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Exercise is widely regarded as one of the most valuable components of behaviour that can influence 

body weight and therefore help in the prevention and management of obesity. Indeed long term 

controlled trials show a clear dose related effect of exercise on body weight. However, there is a 

suspicion, particularly fuelled by media reports, that exercise serves to increase hunger and drive up 

food intake thereby nullifying the energy expended through activity. Not everyone performing 

regular exercise will lose weight, and several investigations have demonstrated a huge individual 

variability in the response to exercise regimes. What accounts for this heterogeneous response? 

First, exercise (or physical activity) through the expenditure of energy will influence the energy 

balance equation with the potential to generate an energy deficit. However, energy expenditure also 

influences the control of appetite (i.e. the physiological and psychological regulatory processes 

underpinning feeding) and energy intake. This dynamic interaction means that the prediction of a 

resultant shift in energy balance, and therefore weight change, will be complicated. In changing EI, 

exercise will impact on the biological mechanisms controlling appetite. It is becoming recognized 

that the major influences on the expression of appetite arise from fat-free mass and fat mass, 

Resting Metabolic Rate, gastric adjustment to ingested food, changes in episodic peptides including 

insulin, ghrelin, CCK, GLP-1 and PYY, as well as tonic peptides such as leptin. Moreover there is 

evidence that exercise will influence all of these components which, in turn, influence the drive to 

eat through the modulation of hunger (a conscious sensation reflecting a mental urge to eat) and 

adjustments in post-prandial satiety via an interaction with food composition. The specific actions of 

exercise on each physiological component will vary in strength from person to person (according to 

individual physiological characteristics) and with the intensity and duration of exercise. Therefore, 

individual responses to exercise will be highly variable and difficult to predict. 
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‘In the surveys so far carried out  the time spent sitting has varied from 83/4 to 103/4 h/day and the 

time lying down has been of the same order. It looks as though man should be regarded now, if not in 

the past, as a predominantly sedentary rather than an upright animal’  

Edholm, Fletcher,Widdowson and McCance, 1955.  

Background Issues 

For a number of reasons- both theoretical and practical – it is important to clarify the effect of 

exercise (physical activity) on energy intake (appetite control). The issue can be approached by 

addressing two specific questions formulated in classical investigations in the field. First, Edholm [1, 

2] sought to establish a fundamental relationship between energy expenditure (EE) and energy 

intake (EI). Behind this was ‘the desire to find out more about the mechanisms which relate intake to 

expenditure – what regulates appetite, in fact’ [1]. In time consuming studies on army cadets, 

measures of energy expended in daily activities and energy consumed in meals and snacks showed 

no meaningful association within a single day. However, over a 2 week period, there was a clear 

association between energy intake and expenditure. Edholm et al (1955) argued that ‘the differences 

between the intakes of food must originate in the differences in energy expenditure’ [1]. Strangely 

this view was ignored and the general approach to the issue was largely abandoned. Indeed the 

strategy of integrative physiology was replaced with molecular biochemistry as a form of enquiry 

into biology and behaviour. However, just because Edholm’s views have been overlooked, does not 

mean that they were wrong. 

A second approach arose from the work of Jean Mayer and especially from his painstaking studies 

on jute mill workers in Bengal [3]. In this herculean study a comparison was made between, on one 

side the physical exertion and effort required by particular forms of work and, on the other side the 

calculated dietary intake of individual workers. Jobs ranged from heavy duty tasks such as lifting and 

sorting to clerical duties and administrative desk jobs requiring little physical effort. It was assumed 

the energy expended was closely related to the physical effort of the daily work.  In a classic figure 

from the published study (see top panel Figure 1), an inverted U shaped function described the 

relationship between EE and EI. Interestingly the right hand portion of the curve showed an 

approximately linear relationship between EI and EE but only above a certain level of energy 

expenditure. This was consistent with the approach demonstrated by Edholm [1, 2]. Indeed, Mayer 

proposed that ...‘the regulation of food intake functions with such flexibility that an increase in 

energy output due to exercise is automatically followed by an equivalent increase in caloric intake” 

[3]. However, Mayer also demonstrated that at very low levels of EE – and in work that could be 
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regarded as sedentary – the association between EE and EI was lost and dietary intake increased 

disproportionately in relation to the energy expended. In this ‘sedentary zone’ restraint over 

appetite appeared to be lost. This observation appears to have considerable implications for our 

current sedentary lifestyles and levels of obesity.  

------------------------------------------Figure 1 near here ----------------------------------------------------- 

Interestingly, this picture has been translated into formal terms by Henry Taylor who related the 

homeostatic control of appetite to the physical activity performed. 

…’the late Henry Taylor favoured a model that linked energy intake to expenditure in a J-shaped 

curve (personal communication, late 1970s). The first part of his concept was that energy intake was 

in exact homeostasis with energy expenditure under conditions of high energy expenditure. The 

second part was that there is a failure of homeostasis in sedentary lifestyles because of its 

accompanying low energy expenditure. He postulated that bodily signals go awry in sedentary 

lifestyles; when a person does no physical work, the body will not recognize that it is being overfed. 

Sedentary persons may lose the innate ability to compensate for inactivity by reducing their eating’.  

(cited by Jacobs, 2006 p 1234) [4]. 

Common perspectives 

Currently there appears to be considerable ambiguity concerning the usefulness of physical activity 

(PA) for weight loss, and this questions its value for dealing with the high prevalence of obesity. On 

one hand the public health authorities advise citizens to increase PA levels and to decrease 

sedentary time (in addition to restraining dietary intake). On the other hand, in recent years, the 

media has promulgated messages such as ‘Exercise will not make you thin’ (Time Magazine), 

‘Exercise makes you fat’ (Daily Telegraph, UK) and ‘Why running makes you fat’ (Observer, UK). 

Given these strident claims it would be surprising if citizens were not confused. Since many people 

are pleased to read messages about the futility of exercise to reinforce a preference to avoid 

physical activity, the implication of this publicity is serious. Importantly these messages portrayed in 

the popular media are false. There is clear evidence from large scale controlled trials that PA carried 

out over long periods of time produces a dose-dependent reduction in body weight [5, 6]. The effect 

is clearly present whether the exercise is measured in minutes of activity per week or in kcal energy 

expended. On the average, the more exercise carried out, the greater the weight loss. This evidence 

is supported by the results of a series of reviews [7-9], including a Cochrane Review (the gold 

standard in assessing evidence) by Shaw et al. (2006) which concluded that ‘‘exercise has a positive 

effect on body weight and cardiovascular risk factors in people with overweight and obesity, 
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particularly when combined with a diet” [10]. A further systematic review concluded that ‘….for 

people starting an exercise programme, this leads to a negative energy balance and a remarkably 

consistent loss of body fat in relation to the net cost of exercise training’ [11]. Furthermore it is well 

established that the health benefits of regular exercise are independent of any changes in body 

weight [12].  

While such findings indicate that exercise can have a positive effect on body weight (if sufficient 

energy is expended) these reviews do not directly address Mayer’s original question of whether 

increases in EE automatically result in compensatory increases in EI. The fact that weight loss is seen 

with regular aerobic exercise suggests that any ‘energy saving’ mechanisms do not completely nullify 

the effects of exercise. Nevertheless, in many cases the degree of weight lost is somewhat less than 

that theoretically predicted on the basis of the measured EE and its presumed relationship to tissue 

lost [13, 14]. But note that the prediction of weight loss based on such methods has recently been 

revised [15, 16]. Moreover the changes in weight alone do not reveal the mechanisms involved, nor 

do they identify the physiological processes that produce the changes in body weight. The answer to 

these issues requires that studies on appetite control are carried out simultaneously with measures 

of energy expenditure. For many years the study of appetite control and the study of physical 

activity have been conducted quite independently – in separate specialised appetite or exercise 

laboratories – and the changes in EI and EE observed were interpreted in isolation. More recently 

appetite research has been embraced within an energy balance framework [17-19]. This has lead to 

the possibility of interpreting the effects of exercise in relation to theories of appetite control and to 

a phenomenon called  ‘energy homeostasis’. 

The adipocentric model of appetite and energy homeostasis. 

The theoretical basis for a potential role of exercise in appetite control has never been formulated. 

Therefore in seeking to reveal its role it is useful to have in mind prevailing views that have 

established the current dogma. Two notions seem to dominate the field; the first of these is the 

adipocentric concept of appetite control i.e. the view that adipose tissue is the main driver of food 

intake, with day-to-day food intake controlled in the interests of regulating body weight (and 

specifically, adipose tissue). During the 1950s three basic ideas monopolised approaches to ‘body 

weight regulation’; these were the glucostatic [20], aminostatic [21] and lipostatic hypotheses [22]. 

These simple ideas exerted a mild but pervasive influence on thinking about a complex problem. The 

discovery of leptin in 1994 by Zhang et al. [23] seemed to provide conclusive proof of the 

authenticity of the lipostatic  hypothesis (which was based on interpretations of the classic rat 

studies of Kennedy [22]), and leptin was construed as ‘the lipostatic signal’ that was an essential 
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component required in a negative feedback process for the regulation of adipose tissue. This idea 

has been incorported into models of appetite control in which leptin is depicted as the major signal 

(the missing link) that informs the brain about the state of the body’s energy stores [24, 25]. In turn 

a forceful interpretation of this view has positioned adipose tissue at the centre of appetite control. 

Indeed it has been stated by Woods and Ramsay [26] that...... ‘There is compelling evidence that 

total body fat is regulated...when it is decreased reflexes restore it to normal.....when it is increased 

reflexes...elicit weight loss. These processes account for the relatively stable maintenance of body 

weight over long periods’; and that...’food intake is an effector or response mechanism that can be 

recruited or turned off in the regulation of body fat’ (Woods and Ramsay, 2011, p 109). This view has 

been incorporated into general thinking about the control of appetite and appears to have been 

widely accepted. In addition, leptin is understood to play a key role in the control of appetite by 

adipose tisssue. Although it is beyond doubt that leptin exerts a critical influence in many 

biochemical pathways concerning physiological regulation [27, 28] it has been argued that the role 

of leptin in the etiology of obesity is confined to  very rare situations in which there is an  absence of 

a leptin signal [29]. Others have also argued that the role of leptin signalling is mainly involved in the 

maintenance of adequate energy stores for survival during  periods of energy deficit [30]. This is why 

leptin may be critical in the resistance to weight loss with dieting. More importantly for this article, 

there is little evidence for a role for leptin in day to day appetite control. In addition the impact of 

adipose tissue itself has not been shown to exert an influence over the parameters of hunger and 

meal size which are key elements in day to day control of appetite.  

The second issue that appears to influence thinking is the notion called ‘energy homeostasis’. This 

idea has been proposed to account for the accuracy in which energy balance is maintained over time 

in normal individuals. A recent commentary has argued that ‘for a healthy adult weighing 75kg 

typically consuming approximately one million kcal each year, then a mismatch of just 1% (expending 

27 kcal per day fewer than consumed) will yield a body fat increase of 1.1 kg after 1 year’ [31]. This 

type of calculation which uses the 1 kg of fat for 8000 kcal rule has recently been shown by Hall [15] 

and others [16] to be simplistic and to produce implausible predictions. Further support however has 

used a study on 15,624 healthy Swedish women that indicated for this cohort an average annual 

weight gain of 0.33 kg/year suggesting that for these participants there was an accuracy of >99.5% in 

the matching of EI to EE [32]. Of course, if you only measure humans who remain stable, then you 

will inevitably find stability. It might be observed in passing that the prevalence of obesity in Sweden 

is approximately 9% whereas in the US it is >30%. The relative stability of body weight in Sweden 

appears to be cultural rather than biological.  
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Moreover, given the worldwide epidemic of obesity, and the apparent ease with which many human 

beings appear to gain weight, it seems implausible that some privileged physiological mechanism is 

regulating body weight with exquisite precision. If such a mechanism existed it would surely operate 

to  correct weight gain once it began to occur. The compelling phenomenon of dietary-induced 

obesity (DIO) in rats also suggests that physiology can be overcome by a ‘weight-inducing’ nutritional 

environment, and that ‘energy homeostasis’ cannot prevent this. The phenomenon of DIO in rats 

questions the notion of an all powerful biological regulatory system. Moreover, this experimental 

‘fact’ strongly resonates with the proposal of a human ‘obesogenic environment’ that promotes 

weight gain in almost every technologically advanced country on the planet [33]. The analogy with 

DIO in rats is quite compelling, and is usually not denied. 

However, the existence of energy homeostasis is frequently invoked to account for the readiness of 

obese people who have lost weight, to regain it. But there is no compelling argument why the cause 

of weight regain in obese people who have slimmed down should necessarily be attributed to the 

force of a biological imperative (although physiological processes certainly contribute), any more 

that a biological imperative was responsible for people getting fat in the first place (or for DIO rats 

getting fat on a high fat diet). People who have lost weight continue to live in the same obesogenic 

environment that contributed to their original weight gain. However the notion of energy 

homeostasis suggests that there is some ‘deus ex machina’ whose job is to calculate the total energy 

transactions in the body and to moderate these to bring about a control of body weight. Moreover 

the argument is circular. To the question, why is body weight stable, the answer is because of energy 

homeostasis. But to the question, what is the evidence for energy homeostasis, the answer is the 

stability of body weight. Crucially, the case for the operation of energy homeostasis rests on the 

existence of body weight regulation and stability. 

The argument for body weight stability is not compelling. The existence of world wide obesity 

suggests that body weight is not tightly regulated. An alternative view that has been discussed for 

decades is that  regulation is asymmetrical [34]. Whilst the reduction in body weight is strongly 

defended, physiology does not resist an increase in fat mass [35]. Indeed the physiological system 

appears to permit fat deposition when nutritional conditions are favourable (such as exposure to a 

high energy dense diet). This means that the role of culture in determining food selection is critical. 

In many societies the prevailing indeology of consumerism encourages overconsumption.This 

applies not only to foods but to all varieties of material goods. The body is not well protected from 

the behavioural habit of overconsuming  food; processes of satiety can be over-ridden to allow the 
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development of a positive energy balance. This has been referred to as ‘passive overconsumption’ 

[36, 37] and is regarded as a salient feature of the obesogenic environment (36).  

Updating the formula for appetite control: a proposed role for fat-free mass and resting metabolic 

rate 

Over the course of 50 years scientific thinking about the mechanisms of appetite control has 

changed dramatically. In the 1950s and 1960s the hypothalamic ‘dual centre’ hypothesis was 

believed to provide a comprehensive account of the intiation and inhibition of food intake e.g. 

Anand & Brobeck (1951) [38]. Following technological advances in the identification of 

neurotransmitter pathways in the brain, the 2-centre hypothesis was replaced by a model (proposed 

by Blundell, 1976) which was based on catecholaminergic and serotonergic aminergic systems [39]. 

At the time this approach was  understood to provide a modern and powerful explanation of 

appetite. Later, with the discovery of families of neuropeptides, the peptide hypothesis of central 

control of appetite replaced the ‘somewhat dated’ aminergic ideas. A recent conceptualisation has 

proposed a theory of appetite control based on an interaction between adipose tissue (and 

prominent adipokines) and peripheral episodic signals from intesting peptides such as ghrelin, CCK, 

Insulin, GLP-1, PYY, amylin and oxyntomodulin [24]. This 2 component approach apparently 

summarises current thinking. However, the history of the physiology of appetite control illustrates 

that any model can be improved by new findings and that some models have to be completely 

replaced following the advent of new knowledge. Therefore the current conceptualisations should 

not be regarded as permanent fixtures; they are transient representations of the current state of 

knowledge. 

Moreover, the current model of appetite control has been compiled on the basis of evidence from 

studies directly on the brian (of rats and mice), in vitro molecular studies on adipose tissue and 

experiments on peripheral hormones such as insulin and other GI peptides. Not since the work done 

by Edholm [1, 2] and Mayer [3] in the 1950s has thinking about appetite control taken account of 

evidence in the field of human energy balance research. Therefore it is worth considering whether or 

not any light can be shed on the expression of human appetite from an energy balance approach. 

A recent approach to the study of exercise on appetite control has used  a multi-level experimental 

platform in obese humans [40]; relationships among body composition, resting metabolism, 

substrate oxidation, gastrointestinal peptides, sensations of appetite and objective measures of daily 

energy intake and meal sizes, have been examined. Such a multi-level approach has not previously 

been undertaken (although it has not been hindered by lack of technology). An important feature of 
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the approach is that all variables have been objectively measured and quantified. This is particularly 

important in the case of daily energy intake for which self-report or self-recall do not provide data of 

sufficient accuracy to be used in assessments of the energy balance budget. 

In several cohorts of obese (men and women) the relationship between meal sizes, daily energy 

intakes and aspects of body composition (fat mass [FM] and fat-free mass [FFM]) have been 

measured simultaneously in the same individuals at different time intervals several months apart 

[41]. Contrary to what many would have expected, a positive association was observed between 

FFM and daily EI, and also with meal size. In other words, the greater the amount of FFM in a person, 

the greater was the daily energy consumed and the larger the individual meal size (in a self-

determined objectively measured eating opportunity). There was no relationship with BMI nor with 

the amount of adipose tissue (FM) suggesting that, in a free-running situation (with participants not 

subject to coercive weight loss or dietary restriction), FM does not exert control over the amount of 

food selected in a meal, nor consumed over a whole day. This outcome is clearly not consistent with 

an adipocentric view of appetite control. Moreover the relationships were independent of gender. 

This means that gender does not explain the association of FFM with EI. On the contrary FFM can 

explain the gender effect; men (in general) eat more than women because they have greater 

amounts of FFM. 

This association between FFM and eating behaviour has implications for an energy balance approach 

to appetite control, and for the relationship between EE and EI as described by Edholm [1, 2]. It is 

well established that FFM is the primary determinant of RMR, and that RMR is the largest 

component of total daily energy expenditure [42]. From a homeostatic standpoint, an ongoing and 

recurring drive to eat arising from the physiological demand for energy (e.g. resting metabolic rate)  

appears logical, as this energy demand would remain relatively stable between days and would 

ensure the maintenance and execution of key biological and behavioural processes. Consequently it 

might be predicted that RMR, the major component of daily EE (60 – 70%) could be associated with 

the quantitative aspect of eating behaviour and with daily EI. When this was examined [43], it was 

demonstrated that  RMR was  a significant determinant of the size of a self determined meal, and of 

daily energy consumed (when measured objectively and quantified). In addition, RMR was 

associated with the intensity of hunger objectively rated on hand held electronic data capture 

instruments [44].  

Consequently, these findings – that are broadly consistent with the early predictions of Edholm – 

have demonstrated an association between the major components of daily EE and daily EI. In other 

words, they demonstrate that appetite control could be a function of energy balance. Importantly 
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the major findings have been replicated in completely independent large data sets that included 

participants from different ethnic groups showing a huge range of energy intakes [45], and from 

participants of variable BMIs allowed to freely select their own diet under meticulously controlled 

semi-free living conditions (Stubbs, Whybrow, and Horgan – personal communication). These 

confirmatory reports suggest that the associations are robust and are not restricted to a particular 

group of people measured in a specific geographical location. 

Considering the strength of the associations, these findings have implications for the role of FFM and 

RMR in appetite control. They suggest that the conventional adipocentric model should be revised to 

allow for an infuence of FFM – in addition to FM. The adipocentric feature of the conventional model 

would be lessened. Our findings do not imply that FM does not play a role in appetite control. Our 

interpretation is that,under normal weight  conditions, FM has an inhibitory influence on food intake  

but the strength of this tonic inhibition is moderated by  insulin and leptin sensitivity [46]. As people 

overconsume (due to cultural obesogenic influences), fat mass increases and the consequential 

increase in leptin and insulin resistance  weaken the inhibitory influence of fat mass on appetite. This 

amounts to a ‘dis-inhibition’, so that accumulating fat mass fails to suppress food intake and permits 

more eating (over-consumption). Indeed there is good evidence that low insulin sensitivity reduces  

post-prandial satiety and weakens meal to meal appetite control [47]. In addition, clear positive 

associations of FFM and EI, and negative associations of FM and EI, have been demonstrated – but 

overlooked – in a comprehensive analysis carried out by Lissner et al. [48] more than 25 years ago. 

Therefore, on the basis of  these recent findings we have proposed a conjoint influence of FFM and 

FM on appetite control [49]. This is set out in Figure 2. What are the implications of this formulation 

for the relationship between exercise and appetite control? 

  ------------------------------------------Figure 2 near here ----------------------------------------------------- 

Studies on the impact of exercise on energy intake 

It should be recognised that studies on the effect of exercise (energy expenditure) on energy intake 

(appetite) are the converse of studies on the effect of manipulating energy intake on energy 

expenditure. Both strategies intervene in an actively regulated physiological system. Considering the 

impact of a coercive increase in food consumed, a landmark study by Levine et al. [50] has 

demonstrated that a mandatory ingestion of 800kcal/day above energy requirements over a 2 

month period  did indeed lead to an increase in body weight. However, the system tended to oppose 

this action through an increase in behavioural activity – called Non-Exercise Activity Thermogenesis 

(NEAT). The most striking feature of the study however was the wide range of individual responses; 
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some partcipants showed a large increase in NEAT and therefore gained little weight, whereas the 

opposite was true for others. This outcome calls to mind the results of the Quebec feeding study on 

monozygotic twins [51]. Although members of the twin pairs were equally overfed, the variation in 

weight gained  between pairs of twins was large (whereas the variation within any pair of twins was 

small).  Again individual biological variability was pronounced. 

What is the case for execise? Many studies that have assessed EI during the manipulation of exercise 

have been of acute in nature i.e. often single dose, single day experiments (for a review, see [52] or 

[53]). The clear outcome is that exercise has little effect on EI within a single day [54]. However, as 

the exercise is continued over several days the system begins to respond and a small compensatory 

rise in EI has been observed in both men and women [18, 55]. Comparisons between participants 

undergoing high, medium and low volume sessions of exercise indicated a graded and proportional 

(but partial) compensatory increase in EI which accounted for approximately 30% of the EE [18]. 

However there was a large range of individual variability. This variation became clearer when daily 

exercise sessions were  continued for 16 days with participants showing between 0% and 60% 

compensation in EI for the exercise EE [55]. As anticipated this variable response was reflected in 

small changes in body weight. 

For medium term studies, in which mandatory exercise sessions were performed daily for 12 weeks 

in overweight and obese individuals [13], an average weight loss of approximately 3.3 kg was 

recorded (the average reduction in body fat was also 3.3kg) but with weight change varying between 

–14.7 kg and +1.7 kg. This outcome is quite remarkable because the weight gain of some participants 

was  achieved despite the performance of supervised and measured exercise sessions (5 days per 

week for 12 weeks). Therefore even though all participants completed the exercise sessions (with 

total exercise-induced EE calculated at 28 – 29,000 kcal), there was a large variation in the change in 

body composition. The variability in body weight changes following 12 weeks of supervised aerobic 

exercise has subsequently been replicated in a larger number of overweight and obese individuals 

(see Figure 3) and in several other trials of the effects of physical activity on weight loss in obese 

people.   

In many studies on the effect of exercise on body weight, the average weight change would be 

regarded as the most important parameter. However, as several writers such as Dilnot and Blastland 

[56] have pointed out science is often weakened by subscribing to the ‘tyrany of the average’. The 

most significant outcome of the study by King et al. [13]  – and other similar investigations [14] – is 

the range of individual adjustments in body weight as shown in Figure 3. This type of outcome is 

robust and has been demonstrated in different types of participants followed over similar time 
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periods [14]. However, more significant than the change in body weight is the effect of exercise on 

body composition. The weight lost is almost entirely adipose tissue, where as the weight gain is 

reflected in lean mass (FFM) which is apparent in both men and women [57]. 

 

 

                                      .......................Figure 3 near here.....  

Exercise and the Appetite Control System 

Can the effects of exercise on body composition be explained by actions on the appetite control 

system? First of all, it is clear that any compensatory increase in EI, which could offset the exercise-

induced EE, is not uniform. Compensation varies markedly from person to person. One reason for 

this is the observed effects of exercise on different components of appetite control. During medium 

term studies it has been shown that exercise exerts a dual control of the expression of hunger [58, 

59]. First there is an exercise-induced increase in fasting –or early morning - hunger. However, in 

contrast, exercise improves satiety by increasing the post-prandial sensitivity to ingested nutrients 

consumed in meals. Interestingly the increase in post-prandial satiety – measured by the satiety 

quotient or SQ which is an index of the satiating capacity of the energy consumed [60] – is shown by 

all people who perform the exercise. However, the effect of exercise on fasting hunger is quite 

variable. Therefore it can be deduced that the range of the effects of exercise on overall EI is a 

function of the individual change in basal hunger together with the adjustment in postprandial 

satiety [58].  

A theoretical issue is whether the action of continuous exercise can be understood in the light of 

recent findings concerning the physiology of appetite control as described above. First, the 

objectively measured responses in appetite behaviour which in turn change EI can be accounted for 

by the impact of continuous exercise on physiological processes. Since exercise produces 

adjustments in blood flow, gastro-intestinal hormone response, gastric emptying, muscle cellular 

metabolism, adipose tissue biochemistry as well as brain activity, it will inevitably interfere with 

several of the mechanisms involved in the episodic control of appetite. Acute responses to exercise 

include changes in ‘appetite’ hormones such as ghrelin, GLP-1 and PYY [61] as well as variable 

changes in substrate oxidation in muscle and liver which may related to the post-exercise change in 

hunger and food intake [62].  
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Second, as exercise is repeated over months effects on body composition are observed; these 

normally take the form of a decrease in fat mass with maintenace of, or an increase in, lean tissue 

(FFM) [63]. These more gradual changes will bring about adjustments in the tonic control of 

appetite. Of importance will be a change in resting metabolism (RMR) due to changes in FFM and FM 

– now shown to be a determinant of meal size and daily EI [43] [as depicted in Figure 2], and changes 

in  insulin sensitivity (arising indirectly from a reduction in adipose tissue) which influences the 

accuracy of post-prandial satiety [47].  

Consequently it is possible to formulate an account of the way in which exercise can influence body 

weight. Acute effects of exercise on appetite will be mediated by episodic ‘satiety’ signals (arising 

from the act of eating,  changes in substrate oxidation (during or imediately after exercise), gastric 

emptying or other stomach events and skeletal muscle activity (postulated to alter brain dopamine 

and other transmitters). The effect of enduring exercise will be mediated via changes in body 

composition in addition to the short term changes noted above. Indeed the roles of FFM and FM in 

appetite control seem crucial to an understanding of the action of exercise. Exercise will usually 

increase FFM and decrease FM. An increase in FFM will increase the demand for energy (to meet 

increased energy requirements) and this will involve an increase in basal hunger. A decrease in FM 

will lead to greater postprandial inhibitory control of appetite (satiety) partly by an increase in 

insulin and leptin sensitivity. Therefore enduring exercise will lead to an increased sensitivity of 

appetite control mechanisms. This means that EI will be better matched to EE. However, one 

consequence of this is that overall EI may be increased. 

A summary of the impact of exercise on the control of appetite is set out in Figure 2. This 

formulation indicates how the cumulative effect of exercise on body composition (FM and FFM) with 

implications for hormone sensitivity, together with changes in gastrointestinal peptides responsible 

for satiety signaling can lead to variable modulation of the compensatory response. The effect of the 

particular intensity and duration of exercise on an individual person’s change in body tissues or 

hormone release, would lead to specific adjustments in the motivation to eat and the satiating 

response to foods consumed. Consequently, any compensation to prolonged exercise will depend, 

to a large degree, on the variability of the biological responsiveness between individuals. Therefore, 

the compensation can be accounted for by the action of exercise on the physiological mechanisms of 

appetite control. In turn the biological variation in these mechanisms from person to person can 

account for the variable effect of exercise on body weight (and body composition).  
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Figure captions. 

Figure 1. 

A modified version of the original graphic from the article by Mayer et al. [64] on the Bengal jute mill 

workers, showing the relationship between energy expended (according to the physical demands of 

work) and dietary intake. It is proposed that appetite control is homeostatically regulated when 

energy expenditure is high but becomes dysregulated in the sedentary ‘non-regulated’ zone in which 

homeostatic control over appetite is weak thereby permitting overconsumption [65]. 

Figure 2.  

Formulation of the major influences on appetite control using an energy balance framework.  There 

is a distinction between tonic (enduring, relatively stable over days) and episodic (varying in strength 

during the course of a day) processes. Episodic signals arise as a consequence of food consumption. 

Tonic signals arise from body tissues and metabolism. The effect of FM on EI reflects a lipostatic view 

of appetite control; leptin is a key mediator of the inhibitory influence of fat on brain mechanisms. 

The metabolic demand for energy arises from energy requirements generated by the major energy 

using organs of the body (heart, liver, brain, GI tract, skeletal muscle) and reflected in RMR. The 

overall strength of the drive for food is the balance between the tonic excitatory and inhibitory 

processes. It is proposed that, as adipose tissue accumulates in the body, the tonic inhibitory effect 

of fat on EI becomes weaker (due in part to leptin and insulin resistance). Therefore as people 

become fatter it becomes more difficult to control appetite. The effect of exercise on appetite 

control can be understood according to the relative strength of its effects on the tonic and episodic 

signalling systems (see text). 

Figure 3.  

Individual changes in body mass and fat mass following a mandatory 12 week exercise programme in 

which supervised and monitored exercise sessions were give 5 times per week. The large individual 

variability shown is typical of the effects seen in other studies using medium term exercise 

interventions [13]. 
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