Linhas de transmissão - Parte 4a Example: * chapter of Transmission line

Considere uma L.T. com as seguintes coracteristicas

$$V_{sg} = 100 \, L0^{\circ}$$

 $Z_{g} = R_{g} = 50.12$
 $f = 100 \, \text{mHz}$

Linha sem perdos com:
$$L = 0.25 \mu H/m$$

Determine:

$$Z_0 = \sqrt{\frac{L}{C}} = \sqrt{\frac{0.25 \times 10^6}{100 \times 10^{12}}} = 50 \Omega$$
 imped correctoristics

Comprimento de onde
$$\lambda = \frac{2\pi}{2}$$

Comprimento de linha em unidades de l:

fore do ondo no final de linha

$$V_{50} = \begin{array}{c|c} P_{3} & \overline{T}_{50} \\ \hline V_{50} & \overline{T}_{50} \\ \hline \hline V_{50} & \overline{Z}_{50} \\ \hline Z_{10} & \overline{Z}_{10} \\ \hline \end{array}$$

Impedância de entrada LT sem perdos -0 eg. 16

$$Z_{in}(z) = R_L$$
 \Rightarrow $Z_{in} = R_L$ *

Coeficiente de reflexão no corga =0 Z=1

$$\frac{\Gamma_L = \underline{Z_L - Z_0}}{Z_L + Z_0} = \frac{R_L - 50}{R_L + 50}$$

Relação de onda estacionária: s

tensões e correntes ao longo da linha de (7) e (18): |Vs(2)| = |Vso | . | 1 + \(\gamma(2)| = |Vso | . | 1 + \(\Gamma e^{2\beta(z-4)}\) |Is(z)| = |Ist | . | 1 - \(\frac{1}{2}\) = |Ist | . | 1 - \(\frac{1}{2}\) | | Is(2) = 1/30 | 1 - [e 25 (2-1) | Circuito equivalente p/ encontrar 150 : V₂ V₃₀ | \(\frac{\x}{2} \) Vg = I. Rg + Vs. $I_0 = \frac{V_{50}}{P} \qquad D \qquad V_g = V_{50} \frac{R_g}{R_s} + V_{50}$ $V_g = V_{so} \left(\frac{R_g + R_L}{R_L} \right)$ $V_{so} = \frac{R_L}{R_q + R_L} \cdot V_{sg}$ Vso = 100 . RL mas Vso = Vs (0) RL . V= = | V= 1 . | 1 + 12 (e = 286) $|V_{50}^{\dagger}| = \frac{100}{|I + \Gamma_L|} \cdot \left(\frac{R_L}{R_0 + R_L}\right)$ como $\frac{R}{R_{L}+50} = \frac{100}{R_{L}+50} \cdot \frac{RL}{R_{L}+50} = \frac{100RL}{2RL} = \frac{50}{2RL}$

$R_L(\Omega)$	$ V_s(z) _{\max}$ (V)	$ V_s(z) _{\min}$ (V)	$ V_s(l) $ (V)
0	100	0	0
25	66.7	33.3	33.3
50	50	50	50
100	66.7	33.3	66.7
∞	100	0	100

$R_{r}\left(\Omega ight)$	$\left I_{s}(z)\right _{\max}(A)$	$ I_{\mathbf{f}}(z) _{\mathbf{mn}}(\mathbf{A})$	$I_{\mathbf{c}}(l)$ (A)
0	2	O	2
25	1.33	0.67	1.33
50	1	1	1
100	1.33	0.67	0.67
∞0	2	0	0

$$|V_{3}(z)| = |V_{50}| | 1 + \Gamma(z) |$$

$$|V_{3}(z)| = 50 | 1 + \Gamma(z) |$$

$$|V_{3}(z)|_{max} = 50 (1 + |\Gamma|)$$

$$|V_{3}(z)|_{min} = 50 (1 - |\Gamma|)$$

$$|I_{5}(z)| = |V_{50}| | 1 - \Gamma| e^{iz\beta(z-\ell)}$$

$$= \frac{50}{50} | 1 - \Gamma| e^{iz\beta(z-\ell)}$$

$$|I_{5}(z)| = |1 - \Gamma| e^{iz\beta(z-\ell)}$$

$$|I_{5}(z)|_{max} = 1 + |\Gamma|$$

$$|I_{5}(z)|_{min} = 1 - |\Gamma|$$

$$|I_{5}(z)|_{min} = 1 - |\Gamma|$$