Polarizacão de onda
A polarizacā de compo édefinida como a trajetória trarada pela extremidade de um vetor de campo variante no tempo em um dado ponto de observerao.

- Plano de polarizesão é ortagonal à direséo de propagacas.
- tipos de polarizacao: Linear, circular e elíptica

(0) $\operatorname{lineer~(dir.~y)~}$

(c) elíptica (polariz.a esquerda)

O campo E de una onda linearmente polarizada propagondo em $+z$:

$$
\begin{equation*}
E_{y}=E_{2} \sin (\omega t-\beta z) \tag{1}
\end{equation*}
$$

- estado de polariz. pode ser visto em (a).
(O) caso mais geral $\Rightarrow \bar{E}$ possui E_{x} e E_{y}

No caso mais geral, em um dodo ponto z, - vetar É gira em funcāo do tempo, e sua ponta descreve uma elipse(polariza\& $\overline{\text { a }}$ e elíptica).

A razão da eixo maior para o eixo menor:
Razāo axial $A R=\frac{E_{2}}{E_{1}}$

- A polarizas̃̄ circular é um caso especial da elíptica (ver (b)).

Nesse caso $\quad A R=\frac{E_{2}}{E_{1}}=1$

- Polorizasã linear: $\Rightarrow E_{1}=0$

$$
A R=\frac{E_{2}}{E_{1}}=\infty
$$

No caso mais geral, a elipse tem qualquer orientardo, como mostea a figura.

Representando uma onda elipticamente polarizada em termos de ducas ondas linearmente polarizedas.

$$
\begin{align*}
& E_{x}=E_{1} \sin (\omega t-\beta z) \tag{2}\\
& E_{y}=E_{2} \sin (\omega t-\beta z+\alpha) \tag{3}
\end{align*}
$$

Σ_{1} : amplitude L.P. dir. xe
E_{2} : " L.P. " y
$\delta:$ ângulo pelo qual E_{y} está arancado de E_{x} $\partial=\delta_{x}-d y$
Combinando (2) e (3):

$$
\begin{equation*}
\bar{E}=\hat{x} E_{1} \sin (\omega t-\beta z)+\hat{y} E_{2} \sin (\omega t-\beta z+\delta) \tag{4}
\end{equation*}
$$

(e $z=0$:

$$
\begin{aligned}
& E_{x}=E_{1} \operatorname{sen}(\omega t) \\
& E_{y}=E_{2}(\operatorname{sen}(\omega t+\delta)
\end{aligned}
$$

Expandindo Ey: usando $\operatorname{sen}(a+b)=\operatorname{sen}(a) \cos (b)+\operatorname{sen}(b) \cos (a)$

$$
\begin{equation*}
E_{y}=E_{2}[\operatorname{sen}(\omega t) \cos (\delta)+\cos (\omega t) \operatorname{sen}(\delta)] \tag{5}
\end{equation*}
$$

da relaca p/ Ex,temos:

$$
\operatorname{sen}(\omega t)=\frac{E_{x}}{E_{1}}
$$

Logo: $\quad \cos (\omega t)=\sqrt{1-\left(\frac{E_{x}}{E_{1}}\right)^{2}}$
substituindo essas relecões em (5):

$$
\begin{aligned}
& \frac{E_{y}}{E_{2}}=\frac{E_{x}}{E_{1}} \cos (f)+\cos (\omega t) \sin (d) \\
& \cos (\omega t)=\left[\frac{E_{y}}{E_{2}}-\frac{E_{x}}{E_{1}} \cos (\delta)\right] \frac{1}{\sin (f)} \\
& \sqrt{1-\frac{E_{x}^{2}}{E_{1}^{2}}}=\left[\frac{E_{y}}{E_{2}}-\frac{E_{x}}{E_{1}} \cos (f)\right] \frac{1}{\sin (f)}
\end{aligned}
$$

elevando os dois lados so quadrado:

$$
\begin{gather*}
1-\frac{E_{x}^{2}}{E_{1}^{2}}=\left[\frac{E_{y}^{2}}{E_{2}^{2}}-2 \frac{E_{y} E_{x}}{E_{1} E_{2}} \cos (\delta)+\frac{E_{x}^{2}}{E_{1}^{2}} \cos ^{2}(\delta)\right] \frac{1}{\sin ^{2}(\delta)} \\
\sin ^{2}(\delta)-\sin ^{2}(\delta) \frac{E_{x}^{2}}{E_{1}^{2}}=\frac{E_{y}^{2}}{E_{2}^{2}}-\frac{2 E_{y} E_{x}}{E_{1} E_{2}} \cos (\delta)+\frac{E_{x}^{2}}{E_{1}^{2}} \cos ^{2}(\delta) \\
\sin ^{2}(\delta)=\frac{E_{y}^{2}}{E_{2}^{2}}-\frac{2 E_{y} E_{x}}{E_{1} E_{2}} \cos (\delta)+\frac{E_{x}^{2}}{E_{1}^{2}}\left[\sin ^{2}(\delta)+\cos ^{2}(\delta)\right] \\
\frac{E_{x}^{2}}{E_{1}^{2}}-\frac{2 E_{x} E_{y}}{E_{1} E_{2}} \cos (\delta)+\frac{E_{y}^{2}}{E_{2}^{2}}=\sin ^{2}(\delta) \tag{6}
\end{gather*}
$$

on

$$
\begin{equation*}
a E_{x}^{2}-b E_{x} E_{y}+c E_{y}^{2}=1 \tag{7}
\end{equation*}
$$

onde:

$$
a=\frac{1}{E_{1}^{2} \sin ^{2} \delta} \quad b=\frac{2 \cos (\delta)}{E_{1} E_{2} \sin ^{2}(\delta)} \quad c=\frac{1}{E_{2}^{2} \sin ^{2}(\delta)}
$$

A equasã (7) descreve a elipse de polarizacā0.

O segmento $O A \quad e^{-}$o semieixo maior

Angula de inclinasā: τ
Razão axiol:

$$
A R=\frac{O A}{O B} \quad(1 \leq A R \leq \infty)
$$

Se $E_{1}=0 \Rightarrow$ anda linearmente polorizada dir. y

$$
E_{2}=0 \quad \Rightarrow \quad 1 \quad 1 \quad\|\quad\| \quad x
$$

Se $\delta=0$ e $E_{1}=E_{2} \Rightarrow$ linearmente polarizade com

$$
\tau=45^{\circ}
$$

Se $E_{1}=E_{2}$ e $\delta= \pm 90^{\circ} \Rightarrow$ circularmente polarizadd

$$
\begin{aligned}
& \delta=+90^{\circ} \Rightarrow \text { circ.polariz. à espuerdo } \\
& \delta=-90^{\circ} \Rightarrow 1 " \quad " \quad \text { " direita }
\end{aligned}
$$

Pora $\delta=90^{\circ}$ e $z=0$ e $t=0$, temos de (2) e (3):

$$
\begin{equation*}
\bar{E}=\hat{y} E_{2} \tag{a}
\end{equation*}
$$

um quarto de ciclo depois $\left(\omega t=90^{\circ}\right) \Rightarrow E=\hat{x} E_{1}$ (b)

Orientac \bar{a} instantónea $\rho /$ vetor \bar{E} em dois instantes de tempo β onda polariz. à esquerda.

- angulo de inclinasar è dado por:

$$
\begin{equation*}
\tan (2 \tau)=\frac{2 E_{1} E_{2}}{E_{1}^{2}-E_{2}^{2}} \cos (\delta) \tag{3}
\end{equation*}
$$

Os semi-eixos do elipse $\left(\begin{array}{lll}A & e & B\end{array}\right)$:

$$
\begin{align*}
& A=\sqrt{\frac{1}{2}\left(E_{1}^{2}+E_{2}^{2}\right)+\frac{s}{2} \sqrt{\left(E_{1}^{2}-E_{2}^{2}\right)^{2}+4 E_{1}^{2} E_{2}^{2} \cos ^{2}(\delta)}} \tag{9}\\
& B=\sqrt{\frac{1}{2}\left(E_{1}^{2}+E_{2}^{2}\right)^{2}-\frac{s}{2} \sqrt{\left(E_{1}^{2}-E_{2}^{2}\right)^{2}+4 E_{1}^{2} E_{2}^{2} \cos ^{2}(\delta)}}
\end{align*}
$$

onde:

$$
s=\operatorname{sign}\left(E_{1}-E_{2}\right)
$$

Exemplos: Orfonides, Exemplo 2.5.1
Determine o estado de polarizasão dos seguintes compos: em $z=0$, restaurando $e^{\text {j } \omega t}$
a) $\bar{E}(z)=-3 j \hat{x} e^{-j k z}$

$$
\begin{aligned}
& E_{x}(t)=3 \cos (\omega t-\pi / 2) \quad \delta=\delta_{x}-d_{y} \\
& E_{y}(t)=0
\end{aligned}
$$

Precisomos determinor:
$E_{1}, E_{2}, \delta, A, B, \tau$, sentido de rotoces, tipo poloriz.
Assim:

$$
\begin{aligned}
& E_{1}=3 \quad E_{2}=0 \\
& \delta=-\pi / 2-0
\end{aligned} \Rightarrow d=-90^{\circ}
$$

de (9):

$$
\begin{aligned}
& A=\sqrt{\frac{1}{2}\left(3^{2}+0\right)+\frac{1}{2} \sqrt{\left(3^{2}-0\right)^{2}+4 \cdot 3^{2} \cdot 0 \cdot \cos ^{2}\left(-90^{\circ}\right)}} \quad \text { semi-eix0 } \\
& A=\sqrt{\frac{1}{2} \cdot 9+\frac{1}{2} 9 \quad A=3}
\end{aligned}
$$

de (10):

$$
\begin{aligned}
& B=\sqrt{\frac{1}{2}\left(3^{2}-0\right)-\frac{1}{2} \sqrt{\left(3^{2}-0\right)^{2}+4 \cdot 3^{2} \cdot 0 \cdot \cos ^{2}\left(-90^{\circ}\right)}} \text { semi- eixo } \\
& B=\sqrt{\frac{1}{2} 9-\frac{1}{2} 9} \quad B=0
\end{aligned}
$$

de (B): $\quad \tan (2 \tau)=\frac{2.3 .0}{3^{2}-0^{2}} \cdot \cos \left(-90^{\circ}\right) \Rightarrow \tau=0^{\circ}$
sentido de rotaceso: $+x$
poleriz. : lineor / p/ frente

$$
\begin{aligned}
& \text { b) } \left.\begin{array}{l}
E(z)=(3 \hat{x}+4 \hat{y}) e^{+j k z} \\
E_{x}(t)=3 \cos (\omega t) \quad E_{y}(t)=4 \cos (\omega t) \\
E_{1}=3 \quad E_{2}=4 \quad \delta=0^{\circ} \\
A=\sqrt{\frac{1}{2}(9+16)-\frac{1}{2} \sqrt{(9-16)^{2}+4.7 .16 \cos ^{2}(0)}}
\end{array}\right) .
\end{aligned}
$$

$A=0$ * $*$ a clipie colapso do longo desse semi-cixo

$$
B=\sqrt{\frac{1}{2}(9+16)+\frac{1}{2} \sqrt{(9-16)^{2}+4 \cdot 9 \cdot 16 \cdot \cos ^{2}(0)}}
$$

$B=5$ * $*$ e torna se uma linho reta ao longo des $x^{x^{2}} B$

$$
\tan (2 \tau)=\frac{2 \cdot 3 \cdot 4}{3^{2}-4^{2}} \cos (0) \quad \tau=-36,87^{\circ}
$$

A direcao de foto do campo \bar{E} sero-.

$$
90-36,87=53,13^{\circ}
$$

al $e^{- \text {igual }}$ a angulo de inclinasao atan $\left(E_{2} / E_{1}\right)=$ $\operatorname{atan}(4 / 3)=53,13^{\circ}$
sentido de rotaces:

$$
\int_{53,13^{\circ}}^{\circ}
$$

polariz: $\underset{\sim}{\text { linear / p/ tras }}$
c)

$$
\begin{aligned}
& E(z)=(-4 \hat{x}+3 \hat{y}) e^{-\lambda k z} \\
& E_{x}=4 \cos (\omega t+\pi) \quad E_{y}=3 \cos (\omega t) \\
& E_{1}=4 \quad E_{z}=3 \quad \delta=+\pi
\end{aligned}
$$

$A=5$ linho rela so longo desse semi-cixo
$B=0$ colapso nesse semi-cix 0

$$
\tan (2 \tau)=\frac{2 \cdot 4 \cdot 3}{4^{2}-3^{2}} \cos (\pi)
$$

$\tau=-36,87^{\circ}$ coincide U a inctinacē de \bar{E} polariz.: linear/p/ frente

$$
\begin{array}{rlr}
\text { d) } \begin{aligned}
E(z) & =\left(3 e^{j \pi / 3} \hat{x}+3 \hat{y}\right) e^{t j k z} \\
E_{x}(t) & =3 \cos (\omega t+\pi / 3)
\end{aligned} \quad E_{y}=3 \cos (\omega t) \\
& E_{1}=3 \quad & \delta=\pi / 3
\end{array}
$$

$$
\begin{aligned}
& A=3,674 \\
& \tau=45^{\circ}
\end{aligned}
$$

$$
B=2,121
$$

Sentido: $E_{x}(t)=3 \cos (\omega t+\pi / 3)=0,5 \cos (\omega t)-0,866 \sin (\omega t)$

$$
E_{y}(t)=\cos (\omega t)
$$

Scanned with CamScanner
coms a prop $e^{-} \mathrm{cm}-\hat{z}$
rotacos : eliptica
polarizesà: esquerdo/ e/ tras.

$$
\begin{array}{ll}
\text { e) } E(z)=\left(4 \hat{x}+3 e^{-j \pi / 4} \hat{y}\right) e^{-j k z} \\
E_{x}(t)=4 \cos (\omega t) \quad & E_{y}(t)=3 \cos (\omega t-\pi / 4) \\
E_{1}=4 \quad & E_{2}=3 \\
A=4,656 & B=1,822 \\
\tau=33,792^{\circ} & \\
&
\end{array}
$$

Determinando o sentido:

$$
\begin{aligned}
& E_{x}(t)=4 \cos (\omega t) \\
& E_{y}(t)=3\left[\cos (\omega t) \frac{\sqrt{2}}{2}+\sin (\omega t) \frac{\sqrt{2}}{2}\right] \\
& E_{y}(t)=\frac{3 \sqrt{2}}{2}[\cos (\omega t)+\sin (\omega t)]
\end{aligned}
$$

prop. $+\hat{z}$:
rotaca eliptica
polariz. direita/ p/ frente

$$
\begin{aligned}
& \text { i) } \begin{array}{l}
E(z)=\left(3 e^{-j \pi / 8} \hat{x}+4 e^{j \pi / 8} \hat{y}\right) e^{+j k z} \\
E_{x}(t)=3 \cos (\omega t-\pi / 8) \quad E_{y}(t)=4 \cos (\omega t+\pi / 8) \\
E_{1}=3 \quad \\
E_{2}=4 \quad \\
A=-\pi / 4 \\
A=1.822 \quad B=4.656 \quad
\end{array} \quad \begin{array}{l}
\\
\end{array} \quad \begin{array}{l}
\\
\end{array} \quad \begin{array}{l}
33.79^{\circ}
\end{array}
\end{aligned}
$$

Determ. o sentido:

$$
\begin{aligned}
& E_{x}=3[\cos (\omega t) \cdot 0,924+\sin (\omega t) \cdot 0,383] \\
& E_{y}=4[\cos (\omega t) \cdot 0,924-\sin (\omega t) \cdot 0,383]
\end{aligned}
$$

rotaseo eliptica
polariz.: dircita/pl trás

$$
\begin{array}{ll}
\text { g) } \begin{array}{ll}
E(z)=\left(4 e^{j \pi / 4} \hat{x}+3 e^{-j \pi / 2} \hat{y}\right) e^{-j k z} \\
E_{a}=4 \cos (\omega t+\pi / 4) & E_{y}=3 \cos (\omega t-\pi / 2) \\
E_{1}=4 \quad & E_{2}=3 \quad S=3 \pi / 4
\end{array} \\
A=4,656 \quad B=1,822 \quad \tau=-33,79^{\circ}
\end{array}
$$

sentido:

$$
\begin{aligned}
& E_{x}=4\left[\cos (\omega t) \frac{\sqrt{2}}{2}-\sin (\omega t) \frac{\sqrt{2}}{2}\right]=2 \sqrt{2}[\cos (\omega t)-\sin (\omega t)] \\
& E_{y}=3[\cos (\omega t) \cdot 0+\sin (\omega t) \cdot 1]=3 \cdot[\sin (\omega t)]
\end{aligned}
$$

Eliptico, direita/p/ frente

$$
\begin{array}{ll}
\text { h) } \bar{E}(z)=\left(3 e^{-j \pi / 2} \hat{x}+4 e^{j \pi / 4} \hat{y}\right) e^{t_{j} k z} \\
E_{x}=3 \cos (\omega t-\pi / 2) & E_{y}=4 \cos (\omega t+\pi / 4) \\
E_{1}=3 \quad & E_{2}=4 \quad \delta=-3 \pi / 4 \\
A=1,822 \quad B=4,656 \quad \tau=33,79^{\circ}
\end{array}
$$

sentido:

$$
\begin{aligned}
& E_{x}=3[\cos (\omega t) \cdot 0+\sin (\omega t) \cdot 1]=3 \sin (\omega t) \\
& E_{y}=4[\cos (\omega t) \cdot \sqrt{2} / 2-\sin (\omega t) \sqrt{2} / 2]=2 \sqrt{2}[\cos (\omega t)-\sin (\omega t)]
\end{aligned}
$$

Eliptica, dircita/p/ tra's.

