by solving the  ei- 
genvalue equation (1 1) at  two closely spaced wave- 
lengths. If the  material  dispersion of the refractive indices 
nj are to be taken into account,  this  is probably the  sim- 
plest approach since the eigenvalue equation must be 
solved at one wavelength anyhow. Ignoring material dis- 
persion ( dnj / A  = 0), we can obtain  the wavelength de- 
rivatives of the propagation constants by differentiating 
the eigenvalue equation (1 1) .  Thus, we obtain for  TE 
modes 

and 
, 

for TM modes.  These equations are written for  the  slab 
with core  index n2, the corresponding equation for  the [31 
other slab is obtained by exchanging n l  + n5, n2 -+ n4, [41 
n3 --t n3, and d2 --t d4. t51 

The coupler bandwidth is plotted in  Fig. 9 as  a  function t61 
of the slab spacing  for  a  coupler with the same refractive 
index values and  core widths as those of Figs. 4, 5 ,  and 
8(a) (in the absence of material  dispersion). As filters, ‘71 
such directional couplers would have wide bandwidths. 
Narrower bandwidths can be achieved by making the  cou- 
pler much longer. An order of magnitude increase  in cou- 
pler length reduces the bandwidth by one  order of mag- 
nitude. Making use of material dispersion should also help 
to  reduce  the  bandwidth. 

CONCLUSIONS 
We  have analyzed synchronous directional couplers 

made with non-identical,  asymmetric  slab waveguides. 
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Fig.  9.  Bandwidth of the  coupler  used  in  Fig.  4 as a  function of slab sep- 
aration. 

out material dispersion) for TE and TM modes of slab 
directional  couplers. The approximate results were com- 
pared with exact results obtained from modal solutions of 
the compound structure. 
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