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25. Vector Potential - Introduction to Antennas & Radiations

Maxwell’s equations are

VX E=—jwuH, (1)
V x H = jweE + J, (2)
V.uH =0, (3)
V. ¢E = p. (4)
Since V - (V x A) = 0, we can let
pH =V x A, (5)

so that equation (3) is automatically satisfied. Substituting (5) into (1), we
have
V x (E+jwA) =0. (6)
Since V x V¢ = 0, we have
E = —jwA — V. (7)

Hence, knowing A and ¢ uniquely determines E and H. We shall relate A
and ¢ to the sources J and p of Maxwell’s equations. Substituting (5) and
(7) into (2), we have

V XV x A = jwpe[—jwA — V| + uJ, (8)
or
VA + w?peA = —puJ + jwpeVo +VV - A. (9)
Using (7) in (4), we have
V- (jwA + V) :—g. (10)

The above could be simplified for the following observation. Equations (5)
and (7) give the same E and H fields under the transformation

A=A+ Vy, (11)
¢ = — jwi. (12)

The above are known as the Gauge Transformation. With the new A’
and ¢', we can substitute into (5) and (7) and they give the same E and H
fields, i.e.

VxA'=VXxA+VxVy=VxA=uH, (13)
—jwA' — V¢ = —jwA — jwVe — Vo + jwVip = E. (14)
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It implies that A and ¢ are not unique. The vector field A is not unique
unless we specify both its curl and its divergence. Hence, in order to make

A unique, we have to specify its divergence. If we specify the divergence of
A such that

V-A=—jwued, (15)

then (9) and (10) become
VZA 4+ w’pe = —pd, (16)
V3¢ 4+ w?ped = —g. (17)

The condition in (15) is also known as the Lorentz gauge. Equations (16)
and (17) represent a set of four inhomogeneous wave equations driven by the
sources of Maxwell’s equations. Hence given the sources p and J, we may
find A and ¢. E and H may in turn be found using (5) and (7). However,
as a consequence of the Lorentz gauge, we need only to find A; ¢ follows
directly from equation (15).

Let us consider the relation due to an elemental current that can be
described by
J =21l6(r) A/m?, (18)

where Il denotes the strength of this current, and §(r) = d(x)d(y)d(z). Equa-
tion (16) becomes
V2A, + w’ueA, = —pulls(r). (19)

Taking advantage of the spherical symmetry of the problem, V? has only r
dependence in spherical coordinates, we have

1d ,d .

where % = w?pe. Equations (19) and (20) are similar in form to Poisson’s
equation with a point charge Q at the origin,

@s). (21)

Vip=-—=
€

We know that (21) has the solution of the form
Q

= . 22
¢ dmer (22)
Hence, we guess that the solution to (20) is of the form
ull
A, =" . 2
= (23)
It can be shown that
1d,d 1 d?
S f(r) = ——5rf(r). (24)

r dr?

r2dr dr
2



Outside the origin, the RHS of (20) is zero, and after using (23) and (24) in

(20), we have
2

%C(r) + B*C(r) = 0. (25)

This gives '
C(r) = e*ifr, (26)

Since we are looking for a solution that radiates energy to infinity, we choose
an outgoing solution in (26). Hence,

pIl s
A, (r)=—e " 27
(r)= b e, (27)
for a source directed at a 2-direction. From (16), we note that A and J
always point in the same direction. Therefore, for a point source directed at
1 and located at r' instead of the origin, the vector potential A is

. ull
C Arm|r — 1|

A(r) e~ IPlr—rl, (28)
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By linear superposition, the vector potential due to an arbitrary source

J is ()
_ K 1 S\T) —iBlr—r|
A= — e . 2
471'/// dr \r—r’|e (29)

Similarly, we can show that

b= 4%6 / / / dr"lf’(_ir;)l‘efﬁi”’i. (30)



