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Abstract: This paper discusses a numerical method for computing the
electromagnetic modes supported by multilayer planar optical waveguides
constructed from lossy or active media, having in general a diagonal
permittivity tensor. The method solves the dispersion equations in the
complex plane via the Cauchy integration method. It is applicable to
lossless, lossy and active waveguides, and to AntiResonant Reflecting
Optical Waveguides (ARROW’s). Analytical derivatives for the dispersion
equations are derived and presented for what is believed to be the first time,
and a new algorithm that significantly reduces the time required to compute
the derivatives is given. This has a double impact: improved accuracy and
reduced computation time compared to the standard approach. A different
integration contour, which is suitable for leaky modes is also presented.
Comparisons are made with results found in the literature; excellent
agreement is noted for all comparisons made.

© 2000 Optical Society of America
OCI S codes: (130.2790) Guided waves; (230.7390) Waveguides, planar

References and links

1. J. Chilwel and I. Hodgkinson, “ Thin-filmsfield-transfer matrix theory of planar multilayer waveguides
and reflection from prism-loaded waveguide,” J. Opt. Soc. Am. A 1, 742-753, (1984)

2. L.M. Walpita, “ Solutions for planar optical waveguide equations by selecting zero elementsin a
characteristic matrix,” J. Opt. Soc. Am. A 2, 595-602, (1985)

3. K.H. Schlereth and M. Tacke, “ The complex propagation constant of multilayer waveguides: An algorithm
for a personal computer,” 1EEE J. Quantum Electron., 26, 627-630, (1990)

4.  L.Sunand E. Marhic, “Numerical study of attenuation in multilayer infrared waveguides by the circle-
chain convergence method”, J. Opt. Soc. Am. B 8, 478-483, (1991)

5. L.M. DevesandJ. N. Lyness, “A numerical method for locating the zeros of an analytic function,” Math.
Comp., 21, 543-560, (1967)

6. L.C.Bottenand M. S. Craig, “Complex zeros of analytic functions’, Comput. Phys. Commun., 29, 245-
259, (1983)

7.  E. Anemogiannis, and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general
structures”, J. Lightwave Tech., 10, 1344-1351, (1992)

8. R. E.Smith, S. N. Houde-Walter, and G. W. Forbes, “ Mode determination for planar waveguides using the
four-sheeted dispersion relation,” 1EEE J. Quantum Electron., 28, 1520-1526, (1992)

9. Hermann A. Haus, “Waves and Fields in Optoelectronics,” (New Jersey, Prentice-Hall Inc., 1984). Ch. 11

10. J.W.BrownandR. V. Churchill, “Complex Variables and Applications,” (Sixth Edition, New Y ork:
McGraw-Hill, 1996)

11. W.H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipesin C,” (Second
Edition, Cambridge, 1994)

12. J. R. Rice, “Numerical Methods, Software, and Analysis,” (IMSL Reference Edition. New Y ork: McGraw-
Hill, 1983)

#23453 - $15.00 US Received September 05, 2000; Revised September 25, 2000

(C) 2000 OSA 9 October 2000/ Vol. 7, No. 8/ OPTICS EXPRESS 260



13.  A. S Kronrod, “ Nodes and Weights of Quadrature Formulas,” (NewY ork: Consultants Bureau, 1965)

14. E. Anemogiannis, E. N. Glytsisand T. K. Gaylord, “ Efficient solution of eigenval ue equations of optical
waveguiding structures’, J. Lightwave Tech., 12, 2080-2084, (1994)

15. T.Babaand Y. Kokubun, “ Dispersion and radiation |oss characteristics of antiresonsnt reflecting optical
waveguides-Numerical Results and Analytical Expressions’, |IEEE J. Quantum Electron., 28, 1689-1700,
(1992)

16. W. Huang, R. M. Shubiar, A. Nathanand Y. L. Chow, “The modal characteristics of ARROW structures’,
J. Lightwave Tech,, 10, 1015-1022. (1992)

17. J.Dengand Y. Huang,” A novel hybrid coupler based on antiresonant reflecting optical waveguides,” J.
Lightwave Tech., 16, 1062-1069, (1998)

18. B.Ray and G W. Hanson, “ Some effects of anisotropy on planar antiresonant reflecting optical
waveguides’, J. Lightwave Tech., 14, 202-208, (1996)

19. E. Anemogiannis, E. N. Glytsisand T. K. Gaylord, “ Determination of guided and leaky modes in lossless
and lossy planar multiplayer optical waveguides: reflection pole method and wavevector density method”,
J. Lightwave Tech., 17, 929-941, (1999)

1. Introduction

The notions of guided and leaky modes are fundamental concepts in optical waveguiding
theory. A knowledge of mode propagation characteristics is essential to the design of
numerous guided-wave optoelectronic devices, passive and active components such as
semiconductor  lasers, electro-absorption and electro-optic modulators,  switches,
photodetectors, filters and couplers, to name but afew. Numerical methodsthat can efficiently
and accurately model planar optical waveguides are thus of obvious importance since they are
used as a basic tool in the design process.

The Transfer Matrix Method (TMM) [1], [2], as one of the primary tools for multilayer planar
optical waveguide analysis, can generate the dispersion equation of the TE and TM modes
supported by such structures in a straightforward manner. The waveguides can consist of any
combination of lossless, lossy (dielectric, semiconductor, metallic) and active (including
uniaxially anisotropic quantum wells) layers. Solving the dispersion equation yields the
propagation constant and the electromagnetic field distribution for a mode. For the modes of
lossy or active waveguides, and for leaky modes, the mode propagation constants, which are
the roots of the dispersion equation, are complex humbers.

Traditional numerical zero-search algorithms such as the downhill method [3], Newton's
method and the one-dimensional scan method [4] cannot give the number of propagating
modes supported by the waveguides, and need an initial guess value close to the actual root.
Therefore these methods are not efficient and reliable, especially for a general-purpose mode
solver. There is a rigorous mathematical technique [5], [6] which is capable of finding the
zeros or poles of any analytic function in the complex plane. This technique is based on
integration in the complex plane and can be used to solve the dispersion equation of a
multilayer planar optical waveguide [7], [8]. The method is often called the Cauchy
Integration Method (CIM) or the Argument Principle Method (APM).

The novel features of the TMM and CIM that we present in this paper include: the derivation
and use of analytical derivatives of the dispersion equations in anisotropic media, an
agorithm for the rapid calculation of the derivatives, and a different integration contour for
locating leaky modes. Using analytical derivatives in conjunction with the algorithm
suggested improves the accuracy of the method and greatly reduces the CPU time required to
find modes. The new integration contour improves the numerical efficiency of the integration
caculation. The method is applicable to lossless, lossy and active waveguides, and to
AntiResonant Reflecting Optical Waveguides (ARROW'’S). The method can find leaky and
guided modes. Anisotropic dielectrics described by a diagonal permittivity tensor are handled
by the formulation.

2. Transfer Matrix Method
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The transfer matrix method provides a straightforward formulation of the multilayer planar
optical waveguide problem. A multilayer nonmagnetic anisotropic slab waveguide structure
(1 = o), is shown in Figure 1. The refractive index tensor, 7y, of the i-th layer can be in
general complex, i.e., ﬁjji =n; - jk;; where nj;
extinction coefficient along the jj direction of thei-th layer, and i = 1,..., r isthe layer number
between the substrate and cover.

and k; are the refractive index and
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Figure 1. Structure of the multilayer planar optical waveguide

The TMM is a well-known approach for generating the dispersion equations governing the
modes supported by a multilayer planar optical waveguide [1]. The technique is only
summarized here and the equations needed to obtain the derivatives analytically are given.

2.1 Maxwell’s Equations and TE Field Solutions
Maxwell’s curl equations [9] for source-free, time-harmonic fields in anisotropic media are:

VXE=-jau,H (1a)
VxH = jwe,£ E (1b)

where & is the free space permittivity, @ is the angular frequency, and g, is a tensor of
relative permittivity having the form:

2

For a TE mode (E,, E,, H,= 0) propagating in the + Z direction in thei-th layer, (X < X < Xi+1),
the non-zero electric and magnetic field components are;

E, = JE, (Wexp(jat - j72) (32
A, = [%H,, (9 + 2H , (9 ]exp(jat - j72) (30)

where %, §, z arethe unit vectorsin the x, y, z directions, respectively, 7 = k,(8 - je) isthe

complex propagation constant with B and o the normalized phase and attenuation constants,
respectively, and kg = alc = 271 Ao, c isthe speed of light in free space and A, is the free space
wavelength. From equations (1) and (3), we can derive:
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d?E,; (X)

+K°E,;(x)=0 4
dx
and
Hy (= B0 (9
wu, dx
Hy (0 =———E, (x) (5b)
o,

where & =+ | 2ﬁy2yi —y?% . Thetangential electric field and its derivative must satisfy equation

(4) and are related to the magnetic fields through equation (5) within the i-th layer. Solutions
to equation (4) are written as:

~ l . ~ dEyi (Xl)
Eyi (x) = cosli; (x=X)]Ey; (%) +=sin[i; (x=x)]— - — (62)
9,09 _ —i, Sin[ic, (x— % )]E,; (X ) + cos[ i, (X— X, )] 9, ) (6b)
dx dx

where x; defines the boundary between the i-th and ( i+1)-th layer. Equation (6) implies that
any sign for the square root of x is acceptable.

2.2 Transfer Matrix and the Dispersion Equation for the TE Modes

Using Equation (6), the tangential electric field and its derivative at the bottom of the i-th
layer, (x = x;), can be expressed as a function of the field and its derivative within that layer:

500 ) feodmoe-x) —2siniz - xp | 5 @)
dE, (%) |- g G, (%)
dx K sinfK; (x=x)]  cosli; (x—x)] dx

Imposing the continuity of tangential fields at any layer interface in the multilayer structure,
the fields tangential to the boundary at the top of the substrate layer (Eys, dE,J/dx) and &t the
boundary at the bottom of the cover layer (E,., dE,J/dx) are related via the matrix product:

E, r E,.
E = M i E
9, H dE,. (8)
dx dx
EyC
- (;‘“ :}2 dE,,
21 22 dX
where
cos(x;d.) —isin(r?d)
= o K o for i=12--r ©)

K, sin(x,d;) cosl(ic'idi)

The M; are the transfer matrices for all of ther layers of thickness d;. For guided modesin an
open structure, the tangential fieldsin the substrate and cover must be exponentially decaying:
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E, () = A exp(7.%)

e > o for x<0 (10
= X
oA el
Eyc (X) = B, exp[~7, (X X.,)]
dIyE ' for x>x.,, (11)
() - _
T = _yc Bc eXp[_yc (X_ Xr+1)]

where y =+ /72 —kins, , 7, =%y —kgn.. ,and N  and N arethe substrate and

cover complex refractive indices along the y direction, respectively. Equations (10) and (11)
in conjunction with (8) yield the dispersion egquation for the TE modes:

F(?) = 75”11 + 77cmzz —Mm,— —77577;”12 =0 (12)
The zeros of Equation (12) correspond to the complex propagation constants ¥ .

2.3 Transfer Matrix and the Dispersion Equation for the TM Modes
For the TM modes (H,, H,, E,= 0) the following equations hold:

d2H, (0 _,

R, (0 =0 (13)

E, () =31 (0 (143)
we,n;  dX

E,() =L H, (X (14b)
WE N,

Following a derivation similar to the TE case the transfer matrices of each layer are
determined:

=2

~ Ny . —
cos(k;d;) —E—ism(zridi) . (15)
M, =| _ fori=12 - r
Sidn(zd,) cos(%d,)
nzzi
where ¢ =i@ [k2iz2 — 72 and the dispersion equation is:
I ﬁxxi kO XX 7/
sl j;s fc ?si;c
F(7):-ﬁzgzsrrh+gmzz_mz1_ﬁzgzs—ﬁzgzc m, = (16)

3. Cauchy Integration M ethod
3.1 Summary of the Method

The Cauchy integration method [5] is based on the argument principle [10] and the residue
theorem of complex analysis. If a function f(2) is analytic and does not go to zero over a
closed integral contour, then the argument principleis of the form:

S):i_l Edz: Nz_Np (17)
j2r = 1(2)
#23453 - $15.00 US Received September 05, 2000; Revised September 25, 2000

(C) 2000 OSA 9 October 2000/ Vol. 7, No. 8/ OPTICS EXPRESS 264



where N, is the number of zeros and N, is number of poles inside the region enclosed by the
contour C. If there are no poles in the region enclosed by C, then S is the number of zeros,
and from the residue theorem we have:

m '@y 2, (18)
=—¢z"——“dz=) Z form=12,:..,
= 127r )%™ X7 %
wherez,i=1,2,...,§ aretheroots of f(z) inside C and Syisthesumof z"withm=1,2, ...

, S. Equation (18) leads to a system of equations that can be used to evaluate the coefficients
of a polynomial p(2) of degree s, which has the same roots z -,z as the function f(2)

inside C. The approximation polynomial p(z) can be written as.

S

So So
p(2=[(z-2)=).C.2" (19)

with Cq =1 The coefficients C, are given via Newton's recursive formula

Sp—k
SC,.
&= (k- SO),l‘“

The polynomial p(2) can be solved by standard techniques such as Laguerre's method [11].
The problem of finding the zeros of an arbitrary function f(z) is thus transformed to the
simpler problem of finding the zeros of the polynomial p(2), for which a variety of reliable
and efficient numerical methods exist.

for k=S -1--,0 (20)

3.2 Numerical Implementation

The CIM can be used to solve the dispersion equation of the multilayer planar optical
waveguide in a straightforward manner. The poles are first identified at g=p_and g =n_ as

shown in Figure 2, parts (&) and (b). The rectangular integral contour C; is selected for the
guided modes. The area between the minimum and the maximum real parts of all the
refractive indices is enclosed by the contour C; The integral contour C, is selected for leaky
modes. These contours do not enclose any of the poles.

| ——
0 0
~ > — — ﬁ > ﬁ ~ .]_>
Tnc C s r M| B =5 max| 3
2 C C Nc C1
< - —¢—

@ (b)
Figure 2. Theintegral contours in the complex plane. The * @ correspond to the poles,

ﬁ is the complex refractive index with the maximum real part and is enclosed by C1, for

max
TE modes in anisotropic media: ﬁmax = ﬁyymax' ﬁs = ﬁyys and ﬁc = ﬁyyc. For TM
modes in anisotropic media: ﬁmax = ﬁxxmax' ﬁs = ﬁxxs and ﬁc = ﬁxxc.
(@ N, <Ng, (N, =N,.
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To solve Equations (17) and (18) the derivative of the dispersion equation is needed. If the
derivative cannot be obtained analytically then it can be estimated numerically via Cauchy’s
theorem [10], which states that the first derivative of afunction f(z) at z= z, isgiven by:

f'(z,) z_i L)zdz (21)
j2r P (Z_Zo)

where D is any closed path which encloses the point z,and f(2) is anaytic inside and on D.

Reference [7] gives an agorithm for solving Equation (21) numerically. The agorithm is
based on the parametric variable transformation z= z,+ Ré?™ where Ristheradius of acircle
centered at z, defining the contour over which the function f(2) is evaluated. The m-point
trapezoidal integration rule is then applied to Equation (21), with z transformed as described,
yielding the following numerical approximation to the derivative:

Ri'(z) =R ()" =2y [ Bt Re ™) @)

The computation of the numerical derivative according to Equation (22) is the most intensive
computational task in the standard CIM [7]. When z,is very close to the zero of the function,
the numerical derivative converges very slowly and inaccurately.

In multilayer planar optical waveguides, the derivative of the dispersion equations can be
obtained analytically. Reference [8] gives an analytical derivative but in exponential form and
for isotropic media. We have obtained the exact analytical expressions for the derivatives of
the transfer matrices and of the dispersion equations for the multilayer waveguide problem of
interest in this paper. The expressions are given in the next section and an algorithm to
efficiently construct them is described. The derivatives computed in this manner are then used
to help solve Equations (17) and (18), thus providing a gain in accuracy and reduction in
execution time compared to the standard CIM approach [7].

To solve Equations (17) and (18), integration is performed numerically by applying an
adaptive integration method [12] in a manner similar to reference [7]. This approach is
summarized here for completeness. The quadrature integration of a function F(2) is
represented by the summation:

[F@=3WF) )

where W, are the weights and a <z <b are the integration nodes. A 7-point Gaussian rule Gf
and 15-point Kronrod [13] rule Kisf are used to estimate integration along the straight line
connecting the end-points of the interval [a, b] in the complex plane. The local estimate is
taken as K 5f since the Kronrod rule is more accurate than the Gaussian rule. If the local error
estimate | Kisf — G+ |/ | Kysf | is less than a specified tolerance, the local estimate is accepted
as the integration result for the specific interval. Otherwise the interval is bisected and the
same procedure is applied to the two new subintervals. In the same integration routine the
calculation of the products z"f’(z)/ f(z) for m=1,..,S;, can be incorporated such that

f(z) and f'(z) are evaluated only once for the specific node z for al the summations

S, Sy, -

The polynomial p(z) can be solved by Laguerre’'s method. The roots of polynomial p(z) and
f(2) do not coincide exactly due to the integration errorsintroduced in Equation (23). After the
roots of the polynomia p(2) are obtained, a further refinement must be performed to find the
roots of f(2) by applying Muller's Method [11] with the initial guess being the roots of p(2).
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As discussed in reference [7], the region enclosed by the contour of interest C ought to be

subdivided into smaller regions such that § < 4. This ensures that the degree and the
coefficients of the polynomial p(2) remain small, thus helping to reduce numerical errors
when locating the roots. Considering all sub-regions enclosed by the original contour leads to
all roots of interest.

4. Analytical Derivatives of the Transfer Matrices and Dispersion Equations
4.1. TE Modes

For the TE modes, let 7 =k,T, & = +k, /A% —a?, 9% _
i " da

from Equation (9) we derive for each layer i:

2
_kToZG and i(é):léosg. Then
K. du x° K

kod ne d) ko, o d)— Ko singed)
YR F i d; Eiz i G ’?i3 4 . (24)
ﬁ:u 2 K2 for i=1--r
—Tos'n(%idi)_kozdi cos(k, d;) Ofism(fidi)
K, K;

The derivative of the transfer matrix describing the multilayer structurefor i =1, ..., r isthen:

dm,  dm,
dv | dd di |_< H'V' (25)
dad |dm, dm, = e

da da g

The derivatives of 7, and 7, with respect to U are: d7, _ku and 3 _ KU, thus from
da 7. du 7,
Equation (12) we obtain the derivative of the dispersion equation as:

dF(U) kou kou =~ dnll — dm, _ dmy, _ ij;Z kOU}/S == dnlz (26)
w7 e g g T g g e g
4.2 TM Modes

Similarly, for the TM modes :i%ko\/ﬁfxi LT :ik\/ﬁxzxi _{j? Where k:%kO.Then

d&; _ K'-and @ d 7) - 7u and from Equation (15) we derive for each layer i:
ai r?i du "«
2d kZ 2 2“'2
—Lsin(kd, L co: Z §n(x.d,
M CLY o oos(Rd) -~ sn(&d) | @)
ﬁ:u 2 K d fori=1--r
T ==>2 Sn( |)_ COS( |) ~is-n(’?idi)
KI nZZ| 22| i
From Equation (16), the derivative of the dispersion equationis:
dF(H) _ kOZG kou ys dn’h }/c dmzz _ dn}l _ 775}70 dnlz
— === My+t— A2 my, + = ~ ~ =2 =2 ~
du AL AL - di nZ do do n.nh: do (29)
koU7e LA
R WA
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4.3 Algorithm for Computing the Derivative of the Transfer Matrices

Thetransfer matrices, and their derivatives as expressed by Equation (25), can be computed in
an efficient manner. The ideaisto accumulate the derivative of the transfer matrix asthe latter
is being constructed. Consider accumulation over the first 3 layers of a waveguide structure.

For the first layer (i = 1), m, and Mj are computed. For the second layer (i = 2), M, and

du
dM, ae computed, then M _dM.M,)_,, dM, dM, - and  m = m,m,are
du du du du du
accumulated. For the third layer (i = 3), m, and 9Ms ae computed, then

da
am _d(M,M,M;) _d(M,M,) M3+(M1M2)% and M =M,M,M, are accumulated. The
du du du di
accumulation process continues until al layers in the structure have been handled. Clearly,
one matrix product is required per layer to accumulate the transfer matrix and two products
are required to accumulate its derivative. This algorithm thus accumulates the transfer matrix
for r layersinr matrix products and the derivative of the transfer matrix in 2r matrix products.
The CIM based on our analytical derivatives and agorithm isthus an order r method, which is
asubstantial improvement over asimilar approach of order r! discussed in [14].

5. Numerical Results and Discussion
5.1 Guided Modes in a Lossless Waveguide

An inhomogeneous waveguide having an index of refraction that follows an exponential
distribution was analyzed in order to compare the computational efficiency of the CIM using
numerical and analytical derivatives. The ADR method [14] was also implemented and its
computation times are included for comparison. The parameters of the structure analyzed
were taken from reference [14]:

n(x) = \/W forx<0 (299)

n(x) =n, forx>0 (29b)

where ns = 2.177, n. = 1.0, A = 0.043, o, = 0.931 um and the thickness of the inhomogeneous
layer is set to d = 4 um. The normalized phase constant (or effective index) of the two TE
modes supported by this structure can be obtained analytically. They are B = 2.19075 for the
TE, mode and B = 2.17930 for the TE; mode [14]. The effective indices of both modes,
computed using our approach, are shown in Table |. The computed values are seen to
converge to the analytical values as the number of layers used to approximate the continuous
profile is increased. Agreement with the analytical values is excellent for a large number of
layers.

TABLE |. Effective Index of Guided Modes Supported by an Inhomogeneous Waveguide.

Number of Layers B-TE, B-TE;

5 2.191567664 2.179485876
10 2.190948646 2.179376481
20 2.190805357 2.179325841
40 2.190775872 2.179315352
60 2.190770683 2.179313499
80 2.190768887 2.179312857
100 2.190768059 2.179312561
200 2.190766958 2.179312167
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Figure 3 shows the execution time required to compute the effective index of the TE, mode
supported by the structure as a function of the number of layers used to approximate Equation
(29a). The numerical derivative was computed to a relative accuracy of 10 and the tolerance
in assessing the local error estimate when evaluating Equation (23) was set to 10” for all three
methods. From Figure 3, it is apparent that the CIM based on the analytical derivativeis order
r in matrix operations, like the CIM based on the numerical derivative and the ADR method.
Using an analytical derivative is more accurate and clearly much more computationaly
efficient than using a numerical one. The computational cost of the CIM with the analytical
derivative is only dightly higher than the ADR method, which is less robust and more
complex.

80
70r  O—%  CIM(ND)

4+—— CIM (AD) -
60f *—x ADR

. ~

401 /Q//
pd
301 /
201 /
A .

7& 4 e
P
0 A -
e /t — o
L < : ‘ ‘ | ‘

0 20 40 60 80 100 120 140 160 180 200
Number of Layers

Figure 3. Comparison of the normalized execution times required for the ADR and the CIM
based on a numerical derivative (ND) and an analytical derivative (AD).

5.2 Guided Modes in Quantum Well Active Waveguides

Quantum well (QW) layers used in active photonic devices are in fact anisotropic. Their
optical response is different for polarizations paralel and perpendicular to the direction of
growth. The anisotropy is uniaxial and appears even though quantum wells are made up from
cubic semiconductor materials. Modeling uniaxial media is essentia if accurate waveguide
propagation constants are desired. We applied our method to a novel InP-based QW laser
structure as defined in Table |1 in order to illustrate its ability to handle anisotropy and gain.
The second layer is the active anisotropic quantum well layer. The results are shown in Table
Il and gain is observed for the first TE and TM modes.

TABLE Il. Effective Index of Guided Modes Supported by a 6-layer Quantum Well Active Waveguide.
6-layer Anisotropic Active Waveguide: n = 3.13575-j6.2264x10°, f,= 3.16404-
jl.0005><10'5, N, = h'yyz = 3.393856+j0.0069093, i, = 3.395891+j0.0032438, n,=
3.16987—]1.3991><10'4, n,= 3.38838—]2.7498><10'4, n= 3.17034—]2.829><10'4, f, = 3.46930-
j0.083828, fi = 0.59-]12.63, d; = 1.5um, d, = 0.2um, dz= 0.2um, d,; = 0.01um, ds = 1.3um,
ds=0.2um, Ao=1.55um

Mode B ax 10°

TEy 3.211912271 -2.295751586
TE, 3.146335751 1.833386157
TE, 3.137997320 2519718051
TMg 3.204193956 -1.750073292
™, 3.144266723 0.1557238150
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5.3 Leaky Modes in Lossless Waveguides

The CIM can be used to find leaky modes. The leaky mode propagation constants satisfy the
same dispersion equation as the guided modes, but the appropriate sign of y_ and y_ must be
chosen. If weassume 7 =y + jyland 7, =" + jy., for < ns(B < n), we should choose
yI <0and . >0 (7! <0Oand y. >0). The integra contour is selected as C,, shown in Fig.
2(a) for ns> n.. The reason for selecting the top part of the integral contour along the g axisis
that the imaginary part of the leaky mode propagation constants is negative. The integral
contour above the S axis will lead to large integration errors and generate roots for the
polynomial p(2) far away from the roots of the dispersion equation. For the TE modes

supported by the waveguide structure described in Table Ill, our results are complete
agreement with those reported in [1], as shown.

TABLE Ill. Effective Index of Leaky Modes Supported by a 4-layer Lossless Waveguide.

4-layer Lossdess Waveguide: ng= 1.5, n; = 1.66, n, = 1.60, nz = 1.53, n, = 1.66, n, = 1.0,
dl = dg = d3 = d4 = 05].lm, 7\,0 = 06328um
Present Method Reference[1]
M ode B o B o
TEs 1.461856641 0.007155871 1.46186 0.00716
TEs 1.382489223 0.018165877 1.38250 0.01817
TEg 1.281364436 0.035877392 1.28136 0.03588
TE; 1.142314462 0.052876075 1.14231 0.05288
TEg 1.003037019 0.070770941 1.00304 0.07077
TM, 1.451534978 0.011923599
TMsg 1.370664375 0.030142063
TMg 1.273737061 0.056791773
T™M, 1.157312853 0.087578491
TMg 1.036950265 0.103078083

5.4 ARROW Waveguides

ARROW (AntiResonant Reflecting Optical Waveguide) waveguides [15], [16] are based on
Fabry-Perot reflection instead of total interna reflection. The modes supported by such
structures can be particularly difficult to find due to the proximity of the corresponding zeros
in the complex plane. An example structure is described in Table IV [17], where the effective
index of the first 6 TE and TM ARROW modes found using our CIM are also given.

TABLE V. Effective Index of ARROW Modes Supported by a 9-layer ARROW Waveguide

9-layer ARROW Waveguide: ns=3.5, n; = 1.46, n, = 1.50, ng = 1.46, n; = 1.50, ns =
1.46, ng = 1.50, n; = 1.46, ng = 1.50, ng = 1.46, n, = 1.0, d; = 2.0um, d, = 0.448um, d; =
4.0um, d, = 0.448um, ds = 2.0um, ds = 0.448um, d; = 4.0um, dg = 0.448um, dg = 2.0um,
Ao = 0.6328um

Mode o x 10

TE, 1.457920191 0.007106242

TE, 1.457791244 0.009053396

TE; 1.453780369 0.114698816

TEs 1.453045406 0.420121480

TEs 1.451864807 0.693651857

TEs 1.450269491 0.732515869

™, 1.457925423 0.045880488

™, 1.457782773 0.057163274

TM; 1.453795449 0.645756672
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TM, 1.452928430 2.555862981
TMs 1.451781628 4567101184
TMg 1.450247659 4.357488809

Figure 4 shows the spatial distribution of the H, field component related to the first two TM
ARROW modes, computed using our method. It is indeed clear from this figure that the
structure can be used as a directional coupler [17].

Im(Hy) Im(Hy)
0.4 T T T T T T T T T 1

08
0.2

06

0 04t

-0.2 o0.2r

0
-0.4 i
-0.21

-0.6 -0.41

-0.61
-0.8

-0.8f

n L L L L L L L L 1 L L h L L L L L L
-2 0 2 4 6 8 10 12 14 16 18 -2 0 2 4 6 8 10 12 14 16 18
Waveguide width (um) Waveguide width (um)

@ (b)

Figure 4. (a) Field distribution for the symmetric TM mode: TM,. (b) Field distribution for the
first anti-symmetric TM mode: TM,.

5.5 Anisotropic ARROW Waveguides

Many anisotropic materials have desirable properties at optica wavelengths, including low
losses, and large electro-optic or photo-elastic effects. In addition, anisotropy may be
introduced during material growth or device processing. It is thus important for a mutilayer
waveguide modeling tool to be able to handle effectively such materials.

Asthe last example, we have applied our method to obtain the propagation constant of modes
supported by an anisotropic ARROW waveguide [18]. The structure of interest is defined in
TableV and the first 4 ARROW modes for the isotropic (AR = 1) and anisotropic cases (AR =
Nyi/ Nz = 1.03) are given. Our results for the TE modes are in complete agreement with those
reported in [19] for the case AR= 1.

TABLE V. Effective Index of ARROW Modes Supported by a 3-layer Anisotropic ARROW Waveguide

3-layer Anisotropic ARROW Waveguide: ng= 3.85, n,,; = 1.46, N = 2.3, Ny =1.46, N
=1,d= 3157&0, dy,= 01427\40, ds= 6.37\,0, }LOZ 06328““’], Nxxi = Nyyis AR = nyiln,, i =1,2,3
AR=1 AR=1.03

Present M ethod Reference[19] Present M ethod

Mode | B o x 10° B o x 10° B o x 10°

TE; 1.457941265 | 0.000054189 | 1.45794 | 0.000054189 1.501798936 | 0.000050179
TE, 1.451919174 | 0.052870681 | 1.45192 | 0.052871 1.495945499 | 0.053815143
TE; 1.451174055 | 0.192035341 | 1.45117 | 0.19203 1.495255344 | 0.184243873
TE, 1.441371363 | 0.004374469 | 1.44137 | 0.0043745 1.485698165 | 0.004051178
T™M, 1.457890856 | 0.002450742 1.501625054 | 0.002544521
TM™M, 1.451754691 | 0.553891897 1.495287895 | 0.576101022
TM; 1.451304282 | 1.151033285 1.494855078 | 1.189339701
TM4 1.440916633 | 0.319061714 1.484121307 | 0.197863211
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6. Conclusion

A numerica method based on integration in the complex plane has been developed to
characterize the modes supported by multilayer planar optical waveguides constructed from
lossy or active anisotropic media. The analytical derivative of the transfer matrices and
dispersion equations were obtained and presented for the first time. An algorithm for
efficiently computing the derivative was given and a different integral contour to be used for
finding leaky modes was presented. The method reported has several important advantages
over other methods for finding modes of planar waveguides. An advantage is the ability to
find the total number of modesin aregion of interest in the complex plane. Another advantage
is that the method can be used to characterize lossless, lossy, active and ARROW waveguides
in anisotropic media. The method can generate guided modes as well as leaky modes. The
combination of high accuracy, low computation time and broad range of applicability makes
the method very attractive for integration into commercial computer-aided design and
modeling tools for integrated optics.
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