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Coupled Mode Formulation for Directional Couplers 
with Longitudinal Perturbation 

Giora Griffel, Member, IEEE, M. Itzkovich, and Amos A. Hardy, Senior Member, IEEE 

Abstract-A grating-assisted directional coupler is investi- 
gated using an improved coupled-mode formulation for multi- 

X 

Y) 
waveguide systems with longitudinal perturbation. This ap- 
proach is capable of handling three-dimensional structures as 
well as complex index of refraction and nonisotropic medias. 
The case of two coupled channel waveguides is closely exam- 
ined, and numerical analysis is carried out for several cases of 
slab structures. 

1. INTRODUCTION 
NERGY coupling between parallel channels has been E discussed extensively in the past [ 13 and reformulated 

lately by several groups under the title of “improved cou- 
pled mode theory” [2]-[7]. All the mentioned approaches 

field distribution of several parallel channels can be ap- 
are based on the underlying assumption that transverse Fig. 1. A general structure of two parallel channels. 

proximated, at any point along the propagation direction 
(z axis), by a linear combination of the separate trans- 
verse field solution of each channel, which is obtained by 
‘‘erasing’’ the neighboring channels from the transverse 
index profile of the whole structure. For the case of two 
parallel channels, shown in Fig. 1, it can be formulated 
as follows: 

E t ( x . y , z )  a(z) E?’(& Y )  + b(z) Elb)(& Y )  

where the superscripts (a) and (b) denote the separate 
waveguiding channels, and U (z) and b (z) are the local am- 
plitudes of each field along the direction of propagation. 
The main motivation behind this approach is that it is 
much easier to solve, sometimes analytically, the modal 
field and propagation constants of the separate wave- 
guides, and then calculate the total field and propagation 
constants of the whole structure in terms of these results, 
rather than to analyze numerically the whole structure. 

It was shown, under the validity of the mentioned ap- 
proximation, that in any structure of directional parallel 
channels there is a certain amount of energy coupling, 
herein referred to as “natural coupling,” which is ex- 
pressed mathematically as a gradual increase of one of the 
channel field amplitudes, a(z )  or b(z ) ,  on the account of 
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the other along the direction of propagation. The effi- 
ciency of this natural coupling is strongly dependent on 
the geometry of the discussed structure. If the channel 
indexes of refraction are identical and the whole structure 
is symmetrical, then a complete exchange of energy be- 
tween the two channels is possible. However, when there 
is a slight difference between the separate channel pa- 
rameters, namely the dimensions or the refractive in- 
dexes, so that the propagation constants of the separate 
waveguide modes are not identical, then a complete ex- 
change of energy is no longer possible and the efficiency 
might decrease significantly. 

One way of improving the mode coupling efficiency in 
a nonidentical channel structure is to form a periodic per- 
turbation along the direction of propagation in such a way 
that the wave number of that perturbation K = 2a/A (A 
being the length of one period) is equal to the difference 
between the separate modes propagation constants, 
namely, 

p(b) - p (4 - -- .  

The idea of creating a longitudinal grating in order to cou- 
ple energy between modes that otherwise would not be 
coupled or would be coupled insufficiently was used be- 
fore by Kogelnik [8] and by Stoll and Yariv [9] in order 
to couple energy between orthogonal modes of one struc- 
ture. Some aspects of the approach for coupling between 
nonidentical channels were discussed by M a n  and Nolt- 
ing [lo] who based their derivation on the formulation of 
Yariv. An interesting practical use for the grating-assisted 
directional coupler was presented recently by Alfemess et 

(2) 
27r 
A 
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al. [ l l ]  who reported the fabrication of a codirectional 
slab coupler made of InGaAsP-InP-InP. It turns out that 
the coupling efficiency in these kinds of structures has a 
strong wavelength selectivity; therefore, they can serve 
as optical filters in lightwave networks. Moreover, it was 
shown that this codirectional coupler has an improved 
tuning range with respect to that of the contradirectional 
type [12] by a factor equivalent to the ratio of the grating 
periods of the two structures (a calculatedo realistic value 
of th? center wavelength shift of - 100 A compared to 
- 6 A). These kinds of devices can be easily monolithi- 
cally integrated with other semiconductor optoelectric de- 
vices, and therefore they are the focus of increased atten- 
tion. 

An approximate formalism by which the coupling coef- 
ficients and the interaction length can be calculated was 
suggested by Marcuse [ 131. This approach deals with 
asymmetric slab double-waveguide structures and is based 
on the fact that in strongly asymmetric index profile, each 
of the compound modes of a combined structure of two 
slabs, which are mutually orthogonal, carries power 
mainly in the region of one of the slabs; therefore, a grat- 
ing which is constructed to couple energy between the 
compound modes can be used to couple energy between 
the two slabs. In order to simplify the calculation, and 
based on the fact that in strongly asymmetric structures 
the compound mode fields resemble the mode fields of the 
individual waveguides, the latter were used to calculate 
the coupling coefficients. It was found that by using this 
approximation, an order of magnitude value of the cou- 
pling coefficients and interaction length can be obtained, 
but it cannot provide an exact analysis of the directional 
coupler. 

An improved approach was presented recently by 
Huang and Haus [14] (HH) who used the nonorthogonal 
coupled mode theory to analyze a grating-assisted slab 
coupler in a lossless system. Their approach was shown 
to be in good agreement with the compound mode ap- 
proach suggested by Marcuse. However, in order to cal- 
culate the grating period and coupling length, the two most 
important parameters for designing such device, HH have 
carried a linear transformation from the nonorthogonal- 
mode formulation to the orthogonal (compound) mode 
one. That is, the power exchange process was assumed to 
take place between the two compound modes, with a grat- 
ing period calculated for phase matching of their propa- 
gating constants. This approach fails to yield good results 
when the two waveguides are close to synchronism and/ 
or are strongly coupled (and an assisting grating is no 
longer necessary). In many practical devices, the state of 
affairs is that in order to decrease the coupling length, 
they are indeed strongly coupled [ 111. Therefore, a dif- 
ferent approach is required. 

The approach presented in this paper is based on the 
improved coupled mode theory [2]-[6] and, under the 
limitation of this technique, can be used to obtain highly 
accurate results. The presented formulation can be used 
to analyze multiwaveguide systems and three-dimen- 

sional directional couplers (such as fiber-fiber coupling), 
and it can be used to solve structures which have gain and/ 
or loss or nonisotropic media [15]. The formulation is 
currently being used for the design of grating-assisted 
semiconductor tunable filters; it has also been used to ana- 
lyze the spectral properties of such devices, yielding ex- 
cellent agreement with experimental results [ 161. 

In the following section, the coupled mode equations 
are presented. The resultant set of equations include terms 
which are obtained due to the natural coupling and terms 
which appear because of the assisted grating. In Section 
111, the case of two waveguide systems is examined more 
closely. In Section IV, the conditions for power conser- 
vation in the exact and the approximate formulation are 
discussed. In Section V, some application examples for 
slab structures, for which analytical expressions for the 
coupling coefficients can be obtained, are presented. 
These coefficients are calculated for several particular 
cases and are used for the calculations of the grating fac- 
tor and the length of the interaction. Comparisons be- 
tween the presented approach and former techniques are 
also given. Finally, the influence of the grating location 
and its magnitude is analyzed. 

11. FORMULATION 
The approach presented here deals with structures 

whose dielectric dependence in space E(X, y, z) can be 
given by 

E@, Y ,  z) = E(X, Y )  + Y ,  z ) .  (3) 

Here, E ( X ,  y) is a general medium that is translation in- 
variant in the z-direction and is comprised of N wave- 
guides such as shown in Fig. 2(a). Each of these wave- 
guides can be described separately by di)(x, y) [Fig. 2(b)] 
such that 

E ( X ,  y )  = y) + A E ( ~ ) ( ~ ,  y). (4) 
The term AE(x, y, z) in (3) is a small perturbation of 

the medium so that for any value of z the inequality 

AE (x, y ,  z )  / E  (x, y )  CC 1 (5 )  

holds. 

can be expressed in the form 
We shall restrict the discussion to perturbations which 

y ,  Z) = ~of(x, y )  An2(z). (6) 

For the sake of convenience, we shall hereon omit the x, 
y dependency from the structure parameters E, AE (z), 
and f, as well as from the various field amplitudes. 

The derivation of the coupled mode equations is quite 
lengthy and tedious. Therefore, it appears in complete 
form in Appendix A. It is shown there, following some 
substantial manipulations, that the coupled mode differ- 
ential equations for the described structure are given in a 
matrix form by 
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(b) 
Fig. 2. (a) A multiwaveguide system E ( X ,  y) consists of N parallel chan- 
nels. (b) A single waveguide & isolated from the multiwaveguide sys- 
tem. 

where U ( z )  is a vector that consists of the amplitudes of 
the individual waveguides modes, which are linearly su- 
perpositioned to approximate the total propagating elec- 
tromagnetic field of the nonperturbed medium E ( X ,  y). B 
is a diagonal matrix, B = diag [ P I ,  P2, - , PN], with 
Pi being the unperturbed propagation constants of the 
guided modes of the isolated waveguides. The matrix C 
is the overlapping matrix whose elements are defined by 

where 
m 

cPq = $ 15 [EjP) x Hjq)], dr dy. (9) 
-m 

The elements of the matrix If are defined by 
m 

(10) 
and KT is the transposed matrix of k, whose elements are 
defined by 

(1 1) 
It should be noted that if the dielectric profile functions 

of the isolated waveguides (x, y )  are chosen such that 
they all have the same value in the 1ate;al graiing region 
(that is, f ( x ,  y )  dP)  = f ( x ,  y) dq)) ,  then Kpq = Kqp for p # 
q. It is shown later in Section IV that such a selection is 
a necessary condition for satisfying the power conserva- 
tion relation. Such a selection can be made easily by 
choosing the “DC term” of the grating as the dielectric 
constant value of the isolated waveguides in the lateral 
location of the grating as shown in Fig. 3(b). Another 
possibility is simply to neglect the influence of the grating 

~ 
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“DC term” on the isolated waveguides solution and to 
assume that the value of the dielectric constant there is 
the same as the background (interguides) material [Fig. 

Examination of the coupled-mode equation (7) for the 
longitudinal perturbed structure reveals that when the per- 
turbation magnitude is being taken to the zero limit, 
An2(z)  + 0, (7)  is left with the first two terms on the 
right-hand side, which is the form derived earlier by the 
coupled-mode formalism for unperturbed structures (see, 
for example, [4, (19)]. Therefore, the present formulation 
agrees with and is actually extending the prior theory by 
adding the third term of (7). 

3 ~ 1 .  

111. Two WAVEGUIDE SYSTEMS 
Since most of the grating-assisted coupler studies so far 

consist of two asymmetric waveguides [ 101-[14], we shall 
examine more closely the results of the applying sug- 
gested formulation to these kinds of structures. Equation 
(7) can also be written in the form 

(12) 

For the case of N = 2, the vector U ( z )  = col[a(z), b ( z ) ]  
consists of the amplitudes of the isolated waveguide 
modes. The matrix M is defined by 

d 
- U(Z)  = i [ M  + An2(z )N]  U ( Z ) .  
dz 

= Lz 3 
with matrix elements 

k, = (k, - ~ k d ) / ( l  - c’) 

kbb = ( k b b  - ckba)/(l - c2) 

kd  = (kh - C&)/(l - C 2 )  

kba = (kd - Ckm)/(l - C 2 ) .  

(16a) 

( m  

( 16c) 

( l a )  

The constants ya and Yb are corrected forms of the prop- 
agation constants of the modes in each of the individual 
waveguides, Kab and Kba are the natural coupling coeffi- 
cients, while kab and kba are the coefficients for energy 
coupling due to the existence of the longitudinal pertur- 
bation. The elements kaa and kbb are the self-coupling fac- 
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tors, and it is shown in Appendix B that these terms can 
be neglectet if the perturbation is small enough. 
Kp,q and Kp,q are defined by (10) and (1  l ) ,  respectively, 

where we have substituted (p, q) = (a, b), and c = c u b  

= C,, is given by (8). 
Assume a z-dependent periodic grating of the form 

where the grating constant Kg = 2a/A is chosen to phase 
match between the modes of the isolated waveguides, i.e., 

2a 
A 
_ -  - Tu - Tb E 2A, 

and define a detuning factor 6, which measures the devia- 
tion of the grating constant from exact matching 

2a 
A 26 2A - - (19) 

as well as removing the rapid z-variation of a (z) and b (z) 
by introducing two slowly varying amplitudes A(z)  and 
B(z), namely 

a(z)  = A(z)eiYaZ 

b(z) = B(z)e'ybZ. @Ob) 

It can be shown that by substituting (17)-(20) into (12), 
a new form of coupled-mode equations (Bl) is obtained 
which, upon neglecting asynchronous terms (Appendix 
B), is reduced to the form 

d 
dz 
- A @ )  = i(Kube-'2AZ + dk ab e-i26z B(z)  (21a) 

d 
- B(z) = i(Kbuei2AZ f dkbaei26z) A(z). 
dz (21b) 

All of the prior theories that dealt with the problem of 
energy coupling assisted by a longitudinal grating consid- 
ered energy coupling between modes of a compound 
structure, for which no natural coupling exists. Even in 
the approach presented by Marcuse [ 131, which dealt with 
nonidentical asymmetric slabs, the set of coupled-mode 
equations and the formula for calculating the coupling 
coefficients are those of the compound structure, except 
that the mode fields of each isolated slab are used as an 
approximation of the compound modes. However, it is 
quite clear from observing the more accurate coupled 
mode equations, (Bl) or (21), that a "natural" coupling 
exists between the isolated waveguide modes (represented 
by the first term at the right-hand side) and, in general, 
the two mechanisms of coupling should be taken into con- 
sideration by solving this set of equations numerically in 
order to obtain exact results. 

Nevertheless, if the analyzed structure is strongly 
asymmetric, that is, if the parameter A is large enough, 
and the perturbation is strong enough to govern the cou- 
pling process, then the first term on the right-hand side of 

both equations (Bl) or (21) can be discarded. In Appendix 
C we derive an exact formulation for this situation. 

IV. POWER CONSERVATION 
The power conservation relations are formally derived 

here as in [6]. If the analyzed structure bears no gain or 
loss, then the total guided power is given by 

+m 

P(z)  = Re [i s s  (E, x H , )  - 2 d r d y  

providing that E, and H,  are chosen to be real functions. 
If E, and H, are given by (1), then 

P(z)  = aa* + c(ab* + ba*)  + bb* (23) 

where c is a real quantity which was defined by (8). In 
order for the presented formalism to conserve power, we 
demand ( d / d z ) P ( z )  = 0. By using (12) for the 
z-derivatives of the modes' amplitudes and their complex 
conjugates, we find that 

d 
- P(Z)  = i (ab*{[c  2A - &, - Kbu)l + [c(k,  - kbb) 
dz 

(22) 
-m 1 

- (kd - kb,)] An2(2)} - C.C.) (24) 
where C.C. denotes the complex conjugate of the first 
bracketed term. It is clear that for satisfying the power 
conservation condition, both of the square bracketed 
expressions should be equal to zero, that is, 

Kub - Kba = c(Tu - Tb) 

kab - kbu = c (kuu - kbb 1. 

(25) 

and 

(26) 

The first relation (25) is known as the reciprocity con- 
dition which was derived before for lossless unperturbed 
systems. For the case of longitudinally perturbed sys- 
tems, we have added now the second condition, given by 
(26) which, upon choosing E @ )  and db) properly as dis- 
cussed at the end of Section 11, is found to be fulfilled by 
a straightforward substitution of the coupling parameters 
which were introduced by (1 6a-d). 

The demand for power conservation might raise a prob- 
lem when the approximated coupled-mode equations are 
used in cases where kub differs significantly from kbu. In 
such an event, the expression for power exchange ob- 
tained from the approximated coupled-mode equations 
might be wrong, and as a result an erroneous coupling 
length [(C15)] is calculated. In that case, one should either 
solve numerically the exact form of the coupled-mode 
equations (Bl), or carry a linear transformation from the 
nonorthogonal coupled-mode formulation to the orthog- 
onal-mode one, such as done by Huang and Hause [14], 
and then obtain an approximate solution by neglecting 
asynchronous terms. In this case, the cross-coupling coef- 
ficients will be equal, and therefore the power is con- 
served. 
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It can be shown [ 171 that the approximated formulation 
solved in this paper is accurate as long as the analyzed 
structure obeys 

c ( s  - g) << 1 

where is the value of the isolated waveguide mode 
fields at the location of the grating. Since for most prac- 
tical cases the demand for an efficient coupling leads to 
E: = E:, the condition given by (27) is fulfilled and the 
approximation is valid. 

V. APPLICATION EXAMPLES 
A.  A General Slab Structure 

We shall illustrate the utility and improvement achieved 
by the presented theory by considering first the same 
structure given in [ 131. This structure consists of a grat- 
ing-assisted directional coupler made of two dissimilar 
slabs as shown schematically by Fig. 3(a). Although the 
presented formalism is capable of handling three-dimen- 
sional structures, we choose this example since, as in [13], 
it is easy to obtain and use analytical expression for the 
parameters given by (14) and (16). We emphasize again 
that the calculation is based on a separate modal analysis 
of each of the waveguides of which the whole structure is 
made; therefore, no further mathematical complication or 
computation ability is required. Two possibilities for se- 
lecting the isolated waveguide profiles, following the 
power conservation conditions derived in Section IV, are 
shown in Fig. 3(b) and (c). 

We shall examine two different sets of parameters for 
this structure; the first, as in [13], consists of two dissim- 
ilar slabs. The upper one has a core width of d2 = 1 pm 
and a refractive index of n2 = 3.3. The lower one has a 
width of d4 = 0.3 pm and a refractive index of n4 = 3.5. 
The refractive index of the medium between the two slabs 
is n3 = 3.2. The substrate and the superstrate have re- 
fractive indexes of n5 = 3 and n1 = 1, respectively, and 
the light wavelength in vacuum here, as well as in all the 
following examples, is assumed to be h = 1.5 pm. 

We start by calculating the needed grating constant A 
for the structure as a function of the spacing 2s  between 
the two waveguides. The exact grating condition, after 
substituting -fa and Yb from (14a) and (14b) into (18), is 
given by 

"5 

"4 
1 

1 
T 

i 
2s 

7 
d2 

na "b 

" 
-f "1 

(a) (b) (c) 
Fig. 3 .  (a) A grating-assisted directional coupler made of two dissimilar 
slabs. At the RHS are two possibilities of constructing the isolated wave- 
guide profiles: (b) with and (c) without the average refractive index of the 
grating region. 

36, 

e 28 30Y ' 

I I I I 1 
0.4 0.8 1.2 1.6 2 2.4 26 I 

Fig. 4. The grating constant A as a function of the spacing 2s  between the 
two waveguides: for coupling between the TE modes according to the pre- 
sented approach (solid line) and for coupling between the compound modes 
(dashed lines). 

Fig. 4. It is seen here that as the two waveguides are 
brought closer to each other, the difference between -ya 
and Yb is increased, and therefore a shorter grating period 
is needed. It was shown before [2] that the propagation 
constants of the compound modes of the whole structure 
are given by 

( ~ 1 . 2  = 7 f JA' 4- K&b, (29) 
where? = (7, + Yb)/2. 

For the sake of comparison, we used this equation to 
calculate the grating factor which is needed in order to 
couple between the compound modes of the whole struc- 

where neff, and neffb are the effective indexes of the modes 
which propagate in each of the isolated waveguides (a) 
and (b). The factor ko = 27r/h0 is the free-space propa- 
gation constant, with ho being the vacuum wavelength. 
Using the well-known equations for modal analysis of 
simple three-layer antisymmetric waveguides [ 81, ana- 
lytic equations were developed for the parameters 
Km, Kba, Kba, and c. We have considered the case of TE 
modes only. The results are presented by the solid line in 

ture. The result appears as the dashed line in Fig. 4, and 
fits exactly the results obtained for the compound modes 
by solving the eigenvalue equation as was done in [13] 
and [14]. We can see that at a small separation, the dif- 
ference between our result and that of the compound mode 
approach becomes significant. The reason for that is the 
presence of the coupling term Kab Kba in the equation for 
calculating the propagating constants of the compound 
modes (29) which increases as the waveguides are getting 
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closer to each other. In [13], an approximate procedure 
was suggested, according to which the propagation con- 
stant was calculated for each waveguide separately, with- 
out any correction for the existence of the second one. 
Thus, the grating constant calculated in this way is inde- - pendent of the waveguide spacing, and is given by a hor- 
izontal line, which is the asymptote of (28). 

Another interesting parameter is the interaction length 

E 
E 
U 

=-t 

for full power coupling from one channel to the other. If 
we assume that the natural coupling is much weaker than 
the grating induced one, that is, the condition (C17) is 
fulfilled, then the interaction length is given by (C15). At 

equals 0 and the interaction length becomes 

- 

, I I I , I # I 8  
exact Bragg condition, the grating mismatching factor 6 0.4 0.8 1.2 1.6 2 2.4 

2S[I-lmI 
?r Fig. 5 .  The interaction length 1, as a function of the spacing 2s  between 

the two waveguides, for an assisted grating located once on the upper slab 
boundarv and once on the lower slab boundarv. An exact calculation is 

I =  (30) 
2 d I kd kb, I 

* 

kab and kba were calculated analytically using d). shown by the solid lines, and the weak coupling approximation (c = 0)  is 
shown by the dashed lines; the results using the compound mode approach 

The grating that we chose was as shown by Fig. 3(a) are shown bv the dotted lines. 
with a width De, = 0.1 pm, which defines f ( x ,  y )  = f ( x )  
in (1 1). The rating amplitude is found using (17) and is 
d = (n ;  - n i ) / ? r .  We have repeated the calculation for 
both grating location on the upper slab boundary and on 
the lower slab boundary. Fig. 5 shows the calculated in- 
teraction length 1 as a function of the spacing 2s  between 
the two waveguides (solid line). It was found that, in this 
example, when the influence of each waveguide on the 
calculation of the other waveguide’s propagation constant 
is ignored (by letting c = O), the resultant kab and kba are 
both analytically equal to the coupling factor K in [13]. 
Using this approximation, the value of 1 was calculated 
and is shown as the dashed line in Fig. 5. For the sake of 
comparison, we have repeated the calculation of the in- 
teraction length between the two compound modes, which 
is being referred to as the “exact approach” in [13] and 
[14]. The results are given by the dotted line in Fig. 5. It 
is seen clearly that the results differ significantly at small 
waveguide separation, that is, when the waveguides are 
strongly coupled. It is consistent with the analysis given 
in [ 141, according to which the power exchange ratio cal- 
culated by the compound mode approach drops from unity 
as the waveguide separation becomes smaller. It is clear 
that this phenomenon has no basis in reality, since the 
purpose of the grating is to synchronize the coupler so that 
the coupling efficiency should be unity no matter what the 
separation is. 

It is interesting to note that, as in the calculation for 1 
which is carried in [ 131 for the compound modes, there is 
a certain situation in which 1 goes to infinity, that is, the 
grating of the certain configuration has no assisting influ- 
ence on the power coupling. This phenomenon is ex- 
plained there by the fact that the coupling coefficient is 
calculated by integrating the multiplication of the two 
compound modes, between which the grating is supposed 
to couple power, and the index perturbation amplitude, 
across the lateral perturbation location. If the region of 
integration happens to be around the crossing point of the 
asymmetrical compound mode, then since the rest of the 

multiplicands are positive, the integrand is odd, and the 
results can become zero, which means infinite length for 
full power exchange. Unlike [ 131, this phenomenon oc- 
curs here in a different geometry since instead of dealing 
with coupling between the compound modes, we couple 
between the isolated waveguide modes [ ( l l )  and (16)]. 
These modes can be expanded by a superposition of the 
compound modes, and therefore a different geometry leads 
to the nulling of the coupling coefficients. However, this 
phenomenon, as discussed in the previous section, leads 
to an inefficient coupling as well as a possible error in the 
calculated coupling length, and therefore should be 
avoided in designing practical devices. 

B. Passing Through the Symmetrical Case 
In order to check the usefulness of the suggested ap- 

proach in delicate situations that could not be handled be- 
fore, we have picked a near-symmetrical case in which 
n, = n3 = n6 = 3.2, n2 = n4 = 3.5, d2 = 1 pm, 
2s  = 0.5 pm and the width of the lower waveguide was 
changed between 0.8 pm and 1.2 pm. As is well known 
[9] in the symmetrical case (d4 = 1 pm), a full-power 
coupling is obtained without the necessity of using an as- 
sisting grating. One may expect this phenomenon to man- 
ifest itself when the calculation of the grating period is 
carried out. 

Fig. 6 shows the calculated grating period for this case. 
The calculation was carried out first using the approach 
of this paper (solid line) and then again for coupling be- 
tween the compound modes of the whole structure (dashed 
line). It is seen clearly that a full agreement is obtained 
using the presented procedure, since as the structure is 
getting closer to the symmetrical geometry, the calculated 
grating period goes to infinity; while by using the com- 
pound-mode approach, a finite value for the grating pe- 
riod is obtained. It can also be seen that the compound 
mode approach is good for calculating the grating factor 
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2ooo w 
160 

Fig. 6. The grating period A as a function of d4 around the symmetrical 
case (d4 = 1 pm) for the approach presented in this paper (solid line) and 
for coupling between the compound modes (dashed line). 

1 
0 0.02 0.04 0.06 0.08 0.1 

W P m I  
Fig. 7 .  The interaction length 1, as a function of the grating width D,,, for 
a grating located on the lower slab boundary (solid line) and for a grating 
located on the upper slab boundary (dashed line). 

at strongly asymmetric structures since for differences of 
about 10% between d2 and d4, the curves tend to coincide 
with each other. 

C. The Influence of the Grating Location and Depth 
A useful application of the described analysis is dem- 

onstrated by examining the influence of changing the grat- 
ing width D,, on the interaction length. We have used the 
structure parameters n1 = n3 = n5 = 3.0,  n2 = 3.05, and 
n, = 3.1, the waveguides widths were d2 = 1 pm and d4 
= 0.9 pm, the spacing between the slabs was taken as 2s  
= 0.6 pm, and as before the optical wavelength was X = 
1.5 pm. We have changed the grating width from zero to 
0.1 pm and, using (30), checked its influence on the in- 
teraction length-once for a grating located on the lower 
slab boundary (solid line), and once for the upper slab 
boundary (dashed line). 

The results are shown in Fig. 7. The dramatic influence 
of creating and increasing the grating height on the inter- 
action length is clearly seen, but it is also shown that most 
of the influence is achieved at a grating depth of no more 

than 0.05 pm; therefore, a deeper grating would not be 
necessary. Another important result is the fact (for this 
example) that the grating has more influence when it is 
located on the lower slab than on the upper one. As in the 
first example, there is a certain delicate geometry where 
the interaction length goes to infinity and the grating has 
no assisting influence. The ability to predict these results 
in a simple, straightforward analysis procedure is the main 
benefit of the suggested theory. 

VI. CONCLUSIONS 
We have presented a formalism by which the parame- 

ters and the influence of longitudinal perturbations, and 
particularly a periodical grating, on any kind of direc- 
tional coupler can be calculated. As in the improved cou- 
pled-mode formalism, the procedure is based on separate 
analysis of each of the waveguides and uses a proper lin- 
ear combination of the results obtained to give approxi- 
mate, yet highly accurate, results for the whole structure. 
This formulation can serve as a design tool for almost any 
geometry, including two-dimensional channels, and it can 
be applied on complex-index and nonisotropic mediums. 
By using this formulation, one can obtain design criteria 
for the grating parameters and location as well as structure 
parameters such as channel-layer dimensions and mate- 
rials composition. Unlike prior formulations, this ap- 
proach is not limited to weakly coupled and strongly un- 
synchronized structures. 

APPENDIX A 
DERIVATION OF THE COUPLED MODE EQUATION 

By using a simple, straightforward derivation, one can 
show that any two electromagnetic fields E ( ' ) ,  H'2) which 
satisfy the Maxwell equations as well as the correspond- 
ing boundary condition for any two related mediums &x, 
y, z) and d2'(x, y, z), respectively, fulfill the relation 

m 

-m 

which is essentially the integral form of the Lorenz reci- 
procity, obtained by applying it to cylindrical geometry 
with an infinitesimal z-change. In the derivation, as well 
as in the rest of this paper, we used the time convention 
exp (-id). 

The derivation of the coupled-mode equation for the 
medium E ( x ,  y, z) is based upon proper selection and sub- 
stitution of the mediums dl)(x, y, z) and d2)(x, y, z), as 
well as the related fields in (Al). For E ( * ) @ ,  y, z), we sub- 
stitute the function that described the structure of wave- 
guide ( p )  itself, namely, 
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(A21 
The related-field will, of course, be a guided mode solu- 
tion of this single waveguide structure, and we choose to 
use a mode which propagates to the negative direction of 
the z axis, namely, 

E (2) (x, y ,  z )  = €(pyx, y ) .  

E(2) = p Z  
P 

= (EiP)- + fE:P)-)e-’  P Z  
P 

= (EJP’ - p z  (A3-1) 
and 

For E(’)@, y, z ) ,  we choose the entire structure ~ ( x ,  y, z ) ,  
that is, 

~(”(x, Y ,  Z)  = ~ ( x ,  y )  + €of@, y )  An2(z> (A41 
and combine linearly the transverse parts of the field so- 
lutions of the separate waveguides d ; ) ( ~ ,  y) to approxi- 
mate the transverse part of the entire structure field solu- 
tion 

N 

Ejl’(x, Y ,  z )  = uq(z)E:!,y) (A5- 1) 
q = l  

N 

Hj”(x, y ,  z) z u,(z)H?)(x, y ) .  (A5-2) 

It can be shown that the z components of the field of 

q =  1 

the entire structure are given by 

N 

H:”(x, y ,  z) = c uq(z) H$’(x, y ) .  
q =  1 

(A5-4) 

By substituting (A2)-(A5) into (Al), one gets 
N N d  9zl C p q ~ a q ( z )  = q =  c 1 i[PpCp9 + Kw + A n 2 ( z ) ~ w l u q ( z )  

(A61 
where p p  are the propagationAconstants of the isolated 
waveguides and Cpq, KqP, and Kqp are defined by (8), (lo), 
and (1  1) .  Noting that (A6) can be written in a matrix form 

(A7) 
d 
dz 

C- U(Z)  = i [BC + K + A n 2 ( ~ ) k T ]  U ( Z ) ,  

where U ( z )  = col [ul(z), u2(z) - * * aN(z)], and the su- 
perscript T denotes the matrix transpose, and using the 
identity [4] 

(A81 
in (A7), one obtains finally the matrix form of the cou- 
pled-mode equation as given by (7). 

BC - CB = K - KT 

APPENDIX B 
A LIMITATION ON THE MAGNITUDE OF THE 

PERTURBATION 
Substituting (17)-(20) into (12) leads to the coupled- 

mode equations 

+ ikbbd(ei(2r/A)Z + e - i ( 2 * / N z  1 B(zh (B1) 

The third term in each of these equations can clearly be 
neglected due to its rapid z oscillations and therefore neg- 
ligible contribution to the power exchange process. Al- 
though it is quite tempting to similarly get rid of the last 
term in each of these two equations, some care must be 
taken. From (18) we see that the first and third exponen- 
tial terms in (Bl) bear the same periodicity; therefore, one 
cannot claim that by integrating the differential equations 
(Bl) the last term makes an oscillatory contribution neg- 
ligible relative to the others. The solution to this problem 
is that a prior assumption that y, z )  is a “small” 
perturbation of the medium was made. This perturbation 
should contribute to energy coupling between the modes 
but should not change their basic properties. The last term 
of (Bl) violates this assumption because it imposes self- 
dependent z variation on each amplitude. Therefore, in 
order to obtain the coupled mode equations form given by 
(21), we demand 

kaad, kbbd << Kab, Kba- (B 2) 

APPENDIX C 
A CRITERION FOR EFFICIENT PERTURBATION 

Let us examine first the set of equations for the case of 
nonperturbed structure, that is, 

d - ~ ( z )  = iKabe-i2AzB(z) 
dz 

d 
- B(z)  = iKhe’2AZA(z). 
dz (C1) 

The solution of this set of equations imposed by the 
boundary condition A(0) = Ao, B ( 0 )  = 0 (waveguide ( U )  

being used as an input port which starts at z < 0) is found 
to be 

Kba B(z)  = Aoi - sin P z  ei& 
P 

where P is defined by 

P 2  = KhKd + A2. 
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By expanding the output power in waveguide (b) in terms 
of the individual waveguide modes, it can be shown [15] 

the power in waveguide (b) and the power in the entrance 

proximation was made by setting the value “1” in the 
second term numerator instead of 

((33) 
dkab 

where c = cab + Cba/2, and the interaction length is as- 
sumed to contain an integer number of grating periods. 
For the case of 6 = 0, this expression becomes 

that the coupling efficiency, defined by the ratio between dk,, + 2C6 

to the system, is given by 

- cabcba Pb (2) 

1 + t 2  q ( z )  = 7 = c&cba + 
A0 

(C 14) 
- sin2 [-(I + t ;2)’ /2z]  ( ~ 4 )  K - CKm t a u  + K M  + c2 &Kbb 

where 4 ,  the coupler asynchronism factor [3], is defined K - CKbb K K 2  s l - c  

where K Kab = &a. As we have shown in Section IV, 
the exact formulation conserves power. Therefore, the ap- 
proximation is valid for the cases in which the last two 
terms of (C14) are negligible compared to 1, and the small 
amount of power gain or loss is strictly due to the pertur- 
bation approach, which leads to the disregarding of the 
asynchronous participants of the power exchange process. 

The maximum efficiency is achieved now at the dis- 

as 

Y a  - Yb A 
(c5) 

The maximum efficiency is obtained at a distance L given 
by 

, g =  
2 a - a ’  

7r 
L =  (c6) 

2 G ( l  + t2)II2 tance 

(C 15) 
and its value is a 

= 2 d m ( l  + r2)1/2 
(C 7) 

1 -k CabCbat2 

1 + t 2  and is given by 
rlmax = 

It is clear that for two identical waveguides, 4 = 0 and 
the maximum efficiency becomes unity. We assume, 
however, that this is not our case, and to improve this 
efficiency, we create the grating perturbation. 

Let us assume now that by imposing the perturbation, 
we indeed increased the coupling efficiency so that the 
whole process is mainly governed by the second term of 
the RHS of (21). In that case, the solution, constrained 
by the same boundan conditions, is given by 

P 
kba B(z )  = Aoid - sin pz eisz. 
P 

We demand 
Be- >> rlmax. 0 7 )  

Thus, by combining (C7), (C16), and (C17), and assum- 
ing cab Cba << 1, we obtain 

When this condition is fulfilled, the assisting grating gov- 
erns the coupling process which is described by the sec- 
ond term in the coupled-mode equations (21). 

Here p is defined by ACKNOWLEDGMENT 
p 2  = d2kabkba + 62.  (c10) The authors would like to thank Dr. B. Crosianani from 

If we again calculated the efficiency as before, we get the University of Rome and Dr. A. Yariv and W. K. Mar- 
shall of the California Institute of Technology for useful 

1 - CabCba discussions. 
V e k )  = cabcba + 

+ [2 

sin2 [dJk,k,,(l + [2)’/2z] (C11) 

where {, the asynchronism factor of the grating-assisted 
structure, is defined as 

a 
A - -  

A 
( C W  

6 {=-=- 
d J k k b ,  d J k k b , ’  

It should be noted that (C 1 1) is slightly approximated 
due to the disregarding of the small contributing terms in 
the complete-form couple mode equations (Bl). The ap- 
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