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A Coupled-Mode Theory for  ultiwaveguide 
Systems  Satisfying  the  Reciprocity  Theorem 

and  Power  Conservation 
SHUN-LIEN CHUANG 

Abstract-Two sets of coupled-mode equations for multiwaveguide 
systems are derived using a generalized reciprocity relation; one set 
for a lossless system and the other for a general lossy or lossless system. 
The second set of equations also  reduces to those of the first set in the 
lossless case under the condition that the transverse field components 
are chosen to be real. 

Analytical relations between the coupling coefficients are shown and 
applied to the coupling of mode equations. It is shown analytically that 
our results satisfy exactly both the reciprocity theorem and power con- 
servation. New orthogonal relations between the supermodes are de- 
rived in matrix form with the overlap integrals taken into account. 

I.  INTRODUCTION 

T HE COUPLING of mode theory in parallel wave- 
guide  systems has been of great interest in  applica- 

tions to directional  couplers,  laser  arrays,  waveguide 
switches,  etc. [I], [2]. Although it has long been recog- 
nized that the previous coupled-mode theory is only ap- 
plicable  to very weakly coupled systems [3]-[8], signifi- 
cant improvements for strongly coupled waveguides have 
only been presented recently in series of papers [SI, [8]- 

The  major improvement is probably the inclusion of the 
overlap integrals Cp4 defined in [8], when evaluating the 
power, and its resultant corrections to the  various param- 
eters such as  the propagation constants and the coupling 
coefficients in the  coupled-mode  equations. Using two dif- 
ferent methods,  one based on a generalized reciprocity 
theorem and the  other based on the variational principle, 
a new set of coupled-mode equations has been derived for 
a general (lossy or lossless) system  [12]. Both methods 
give the same  results. 

In this paper,  we apply the  generalized reciprocity theo- 
rem [12] to a  multiwaveguide  system.  The lossless case 
is treated here separately from the general lossy case, since 
in a lossless system,  one may prefer to deal directly with 
powers for which the complex conjugates of the fields are 
needed, while for  the  general lossy case,  one may not re- 
quire any complex conjugate  operations  in  the  formula- 
tion 181-[12]. Thus,  the definitions for  the  overlap inte- 

u11. 

Manuscript received May 12,  1986; revised July 3, 1986.  This  work 

The  author is with  the  Department of Electrical and Computer  Engi- 

IEEE Log Number  8611417. 

was partially supported by NASA grant NAG 1-500. 

neering, University of Illinois  at  Urbana-Champaign,  Urbana, IL 61801. 

ga l s  and the  coupling coefficients presented in Section I11 
will be different from those for  the general lossy case pre- 
sented in Section IV. As will be shown in this paper, only 
when one  chooses the transverse electric and magnetic 
field components to be real functions,  the  two formula- 
tions will be identical in the lossless limit. New properties 
of our coupled-mode equations are  also presented analyt- 
ically with the overlap integrals properly included. 

11. GENERALIZED  RECIPROCITY  RELATION 
Assuming that  the  electric and the magnetic fields E ( ' ) ,  

H ( ' )  satisfy the MaxwelI equations in a medium E (  ) (x, 
y j (for the whole space) and the corresponding boundary 
conditions and that E ( ' )  and H ' 2 )  satisfy the Maxwell 
equations in another medium ) (x, 4;) and the  corre- 
sponding boundary conditions, it is straightforward to 
show that 1121, [I31 

V . ( E " )  x H(2' - E ( 2 )  x H ( l )  

= i w ( E ( 2 )  - e ( l ) ) E ( l )  . E ( 2 )  
1 

( 1 )  
with the  same  procedure used for deriving the Lorentz 
reciprocity relation [14]. When applied to a cylindrical 
geometry with an infinitesimal distance  in the z-direction, 
(1) reduces to 1s ( E ( ' )  x H ( 2 )  - E ( 2 )  x H ( ' ) )  . 2 & dy  
az 

= iw ( e ' ' ) ( x ,  y )  - e(')(x, y ) )  E")  . E ' 2 )  dx dy. 

(2)  

Here e ( " ( x ,  y )  and ~'~'(x, y )  can be general media such 
as a  single waveguide or  a multiple waveguide system as 
long as they are translational invariant in the z-direction. 
The  time convention exp ( - iw t )  will be used in this pa- 
per. One notes that  the  two reciprocal relations (1) and 
(2) are exact as long as the  two  sets of field expressions 
( E " ) ,  H ' " )  and ( E ' 2 ) ,  H'2 ' j  are exact solutions to 
the Maxwell equations in medium E' I ) (x, y )  and e ( 2  ) (x, 
y ) respectively. 

111.  COUPLED-MODE THEORY FOR A LOSSLESS 
MULTIWAVEGUIDE  SYSTEM 

In this  section,  we  derive  the  coupled-mode equations 
for a lossless multiwaveguide system. 
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A. General  Properties of the  Fields of the  Guided 
Modes 

When the medium E ( x ,  y )  is  lossless  and translational 
invariant in  the  z-direction,  one knows that  the field so- 
lutions of the  form  exist 

a) ( E ,  + E,) eiOz 

( H ,  + H,)  eiPz 

which correspond  to  the fields propagating in the +z di- 
rection.  Here,  we  assume  the  above set of solutions to  be 
the guided mode of the  system. Based on inversion sym- 
metry in  the  -z-direction,  the following set of fields will 
also be solutions  to  the Maxwell equations [8], [13]-[15] 

b) ( E ,  - E,)  e-ipz 

( -H,  + H z )  e-"' 

which correspond to the fields propagating in the -z-di- 
rection. If the medium is lossless € * ( X ,  y )  = €(x, y ) ,  by 
taking the  complex  conjugate of the Maxwell equations 
or  applying  the  time-reversal  concept,  it is easy to show 
that the following two  sets of solutions also exist: 

c) (ET + E : )  

( - H ;  - H : )  ,-iP*z 

d) (E?  - E : )  

( H ;  - H : )  e@*' 

where the * sign means complex  conjugate.  Since  we con- 
sider  the guided modes of  the  lossless system (excluding 
the leaky modes, cutoff modes, etc.),  the propagation 
constant 0" is real. It is thus clear from a) and d)  that  one 
can choose  the  transverse field Et to  be  real,  and find im- 
mediately that H, is real; E, and Hz are purely imaginary. 
However,  if  one  uses  complex E, (e.g. , in an optical fiber 
with a  circular cross section, E,( p ,  4)  can be of the form 
J,,, ( kp p ) e i m m ) ,  one finds that H,,  E, and Hz will also be 
complex.  From  these general properties of the field so- 
lutions,  we  next  derive  the coupled-mode equations for  a 
lossless  system  and  some  analytical relations between the 
coupling coefficients and  the  overlap  integrals. 

B. The  Derivation of the  Coupled-Mode  Equations 

CASE ( I ) :  Suppose  we  choose 

€ y X ,  y )  = & ) ( x ,  y )  (3)  

( 4 4  

(4b) 

E")  = ( $ 4 )  + eiPqz 

H (  l )  = (H1q) + H/q) )  eiB9Z 

to be the guided mode propagating in the +z-direction in 
a medium d q )  ( x ,  y )  with a  single  waveguide q. We also 
choose for  the second set 

and 
E ( 2 )  = (,?j'iP)* + E')*) e - % Z  ( 6 4  
H'2' = ( _ @ I *  - @PI*) e-iPPz (6b) 

which are also solutions as discussed before. They cor- 
respond to the fields propagating in the  -z-direction. 
Substituting the  two sets of expressions  into  the  general- 
ized reciprocity relation (2), we  obtain 

and 

-m 

We note that (7) is an exact relation since  the fields (E'  ), 

H " ' )  and ( E ( 2 ) j  H ' 2 ' )  are exact solutions to Max- 
well's  equations- in E ( ~ ) ( X ,  y )  and E ( ~ ) ( x ,  y ) ,  respec- 
tively. 

CASE (2): In this  case, we choose E (  ) ( x ,  y )  to  be  the 
medium of the  multiwaveguide  system E ( x ,  y )  

E y X ,  y )  = € ( X ,  y ) .  (10) 

The solutions to  the system  are given approximately by 
N 

E,"' e aq(z) Ej4)(X,  Y )  ( 1 1 4  
p =  1 

N 

H,"' 2: C a q ( z )  H ~ ' ) ( x ,  y )  ( W  

for  the transverse field components. The z-components are 
given by 

p =  1 

N 

H , ' l )  = c uq(z) H y ( X ,  y ) .  (1 Id) 
p =  1 

A similar derivation for  the  above relations has been given 
in [ 131 for  the polarization vector or in [ 121. One notes 
that E J q ) ( x ,  y ) ,  q = 1, + , N are not orthogonal  func- 
tions, and the  overlap  integrals C,, # 0. The second set 
of solutions  is  chosen  as 

d 2 ) ( X ,  y )  = E (,)*(x; y )  = € ( p y x ,  y )  (12) 

( 1 3 4  
H'2' = ( -HjP '*  - @"'*) e-iPPz . (13b) 

~ ( 2 )  = ( E ~ P ) *  + E:P)*) 

Substituting the  two sets of expressions (lo)-( 13) into the 
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generalized reciprocity relation (2), we obtain 

d 
- a,(z)  = i (f?& + P,cp,) a,(z) (14) 

4 " d z  4 

where 
m 

and 

- - - 
One notes that ep4 is a  hermitian  matrix, cp4 = cg, It is 
straightforward to show that K p 4  satisfies the  same relation 
(7) as Ep4 because 

- 
Kp4 = Kp4 + - - - 

4 ss z z  Y (17) 
&(q)A,(p)E(P)*E(4) & d 

where the second term is  equal to its complex conjugate 
quantity if one exchanges p and q where both A.8')  and 

are real (lossless).  Thus 
I I 

- - 
K p 4  - Kg = Kp4 - KG 

- - 

(18) 
which is an  exact r_elation,It is  seen clearly that only if 
/3,, = f i g ,  one has K p 4  = R$ (or if the  overlap integrals 
are yery small in the extremely wea t  couplin_g case, K p 4  
2: I?;). Otherwise  one should treat K p q  and qp as differ- 
ent  quantities  in  general.  One defines the matrix elements: 

Qpq = Kg + flPcp4 = K p 4  + ep,P,. (19) 

Thus, the coupling of mode equations can be written as 

C - = iQa 
= da = 

dz 

where Q is clearly hermitian since 

Qp, = Q& (21 1 
which can be shown from  (19) and a is a  vector with its 
elements given by a4 ( z ) ,  q = 1,  2, * * , N .  Another 
way to write  the  above  equation is either 

or 

C -  = i ( g  + E B ) a  
da 
dz (23) 

where B is a diagonal matrix with the  elements given by 

the propagation constants of individual waveguides Pp. 
Here  the  superscript + means complex conjugate and 
transpose of'the matrix. The second form (23) is useful 
since 

while the first form (22), which is similar (but not iden- 
tical) to that of [lo], [ 111, requires more algebraic manip- 
ulations in evaluating ( C-'BC + P ' K +  1. 

C. Power  Conservation 
In Section III-B, we derived  the coupled-mode equa- 

tions in matrix form (20), where is related to the  overlap 
integr_als C,, and C;, and Q is defined in (14). Both C 
and Q are proved to be hermitian without any approxi- 
mation in the matrix elements. Let us look at the power 
guided along the multiwaveguide system 

P ( z )  = 5 Re s E, X H,? - 2 dx  dy 
1 

r 7 

(25) 
where C is defined in (16). If the medium is lossless,  the 
power of the guided mode must be independent of the 
position z, i.e., d P / d z  = 0. We have  the lossless con- 
dition 

(26) 
Using the  coupled-mode  equation (20), one finds imme- 
diately that the lossless  condition is equivalent to 

i C a;(& - Q:D)aq = o (27) 

where we have used the fact that ep4 is hermitian. Since 
up* and a4 can be arbitrary values,  we  obtain 

P.4 

Q P4 - Q& = 0. (28) 

That is, Qp, must-be hermitian, which is  true,  since we 
have  shown  that Q p q  is indeed hermitian  in  (21) from the 
definition (19).  Thus  our formulation satisfies exactly the 
power conservation. An example will be shown later 
which illustrates this power conservation  criterion. 

D. Power  Orthogonality of the  Supermodes 

supermodes in  the multiwaveguide system E (x, y )  
Let us choose two sets of solutions to  be two distinct 

W X ,  Y )  = € ( X ,  Y )  (29) 
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N Iv. COUPLED-MODE  THEORY FOR A GENERAL (LOSSY 
E ;  1 )  = ( qsl a e ) E : ~ ) )  eiriZ ( 3 0 4  OR LOSSLESS) MULTIWAVEGUIDE  SYSTEM 

N 
In  general,  a  multiwaveguide  system  can  be  lossy. The 

previous formulation  will not be  applicable  anymore. Ac- 

to the formulation in the previous section, except one does 
where a ( i )  with elements a!), q = 1,  2, - - , N ,  is the not have any complex conjugate  operation,  and  special 
eigenvector  for  the first supermode with a propagation care is taken for  the z-components of the fields as can be 
constant yi seen from Section 111-A. A derivation has been presented 

in [12] which is  similar to that  in  the previous section. 

H,’” = (zl a(i)H(4) q r ) eiyiz (30b) tually,  the  formulation  for  a lossy medium is very similar 

y )  = €(.x, y )  = E* (x, y )  (31 ) Therefore,  we briefly give  the results below. 
N 

~ , ‘ 2 )  = ( pzl a f ) * ~ : p ) * )  e-iyiz (32a) A. The  Derivation of the  Coupled  Mode  Equations for  a 
Lossy  System 

H; ,2)  = 
CASE ( I ) :  Following  the  procedure  in  Case (1) of Sec- 

(32b) tiofl 111-B, except  that  we  choose  the second set of solu- 
tions to be  the  form b) in  Section 111-A, it is easy to  derive 

and d J )  with elements u j j ) ,  p = 1,  2, , N ,  is the [I21 
eigenvector  for  the second supermode with a propagation 
constant y j .  The reciprocity relation (2) gives 

- 
K p q  - K4p = ( P p  - P q )  

2 

That  is, any two  eigenvectors corresponding to different and 
propagation constants are orthogonal  to each other with a m 

weighting matrix  given by e. 
An alternative way of deriving (34) is simply by look- Pq 2 C = I i 5 Et(‘) x HIp)  2 & dy 

ing at the  coupled-mode  equation  (20).  The supermode 
solution a (z)  is  given by the form 

a ( z )  = ae’y‘. (35) 

Thus,  the matrix equation (20) for  the coupled-mode 
equations reduces to  the  eigenequation 

yea = Qa. (36) 

The  eigenvalue y satisfies 

det I Q  - y z  I = 0. (37) 

Since both C and Q are hermitian,  the  eigenvalues  for (36) 
must be  real,  that  can  be  shown from elementajr matrix 
theory [ 161. It is also obviously true from the  fact  that  the 
medium is lossless.  Another property of the matrix equa- 
tion (36) is that  two  distinct  eigenvectors d i )  and a ( j )  are 
orthogonal to  each  other with the  “weighting  matrix” e 

a ( . i ) + & ( i )  = 0,  i # j .  (38) 

One notes that  in  the  extremely weak coupling case,  the 
coupling of -mode equations have  the  same form as (20) 
except  that should be replaced by I ,  the identity matrix. 
Thus,  the orthogonality relation (38) reduces to  the well- 
known results: = 0 for i # j in conventional 
theory. 

--m 

where no complex conjugate  operation is involved, and 
there is a  negative sign in  the  integrand of (40).  The  above 
definitions (40) and (41) are  the  same as those used in [8] 
except for  the  constant  factor of 4. The difference is only 
apparent because  once we choose  the normalization con- 
dition Cll = C2, = - * * CNN = 1, the  factor of 4  is ab- 
sorbed in E, and Hr.  Thus,  numerically, Kpq is  identical 
to that in [8]. 

CASE (2): Following  the procedures in  Case (2) of 
Section 111-B, we choose the first medium and the. field 
solutions to be  the  same  as (10) and (1 l ) ,  and  the second 
medium and the field solutions to be 

d 2 ) ( x ,  y )  = € ( p y x ,  y )  (42) 

( 4 3 4  ~ ( 2 )  = (E,‘P) - E ~ P ) )  e - i P p z  

H (2 ’  = ( -Hjp )  + H!P)) e - j p P z .  (43b) 

We obtain again  from  the  generalized reciprocity relation 
2 )  
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where 

and C has been defined in (41).  One can also show that 
P? Kpq satisfies the  same  equation  as Epq in (39) by recogniz- 

ing that 

where the second term is symmetric with respect to p and 
q .  Thus 

which is also  an  exact  relation. 

form 
The coupled-mode equation can be written in a matrix 

- d  
C - a ( z )  = iQa 

dz 

where 

- CP4 + CqP - 

CP, = 2 = c, 
is symmetric, and 

(49 1 

CP4 + c, 
= Kpq + 

2 P, = Q, 

is also symmetric.  The matrix equation can also be writ- 
ten  as 

d 
- a ( z )  = iMa 
dz (51) 

M = C-‘Q ( 5 2 )  

or 
M = C-IBC + C- lKT  ( 5 3 )  

or 

M = B + C-‘K (54) 

where B is again  a diagonal matrix with the propagation 
constants f ip  as the  elements, and the  superscript T means 
transpose of the  matrix.  Equation (53) is compared with 
the form in [ lo] ,   [ l l ] .  One  sees  that  the only difference 
is that the matrix C is used here while the matrix C is used 
in [8]-[l l]. K T  used in this paper is  the same as Kin [IO], 
[l 11 from  the definition (40) except for  the  factor of 4. 
The final form (54) is simpler  than (53) since B is used 
instead of C-’BC. Thus,  our  coupled-mode  equation 
looks simpler using the form (5  1) with M given by (54), 
than that in [lo],   [ l l] .  The coupling coefficients K p q  de- 
fined in (15) for  the  lossless  case or Kpq defined in (45) 

for  the general case differ from (defined in (8)) or Epq 
(defined in (40)) by the  factor in the second part of 
the  integrand.  This  factor  is  also taken as  one in [ 171. We 
believe that it should be more self-consistent to keep the 
factor  since it was derived from (1 IC) making use of Max- 
well’s equation as shown in [ 12, appendix A]. 

B.  General  Orthogonality  Property of the  Supermodes 
Following a  similar procedure to that in Section 111-D, 

one  applies  the reciprocity relation (2) to any two super- 
modes 

E,‘” = (q:l afiE1q) ) eiYtZ (5%) 

H,‘” = (zl a(i)H(4)  q f ) eiyiz (55b) 

( P = l  4 . (56b 1 

N 

and 
N 

E,‘2) = ( ayIE1.1) e-iYJZ (56a 1 
p =  1 

N 
~ , ‘ 2  ) = - a y ) ~ ( ~ )  e-iyjz 

Using the  eigenvector a ( i )  = column ( a i i ) ,  a y ) ,  * * , 
a!’) and a  similar form for &), one obtains 

. ( j )TCa(i)  = 0, for yi # y j  

which is the reciprocity relation that should be satisfied 
by any two  eigenvectors of  the matrix equation 

( 5 7 )  

yCa = Qa (58) 

which follows (48).  Alternatively, because both C and Q 
are symmetric matrices,  the  general orthogonality relation 
(57) is a well-known property in matrix theory [ 161. 

C. Reciprocity  Relation for Two  Sets of Solutions  with 
Separate  Boundary  Conditions 

Let us look at the boundary value problem for  a set of 
solutions to the  coupled-mode  equation  (48).  The general 
solution a ( z )  is given by 

a ( z )  = AeirZA-’a(O) (59) 
where 

r = diagonal ( T I ,  7 2 ,  . * - , YN) (60) 
for  a given boundary condition a ( 0 )  and the wave prop- 
agating in the +z direction. Mere the matrix A is defined 
to have  the ith column given by the ith eigenvector of the 
matrix (58),  and yl ,  * , yN are  the  eigenvalues of (58). 

Consider  a first set of solutions  at z = 0 given the  con- 
dit iona(’)(z = - l ) ,  

= AeirlA-Ia(l) ( - 1 ) .  (61 1 
Let us look at another  set of solutions with the boundary 
condition given at z = 0 and  the  wave propagating in the 
-z  direction to z = - I  

a ( 2 ) (  - I )  = AeirnA-’a(2)(0) .  (62) 
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(c) 

Fig. 1. (a) A single  waveguide p described by d p l ( . x ,  y )  in  whole  space. 
(b) A single  waveguide q described by C ‘ ~ ) ( X ,  y )  in  whole  space.  (c) A 
multiwaveguide  system  described by € ( X ,  y )  in  whole space. 

Applying  the reciprocity relation (1) to a cylindrical sur- 
face enclosing the planes z = - E  and z = 0 with a radius 
going to infinity, one finds [ 121 

1s ( E ‘ ”  x H‘2’ - E‘2’ x H ‘ ” )  . f & d y  

z =  - 1  

= J J  (E‘”  x H‘2’ - E‘2’ x H “ ’ )  . f & d y .  

(63) 

z=O 

From  the previous two sets of solutions,  we  have  (Fig.  2) 
N 

and 

where the second  set of fields propagates in the -z-direc- 
tion.  The  vector a‘ ’ ( z  = 0)  is related to a‘ ’ ( z  = - 1 ) 
by (61), and a‘”(z  = - E )  is related to a ‘ 2 ) ( z  = 0) by 

I I 
I I 

I I 
0 1  I I O  

I I 
I I 

O i  2 i o  
I 

I I 
I I 

I I P  3 I O  

I 

I 
I 

L 
w 

I I + I 

0 I q N - l  - ! I  

I 
I I 
1 I 

O i  N ! O  
I 
I 
I I 

2 ’ -1  2 . 0  

Fig. 2. A multiwaveguide  system  with  possible  excitation  either  at  wave- 
g u i d e ~  at z = - 1  and the wave  propagating  in  the +z direction,  or  at 
waveguide q at z = 0 and  the  wave  propagating in the  -z-direction. 

(62).  The reciprocity relation (62) reduces  to 

- 2 )  c a ‘ 2 ) (  - 2 )  = a‘l)T(0) Ca‘2)(0)  (66) 

or equivalently 
- 2 )  CAe”lA-la‘2)(0) 

- - a ( ’ ) * (  - 2 )  (Aeir lA-l)T Ca‘2)(0).  (67) 

Since the initial conditions for a\ ’ ’ ( - I  ) and a‘ ) can  be 
-0 - 

0 
1 
0 
0 

0 - -!I 0 0 1 

- ? .  

-, pth position 

-+ qth  position 

where p and q can be arbitrarily set between 1 and N ,  we 
find the riciprocity condition: 

- CAeirlA-l = (CAe”TiA-l)T 
(70) 

where  we  have  used  the fact that cT = E. Since the matrix 
A has  each  column  given by the eigenvector of (58), we 
have 

- 
CAI? = QA 

or 
r = A-lC-lQA = A-’MA. (72) 

Substituting the  above relation into  (70), we find that the 
reciprocity condition (70) is the  same  as 

C M  = ( C M )  (reciprocity condition) (73) 
- 
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i.e., the  product C M  must be  symmetric.  We  see clearly 
that our formulation (48) satisfies this condition because 

C M = Q  (74) 

where Q has been proved to be  symmetric in Section IV- 
A. To  illustrate  our  results,  we show in the next section 
the special cases  for  two coupled waveguides and three 
coupled waveguides. 

- 

V. SPECIAL CASES 
In summary,  the  coupled-mode equation is put in ma- 

trix form 
- d  
C - a  = iQa 

dz (75) 

where both c and Q are  symmetric.  In  another  form, it is 
given by 

d 
- a = iMa 
dz 

where 

M = c-'Q.  (77) 

The reciprocity condition (74) requires C M  (or Q )  to be 
syrnrnetric. The  above  formulation is very general  and is 
applicable to both lossy as well as lossless systems. 

A. Two-Coupled  Waveguides 
If N = 2, one has 

where 

Y a  = P1 + (K11 - C12K21)/(1 - C 2 )  ( 7 9 4  

Yb = P 2  + (K22 - C12K12)/(1 - c:2> (79b) 

Kab = (K12 - K22C12)/(1 - C 2 )   ( 7 9 4  

- 

- 

K b a  = (K21 - K11C12)/(1 - (79d 1 
As has been pointed out in [SI, the  overlap integrals C12 
and C2, or Cl2 are obtained from the integration over 
whole space  in  the  transverse  direction, and can be  sig- 
nificantly large  even if K12 is small.  Thus  the  factor 1 - 
C:, may become very small and Kab is large.  The reci- 
procity condition that E M  be symmetric gives 

- 

Kab - Kba = ( Y a  - Y b )  C12 (80) 
which has been shown in [ 121 , and can also be proved by 
substituting (79a)-(79d) into (80). The  two  eigenvalues 
yl ,   y2,  and  eigenvectors  are well known: 

r 1 = + + $  ( 8 1 4  

Y z = + - $  (81b) 

where 

and 

where the orthogonality relation a(1)Tca(2) = 0 is indeed 
satisfied and it is the  same as the reciprocity condition 
(80). 
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The  three  eigenvalues  and  eigenvectors  have been calcu- 
lated in [lo],  [ll],  and  are given here: 

4 + *  
Y1 = - 2 

4 - *  
Y3 = - 2 

and 

II/ J(m1l + m13 - m22)L + 8m12m2l (88e) 

and 

d l )  = i2-; - 4 + * ~ , 2 m j  ( 8 9 4  

d 2 ) =  [i] (89b) 

u(3) = [2m22 - 4 - 4)/2m12]. ( 89c 1 

It  is  straightforward to show  that  these  three  eigenvec- 
tors satisfy the general orthogonality relation (57) by di- 
rect  substitutions.  Notice  that  the  formulation in [8]-[ll] 
does not satisfy this condition  since in general C12 # C21. 

Finally,  let us consider  an  excitation with the boundary 

[:I * (90) 

101, [111 

condition-at z = 0 given by 

a ( 0 )  = 

The  general  solution  at z is [ 

a ( z )  = AeirzA-'a(0).  (91 1 
Here,  the matrix A  is given by the  three  eigenvectors  from 
(89a)-(89c). (Note  that our definition of A is the inverse 
of that in [lo] and Ell] with some  typos  corrected.) 

A = [a('), a(2), a(3)]. (92) 

The results of AeirzA-' have been calculated in [ 101 and 
[ 1 13. The solution at position z is 

The total guided power is given by 

P ( z )  = Re [ u ' ( z )  C a ( z ) ]  

= af(z)  & ( z )  = 1 + F sin2 - (94) *Z 

2 

where the  factor F is given by 

+ C12(m22 - mil - m13)]- (95) 

For  a lossless system,  the power conservation requires that 
P ( z )  be independent of the position z .  Thus  the  factor F 
provides a  check of the energy conservation. Although it 
has been shown before that our  formulation satisfies the 
energy conservation exactly by using the  fact  that  the  two 
matrices and Q are  hermitian,  one can also  see from the 
reciprocity relation (85) substituted into (95) that F is in- 
deed zero provided that we choose E:,) and Hip) to be 
Ea1 - functions  for  a  lossless  system.  Therefore, C,, = 
C,, = real. Numerical results will be given in the  next 
section.  The  factor F from  two  previous methods [4], [lo] 
will also  be  calculated. 

VI. A NUMERICAL  EXAMPLE AND DISCUSSIONS 

In this  section,  we  illustrate  our theory by a numerical 
example [lo] and compare it with those of two previous 
methods [4] , [lo].  We consider  three coupled waveguides 
with the two  outside  waveguides  identical and symmetric 
with respect to the  center  waveguide  (Fig.  3). Using the 
theoretical results discussed in  Section V-B, we  calculate 
K,,, Cpq, and &,. The  analytical relation (47) is used to 
check the numerical accuracies of these  quantities.  We 
show in  Fig. 4(a)  the  three  eigenvalues yl ,   y2,  and y3 
from (88a)-(88c), which are  the propagation constants of 
the three supermodes, versus the  separation t between the 
waveguides. We  compare  our results (dotted line) and  the 
exact solutions (solid lines) of the multilayered structure 
in Fig. 4(a) and those of the method in [lo] (dashed lines), 
the method in [4] (crosses) in Fig.  4(b).  We  see clearly 
that  the results using the method in [ 101 and  our theory 
agree very well with the exact calculation.  There  is  a slight 
error  for  the third eigenvalue y3 near cutoff where  the  sep- 
aration t is reduced to  near 0.2  pm.  In  our calculation,  we 
choose  the  same  parameters as in [lo], n = 3.4, nl = 
3.6, n2 = 3.63, dl = d2 = 0.15 pm, and t varies. The 
method of [4] clearly has larger  errors  in y1 and y3, es- 
pecially y3 deviates  from  the  exact results over  a wide 
range of t near cutoff. The result of y2 using three methods 
agree with each other very well because 

~2 = mll - m13 = P I  + (Kl1 - K13)/(1 - c13) 

(96) 
using (87) and  (88).  Since E13 and (Kl l  - K13) are very 
small, (El3 = 0.136 - 0.00436  and (KI1 - K13) = 
-0.0237 - -0.0004  (1 /pm) at t = 0.2  pm - 0.6  pm), 
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(C) 
Fig. 3 .  Three coupled waveguides  under  investigation. (a) t (x) / E "  for  the 

three-waveguide  system. (b) Ac(')(x)/eo. (c) A t ' 2 ' ( x ) / ~ , .  

if we  have c,, = 0 (theory of [4]) the difference is neg- 
ligible.  Since C,, = C,, = Cl3, the theory of [lo] gives 
the  same  results for y2 as  the results of this paper. 

In Fig. 5 ,  we show  the  power conservation violation 
factor F for  the  initial  excitation  at  the  center  waveguide, 
a (  0)  = column (0 ,  1, 0). We  see clearly  that our results 
indeed satisfy the  power conservation very well and F is 
always zero.  The  factor F calculated from [lo] is always 
very small (less  than 0.08 percent), but F calculated from 
141 can be  as much as 42 percent. 

Numerically speaking,  our  results  are  as good as or 
slightly  better than those obtained from [lo]. The new 
features  are  that our formulation is derived using a sim- 
pler  approach, and it satisfies both the reciprocity theorem 
and the  power conservation law  analytically,  while [8]- 
[ 111 can only  show numerically that  their method satisfies 
the power conservation and the  reciprocity  theorem ap- 
proximately. (One should note that  power conservation 
and reciprocity are only  satisfied self-consistently and not 
exactly since  the modal expansions (1  1) of the fields are 
approximate.) Our formulation also leads to  the general 
orthogonality relations (38) and (57) with the  overlap  in- 
tegrals properly taken into  account,  that cannot be ob- 
tained from  Jhe formulation in [8]-[ 111. By setting  the 
matrix c or  to  be  the identity  matrix,  the  coupled-mode 
equations and the orthogonality relations all reduce to the 
results  of a conventional analysis [4]. Our numerical re- 
sults  also show that ignoring the  overlap  integrals does 

2 7  7 1  

I 
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26 72  
L I I I 

3 4 5 6 

WAVEGUIDE SEPARATION (urn) 

(b) 
Fig. 4. (a) A comparison of the  propagation  constants of the  three  super- 

modes between  the  exact results (solid lines) and the results of this  paper 
(dotted lines) for  the  three coupled waveguides in Fig. 3 .  (b) A compar- 
ison with other  two methods: results  using [IO] (dashed lines), results 
using 141 (crosses). The results of this  paper  are given by dotted lines. 

I 1 I _I, 
3 4 5 

WAVEGUIDE  SEPARATION ( p m l  
Fig. 5. The  power  conservation violation factor F for  an  excitation at the 

center  waveguide of Fig. 3.  The  results of F using [lo] (dashed  line), 
and results of this  paper  (dotted line) are shown  using  the  left  scale, and 
the results of [4] (crosses) follow  the right scale. 

6 '  
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lead to  erroneous results violating the power conservation 
significantly as  has  also been pointed out in [8] and [12]. 

VII. CONCLUSIONS 
Two  sets of coupled-mode  equations  for  a multiwave- 

guide  system  have been derived using a generalized re- 
ciprocity relation,  one  set  for  a  lossless, and the  other  for 
a lossy or lossless  system. New general orthogonality re- 
lations between the  eigenvectors of the supermodes have 
been derived. We  have derived the  conditions on the ma- 
trix  elements  for  the reciprocity theorem and the  power 
conservation  laws and have shown that  our formulations 
do indeed satisfy  those  conditions  analytically. 
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