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4. Using Phasor Techniques to Solve Maxwell's Equations

For a time-harmonic (simple harmonic) signal, Maxwell's Equations can
be easily solved using phasor techniques. For example, if we let

H = <e[~Hej!t]; (1)

E = <e[~Eej!t]; (2)

and substituting into (3.1), we have

<e[r� ~Hej!t] = <e

�
@

@t
�~Eej!t

�
: (3)

We could replace @
@t

by j! since the signal is time harmonic. Furthermore,
we can remove the <e operator and obtain

r� ~Hej!t = j!�~Eej!t; (4)

where ej!t cancels out on both sides.
Equation (4) implies Equation (3). Also, any time dependence cancels out in
the problem. Hence,

r� ~H = j!�~E: (5)

Similarly,
r� ~E = �j!�~H; (6)

r � �~H = 0; (7)

r � �~E = 0: (8)

Taking the curl of (6) and substituting (5) into it, we have

r�r� ~E = �j!�r� ~H = !2��~E: (9)

Again, making use of the identity r�r� ~E = r(r�~E)�r2~E, and r�~E = 0,
we have

r2~E = �!2��~E: (10)

Similarly,
r2 ~H = �!2��~H: (11)

These are the Helmholtz's wave equations.

Lossy Medium (Conductive Medium)
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Phasor technique is particularly appropriate for solving Maxwell's equa-
tions in a lossy medium. In a lossy medium, Equation (3.1) becomes

r�H = �
@E

@t
+ J; (12)

where J is the induced currents in the medium, and hence,

J = �E: (13)

Applying phasor technique to (12), we have

r� ~H = j!�~E+ �~E

= j!
�
�� j

�

!

�
~E: (14)

We can de�ne the quantity

~� = �� j
�

!
(15)

to be the complex permittivity of the medium, and (14) becomes

r� ~H = j!~�~E: (16)

Notice that the only di�erence between (16) and (5) is the complex permit-
tivity versus the real permittivity. If one goes about deriving the Helmholtz
wave equations for a lossy medium, the results are

r2~E = �!2�~�~E; (17)

r2 ~H = �!2�~�~H: (18)

Hence, a lossy medium is easily treated using phasor technique by replacing
a real permittivity with a complex permittivity.

If we restrict ourselves to one dimension, Equation (17), for instance,
becomes of the form

d2

dz2
~Ex(z)� 
2 ~Ex(z) = 0; (19)

where


 = j!
p
�~� = j!

r
�
�
�� j

�

!

�
= �+ j�: (20)

The general solution to (19) is of the form

~Ex(z) = C1e
�
z + C2e

+
z: (21)

In real space time,

Ex(z; t) = <e[ ~Ex(z)e
j!t]

= <e[C1e
�
zej!t] + <e[C2e


zej!t] (23)
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If C1 = jC1j e
j�1 ; C2 = jC2j e

j�2; 
 = �+ j�, then

Ex(z; t) = jC1j cos(!t� �z + �1)e
��z+ j C2 j cos(!t+ �z + �2)e

�z: (24)

Note that one of the solutions in (24) is decaying with z while another solution
is growing with z. The function cos(!t��z+�) can be written as cos[��(z�
!
�
t) + �]. Hence, it moves with a velocity

v =
!

�
: (25)

Depending on its sign, it moves either in the positive or negative z direction.
In the above, 
 is the propagation constant, � is the attenuation constant

while � is the phase constant.

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world.
The phasor representation of Equation (3.23) is

d

dz
~Ex = �j!� ~Hy: (26)

A corresponding one for ~Hy is

d

dz
~Hy = �j!� ~Ex: (27)

If we now let ~Ex = E0e
�
z, ~Hy = H0e

�
z , and using them in (26) yields

�
E0e
�
z = �j!�H0e

�
z: (28)

The above implies that

� =
E0

H0

=
j!�



=

r
�

�
: (29)

For a lossy medium, we replace � by the complex permittivity and the intrinsic
impedance becomes

� =

r
�

~�
=

r
�

�� j �
!

=

s
j!�

� + j!�
: (30)

The above is obviously a complex number.
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