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Abstract
Apical periodontitis (AP) is a biofilm-associated disease initiated by the invasion of dental pulp by microorganisms from the 
oral cavity. Eradication of intracanal microbial infection is an important goal of endodontic treatment, and this is typically 
accomplished by mechanical instrumentation and application of sodium hypochlorite and chlorhexidine. However, these 
agents are tissue-irritating at higher concentrations and cytotoxic. Certain probiotics have been found effective in controlling 
marginal periodontitis, as evidenced by reduction of pathogenic bacterial loads, gains in clinical attachment levels, and 
reduced bleeding on probing. In vitro studies have shown inhibitory activity of some probiotics against endodontic pathogens. 
Similarly, in vivo studies in rats have demonstrated a positive immuno-modulatory role of probiotics in AP, as manifested 
by decreased levels of proinflammatory markers and increased levels of anti-inflammatory markers. A role for probiotics 
in effecting a reduction of bone resorption has also been reported. This review provides an outline of current research into 
the probiotic management of AP, with a focus on understanding the mechanisms of their direct antagonistic activity against 
target pathogens and of their beneficial modulation of the immune system.
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Introduction

Apical periodontitis (AP) is inf lammation of the 
periradicular tissue initiated by the microbial invasion of the 
tooth pulp [1–3]. The clinical presentation varies between 
classical signs of inflammation such as pain, swelling, and 
loss of function to a complete absence of discomfort [2]. A 
recent review article by Jakovljevic et al. [4] reported the 
worldwide prevalence of AP as 6.3%, an overall increase 

of around 1% since the last study in 2012 [5]. Similarly, the 
prevalence of AP in endodontically treated teeth increased 
from 35.9 to 41.3%. This increased prevalence of AP is a 
cause of concern as asymptomatic AP can go undiagnosed 
for a long time and may significantly add to the overall 
inflammatory burden in the body. Various inflammatory 
markers found elevated in root canal infections are also 
associated with other systemic inflammatory conditions [6]. 
The prospect of an etiological association of cardiovascular 
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disease with AP has generated interest within the scientific 
community following the reporting of signs of endothelial 
dysfunction in patients experiencing AP [7, 8]. AP-induced 
inflammatory mediators, along with activated immune cells, 
may also play a role in the development of insulin resistance 
and diabetes mellitus [9]. In other studies, the presence of 
periapical lesions has also been linked to poorer metabolic 
control in type 2 diabetic patients [10] and to unfavorable 
birth outcomes in pregnant females [11].

Root canal treatment (RCT) is performed for the 
management of AP and involves the elimination of 
microbes and their toxic products from the root canal of 
the tooth, followed by filling with an inert material [12]. 
This treatment also limits the spread of infections to the jaw 
and the other parts of the body [13]. The current protocols 
for root canal disinfection are directed at the non-specific 
killing of microbes by the combination of mechanical 
instrumentation and use of irrigants and medicaments such 
as sodium hypochlorite (NaOCl), chlorhexidine (CHX), 
and calcium hydroxide (CH) [14, 15]. Although root canal 
treatment achieves a higher success rate of around 85–95% 
[16], demographic studies have reported the prevalence of 
post-treatment AP to be in the range of 21–65% [13]. Most 
endodontic treatment failures are attributed to persistence 
of intracanal infection [17, 18]. Factors contributing to this 
are the complexity of root canal morphology, which hinders 
mechanical cleaning processes [19] and the intractable nature 
of many of the infecting microbial species when organized 
in the form of a biofilm [20]. Biofilm-inhabiting microbes 
are known to be considerably less sensitive to various 
stressors than they are when in planktonic communities 
[21]. Endodontists continue to actively seek new treatments 
to increase the efficiency of root canal biofilm elimination 
and to provide them with more predictable and successful 
treatment outcomes for AP [22].

Probiotics have evolved as a treatment alternative of 
considerable interest owing to their reported beneficial 
effects in managing chronic inflammatory conditions of the 
gut [23]. Also, a potential therapeutic role of probiotics in 
treating psychiatric disorders such as anxiety, depression, 
and autism through the gut-brain axis by modulating the 
gut microbiota has attracted attention in recent times. 
The gut-brain axis has as its basis the premise that the 
gut microbiota can influence brain functions and vice 
versa. This interaction is regulated by neural, endocrinal, 
and immunological components and is considered to 
have an important role in maintaining homeostasis [24, 
25]. In addition, probiotics may have a beneficial role in 
relieving the stress symptoms of irritable bowel syndrome 
and chronic fatigue syndrome. In other studies, probiotics 
have been implicated in delaying the progression of 
Alzheimer’s disease in a mouse model owing to their ability 
to restore cerebral glucose homeostasis [26]. Much like the 

gastrointestinal tract activities of probiotic lactobacilli, 
which inhibit colonization of the gut by pathogenic bacteria 
[27], certain probiotics may prevent growth of and biofilm 
formation by the disease-causing bacteria in the oral cavity 
[28]. Furthermore, probiotic-mediated modulation of the 
immune response may also play an important role in limiting 
the extent and severity of chronic oral diseases [29]. More 
specifically, beneficial outcomes associated with the use of 
probiotics have been reported in clinical studies of dental 
caries [30, 31], gingivitis [32], and marginal periodontitis 
[33, 34]. However, studies exploring the potential role of 
probiotics in the treatment of AP are relatively scarce and 
are largely limited to laboratory-based and animal studies. 
Certain probiotic Lactobacillus and Bifidobacterium strains 
exhibit in vitro antimicrobial activity against the important 
endodontic pathogens, Enterococcus faecalis and Candida 
albicans [35], and anti-inflammatory activities have also 
been reported in a Wistar rat study [29]. Moreover, it is 
important to note that to date, in these reported studies, there 
has been considerable methodological heterogeneity in the 
study designs and in the selection criteria for the probiotics 
as well for their dosing schedules and because of this it is 
difficult to make generalizations about the significance of 
the clinical outcomes. Nevertheless, probiotics appear to 
provide a novel and very promising therapeutic option, 
especially considering the stark limitations of the currently 
available conventional treatment regimens and their role in 
the management of AP should continue to be explored using 
carefully standardized study designs. This review critically 
explores the prospects for application of probiotics in the 
management of AP.

Etiology and Pathogenesis of Apical 
Periodontitis

Mixed consortia of Gram-negative bacteria such as 
Fusobacterium nucleatum, Prevotella intermedia, 
Treponema denticola ,  Tanneralla forsythia  and 
Porphyromonas gingivalis, and the Gram-positive Ent. 
faecalis and various members of the genera Parvimonas, 
Filifactor, Pseudoramibacter, and Streptococcus are 
encountered amongst the most prominent endodontic 
pathogens [36, 37]. Moreover, it has been estimated that 
more than 50% of endodontic bacteria remain uncultivated 
[38]. This highlights the considerable lacunae that exist 
concerning the exact role of many bacterial species in AP 
and their contributions to failures in treatment outcomes 
[20]. The unique attributes of biofilm-associated microbial 
communities have emerged as central to our understanding 
of many infectious diseases including root canal infections. 
Biofilms of microorganisms tenaciously attached to root 
canal surfaces are frequently found associated with apical 
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periodontitis [20, 39]. The potential significance in AP of 
microbial biofilms on root canal walls along with amorphous 
material filling the intercellular space was first reported by 
Nair [40]. Scanning electron microscopy studies were soon 
visualizing bacterial colonization of the root tip affected 
by AP [41]. In a histopathological study, the presence of 
bacterial biofilms was visualized in both untreated and 
treated canals, the prevalence however being more in 
teeth having larger radiographic lesions [42]. Preventing 
biofilm formation and its elimination if present are of prime 
importance for the achieving of root canal disinfection [37]. 
Microbes enjoy numerous benefits when present in biofilm 
communities as compared with when they are adopting 
a planktonic lifestyle. Of particular significance are the 
facilitation of gene transfer (including antibiotic resistance 
determinants), the reduced susceptibility to antimicrobials, 
and the increased protection against the host immune 
response [21, 43]. All of these factors contribute to make 
complete elimination of root canal infection extremely 
difficult to achieve [37].

The essential role of microbes and the host response 
to their presence reveals AP as a pathologically dynamic 
condition [44]. Once microorganisms invade a root canal, 
their toxins, and bioactive metabolic products accumulate in 
the periapical area inducing a host-mediated inflammatory 
response. The microbial toxins have pathogen-associated 
molecular patterns, and these can be identified by pattern 
recognition receptors including toll-like receptors (TLR) 
[45, 46]. TLR intercept various microbial components 
and initiate inflammatory cascades releasing numerous 
proinflammatory cytokines and inducing neutrophil 
phagocytosis. Adaptive immunity is activated by dendritic 
cells (DC) as via antigen processing and presentation to T 
cells [47]. Periodontal tissues contain two types of immature 
DC: Langerhans-type DC (CD1a+) and interstitial type DC 
(CD1a−). These identify and process antigens, following 
which they then migrate to lymph nodes and stimulate T-cell 
immune responses [48]. While the host immune system 
endeavors by such mechanisms to eliminate microbial 
infection, microorganisms when present in biofilms can 
camouflage their immunogenicity and evade host immune 
reactions [49]. Thus, the ultimate outcome of incipient AP is 
largely dependent upon the dynamics of this classical tussle 
between microbe and host. The bone resorption in AP is a 
dynamic process and is governed by osteoblast-osteoclast 
interactions [50]. The triad of RANK (receptor activator 
of nuclear factor kappa-B), RANKL (RANK ligand), and 
OPG (osteoprotegerin) are involved in signaling for bone 
formation-resorption processes [51]. RANK is produced 
on osteoclast precursor cells, and RANKL is expressed by 
osteoblastic cells. Binding of RANK to RANKL leads to 
differentiation and activation of osteoclasts, resulting in 
increased bone resorption. OPG, on the other hand, blocks 

this interaction by binding with RANKL leaving unattached 
RANK [50]. Endodontic pathogens promote bone resorption 
either directly by stimulating RANKL expression or by 
stimulating the production of proinflammatory mediators 
like TNF-α and IL-1β [51].

Disinfection Strategies in Root Canal 
Treatment: Past, Present, and Future

The ability to clean and shape root canals is critical, as 
bacteria remaining after treatment are the most important 
predisposing factors causing post-treatment AP. Various 
studies have found reduced microbial counts effected by 
mechanical instrumentation, even without application 
of an irrigant [52]. However, accessibility to mechanical 
cleaning especially in recondite parts of root canals 
remains a challenge [53]. To complement mechanical 
instrumentation, antimicrobial irrigants are used. This 
serves multiple functions including disinfection of the 
entire root canal, flushing out of debris including bacterial 
cells and their metabolites, organic and inorganic tissues, 
lubrication of the root canal, and inactivation of endotoxins 
[54]. NaOCl is a commonly used antimicrobial irrigant for 
root canal disinfection. Interestingly, it is still delivered 
in concentrations of between 0.5 and 6%, and there is 
an ongoing debate regarding the ideal concentration for 
intracanal irrigation. A recent study reported no difference 
between the use of low and high concentrations of NaOCl 
and subsequent healing of AP [55]. Also, no difference in the 
number of postoperative samples having cultivable bacteria 
was reported [56]. The bis-biguanides (especially CHX) are 
also commonly used endodontic irrigants. The positively 
charged CHX molecule interacts with the negatively charged 
bacterial cell wall causing structural damage and even cell 
death when used at high concentrations [57]. Bacterial 
survivors were found however after irrigation with either 
NaOCl or CHX in a clinical study of persistent root canal 
infections [58]. Although the use of NaOCl has a long 
history of safe and successful use within the root canal 
space, its extrusion into the periapical area, as evidenced by 
profuse bleeding, acute pain, and immediate swelling, may 
be associated with an array of cytotoxic effects ranging from 
ulceration, hemolysis, and necrosis to damage to the nerves 
[59, 60]. Reports of the cytotoxicity of CHX when used 
in higher concentrations also underline the potential risks 
associated with its application to human tissues [61]. These 
studies indicate the need for improvement in the application 
protocols of existing irrigants. Substitution or addition of 
newer and more effective irrigants is required to address the 
complex problem of persistent root canal infection. Novel 
disinfectants such as ozone [62, 63], photodynamic therapy 
[64], nanoparticles [65], and cold atmospheric plasma [66, 
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67] have been tried with variable outcomes and only limited 
clinical success in the field of endodontics.

Probiotics in Oral Health

According to the Food and Agricultural Organization 
and World Health Organization, probiotics are “live 
microorganisms which when administered in adequate 
amounts confer a health benefit on the host” [68]. The 
field of probiotics has rapidly developed owing to the 
combination of improved knowledge, technology, and 
consumer awareness [69]. While health promoting strains 
are reported for many species, this review is focused on 
lactic acid bacteria (LAB) and the genus Bifidobacterium 
because of their role in the health of the oral cavity. A 
variety of strains of LAB, particularly members of the 
genus Lactobacillus, are now most commonly used as 
probiotics [70], for food preservation [71, 72] and as 
therapeutic agents [73]. Some LAB have also been used 
to help control certain metabolic syndromes, cancer, and 
obesity [74]. The LAB are ubiquitous and are found in a 
diverse range of natural habitats including plants, animals, 
manures, and a variety of human tissues including the 
gastrointestinal tract, oral cavity and vagina [75, 76]. 
They are all Gram-positive, non-spore-forming, catalase-
negative, and non-motile bacteria. Bifidobacterium 
species such as B. bifidum, B. animalis, and B. breve, 
are naturally occurring residents of the human gut and 
reportedly provide numerous benefits to their human host, 
ranging from protection against pathogenic bacteria such 
as Helicobacter pylori, cancer and aberrant activation of 
the immune system as well as helping to control serum 
cholesterol levels, improving lactose intolerance [77] and 
reducing host susceptibility to infection and allergies [78].

The beneficial effects of certain probiotics in modulating 
the gut microbiota and improving gastrointestinal 
health are now well recognized [79, 80]. The functional 
similarities between the biofilms of the gut and of the oral 
cavity have subsequently led to the introduction of oral 
cavity probiotics for the management of chronic dental 
diseases such as dental caries and marginal periodontitis 
[81]. Both of these conditions are multi-factorial in their 
pathogenesis, but their underlying etiologies are linked 
to multi-species biofilms. However, acidogenic bacteria 
such as Streptococcus mutans and Lactobacillus in the 
presence of favorable environmental conditions cause 
caries [82]. On the other hand, proteolytic bacteria such 
as P. gingivalis, T. forsythia, and T. denticola are strongly 
linked to the development of periodontitis [83]. Dental 
caries is considered to be the most common disease 
affecting humans and is characterized by the dissolution of 
minerals and the destruction of the organic content of the 

teeth [84]. Probiotics have increasingly been investigated 
as a prophylactic measure for the prevention of dental 
caries [85]. Indeed, various formulations of probiotic 
strains of Lact. rhamnosus [86, 87], Lact. reuteri [88] and 
Lact. paracasei [89], and Bifidobacterium animalis subsp. 
lactis [90] have been reported to have anti-caries activity. 
The observed reduction in caries activity associated with 
their use has been attributed to their activity in preventing 
biofilm formation and in interfering with streptococcal 
colonization [29, 87, 91].

Periodontitis, with a reported prevalence of around 
50%, is manifested as inflammation of the tooth-supporting 
tissues and it occurs in response to tissue damage elicited by 
biofilm-located pathogens [92]. Lact. salivarius [33], Lact. 
reuteri [93], Lact. casei [94], and B. animalis [95] have been 
used with some success to control marginal periodontitis. 
Few naturally occurring species of lactobacilli in the oral 
cavity have been shown in vitro to exhibit antimicrobial 
activity against common periodontal pathogens [75]. Multi-
dimensional activities of probiotics involving both the direct 
inhibition of pathogen growth and the beneficial modification 
of the host tissue response by reducing formation of 
proinflammatory molecules and stimulating the output of 
cytoprotective proteins are considered to be the basis for 
the observed beneficial outcomes associated with the use 
of probiotics [96]. A systematic review of 12 randomized 
controlled trials and three review articles concluded that oral 
probiotics have a beneficial role in maintaining oral health 
by reducing the counts of “oral pathogens” [97]. Another 
meta-analysis reported significant clinical attachment gains 
associated with the adjunctive use of probiotics in chronic 
periodontitis patients [98]. In other studies, the auxiliary 
use of probiotic Lact. paracasei in milk led to significantly 
less gingival inflammation [32] and Weissella cibaria was 
reported to inhibit Fusobacterium nucleatum and to reduce 
the production of some of the volatile sulphur compounds 
responsible for halitosis [99]. Streptococcus salivarius 
K12 has antimicrobial activity against bacteria involved in 
halitosis [100]. The potential role of bacilli as probiotics 
for oral health maintenance has also been evaluated, albeit 
with mixed results. Bacillus subtilis-containing mouth rinses 
[101] and tablets [102] were reported to have a beneficial 
role in treatment of periodontitis, reducing the number of 
periodontal pathogens and improving clinical parameters 
such as bleeding on probing and probing depth. However, 
in another double-blind placebo controlled randomized 
controlled trial B. subtilis, B. megaterium, and B. pumilus 
had no influence on gingival indices and bleeding on probing 
[103]. It was consistently observed that the health benefits 
of the probiotics were strictly dependent on the strain type, 
dose and duration of application.

It should be mentioned that dental caries has a direct 
contributory role in the etiology of AP. The  demineralized 
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tooth structure caused by caries provides an easy portal 
for bacterial entry to the dental pulp, where they can 
cause pulp necrosis and subsequently AP [44]. While the 
role of marginal periodontitis in causing pulpal changes is 
controversial [104], a beneficial effect of periodontal therapy 
on endodontic outcomes has been reported [105, 106]. 
Therefore, understanding the efficacy of probiotics in these 
conditions may help in formulating and selecting probiotic 
strains having the dual roles of prevention and therapy in the 
management of AP.

Probiotics in Apical Periodontitis

Five laboratory and two animal studies assessing the 
potential beneficial role of Lactobacillus species in the 
treatment of AP (one in combination with a Bifidobacterium 
strain) are depicted in Table 1. Laboratory-based studies 
examined the antimicrobial effect of cell-free supernatants 
(CFS) [35, 107, 108] and lipoteichoic acid extracts from 
Lact. plantarum [109, 110]. Strains from a commercial 
probiotic cocktail significantly inhibited the growth of 
planktonic and biofilm preparations of Ent. faecalis and 
planktonic C. albicans [107]. In another study, unconfirmed 
Lact. rhamnosus and Lact. plantarum displayed strong 
activity against Ent. faecalis [108]. Lact. plantarum 
ATCC 8014 and Lact. rhamnosus ATCC 7469 were also 
strongly inhibitory to Ent. faecalis and C. albicans in both 
planktonic and biofilm cultures; however, B. bifidum ATCC 
11863 appeared only to be inhibitory to planktonic bacteria 
[35]. Systemic administration of the two probiotics, Lact. 
rhamnosus LR04 and Lact. acidophilus LA14 significantly 
reduced the bacterial counts in both the saliva and root canals 
of rats [29]. In another set of in vitro studies, lipoteichoic 
acid from Lact. plantarum displayed antimicrobial activity 
in both a multi-species biofilm comprising Actinomyces 
naeslundii, Ent. faecalis, Lact.salivarius, and Strep. mutans 
[109], and in a single-species biofilm of Ent. faecalis 
[110]. Lipoteichoic acid is a biologically-active cell wall 
component of Gram-positive bacteria such as Lactobacillus 
species that has been found to inhibit Ent. faecalis biofilms 
in laboratory studies [111]. Lact. plantarum lipoteichoic 
acid (Lp.LTA) has been reported to inhibit biofilm formation 
by certain oral cavity pathogens, such as the cariogenic 
species Strep. mutans via disruption of quorum sensing 
processes [111]. Lp.LTA can also exhibit a favorable 
immunomodulatory role by enhancing the production of 
anti-inflammatory cytokines. Recently, the term postbiotics 
has been coined to encompass biologically active bacterial 
components such as lipoteichoic acid that can function to 
help “support health and/or well-being” [112].

Oral supplements of Lact. rhamnosus LR04 and Lact. 
acidophilus LA14 have been assessed in animal models 

[29, 113]. Lower levels of the proinflammatory markers 
IL-1β and IL-6 and a higher level of the anti-inflammatory 
marker IL-10 were reported following 30 days of probiotic 
supplementation in rats [29]. Follow-up studies using the 
same probiotics and similar methodology demonstrated 
a reduction in RANKL (receptor activator of nuclear 
factor kappa-B ligand) and TRAP (tartrate-resistant acid 
phosphate) levels, and raised OPG (osteoprotegerin) 
levels, together with a significantly lower volume of bone 
resorption in the probiotic treatment group by comparison 
with the control group. However, no significant difference in 
plasma calcium and phosphorous levels were reported [113]. 
These studies are supportive of probiotics having a potential 
therapeutic role in AP due to their antimicrobial, anti-
biofilm, anti-inflammatory, and immuno-modulatory effects 
and also their potential role in fostering bone resorption and 
in preventing secondary infections.

Antimicrobial and Antibiofilm Activity

Inhibition of pathogenic microorganisms has been 
considered one of the important properties of probiotic 
LAB. The antimicrobial activity of these probiotics is due 
to the production of lactic acid, hydrogen peroxide, and 
bacteriocins. Bacteriocins are antimicrobial peptides which 
are generally most strongly inhibitory to phylogenetically 
related strains. These antimicrobials are regarded as safe due 
to their low toxicity and their relatively narrow inhibitory 
spectra against other competitor bacteria [114, 115]. 
Antimicrobial activity of specifically selected probiotics 
has been detected against Ent. faecalis and various other 
oral pathogens including the fungus C. albicans in both 
planktonic and biofilm assays [104]. Probiotics can interfere 
with the growth of other microbes (including potential 
pathogens) by various mechanisms including competition 
for nutrients and space. Hydrogen peroxide can cause cell 
damage to and ultimately kill susceptible microorganisms. 
Commercially available formulations containing Strep. 
salivarius K12 and Strep. salivarius M18, both of which 
were originally derived from the oral microbiotas of healthy 
human subjects, have been shown to modulate the oral 
microbiome through their production of potent bacteriocin 
activity against several oral cavity pathogens including 
Strep. pyogenes [116] and Strep. mutans [117]. In other 
studies, reuterin (produced by Lact. reuteri) has been shown 
to exhibit antimicrobial activity against Strep. mutans and P. 
gingivalis [88, 118].

Anti-biofilm activity of probiotics has been detected 
in various in vitro model studies of dental caries [119]. 
The action of probiotics against pathogenic bacteria in 
biofilms is both multifaceted and complex [27] and varies 
according to the effector probiotic strain utilized [120]. 
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Another potentially beneficial mechanism associated with 
the use of probiotics involves quorum sensing disruption 
through gene regulation [121]. Quorum sensing is the central 
phenomenon by which microbes communicate in biofilms, 
and it regulates both bacterial colonization and virulence 
[122]. Reduced quorum sensing gene (vicKR and comCD) 
expression in Strep. mutans biofilms following exposure to 
probiotic strains of Lactobacillus species was reported by 
Wasfi and co-workers, and this is considered likely to play a 
role in the observed anti-caries effects of probiotics [123]. A 
schematic representation of antibiofilm activity of probiotics 
using different mechanisms has been demonstrated in Fig. 1.

Anti‑inflammatory and Immuno‑modulatory 
Activities

Inflammatory mediators released in response to microbial 
invasion of the root canal are important for the development 
and progression of the clinical manifestations of AP [124]. 
These mediators cause vasodilatation, increase vascular 
permeability, and recruit inflammatory cells. It has also 
been suggested that the increased inflammatory mediators 
seen in AP may also enhance systemic inflammation [125]. 

Inflammation-induced tissue damage may vary in different 
diseases; however, the markers that trigger this damage are 
very similar. They all act to increase the development of 
the inflammatory process, cause tissue destruction, and may 
even be directly involved in the onset of clinical symptoms 
[126].

The anti-inflammatory activity of individual probiotics 
is not always fully understood. Multiple factors can be 
involved, including strain type, duration of treatment, 
and dosage. The resultant anti-inflammatory actions 
are attributed to down-regulation and up-regulation 
of proinflammatory and anti-inflammatory cytokines, 
respectively, optimizing the balance between Th (T- helper) 
cells and Treg (T- regulatory) cells, and changes induced 
in antigen-presenting cells [127]. Moreover, it appears that 
some probiotics can also stimulate natural killer cells and 
dendritic cells to produce anti-inflammatory cytokines 
[128]. An effect on adaptive immunity, manifested by 
increased activation of lymphocytes and production of 
antibodies has also been reported [129]. The commensal 
and probiotic behavior of the oral probiotic Strep. salivarius 
K12 have been shown to be attributable to the bacterium 
(i) eliciting no proinflammatory response, (ii) stimulating 
an anti-inflammatory response, and (iii) modulating 

Fig. 1   Schematic representa-
tion of different mechanisms of 
probiotics action against biofilm 
formation. Biofilms formed by 
the pathogens may be inhib-
ited due to reduced expression 
of quorum sensing genes of 
pathogens, production of anti-
microbial compounds (such as 
bacteriocins, lactic acid, hydro-
gen peroxide), pH alteration, 
and immune modulation
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genes associated with adhesion to the epithelial layer and 
homeostasis [130].

Autophagy is a natural process by which the body removes 
damaged cellular components and regulates metabolism. It 
also plays a role in immune activation [131] and acts to limit 
the immune response [132]. Impaired autophagy leads to the 
development of obesity, chronic inflammatory conditions 
of the gut, and periodontitis [133]. Some probiotics have 
shown promising results in the correction of faulty autophagy 
mechanisms in the gut, thereby helping to restore homeostasis 
[134]. The presence and participation of disturbed autophagy 
in periapical lesions [133] provide yet another target for 
probiotics in restoring periapical health. Yet another possible 
role for certain probiotics may relate to their ability to inhibit 
matrix metalloproteinase activity [135]. These molecules have 
a general involvement in tissue remodeling and wound healing 
and are responsible for the degradation of the extracellular 
matrix and base [21]. In periapical lesions they have been 
reported to participate in tissue destruction and lesion 
expansion [136].

Effect of Probiotics on Bone Resorption

It has been suggested that probiotics may affect bone 
metabolism via their anti-inflammatory effects and their 
facilitation of absorbance of nutrients and minerals in the gut 
[137]. Also, probiotics can increase the amount of  OPG and 
decrease RANKL thereby decreasing bone resorption by 
RANKL-induced osteoclastogenesis [113]. Studies in rats 
have shown a beneficial role for probiotics in reducing 
alveolar bone loss [138], and in increasing mandibular 
bone density [139]. In another study, a positive effect on 
periodontitis-induced bone loss in mice was reported after 
topical treatment with Lact. brevis [140]. A significant 
reduction in mesial bone loss in rats was associated with 
administration of a strain of Lact. reuteri (both live and 
heat killed cells), underlining the potential beneficial role 
of probiotics in preventing bacterial-induced alveolar bone 
loss in the oral cavity [141].

As discussed earlier, Cosme-Silva et al. [113] reported 
a reduction in periapical bone loss associated with the use 
of oral probiotic supplements in mice. This was the first 
study to evaluate the role of probiotics in AP. The reason 
for the reduction in periapical bone loss was attributed to a 
favorable effect of probiotics on the OPG/RANKL system. In 
the presence of probiotics, a higher expression of OPG and 
lower production of RANKL was evident, thus contributing 
to reduced RANKL-dependent osteoclastogenesis. This report 
provides a useful initial lead on beneficial role of probiotics 
in preventing periapical bone resorption in AP. Follow-up 
studies in human subjects are now required to ascertain 
whether probiotics can help modulate the inflammatory and 
bone resorption processes associated with AP [70].

Prevention of Secondary Infection

Secondary infections in root canals are both prevalent 
and difficult to manage. Although these infections are 
more commonly caused by bacteria that have resisted 
primary treatment, dislodged or defective coronal seals 
may also lead to re-infection of the root canal space [106]. 
The limited effectiveness of root canal disinfectants is at 
least in part due to the complex morphology of the root 
canals and to the biofilm-associated nature of any bacteria 
colonizing the canals [42, 58]. Unfortunately, both the 
non-surgical and surgical retreatments that are currently 
performed for the management of persistent root canal 
infections are considered to be time-consuming, costly and 
have a relatively low chance of success [142]. A recent 
study projected the survival of teeth after non-surgical 
and surgical retreatment to be approximately 70% after 
a median follow up time of 10 years [143]. Therefore, 
prevention of secondary infection should be a focus of 
on-going patient care. Probiotics may have an adjunctive 
role to play in the prevention of secondary AP, based on 
the premise that they may help to inhibit colonization by 
pathogenic bacteria due to their antimicrobial and immuno-
modulatory properties [27]. Therapeutic applications of 
probiotics in the management of periodontitis have had 
promising outcomes [144]. Periodontal pathogens such as 
F. nucleatum, P. intermedia, Ent. faecalis, Streptococcus 
species, and Parvmonas micra are also found associated with 
secondary root canal infections, [36]. Thus, an implication 
of these studies is the potential beneficial role of probiotics 
in preventing secondary root canal infections.

Safety of Probiotics

Probiotics are widely considered to be safe for consumption 
by healthy adults. However, based on previous reports, the 
use of probiotics in immunocompromised patients entails 
a potential risk of sepsis and even shock [145]. Systemic 
infections are the major concern linked to probiotic use. 
Bacteremia arising after administration of Lactobacillus 
species such as Lact. acidophilus, Lact. casei, and Lact. 
GG [146] and fungemia associated with consumption of 
probiotic preparations containing Saccharomyces boulardi 
have been reported [147]. Reports of increased mortality in 
critically ill patients along with some minor gastrointestinal 
disturbances in the form of abdominal cramping, flatulence, 
and taste disturbances have also been reported [148]. 
Manipulation of the intestinal microbiome by probiotics may 
also impact adversely upon the digestion and absorption of 
nutrients. Furthermore, any long-term effects of probiotic 
usage on the immune system are currently unclear and 
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difficult to predict. Although the risks of probiotic usage 
by healthy adults appear to be minimal, the chances of 
transfer of latent antibiotic resistance determinants to 
pathogenic bacteria cannot be completely ruled out [121]. 
It is of course important to recognize that not all probiotic 
strains have a beneficial role in all health conditions. 
For example, Lact. salivarius W24, which is known to 
exhibit desirable antimicrobial and anti-inflammatory 
properties in the gastrointestinal tract, also has recognized 
cariogenic potential [146]. This helps to illustrate that 
the established benefits of one probiotic strain cannot be 
automatically extended to another probiotic candidate 
strain, even of the same species. Thorough selection and 
characterization of probiotic strains needs to be carried out 
specifically according to the targeted disease condition. 
Administration of probiotics in at risk populations such 
as immunosuppressed patients, pregnant females, patients 
with acute intestinal or bowel conditions, and patients with 
structural heart abnormalities should be closely monitored. 
In summary, there is clearly a need for more rigorous trial 
design involving careful safety assessment of probiotic 
strains [146].

Lacunae in the Literature

Ent. faecalis has been found to be a major endodontic 
pathogen in most reports of the potential antimicrobial role 
of probiotics. Studies have focused either on planktonic 
Ent. faecalis [107] or on both planktonic and biofilm stages 
of Ent. faecalis and C. albicans [35, 108]. Lipoteichoic 
acid purified from Lact. plantarum was evaluated either 
in multispecies biofilms [109] or in Ent. faecalis biofilms 
[110]. In both studies it was found to substantially increase 
the antimicrobial effect of commonly used medicaments 
such as CH and CHX. Ent. faecalis is the most commonly 
reported pathogen found associated with persistent root 
canal infections [43, 149], the reported prevalence being 
8–71% by culture methodology and 10–90% by use of 
the more sensitive polymerase chain reaction (PCR) 
technique [150]. On the other hand, a recent study using 
next-generation sequencing (NGS) indicated that Ent. 
faecalis may not be as dominant a cause of primary or 
persistent root canal infections as had been previously 
considered [151]. Broader depth of coverage and detection 
of previously undetected bacteria are important advantages 
of NGS or high-throughput sequencing which allows for 
the accurate detection of species in clinical samples by 
independent and simultaneous sequencing of a large 
number of DNA fragments [152]. Based on findings of 
previous NGS studies, bacteria of the Proteobacteria 
[153] and Bacteroidetes [154] phyla are more frequently 

associated with persistent infection than are enterococci, 
which were found in fewer samples and in lower abundance 
[155]. However, a limitation of DNA-based molecular 
methods is that they detect the whole genome and are 
not able to discriminate between live and dead bacteria 
found in infected tissue. Biofilms detected in the root 
canal are usually multilayered, with a variable proportion 
of matrix and bacterial cells [42]. The microbial diversity 
in endodontic biofilms ranges from 10 to 20 species in 
primary infections to 1–5 species in persistent infections 
[15]. The detection of biofilms having greater microbial 
diversity, identification of a large number of previously 
undetected genera, and geographical variations in the root 
canal microbiota are key findings of recent studies in the 
field of endodontic microbiology. Only one of the studies 
identified in this review has used multispecies biofilms for 
assessing the antimicrobial efficacy of probiotics [109].

The composition of root canal biofilms is not static and 
the artificial substrates such as agar, glass plates and sliced 
dentin used in some studies do not adequately mimic the 
complexities of a root canal. Furthermore, the antimicrobial 
effects observed in agar diffusion tests do not necessarily 
translate into clinical reality [156]. Also, the failure to 
include standard endodontic disinfectants for comparison 
is another drawback of many reported studies. Lastly, the 
absence of human clinical studies highlights the information 
gap relating to the assessment of the utility of probiotics 
in AP. Therefore, caution should be exercised while 
extrapolating the current in vitro data to the diverse and 
vastly more biologically complex clinical conditions.

Future Directions

Future studies evaluating the application of probiotics 
in endodontics should focus on developing and applying 
more standardized protocols. Criteria for the selection 
of probiotics such as those suggested by de Melo Pereira 
et al. [70] may provide some guidance. They suggested 
that probiotics should tolerate local stress and adhere 
to the site of application. Furthermore, they should have 
anti-pathogenic activity and should be safe for human 
consumption, and lastly, clinical trials should support their 
application. Considering the development and application 
of probiotics is still in a nascent stage, the focus of future 
research should be on selecting and employing various 
clinically proven probiotic strains in exhaustive laboratory 
studies followed by animal and clinical trials. The localized 
delivery of probiotics inside the root canal using suitable 
vehicles providing stability, viability, and sustained release 
[157] is an exciting research and clinical prospect, and 
hopefully will prove successful in the management of AP.
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Conclusions

The existing literature documents some promising results 
supportive of a beneficial role for probiotics in countering 
the proliferation and pathogenic processes of endodontic 
pathogens within a biofilm matrix and in exerting, favorable 
anti-inflammatory effects and in reducing bone resorption 
(as shown in Fig. 2). However, it is imperative to stress 
that these studies have been characterized to date by 
considerable design heterogeneity in terms of the type, dose, 
duration and frequency of probiotic administration. Future 
research should now focus on developing standardized 
protocols and on the elimination of study design ambiguities 
potentially influencing the meaningful assessment of a role 
for probiotics in the management of AP.
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