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Optics of Anisotropic Media

18.1 Introduction

In this chapter we discuss wave propagation in anisotropic media. We

shall see that in such media the electric vector of a propagating wave

is not in general parallel to its polarization direction – defined by the

direction of its electric displacement vector. Further, for propagation of

plane waves in a particular direction through an anisotropic medium two

distinct possible polarization directions exist, and waves having these

polarization directions propagate with different velocities. We shall dis-

cuss an ellipsoidal surface called the indicatrix and show how with its

aid the allowed polarization directions and their corresponding refrac-

tive indices can be determined for wave propagation in a given direction.

Other three-dimensional surfaces related to the indicatrix and their use

in describing different optical properties of anisotropic media are also

discussed. We shall concentrate our attention primarily on uniaxial crys-

tals, which have optical properties that can be referred to an indicatrix

with two equal axes, and will discuss how such crystals can be used to

control the polarization characteristics of light.

Important anisotropic optical media are generally crystalline and their

optical properties are closely related to various symmetry properties

possessed by crystals. To assist the reader who is not familiar with

basic ideas of crystal symmetry, Appendix 5 summarizes a number of

aspects of this subject that should be helpful in reading this chapter and

a number of those succeeding it.
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18.2 The Dielectric Tensor

An isotropic media the propagation characteristics of electromagnetic

waves are independent of their propagation direction. This generally

implies that there is no direction within such a medium which is any

different from any other. Clearly then, we can class gases and liquids, but

not liquid crystals, as isotropic media, provided there are no externally

applied fields present. Such a field would, of course, imply the existence

of a unique direction in the medium - that of the field. As an example

of a situation where an isotropic medium becomes anisotropic in an

external field, we mention the case of a gas in a magnetic field, where the

gas changes the polarization characteristics of a wave which propagates

in the field direction. This phenomenon is called the Faraday effect.

In most circumstances, cubic crystals of the highest symmetry, crystal

classes m3m and 432, also behave as isotropic media.

In an isotropic medium the electric displacement vector D and its

associated electric field E are parallel, in other words we write

D = εrεoE (18.1)

where εr is the scalar dielectric constant, which in the general case is a

function of frequency. This is equivalent to saying that the polarization

induced by the field and the field itself are parallel

P = εoχE (18.2)

where χ is the scalar susceptibility. We will restrict ourselves in what

follows to materials that are neither absorbing nor amplifying, so that

both εr and χ are real.

In an anisotropic medium D and E are no longer necessarily parallel

and we write

D =
=
εrεoE (18.3)

where
=
εr is the dielectric tensor, which in matrix form referred to three

arbitrary orthogonal axes is

=
εr≡

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 (18.4)

So for example:

Dx = εo(εxxEx + εxyEy + εxzEz)

Dy = εo(εyxEx + εyyEy + εyzEz)

Dz = εo(εzxEx + εzyEy + εzzEz)

By making the appropriate choice of axes the dielectric tensor can be
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diagonalized. With this choice of axes, called the principal axes of the

material, Eq. (18.5) in matrix form becomesDx

Dy

Dz

 = εo

 εx 0 0
0 εy 0
0 0 εz

Ex
Ey
Ez

 (18.6)

where εx, εy and εz are called the principal dielectric constants.

Alternatively, we can describe the anisotropic character of the medium

with the aid of the susceptibility tensor
=
χ

P = εo
=
χ E (18.7)

where
=
χ has the matrix form when referred to three arbitrary orthogonal

axes

=
χ≡

χxx χxy χxz
χyx χyy χyz
χzx χzy χzz

 (18.8)

and in the principal coordinate system

=
χ≡

χx 0 0
0 χy 0
0 0 χz

 (18.9)

Since D = εoE + P, it is clear that in a principal coordinate system

εx = 1 + χx, etc. (18.10)

We can understand why crystals with less than cubic symmetry have

susceptibilities which depend on the direction of the applied field by

considering the physical relationship between polarization and applied

field. When a field E is applied to a crystal, it displaces both electrons

and nuclei from their equilibrium positions in the lattice and induces a

net dipole movement per unit volume (polarization), which we can write

in the form:

P =
∑
j

Njej∆rj (18.11)

where Nj is the density of species j with charge ej in the crystal and ∆rj
is the displacement of this charged species from its equilibrium position.

We should note that when the applied field is at optical frequencies, only

electrons make any significant contribution to this polarization, partic-

ularly the most loosely bound outer valence electrons of the ions within

the lattice. The ions themselves are too heavy to follow the rapidly oscil-

lating applied field. If the applied electric field has components Ex, Ey
and Ez , then in equilibrium we can write

Ex = −kjx(∆rj)x (18.12)
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and two other similar equations, where kjx is a restoring force constant

appropriate to the x component of the displacement of the charge j from

its equilibrium position; thus

∆rj = (
Ex

kjx
ı̂+

Ey

kjy
̂+

Ez

kjz
k̂) (18.13)

which is a vector parallel to E only if all three force constants are equal.

The equality of these force constants for displacement along three or-

thogonal axes would imply an arrangement with cubic symmetry of the

ions in the lattice about the charged particle being considered.

18.3 Stored Electromagnetic Energy in Anisotropic Media

If we wish the stored energy density in an electromagnetic field to be

the same in an anisotropic medium as it is in an isotropic one then we

require

U =
1

2
(E·D + B·H) (18.14)

which gives

U =
1

2
(
=
εr ε0E·E + B·H) (18.15)

Now, in any medium the net power flow into unit volume is *

∂U

∂t
= −∇·(E×H) = E·∂D

∂t
+ H

∂B

∂t

= εoE·
=
εr

∂E

∂t
+ H·∂B

∂t

(18.16)

where we have assumed that the medium is non-conductive so that j = 0.

Eq. (18.16) gives the rate of change of stored energy within unit volume,

which must also be given by the time derivative of Eq. (18.15)

∂U

∂t
=

1

2
(εo

=
εr

∂

∂t
(E·E) +

∂

∂t
(B·H)) (18.17)

Most optical crystals are not, or are only very slightly, magnetic so we

can assume that B = µoH since µr ' 1. In this case

1

2

∂

∂t
B·H = H·∂B

∂t
(18.18)

so comparing the first term on the R.H.S. of Eq. (18.16) with the first

two terms on the R.H.S. of (18.17)

εoE·
=
εr

∂E

∂t
=

1

2
(εo

=
εr E·∂E

∂t
+ εo

=
εr

∂E

∂t
·E) (18.19)

* See Appendix xxx.
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which implies that

=
εr E·∂E

∂t
=

=
εr

∂E

∂t
·E. (18.20)

Written out in full Eq. (18.20) is

εxxExĖx + εxyEyĖx + εxzEzĖx + εyxExĖy + εyyEyĖy

+εyzEzĖy + εzxExĖz + εzyEyĖz + εzzEzĖz

= εxxĖxEx +ExyĖyEx + εxzĖzEx + εyxĖxEy

+εyyĖyEy + εyzĖzEy + εzxĖxEz + εzyĖyEz + εzzĖzEz (18.20a)

Clearly εxy = εyx; εxz = εzx; etc. so the dielectric tensor only has

6 independent terms. By working in the principal coordinate system,

all the off-diagonal terms of the dielectric tensor become zero, which

greatly simplifies consideration of the wave propagation characteristis of

anisotropic crystals. In this case we can write

Dx = εoεxEx; Dy = εoεyEy; Dz = εoεzEz (18.21)

where we are writing εx = εxx, etc., for simplicity and the electrical

energy density in the crystal becomes

UE =
1

2
E·D =

1

2ε0
(
D2
x

εx
+
D2
y

εy
+
D2
z

εz
) (18.22)

which shows that the electric displacement vectors from a given point

that correspond to a constant stored electrical energy describe an ellip-

soid.

18.4 Propagation of Monochromatic Plane

Waves in Anisotropic Media

Let us assume that a monochromatic plane wave of the form

D = Do exp[i(ωt− k·r)] = Doe
iφ

can propagate through an anisotropic medium. The direction of D spec-

ifies the direction of polarization of this wave. The wave vector k of this

plane wave is normal to the wavefront (the plane where the phase of the

wave is everywhere equal) and has magnitude | k |= ω/c; c is the phase

velocity of the wave, which is related to the velocity of light in vacuo, co,

by the refractive index n experienced by the wave according to c = co/n.

The phase velocity of the wave in a particular wave vector direction in

the crystal can also be written as c = ω/|k|.



590 Optics of Anisotropic Media

We assume that Maxwell’s equations still hold, so that in the absence

of currents or free charges

div D = 0 (18.23)

div B = 0 (18.24)

curl E =
−∂B
∂t

(18.25)

curl H =
∂D

∂t
(18.26)

We stress that because D and E are now related by a tensor operation,

div E is no longer zero.

Taking the curl of both sides of Eq. (18.25)

curl curlE = − ∂

∂t
( curl µoH) = −µo

∂

∂t
(
∂D

∂t
) = −µo

∂2

∂t2
(εo

=
εr E)

(18.27)

and using the vector identity curl curl E = grad (div E)−∇2E gives

∇2E− grad (divE) = εoµo
=
εr

∂2E

∂t2
(18.28)

In the principal coordinate system the x component of Eq. (18.28) is,

for example

∂2Ex

∂x2
+
∂2Ex

∂y2
+
∂2Ex

∂z2
− ∂

∂x
(
∂Ex

∂x
+
∂Ey

∂y
+
∂Ez

∂z
) = εoµoεx

∂2Ex

∂t2
(18.29)

For a plane wave of the form above, again in the principal coordinate

system,

ε0εxEx = Dx = (Do)x exp[i(wt− (kxx+ kyy + kzz))] (18.30)

where kx, ky and kz are the three orthogonal components of the wave

vector and εx depends on the angular frequency ω; with similar equations

for Ey and Ez . Substituting for Ex = Dx/εoεx in Eq. (18.29) gives

Dx

εx
(k2
x + k2

y + k2
z)− kx(

kxDx

εx
+
kyDy

εy
+
kzDz

εz
) = εoµoω

2Dx (18.31)

and two other similar equations. Recognizing that

εoµo =
1

c2o
(18.32)

and

(k2
x + k2

y + k2
z) = | k |2, (18.33)

and writing

εoc
2
o

| k |2 (kxEx + kyEy + kzEz) = P 2 (18.34)
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Eq. (18.31) becomes

Dx =
−kxP 2

c2 − c2x
(18.35)

and similarly

Dy =
−kyP 2

c2 − c2y
(18.36)

Dz =
−kzP 2

c2 − c2z
(18.37)

where cx = co/ε
1/2
x ; cy = co/ε

1/2
y and cz = co/ε

1/2
z are called the principal

phase velocities of the crystal. Now, since div D = −i(kxDx + kyDy +

kzDz) = 0, we have

k2
x

c2 − c2x
+

k2
y

c2 − c2y
+

k2
z

c2 − c2z
= 0. (18.38)

Multiplying both sides of Eq. (18.38) by c2 and rearranging gives

k2
xn

2
x

n2 − n2
x

+
k2
yn

2
y

n2 − n2
y

+
k2
zn

2
z

n2 − n2
z

= 0, (18.39)

where we have put nx = ε
1/2
x , ny = ε

1/2
y , and nz = ε

1/2
z ; nx, ny and nz

are called the principal refractive indices of the crystal. Eq. (18.38) and

Eq. (18.39), which is called Fresnel’s equation, are quadratic in c2 and

n2 respectively. Thus in general there are two possible solutions c1, c2
and n1, n2, respectively, for the phase velocity and refractive index of a

monochromatic wave propagating through an anisotropic medium with

wave vector k. However, when k lies in certain specific directions both

roots of Eqs. (18.38) and (18.39) become equal. These special directions

within the crystal are called optic axes. The fact that, for example,

(n2
1)

1/2 has two roots +n1 and −n1 merely corresponds to each solution

of Eq. (18.39) allowing a wave to propagate in a given direction either

with wave vector k or −k.

18.5 The Two Possible Directions of D for

a Given Wave Vector are Orthogonal

We can show that the two solutions of Eq. (18.38) and (18.39) correspond

to two different possible linear polarizations of a wave propagating with

wave vector k and that these two solutions have mutually othogonal

polarization. Let us first illustrate this by considering some special cases.

If we send a monochromatic wave into an anisotropic crystal travelling
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in the z direction, but linearly polarized in the x direction, then from

Maxwell’s Eqs. (18.25) and (18.26)

∂Ex

∂z
= −µrµo

∂Hy

∂t
(18.40)

∂Hy

∂z
= −εxεo

∂Ex

∂t
(18.41)

where we have taken the axes x, y, and z to correspond to the principal

coordinate system of the crystal. Taking the z derivative of Eq. (18.40)

and substituting for ∂Hy/∂z from (18.41) gives

∂2Ex

∂z2
= µrµoεxεo

∂2Ex

∂t2
(18.42)

which is a one-dimensional wave equation with a solution of the form

Ex = (Eo)xe
i(ωt−kxz) (18.43)

where kx = ω(µrµoεxεo)
1/2

Thus the wave propagates along the z axis with a phase velocity c1 =

co/nx, where n2
x = εx.

If we repeat this derivation, but for a wave propagating in the z di-

rection and polarized in the y direction we find that the wave now prop-

agates with a phase velocity cz = co/ny where n2
y = εy. This illustrates,

that, at least in this special case, a wave propagating in the z direction

of the principal coordinate system has two possible orthogonal allowed

linear polarizations, Ex and Ey, that travel with respective phase veloc-

ities c1 = co/nx and c2 = co/ny. It is straightforward to show that for

propagation in the x direction there are two possible orthogonal linear

polarizations Ey and Ez with corresponding phase velocities co/ny and

co/nz with similar behavior for a wave propagating in the y direction.

Clearly, in these special cases where a wave propagates along one prin-

cipal axis, and is polarized along a second, both D and E are parallel

and the two possible orientations of D for a given wave vector are or-

thogonal. However, for propagation in an arbitrary direction D and E

are no longer parallel. To find the angular relationship between the two

directions of D which are allowed for a particular wave vector we use

Eqs. (18.35), (18.36) and (18.37). If we designate quantities which refer

to the two solutions by the subscripts 1 and 2, then

Dj1 =
−kjP 2

1

c21 − c2j

Dj2 =
−kjP 2

2

c22 − c2j

j = x, y, z (18.44)



Angular Relationships between D, E, H, k 593

and

D1·D2 =
∑

j=x,y,z

k2
jP

2
1P

2
2

(c21 − c2j)(c22 − c2j )

=
P 2

1P
2
2

(c22 − c21)
∑

j=x,y,z

k2
j

(c21 − c2j)
−

k2
j

(c22 − c2j)

(18.45)

which is zero by virtue of Eq. (18.38). Thus the two possible directions

of D for a given wave vector are orthogonal.

18.6 Angular Relationships between D, E,

H, k and the Poynting vector S

The electric displacement vector D and wave vector k are, by definition

and by virtue of Eq. (18.23), mutually perpendicular. Further, since

the values of D, E and H are constant over the phase front of a plane

wave, the phase factor φ must be the same for all these three vectors.

We can show that this is so provided certain angular relationships exist

between them. For D, E and H with a phase dependence of the form

exp i(ωt− k·r) we can replace the operation ∂/∂t by multiplication by

iω and the operation ∂/∂x by multiplication by −ikx. So for example

∂D

∂t
= iωD (18.46)

curl E = i(E× k), (18.47)

which can be verified by writing out both sides in cartesian coordinates,

and

div E = −i(E·k) (18.48)

with similar relations for curl H, etc.

Thus from Eqs. (18.47) and (18.25)

E× k = ωµµ0H, (18.49)

and similarly

H× k = ωD. (18.50)

Thus, H is normal to both D, E and k, and the latter three are coplanar.

D and E make an angle α with one another where

α = arc cos(
E·D
| E || D | ) = arc cos(

εo(
=
εr E)·E
| E || D | ) (18.51)

These angular relationships are illustrated in Fig. (18.1). The direction

of the Poynting vector S = E×H is, by definition, perpendicular to
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Fig. 18.1.

both E and H. S defines the direction of energy flow within the medium

and we identify it as the direction of the ray of familiar geometric optics.

Whereas in isotropic media the ray is always parallel to the wave vector,

and is therefore perpendicular to the wavefront, this is no longer so

in anisotropic media, except for propagation along one of the principal

axes.

To summarize, we have shown that transverse electromagnetic plane

waves can propagate through anisotropic media, but for propagation in

a general direction two distinct allowed linear polarizations specified by

the direction of D can exist for the wave. We have shown that these two

allowed polarizations are orthogonal and that the wave propagates with

a phase velocity (the velocity of the surface of constant phase - the wave-

front) which depends on which of these two polarizations it has. Clearly,

a wave of arbitrary polarization which enters such an anisotropic medium

will not in general correspond to one of the allowed polarizations, and

will therefore be resolved into two linearly polarized components polar-

ized along the allowed directions. Each component propagates with a

different phase velocity. All that remains for us to do to fully character-

ize these allowed polarization directions, is to specify their orientation

with respect to the principal axes of the medium. This is done with the

aid of a geometric figure called the index ellipsoid or indicatrix.

18.7 The Indicatrix

The indicatrix, wave-normal, or index ellipsoid is an ellipsoid with the

equation

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1, (18.52)
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which allows us to determine the refractive index for monochromatic

plane waves as a function of their direction of polarization. It is, apart

from a scale factor, equivalent to the surface mapped out by the D vec-

tors corresponding to a constant energy density at a given frequency.

This ellipsoid can be visualized as oriented inside a crystal consistent

with the symmetry axes of the crystal. For example, in any crystal

with perpendicular symmetry axes, such as those belonging to the cu-

bic, tetragonal, hexagonal, trigonal or orthorhombic crystal systems, the

axes of the ellipsoid, which are the principal axes of the crystal, are par-

allel to the three axes of symmetry of the crystal. For the orientation of

the indicatrix to be consistent with the symmetry of the crystal, planes of

mirror symmetry within the crystal must coincide with planes of symme-

try of the indicatrix: namely the xy, yz and zx planes. In the monoclinic

system, crystal symmetry is referred to three axes, two of which, the a

and c axes of crystallographic terminology, intersect at acute and obtuse

angles and a third, the b axis, is perpendicular to the a and c axes. In

such crystals, one of the axes of the indicatrix must coincide with the b

axis, but the other two axes have any orientation, although this is fixed

for a given crystal and wavelength. In triclinic crystals whose symmetry

is referred to three unequal length, non-orthogonal axes, the indicatrix

can take any orientation, although this is fixed for a given crystal and

wavelength.

We use the geometrical properties of the indicatrix to determine the re-

fractive indices and polarizations of the two monochromatic plane waves

which can propagate through the crystal with a given wave vector. This

is illustrated in Fig. (18.2), which shows the direction of the wavevector

k for a monochromatic wave propagating through a crystal, drawn rela-

tive to the orientation of the indicatrix in the crystal. The plane surface

that is orthogonal to the wavevector, and that passes through the center

of the indicatrix, intersects this ellipsoid in an ellipse called the intersec-

tion ellipse. The semi-axes of this ellipse define the directions of the two

allowed D polarizations which can propagate through the crystal with

the given wave vector k, and the lengths of these semi-axes give the

refractive indices experienced by these two polarizations. That this in-

terpretation is consistent follows for a number of reasons. For a wave of

given intensity propagating through the crystal, the stored energy den-

sity must be independent of polarization direction otherwise we could

either absorb or extract energy from the wave merely by rotating the

crystal. This cannot be so as we have already specified that the crystal is

transparent. Consequently, for a given wave vector the many possible D
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Fig. 18.2.

polarizations trace out an ellipse, equivalent to the intersection ellipse.

Further, it can be shown that the lengths of the semiaxes of the intersec-
tion ellipse corresponding to a given wavevector k = kx ı̂+ ky ̂+ kzk̂ are

the two roots n1 and n2 of Fresnel’s Eq. (18.39). Thus, only the two D

vectors parallel to these semiaxes simultaneously satisfy the condition of

both being on the ellipse and having the appropriate refractive indices

to satisfy Fresnel’s equations.

In the general case there are two k vector directions through the center

of the indicatrix for which the intersection ellipse is a circle. This is a

fundamental geometric property of ellipsoids. These two directions are

called the principal optic axes and are fixed for a given crystal and

frequency of light. Waves can propagate along these optic axes with any

arbitrary polarization, as in these directions the refractive index is not

a function of polarization.

In cubic crystals the indicatrix is a sphere called the isotropic indica-

trix, there are no specific optic axes as the indicatrix is anaxial and the

propagation of waves is independent of both the directions of k and D.

In crystals belonging to the tetragonal, hexagonal and trigonal crystal

systems the crystal symmetry requires that nx = ny and the indicatrix

reduces to an ellipsoid of revolution. In this case there is only one optic

axis, oriented along the axis of highest symmetry of the crystal, the z

axis (or c axis). These crystals classes, listed in Table (18.1), are said to

be uniaxial: a discussion of their properties is considerably simpler than

for crystals belonging to the less symmetric orthohombic, monoclinic

and triclinic crystal systems, which are biaxial.

18.8 Uniaxial Crystals
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Table 18.1 Uniaxial Crystal Classes

Hexagonal Trigonal Tetragonal

62m 3m 42m
6mm 32 4mm
622 3 422
6 4
6 4

Fig. 18.3.

The equation of the uniaxial indicatrix is

x2 + y2

n2
o

+
z2

n2
e

= 1 (18.53)

where no is the index of refraction experienced by waves polarized per-

pendicular to the optic axis, called ordinary or O - waves; ne is the index

of refraction experienced by waves polarized parallel to the optic axis,

called extraordinary or E - waves. If ne > no the indicatrix is a prolate

ellipsoid of revolution as shown in Fig. (18.3) and such a crystal is said

to be positive uniaxial.

If ne < no the indicatrix is an oblate ellipsoid of revolution as shown

in Fig. (18.3) and the crystal is said to be negative uniaxial. Fig. (18.4)

shows the orientation of this ellipsoid inside a negative uniaxial crystal

of calcite.

Because uniaxial crystals have indicatrices which are circularly sym-

metric about the z (optic) axis, their optical properties depend only on

the polar angle θ that the wave vector k makes with the optic axis and

not on the azimuthal orientation of k relative to the x and y axes. Thus,

we can illustrate all their optical characteristics by considering propaga-
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Fig. 18.4.

Fig. 18.5.

tion in any plane containing the optic axis, as shown in Fig. (18.5). For

propagation with the wave vector in the direction ON, the two allowed

polarizations are as indicated: perpendicular to the optic axis, and in the

plane containing ON and the optic axis OZ. OQ is the major semi-axis

of the intersection ellipse in this case. The length OQ gives the refrac-

tive index for waves polarized parallel to OQ (E - waves). The refractive

index of the O - wave is given by the minor semi-axis of the intersection

ellipse, which in a uniaxial crystal is independent of direction and is

equal to the length OR. In Fig. (18.5) the O - wave with wave vector in

the direction ON propagates with phase velocity co/no = co/1.5, while

the E - wave propagates with phase velocity co/OQ = co/1.68. Thus, in

this positive crystal the O - wave travels faster than the E - wave.

In a uniaxial crystal the O - waves have no component of D along the

z axis, thus from Eq. (18.6)

Dx = εoεxEx (18.54)

Dy = εoεyEy (18.55).
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In uniaxial crystals, since εx = εy,D and E are parallel for the O - wave

and the O - ray is parallel to the O - wave vector. However, the ray

and wave vector of the E - wave are not parallel, except for propagation

along, or perpendicular to, the optic axis. We can find the direction

of the E - ray by a simple geometric construction shown in Fig. (18.5).

The wavevector is in the direction ON, and TQ is the major axis of the

intersection ellipse. The tangent to the ellipse at the point T is parallel

to the ray direction OP. Note that the tangent to the ellipse at point P

is orthogonal to the wave vector. The wave index of refraction of the

extraordinary wave with wave vector k is given by the length OT. The

length TM gives the ray index of refraction which is a measure of the

velocity with which energy flows along the ray OP.

Light propagating along the ray OP as an E - wave is not polarized

perpendicular to the ray direction, however, the E vector of this wave

is perpendicular to the ray, parallel to the direction MT in Fig. (18.5).

Since light propagating along the ray OP with wave vector k travels a

distance OP in the time the wave front (which is parallel to the direction

PN) travels a distance ON, it is clear that the velocity of light along the

ray is greater than the wave-normal velocity (the phase velocity). If the

wave vector is in the direction OR in Fig. (18.5) then both wave-normal

and ray are parallel for the E and O - waves. As indicated by the dots,

the O - wave propagates more quickly in this positive crystal.

18.9 Index Surfaces

The refractive index ne(θ) of an E-wave propagating at angle θ to

the optic axis in a uniaxial crystal can be calculated with reference to

Fig. (18.6). For this wave the value of ne(θ) is given by the length OX in

the figure, the major semi-axis of the intersection ellipse. The caretesian

coordinates of the point X relative to the origin O are

x = −ne(θ) cos θ

z = ne(θ) sin θ

y = 0

(18.56)

This point lies on the indicatrix so

n2
e(θ) cos2(θ)

n2
o

+
n2
e(θ) sin2 θ

n2
e

= 1 (18.57)
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Fig. 18.6.

which gives

ne(θ) =
none

(n2
e cos2 θ + n2

o sin2 θ)1/2
(18.58)

We can use this relationship to specify a surface called the extraordi-

nary index surface, which shows geometrically the index of refraction of

extraordinary waves in a uniaxial crystal as a function of their direction

of propagation. The cartesian coordinates on this surface must satisfy

n2
e(θ) = x2 + y2 + z2 (18.59)

and also

sin2 θ =
x2 + y2

x2 + y2 + z2
(18.60)

cos2 θ =
z2

x2 + y2 + z2
(18.61)

Substituting from Eqs. (18.59), (18.60) and (18.61) in Eq. (18.58) gives

x2 + y2

n2
e

+
z2

n2
o

= 1. (18.62)

We might have expected this, since for an E-wave propagating perpen-

dicular to the optic axis z = 0 and (x2 + y2)1/2 = ne(θ) = ne. For an

E-wave propagating along the z axis (which in this case is actually also

an O-wave) x2 + y2 = 0 and z = ne(θ) = n0.

The index surface for O-waves is, of course, a sphere since the index

of refractive of such waves is independent of their propagation direction.

The equation of this surface is

x2 + y2 + z2 = n2
o (18.63)

Sections of the ordinary and extraordinary index surfaces for both posi-

tive and negative uniaxial crystals which contain the optic axis are shown

in Fig. (18.7). Such sections are called principal sections.
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Fig. 18.7.

18.10 Other Surfaces Related to the Uniaxial Indicatrix

There are several other surfaces related to the uniaxial indicatrix whose

geometrical properties describe various aspects of the propagation char-

acteristics of uniaxial crystals.

The wave-velocity surface describes the velocity of waves in their direc-

tion of propagation, this surface is, like the index surface, a two-shelled

surface. The wave-velocity surface for the O-waves is clearly

n2
o(x

2 + y2 + z2) = c2o (18.64)

while for the E-waves

n2
e(θ)(x

2 + y2 + z2) = c2o (18.65)

which since sin θ = x2+y2

x2+y2+z2 ; cos2 θ = z2

x2+y2+z2 , from Eq. (18.58)
gives

x2 + y2

n2
e

+
z2

n2
o

=
(x2 + y2 + z2)2

c2o
(18.66)

This surface is not an ellipsoid but an ovaloid of revolution.

The ray-velocity surface describes the velocity of rays in their direction

of propagation, which for E-rays is, as we have mentioned already, not

the same as the direction of their wave vectors except for propagation

along a principal axis. Along the x and y principal axes the extraor-

dinary ray and wave velocities are both co/ne, while along the z axis

they both have the value co/no. It is left as an exercise to the reader to

show that the ray velocity surface for extraordinary rays is an ellipsoid

of revolution with semi-axes co/ne and co/ne satisfying the equation

x2 + y2

1/n2
e

+
z2

1/n2
o

= c2o (18.67)
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Fig. 18.8.

The ray-velocity surface for O-rays is clearly a sphere with equation

x2 + y2 + z2 =
c2o
n2
o

(18.68)

Fig. (18.8) shows principal sections of ray-velocity surfaces in both pos-

itive and negative crystals.

18.11 Huygenian Constructions

When a linearly polarized wave of arbitrary polarization direction enters

an anisotropic medium, it will be resolved into two components polarized

along the two allowed polarization directions determined by the direction

of the wave vector relative to the axes of the indicatrix. In a uniaxial

crystal these two components propagate as O and E-waves respectively.

At the entry surface of the anisotropic medium refraction of these waves,

and of their corresponding rays, occurs. For normal incidence at the

boundary of the anisotropic medium no refraction of either the O- or

E-wave vectors occurs so that within the medium the wave vectors of

both O and E waves remain parallel. However, except for propagation

along a principal axis, the E-ray deviates from the common direction of

the O and E-wave vectors and the O-ray. Thus at the exit surface of the

medium, where refraction renders and O and E-rays parallel once again,

the E-ray will have been laterally displaced from the O-ray. In simple

terms we can say that the E-ray is not refracted at the surface of the

medium according to Snell’s law. For other than normal incidence the

O- and E- wave vectors refract separately according to Snell’s law. For

the O-wave calculation of the wave vector direction inside the medium is
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straightforward. For angle of incidence θi the angle of refraction obeys

sin θi = no sin θr

However, for the E-wave the refraction of the wave vector obeys

sin θi = ne(θ) sin θr

where θ is the angle that the refracted wave vector makes with the

optic axis. To illustrate these geometric optical properties of anisotropic

media it is instructive to use Huygenian constructions using the ray-

velocity surfaces for the O and E-rays. In Huygenian constructions we

treat each point on the entrance boundary of the anisotropic media

as a secondary emitter of electromagnetic waves. In a given time the

distance travelled by all the O or E-rays leaving this point as a function of

direction traces out the appropriate ray velocity surface. The geometric

paths of the O and E-rays are perpendicular to the envelope of the

ray velocity surfaces which arise from these secondary emitters. To

illustrate this, consider first the simple case shown in Fig. (18.9) where

light enters a negative uniaxial crystal normally travelling along the

optic axis. Secondary emitters at A and B give rise to the ray velocity

surfaces shown and contribute to the envelope PP ′ which in this case

is both the wavefront and the ray front (the surface normal to the ray

direction). Fig. (18.10) illustrates the situation that results when light

is incident normally on a positive uniaxial crystal travelling in a plane

perpendicular to the optic axis. In this case, the ray-velocity surfaces

which arise from secondary emitters at A and B define two envelopes, the

surfaces OO′ and EE′ which are respectively the ordinary wave and ray-

front and the extraordinary wave and ray-front. The O-ray travels faster

than the E-ray as indicated by the dots and arrows. In both Figs. (18.9)

and (18.10) the wave-vector and ray, which are perpendicular to their

respective fronts, remain parallel. When the incident radiation does not

travel along a principal axis in the crystal the O and E rays are no longer

coincident, as shown in Fig. (18.11), which shows light travelling at an

angle to the optic axis striking a planar uniaxial crystal slab cut normal

to the optic axis. In this case the utility of the ray-velocity surface in

determining the ray directions within the crystal is clearly apparent.

The incident wavefronts are parallel to PP ′; by the time the wavefront

reaches point A the secondary emitter at B has given rise to the O and

E ray-velocity surfaces shown. The O and E ray-fronts are the tangents

from A to the respective ray-velocity surfaces. The ray directions are

perpendicular to these ray fronts. Once again, in this positive crystal the

O-ray travels more quickly than the E-ray. On leaving the crystal the O
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Fig. 18.9.

Fig. 18.10.

and E-rays become parallel to each other once more but the E-ray has

been laterally displaced. This phenomenon is called double refraction. If

the input to the crystal were a narrow laser beam, linearly polarized at

some angle between the two allowed polarization directions within the

crystal, it would be resolved into an O and an E-ray and emerge from

the crystal as two separate orthogonally polarized beams.

Further examples of double refraction are shown in Figs. (18.12) and

(18.13) with the paths of the O and E-rays determined by Huygenian

constructions. Fig. (18.13) shows that, even in normal incidence, if the

input wave vector is not along a principal axis the E-ray is displaced

laterally from the O-ray. The refraction of the O-ray in every case fol-

lows the familiar refraction laws of geometric optics, with the angles of

incidence θi and refraction θr at the crystal boundary obeying Snell’s

law:
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Fig. 18.11.

Fig. 18.12.

Fig. 18.13.

no =
sin θi
sin θr

(18.69)

The path of the E-ray is controlled by the anisotropic character of the
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Fig. 18.14.

medium and must be determined from a non-spherical ray-velocity sur-

face.

The separation of the O and E-rays within an anisotropic medium is

the basic phenomenon operative in the various polarizing devices used

for controlling the direction of polarization of light beams, particularly

laser beams. The construction, and mode of operation of some common

types of laser polarizer are illustrated in Fig. (18.14).

18.12 Retardation

Unless a light beam is travelling in the direction of a principal axis, and

is polarized parallel to a principal axis, when it is incident normally on

a planar uniaxial crystal slab, it will be resolved within this material

into O and E waves. If the direction of the wave vector is at angle θ to

the optic axis then the wave velocities of these waves will be co/no and

co/ne(θ), respectively. In a positive crystal the O-wave will travel faster

than the E-wave and in a negative crystal vice-versa.

The wave vector of the ordinary wave is

| ko |= ko =
ωno

co
=

2πno
λo

(18.70)

and of the extraordinary wave

| ke |= ke =
ωne(θ)

co
=

2πne(θ)

λo
(18.71)

where ω and λo are the angular frequency and wavelength in vacuo,

respectively, of the incident wave.

On passing through a crystal of thickness L the phase changes for the
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O and E-waves, respectively, are

φo = koL =
2πnoL

λo
(18.72)

φe = keL =
2πne(θ)L

λo
(18.73)

The phase difference (retardation) introduced by the crystal is

∆φ = φe − φo =
2πL

λo
(ne(θ) − no) (18.74)

For an incident wave of the form

D = A cos(ωt− kr) (18.75)

linearly polarized at an angle β to the ordinary polarization direction,

The ordinary and extraordinary waves will be

Do = A cosβ cos(ωt− kor) (18.76)

De = A sinβ cos(ωt− ker) (18.77)

and at the exit face of the crystal

Do = A cosβ cos(ωt− φo) (18.78)

De = A sinβ cos(ωt− φe) (18.79)

If the input to the crystal is a narrow beam of light, these two orthogo-

nally polarized output beams will in general be displaced laterally from

one another and will not recombine to form a single output beam. How-

ever, if the input to the crystal is a plane wave, or a narrow beam travel-

ling perpendicular to the optic axis, these two electric vectors recombine

to form a resultant single displacement vector with magnitude

Dout = (D2
o +D2

e)
1/2 (18.80)

which makes an angle α with the ordinary polarization direction, where

tanα =
De

Do
= tanβ

cos(ωt− φe)
cos(ωt− φo)

(18.81)

as illustrated in Fig. (18.15).

In the simplest case where φe − φo = 2nπ, with n being any positive

or negative integer or zero, tanα = tanβ and the output wave is linearly

polarized in the same direction as the input.

If φe − φo = (2n+ 1)π, then tanα = − tanβ; α = −β and the output

wave is linearly polarized but rotated by 2β from its original polarization

direction. This rotation occurs through a rotation by angle β towards

the O-polarization direction followed by a further rotation through angle
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Fig. 18.15.

β *. Since a retardation φ = (2n+ 1)π is equivalent to a path difference

of (2n + 1)λ/2 a crystal which rotates the plane of linear polarization

by 2β is called a ((2n + 1)th order) half-wave (retardation) plate. It

is most usual to cut such a crystal so its faces are parallel to the optic

axis and to polarize the input at 45◦ to the optic axis, in which case the

output is linearly polarized and rotated 90◦ from the input. When the

input is polarized in this manner and φ = φe − φo = (2n + 1)π/2 then

tanα = ± tan(ωt− φo).
For n even tanα = ωt− φo.
For n odd tanα = −(ωt− φo).
In both these cases the resultant displacement vector has magnitude,

from Eqs. (18.78), (18.79) and (18.80), with β = 45◦

Dout =
A√
2
[cos2(ωt+ φo) + cos2(ωt− φo − φ)]

=
A√
2

(18.82)

so the output displacement vector has a constant magnitude but ro-

tates about the direction of propagation with constant angular velocity

ω. This is circularly polarized light. If the electric vector rotates in a

clockwise direction when viewed in the direction of propagation, as when

n is odd above, the light is said to be left-hand circularly polarized, as

illustrated in Fig. (18.16). When the electric vector rotates counter-

clockwise the light is right-hand circularly polarized. A crystal which

introduces a retardation φ of (2n+ 1)π/2 is called a quarter-wave plate

(strictly a (2n+ 1)th order quarter-wave plate).

* For this reason a waveplate alone cannot be used to make an optical isolator as
can a Faraday rotator.
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Fig. 18.16.

In the general case when φ is not an integral number of half-

wavelengths, or if the input to a quarter-wave plate is not polarized at

45◦ to the optic axis, the resultant output will be elliptically polarized,

as illustrated also in Fig. (18.16). In this case the displacement vector,

and the electric vector, trace out an ellipse as they rotate in time as the

wave propagates. To prove this we rewrite Eqs (18.78) and (18.79) as

Do = p = a cos z (18.83)

De = q = b cos(z − φ) = b cos zφ+ b sin z sinφ (18.84)

where a = A cosβ; b = A sinβ and z = (ωt− φo).
From Eq. (18.84)

q2

b2
− 2q

b
cos z cosφ+ cos2 z cos2 φ = sin2 z sin2 φ (18.85)

and substituting from (18.83)

q2

b2
− 2pq

ab
cosφ+

p2

a2
cos2 φ = (1− p2

a2
) sin2 φ (18.86)

giving finally

p2

a2
+
q2

b2
− 2pq

ab
cosφ− sin2 φ = 0. (18.87)

This is the equation of an ellipse, one axis of which makes an angle ψ

with the O-polarization direction, where

tan 2ψ =
2ab cosφ

a2 − b2 (18.88)

This ellipse has its axes coincident with the O and E vibration directions

if ψ = (2n + 1)π/2. Thus, a quarter wave plate produces elliptically

polarized light if the incident light is not polarized exactly half-way

between the O and E allowed polarization directions.

A first-order quarter - wave plate is very thin, as can be seen from
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Eq. (18.74), its thickness L is

L =
λo

4(ne − no)
(18.89)

For calcite (Iceland spar), a mineral form of calcium carbonate that is

commonly used to make polarizing optics no = 1.658, ne = 1.486. so for

a wavelength of 500 nm the thickness of a first-order quarter-wave plate

is only 726.7nm ∼ 0.0007 mm. It is not practical to cut a crystalline

slab so thin as this, except for a birefringent material such as mica

which cleaves readily into very thin slices. (2n + 1)th-order quarter-

wave plates can be of practical thickness for large values of n but suffer

severely from the effects of termperature: the plate only has to expand

or contract very slightly and it will cease to be a quarter-wave plate at

the wavelength for which it was designed. To overcome this drawback,

temperature compensated plates can be made. These consist of one

(2n + 1) th-order quarter-wave plate stacked on top of a plate which

produces a retardation of nπ but whose optic axis is perpendicular to

the optic axis (E-wave polarization direction) of the quarter-wave plate.

The total retardation of the combination is

φ = φ1 − φ2 = (2n+ 1)π/2− nπ = π/2 (18.95)

so it is equivalent to a first-order quarter-wave plate but is not sensitive

to temperature changes.

18.13 Biaxial Crystals

The optical properties of biaxial crystals can be related to an ellipsoid

with three unequal axes, the biaxial indicatrix, whose equation is

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1 (18.96)

where nx, ny and nz are the three principal refractive indices of the

material. It is the normal convention to label the axes so that nx < ny <

nz. When this is done the two optic axes, those directions through the

crystal along which the direction of propagation of waves is independent

of their polarization direction, lie in the xz plane. If the two optic axes

are closer to the z axis then the x axis the crystal is said to be positive,

otherwise it is negative. Some of the important features of positive

and negative biaxial indicatrices are illustrated in Fig. (18.17). The

acute angle between the two optic axes is labelled 2V - the optic angle.

Whichever axis bisects this acute angle is called the acute bisectrix, this
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Fig. 18.17.

is the z axis in positive crystals, the x axis in negative crystals. The

other axis in each case is called the obtuse bisectrix.

The angle between one of the optic axes and the z axis is Vz and is

given by the expression

Vz = tan−1

( 1
n2
x
− 1

n2
y

1
n2
y
− 1

n2
z

)1/2

(18.97)

which is an angle < 45◦ in a positive crystal.

Because of the lack of rotational symmetry of the biaxial indicatrix,

the optical properties of biaxial crystals are more complicated than for

uniaxial ones. For wave propagation along the three principal axes wave-

normals and rays of both of the two allowed polarization directions are

parallel. For propagation in a symmetry plane of the biaxial indicatrix,

as shown in Fig. (18.18), the two allowed polarization directions are per-

pendicular to, and in, the plane of symmetry. The component polarized

perpendicular to the symmetry plane has its polarization direction par-

allel to a principal axis and therefore has its E direction parallel to D.

Thus, for this polarization the wave-normal direction ON and the ray

OS1 are parallel. Both the wave and ray refractive indices for this po-

larization have the value ny. The ray direction for the wave polarized in

the symmetry plane is the direction OS, which is found by a construction

similar to the one described for finding the direction of the E - ray in a

uniaxial crystal. The wave refractive index for this polarization is given

by the length OT and its ray refractive index by the length OM; OM is

less than OT as the ray travels further than the wave in the same period

of time. There are two directions for which OM = ny in Fig. (18.18).

These are ray directions for which the ray velocity is the same for both

polarization directions; of course the wave vectors of these two waves are
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Fig. 18.18.

Fig. 18.19.

not co-linear with their rays. These directions of equal ray velocity are

called the secondary optic axes and are generally within two degrees of

the primary optic axes, which are directions of equal wave-velocity. For

propagation in an arbitrary direction not lying in a symmetry plane,

both allowed polarization directions have rays which are not parallel

to their wave normals. This is illustrated in Fig. (18.19) which shows

the two ray directions OS1, OS2 which correspond to the two allowed

polarization directions OP1, OP2 of a wave propagating in the general

direction ON.

The surfaces which are related to the indicatrix of a biaxial crystal are

more complicated than for uniaxial crystals, although for propagation in

symmetry planes of the indicatrix they are somewhat like, but not quite

the same, as sections of uniaxial surfaces. Fig. (18.20) illustrates the

ray-velocity surface of a biaxial crystal. This is a two-shelled surface,

one shell for each polarization direction corresponding to a given ray
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Fig. 18.20.

Fig. 18.21.

direction. The four dimples where one shell cuts through the other (two

are visible in Fig. (18.20)) are the directions of the secondary optic axes.

18.14 Intensity Transmission Through

Polarizer/Waveplate/Polarizer Combinations

A wave is passed through a linear polarizer (P) whose preferred direction

is at angle β to the O-direction of a succeeding waveplate W, as shown

in Fig. (18.21), and is then transmitted through a second linear polarizer

(A) whose preferred axis makes an angle ψ with the O-direction of the

waveplate. The second polarizer, generally called the analyzer, will not

in general permit all the radiation emerging from the waveplate to pass.

This PWA combination serves as an adjustable attenuator of a light

beam.

From Eqs. (18.78) and (18.79) it is easy to see that the D vector
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transmitted through the analyzer has magnitude

D = A cosβ cos(ωt− φ0) cosψ +A sinβ cos(ωt− φe) sinψ (18.98)

which can be rearranged to give

D = D0 cos(ωt− φe + χ) (18.99)

where

D0 = A[(cosβ cosψ cos∆φ+ sinβ sinψ)2 + (cos β cosψ sin∆φ)2]1/2

(18.100)

and

tanχ =
cosβ cosψ sin∆φ

cosβ cosψ cos∆φ+ sinβ sinψ
(18.101)

∆φ = φe − φ0 is the retardation produced by the wave plate.
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Table 2. Need Table Caption

P/A W Transmittance

‖ 0 1
‖ λ/4 1/2
‖ λ/2 0
⊥ 0 0
⊥ λ/4 1/2
⊥ λ/2 1

18.15 Examples

To illustrate the value of Eq. (18.100) some specific examples are in

order:

(1) The input and output polarizers are parallel: ψ = β. In this case

D0 = A[1− 1
2 sin2 2β(1− cos∆φ)]1/2

If ∆φ = 0 (or if ∆φ is any multiple of 2π) then D0 = A: all the light is

transmitted as we would have expected.

If β = 45◦ then

D0 = A[1− 1
2 (1− cos∆φ)]1/2

If ∆φ = π (or any odd multiple of π) then D0 = 0. If ∆φ = π/2
(or any odd multiple of π/2) then D0 = A/

√
2. Since the transmitted

intensity is proportional to D2
0 half of the incident light is transmitted.

(2) The input and output polarizers are crossed: ψ = β±π/2. In this

case

D0 =
1√
2

sin 2β(1− cos∆φ)1/2

If β = 45◦ then

D0 =
1√
2
(1− cos∆φ)1/2

If ∆φ = 0 then D0 = 0.

If ∆φ = (2n + 1)π, the waveplate is a half wave plate, and D0 = A.

All the incident light is transmitted.

If ∆φ = (2π + 1)π/2, the waveplate is a quarter wave plane and
D0 = A√

2
. Half the incident light is transmitted.

These findings are summarized in Table (18.2).
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18.16 The Jones Calculus

Over fifty years ago R. Clark Jones described a very useful technique

for describing the change in polarization state of light wave as it passed

through an optical system containing various interfaces and polarizing

elements.[18. ] The Jones Calculus treats the optical system as a linear

system describable by an appropriate Jones matrix that transforms vec-

tors describing the polarization state of the wave. In this sense the Jones

Calculus is analogous to paraxial ray analysis.

18.16.1 The Jones Vector

The electric field of a light wave linearly polarized along the x axis can

be written as

Ex = Ax sin(ωt+ φx)'̂, (18.102)

which is complex exponential notation is

Ex = Axe
iφxeiωt. (18.103)

On the other hand a light wave linearly polarized along the y axis can

be written as

Ey = Aye
iφyeiωt (18.104)

The superposition of the electric fields Ex and Ey leads in general to

elliptically polarized light with electric field

E =
(
Axe

iφx +Aye
iφy
)
eiωt (18.105)

The complex amplitudes of the x and y components of this wave form

the 2 elements of the Jones vector J, where

J =

(
Axe

iφx

Aye
iφy

)
(18.106)

Clearly, light linearly polarized along the x axis has

J =

(
Axe

iφx

0

)
(18.107)

with a similar result for linearly polarized along y.

Light linearly polarized at angle β to the axis has

Jβ =

(
E0 cosβ
E0 sinβ

)
(18.108)

Right handd cciircularly polarized light has

Jrcp =

(
E0e

iφx

E0e
i(φx+π/2)

)
(18.109)
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and left hand circularly polarized light has

Jrcp =

(
E0e

iφx

E0e
i(φx−π/2)

)
(18.110)

In an isotopic medium the intensity of the wave is

IαE∗ ·E, (18.111)

which in terms of the Jones vector gives

IαJ∗ · J = A2
x +A2

y (18.112)

It is generally simple and convenient to use the Jones vector in its nor-

malized form, in which

J∗ · J = 1, (18.113)

which would correspond in a practical sense to assigning an intensity of

1W/m2 to the wave. In this case the three vectors above in Eqs. (18.108),

(18.109) and (18.110) would become

Jp =

(
cosβ
sinβ

)
(18.114)

Jrcp =
1√
2

(
1

eiπ/2

)
or

1√
2

(
e−iπ/4

eiπ/4

)
(18.115)

J`cp =
1√
2

(
1

e−iπ/2

)
or

1√
2

(
eiπ/4

eiπ/4

)
(18.116)

The second description for circularly polarized light is an alternative

symmetrical way of writing the column vector, since only the phase

difference between the x and y component issignificant.

In this notation general elliptically polarized beam has a Jone vector

that can be written as

J =

(
cosβe−i∆/2

sinβei∆/2

)
. (18.117)

18.16.2 The Jones Matrix

In a linear system description the output Jones vector of a light wave

after it has interacted with an optical system has components that are

linearly related to its input components.

If

Jin = Ex'̂+Eyĵ (18.118)

and

Jout = E′x î +Eyĵ (18.119)
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where phase factors are included in the complex amplitudes, we can now

write

E′x = m11Ex +m12Ey

E′y = m21Ex +m22Ey (18.120)

or in matrix form (
E′x
E′y

)
=

(
m11 m12

m21 m22

)(
Ex
Ey

)
(18.121)

Eq. (18.121) introduce the Jones matrix M withe elements mij , it can

be rewritten as

Jout = MJin (18.122)

The determination of the Jones matrix for common optical elements is

straight forward. This can be demonstrated with a few examples.

(a) Isotropic element: since Jout = Jin clearly

M =

(
1 0
0 1

)
(18.123)

(b) Linear polarizer oriented along with x axis

M =

(
1 0
0 0

)
(18.1124)

(c) Linear polarizer oriented at angle θ to the x axis

M =

(
co2θ sin θ cos θ
sin θ cos θ sin2 θ

)
(18.125)

(d) A waveplante that produces a retardation φx−φy = Γ. This case is

worthy of a closer consideration. If the waveplate has its principal

axis parallel to the x y axis then the refractive induces seemly the

x and y components of the wave are nx, ny respectively. In this

case

E′x = Exe
ik0`nx

E′y = Eye
−ik0`ny , (18.126)

where k0 = 2π/λ0 and ` is the thickness of the retarder. Since Γ =

k0`(ny − nx), Eq. (18. ) can be written as

E′x = Exe
−ik0`nyeiΓ

E1
y = Eye

−ik0`ny (18.127)

or in symmetrical form

E′x = Exe
ieφiΓ/2

E′y = Eye
−iφe−iΓ/2 (18.128)
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where φ = k0`(nxtny)/2. Therefore, the Jones matrix of the waveplate

is

M = eiφ
(
eiΓ/2 0

0 e−iΓ/2

)
(18.129)

The phase factor e−iφ in Eq. (18.129) can be omitted for most practical

purposes.

If a λ/4 plate has

M =

(
eiπ/4 0

0 e−iπ/4

)
(18.130)

A linearly polarized wave with

J =

(
1/
√

2
1
√

2

)
(18.131)

is linearly polarized at 45◦ to the fast (and slow) axis of the waveplate.

Its electric field is in the E1 direction in Fig. (18. ). The output Jones

vector is

Jout =

(
eiπ/4 0

0 e−iπ/4

)(
1/
√

2
1/
√

2

)
=

1√
2

(
eiπ/4 0

0 e−iπ/4

)(
1/
√

2
1/
√

2

)
,

(18.132)

which has transformed the linearly polarized input light to left hand

circular polarization.

If the input linearly polarized light is rotated 90◦ with respect to the

axis of the λ/4 plate to the E2 direction in Fig. (18. ), then the output

Jones vector will be

Jout =

(
eiπ/4 0

0 e−iπ/4

)(
1/
√

2
−1/
√

2

)
=

1√
2

(
eiπ/4

ei3π/4

)
=

1√
2
eiπ/2

(
e−iπ/4

eiπ/4

)
. (18.133)

This is right hand circularly polarized light, so a λ/4 plate will convert

linearly polarized light into left or right hand circularly polarized light

depending on its orientation.

It is of value to view the action of the λ/4 plate in a coordinate system

that is rotated by 45◦. What is now the Jones matrix for the plate for

an input linearly polarized wave whose Jones vector is

Jin =

(
1
0

)
Such a wave is polarized in the x′ direction in Fig. (18.22). Now the
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Fig. 18.22. Coordinate system used in the Jones matrix description of a
λ/4 plate.

transformation between the xy and x′y′ coordinate system is(
x′

y′

)
=

1√
2

(
1 −1
1 1

)(
x
y

)
= S

(
x
y

)
(18.134)

and (
x
y

)
=

1√
2

(
1 1
−1 1

)(
x′

y′

)
= S−1

(
x
y

)
(18.135)

In terms of the rotation matrix S, in the x′y′ coordinate system

Jout = SJout (18.136)

in the xy coordinate system

Jout = MJin (18.137)

where

M =

(
eiπ/4 0

0 e−iπ/4

)
(18.138)

and

Jin = S−1

(
1
0

)
= S−1J−1

in (18.139)

Combining Eqs. (18.136), (18.137) and (18.139)

J′out = SMS−1J′in (18.140)

so the new Jones matrix in the x′y′ coordinate system is

M′ = SMS−1 (18.141)

In this case

M′ =
1

2

(
1 −1
1 1

)(
eiπ/4 0

0 e−iπ/4

)(
1 1
−1 1

)
=

1√
2

(
1 i
i 1

)
(18.142)
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We can generalize from this example: if coordinate system x′y′ is ob-

tained by a counterclockwise rotation by angle α from coordinate system

xy, then the transformation matrix is

S =

(
cosα sinα
− sinα cosα

)
(18.143)

The transformation of the Jones matrix from xy to x′y′ obeys Eq.

(18.141).

(e) Faraday Rotator. A Faraday rotator that rotates the plane of linear

polarization in a counterclockwise direction by angle θ has a Jones

matrix

Mfv =

(
cos θ − sin θ
sin θ cos θ

)
(18.144)

This brief survey provides the essentials that are needed to describe

the polarization change that occurs in a multi-element optical system.

The one additional matrix method and graphical techniques that can

also be used to provide similar information, in particular the Mueller

Calculus and the Poincaré sphere. The interest reader is referred to the

specialized literature.

18.17 Problem for Chapter 18

(1) Prove that in a uniaxial crystal the maximum angular separation of

0- and ε-rays occurs when the wavevector makes an angle θ with the

optic axis that satisfies

θ = arc tan(ne/n0)
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