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Abstract Obesity contributes to reduced life expectancy, impaired quality of life, and disabilities, mainly in those individuals who develop cardio-

vascular diseases, type 2 diabetes, osteoarthritis, and cancer. However, there is a large variation in the individual risk to developing obesity-associated 

comorbid diseases that cannot simply be explained by the extent of adiposity. Observations that a proportion of individuals with obesity have a signif-

icantly lower risk for cardiometabolic abnormalities led to the concept of metabolically healthy obesity (MHO). Although there is no clear definition, 

normal glucose and lipid metabolism parameters—in addition to the absence of hypertension—usually serve as criteria to diagnose MHO. Biological 

mechanisms underlying MHO lower amounts of ectopic fat (visceral and liver), and higher leg fat deposition, expandability of subcutaneous adipose 

tissue, preserved insulin sensitivity, and beta-cell function as well as better cardiorespiratory fitness compared to unhealthy obesity.

Whereas the absence of metabolic abnormalities may reduce the risk of type 2 diabetes and cardiovascular diseases in metabolically healthy 

individuals compared to unhealthy individuals with obesity, it is still higher in comparison with healthy lean individuals. In addition, MHO seems to 

be a transient phenotype further justifying therapeutic weight loss attempts—even in this subgroup—which might not benefit from reducing body 

weight to the same extent as patients with unhealthy obesity. Metabolically healthy obesity represents a model to study mechanisms linking obesity 

to cardiometabolic complications. Metabolically healthy obesity should not be considered a safe condition, which does not require obesity treatment, 

but may guide decision-making for a personalized and risk-stratified obesity treatment. Endocrine Reviews 41: 405 – 420, 2020)
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S ince the 1970s, global obesity prevalence 
has nearly tripled in adults and has risen 

even more dramatically in children and adolescents 
(1–3). Obesity contributes to a reduced life expec-
tancy of up to ~20 years due to increased mortality 
from noncommunicable diseases, including ather-
osclerotic cardiovascular diseases, type 2 diabetes, 
and certain types of cancer (4–7). In addition to the 
consequences of obesity at the individual level, the 
obesity pandemic may create an enormous health 
burden for society (8).

According to the World Health Organization 
(WHO), obesity is defined as “abnormal or ex-
cessive fat accumulation that presents a risk to 
health” (9). In contrast to the view that obesity 
only represents a risk factor for diseases, the World 
Obesity Federation declared obesity itself as a 
chronic, relapsing progressive disease (10). This 
has been justified by an epidemiological-model 
approach that considers the pathophysiology of 
obesity, an interaction of environmental factors 
(availability and accessibility of energy-rich food, 
low requirements for physical activity), with ge-
netic susceptibility, resulting in a positive energy 
balance and higher body weight (10). The strong 
mechanisms promoting weight gain and defending 
a higher body weight even against targeted weight-
loss interventions further argue to the view that 
obesity is a disease rather than a decision (3, 11). 
However, it has been found surprisingly diffi-
cult to define what a disease is (12). If a disease 
were simply the opposite of health, the concept 
of “healthy obesity” (and the topic of this review 
article) would be a contradiction in terms. The 
term “healthy obesity” is an illustration of the no-
tion that health is context-dependent, and whether 

people consider themselves ill depends on a variety 
of factors (12). In addition, the definition of a di-
sease may change over time as a result of health ex-
pectations, due to improving diagnostic tools, and 
for other social and economic reasons (12). In this 
context, the definition of obesity as a disease would 
have a strong impact both on the individual (stig-
matization, self-esteem) and the society (attention 
by healthcare professionals or politicians) (13). It 
could affect decisions, how limited healthcare re-
sources are allocated, and how to position obesity 
within the context of investments for the treatment 
of obesity-related diseases. 

One pragmatic approach to reduce the med-
ical and socioeconomic costs associated with 
obesity treatment could be to prioritize those 
patients who will benefit the most from weight-
loss interventions. Such risk-stratified obesity 
treatment would require better tools to measure 
obesity-related morbidity and mortality risk. In 
many current obesity treatment guidelines, diag-
nosis of obesity and treatment decisions are based 
on a body mass index (BMI) ≥30  kg/m2 (14–17) 
despite the inability of BMI to accurately predict 
cardiometabolic risk or to define total and cen-
tral abdominal fat mass (11, 18). At any given 
BMI, the variation in comorbidities and health 
risk factors is remarkably high (18). Observational 
data from independent studies show that a sub-
group of individuals with obesity may be protected 
from obesity-related cardiometabolic diseases or 
may be at a significantly lower risk than estimated 
from the positive association between BMI and 
cardiometabolic risk (19). This subphenotype has 
been described as MHO and is characterized by 
the absence of cardiometabolic abnormalities, 

Essential Points

 • Metabolically healthy obesity (MHO) is a concept derived from clinical observations that a subgroup of people with 
obesity do not exhibit overt cardiometabolic abnormalities.

 • Although there is no standardized definition of MHO, the following criteria have been proposed in addition to the 
diagnosis of obesity (BMI ≥30  kg/m2): fasted serum triglycerides ≤1.7  mmol/l (≤150  mg/dl); HDL cholesterol serum 
concentrations >1.0 (>40  mg/dl) (in men) or >1.3  mmol/l (>50  mg/dl) (in women); systolic blood pressure (SBP) 
≤130 mmHg; diastolic blood pressure ≤85 mmHg; fasting blood glucose ≤ 6.1 mmol/l (≤100 mg/dl); no drug treatment 
for dyslipidemia, diabetes, or hypertension; and no cardiovascular disease manifestation.

 • With an age- and gender-dependent prevalence between ~10% to 30%, MHO is not a rare condition.

 • Individuals with MHO are characterized by lower liver and visceral fat, but higher subcutaneous leg fat content, greater 
cardiorespiratory fitness and physical activity, insulin sensitivity, lower levels of inflammatory markers, and normal 
adipose tissue function compared to patients with metabolically unhealthy obesity (MUO).

 • Metabolically healthy obesity most likely represents a transient phenotype, and individuals with MHO still have 
an indication for weight-loss interventions because their risk of developing cardiometabolic diseases may be lower 
compared to MUO, but it is still higher than in metabolically healthy lean people.
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including insulin resistance, impaired glucose tol-
erance, dyslipidemia, and hypertension despite ex-
cessive body fat accumulation (19–27). This short 
review focuses on the biological mechanisms un-
derlying MHO and discusses whether the con-
cept of MHO may have clinical implications for 
the prediction of cardiometabolic diseases and 
for stratified obesity treatment decisions. The re-
view is based on a systematic PubMed search and 
prioritized more recent original articles as well as 
reviews. Searching the term “obesity” yields more 
than 320 000 citations, the term “obesity and met-
abolic diseases” more than 84  500 citations as of 
November 2019, whereas the search term “met-
abolically healthy obesity” yields 1080 citations. 
From the literature search strategy it became clear 
that the concept of MHO was attracting more at-
tention since the early 2010s, now with ~160 
citations per year.

Concept of Metabolically Healthy Obesity

The concept of metabolically healthy obesity devel-
oped from Jean Vague´s observations in the 1950s 
that individuals with obesity have a different pre-
disposition to diabetes and atherosclerosis, which 
could be related to body fat distribution (28). 
Since then, MHO has been described in clinical 
observations and epidemiological, prospective co-
hort, and intervention studies (19–27, 29, 30). It 
is now well established that there are people with 
obesity who do not exhibit metabolic and cardi-
ovascular complications at a given point in time 
(29–34). However, it could be debated whether 
MHO represents a distinct and stable phenotype 
and whether MHO has clinical relevance for the 
prediction of type 2 diabetes and cardiovascular 
disease risk. The concept of MHO may serve as 
a model to better understand the mechanisms 
linking obesity to cardiometabolic diseases.

Definition of MHO
Importantly, there is no unified definition of 
MHO (31–34). Despite the general consensus that 
a BMI ≥30 kg/m2 is a prerequisite for the defini-
tion of MHO, more than 30 different definitions 
of metabolic heath are used in clinical studies (33). 
Metabolically healthy obesity has been frequently 
defined by the absence of any metabolic disorder 
and cardiovascular disease, including type 2 dia-
betes, dyslipidemia, hypertension, and atheroscle-
rotic cardiovascular disease (ASCVD) in a person 
with obesity (Table 1) (31–35). However, there is a 
large variation between investigators with regard to 

the MHO classification criteria and specific cutoff 
values for each parameter (Table 1) even to an extent 
that some cardiometabolic abnormalities were ac-
cepted in the category of MHO (22, 31–33, 35–38).  
The heterogeneous MHO definitions represent 
an important limitation for the interpretation of 
studies reporting a wide range of associations be-
tween MHO, cardiovascular disease, mortality, and 
the risk for metabolic diseases (27, 34, 39, 40). In 
addition, differences in diagnostic criteria may de-
fine MHO subpopulations, which only have little 
overlap in key cardiometabolic parameters (24). 
As an example, more than 40% of participants in 
the National Health and Nutrition Examination 
Survey (NHANES) III program were classified as 
MHO using the National Cholesterol Education 
Program (NCEP) Adult Treatment Panel III (ATP 
III) criteria for metabolic syndrome (41), but 
only 20% fell into the MHO category using more 
strict insulin sensitivity parameter cutoffs (42). 
These uncertainties in defining MHO may imply 
that MHO does not represent a distinct biolog-
ically determined subgroup of individuals with 
obesity. More recent data suggesting that the 
MHO phenotype is not a cardiometabolically be-
nign condition (43) seem to justify the argument 
that MHO has very limited relevance as a public 
health target and should not be treated differently 
from obesity with established type 2 diabetes and/
or cardiovascular diseases (CVD) (32, 44, 45).

The need for standardized MHO criteria has 
been recently addressed by the BioShare-EU pro-
ject (31) and by Lavie and colleagues (35). In the 
context of the Healthy Obese Project, the data of 10 
population-based cohort studies from 7 countries 
(Estonia, Finland, Germany, Italy, Netherlands, 
Norway, and the UK), including more than 
163 000 adults (of whom 17% had obesity [11 465 
men and 16  612 women]) aged between 18 and 
80  years were evaluated to compare key charac-
teristics to define MHO by clinical and metabolic 
factors (31) (Table  1). The collaborators distin-
guished 2 levels of strictness for the MHO def-
inition (Table  1). More recently, a harmonized 
definition of MHO in adults has been proposed 
based on the diagnosis of obesity (BMI ≥30 kg/m2) 
and meeting all of the criteria: serum triglycerides 
≤1.7  mmol/l (≤150  mg/dl), HDL-cholesterol 
serum concentrations >1.0 (>40  mg/dl) (in men) 
or >1.3 mmol/l (>50 mg/dl) (in women), systolic 
blood pressure (SBP) ≤130 mmHg, diastolic blood 
pressure ≤85  mmHg, no antihypertensive treat-
ment as an alternative indicator, fasting blood 
glucose ≤ 5.6 mmol/l (≤100 mg/dl), and no drug 
treatment with glucose lowering agents (35) 
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(Table  1). These definitions of MHO seem to be 
more practicable compared to previous attempts 
to define MHO using parameters for insulin sen-
sitivity (eg, euglycemic-hyperinsulinemic clamps, 
HOMA-IR, Matsuda-index) or systemic inflam-
mation (eg, C-reactive protein) (reviewed in 25). In 
contrast to the origins of the MHO concept (which 
may have included patients with hypertension or 
type 2 diabetes), more recent definitions (31, 35) 
exclude individuals who meet only1 of the meta-
bolic syndrome criteria.

Importantly, the concept of MHO can only 
be applied to individuals fulfilling the described 
cardiometabolic criteria and should not be 
misinterpreted as a subgroup of people with obe-
sity without any health impairments (32). In ad-
dition to metabolic diseases (eg, type 2 diabetes, 
dyslipidemia, fatty liver disease) and cardio-
vascular diseases (eg, hypertension, myocardial 
infarction, stroke), obesity is associated with os-
teoarthritis, back pain, asthma, depression, cog-
nitive impairment, and some types of cancer (eg, 
breast, ovarian, prostate, liver, kidney, colon)—all 
of which can have an impact on reduced quality of 

life, unemployment, lower productivity, and social 
disadvantages (5, 7, 9, 10, 18, 30). Therefore, the 
diagnosis of “obesity” should remain an indication 
to initiate treatment—even in those individuals 
without any cardiometabolic abnormalities at the 
time of diagnosis.

MHO prevalence
Assumptions about the prevalence of MHO are not 
very reliable and show a large variation due to a 
lack of standardized definitions of this phenotype 
(32, 46). Depending on which MHO definitions are 
used, prevalence of MHO has been shown to range 
between 4.2% and 13.6% in a random sample from 
a Chinese adult population (46). A  recent meta-
analysis from 12 cohort and 7 intervention studies 
found a 35% prevalence of MHO with significant 
regional differences (47). In general, MHO seems 
to be more prevalent in women than in men and 
decreases with age (31). Great regional and gender-
related variations in MHO prevalence has been 
found in the BioSHaRE-EU Healthy Obese Project, 
which estimated the age-standardized prevalence 
of MHO at ~12% across all cohorts (31). In their 

Table 1. Proposed criteria for harmonized definitions of metabolically healthy obesity in adults. 

BioSHaRE-EU Healthy Obese Project (31) Lavie et al (35)

Obesity Classification BMI ≥ 30kg/m2 Plus All of the Criteria BMI ≥ 30kg/m2 
Plus 1 to 4 of 
the Criteria

 Less Strict Criteria Strict Criteria -

Blood pressure  ≤ 140 mmHg ≤ 130 mmHg ≤ 130 mmHg

Systolic blood pressure  - ≤ 85 mmHg ≤ 85 mmHg

Diastolic blood pressure ≤ 90 mmHg - -

 No antihypertensive drug treatment

Blood glucose ≤ 7.0 mmol/l ≤ 6.1 mmol/l ≤ 5.6 mmol/l

 No blood glucose-lowering medication or diagnosis of type 2 diabetes

Fasting triglycerides ≤ 1.7mmol/l ≤ 1.7mmol/l ≤ 1.7mmol/l

Non-fasted state ≤ 2.1mmol/l ≤ 2.1mmol/l -

 No drug treatment for elevated triglycerides

HDL-cholesterol >1.03 mmol/l (men)  
>1.3 mmol/l (women)

>1.03 mmol/l (men)  
>1.3 mmol/l (women)

>1.0 mmol/l 
(men)  

>1.3 mmol/l 
(women)

 No drug treatment for reduced HDL-cholesterol

Diagnosis of CVD No No -

Adapted from references (31, 35).
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analysis of 10 independent cohorts from different 
European countries, the prevalence of MHO varied 
in women from 7% in the Finnish Health 2000 
study to 28% in the United Kingdom National 
Child Development Study (NCDS) birth cohort, 
and in men from 2% in Finland DIetary, Lifestyle 
and Genetic factors in the development of Obesity 
and Metabolic syndrome (DILGOM) to 19% in the 
Collaborative Health Research in South Tyrol Study 
(CHRIS) from Italy (31). The greatest gender dif-
ference has been found in the NCDS, with a MHO 
prevalence of 9% in men compared to 28.4% in 
women, whereas MHO prevalence was similar in 
men (19%) and women (21.1%) in a cohort from 
Italy (31). Importantly, MHO prevalence estimates 
can only be compared across different cohorts or 
studies if the same criteria to define MHO are ap-
plied. As an example, the 68% MHO prevalence 
observed in a large recent study of 3.5 million men 
and women for which validated electronic health 
records were available in the context of The Health 
Improvement Network (THIN) database is most 
likely overestimated, because the definition of MHO 
did not consider blood glucose, blood pressure, 
or lipid parameter cutoffs (43, 44). Metabolically 
healthy obesity has also been found in Asian and 
African populations (depending on diagnostic 
criteria and based on a BMI ≥25 kg/m2 cutoff for 
obesity), ranging from 4.2% in a cohort from China 
with an obesity prevalence of 24.3% (46) to 13.3% 
among Asian Indians with a 28.1% obesity preva-
lence (48) and 28.5% in African Americans (49). 
Among 1054 Hispanic American participants of the 
Insulin Resistance Atherosclerosis Study (IRAS), 
19% were categorized as MHO (50). Data from the 
NHANES III program suggest an MHO prevalence 
of ~17% in Americans with European or African 
ancestry (42).

In children and adolescents, MHO may be 
a more frequently observed condition. In a 
cross-sectional study from Canada, which in-
cluded girls and boys ages 8–17 with a BMI ≥ 
85th percentile, prevalence of MHO was 21.5% 
when cardiometabolic risk factors (blood pres-
sure, serum lipids, glucose) were considered 
and 31.5% if insulin resistance parameters were 
applied to define MHO (51). In children and 
adolescents of the Korea National Health and 
Nutrition Examination Survey, MHO preva-
lence was between 36.8% (for a cardiometabolic 
risk factor-based definition) and 68.8% (for in-
sulin resistance criteria) (52). Irrespective of the 
definitions used and the remarkable regional and 
gender variation, MHO does not appear to be a 
rare condition (35).

Biological Mechanisms Underlying 
Metabolically Healthy Obesity

Despite the debate about the clinical implications 
of MHO as a “diagnosis” (20, 21, 32, 44, 45), obesity 
without cardiometabolic abnormalities provides a 
unique human model system to study mechanisms 
linking the factors that promote weight gain and fat 
accumulation to obesity-related cardiometabolic 
complications. Over the past years, a number of 
biological mechanisms and phenotypic charac-
teristics have been identified that differentiate 
individuals with MHO from those with meta-
bolically unhealthy obesity (MUO) (Fig.  1). In a 
large BMI-stratified cohort, Stefan et  al (20, 23) 
linked high liver fat content and predominantly 
abdominal (including visceral) adiposity to MUO, 
whereas greater insulin sensitivity, better insulin 
secretion, cardiorespiratory fitness, and lower body 
subcutaneous fat mass were associated with an 
MHO phenotype. Admittedly, these associations 
do not solve the question of whether and which 
phenotypic traits may cause or only reflect a pro-
tection against cardiometabolic abnormalities in 
MHO. Importantly, the biological correlates of 
MHO were similarly associated with metabolic 
health across the BMI range from lean to over-
weight to obese (23). In this context, it has been 
recently shown that higher trunk fat in normal 
weight postmenopausal women is associated with 
increased ASCVD incidence, whereas higher leg 
fat predicted lower ASCVD risk (53). These data 
further support the notion that altered and ec-
topic (eg, liver, visceral fat depots, skeletal muscle) 
fat distribution is a stronger determinant of met-
abolic health as increased fat mass itself (23–26). 
Beyond the associations of BMI, hepatic steatosis 
has been shown to predict the risk of developing 
type 2 diabetes (54) and ASCVD (55, 56). Altered 
fat distribution with increased visceral and liver fat 
deposition and low leg fat mass might be the re-
sult of an impaired expandability of healthy subcu-
taneous adipose tissue stores (57–59). In analogy 
to human lipodystrophy, MUO might be the re-
sult of an inability of subcutaneous adipose tissue 
to further expand upon a chronic positive energy 
balance. Impaired adipose tissue function might 
indeed mechanistically link long-term energy im-
balance between too many calories consumed and 
too few calories expended and end organ damage, 
including hepatic steatosis, type 2 diabetes, and 
ASCVD (Fig. 2).

To further elucidate the potential role of adipose 
tissue function in defining metabolic health despite 
obesity, we studied pairs of individuals with MHO, 
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which have been matched for age, gender, and 
BMI, but were either insulin sensitive or resistant 
in euglycemic-hyperinsulinemic clamps (22). In 
addition to higher visceral and liver fat amounts 
in insulin resistant obesity, we found insulin sen-
sitive MHO to be associated with less immune cell 
infiltration into visceral fat depots, lower mean 
adipocyte size, and a favorable adipokine secre-
tion pattern (22). In contrast, a proinflammatory, 
diabetogenic and atherogenic secretion pattern 
may contribute to the development of MUO. Our 
data supports models for the development of MUO 
(60, 61) in which ectopic fat and impaired adipose 
tissue function may lead to systemic insulin resist-
ance, lipotoxicity, and a proinflammatory state and 
could, therefore, play a causal role in the transition 
from MHO to MUO (Fig. 2).

Moreover, we found a distinct pattern of circu-
lating signaling molecules associated with MHO 
(22). Individuals with insulin sensitive MHO are 
characterized by higher adiponectin and neuregulin 
4 (62) and lower C-reactive protein (CrP), 
progranulin, chemerin, fetuin-A, retinol binding 
protein-4 (RBP4) (22), dipeptidyl peptidase-4 
(DPP4) (63), and serum concentrations compared 
to individuals with insulin resistant obesity (64). 
Interestingly, MHO could be best predicted on the 
basis of macrophage infiltration into visceral adi-
pose tissue and adiponectin serum concentrations 

(22). Signals from adipose tissue may include pep-
tide hormones (adipokines), immune cells, and 
metabolites, which either specifically or as a pat-
tern contribute to the development of type 2 dia-
betes, fatty liver disease, endothelial dysfunction, 
and cardiovascular diseases (57, 60, 64). In a recent 
unbiased cluster analysis of 12 signaling molecules, 
adiponectin, adipocyte fatty acid-binding protein 
(AFABP), chemerin, and fibroblast growth factor 
(FGF) 21 showed the strongest associations with 
parameters of metabolic health (65). However, it 
remains an open question for prospective epidemi-
ological studies whether circulating parameters can 
predict conversions from MHO to MUO. Altered 
signaling molecule signatures may either directly af-
fect target tissue via receptor mediated mechanisms 
(eg, leptin’s effects on satiety regulation in the brain) 
or contribute indirectly (eg, modulation of insulin 
secretion through free fatty release from visceral fat 
depots) to increasing cardiometabolic diseases (57).

The importance of adipose tissue function in 
the determination of the obesity subphenotype 
is further supported by data from transgenic an-
imal studies. For example, mice with a trans-
genic overexpression of the insulin-sensitizing 
adipokine adiponectin or the mitochondrial 
protein mitoNEET—both on the background of 
leptin-deficient ob/ob mice—resemble the human 
MHO phenotype with preserved insulin sensitivity 

BMI 31kg/m²
Low visceral fat volume: 1.5L

Low liver fat content
High amount of leg fat

  & physical activity

Insulin sensitivity

Normal adipose tissue function

BMI 31kg/m²
High visceral fat volume: 3.9L

High liver fat content
Low amount of leg fat

   & physical activity 

Insulin resistance

Adipose tissue dysfunction

yhtlaehnu yllacilobateMyhtlaeh yllacilobateM

Obesity

~10-20% ~80-90%

Figure 1. Phenotypic traits associated with metabolically healthy versus unhealthy obesity. Individuals with metabolically healthy 
obesity (MHO, prevalence ~10–30%) are characterized by lower liver and visceral fat mass, higher leg fat content, greater cardiorespiratory 
fitness and physical activity, insulin sensitivity, normal inflammation markers, and preserved adipose tissue function compared to patients 
with metabolically unhealthy obesity (MUO, prevalence ~80–90%). Transabdominal MRI scans with highlighted (yellow) visceral fat depot 
area from 2 women with the same age and BMI, but either MHO or MUO show ~2.6-fold higher visceral fat deposition associated with 
MUO (pictures provided by Nicolas Linder).
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and low liver and muscle fat despite extreme obe-
sity (66, 67).

Increasing physical activity and the pres-
ervation of cardiorespiratory fitness are well 
established interventions to reduce the obesity-
related risk for type 2 diabetes and ASCVD 
(68). Both in children and adults, higher phys-
ical activity and cardiorespiratory fitness have 
been recognized as an important correlate of 
the MHO phenotype (51, 69, 70). Importantly, 
higher fitness levels in MHO compared to MUO 
may also be an indicator for a healthier lifestyle 
and does not exclude other behavior factors un-
derlying MHO.

Transitions between Metabolically Healthy 
and Unhealthy Obesity

Obesity has been considered a chronic relapsing 
and progressive disease (10, 71), a definition which 
is most likely also applicable to MHO. Indeed, 

individuals in long-term obesity treatment programs 
may undergo cycles of weight loss and weight regain 
accompanied by their phenotype changing from 
MUO to MHO and back to MUO (Fig.  3). Such 
transitions between metabolic status are not spe-
cific to obesity and have also been identified in chil-
dren and adolescents (72). Moreover, almost 50% of 
the Multi-Ethnic Study of Atherosclerosis (MESA) 
participants, which have been defined as MHO at 
baseline, developed metabolic abnormalities during 
the ~12-year follow-up period (40). This finding is 
supported by a meta-analysis of 12 studies including 
more than 5900 individuals with 3–10-year fol-
low-up, which demonstrates that almost half of the 
participants classified as MHO developed at least 1 
metabolic abnormality (47). Individuals with MHO 
can be found at any age, but in groups with increasing 
age the prevalence of MHO has been shown to be 
consistently lower (31). The lower prevalence of 
MHO in postmenopausal compared to premeno-
pausal women and a 30% transition from MHO to 
MUO over menopause (73) suggests that changes in 
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Figure 2. Metabolically healthy obesity is a transient phenotype. Case example for a 48-year-old man undergoing different weight-loss 
interventions. At baseline, the patient presented with MUO as defined by reference (31). After 12 months of a behavior intervention 
program (calorie restricted diet, increased physical activity, and psychosocial support), the phenotype changed into MHO. Because 
treatment was not continued for the subsequent 12 months, there was a weight regain associated with a phenotype transition to MUO. 
At 24 months, the patient underwent a laparoscopic Roux-en-Y gastric bypass surgery, which resulted in significant weight loss and im-
provements in all criteria defining MHO. The case demonstrates that transitions between MUO and MHO are not unidirectional and may 
change over time, for instance in response to weight-loss interventions. Abbreviations: BMI, body mass index; BP, blood pressure; FPG, 
fasting plasma glucose; HDL-C, high-density lipoprotein cholesterol; TG, triglycerides.
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sex hormones may play a role in the transition from 
MHO to MUO. Among participants of the prospec-
tive Pizarra study, ~30% of individuals diagnosed 
with MHO at baseline converted to MUO in the 
6-year follow-up investigation (74). Importantly, 
the transition from MHO to MUO is not neces-
sarily a one-way road, as individual interventions 
illustrate (Fig. 3). Moreover, data from 3743 women 
(51%) and men ≥ 18  years of age in the North 
West Adelaide Health Study show that conversion 
from MUO to MHO occurred without significant 
gender differences in 16% of the participants in up 
to 10-year recall visits (75). Persistence of MHO 
was related to a younger age, sustained lower waist 
circumference, more peripheral fat distribution in 
women, and favorable diabetes and cardiovascular 
disease outcomes (75). A  recent analysis from the 
Clinical Practice Research Datalink (CPRD), a large-
scale primary care database from the UK containing 
data of 231  399 patients with a recorded BMI of 
≥35 kg/m2, suggested that men are more prone 
to transitions from MHO to MUO (76). Finally, 
30-year follow-up data from 90  257 participants 

of the Nurses’ Health Study robustly confirmed 
the frequent transition from MHO to MUO and 
demonstrated a decline in metabolic health with age 
across the entire BMI range (27). During this long 
observation period, it could also be shown that there 
are individuals maintaining their MHO status over 
a long period, which did not translate into reduced 
CVD risk to the level of metabolically healthy lean 
participants. Taken together, longitudinal studies 
demonstrate that metabolic health is not a stable 
condition, does not only depend on the obesity 
status, and deteriorates with ageing. On the other 
hand, MUO may also be considered a temporary 
trait, which could be reversed into MHO by targeted 
interventions.

Risk of Type 2 Diabetes and Cardiovascular 
Diseases in Metabolically Healthy Obesity

Obesity significantly increases the risk of devel-
oping type 2 diabetes and cardiovascular diseases 
(6, 30, 34, 77–79) (Fig.  4). Because the increased 

Figure 3. Adipose tissue dysfunction and development of metabolically unhealthy obesity. A chronically positive energy balance requires 
expansion of adipose tissue (AT) to store excess energy. Adipose tissue responds to higher storage demands by increasing the adipocyte 
number through adipogenesis from precursor cells (hyperplasia) and through adipocyte hypertrophy. If expansion of healthy fat stores (eg, 
subcutaneous leg fat) and the ability of AT to respond to excess calorie intake with (“healthier”) hyperplasia are impaired, AT dysfunction 
may develop, which is characterized by ectopic fat deposition (eg, liver, abdominal visceral depots, skeletal muscle, pancreas) and a sequence 
from adipocyte hypertrophy, hypoxia, inadequate vascularization, AT stress, and immune cell infiltration, apoptosis, and increased produc-
tion of profibrotic extracellular matrix proteins contributing to fibrosis. Adipose tissue dysfunction leads to the release of proinflammatory, 
diabetogenic, and atherogenic signals (eg, adipokines, fatty acids from increased lipolysis, other metabolites, immune cells), which may 
contribute to end organ damage (eg, liver, skeletal muscle, pancreas, vasculature) and the development of metabolically unhealthy obesity. 
In contrast, healthy expansion of AT leads to metabolically healthy obesity through an increased AT storage capacity (serving as a safe “meta-
bolic sink”) and the secretion of a beneficial adipokine profile (eg, adiponectin, FGF-21, leptin) (adapted from references (60, 61).
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cardiometabolic risk in people with obesity may 
be mediated by metabolic (elevated glucose, al-
tered lipid profile) and cardiovascular (hyperten-
sion, circulating atherogenic factors) abnormalities, 
it has been postulated that people with MHO are 
protected against type 2 diabetes, ASCVD, and even 
all-cause mortality (20, 36, 78, 80). Indeed, MHO 
could be considered a “benign condition” because 
the meta-analyses of prospective studies consist-
ently demonstrated that MHO is associated with 
a significantly lower incidence of type 2 diabetes 
and cardiovascular diseases (27, 81). However, the 
view that MHO is a benign subphenotype of obesity 
has been challenged by data from large epidemio-
logical studies and meta-analyses demonstrating 
that individuals with MHO are at a higher risk for 
ASCVD, cerebrovascular disease, heart failure (43, 
82, 83), cardiovascular events (34), type 2 diabetes 
(76), and all-cause mortality (78) in comparison to 
metabolically healthy lean individuals (Fig. 4). The 
only exception was a reduced risk of peripheral ar-
tery disease in MHO compared to metabolically 
healthy lean individuals (43). Noteworthy, data 
from meta-analyses demonstrating an increased 
cardiometabolic risk for MHO compared to healthy 
lean people do not exclude the possibility that in 
individual prospective trials MHO might not be 
associated with an increased risk of, for example, 
acute myocardial infarction compared to meta-
bolically healthy lean individuals (39). There are 

indications that people with MHO may develop 
cardiometabolic complications of obesity with a 
delay compared to MUO (27), and one may spec-
ulate that in analogy to lower BMI-class obesity, 
people with MHO gain noncommunicable disease-
free years (84). Interestingly, participants of the 
Nurses´ Health Study who maintained MHO over 
a long time still had a 57% higher risk of CVD than 
those women with a stable normal body weight 
(27). In the same study it has been shown that the 
CVD risk increased in women who converted from 
MHO to MUO compared to those with stable MHO 
(27). The increased CVD risk in those women 
converting from MHO to MUO was mainly driven 
by incident type 2 diabetes and hypertension (27). 
Data from more than 3.5 million individuals col-
lected in THIN demonstrated that cardiometabolic 
risk increased from normal weight to overweight 
and obese, but was more pronounced with an 
increasing number of metabolic abnormalities 
(43). It remains open as to whether (and to which 
extent) fat accumulation itself (43) increased vis-
ceral and ectopic fat (18, 85) and/or whether the 
degree of respiratory fitness and physical activity 
(86) are the major contributors to these differences 
in cardiometabolic risk (35). Importantly, obesity 
significantly increases the risk of heart failure by 
adverse effects on cardiac structure and function 
by affecting systolic and diastolic ventricular func-
tion and as a result of ASCVD (87). There is strong 
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Figure 4. Risk of CVD and cardiovascular events, type 2 diabetes (T2D), and all-cause and/or CVD event mortality in MHO. 
Metabolically healthy lean (MHL) served as a reference group, and the mean relative risk for incident diseases, events, or mortality was 
compared between the MHO group (defined as absence of any metabolic abnormalities) and a group of individuals with MUO. Data are 
extracted from previous meta-analyses (34, 79, 80) or a large recent cohort study (43). For data from reference (44), only the subgroup of 
MUO with 3 metabolic comorbidities (= highest relative risk) is displayed despite evidence for gradually increasing risk (in all categories) 
with the increased number of metabolic abnormalities (ranging from 1–3).
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evidence from epidemiological studies that obesity 
independently of other cardiometabolic risk factors, 
including high LDL-cholesterol, smoking, or di-
abetes, increases the risk for CVD (30, 34, 43, 82) 
(Fig. 4). Whereas the beneficial effects of behavioral 
and pharmacological weight-loss interventions 
on reducing the risk of developing type 2 diabetes 
has been well established (88–90), the evidence re-
garding cardiovascular health outcomes associated 
with weight loss is still limited (18, 85).

Collectively, there has been accumulating evi-
dence over the past decades supporting the notion 
that obesity has long-term harmful consequences 
on cardiometabolic health even in those individuals 
with MHO (32, 35). Although MHO is associated 
with a substantially lower risk compared to MUO, 
it does not protect against cardiometabolic disease 
and should therefore not be treated as a benign 
condition (32, 45).

Applying the Concept of Metabolically 
Healthy Obesity in Clinical Practice

Obesity treatment is challenging. First, conserva-
tive treatment strategies aiming at behavior changes 
have very little long-term success and the weight-
loss effect of current behavior and pharmacological 
interventions is only in the range between 3–10%. 
Secondly, weight maintenance after weight loss is 
difficult to achieve. Finally, the most effective treat-
ment, obesity surgery, is frequently not available and 
certainly not a solution for a health problem with the 
magnitude of the obesity pandemic. In the context 
of these challenges, the concept of MHO may have 
clinical implications with regard to treatment strati-
fication and prioritization of those people who may 
gain the most from weight-loss interventions. The 
need to prioritize obesity treatment is most obvious 
for bariatric surgery, because the severity of obesity 
and its comorbid conditions as well as waiting time 
are associated with an increase in morbidity and 
mortality (90). Whether the concept of MHO may 
help to use typically limited treatment resources 
more effectively, to avoid unnecessary intense treat-
ment programs with a low success rate (MHO as a 
contraindication for weight-loss interventions?) or 
whether it may delay an indicated obesity treatment 
is an open debate (24, 25, 32).

The increased risk of individuals with MHO for 
type 2 diabetes and CVD and the risk of transition 
into MUO clearly justify that obesity treatment 
is also indicated in people with MHO (32). One 
could even argue that individuals with MHO have 
a high treatment priority because they may benefit 

the most from preserving metabolic health. This 
suggestion is supported by data from bariatric sur-
gery interventions showing that shorter duration 
of type 2 diabetes and better parameters of hyper-
glycemia are major determinants of diabetes remis-
sion and metabolic health (91). Moreover, women 
who maintained MHO during follow-up visits of 
the Nurses’ Health Study have a lower cardiovas-
cular disease risk compared with metabolically 
healthy women who converted to an unhealthy 
phenotype (27). In contrast, short-term beha-
vior interventions demonstrated that individuals 
with MHO may benefit less from obesity treat-
ment compared to people with MUO (36, 92, 93). 
Importantly, treatment of obesity does not neces-
sarily have to focus on weight loss, and improving 
health might be a better treatment target than 
the extent of weight loss. The Edmonton Obesity 
Staging System (EOSS) (94) therefore suggests an 
obesity classification based on clinical assessments 
of health and functional status. For an individual 
with MHO without functional impairment (EOSS 
stage 0), avoiding further weight gain would be 
recommended, but the health benefits of an ag-
gressive weight-loss program are considered mar-
ginal (95). On the other hand, bariatric surgery 
interventions have been shown to be as effective in 
MHO compared to MUO patients with regard to 
cardiometabolic outcomes contradicting an obe-
sity stratification based on the MHO status (35, 
95–97). Moreover, weight loss extent-dependent 
improvements in health parameters and outcomes 
have been described, for example, in the Action 
for Health in Diabetes (Look AHEAD) trial (98) 
and seem to apply also to individuals with MHO 
(99, 100). A  moderate weight loss of about 10% 
may be sufficient to change an obesity phenotype 
with cardiometabolic abnormalities into MHO 
(21, 69, 100).

At the moment, there are no randomized 
controlled obesity treatment trials comparing 
cardiometabolic outcomes between individuals 
with MHO and MUO, which would support any 
treatment stratification depending on the MHO 
status. Until such data are available, early treat-
ment of obesity should also be recommended 
for individuals with MHO with the major aim to 
preserve cardiometabolic health and to prevent 
the natural course of MHO to convert into MUO 
with aging. From the public health point of view, 
individuals with MHO may have a lower priority 
for early access to treatment and more aggressive 
weight-loss strategies. Obesity treatment targets 
should shift from weight loss to health param-
eter goals. Maintaining favorable cardiometabolic 
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health parameters could be easier to achieve and 
may require only moderate weight loss (Fig. 2) in 
individuals with MHO.

Improving Cardiometabolic Health by 
Obesity Pharmacotherapies

For a person with obesity, it is very difficult to 
achieve and maintain a normal body weight with 
behavior interventions. Bariatric surgery is not al-
ways suitable, indicated, or wanted by the patients. 
Therefore, it seems to be more realistic to convert 
cardiometabolically unhealthy obesity into MHO. 
Significant health improvements can already be 
achieved by a moderate 3–10% weight loss (71, 
101). If a clinically meaningful weight loss cannot 
be reached by a combination of energy deficit 
nutrition, increased physical activity, and beha-
vior support, the next step of escalation would be 
adding pharmacotherapies for weight management  

(101–104). Currently, there are 5 medications 
approved for chronic weight management in the 
U.S., 3 of which have been approved in the European 
Union (101) (Table  2). These pharmacotherapies 
cause weight loss through different modes of ac-
tion, with varying efficacy (Table  2) and specific 
side-effects, which both the prescriber and the 
patient should be aware of (101). A  more de-
tailed description of specific weight management 
medications would be beyond the scope of this 
short review and can be found elsewhere (101–
103). In general, obesity pharmacotherapies should 
be used to reinforce patients to change eating 
behaviors and support nonpharmacological treat-
ment strategies, but they may also contribute tothe 
improvement of several aspects of cardiometabolic 
health (Table  2). In addition to weight loss, the 
majority of obesity pharmacotherapies have been 
shown to improve at least some parameters de-
fining metabolic health (Table  2). For example, 
orlistat treatment over 4 years (105) and liraglutide 

Table 2. Approved medications for weight management. 

Medication (full dose & 
adminstration)

Main Mechanism  
of Action

Approval 
Status

Mean Weight Loss (% from 
Baseline) Effects on MHO Diagnostic Parameters

   Placebo Medication  

Orlistat (120 mg TID, oral) Pancreatic lipase inhibitor USA, EU -2.6% -6.1% HbA1c lowering; lowers risk of devel-
oping type 2 diabetes in individuals with 
prediabetes;  

HDL-C decrease;  
lowers BP;  
LDL-C lowering

Phentermine (15–30 mg, 
QD, oral)

Sympatho-mimetic USA, only for 
short-term 
use

No data available for monotherapy treatment of ≥52 weeks

Lorcaserin (10 mg, BID, 
oral)

5-HT
ac

 serotonin agonist USA -2.5% -5.8% HbA1c lowering; HDL-C increase;  
lowers BP

Phentermine/topiramate 
ER (titration) 
(15 mg/92 mg, QD, oral)

Sympatho-mimetic/  
anticonvulsant

USA -1.2% -7.8% to  
-9.8%  
(dose dependent)

HbA1c lowering; HDL-C increase;  
lowers BP

Naltrexone SR/ bupro-
pion SR (titration) 
(32 mg/360 mg, BID, 
oral)

Opiod receptor antagonist/ 
dopamine and noradrenaline 
reuptake inhibitor

USA, EU -1.3% -5.4% HbA1c lowering; BP increase;  
HDL-C increase

Liraglutid (titration) 
(3.0 mg, QD,  
subcutaneous injection)

GLP-1 receptor agonist USA, EU -3.0% -7.4% HbA1c lowering; lowers risk of devel-
oping type 2 diabetes in individuals with 
prediabetes;  

lowers BP;  
HDL-C increase reduces cardiovascular 

outcomes in type 2 diabetes patients 
treated with up to 1.8 mg daily dose (109)

Status of approval in the U.S. and the European Union (EU), main mechanism of action, reported mean weight loss outcomes, and impact on parameters of metabolic health. Data 
are only included from randomized controlled trials with a duration of ≥52 weeks. 
Abbreviations: BID, bis in die, twice a day; BP, blood pressure; ER, extended release; GLP-1, glucagon-like peptide-1; MHO, metabolically healthy obesity; QD, quaque die, once daily; SR, 
short release; TID, ter in die, three times a day. Adapted from references (102, 103); data on mean percentage of weight loss are from reference (102).
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3.0  mg treatment over 3  years (90) have been 
shown to reduce the risk of developing type 2 di-
abetes in people with prediabetes. Importantly, 
there is still an unmet need to develop more effi-
cacious and safe pharmcotherapies against obe-
sity. During the last ~10  years, a generation of 
molecules with agonism at the glucagon-like pep-
tide-1 (GLP-1) receptor have emerged as promising 
tools in the pharmacotherapy of obesity (106–108). 
With liraglutide 3.0 mg and semaglutide there are 
GLP-1 receptor agonists, which are either already 
approved (liraglutide) or in clinical development 
(semaglutide), for weight management in obe-
sity that demonstrated a cardiovascular benefit 
for patients with type 2 diabetes in the Liraglutide 
Effect and Action in Diabetes: Evaluation of 
Cardiovascular Outcome Results (LEADER) and 
Trial to Evaluate Cardiovascular and Other Long-
term Outcomes With Semaglutide in Subjects With 
Type 2 Diabetes (SUSTAIN6) trials (109, 110). In a 
recent weight-loss intervention, doses of more than 
0.2 mg of semaglutide demonstrated significantly 
superior weight-loss compared to liraglutide (111).

However, chronic, progredient, and relapsing 
diseases such as type 2 diabetes and obesity often 
require combination therapies. In addition to 
simply combining approved medications is that of 
using combination drugs (Table  2); collaborative 
research efforts by the laboratories of R. DiMarchi 
and M.  Tschöp led to the discovery of several 
peptides with varying degrees of GLP-1 and glu-
cagon coagonism (106, 112). Indeed, these and 
other coagonists derived from the proglucagon 
family are now advanced in the clinical develop-
ment path (Table  3) and appear to be promising 
tools for the future pharmacotherapy of obesity. 
The first GLP-1/glucagon coagonist (MEDI0382) 
has already been studied in a Phase 2 clinical trial 
(113). Moreover, based on the metabolic benefits 
demonstrated for GLP-1/glucagon and GLP-1/GIP 
coagonists (“twincretins”), triagonists targeting 
all 3 incretin receptors have been systematically 
developed with even stronger efficacy compared 
to twincretins on weight loss and obesity-related 
traits, such as reducing liver fat (114, 115). These 
potential antiobesity pharmacotherapies of the fu-
ture are part of a fast growing pipeline of drugs and 
targets for the urgently needed obesity pharmaco-
therapy (Table 3) (116). Most of these drugs are in 
preclinical development or at early stages of clinical 
development and include centrally acting agents 
(setmelanotide, neuropeptide Y antagonists, pep-
tide YY, and cannabinoid type-1 receptor blockers) 
(117–120), amylin mimetics (davalintide, dual 

amylin, and calcitonin receptor agonists) (103, 
116), leptin analogues (combination pramlintide-
metreleptin) (120), FGF-21 (121), GDF-15 (122, 
123), methionine aminopeptidase 2 inhibitor 
(beloranib), lipase inhibitors (cetilistat), triple 
monoamine reuptake inhibitor (tesofensine), 
antiobesity vaccines (ghrelin, somatostatin, and 
adenovirus 36) reviewed in reference 104), or syn-
ergistically targeting the cold nicotinic receptors 
(124).

In summary, currently approved drugs and 
pharmacological obesity therapies in development 
have the potential to produce health improvements 
and convert MUO into MHO even without 
reaching a normal body weight.

Conclusions

Metabolically healthy obesity is a concept derived 
from clinical observations that a subgroup of up 
to a third of people with obesity do not exhibit 
overt cardiometabolic abnormalities. Recently, 
standardized definitions of MHO have been 
proposed, which are relevant for clinical research 
about the differences in obesity-related morbidity 
and mortality between MHO and MUO. The risk 
to developing cardiometabolic diseases is lower in 
people with MHO compared to MUO. Whether 
MHO has additional implications for clinical obe-
sity treatment remains uncertain, but individual 
treatment decisions should consider metabolic and 
cardiovascular abnormalities to reduce the risk for 
premature mortality, CVD, type 2 diabetes, and 
cancer in all patients with obesity.

The concept of MHO, as a human model system, 
can provide important insights to unravel the 
mechanisms of how fat accumulation, adverse fat 
distribution, and adipose tissue dysfunction may 
cause metabolic and cardiovascular abnormalities. 
In this context, the role of individual factors re-
flecting or causing MHO, including lower liver and 
visceral fat mass but higher leg fat content, greater 
cardiorespiratory fitness, and physical activity, 
insulin sensitivity, lower levels of inflammatory 
markers, and others need to be investigated.

MHO is a transient phenotype with a partic-
ularly high prevalence in premenopausal women 
and lower frequencies with increasing age, which 
can convert into and from MUO during the nat-
ural course of obesity and in response to obesity 
treatment. Importantly, timely treatment of obe-
sity should also be recommended to individuals 
with MHO because their risk of developing 
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cardiometabolic diseases is still higher than in met-
abolically healthy lean people.

Future research should take advantage of 
MHO as a model to understand how obesity, ad-
ipose tissue expansion, cellular composition, 
and dysfunction contribute to obesity-associated 
cardiometabolic diseases. Both in clinical practice 
and research, the definition of metabolic health 
needs to be harmonized. Further epidemiological 
studies may identify determinants and modifiable 
risk factors for the better prevention of conversions 

from MHO to MUO and cardiometabolic disease 
manifestations. In addition, genetic factors po-
tentially contributing to MHO beyond expected 
effects of fat distribution, body composition, and 
subcutaneous adipose tissue expandability should 
be explored. Finally, a better understanding of 
whether and how different obesity treatment 
strategies, including pharmacotherapy, may cause 
distinct responses in individuals with MHO 
versus MUO could facilitate individual treatment 
decisions based on the MHO phenotype.

Table 3. Examples of molecules or targets in development for obesity treatment. 

Molecule or  
Class of Drugs Mode of Action

Example Drugs and Status in  
Development References

Semaglutide GLP-1 receptor agonist Approved for treatment of type 2 diabetes 
(1mg once weekly, sc injection),  

Phase 3 trials for obesity (2.4mg once weekly 
sc injections)

(110, 111)

Dual incretin agonists, 
“Twincretins”

GLP-1/glucagon coagonists,  
GLP-1/GIP coagonists 

Phase 2  
GLP-1/glucagon coagonists (e.g. MEDI0382)  
GLP-1/GIP coagonists (e.g. Tirzepatide, 

LY3298176; NNC9204-1177)

(104, 106, 112, 
113)

Triagonists of the incretin 
system  

GLP-1/ GIP/glucagon Phase 1b  
(e.g. NNC9204-1706)  
preclinical

(114, 115)

Setmelanotide MC4R-agonist target Phase 2  
(eg, RM-493)

(118, 119)

Amylin analogues Amylin agonism Phase 1–2  
(eg, AM833; Davalintide: AC2307)

(103, 116)

PYY analogue PYY agonism Phase 1b  
(eg, PYY1562)

(103, 116, 117)

FGF21 Stimulation of glucose up-
take, adiponectin secretion

Obesity: Phase 1b  
Type 2 diabetes: Phase 2

(121)

GDF-15 - Preclinical (122, 123)

Leptin analogues Human recombinant leptin 
analogue

Phase  
Metreleptin (Myalept) and pramlintide-

metreleptin combination

(121)

Velneperit Neuropeptide Y5 receptor 
antagonist

Preclinical  
(eg, S-2367)

(103, 116)

Cannabinoid type-1 receptor 
blockers

Antagonism of cannabinoid 
type-1 receptors

Preclinical studies  
(eg, SR141716, AM251, AM 6545)

(103, 116)

Icilin/ dimethylphenyl-
piperazinium (DMPP)

Activation of cold and nico-
tinic receptors

Preclinical studies (124)

Adapted from references (103, 104, 105, 118).
Abbreviations: FGF-21, fibroblast growth factor-21; GDF-15, growth differentiation factor-15; sc, subcutaneous; GLP-1, glucagon-like peptide-1; 
PYY, peptide YY.
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