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Abstract: This paper discusses a numerical method for computing the 
electromagnetic modes supported by multilayer planar optical waveguides 
constructed from lossy or active media, having in general a diagonal 
permittivity tensor. The method solves the dispersion equations in the 
complex plane via the Cauchy integration method. It is applicable to 
lossless, lossy and active waveguides, and to AntiResonant Reflecting 
Optical Waveguides (ARROW’s). Analytical derivatives for the dispersion 
equations are derived and presented for what is believed to be the first time, 
and a new algorithm that significantly reduces the time required to compute 
the derivatives is given. This has a double impact: improved accuracy and 
reduced computation time compared to the standard approach. A different 
integration contour, which is suitable for leaky modes is also presented. 
Comparisons are made with results found in the literature; excellent 
agreement is noted for all comparisons made. 
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1. Introduction 

The notions of guided and leaky modes are fundamental concepts in optical waveguiding 
theory. A knowledge of mode propagation characteristics is essential to the design of 
numerous guided-wave optoelectronic devices, passive and active components such as 
semiconductor lasers, electro-absorption and electro-optic modulators, switches, 
photodetectors, filters and couplers, to name but a few. Numerical methods that can efficiently 
and accurately model planar optical waveguides are thus of obvious importance since they are 
used as a basic tool in the design process. 

The Transfer Matrix Method (TMM) [1], [2], as one of the primary tools for multilayer planar 
optical waveguide analysis, can generate the dispersion equation of the TE and TM modes 
supported by such structures in a straightforward manner. The waveguides can consist of any 
combination of lossless, lossy (dielectric, semiconductor, metallic) and active (including 
uniaxially anisotropic quantum wells) layers. Solving the dispersion equation yields the 
propagation constant and the electromagnetic field distribution for a mode. For the modes of 
lossy or active waveguides, and for leaky modes, the mode propagation constants, which are 
the roots of the dispersion equation, are complex numbers.  

Traditional numerical zero-search algorithms such as the downhill method [3], Newton’s 
method and the one-dimensional scan method [4] cannot give the number of propagating 
modes supported by the waveguides, and need an initial guess value close to the actual root. 
Therefore these methods are not efficient and reliable, especially for a general-purpose mode 
solver. There is a rigorous mathematical technique [5], [6] which is capable of finding the 
zeros or poles of any analytic function in the complex plane. This technique is based on 
integration in the complex plane and can be used to solve the dispersion equation of a 
multilayer planar optical waveguide [7], [8]. The method is often called the Cauchy 
Integration Method (CIM) or the Argument Principle Method (APM). 

The novel features of the TMM and CIM that we present in this paper include: the derivation 
and use of analytical derivatives of the dispersion equations in anisotropic media, an 
algorithm for the rapid calculation of the derivatives, and a different integration contour for 
locating leaky modes. Using analytical derivatives in conjunction with the algorithm 
suggested improves the accuracy of the method and greatly reduces the CPU time required to 
find modes. The new integration contour improves the numerical efficiency of the integration 
calculation. The method is applicable to lossless, lossy and active waveguides, and to 
AntiResonant Reflecting Optical Waveguides (ARROW’s). The method can find leaky and 
guided modes. Anisotropic dielectrics described by a diagonal permittivity tensor are handled 
by the formulation.  

2. Transfer Matrix Method 
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The transfer matrix method provides a straightforward formulation of the multilayer planar 
optical waveguide problem. A multilayer nonmagnetic anisotropic slab waveguide structure 
(µ = µ0), is shown in Figure 1. The refractive index tensor, 

in , of the i-th layer can be in 

general complex, i.e., 
jjijjijji jknn −=~  where jjin and jjik  are the refractive index and 

extinction coefficient along the jj direction of the i-th layer, and i = 1,…, r is the layer number 
between the substrate and cover. 

 
 
 
 
 
 
 
 
 
 

 

Figure 1. Structure of the multilayer planar optical waveguide 

The TMM is a well-known approach for generating the dispersion equations governing the 
modes supported by a multilayer planar optical waveguide [1]. The technique is only 
summarized here and the equations needed to obtain the derivatives analytically are given. 

2.1 Maxwell’s Equations and TE Field Solutions 

Maxwell’s curl equations [9] for source-free, time-harmonic fields in anisotropic media are:      

     HjE
vv

0ωµ−=×∇                                                                                                            (1a) 

     EjH r

vv

εωε 0=×∇                                                                                                            (1b)                                      

where ε0 is the free space permittivity, ω  is the angular frequency, and 
rε  is a tensor of 

relative permittivity having the form: 
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For a TE mode (Ex, Ez, Hy = 0) propagating in the + ẑ  direction in the i-th layer, (xi ≤ x ≤ xi+1), 
the non-zero electric and magnetic field components are: 

     )~exp()(ˆ zjtjxEyE yii γω −=
v

                                                                                         (3a) 

     [ ] )~exp()(ˆ)(ˆ zjtjxHzxHxH zixii γω −+=
v

                                                                    (3b)                                      

where zyx ˆ,ˆ,ˆ  are the unit vectors in the x, y, z directions, respectively, )(~
0 αβγ jk −=  is the 

complex propagation constant with β and α the normalized phase and attenuation constants, 
respectively, and k0 = ω/c = 2π/λ0, c is the speed of light in free space and λ0 is the free space 
wavelength. From equations (1) and (3), we can derive:  
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where 222
0

~~~ γκ −±= yyii nk . The tangential electric field and its derivative must satisfy equation 

(4) and are related to the magnetic fields through equation (5) within the i-th layer. Solutions 
to equation (4) are written as: 

     
dx

xdE
xxxExxxE iyi

ii
i

iyiiiyi

)(
)](~sin[~

1
)()](~cos[)( −+−= κ
κ

κ                                    (6a) 

     
dx

xdE
xxxExx

dx

xdE iyi
iiiyiiii

yi )(
)](~cos[)()](~sin[~)(

−+−−= κκκ                                (6b) 

where xi defines the boundary between the i-th and ( i+1)-th layer. Equation (6) implies that 
any sign for the square root of 

iκ~  is acceptable.  

2.2 Transfer Matrix and the Dispersion Equation for the TE Modes 

Using Equation (6), the tangential electric field and its derivative at the bottom of the i-th 
layer, (x = xi), can be expressed as a function of the field and its derivative within that layer:  
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Imposing the continuity of tangential fields at any layer interface in the multilayer structure, 
the fields tangential to the boundary at the top of the substrate layer (Eys, dEys/dx) and at the 
boundary at the bottom of the cover layer (Eyc, dEyc/dx) are related via the matrix product: 
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The Mi are the transfer matrices for all of the r layers of thickness di. For guided modes in an 
open structure, the tangential fields in the substrate and cover must be exponentially decaying: 
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where 22
0

222
0

2 ~~~,~~~
yyccyyss nknk −±=−±= γγγγ , and yycyys nandn ~~ are the substrate and 

cover complex refractive indices along the y direction, respectively. Equations (10) and (11) 
in conjunction with (8) yield the dispersion equation for the TE modes: 

     0~~~~)~( 12212211 =−−+= mmmmF cscs γγγγγ                                                           (12) 

The zeros of Equation (12) correspond to the complex propagation constants γ~ . 

2.3 Transfer Matrix and the Dispersion Equation for the TM Modes 

For the TM modes (Hx, Hz, Ey = 0) the following equations hold: 
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Following a derivation similar to the TE case the transfer matrices of each layer are 
determined: 
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3. Cauchy Integration Method 

3.1 Summary of the Method  

The Cauchy integration method [5] is based on the argument principle [10] and the residue 
theorem of complex analysis. If a function f(z) is analytic and does not go to zero over a 
closed integral contour, then the argument principle is of the form:  
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where Nz is the number of zeros and Np is number of poles inside the region enclosed by the 
contour C. If there are no poles in the region enclosed by C, then S0 is the number of zeros, 
and from the residue theorem we have: 
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where zi, i = 1, 2, …, S0  are the roots of f(z) inside C and Sm is the sum of m
iz  with m = 1, 2, … 

, S0. Equation (18) leads to a system of equations that can be used to evaluate the coefficients 
of a polynomial p(z) of degree 

0S , which has the same roots 
0

,,1 Szz ⋅⋅⋅  as the function f(z) 

inside C. The approximation polynomial p(z) can be written as: 
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with 1
0
=SC . The coefficients 

kC  are given via Newton’s recursive formula:  
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The polynomial p(z) can be solved by standard techniques such as Laguerre’s method [11]. 
The problem of finding the zeros of an arbitrary function f(z) is thus transformed to the 
simpler problem of finding the zeros of the polynomial p(z), for which a variety of reliable 
and efficient numerical methods exist. 

3.2 Numerical Implementation 

The CIM can be used to solve the dispersion equation of the multilayer planar optical 
waveguide in a straightforward manner. The poles are first identified at 

cn~=β  and 
sn~=β  as 

shown in Figure 2, parts (a) and (b). The rectangular integral contour C1 is selected for the 
guided modes. The area between the minimum and the maximum real parts of all the 
refractive indices is enclosed by the contour C1. The integral contour C2 is selected for leaky 
modes. These contours do not enclose any of the poles. 
 
 
 
 
 
 
 

 
                                            

                                  (a)                                                                                          (b) 

Figure 2. The integral contours in the complex plane. The  ‘     ’s correspond to the poles, 

max
~n  is the complex refractive index with the maximum real part and is enclosed by C1, for 

TE modes in anisotropic media: maxmax
~~
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modes in anisotropic media: maxmax
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To solve Equations (17) and (18) the derivative of the dispersion equation is needed. If the 
derivative cannot be obtained analytically then it can be estimated numerically via Cauchy’s 
theorem [10], which states that the first derivative of a function f(z) at  z = z0  is given by: 
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where D is any closed path which encloses the point z0 and f(z) is analytic inside and on D. 

Reference [7] gives an algorithm for solving Equation (21) numerically. The algorithm is 
based on the parametric variable transformation z = z0 + Rej2πx where R is the radius of a circle 
centered at z0 defining the contour over which the function f(z) is evaluated. The m-point 
trapezoidal integration rule is then applied to Equation (21), with z transformed as described, 
yielding the following numerical approximation to the derivative: 

   ∑
=

+=≈
m

l l
m

j

l
m

j

m

e

eRzf

m
zfRzRf

1
2

2

0
00

)(1
)](’[)(’ π

π

                                                        (22) 

The computation of the numerical derivative according to Equation (22) is the most intensive 
computational task in the standard CIM [7]. When z0 is very close to the zero of the function, 
the numerical derivative converges very slowly and inaccurately.  

In multilayer planar optical waveguides, the derivative of the dispersion equations can be 
obtained analytically. Reference [8] gives an analytical derivative but in exponential form and 
for isotropic media. We have obtained the exact analytical expressions for the derivatives of 
the transfer matrices and of the dispersion equations for the multilayer waveguide problem of 
interest in this paper. The expressions are given in the next section and an algorithm to 
efficiently construct them is described. The derivatives computed in this manner are then used 
to help solve Equations (17) and (18), thus providing a gain in accuracy and reduction in 
execution time compared to the standard CIM approach [7]. 

To solve Equations (17) and (18), integration is performed numerically by applying an 
adaptive integration method [12] in a manner similar to reference [7]. This approach is 
summarized here for completeness. The quadrature integration of a function F(z) is 
represented by the summation: 
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where Wi are the weights and a ≤ zi ≤ b are the integration nodes. A 7-point Gaussian rule G7f 
and 15-point Kronrod [13] rule K15f are used to estimate integration along the straight line 
connecting the end-points of the interval [a, b] in the complex plane. The local estimate is 
taken as K15f since the Kronrod rule is more accurate than the Gaussian rule. If the local error 
estimate | K15f – G7f | / | K15f | is less than a specified tolerance, the local estimate is accepted 
as the integration result for the specific interval. Otherwise the interval is bisected and the 
same procedure is applied to the two new subintervals. In the same integration routine the 
calculation of the products )(/)(’ ii

m
i zfzfz  for 

0,,1 Sm L= , can be incorporated such that 

f(zi) and f’(zi) are evaluated only once for the specific node zi for all the summations 

0
,,1 SSS L .  

The polynomial p(z) can be solved by Laguerre’s method. The roots of polynomial p(z) and 
f(z) do not coincide exactly due to the integration errors introduced in Equation (23). After the 
roots of the polynomial p(z) are obtained, a further refinement must be performed to find the 
roots of f(z) by applying Muller’s Method [11] with the initial guess being the roots of p(z). 
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As discussed in reference [7], the region enclosed by the contour of interest C ought to be 
subdivided into smaller regions such that S0 ≤ 4. This ensures that the degree and the 
coefficients of the polynomial p(z) remain small, thus helping to reduce numerical errors 
when locating the roots. Considering all sub-regions enclosed by the original contour leads to 
all roots of interest. 

4. Analytical Derivatives of the Transfer Matrices and Dispersion Equations  

4.1. TE Modes 
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The derivative of the transfer matrix describing the multilayer structure for i = 1, …, r is then: 
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The derivatives of 
cs and γγ ~~  with respect to u~  are: 
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Equation (12) we obtain the derivative of the dispersion equation as: 
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4.2 TM Modes 

Similarly, for the TM modes 2222
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From Equation (16), the derivative of the dispersion equation is: 
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4.3 Algorithm for Computing the Derivative of the Transfer Matrices 

The transfer matrices, and their derivatives as expressed by Equation (25), can be computed in 
an efficient manner. The idea is to accumulate the derivative of the transfer matrix as the latter 
is being constructed. Consider accumulation over the first 3 layers of a waveguide structure. 

For the first layer (i = 1), 
1M  and 

ud

dM
~

1  are computed. For the second layer (i = 2), 
2M  and 

ud
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~
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accumulation process continues until all layers in the structure have been handled. Clearly, 
one matrix product is required per layer to accumulate the transfer matrix and two products 
are required to accumulate its derivative. This algorithm thus accumulates the transfer matrix 
for r layers in r matrix products and the derivative of the transfer matrix in 2r matrix products. 
The CIM based on our analytical derivatives and algorithm is thus an order r method, which is 
a substantial improvement over a similar approach of order r! discussed in [14]. 

5. Numerical Results and Discussion 

5.1 Guided Modes in a Lossless Waveguide 

An inhomogeneous waveguide having an index of refraction that follows an exponential 
distribution was analyzed in order to compare the computational efficiency of the CIM using 
numerical and analytical derivatives. The ADR method [14] was also implemented and its 
computation times are included for comparison. The parameters of the structure analyzed 
were taken from reference [14]: 

 
( )α/2 2)( x

ss ennxn ∆+=  for x < 0                                                                       (29a)  

cnxn =)(                           for x > 0                                                                       (29b) 

where ns = 2.177, nc = 1.0, ∆ = 0.043, α = 0.931 µm and the thickness of the inhomogeneous 
layer is set to d = 4 µm. The normalized phase constant (or effective index) of the two TE 
modes supported by this structure can be obtained analytically. They are β = 2.19075 for the 
TE0 mode and β = 2.17930 for the TE1 mode [14]. The effective indices of both modes, 
computed using our approach, are shown in Table I. The computed values are seen to 
converge to the analytical values as the number of layers used to approximate the continuous 
profile is increased. Agreement with the analytical values is excellent for a large number of 
layers. 

TABLE I. Effective Index of Guided Modes Supported by an Inhomogeneous Waveguide. 

Number of Layers β - TE0 β - TE1 

 
5 2.191567664 2.179485876 

10 2.190948646 2.179376481 

20 2.190805357 2.179325841 

40 2.190775872 2.179315352 

60 2.190770683 2.179313499 

80 2.190768887 2.179312857 

100 2.190768059 2.179312561 

200 2.190766958 2.179312167 
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Figure 3 shows the execution time required to compute the effective index of the TE0 mode 
supported by the structure as a function of the number of layers used to approximate Equation 
(29a). The numerical derivative was computed to a relative accuracy of 10-3 and the tolerance 
in assessing the local error estimate when evaluating Equation (23) was set to 10-5 for all three 
methods. From Figure 3, it is apparent that the CIM based on the analytical derivative is order 
r in matrix operations, like the CIM based on the numerical derivative and the ADR method. 
Using an analytical derivative is more accurate and clearly much more computationally 
efficient than using a numerical one. The computational cost of the CIM with the analytical 
derivative is only slightly higher than the ADR method, which is less robust and more 
complex. 

Figure 3. Comparison of the normalized execution times required for the ADR and the CIM 
based on a numerical derivative (ND) and an analytical derivative (AD). 

5.2 Guided Modes in Quantum Well Active Waveguides 

Quantum well (QW) layers used in active photonic devices are in fact anisotropic. Their 
optical response is different for polarizations parallel and perpendicular to the direction of 
growth. The anisotropy is uniaxial and appears even though quantum wells are made up from 
cubic semiconductor materials. Modeling uniaxial media is essential if accurate waveguide 
propagation constants are desired. We applied our method to a novel InP-based QW laser 
structure as defined in Table II in order to illustrate its ability to handle anisotropy and gain. 
The second layer is the active anisotropic quantum well layer. The results are shown in Table 
II and gain is observed for the first TE and TM modes. 

TABLE II. Effective Index of Guided Modes Supported by a 6-layer Quantum Well Active Waveguide. 

6-layer Anisotropic Active Waveguide: 
sn~ = 3.13575-j6.2264×10-5, 

1
~n = 3.16404-

j1.0005×10-5, == 22
~~

yyxx nn  3.393856+j0.0069093, 
2

~
zzn = 3.395891+j0.0032438, 

3
~n = 

3.16987-j1.3991×10-4, 
4

~n = 3.38838-j2.7498×10-4, 
5

~n = 3.17034-j2.829×10-4, 
6

~n = 3.46930-

j0.083828, 
cn~ = 0.59-j12.63, d1 = 1.5µm, d2 = 0.2µm, d3 = 0.2µm, d4 = 0.01µm, d5 = 1.3µm, 

d6 = 0.2µm,  λ0 = 1.55µm 
Mode  β α × 10-3 
TE0 3.211912271 -2.295751586 
TE1 3.146335751 1.833386157 
TE2 3.137997320 2.519718051 
TM0 3.204193956 -1.750073292 
TM1 3.144266723 0.1557238150 
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5.3 Leaky Modes in Lossless Waveguides 

The CIM can be used to find leaky modes. The leaky mode propagation constants satisfy the 
same dispersion equation as the guided modes, but the appropriate sign of 

sγ~  and 
cγ~  must be 

chosen. If we assume i
c

r
cc

i
s

r
ss jj γγγγγγ +=+= ~and~ , for β < ns (β < nc), we should choose 

)0and0(0and0 ><>< i
c

r
c

i
s

r
s γγγγ . The integral contour is selected as C2, shown in Fig. 

2(a) for ns > nc. The reason for selecting the top part of the integral contour along the β axis is 
that the imaginary part of the leaky mode propagation constants is negative. The integral 
contour above the β axis will lead to large integration errors and generate roots for the 
polynomial p(z) far away from the roots of the dispersion equation. For the TE modes 
supported by the waveguide structure described in Table III, our results are complete 
agreement with those reported in [1], as shown. 

TABLE III.  Effective Index of Leaky Modes Supported by a 4-layer Lossless Waveguide. 

4-layer Lossless Waveguide: ns = 1.5, n1 = 1.66, n2 = 1.60, n3 = 1.53, n4 = 1.66, nc = 1.0, 
d1 = d2 = d3 = d4 = 0.5µm, λ0 = 0.6328µm 
Present Method Reference [1]  
Mode β α β α 
TE4 1.461856641 0.007155871 1.46186 0.00716 
TE5 1.382489223 0.018165877 1.38250 0.01817 
TE6 1.281364436 0.035877392 1.28136 0.03588 
TE7 1.142314462 0.052876075 1.14231 0.05288 
TE8 1.003037019 0.070770941 1.00304 0.07077 
TM4 1.451534978 0.011923599   
TM5 1.370664375 0.030142063   
TM6 1.273737061 0.056791773   
TM7 1.157312853 0.087578491   
TM8 1.036950265 0.103078083   

5.4 ARROW Waveguides 

ARROW (AntiResonant Reflecting Optical Waveguide) waveguides [15], [16] are based on 
Fabry-Perot reflection instead of total internal reflection. The modes supported by such 
structures can be particularly difficult to find due to the proximity of the corresponding zeros 
in the complex plane. An example structure is described in Table IV [17], where the effective 
index of the first 6 TE and TM ARROW modes found using our CIM are also given.  

TABLE IV. Effective Index of ARROW Modes Supported by a 9-layer ARROW Waveguide 

9-layer ARROW Waveguide: ns = 3.5, n1 = 1.46, n2 = 1.50, n3 = 1.46, n4 = 1.50, n5 = 
1.46, n6 = 1.50, n7 = 1.46, n8 = 1.50, n9 = 1.46, nc = 1.0, d1 = 2.0µm, d2 = 0.448µm, d3 = 
4.0µm, d4 = 0.448µm, d5 = 2.0µm, d6 = 0.448µm, d7 = 4.0µm, d8 = 0.448µm, d9 = 2.0µm, 
λ0 = 0.6328µm 
Mode β α × 10-4 
TE1 1.457920191 0.007106242 
TE2 1.457791244 0.009053396 
TE3 1.453780369 0.114698816 
TE4 1.453045406 0.420121480 
TE5 1.451864807 0.693651857 
TE6 1.450269491 0.732515869 
TM1 1.457925423 0.045880488 
TM2 1.457782773 0.057163274 
TM3 1.453795449 0.645756672 
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TM4 1.452928430 2.555862981 
TM5 1.451781628 4.567101184 
TM6 1.450247659 4.357488809 

 
Figure 4 shows the spatial distribution of the Hy field component related to the first two TM 
ARROW modes, computed using our method. It is indeed clear from this figure that the 
structure can be used as a directional coupler [17]. 
 

                           (a)                                                                                             (b) 

Figure 4. (a) Field distribution for the symmetric TM mode: TM1.  (b) Field distribution for the 
first anti-symmetric TM mode: TM2. 

5.5 Anisotropic ARROW Waveguides  

Many anisotropic materials have desirable properties at optical wavelengths, including low 
losses, and large electro-optic or photo-elastic effects. In addition, anisotropy may be 
introduced during material growth or device processing. It is thus important for a mutilayer 
waveguide modeling tool to be able to handle effectively such materials. 

As the last example, we have applied our method to obtain the propagation constant of modes 
supported by an anisotropic ARROW waveguide [18]. The structure of interest is defined in 
Table V and the first 4 ARROW modes for the isotropic (AR = 1) and anisotropic cases (AR = 
nxxi/nzzi = 1.03) are given. Our results for the TE modes are in complete agreement with those 
reported in [19] for the case AR = 1. 

TABLE V.  Effective Index of ARROW Modes Supported by a 3-layer Anisotropic ARROW Waveguide 

3-layer Anisotropic ARROW Waveguide: ns = 3.85, nzz1 = 1.46, nzz2 = 2.3, nzz3 = 1.46, nc 

= 1, d1 = 3.15λ0, d2 = 0.142λ0, d3 = 6.3λ0, λ0 = 0.6328µm, nxxi = nyyi, AR = nxxi/nzzi, i = 1,2,3 
AR = 1 AR = 1.03 
Present Method Reference [19] Present Method 
Mode β α × 10-3 β α × 10-3 β α × 10-3 
TE1 1.457941265 0.000054189 1.45794 0.000054189 1.501798936 0.000050179 
TE2 1.451919174 0.052870681 1.45192 0.052871 1.495945499 0.053815143 
TE3 1.451174055 0.192035341 1.45117 0.19203 1.495255344 0.184243873 
TE4 1.441371363 0.004374469 1.44137 0.0043745 1.485698165 0.004051178 
TM1 1.457890856 0.002450742   1.501625054 0.002544521 
TM2 1.451754691 0.553891897   1.495287895 0.576101022 
TM3 1.451304282 1.151033285   1.494855078 1.189339701 
TM4 1.440916633 0.319061714   1.484121307 0.197863211 
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6. Conclusion 

A numerical method based on integration in the complex plane has been developed to 
characterize the modes supported by multilayer planar optical waveguides constructed from 
lossy or active anisotropic media. The analytical derivative of the transfer matrices and 
dispersion equations were obtained and presented for the first time. An algorithm for 
efficiently computing the derivative was given and a different integral contour to be used for 
finding leaky modes was presented. The method reported has several important advantages 
over other methods for finding modes of planar waveguides. An advantage is the ability to 
find the total number of modes in a region of interest in the complex plane. Another advantage 
is that the method can be used to characterize lossless, lossy, active and ARROW waveguides 
in anisotropic media. The method can generate guided modes as well as leaky modes. The 
combination of high accuracy, low computation time and broad range of applicability makes 
the method very attractive for integration into commercial computer-aided design and 
modeling tools for integrated optics. 
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