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PREFACE

The theory of spline functions and their applications is a relatively recent
development. As late as 1960, there were no more than a handful of papers
mentioning spline functions by name. Today, less than 20 years later, there
are well over 1000 research papers on the subject, and it remains an active
research area.

The rapid development of spline functions is due primarily to their great
usefulness in applications. Classes of spline functions possess many nice
structural properties as well as excellent approximation powers. Since they
are easy to store, evaluate, and manipulate on a digital computer, a myriad
of applications in the numerical solution of a variety of .problems in
applied mathematics have been found. These include, for example. data
fitting, function approximation, numerical quadrature, and the numerical
solution of operator equations such as those associated with ordinary and
partial differential equations, integral equations, optimal control problems,
and so on. Programs based on spline functions have found their way into
virtually every computing library.

It appears that the most turbulent years in the development of splines
are over, and it is now generally agreed that they will become a firmly
entrenched part of approximation theory and numerical analysis. Thus my
aim here is to present a fairly complete and unified treatment of spline
functions, which, I hope, will prove to be a useful source of information for
approximation theorists, numerical analysts, scientists, and engineers.

This book developed out of a set of lecture notes which 1 began
preparing in the fall of 1970 for a course on spline functions at the
University of Texas at Austin. The material, which I have been reworking
ever since, was expanded and revised several times for later courses at the
Mathematics Research Center in Madison, the University of Munich, the
University of Texas, and the Free University of Berlin. It was my original
intent to cover both the theory and applications of spline functions in a
single monograph, but the amount of interesting and useful material is so
large that I found it impossible to give all of it a complete and compre-
hensive treatment in one volume.

xi



xii PREFACE

This book is devoted to the basic theory of splines. In it we study the
main algebraic, analytic, and approximation-theoretic properties of various
spaces of splines (which in their simplest form are just spaces of piecewise
polynomials). The material is organized as follows. In Chapters 1 to 3
background and reference material is presented. The heart of the book
consists of Chapters 4 to 8, where polynomial splines are treated. Chapters
9 to 11 deal with the theory of generalized splines. Finally, Chapters 12 to
13 are devoted to multidimensional splines. For the practical-minded
reader, I include a number of explicit algorithms written in an easily
understood informal language.

It has not been my aim to design a textbook, per se. Thus throughout the
book there is a mixture of very elementary results with rather more
sophisticated ones. Still, much of it can be read with a minimum of
mathematical background-—for example calculus and linear algebra. With
a judicious choice of material, the book can be used for a one-semester
introduction to splines. For this purpose I suggest drawing material from
Chapters 1 to 6, 8, and 12, with special emphasis on Chapters 4 and 5.

The notation in the book is quite standard. In order to keep the
exposition moving as much as possible, I have elected to move most of the
remarks and references to the end of the chapters. Thus each chapter
contains sections with remarks and with historical notes. In these sections 1
have attempted, to the best of my ability, to trace the sources of the ideas in
the chapter, and to guide the reader to the appropriate references in the
massive literature.

I would like to take this opportunity to acknowledge some of the
institutions and individuals who have been of assistance in the preparation
of this book. First, I would like to thank Professor Samuel Karlin for
introducing me to spline functions when I was his graduate student at
Stanford in the early sixties. The Mathematics Research Center at the
University of Wisconsin gratiously supported me at two critical junctures
in the evolution of this book. The first was in 1966 to 1968 when the lively
research atmosphere and the close contact with such experts as Professors
T. N. E. Greville, M. Golomb, J. W. Jerome, and 1. J. Schoenberg
sharpened my interest in splines and taught me much about the subject.
The support of the Mathematics Research Center again in 1973 to 1974
gave me a much needed break to continue work on the book.

In 1974 to 1975 I was at the Ludwig-Maximilians Universitdt in Munich.
My thanks are due to Professor G. Himmerlin for the invitation to visit
Munich, and to the Deutsche Forschungsgemeinschaft for their support.
Since January of 1978 I have been at the Free University of Berlin and the
Hahn-Meitner Atomic Energy Institute. I am grateful to Professors K.-H.



PREFACE xiii

Hoffmann and H.-J. Topfer for suggesting and arranging my visit, and to
the Humboldt Foundation of the Federal Republic of Germany for their
part in my support. Finally, I would like to express my appreciation to the
U.S. Air Force Office of Scientific Research and the Center of Numerical
Analysis of the University of Texas for support of my research over the
past several years.

Among the many colleagues and students who have read portions of the
manuscript and made useful suggestions, I would especially like to men-
tion Professors Carl deBoor, Ron DeVore, Tom Lyche, Charles Micchelli,
Karl Scherer, and Ulrich Tippenhauer. The task of tracking down and
organizing the reference material was formidable, and 1 was greatly
assisted in this task by Jannelle Odem, Maymejo Moody Barrett, Nancy Jo
Ethridge, Linda Blackman, and Patricia Stringer. Finally, I would like to
thank my wife Gerda for her constant support, and for her considerable
help in all stages of the preparation of this book.

LARRY L. SCHUMAKER

Britton, South Dakota






PREFACE TO THE 3RD EDITION

This book was originally published by Wiley-Interscience in 1981. A second edi-
tion was published in 1993 by Krieger. The two differ only in that a number of
misprints were corrected. Both editions are now out of print. However, spline func-
tions remain an active research area with important applications in a wide variety
of fields, including some, such as Computer-Aided Geometric Design (CAGD) and
Wavelets, which did not exist in 1981. This continued interest in the basic theory of
splines was the motivation for preparing this third edition of the book.

There have been many developments in the theory of splines over the past twenty-
five years. While it was not my intention of rewrite this book to cover all of these
developments, David Tranah of Cambridge University Press convinced me that it
would be useful to prepare a supplement to the book which gives an overview of the
main developments with pointers to the literature. Tracking down this literature was
a major undertaking, and more than 250 new references are included here. However,
this is still far from a complete list. For an extended list, see the online bibliography at
www.math.vanderbilt.edu/~schumake/splinebib.html. I include
links there to a similar bibliography for splines on triangulations, and to the much
larger spline bibliography in TgX form maintained by Carl de Boor and 1.

Interpolation, approximation, and the numerous other applications of splines are
not treated in this book due to lack of space. Consequently, I have elected not to
discuss them in the supplement either, and the new list of references does not include
any applied papers or books.

I would like to thank my many colleagues and friends who provided references
to their recent work on splines. I am especially indebted to Carl de Boor, Oleg
Davydov, Kirill Kopotun, and Tom Lyche for their comments on an early draft of
the supplement. I am also grateful to Simon Foucart for a careful reading of the
final version. Finally, my deepest appreciation to my wife Gerda for her patience
over the many years it took to write this book and the companion book Splines on
Triangulations (with M.-J. Lai, Cambridge University Press, 2007).

February, 2007 Larry L. Schumaker
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1

INTRODUCTION

The first three chapters of this book are devoted to background material,
notation, and preliminary results. The well-prepared reader may wish to
proceed directly to Chapter 4 where the study of spline functions per se
begins.

§ 1.1. APPROXIMATION PROBLEMS

Functions are the basic mathematical tools for describing and analyzing
many physical processes of interest. While in some cases these functions
are known explicitly, very frequently it is necessary to construct approxi-
mations to them based on limited information about the underlying
processes. Such approximation problems are a central part of applied
mathematics. ‘

There are two major categories of approximation problems. The first
category consists of problems where it is required to construct an ap-
proximation to an unknown function based on some finite amount of data
(often measurements) on the function. We call these data fitting problems.
In such problems, the data are often subject to error or noise, and
moreover, usually do not determine the function uniquely. Data fitting
problems arise in virtually every branch of scientific endeavor.

The second main category of approximation problems arises from
mathematical models for various physical processes. As these models
usually involve operator equations that determine the unknown func-
tion, we refer to them as operator-equation problems. Examples include
boundary-value problems for ordinary and partial differential equations,
eigenvalue—eigenfunction problems, integro—differential equations, in-
tegral equations, optimal control problems, and so on. While there are
many theoretical results on existence, uniqueness, and properties of solu-
tions of such operator equations, usually only the simplest specific prob-
lems can be solved explicitly. In practice we will usually have to construct
approximate solutions.
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The most commonly used approach to finding approximations to un-
known functions proceeds as follows:

1. Choose a reasonable class of functions in which to look for an ap-
proximation.

2. Devise an appropriate selection scheme (=approximation process) for
assigning a specific function to a specific problem.

The success of this approach depends heavily on the existence of con-
venient classes of approximating functions. To be of maximal use, a class
@ of approximating functions should possess at least the following basic
properties:

1. The functions in & should be relatively smooth;

2. The functions in & should be easy to store and manipulate on a digital
computer;

3. The functions in @ should be easy to evaluate on a computer, along
with their derivatives and integrals;

4, The class ¢ should be large enough so that arbitrary smooth functions
can be well approximated by elements of &.

We have required property | because functions arising from physical
processes are usually known to be smooth. Properties 2 and 3 are im-
portant- because most real-world problems cannot be solved without the
help of a high-speed digital computer. Finally, property 4 is essential if we
are to achieve good approximations.

The study of various classes of approximating functions is precisely the
content of approximation theory. The design and analysis of effective
algorithms utilizing these approximation classes are a major part of numeri-
cal analysis. Both of these fields have a rich history, and a voluminous
literature.

The purpose of this book is to examine in considerable detail some
specific approximation classes—the so-called spline functions—which in
the past several years have proved to be particularly convenient and
effective for approximation purposes. Because of space limitations, we
shall deal only with the basic theoretical properties of spline functions.
Applications of splines to data fitting problems and to the numerical
solution of operator equations will be treated in later monographs.

§ 1.2. POLYNOMIALS

Polynomials have played a central role in approximation theory and
numerical analysis for many years. To indicate why this might be the case,
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we note that the space

‘?Pm=[p(x):p(x)= > oexTh, Cpoevny Gy x TeAl (L.1)

i=1
of polynomials of order m has the following attractive features:

1. 9P, is a finite dimensional linear space with a convenient basis;

2. Polynomials are smooth functions;

3. Polynomials are easy to store, manipulate, and evaluate on a digital
computer;

4. The derivative and antiderivative of a polynomial are again poly-
nomials whose coefficients can be found algebraically (even by a com-
puter);

5. The number of zeros of a polynomial of order m cannot exceed
m-—1;

6. Various matrices (arising in interpolation and approximation by
polynomials) are always nonsingular, and they have strong sign-regularity
properties;

7. The sign structure and shape of a polynomial are intimately related to
the sign structure of its set of coefficients;

8. Given any continuous function on an interval [a,b], there exists a
polynomial which is uniformly close to it;

9. Precise rates of convergence can be given for approximation of
smooth functions by polynomials.

We shall examine each of these assertions in detail in Chapter 3, along
with a number of other properties of polynomials.

While this list tends to indicate that polynomials should be ideal for
approximation purposes, in practice, it has been observed that they possess
one unfortunate feature which allows for the possibility that still better
classes of approximating functions may exist; namely,

10. Many approximation processes involving polynomials tend to pro-
duce polynomial approximations that oscillate wildly.

We illustrate this feature of polynomials in Section 3.6. It is a kind of
inflexibility of the class F,.

$ 1.3. PIECEWISE POLYNOMIALS

As mentioned in the previous section, the main drawback of the space &,
of polynomials for approximation purposes is that the class is relatively
inflexible. Polynomials seem to do all right on sufficiently small intervals,
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but when we go to larger intervals, severe oscillations often appear—par-
ticularly if m is more than 3 or 4. This observation suggests that in order to
achieve a class of approximating functions with greater flexibility, we
should work with polynomials of relatively low degree, and should divide
up the interval of interest into smaller pieces. We are motivated to make
the following definition:

DEFINITION 1.1. Piecewise Polynomials

Let a=x,<x,< -+ <x, <x;,,=b, and write A={x;}§*". The set A parti-

tions the interval [a,b] into k+1 subintervals, I,={x,x;,,,), i=0,1,...,
k—1, and I, =[x, x,,,]. Given a positive integer m, let

{ f: there exist polynomials
PPu(8)= PoPr--- P in P, with fx)=p(x) (1.2)
forxel,i=0,1,...,k}.

We call @ P, (A) the space of piecewise polynomials of order m with knots
XpponesXge

The terminology in Definition 1.1 is perfectly descriptive—an element
fE€P P, (A) consists of k+ 1 polynomial pieces. Figure 1 shows a typical
example of a piecewise polynomial of order 3 with two knots.

While it is clear that we have gained flexibility by going over from
polynomials to piecewise polynomials, it is also obvious that at the same
time we have lost another important property—piecewise polynomial
functions are not necessarily smooth. In fact, as shown in Figure 1, they
can even be discontinuous. In most applications, the user would be happier
if the approximating functions were at least continuous. Indeed, it is
probably precisely this defect of piecewise polynomials which accounts for
the fact that prior to 1960 they played a relatively small role in approxima-
tion theory and numerical analysis—for an historical account, see Section
1.6.

\/

! | |
a Xy £ b

-

Figure 1. A quadratic piecewise poiynomial.
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§ 1.4. SPLINE FUNCTIONS

In order to maintain the flexibility of piecewise polynomials while at the
same time achieving some degree of global smoothness, we may define the
following class of functions:

DEFINITION 1.2. Polynomial Splines With Simple Knots

Let A be a partition of the interval [a, b] as in Definition 1.1, and let m be a
positive integer. Let

5a(8)=F P, (8)N C" [ a,b], (1.3)

where ¥ ?_ (A) is the space of piecewise polynomials defined in (1.2). We
call &,,(4) the space of polynomial splines of order m with simple knots at the
points xy,...,X;.

It is easy to define various related classes of piecewise polynomials with
varying degrees of smoothness between the pieces. We refer to such spaces
of functions as polynomial splines, and we study them in detail in Chapters
4 to 8. We shall see that polynomial splines possess the following attractive
features:

1. Polynomial spline spaces are finite dimensional linear spaces with
very convenient bases;

2, Polynomial splines are relatively smooth functions;

3. Polynomial splines are easy to store, manipulate, and evaluate on a
digital computer;

4. The derivatives and antiderivatives of polynomial splines are again
polynomial splines whose expansions can be found on a computer;

S. Polynomial splines possess nice zero properties analogous to those for
polynomials;

6. Various matrices arising naturally in the use of splines in approxima-
tion theory and numerical analysis have convenient sign and determinantal
properties;

7. The sign structure and shape of a polynomial spline can be related to
the sign structure of its coefficients;

8. Every continuous function on the interval [a,b] can be approximated
arbitrarily well by polynomial splines with the order m fixed, provided a
sufficient number of knots are allowed;

9. Precise rates of convergence can be given for approximation of
smooth functions by splines—not only are the functions themselves ap-
proximated to high order, but their derivatives are simultaneously ap-
proximated well;
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10. Low-order splines are very flexible, and do not exhibit the oscillations
usually associated with polynomials.

These properties of polynomial splines are shared by a wide variety of
other piecewise spaces. We discuss spaces of nonpolynomial splines in
Chapters 9 to 11. A class of multidimensional splines is treated in Chapter
12.

It is perhaps of some interest to explain the origin of the terminology
“spline function.” 1t was introduced by Schoenberg [1946a, b] in connection
with the space &,(A), which he used for solving certain data fitting
problems. Schoenberg states that he was motivated to use this terminology
by the connection of piecewise polynomials with a certain mechanical
device called a spline.

A spline is a thin rod of some elastic material equipped with a groove
and a set of weights (called ducks or rats) with attached arms designed to
fit into the groove. (See Figure 2.) The device is used by architects
(particularly naval architects) to draw smooth curves passing through
prescribed points. To accomplish this, the spline is forced to pass through
the prescribed points by adjusting the location of the ducks along the rod.
It was discovered in the mid-1700s by Euler and the Bernoulli brothers
that the shape of the centerline of such a bent rod is approximately given
by a function in $,(A). In particular, suppose that the points of contact of
the ducks with the spline are located at the points (x;,),),i=1,2,...,k in the
Cartesian plane. Then the centerline of the spline is approximately given
by the function s with the following properties:

1. s is a piecewise cubic polynomial with knots at x,,...,x,;
2. sis a linear polynomial for x <x, and x >Xx,;

T

Figure 2. The mechanical spline.
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3. s has two continuous derivatives everywhere;
4. S(.X,-)=y‘,i=l,2 ..... K.

The function s 1s a kind of best interpolating function.

§ 1.5. FUNCTION CLASSES AND COMPUTERS

In this section we show that because of certain fundamental limitations of
digital computers, only a rather restricted set of approximating spaces are
compatible with digital computers. This discussion will provide further
motivation for our selection of piecewise polynomials for intensive study.

We begin by recalling the capabilities of a modern digital computer.
Such a computer is capable of storing a rather large (but finite) number of
“words” consisting of real numbers or integers. It is capable of very rapid
access to these words. Finally, it can perform the following five basic
arithmetic operations: (1) addition, (2) subtraction, (3) multiplication, (4)
division, and (5) comparison of the size of two numbers.

Suppose now that & is a class of functions which we desire to handle
with a computer. For @ to be compatible with a digital computer, we must
require the following two properties:

The class & should be defined by a finite number of
real parameters; that is, each function s in @ should

be uniquely identifiable with a vector ¢=(c,...,c,) (1.4)
of real numbers.

Given the parameter vector ¢ defining a particular

member s, in @, it should be possible to compute

the value of s, at any point in its domain using only (L.5)
the five basic arithmetic operations mentioned

above.

Property (1.4) assures that we have a way of identifying and storing
individual elements of & on the computer, while property (1.5) guarantees
that we can evaluate a given function in & at a given point.

To illustrate how requirements (1.4) and (1.5) severely limit the structure
of computer-compatible functions classes, consider the case where @ is to
be a class of real-valued functions defined on an interval / =[aq,b]. Clearly,
one such computer-compatible class is the space %, of polynomials of
order m defined in (1.1). Indeed, each polynomial p can be associated with
the vector ¢=(c,,...,c,,) of its coefficients (and it is proved in Theorem 3.1
that this association is unique). Thus to store a polynomial on the machine,
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we need only store its m coefficients. On the other hand, a given poly-
nomial can be evaluated using only addition, subtraction, and multiplica-
tion (see Algorithm 3.2).

If we admit the division capability of a digital computer, we see
immediately that another class of computer-compatible functions is given
by the set of proper rational functions:

=2
@’I.m— { ( ) q(x)’pec‘?l’qegpm’

and g(x)#0 for alla<x<b}. (1.6)

There remains one major capability of the digital computer that we have
not yet exploited; namely, the ability to compare two numbers. Using it,
we see that the space of piecewise polynomials P P, (A) defined in (1.2) is
also computer compatible. Indeed, to store a particular element s&
PP _(A), we need only store the partition points x,,...,x, and the
coefficients of each of the polynomial pieces. To evaluate s(x) for a given
x, we need only decide in which interval x lies (using the comparison
capability of the machine), and then evaluate the appropriate polynomial
at x.

If we combine all five capabilities of the digital computer, we see that
the class of piecewise rational functions is also computer compatible. It
follows that this class is the largest class of real-valued functions defined
on an interval [a, b] that is computer compatible.

This conclusion is, in fact, a bit of an overstatement. Because of two
further limitations of digital computers (which are due to the finite word
length), even the classes mentioned above are not truly computer compati-
ble in the strict sense defined above. The limitations are (1) not every real
number can be represented exactly in a digital machine, and (2) the result
of arithmetic operations may be subject to round-off error. Thus, for
example, irrational coefficients cannot be stored exactly, nor can poly-
nomials be evaluated exactly at irrational arguments.

Because of the round-off problem, it can be argued that several other
classes of functions should be admitted as computer compatible. For
example, there are a number of elementary functions (such as the trigono-
metric, exponential, and logarithmic functions) for which computer
routines are available, permitting their evaluation to machine accuracy for
any argument. In a way, such functions are just as compatible as are the
polynomials. In view of this observation, in Chapters 9 to 11 we shall



HISTORICAL NOTES 9

consider some classes of rather general piecewise functions. Special atten-
tion will be focused on the cases where the pieces are trigonometric,
exponential or logarithmic.

§ 1.6. HISTORICAL NOTES

Section 1.1

Approximation theory has a long and rich history which we need not
review in detail here. Some early books on the subject include dela Valleé
Poussin [1919], Bernstein [1926], Jackson [1930], and Zygmund [1959].
Interest has remained high, and some of the more recent books on general
approximation theory include Achieser [1947], Natanson [1949], Davis
[1963], Sard [1963], Timan [1963]}, Todd [1963], Rice [1964, 1969b], Cheney
[1966], Lorentz [1966], Meinardus [1967], Butzer and Berens [1967], Rivlin
[1969], and Laurent [1972). There are many more specialized books dealing
with approximation, as well as a large number of books containing the
proceedings of conferences on approximation theory.

High-speed digital computers were first produced in the early 1950s, and
this was followed by the rapid development of numerical analysis. We do
not bother to give the long list of books on the subject which have been
written in the last 30 years. Typical examples include the texts by Ralston
[1965], Isaacson and Keller [1966], and Conte and deBoor [1972].

Section 1.2

Polynomials have been important in approximation theory and numerical
analysis from the beginning. Their importance can be judged by examining
any of the books mentioned above. For example, see Ralston [1965, p. 25]
where a special effort is made to extoll the advantage of polynomials.

Section 1.3

We have not attempted the difficult task of tracing the complete history of
piecewise polynomials. Certainly they have been useful in mathematics for
a long time. It may be of some interest to mention just a few early
appearances. We have already discussed the work of Euler and the
Bernoulli brothers on the shape of an elastica in § 1.4. Various classical
quadrature formulae (e.g., Newton-Cotes, Euler-MacLaurin, and com-
posite Gauss formulae) are based on piecewise polynomials. Piecewise
polynomials also arose in connection with solution of initial-value prob-
lems for ordinary differential equations (e.g., in Euler’s method). They
have also proved to be useful tools in analysis. For example, Lebesgue
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used piecewise linear polynomials to prove Weierstrass’ Approximation
Theorem 3.11.

Section 1.4

The terminology “spline function™ was introduced by Schoenberg [1946a,
b]-—see the discussion in § 1.4. As far as we can determine, the only other
papers mentioning splines explicitly prior to 1960 were those by Curry and
Schoenberg [1947], Schoenberg and Whitney {1949, 1953], Schoenberg
[1958], and Maclaren [1958].

Although the papers mentioned above seem to be the only ones pub-
lished prior to 1960 that actually mention splines by name, there were a
number of papers dealing with splines without using the name. Here we
can mention Runge [1901], Eagle [1928], Quade and Collatz [1938], Favard
{1940], Sard {1949], Meyers and Sard {1950a, b], Holladay [1957], and
Golomb and Weinberger [1959]. In the early 1900s there was also extensive
development of interpolation formulae based on piecewise polynomials.
These methods were called osculatory interpolation methods—for a survey
of their development, see Greville [1944]. Our list is surely not complete.

The theory of spline functions (whether called by that name or not) had
a rather modest development up until 1960. After that the development
was nothing short of explosive. The main impetus for the intense interest in
splines in the early 1960s seems to have been provided primarily by the
fact that (in addition to 1. J. Schoenberg) a number of researchers realized
that spline functions were a way to mathematically model the physical
process of drawing a smooth curve with a mechanical spline. Papers in
which this connection was noted include Maclaren [1958], Birkhoff and
Garabedian [1960], Theilheimer and Starkweather [1961], Asker [1962],
Fowler and Wilson [1963], and Berger and Webster [1963]. About this time
the paper of Holladay [1957] seems to have been discovered, and a number
of authors set about the task of studying best interpolation problems. Early
contributors to this development included deBoor [1962, 1963], Walsh,
Ahlberg and Nilson [1962], Ahlberg and Nilson [1963], Ahlberg, Nilson,
and Walsh [1964], and Schoenberg [1964a, b, c]. The history of the
development of best interpolation problems will be traced in greater detail
in a later monograph.

In addition to the papers mentioned above dealing with best interpola-
tion by splines. there were also a few isolated papers written in the early
1960s that dealt with constructive properties of spaces of piecewise poly-
nomials (with no references to the other literature). These include
Schwerdfeger {1960. 1961], Kahane [1961], Stone [1961], Aumann [1963],
Brudnyi and Gopengauz [1963], Ream [1961], Peterson [1962], and Lawson
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{1964). More information on the early history of splines can be found in
the historical notes sections of later chapters.

Despite the feverish activity in splines during the past 20 years, there are
relatively few books on the subject. The following works deal to various
degrees with the theory and applications of splines: Ahlberg, Nilson, and
Walsh [1967b}, Sard and Weintraub [1971], Schoenberg [1973], Schultz
[1973b}, Bohmer [1974], Prenter [1975], Fisher and Jerome [1975], deBoor
[1978], and Stechin and Subbotin [1978].

Programs for dealing with splines can be found in the works of Spith
[1973] and deBoor [1978]). The book by Laurent {1972] also has several
chapters on splines, and they are starting to be mentioned in some of the
elementary books on numerical analysis and approximation theory. There
have been several conferences devoted entirely (or heavily) to splines, and
their proceedings provide useful source material. Here we mention Greville
[1969a], Schoenberg [1969b], Meir and Sharma [1973], Bohmer, Meinardus,
and Schempp [1974, 1976], and Karlin, Micchelli, Pinkus, and Schoenberg
[1976]. The article by van Rooij and Scherer [1974] contains a fairly
complete bibliography of the theory of splines up until January 1973.



2

PRELIMINARIES

In this chapter we establish some notation and develop a number of useful
tools. While for the most part the material belongs to classical approxima-
tion theory and numerical analysis, we include several quite recent resulits.
The discussion in this chapter is restricted entirely to real-valued functions
defined on an interval. Functions of several variables are treated in
Chapter 13.

§ 2.1. FUNCTION CLASSES

Given a closed finite interval [a,b], we define the space of bounded
real-valued functions on 1=|a,b] as
B[I]={f:fis a real-valued function on / and| f(x)| < oo forall xEI}.

2.1

This is a linear space of functions.

In most practical problems, the functions of interest possess some degree
of smoothness. For example, we will often deal with the space of continu-
ous functions on I,

C[I]={(f:fis continuous at each x in I }. 2.2)

This is a normed linear space with norm

/0 cun= max| f(x). @3)

In fact, C[a,b] is a Banach space with the norm (2.3). We shall make very
little use of Banach spaces in this book, however.

12
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We shall often have to deal with derivatives of functions. We introduce
the standard notation

e+ W= {2 24

D, flx)= l}}ﬁ}
and
D_fx)= lim w (2.5)

When these limits exist we call them the right and left derivatives of f at x,
respectively. When both left and right derivatives exist at a point and are
equal, then we write

Df(x)=D_ f(x)= D, f(x). (2.6)

We say a function f is differentiable on the closed interval [a,b] provided
that Df(x) exists for all a<<x<b, and that D, f(a) and D_ f(b) exist. In
this case it is standard practice to write

D, f(x) if x=a

D_ f(x) if x=b. 27)

Df(x)= {

We can now introduce several classes of smoother functions. If r is a
positive integer, we write

C'[1]={ f:the r™ derivative D'f belongs to [} (2.8)

for the space of r-times continuously differentiable functions. These spaces
are increasingly smooth subspaces of C[/] as r increases; that is,

-CcIrjccl[1)cclI].

There are other smooth subspaces of C[/] lying in between these spaces
—for example, the space of absolutely continuous functions defined by

AC[1]= { f:for any €>0, there exists § >0,
so that for all n and all a <1, <7, <t,

n
<t - <1, <t,<b with X |t,—1,| (2.9)

i=]

<8, 3 A —f(t)] <e)

i=]

satisfies C'[/]C AC[I]C C[/].
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In addition to the spaces mentioned above, we shall also make extensive
use of the classical Lebesgue spaces defined by

L,[1]={f:fis measurable on I and | f||, < oo}, (2.10)

P

where

v/p
=101, [okax| 7 tep<oe @)

and

ISl 0y = ess Slllplf(X)ls p=oo. (2.12)

L,[1] is a normed linear space (in fact, a Banach space) for each 1 <p < o0.

It is also useful to deal with certain subspaces of the L, spaces where the
functions possess smooth derivatives. Given 1 < p<oc and any positive
integer r, we define

L)[1]={f:D""'f€EAC[I] and DfEL,[I]}. (2.13)

P

The space L[] is called a Sobolev space. It is a normed linear space (in
fact, a Banach space) with norm

HfHL,;[l]=j§r0||Djf”11,[l]~ (2'14)
These classes of smooth functions are nested as follows:
crlneLy[neyenyec[1],
for all 1 < p < oo and all positive integers r.
We shall introduce other spaces of smooth functions in later chapters as

we need them—see in particular Sections 2.8 and 6.5. Analogous spaces of
functions of several variables are introduced in Section 13.2.

§ 2.2. TAYLOR EXPANSIONS AND THE GREEN’S FUNCTION

In this section we discuss the Taylor theorem and the Green’s function
associated with the differential operator D ™. Analogous results for general
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differential operators L are given in Section 10.2. Let

oo _ Lo x2y
(x—y)s {0’ <y’ (2.15)
and
m~—1
(Xky)iﬁl:{(x—y) . X2y, m>1 (2.16)
0. x <y

The following theorem is the classical Taylor expansion of a smooth
function in terms of a polynomial. with an explicit remainder term:

THEOREM 2.1. Taylor Expansion
Let f&€ L"[a.b). Then for all a <x <b.

m—1

)Y x— x—y)7 'D™
=3 f(“);!‘ "y+fu”“ ”(m_”!f(”dy. (2.17)

;=0

Moreover, if f € C"[a,b] there exists a<§,<b such that

m - ; _ - o m
=S Df(a)(x (1)’+Df(§()(_\ a) |

' '
et J! m!

(2.18)

Proof. Integrating by parts m — 1 times, we obtain

vy n— 1 L aym—t ,\'
[ prnar= S S b+ [oi .

¢ (m—=1) = (m=1)

Expansion (2.17) follows. Applying the mean-value theorem for integrals to
the remainder in (2.17). we obtain (2.18). ]

There is a dual version of this result whose proof i1s almost identical.

THEOREM 2.2, Dual Taylor Expansion
Let f€ L"[a.b]. Then for all a <y <b,

LG (YDA =Y e (x =) T (=)D (x)dx
fn=2 ; +ja (m-1)! :

1
/=0 J:

(2.19)
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It is convenient to have a symbol for the kernel in the Taylor expansion.
We write

N CE )
g.(x;y)= TER (2.20)

It is clear from the definition of g, (x;y) that for each fixed y it is infinitely
often right differentiable with respect to x. Similarly, for each fixed x it is
infinitely often left differentiable with respect to y. Writing D, and D, for
these derivatives, we immediately have the following properties of g,.(x;y):

Dig (xiy)=g,_i{x;y), 0<i<m-—1 (2.21)

DIg (x;y)=(—1)"D/g,(x;y)=0, allx#y (2.22)

(=1)'Djg(x;¥)=8,_(xiy), 0<i<m-—1 (223)
Dig,(x:0)| ey =(=D)'Djg,(x:¥)l,-,

=8.,,_1, i=01...m—1 (2.24)

The following theorem shows that g, is the Green’s function associated
with the differential operator D™:

THEOREM 2.3.
Let he€ L,[a,b] and real numbers f,,....f, _; be given. Then the function

m~—1

flx)=2 f,(x;—.ay +fb8,..(x;y)h(y)dy (2.25)

j=0
solves the initial-value problem
D™f(x)=h(x), almost everywhere in [ a,b] (2.26)
Df(a)=f, i=0,1,....,m—1. (2.27)

Proof. In view of the properties of g, it is clear that f satisfies (2.27). On
the other hand,

D) =fu i+ [ H(¥)d,

and (2.26) also follows. n
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In view of Theorem 2.3, it is of interest to define the operator D ~™ by

b

D"f(x)= [ g, (x)f(»)dy,  fEL[ab]. (2.28)

D ™™ 1s a kind of inverse to the differential operator D™ in the sense that
D™: Lp"'[ I]F—)Lp[ I]

D= L[ 1L 1]
and
D™D ~"f=f.

The Taylor expansion shows that there is a connection between values
of f and its various derivatives up to order m. Thus it should not be
surprising that the derivatives of f can be estimated in terms of the size of f
and the size of its mth derivative. We have the following useful tool:

THEOREM 2.4
There exist constants C,, |,...,C, ,,_, (depending only on m and [a,b))
such that for j=1,2,...,.m—1,

| DSl cpany < CmJ(e N N ctasr+ € N D crany) (2.29)

for any f € C™[a,b] and any O0<e<(b—a)/2.

Proof. The proof proceeds by induction on m and j. We consider first the
case m=2 and j=1. Choose N=min{n:(b—a)/n<e}.
Then

_(b—a) _(b-a)N-1) S (N—1)e 5

>h £
¢ N (N—1DN N 2

Let x,=a+ih, i=0,1,...,N, and let I,=[x;,x,,,]. For any £ in the first
third of 7, and 7 in the last third of /,, there exists  in (£,7) such that

1003 =| KO8 < 2o+ L1 (230)
Then for all x€ I, |

(D) < 1)+ [ "Dt < F fllcxny+ el DFlusye - 231

We have proved (2.29) for m=2 and j=1.
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Now suppose the result has been established for m—1 and 1 <j <m—2.
We next establish it for m and j=m—1. Applying (2.31) to D™ "%, we
obtain

1
D™ NS Cou 1D e+ el Do) (232)

By the induction hypothesis, we can write

- 1 —
10"l ct11 < Coe o 5z Wt + 81D i) (239
Choosing §=¢/(2C, C,,_, ,._,) and substituting (2.33) in (2.32), we ob-
tain
2m—2cm—lC’;n_—-lm_ 1
S22 fl e+ 3 127 Wl ey

D™ Fllerry <

em—l

+ Cz, ISHDmf”c[l,]-

This establishes (2.29) for m and for j=m—1.

To complete the proof we now proceed by downward induction on j.
Assume (2.29) holds for m and j as well as for all smaller m’s. Then
substituting it in the inequality

1 :
107 My < Cyyr( S Wl 1Dl )
we obtain (2.29) forj — 1. [ ]
We also need the following analog of Theorem 2.4 for functions in the
Sobolev spaces L,"[a,b], 1 <p <oo.
THEOREM 2.5

There exist constants C,, |,...,C,, ., (depending only on m and [a,b])
such that for j=1,2,....m—1,

DIl a0 < G e /UM et + € D™ o) (234)

for all f€ L"[a,b] and any 0 <e <(b—a)/2.

Proof. Since the proof is very much like that of Theorem 2.4 we can be
sketchy. It will be enough to establish the result for m=2 and j=1 as the
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rest of the proof proceeds as before. By (2.30) and (2.31) we have
6 6 5
D)< O+ L+ [ [DH(0)

for all x &€ I,. Now if we integrate this inequality with respect to { over the
first third of /, and with respect to n over the last third of /., we obtain

36
DA< f, 1f)]de+ f, 'IDZf(t)idt.

Applying Holder’s inequality to each of the integrals and using the discrete
Holder inequality (cf. Remark 2.1), we obtain

_ 36 \°
1DFI% <2 'h”{(—e-;) llfll’i,u,]+HD"f||’i,u,1}-

Now summing over i=0,1,...,N—1 and using an elementary inequality
(see Remark 2.1), we obtain

_ 36 4
1Ay < 27 e + 107 i) -
Taking the pth root of both sides, we obtain (2.34) for this case. [ ]

§ 2.3. MATRICES AND DETERMINANTS

We frequently have to deal with matrices and determinants formed from a
given set of functions. In this section we introduce some convenient
notation for such matrices and determinants, and give several useful tools
for dealing with them.
We begin with some notation. Let {4}}" be a set of functions defined on
aset I, and let ¢,,...,¢, be points in I such that
1 <ty- <t

me

Then we define the matrix associated with {#;}7 and {7 by

ui(t)  u(n) o u(l)
M( Hoeees )= “1(’2) uy(t) o u(n) | (2.35)

Ups ooy Uy,

ul(tm) u2(tm) T um(tm)
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We denote the determinant by

D( fyeot, )=detM( tyeoort,, ) (2.36)

Up,... U, up,...,u,

To see how such matrices can arise, consider the following basic inter-
polation problem:

PROBLEM 2.6. Lagrange Interpolation

Given real numbers y,,...,y,,, find u in A =span {u,}} such that

u(t)=y, j=12,...,m.

Discussion. The problem is to determine coefficients ¢, ...,c,, such that

m

> Ciui(tj)':yj’ Jj=12,....,m.

i=]

This is a linear system of m equations for the m unknown coefficients, and
can be written in matrix form as Mc=p, where M is given in (2.35) and
c=(cpp--»¢n) s y=(¥1,---»¥m)". This system has a unique solution for
arbitrary y precisely when the matrix M is nonsingular. This in turn is
equivalent to the nonvanishing of the determinant D.

When M is nonsingular, we can find an explicit formula for the
interpolating function. For each i=1,2,...,m, let L, be the unique function
in U such that

1, i=j

L(t)=98. = .
{(5)=9; {0, i), j=1,2,...,m. (2.37)

The functions L,,...,L,, are called the Lagrange functions. In terms of
them the unique solution of Problem 2.6 is given by

u(x)= iyiLi(x)' ]

i=1

It will also be useful to define matrices associated with a set of points
1, <t,< -+ <t, where some of the r’s are equal to each other. In order to
describe exactly where the equalities hold, we suppose that
[I Id
(<< s KLy =T] Ty seeis TiainT g (2.38)
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where each 7, is repeated exactly /, times with £7_ /. =m. Then given any

i1t

sufficiently differentiable functions u,,...,u,,, we define

| u (7)) u(r) - u,(7,) i
Du(r,)  Duy(r)) -+ Du,(r)
M( Liseest, ) Dll_lul(-":l.) Dl'-luz(’fl) T DI'_lum(Tl)
Uy, ..o U, lll(‘Td) uz(fd) L. um(Td)
Du(,) Duy(t,) -+~ Du, (7,)
_Dld—lul(,rd) Dl"_luz('rd) . DI"—lum(’rd) |
(2.39)

We can give a more compact definition of this matrix if we introduce the
integers

d=max{j:t;=--- =1}, i=1,2,....,m.

Then

M( foont,, )=[D4,‘J.(t,)]:';_.-

Uy,...,u,
This kind of matrix arises, for example, in the following interpolation
problem:

PROBLEM 22.7. Hermite Interpolation

Given real numbers {v;}%4, ., find u in AU =span{y}7 such that

Df_'u(ti)=v,j, =121

i=12,...,d

Discussion. In this problem we are interpolating both function values and
certain derivatives. The determination of the required coefficients again
involves the solution of a linear system that can be written in matrix form,
this time with the matrix M defined in (2.39). [ ]

The matrix M defined in (2.35) can be thought of as a function of the
vector t=(,,...,t,) on the open simplex

T={t=(t,....1,)EI™: 1,<1,< -+ <1,).
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If the functions u,, . . ., u,, are continuous on / then the matrix M varies
continuously (and so does its determinant) as t runs over 7. Similarly, if
the functions u,,...,u,, all belong to C™[I], then the matrix M defined in

(2.39) defines a function on the closed simplex
T={t=(t),...,t,)EI™ t;,<t,< --- <1, }.

On the other hand, on T the matrix M is not a continuous function. no
matter how smooth the functions u,, . . . u,, may be. The following example
makes this point clearer:

EXAMPLE 2.8

Suppose ¢, <t3 for all v, and that 1]}, as »-»00. Then

M("’ ")=[ ath) “2(")}, (2.40)

Up Du\(t))  Duy(t,)
while
: ty L) _ u () wy(1y)
Jim, M( Uy, uz) { u (1) uy(ty) } (241)

Discussion. The matrices in (2.40) and (2.41) are in general different. For
example, this is the case if u,(x)=1 and wu,(x)=x. The matrix in (2.41)
always has zero determinant (since two rows are equal), while the determi-
nant of the matrix in (2.40) may well be nonzero. [ ]

The above discussion shows that the nonsingularity of a matrix for all ¢
in the open simplex 7" does not imply anything about the nonsingularity of
the matrix for t on the boundary of 7. Or saying it another way,
nonsingularity for distinct #’s does not imply anything about the case
where some of the ¢’s are equal to each other. On the other hand, it is true
that if the determinant maintains one sign for all distinct ¢’s, then it must
have the same sign for all ¢, < --- <t _; that is, the sign must remain the
same as we go to the boundary of T. This is a useful fact, and we prove it
in the following lemma:

LEMMA 29

Let {u;}7 be functions defined on an interval I such that

St Pm)s0 0 forall i 242
D(u,,..., um)> orall x, <x,<---<x,ml (2.42)
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Given (¢, }T" with repetitions as in (2.38), suppose that for some ¢ >0

Then

=12,..

.m

weC' 1, 1,+¢), J . 2.43
4 [' i*e) i=12,....d ( )
D( S ) > 0. (2.44)

beeoalh,

The same assertion is valid if we replace [7,,7,+ ¢) by (7, — ¢,7,] in (2.43), all

i=1,2,....m.

Proof. Let e be the number of equal signs in the sequence 1, <7, < -+ <
t,. When e=0, the #’s are distinct, and (2.44) follows from the assumption
(2.42). We now proceed by induction on e; assuming the result holds for
e—1, we try to prove it for e. Writing the ¢’s with repetitions as in (2.38),
suppose that 7, is the first 7 which is repeated; that is,

—_——t
=Tl<--. <Tk_l<Tk=...=Tk<...

& s
—_——
<Td=... =Td’

with /, > 1. Then with sufficiently small §, the slightly perturbed set

t1<12< '<’m=
L1 I
————— —t——
W< <y <K== Llntdl ol ry=-e=1y,

has only e — 1 equal signs. Thus by the inductive hypothesis,

— u (7)) Tt u, (7)) ]
“1(""/(— 1) “m(""k—l)
uy () (i)
’;m )= : X
o, : :
DY (7)) D% %y (1)
u(r, +96) u, (1, +8)
Dld_l;‘l(Td) D["_];‘m(fd)
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Now for each i=1,2,...,m, the Taylor expansion asserts the existence of
Te S &y <7+ 6 with

=2 3 j -1 L—1
‘< Dlu(r)d | DY u(§,)8"
u; +8)= - +

(0= 2 = (=1

Substituting these expansions in the determinant and simplifying, we
obtain

uy (1)) U, (7))

“l(":k—l) “m(""k—l)

L u (1) Tt U, (7¢)

8%~ .
“woor| :

D"~ u(r) -+ D% (r)
DY~ lu(€,) - DR Tu(E)
Dl"_l“‘l("'d) Dld—ll.‘m(‘rd)

Since &, |7, as 8]0 for i=1,2,...,k, this determinant approaches the one in
(2.44), and we conclude that this latter determinant is also nonnegative.
This completes the proof under the hypothests (2.43).

If each of the u,,...,u,, is sufficiently smooth to the left of each 7, then
we use the perturbed set

f—1 I
~ ~ ~ —P—— —t——
LGS <L, =7 < < <TG =8, Ty Ty Tgee ey Ty

and expand to the left. After rearranging the rows and taking account of
the minus signs in the Taylor expansion, we obtain (2.44). ]

§ 2.4. SIGN CHANGES AND ZEROS

In this section we introduce some counting procedures for sign changes
and for zeros of functions.
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DEFINITION 2.10. Sign Changes of a Vector

Let v=(v,,...,v,) be a vector of real numbers. We define the number of
strong sign changes of v by

the number of sign changes in
S “(v)=the sequence v,,...,v,, where (2.45)
zeros are ignored.

Similarly, we define the number of weak sign changes of v by

the maximum number of sign
changes in the sequence v,,...,0,,
S *(v)= where each zero can be regarded (2.46)
as either +1 or —1, whichever
makes the count largest.

It is clear that

ST(v)<S*(v) for all v. (247)
It is also relatively easy to show that for all v,

S*(vp =0y (= 1) 7 0,)+ S (v),0..,0) =1, (2.48)
and equality holds if all the v;’s are nonzero.

DEFINITION 2.11. Sign Changes of a Function

Let f be a bounded real-valued function on a subset / of the real-line R.
We call

S (f)= s:p{S‘[f(t,),...,f(t,,)]:t,<12< e <, €17 (249)

the number of strong sign changes of f on I. Similarly, we define the
number of weak sign changes of f on I by

St = sup (ST ML), f1) ], < - <t €1, (2.50)
It follows immediately from (2.47) that
S () < S (251

We illustrate S,”(f) and S,;*(f) in Figure 3.
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f Son =2

Sion ) =4

Figure 3. Strong and weak sign changes.

DEFINITION 2.12. Simple Zeros

Let f€ B[I). We say that f has a zero at the point { €7 provided f({)=0.
We shall write

Z,(f)=number of zeros of fin the set /. (2.52)

If a function vanishes identically on a subinterval of /, then Z,(f)=oo0.
Thus, it is useful to make the following definition:

DEFINITION 2.13. Separated Zeros

Let fE€ B[/]. We say that ¢, <t,<--- <t,& are separated zeros of f
provided f has a zero at each point ¢,,...,7, and there exist

L <<y, < <L, <y, <,
in I with f(y,)#0, i=1.2,...,n—1. We write
Z<P(fy=max{n:f has n separated zeros in / }. (2.53)

Up to this point we have been working with arbitrary subsets of / of the
real line. For the remainder of the section we restrict our attention to
intervals (open, closed, or half closed). Our immediate goal is to introduce
the idea of double zeros.

DEFINITION 2.14. Double Zeros

If f€ B[I]1s a function with a zero at a point ¢ in the interior of /, then we
say that f changes sign at t provided

flt—e)f(t+€)<0 for all € >0 sufficiently small.
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If f has a zero at a point ¢ in (a,b) and does not change sign at this point,

then we say f has a double zero at . We write

number of zeros of f, count-

ing double zeros twice. (2.54)

HOL

For continuous functions defined on an interval, there is a close connec-
tion between zeros and sign changes. We have the following:
THEOREM 2.15
Let f€ C[I] where [/ is a subinterval of R. Then

S (H<Z?(f) (2.55)

and

SN <ZXS). (2.56)

Proof. 1If a continuous function on an interval is such that f(z,)-f(¢,) <0,
then f must vanish somewhere in between. ]

It is also possible to define zeros of higher multiplicity provided f has
enough derivatives.

DEFINITION 2.16. Multiple Zeros

Suppose f€ C?[I] and 1 € 1. We say that f has a zero of multiplicity z at the
point t provided

f( = Dfey = ... = D7 = 0 # D). (2.57)

As usual, if ¢ is an endpoint of the interval /, then D is to be understood
as either the left or right derivative. The behavior of a function in the
vicinity of a multiple zero depends on whether that zero is odd or even. We
have the following:

If f has an odd zero at ¢ in (a, b),
then f must change sign at the (2.58)
point ¢,

and

if f has an even zero at ¢ in (a,b),

then f does not change sign at ¢. (2.59)
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DEFINITION 2.17. Number of Multiple Zeros

Suppose f € C’[I] where [ is a subinterval of R. Then we define the number
of zeros of f on I, counting multiplicities up to order r by

number of zeros of fon I, count-
Z/(f)= ing multiplicities as in (2.57) up (2.60)
toz=r.

If feC>[I], we define

number of zeros of f on I, count- 2.61)
ing multiplicities of all orders. ’

Zl*(f)z

We conclude this section with a useful tool for dealing with zeros of
functions. First we need a definition.

DEFINITION 2.18. Rolle’s Points

If f is an absolutely continuous function on the interval (¢,d), then we say
that c is a left Rolle’s point of f provided that

either f(c) =0 or for every £ >0, there exists some
c<t<c+e with f(1)-Df(£) >0.
Similarly, we say that d is a right Rolle’s point of f provided
either f(d)=0 or for every £ >0, there exists some
d— e <1 <d with f(1)-Df(1) <0.

Examples of left and right Rolle’s points of a function are shown in
Figure 4. Geometrically, ¢ or 4 is a Rolle’s point if the function f moves
away from the axis as we move into the interval.

Left Rolle’s Right Rotle’s
point TSy " point

¢ d

Figure 4. The extended Rolle’s theorem.
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THEOREM 2.19. Extended Rolle’s Theorem

Suppose f € AC(c. d), f # 0. and that ¢ and d are left and right Rolle’s points
of f, respectively. Then Df has at least one sign change on the interval (c. d).
If Df is continuous on (¢, d), then it has at least one zero on this interval.

Proof. Since f is absolutely continuous, we can write f(d)— f(c)=
[2Df(t)dt. If f(c)=f(d), this implies either Df(¢)=0 almost everywhere or it
must change sign. This is the usual Rolle’s theorem. Now suppose f(c) <
f(d). Then Df(r) must be positive somewhere (in fact, on a set of positive
measure) in (¢.d). If f(d)>0. then since d is a right Rolle’s point, Df(t) <0
for some ¢ near d, and we have the desired sign change. If f(c)<O0, then
since ¢ is a left Rolle’s point, Df(r) <0 for some ¢ near ¢, and again Df
changes sign. The case where f(¢)>f(d) can be argued similarly. The last
statement is obvious since a continuous function can only change sign by
passing through zero. |

§ 2.5. TCHEBYCHEFF SYSTEMS

In this section we explore the connection between properties of determi-
nants formed from a set of functions u,,...,u,, and the number of zeros or
sign changes linear combinations of these functions can possess.
Throughout the section we suppose that [ is an (open, closed, or half-open)
interval in R.

First we must define some terminology.

DEFINITION 2.20. Tchebycheff System

A set U= {u}7" of functions in C[/] is called a Tchebycheff (T ) system
provided

D( lj]a“'vflm )>0 forallf,<t,<--- <t,in I. (2.62)

IR

The following theorem characterizes T-systems in terms of sign changes:

THEOREM 2.21

If U={u}7 is a T-system, then

m
Z,( > ciui) <m-1 for all real c,...,c,, notall0,  (2.63)

i=1
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where Z; counts the number of simple zeros on /. Conversely, if U= {u,}}
is a set of functions in C[/] such that (2.63) holds, then either U or the set
U={u,,...,u,_, —u,} is a T-system.

Proof. By the discussion of Problem 2.6, there can exist a nontrivial
c=(c,,...,¢,) such that u=27_,cu; vanishes at m points 1, <--- <z if
and only if the determinant D in (2.62) is zero. Hence if U is a T-system,
(2.63) follows. Conversely, if (2.63) holds, then D can never be zero. Since
D is a continuous function of the f’s, it must have one sign for all

1, <---<t, in I. We conclude that either U or U forms a T-system.

Tchebycheff systems play an important role in approximation theory,
statistics, and other parts of analysis. There are many examples of T-
systems. We give just two.

EXAMPLE 2.22
Let U={l,x,...,.x™"'}.

Discussion. Since this set of functions spans the space of polynomials of
order m, it is particularly important. We introduce the special notation

Ligouosl
VM(z,,...,t,,,)=M( ! "’I) (2.64)
S S
and
Liyeoust
V(t,,...,tm)=D( ! m ) (2.65)
..., x™!

where VM is the Vandermonde matrix and V is the Vandermonde determi-
nant. 1t is shown in Theorem 3.5 that V is positive for all choices of
t,<--- <t,, and thus it follows that U is a T-system. In fact, with some
algebraic manipulation it can be shown that

V(t,...ot,)= I (4,—1) (2.66)

Ii<j<m
whenever ¢, <¢,<--- <t,, while

(-1

d
V(t,,....1,)= Kigj«(fj—f,.)’/"igl ! (2.67)

1] Id
—t— ——t—
whenever H<L < <, =10..,1 < < Tyyoiy T, [ ]
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EXAMPLE 2.23
Let U= {1,cos(x),sin(x),...,cos(rx),sin(rx)}.

Discussion. This set of functions is a T-system on the interval I =[0,2).
It is not a T-system on any larger interval. See Karlin and Studden [1966],
p- 180. |

Theorem 2.21 shows that linear combinations of a T-system cannot have
more than m — 1 zeros. The following result shows that the same is true
even if we count double zeros:

THEOREM 2.24
Let U= {u}7 be a T-system on /. Then

le( > c,u,.)<m—l forallc,,...,c,, €R, not all 0.

i=1

Proof. Suppose u €L =span{u,}7 is a nontrivial function with ZX(u)=
m, and the zeros of u are 1, <t,<--- <y, If we add to this set 1,— ¢ for the
first double zero ¢, and the points ¢ +¢ for all double zeros ¢, then for
sufficiently small £ >0 we obtain a set of points

X, <x,<-0r <X

r

with r >m+ 1. Moreover, we see that
(=1 "'u(x)>0, i=12,....r,

where n=+1or — . Since v €L,

_pnf *rFm _m+] i-1 XXX e s X
0-1)( u,u,,...,u,,,)‘ 2 (=D u(xi)D( e )
This implies u(x;)=0,i=1,2,...,m+ 1, which contradicts Theorem 2.21. W

So far we have been working with systems of functions. In some
applications it is more convenient to talk about spaces.

DEFINITION 2.25. Tchebycheff Space

An m-dimensional linear space QU is called a Tchebycheff (T-) space
provided it has a basis that is a T-system.
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THEOREM 2.26

If 9 is a T-space, then for any basis U={w)}]", either U or U=
{u,..... u,_,, —u,}is a T-system.

Proof. Since 9l is a T-space, there exists some basis {v;}]" which forms a
T-system. Now if U is also a basis, then there must exist some nonsingular

matrix 4 such that (u,.... u ) =A(c,..... v,,)”. But then
..... | ST 4
D( feeeslm )=det(A)-D( g '")
Upso.. u, -

It follows that either U or U is a T-system. ]

In terms of this new terminology, Theorem 2.21 asserts that an m-dimen-
sional linear space %l is a T-space if and only if Z,(u)<m—1 for all
nontrivial ¥ in 7.

We now introduce a subclass of T-systems with stronger determinantal
properties.

DEFINITION 2.27 Complete Tchebycheff System

m

Suppose U={u )7 is such that {4} is a T-system for each k=1,2,...,m.
Then we say that U is a Complete Tchebycheff (CT-) system.

The powers discussed in Example 2.22 provide an example of a CT-sys-
tem. The following is an example of a T-system that is not a CT-system.

EXAMPLE 2.28

Let U= {sin(x).cos(x)} on [0, 7).

Discussion. U 1s clearly a T-system on [0,7). It is not a CT-system,
however. as sin(.x) is not positive throughout this interval. In fact, it is not
possible to find any basis for Q =span(U) that forms a CT-system, since
any linear combination of sin(x) and cos(x) always has a zero on [0,7). W

The situation encountered in Example 2.28 cannot occur on open
intervals, and we now have the following surprising result:
THEOREM 2.29

Suppose U={u}" is a T-system on (a,b). Then there exist functions
V={t;}7" with span(V)=span(U) such that V' i1s a CT-system on (a,b).
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There are several possible proofs of this remarkable result. We shall give
a proof in the next section utilizing results on Weak Tchebycheff systems
(see p.41). It can be shown by example that Theorem 2.29 is true only for
open intervals (see Remark 2.3). In the terminology of T-spaces, Theorem
2.29 asserts that every T-space on an open interval is a CT-space.

We now introduce a still stronger form of Tchebycheff system.

DEFINITION 2.30. Order Complete Tchebycheff System

A set of functions {u,}7" with the property that

{u,.'}f_l is a T-system for all | </, <i{,<- - < <Kmandall 1 <k<m

is called an Order Complete Tchebycheff (OCT-) system.

We shall show in Theorem 3.7 that the powers 1,x,...,x™ ' form an
OCT-system on any subinterval of (0,00). The following theorem shows
that OCT-systems have an important variation-diminishing property.

THEOREM 2.31. Descartes’ Rule of Signs
Suppose U= {u;}T is an OCT-system. Then

Z( > C,.u,.) < S (epnnncy) for any real ¢y,....c,,, notall 0, (2.68)

i=1

where Z counts the number of simple zeros in [a,b] and S~ counts the
number of strong sign changes in the coefficients [cf. (2.45)].

Proof. Let S "(c)=d— 1. Then we can divide the coefficients into 4 sets,

——
ClaeasCpaCptoeeesCpyenesCoigseesCop (2.69)

Cnyp

such that all ¢;’s in any one group have the same sign, and at least one ¢; in
each group is nonzero. Now with n,=0, n,_,=m, define

v, = 2 le;lu;, Jj=12,....d. (2.70)

We claim {v;}{ is a CT-system. Indeed, for any 1 <k<d and ¢, <--- <1,
in [a,b], we have

Loy 2 o ooy
D ] = 2 0 X |Ci,|"'|"i,‘|D w....ouw (2.71)

iy=n+1 =m+1 !
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which is positive since U is an OCT-system and at least one c; is nonzero in
each group. Let

é=(—- 1Y ™ 'sgn(first group of ¢’s), j=12,....d. 2.72)

Then clearly

d m
2 v =u= 2 c;u;, (2.73)
j=1 i=1

and using Theorem 2.21 on the T-system {vj}‘{, we obtain

Z(§ Ciui)=Z( é‘c’jvj)<d—l=5'(c,,...,cm). u

i=]

So far in this section we have been working exclusively with continuous
functions. If we work with smoother functions, then we can deal with
determinants with repeated ¢’s.

DEFINITION 2.32. Extended Tchebycheff System

Let U= {u,)7 belong to C™ '[I], where I is a subinterval of R. We call U
an Extended Tchebycheff (ET-) system provided

Lyeeont, .
D( ! " )>0 foralls,<t,<--- <t,in I (2.74)

1reee

The following result characterizes ET-systems in terms of zeros:

THEOREM 2.33
If U={u}7 is an ET-system on /, then

Z,”‘"( > c,.ui) <m—1 for all real ¢,...,c,, notall 0, (2.75)

i=1

where Z™~! counts the number of zetos with multiplicities up to order

m—1 (cf. Definition 2.17). Conversely, if U is a set of linearly indepen-
dent functions in C™ '[I] satisfying (2.75), then either U or U=
{ug,....u u,} is an ET-system.

m—1
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Proof. Suppose U is an ET-system, and that some nontrivial u=2X". | c;u

is such that Z" " Y(u)>m. If 1, <t,< - - - <t, are m of these zeros, then lhlS
can happen only if the determinant D in (2.74) is zero. This contradicts the
assumption that U is an ET-system. Conversely, if (2.75) holds, then D in
(2.74) can never be zero. For t=(¢,,...,t,) in the open simplex T={t:¢, <
1,<--- <t,€1}, Dis a continuous function of t, hence it must have one
sign. By Lemma 2.9, D also maintains the same sign as the ¢’s are allowed
to coalesce. We conclude that D has one sign for all t, and thus either U or
U is an ET-system. ]

As with T-systems, it is useful to define stronger versions of ET-systems.
We say that U={w,}7" is an Extended Complete Tchebycheff (ECT-) system
provided that {y, ’1‘ is an ET-system for each k= 1,2,...,m. We shall study
ECT-systems in greater detail in Section 9.1. If U has the property that

{u, }k is an ET-system for all 1 <i, <ip, <+ <ip <m

o pwm]

andallk=1,2,....m

then we say that U is an Order Complete Extended Tchebycheff (OCET-)
system. For OCET-systems we have the following important variation-di-
minishing property. 1t is a strengthening of Theorem 2.31 in that multiple
zeros are now counted.

THEOREM 2.34, Descartes’ Rule of Signs
Suppose U= {u;}7 is an OCET-system. Then

Z,"'"’( > c,»u,.)<S_(cl ..... c,) foranyrealc,,...,c,, notall 0.
(2.76)

Proof. Since the proof is very similar to that of Theorem 2.31, we can be
brief. Let S (¢)=d—1. Then dividing the ¢,,...,¢,, Into groups as in
(2.69), let V={ v,}‘f be as defined in (2.70). Since U is an OCET-system,
the expansion (2.71) implies that V is an ET-system (in fact, an ECT-sys-
tem). Then with ¢,,...,¢é, and @ as in (2.72) and (2.73), Theorem 2.33
applied to the ET-system V' implies

"‘(gciui)=2,”'"(§d5/ )< d—1=5"(cy...,c,). [ ]

i=1
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§ 2.6. WEAK TCHEBYCHEFF SYSTEMS

We shall see in Chapter 4 that spaces of spline functions are not generally
T-spaces. Thus it is useful to introduce a weaker form of T-system capable
of encompassing splines.

DEFINITION 2.35. Weak Tchebycheff System

Let u,...., u,, be a set of bounded real-valued functions defined on a set.
I CR. We say that the {4} form a Weak Tchebycheff (WT-) system
provided they are linearly independent, and

D IR L, >0 forall 1, <t,<--- <t in[. (2.77)
u

m
m

In contrast with the definition of T-systems in the previous section, here
we have deliberately allowed arbitrary subsets / of the real-line R, and we
have not required the functions {u,;}T' to be continuous. We begin with
some examples of WT-systems.

EXAMPLE 2.36

Let U= {u )7 be a T-system on an interval /. Then U is a WT-system on
any subset J of /.

Discussion. In fact, it is clear that for any set of ¢, <--- <z, in J, the
determinant D in (2.77) is actually positive. [ ]

The method of Example 2.36 is one way of constructing a wide variety
of WT-systems on arbitrary point sets. Another method is illustrated in the
following example:

EXAMPLE 237

Let U= {u}" be a T-system on an interval /. Suppose we define functions
u,,...,u, by

7 (x) = { u(x), xeI\J
0, xeJ,

i=12,..., m, where J is any subset of 1. Then if U= {#.}7 has dimension
m, it is a WT-system on /.

Discussion. In this case D will be positive for all 1, <--- <z in I\J. If
any one of the ’s lies in J, then D=0. The functions in U can be quite
wild—for example, we can take /=R and J =the set of rational numbers.

a
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We shall see in Chapter 4 that various spline spaces have bases that form

WT-systems. The following example involves the spline x% defined in

(2.15):

EXAMPLE 2.38

Let U={ 1,x%} on I'=[—1,1]. Then U forms a WT-system.

Discussion. We may check directly that D >0for all — 1 <7, <t,<1. W

In the previous section we saw that the T-systems could be characterized
in terms of zeros. The following theorem gives a characterization of
WT-systems in terms of sign changes:

THEOREM 239

Let U= {u}T" be a linearly independent set of m functions defined on a set
I.1f U is a WT-system, then

S,_( > c,.u,-) <m-1, anyrealc...,c,,notall0.  (2.78)
i=1 -

Conversely, if (2.78) holds, then either U or U= {u,....,u,, |, -u,}is a
WT-system on /.

Proof. We first show that if U is a WT-system, then (2.78) must hold.
Suppose it does not. Then there exists u€U =span(U) and T={1,<¢,
<o <t,,,) with

(= D'u(£)>0,i=1,2,....m+1. (2.79)
CASE 1. Suppose rank U|T=m, where, in general,
rank U|T=rank{[u,(?).....u,(1)]:t€T}.

Then since u is a linear combination of u,...,u,,,

t ! m+1 .
O=D( u'}""’;*;)= > (- 1)'u(t)D, (2.80)
ey ¥y i=1

where

| SYRRP SR SO T | 3
D,.=D( ! U "’“), i=12,....m+1.

Upyeooy U,
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Since U is a WT-system, each of the D, is nonnegative, and (2.80) implies
they are all zero. But this contradicts the assumption that rank U|T=m.
CASE 2. Suppose rank U|T=k <m. We now show that there is a new set
of points T and a new 2 €9l such that (— l)’u(t )>0,i=1,2,...,m+1 and
rank U|T k+1. This process could then be continued until Case 1
applies. To construct # and 7, first note that since rank U|I=m, there
must exist some point &€/ such that rank U|T=k+1, where T=TuU {¢}.
Suppose ¢, <t<t.,,, where we set {,=—o00 and ¢, ,, =00 for conveni-
ence. Suppose 1, is the first point to the right of s such that rank
U|T=k+1, where T'= T\{t }. (If none exists to the right, then there must
be one to the left, and a 51m11ar argument carries through.) 7 is our new

t. Now by elementary linear algebra (see Remark 2.6) there exists a
function {, in QL that vanishes at all points of T and with /,(¢)=1. Similarly,
for each i=v+1,..., u— 1 there exists a function /, €9l that vanishes at all
points of T, except at 7, where it has the value 1. But then for sufficiently
small € >0 we easily check that the function

p—1 )
=eu+(-D"+ Y (-1

i=p+1

has alternating signs on the sequence of points making up T.

We now establish the converse. Suppose that neither U nor U is a
WT-system. This means that for some X={x,<--- <x,} and Y={y,
< --<y,)in 1,

X Y\, XpyennX,, Viveoosm
D( U)D( U)'_D( u,,...,um)D( u,,...,um)<0'

The fact that both of these determinants are nonzero implies that we can
replace the rows of D(},) by rows taken from D( U) one at a time, always
keeping the determinant nonzero. But D(}) and D(},) have opposite signs,
and we conclude that at some point the removal of a row and replacement
by another (in its natural place) causes a switch in sign of the determinant.
It follows that for some Z={z,<--- <z, ), there is a Z obtained from Z
by removing z, and replacing it by z such that D({) D(¥)<0.

Let L,,...,L, be the Lagrange functions in @ corresponding to the
points z,, . . ., z,, lcf. (2.37)]. Then for some nonzero constant « (cf. the
proof of Theorem 2.26)

o(7)e0l7) win(Z)-eo(2)
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hence D( f)D( f) < 0. Since D( f) =1, we conclude D’( i) <0. Assum-
ing that 0 < j <m is such that z; <z <z, expanding D( %
that

) out we deduce

(=D*/,  if0<,j<k-2
sgn L, (z)= -1, ifk—1<j<k.
(-7 ifk+I<i<m

Using the Lagrange functions L,,...,L,,, we can construct g €U such that

-1/ =12,
g(z,-)=sgnLk(z){( -

(- i=j+1,....m.
Now for ¢>0 sufficiently small, the function u= L, +eg satisfies (2.79)

with T={z,,...,2,2,2;, 5., 2, }- B

In our next theorem we explore what happens when we restrict a
WT-system on a set / to a subset J of /.

THEOREM 2.40

Let U={y}7 be a WT-system on the set I, and let J be a subset of /.
Suppose

A, =spanf{ul,},
is of dimension /. Then there exists a set V'={q;}{ spanning A, such that
V is a WT-system on J.

Proof. Let v,,...,v, be a basis for Q,, and suppose v, |,...,v,, are chosen
such that {v;}7 span QL. By subtracting linear combinations of the v,,..., v,
if necessary, we can arrange that v(x)=0 for all x&J,i=/+1,...,m. By
the linear independence of {u,}T" on I, there exist t,,,...,¢, in I\J such
that
D( Ligoennrly, );&0
/S TRRREL
Since v, y....,t,, vanish on J,

D( Laeenl )D( [T )=D( tl,...,tm)
Cprenes v, Upppre--aUpy Oyt Uy
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for all 1, <t,<--- <t in J. We conclude that the first determinant on the
left is of one sign for all such ..., t, hence either V or V=
{vi..... v_y — ;) 1s @ WT-system. [ ]

If {4,)}¥ is a WT-system on / for each | <k <m, then we say that
U={u}7 is a Complete Weak Tchebycheff (CWT-) system on I. The
following result for WT-systems should be compared with Theorem 2.29
on T-systems:

THEOREM 241

Let U= {4y} be a WT-system on the set /. Then there exists a CWT-
system V= {v,}] spanning the same space as U.

Proof. By the linear independence of u,,...,u, on I, there exist points
floeeslm )#0. Let L,,...,L, be the Lagrange
Poeneslly

functions in 9 =span(l/) corresponding to these points, and set U,,_,=
{L,}7~'. It is obvious that U, _, has dimension m— 1. By Theorem 2.40,
we conclude that either U, _, or U, _,={L,,....L,,_, —L,_,} isa WT-

system on J=/\{¢_}. This in turn implies by Theorem 2.39 that

tys..., 1, in [ such that D

m

*oem— 10
i=1

m—1
Sf( > c,Li)<m—2 forallcy,...,c,,_,, not all 0.
But since each of the functions L,,...,L,, _, vanishes at ¢, this implies

3 Cn—1s

m—1
S,_( > c,.L,.) <m-2 forallc,...,c,_,, notall Q.

i=1

Using Theorem 2.39 again, it follows that either U,,_, or Um_, Is a
WT-system of m—1 functions on /. This process can be continued to
construct WT-systems U, of i functions fori=m—2,..., 1. B

If QL is an m-dimensional linear space defined on a set I, we say that 9L
1s a Weak Tchebycheff (WT-) space provided it has a basis that is a
WT-system. We define Complete Weak Tchebycheff (CWT-) spaces simi-
larly. It is clear that the analog of Theorem 2.26 holds here; that is, if QU 1s
a WT-space and U={u)7 is a basis for it, then either U or U=
{uy...,u, _,, —u,} must be a WT-system. Theorem 2.39 asserts that an
m-dimensional linear space QL is a WT-space if and only if S, (u)<m—1
for all nontrivial ¥ in Q. Theorem 2.41 asserts that every WT-space AL is
automatically a CWT-space.
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As an application of Theorem 2.41, we now establish Theorem 2.29 in
which it was asserted that a T-space on an open interval / is a CT-space.

Proof of Theorem 2.29. 1f U={u;}7" is a T-system on the open interval I,
then it is automatically a WT-system. We conclude from Theorem 2.41
that there exist functions ¥'={v,}7" ' in 9 =span(U) such that V forms a
WT-system on /. We claim ¥ must be a T-system of m— 1 functions on /.
Let v &€V, Since V' CAl, v can have at most m— ! zeros. If it has m— 1
zeros ¢, <t,<--- <t,_,, then it must change sign at each zero (otherwise
some would be double zeros, contradicting Theorem 2.24). Now let x,<¢,
<x <ty<xy< -+ <t,_<x,. Then (—1)v(xp)v(x;)>0 for i=0,1,...,m,
which implies S, (v)=m —1. This is impossible since V is a WT-system.,
We conclude that Z,(v) <m—2 for any v&€ Y, and thus (since the signs of
the determinants formed from the v,,...,v,,_, are plus) V forms a T-sys-
tem of m —1 functions.

We call U={u,}T" an Order Complete Weak Tchebycheff (OCWT-)
system on the set / provided

{u,-u}’:= isa WT-system on [ forall 1 <i;<i,<--- <j <m

and all 1 <k <m.

The following theorem gives an important variation-diminishing property
of OCWT-systems.

THEOREM 242
Let U= {u}7" be an OCWT-system on the set /. Then

S,“( > C,-u,.) <S T (cpeen)s all real ¢|,...,c,,, notall 0. (2.81)

i=1

Proof. The proof is very similar to the proof of Theorem 2.31. Suppose
S "(c)=d. Then we can divide the set of coefficients as in (2.69). Let
vy,...,0, be as defined in (2.70). We claim that V'={v,}{ is a CWT-system.
Indeed, by the expansion (2.71) and the OCWT-property of U, we see that

determinants formed from v,,...,v, are always nonnegative. It also follows
from (2.71) that for some ¢, < --- <tz,, the determinant is positive, hence
v,....0y are linearly independent. Now with {c"j}‘l’ as in (2.72), Theorem

2.39 applied to the WT-system V implies

m d
s,-( > c,.u,.)=s,—( > Ejvj)<d—l=S'(c,,...,cm). n
Jj=1

i=1
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For us, the most important example of an OCWT-system will be
provided by the B-splines discussed in Chapter 4. Theorem 2.42 will then
yield a valuable variation-diminishing property of B-spline expansions.

Up to this point we have concentrated on sign changes of functions in
WT-spaces. In the remainder of this section we examine zero properties.
As shown in Example 2.37, it can happen that all of the functions in a
WT-space 9l vanish at the same (possibly infinite) set of points. In order
to get any meaningful results, we shall have to exclude such points.

DEFINITION 2.43. Essential Points

Let @l be an m-dimensional linear space defined on a subset 7 of R. We say
that r € I is an essential point of I relative to A provided there exists u €L
with u(2)#0.

We shall need the following simple lemma:

LEMMA 2.4

Suppose A is an m-dimensional linear space defined on I, and suppose
x,<x,< -+ <x, are essential points of / (relative to Q). Then there exists
u €Y such that u(x)#0, i=1,2,...,n.

Proof. We construct g,,...,g, consecutively with g(x)#0, j=1,2,...,i.
Since x, is essential, it is clear that there exists g, €Q with g,(x,)#0.
Suppose now that g;_, has been constructed. If g,_,(x;)¥0, then we may
take g, =g, . If g,_,(x,)=0, let h be such that h(x,)#0. Then for ¢#0
sufficiently small, we may take g, =g, _, + ¢h. |

Note that in Lemma 2.44 there is no restriction on n. It can be
arbitrarily large. In the following theorem we give a bound on the number
of zeros a function in a WT-space can have at essential points. We call
such zeros essential zeros.

THEOREM 245
Let 9 be a WT-space of dimension m > 1. Then

Z7P () <m for all nontrivial ue L, (2.82)

where Z counts essential separated zeros (cf. Definition 2.13). Moreover, if
u €U has m essential separated zeros x, <x,< :-- <x,, then

u(x)=0 for all x € I with x <x, or x >x,,.

Proof. We prove the second statement first. Suppose u € has m sep-
arated essential zeros x;, <x,<--- <x,. Let x, <y, <x,,,, i=1,2,....m—1
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be such that u(y;)#0. Suppose now that u is not zero for some y,, >x,,. We
shall show that this leads to a contradiction. By Lemma 2.44 there exists
vE€ QU with v(x;)#0, i=1,...,m. But then [cf. (2.48)],

S_[U(xx)v“()’l)v---’D(xm)’“(ym)]

+S*[o(x), —u(yy),...,0(x,), —u(y,)] >2m—1.

Since all of the components are nonzero, we conclude that either

S [0(x),u(p ), 0(x,),u(,,) ] >m (2.83)
or
S [00x)s = u(¥ s 0(%), = t(y)] >, (2.84)
Now choose £ >0 such that

e max |o(x)|< min [u(y)].
I1<i<m I<i<m

Then, if (2.83) holds, we see that § ™ (1 + ev) > m. Similarly, if (2.84) holds,
then S ~(u— ev) > m. In either case this contradicts the assumption that QL
is a WT-space. If u is nonzero for a point y,<x,, we reach a similar
contradiction.

The bound (2.82) now follows. Indeed, if ¥ had m+1 separated zeros,
then it would have m separated zeros x, < --- <x,, and a point y,,  >x,,
where u is not zero. This is impossible by what we have already shown. W

The following example shows that the bound (2.82) cannot be improved:

EXAMPLE 2.46
Let U= {1,sin(x),cos(x)} and /=[0,2=].

Discussion. U is a WT-system on [0,27]. The function sin(x) has three
separated essential zeros, namely the points 0,7, and 2. [ ]

The following theorem shows that if we work on sets with only essential
points, then the zeros of functions in a WT-space must occur in separated
“intervals:”

THEOREM 247

Let QU be a WT-space of dimension m on the set /. Suppose that all points
of I are essential with respect to QL. Then for every u €9l there exist
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intervals /,,...,/, and points y, < --- <y,_, with /<m such that
Ly <<y, < <y <4,

u(y;)#0, i=12, ..., I—1

l
T(u)={x€l:u(x)=0}= | (INI]).
i=1
Proof. Let /=max{j:there exist z, <y, <z, <--- <y;_,; <z; with u(z,)=0,
i=12,....7 and u(y,)#0, i=1,2,...,j—1}. By Theorem 2.45, /<m. Let
Zo={y_ 1 <x<y;:u(x)=0}. If z and 7 are two points in Z,, then all points
in 7 between z and 7 must also be in £, for otherwise / would not be
maximal. We conclude that each of the Z, has the form 7N [, where /, is
some subinterval of R. n

3

When the set / in Theorem 247 is an interval, then the “intervals”
making up the zero set of u are ordinary subintervals of R. Example 2.38
shows an example of a WT-space with functions that have zeros on
intervals. The splines discussed in Chapter 4 provide further examples.

We have remarked earlier that every T-system is automatically a WT-
system. In the following theorem we explore to what extent the reverse is
true:

THEOREM 2.48

Suppose A is a WT-space of continuous functions on the open interval
I=(a,b). Suppose that all the points of I are essential with respect to L.
Finally, suppose

Z(u)< oo for all nontrivial u€ 9L, (2.85)
Then QL is a T-space on /.

Proof. We shall show that for any nontrivial u€Ql, Z (u)<m-—1.
Suppose to the contrary that some such u has Z,(u) > m. Since u only has
finitely many zeros, they must be distinct, separated zeros. Let x, be the
smallest, and x, the largest. Then by Theorem 2.45 we conclude that
u(x)=0 for x<x, and x>x,. This is a contradiction of (2.85), and the
theorem is proved. ]

Theorem 2.48 is clearly also valid if I is a half-open interval. Example
2.46 shows that it does not hold, however, if / is a closed interval. In view
of Theorem 2.47, the hypothesis (2.85) will be satisfied whenever 9 does
not contain any functions that vanish on intervals. The connection be-
tween WT- and T-systems will be discussed further in Section 11.4.
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In this section we have given direct proofs for all of our results on
WT-systems. Some of the results can be obtained from the analogous
results on T-systems by smoothing techniques—see Remarks 2.4 and 2.5.

§ 2.7. DIVIDED DIFFERENCES

Although the basic properties of divided differences are developed in most
books on numerical analysis, some of their finer properties (and in particu-
lar the case of repeated (’s) are often not fully discussed. Thus in this
section we give a complete treatment.

Divided differences can be defined in several (equivalent) ways. We
shall define them as quotients of determinants. The advantages of this
approach are: (1) it permits a rapid and clean derivation of the properties
of divided differences. and (2) it can also be used to discuss some
important kinds of generalized divided differences. Here we deal only with
the classical divided differences: for generalizations, see §9.1 and Remark
2.7.

DEFINITION 2.49. Divided Differences

Given points ¢,,...,t,,, and a function f, we define its rth order divided
difference over the points t,....,t ., by

D [ S
Lx,....x" "\ f
D( t,,....t,H)
Lx,...,x"
In this definition we have tacitly assumed that the ¢’s are in increasing

order (in order for the determinants to make sense). But the definition
makes sense, in general, if we agree that

[tyoont] f= . (2.86)

[l],...,t,+,]f=[t|9---’tr+l]f’

where 1,<,<--- <t,,, consists of the points {1,};*' in their natural
order.
When the ’s are distinct, then [¢,,...,4,,,]f is defined for any function

that has finite values at these points. When some of the #’s occur more than
once, then the value of the determinant in the numerator of (2.86) depends
on certain derivatives of f, and the corresponding divided difference only
makes sense for functions f that possess the required derivatives.
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The following theorem gives some basic properties of divided dif-
ferences:

THEOREM 2.50

If ¢,,...,1,,, are pairwise distinct, then

< S(1) _’é’ f4)

[theen o 1 f= 2 ON — (2.87)
j=1 @ i i=1 II (ti_tj)
Jj=1
Ji
where
o()=(—t))t—1) - (t—1,,).
More generally, if
4 I
Lisenosly o | = ThoeeasThaeees TgueesTyg (2.88)
with 7, <1, <-- - <7, then
d 4
['l""’tr+]]f= 2 2 aijDJ_lf(Ti)’ (2.89)
i=1j=1

where

a,-_/’#o, i=l,2,...,d.

Thus the rth divided difference is a linear functional defined on all
sufficiently smooth functions. Moreover, if f and g agree on the point set
{£},*" in the sense that

j=12,...1,

yhy ey

Dj_lf(fi)= Dj_]g("'i)v (2.90)

then [¢,,....¢t, ] /=1ty.. 0t 1 1] 8-

Proof. The expansion (2.87) follows directly from the definition and the
explicit formulae (2.66) for the vanderMonde determinant. To prove (2.89)
we need only expand the determinant in the numerator of (2.86) with
respect to its last column. The denominator 1s always positive since it is a
vanderMonde. The fact that the coefficients a; of the highest derivatives
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of f at each 7, in (2.89) are nonzero follows from
1 -1 L
————— ——— —_——t——
V(’Tl,...,'rl s TigeeasTineens 'rd,...,'rd)

o, =

V(tyooot o))

It is clear from (2.89) that the divided difference is linear; that is,

[[}Sf+g=[1f+["]g and [-Kaf)=a[-]/. The fact that [-]f=[-]g when f
and g agree on the ¢’s is also clear from (2.89). [ ]

In our next theorem we give several other important properties of
divided differences. Of particular importance is the fact that divided
differences can be computed recursively.

THEOREM 2.51

Given any points ¢,,...,t,,; (not necessarily in order) and any sufficiently
smooth function f,

[ty st ) f=[t1se- st ]S

[t6e st | f= — (2.91)
tr+l tl
provided ¢, %*¢,, . If t,=t,=--- =1, then
Df(1,)
[t a1 == = (2.92)

In general, if f&€ C’[a,b], where a=min, ,,, 4 and b=max, ., %
then

_ Df(9)
r

[tisetiin | f , some a <8 <b. (2.93)

Concerning the divided differences of powers of x, we have

; 0, Jj=0,1,...,r—1 294
[t ] = B (teestii)s J=rr+l,... " (2.94)

where po(?,...,2,,,)=1 and
ptyse oty )= 2> (6.8, 1) (2.95)

1<i<iy< -+ ip<r+1
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The sum in (2.95) is taken over all choices of / integers, allowing repeti-
tions. For example, p,(f,.....6,, )=1,+ -+ +1, ., while p,(¢,.1;)=17+1,1,
+ 1. The number of terms in the sum is (r+/)!/(r!/!).

Proof. We begin with the first half of (2.94). By the definition of the
divided difference, if we take f(x)= x/ with 0<j <r—1, then two columns
of the determinant in the numerator of (2.86) will be the same, and the
value will be zero. If we take f(x)= x", then the numerator and denomina-
tor are identical, and the value of the divided difference is 1.

We prove the remaining assertions first in the case that ¢, =¢,=-.- =
t,,,. In this case, the denominator in (2.86) is

Vie,..... Loy)= II »,
r=1
while the numerator is
r—1
Df(e)V(ty..... t,)=D'f(1)) [T v,

v=1

and (2.92) follows. Moreover, for j >r,

W
J= D%/ __J:h =
[11‘....[,+]]X = X lx=/,—m—pj—r(tl ..... ’l)*

r!

which completes the proof of (2.94) in this case.

Suppose now that ¢, #¢,,,. We establish the theorem by induction on r.
For r=1 1t is easily checked. Suppose it holds for divided differences of
order r— 1. Our first task is to prove (2.91). Consider the linear functional

[t = [0t ) S

(tr+l_t|)

It is clear that Ax'=0.i=0,1,...,r~ 1 by (2.94). Moreover, using (2.94) for
r points and with j=r we have

(4 +,, )= (n+--- +1,)

Ax"=1-
(’r+l—tl)

=0.

On the other hand, Af has the form of the sum in (2.89). Thus the set of
linear equations Ax‘=0, i=0,1,...,r provides a nonsingular system for the
coefficients in the expansion of A, and we conclude A=0. This proves
(2.91).
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By the inductive hypothesis and the definition of the p’s, we have

[t eostpr ]X) = [thsest, ] X
fiseensl S =
[t (a1

_ pj—r+l(t2"" r+l)—9j r+l(tl""’tr)

(fe1— 1)

=pj—r(tl""’tr+l)’

and (2.94) is also established for all r. Finally, property (2.93) follows
directly from the Peano representation (established in Theorem 4.23):

_ (41 Q(x)D'f(x)dx
[t], ,-+]]f_j:l (l"‘l)! ’
where Q is a nonnegative function with | i'l* Q(x)ydx=1/r. [ ]

The recursion relation (2.91) permits us to compute the divided dif-
ference by generating the triangular array

[’|]f [tz]f [tr]f [tr+l]f
[tnta])f [etn]f

[0t ] f [ty ) f
[tl’ r+l]f

We emphasize once again that the recursion formula (2.91) does not
require the #'s to be in order. For example, we have

- [H""zv"'s]f_ [Tl»Tz»Tz]f

(13— 7))

[Tlv72v72»73]

[7,,1’2,1'3]f— [Tz,Tl,Tz]f

(13— 73)

=[1p7,7 73| f=

)

assuming 7, #7;#7,.
Our next result is a form of Leibniz rule for differencing the product of
two functions.
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THEOREM 2.52
For any ¢,,t,,...,t, ., and appropriately smooth functions f and g,
r+1
(oot ] 8= 2 [t ot ) f [ 10ty ] 8 (2.96)

i=]

Proof. We proceed by induction on r. For r=0 the result is trivial.
Suppose it holds for r— 1. If r,=1,,,, (2.96) is the usual Leibniz rule

D 3 DS D iglay
G—D(r+1-0)!

r!

il
=L S (") D) D" e(ry). (297)
* =0

We suppose now that ¢, ¢, ;. Then, using (2.91) and the Leibniz rule for r
points, we obtain

[taeonty [ o= [ 1ot ] f8

[t ] fo=

(tr+l_[l)
r+1 r
22[t2 ..... ) f [t ] 8- g (tyoont ] f [0t ] 8
(Ir+|—tl)

and combine like terms, we obtain

r+1
[1,,...,I,+l]fg=( VEZ[’1""’11]]'[tt""'tr+l]g'(li_t|)
+ 3 [t,....,r,]f-[t,.....,t,ﬂ}g-(t,”—l,))/(f,u—'.)
i=1
r+1
= [zl,,‘_,t‘.]f‘[t,.,...,t,+|]g. |
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The following theorem shows that for smooth functions, the divided
difference over an arbitrary set of points with repetitions is the limit of
divided differences over distinct points. In particular, we see that for any
fecC i), [t,....t,,}1f is a continuous function on the closed simplex

T={t=(t),....t,, DEI""":  1,<5< - <t}

THEOREM 2.53

Lett, ,,....t.,, . be a sequence of points with 1, . —¢, as €0, i=1,2,...,r+
1. Then for all sufficiently smooth f,

[f1eotirre] =t st ] S, as e0. (2.98)

Proof. It suffices to consider the case where just one t moves with e. For
convenience of notation, let u,=1,...,u,, , =x". Suppose 1, < - - <1,<¢,,,

=t <ty < Sy and that Lyredlivs Then using Taylors
expansion as in the proof of Lemma 2.9, we obtain

[tl"'"ti+l-1?ti+[,s’ti+l+l"'”tr+l]f

ul(ti+l) ot ur(ti+|) .f(ti+l)
TID T () Dl_zur([i+l) D74, )
Dl_lul(gl) U Dl_lur(gr) Dl_lf("l)
u(4,4) T U 1(tis1)
Dl_zul(ti+l) Tt Dl_zur+l(ti+l) ’
Dlilul(gl) Dl_l“r+1(§r+1)

where £,,...,£ ., and 7 all go to 1, , as e—>0. Taking the limit, we obtain
(2.98). [ ]

At times it is useful to have more specific information about how the
divided difference changes as we move one or more of the ’s. Our next

two theorems give explicit formulae for the partial derivatives of divided
differences with respect to the £’s.
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THEOREM 2.54

Let 1, <7, <--+ <1, be given. Fix 1 <j<r+1, and suppose that ¢ is not
equal to any other r. Then for any sufficiently differentiable f,

E[" ..... Lot ) f=[ ettt ety | f. (2.99)

Proof. By the recursion formula (2.91) and the fact that the order of the
£’s can be rearranged without affecting the value of the divided difference,

EITETTN AW AE ORI I A e S

=[tpty e = [t et ) f
=e[ bty ol Gyt Wt E] S
=e[tp.tulite il ]S

Dividing by ¢ and taking the limit as ¢—0, we obtain (2.99). [ ]

Theorem 2.54 deals with the case where a single ¢, unequal to any other
t, 1s moved. Given a set of r’s with
4 by

——t——
ST Lo = T Ty S K Ty, Ty (2.100)

we now consider the case where the entire block 7,,...,7; is moved together.

THEOREM 2.58
Let {#,};*! be as in (2.100). If 7,<7,, . then

3 l L+1
a—:_[:l,....x,+,]f=1,.[T ! : "}f, (2.101)

O S

where 0, /97, denotes the right derivative. If 7,_,<r, then the same
expression holds for the left derivative.

Proof. Suppose 7, <7, , and we wish to move 7, to the right. Then for any

e>0,
/) /; | l 4 L
[Tl,..., Tte..., *rd}f [Tl,..., Tieeer  Tg S

l
=2({‘r11l L—r+1 r-—1 Id}f
< veres

T, +E, Tisenns Ty

I8 L—r r '
_l'rl,..., T,+e,  TH..., T,,Jf)'
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Now the same argument used in Theorem 2.54 can be applied to each
individual term, and after dividing by ¢ and taking the limit as &|0, we
obtain (2.101). [ ]

It is often useful to be able to estimate the size of divided differences in
terms of lower-order divided differences. We have the following:

THEOREM 2.56
Let 0<i<r—1 be fixed integers, and suppose

y=, min 6= al>0 j=itlr
Then
(77 N et
| (AN VB , (2.102)
v=0 Yi+1---Yr

where ( r’:z) is the usual binomial coefficient (see Remark 2.8).

Proof. Since

[t tper ] f1 [ o5t ] S

(tr+ 17 tl)

)

[tyemstyan )1

the result follows for i=r—1. Now we proceed by induction on i. Suppose
(2.102) holds for i; we now prove it for i—1. We have

(r—-i) '[tl'+2’"-vtw+(i+1]f|+|[t,_;|,...,t,+,.]j|
S ’ Lyivi— by
[t sty ] fI< > 1 I

»=0 Yi+1 " 7Y,

Since |t,,;,,—t,,.| >7v;, combining the above sums (and using a simple
identity for binomial coefficients—see Remark 2.8) yields the assertion for

i—1. a

The special case of divided differences over equally spaced points is of
particular importance.

THEOREM 2.57

Given h >0 and a positive integer r, we define the rth forward difference of f
at ¢ by

A f(D)=rPRT[ 1,0+ h,... .t + rh] f. (2.103)
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It has the following properties:

A f(1) = .gro(— vy () +imy (2.104)
Ax'=rlh's,,,  i=01,...r (2.105)
AL < 271 f] oo (2.106)

Moreover, if f€ L{[t.t+ rh], then

AU(:):h’f’th(t+u)N (u/h)du. (2.107)
o A
where
0<N"(x)< 1, f’N'(u)du=1, INlLon <l  allI<g<oo.
O q

For such f we may also write
h h
A;J(:)=f f D'f(t+s,+ -+ +s)ds;---ds.  (2.108)
: 0 0
If f€ L){a,b+rh), then
”A;sfHLP[a.b] <hr”l)y|’L,,|t;t.l>-0-rh]' (2109)
Finally, if f&€ C"{1,1+ rh], then
ALf(r)y=h'D'f(8), for some <@ <t+rh. (2.110)

Proof. The expansion (2.104) follows from the general expansion (2.87)
with =1+~ Dhi=12,....,r+1. Then (2.105) follows from (2.94). The
estimate (2.106) is a consequence of (2.104) and the fact that 2:_0( :) =2
(see Remark 2.8). The representation (2.107) and the properties of N" are
discussed in Section 4.4. The alternate integral relation (2.108) can be
established by induction using the fact that ALf(1)=A,A; 'f(). We obtain
the inequality (2.109) by applying the Minkowski inequality (see Remark
2.2) to the integral representation (2.107). Finally, (2.110) also follows from
(2.107) with the help of the mean-value theorem. ]

§ 2.8. MODULI OF SMOOTHNESS

In order to establish sharp theorems on how well a given function can be
approximated, it is useful to have some precise measure of the smoothness
of the function. In this section we discuss various moduli of smoothness.
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DEFINITION 2.58. Modulus of Smoothness
Given 1 < p < 00, a positive integer r, and 0 <7 < (b —a)/r, the function
w,(fiDp=w,(f: )i jiam= sup 141l (1, (2.111)
O<h<t
is called the rth modulus of smoothness of f in L,. Here ALf is the rth
forward difference [see (2.104)}, and I, =[a,b— rh].

When r=1, the rth modulus of smoothness is traditionally referred to as
the modulus of continuity. The following theorem gives several basic proper-
ties of the modulus of smoothness:

THEOREM 2.59
Fix r> 1. Then

w(fiti+ 1), < (fit), +w(fi1y),; (2.112)
W fi+ 13 0), <0 fii D), +w(frs1),5 (2.113)
w(fi) <w(fir),  0<i<i; (2.114)
w,(fikt), <k'w(f;1),,  any positive integer k; (2.115)

w (fiAt), < [)\]’w,(f; )ps all A>0, where [A].=min{integers iti2A};

(2.116)

o (fit)y <Vw,_j(fi1),,  0<j; (2.117)

w (fi0), <2711, (2.118)

W (f;t)y <Pw,_(D'fi1),,  if fELI[ab], 1<p<oo (2.119)
iffeC[ab], p=oo;

o (f 1), <t"IID'fI],, iffeL[ab], I<p<oo (2.120)
iffeC’[a,b], p=00;

W(fit)y—0 asi—0,  iff€L[ab], 1<p<oo 2.121)
if feC[a,b], p=00;

if llilr(r)lt"w,(f; 1),=0, then f€ P, ; (2.122)

W (fil), <V VP (fir),, alll<g<p<oo.  (2.123)
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Discussion. These properties follow more or less directly from the defini-
tion. For details, see Timan [1963], Lorentz {1966}, and Johnen [1972].
Some of the properties can also be derived from the analogous properties
of the K-functional and its equivalence with the modulus of smoothness, as
shown in the following section. B

Our next theorem gives a useful formula for the modulus of smoothness
of a function that is obtained by a change of variable from another
function.

THEOREM 2.60

Suppose y = ax + 3 maps the interval [a, b] onto the interval [¢,d], and that
x=yy+46 is the inverse mapping taking [c¢,d] onto [a,b]. Suppose f is
defined on [a,b], and that F(y)=f(yy + ). Then

w,(F;t)LP[c‘d)=a'/”w,(f;a_'t),_’[,,',,]. (2,124)

1

Proof. We have y=a™ ' and

[ d—rh| g I4 1/p
w(Fit)ea= sup | [T S (=10 [)F(y+im) dy}
0<h<r_ c i=0
[ r P t/p
d—rh r—i R
= sup | [T S (- +im) +8) dy}
O<h<t]| e i=0
[ r P 1/p
b—rh rei .
= sup f 13 (-1 (:)f(x+tyh) adx
0<h<t_ a i=0
i r P 1/p
b—ryh r—i .
= sup f > (=1 (:)f(x+zyh) dx} al/r
O<h<r_ a i=0
=a'?w,(f; Y1) L, 1a.b)- n

In (2.119) we have given a simple estimate of «,(f;#), in terms of
lower-order moduli of smoothness. In the following theorem we give
estimates in the opposite direction:
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THEOREM 2.61. Marchaud Inequalities

Let 1 < p < o0, and suppose r is a positive integer. Then there exist positive
constants C, and 8§ (depending only on a, b, r, and p) such that for all
0<r <4,

G0, <[l + [Tu™ o (fpdu], =121,
t

(2.125)
On the other hand, if for some § >0,
fo "= oo (f; u)y du < o0, (2.126)
then f € L/[a,b], and
w,_(Df1), <C, fo "u oo (fru), du, (2.127)

all 0<r <8, where C, is a constant (depending only on a, b, r, and p). If
(2.126) holds for p = o0, then f € C’/[a,b], and (2.127) also holds for p = co.

Discussion. For a detailed direct proof of these results, see Johnen [1972].
These assertions also follow from the corresponding results on the K-func-
tional—cf. Theorems 2.71 and 2.72. [ ]

The second part of Theorem 2.61 is particularly interesting since it
asserts that when w,(f; u) goes to zero fast enough with respect to u, then f
must have a certain number of smooth derivatives.

We close this section by introducing some interesting smooth spaces of
functions that are characterized in terms of their moduli of smoothness.
First, given r >0, 1 < p< o0, and 0<a <1, let

Lippe[a,b]={f€L,[a,b]: w, . (f;1),=0(1""*)} (2.128)

(where O is the standard “big oh” see Remark 2.9). When r=0 and p = o0,
the classical Lipschitz space 1s defined by

Lip"[a,b]={f€ Cla.b]: there exists M < oo with

[f(x+h)—f(x)| <Mh* foralla<x <x+h<b}.
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The following application of Theorem 2.61 shows that the Lipschitz spaces
(2.128) lie between the classical smooth spaces in the sense that

L' [ab]cLipg[ab]CLi[ab] it 1<p<eo
and

C’“[a,b]gLip"“[a,b]gC’[a,b} if p=o0.

[>e]

THEOREM 2.62
For 1<p<oo and 0<a <,

Lip;“[a,b] ={fe L[ab]: D’fELip:[a,b]}.
Similarly, if p = oo, then

Lip[a,b]={f€C'[a,b]: D'fELip*[a,b]}.

oo

Proof. Let 1< p<oo. Then D’f ELip, coupled with (2.119) implies
w, (fi)y <t'w(Df;1),<Ct"*¢,

and it follows that f €Lip,“[a,b]. Conversely, if f €Lip}*, then
8 1
f u " w (fiu),du< oo, some § >0,
0

and by Theorem 2.61, we conclude that f € L){a,b] and

w,(D’f; 1), < Cf’u Tttt dy= et

0

that is, D'f €Lip;[a,b). The proof for p = oo is similar. [ ]

Theorem 2.62 does not cover the case where a=0, and indeed, the
spaces Lip]%a,b] have a somewhat different behavior. Lip;a,b] is the
classical Zygmund space, and thus we introduce the notation

Z/[a,b]={fEL,[a,b]: w (fi)p=00"""}. (2.129)
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THEOREM 2.63

Let 1 < p <oo. Then
Z/[a,b]={f€L][a.b]: DFEZ)[a,b]}.
Similarly, if p= oo, then
Z,[ab]l={feC[ab]: DfEZ)[a,b]}.
Proof. The proof follows the same pattern as that of Theorem 2.62, using

(2.119) and Theorem 2.61. [ ]

The spaces Lip[*[a,b] and Z][a,b] are examples of what are called
Besov spaces—see Section 6.5.

§$ 29. THE K-FUNCTIONAL

In this section we introduce an expression called the K-functional which
measures the smoothness of a function in terms of how well it can be
approximated by smooth functions. This will provide an alternate way of
characterizing smooth function classes (which as it turns out is equivalent
to using the moduli of smoothness defined in the previous section). We
also include several applications of the K functional which will be useful
later on.

DEFINITION 2.64. The K-Functional

Suppose 1< p<co, t>0, and that r is a positive integer. For f& L[] we
define

Kp(0f= ot (1/=gll,+ 1" Dgll,) (2.130)

If p=o00 and f& C[I}], we define

K o(0f= inf (] f=glle+1"11Dgll,)- (2.131)
gEC[]

We call K, (1) the K-functional of Peetre.

It is clear that K, ,(¢) is a nonlinear functional defined on the space L,[/]
if 1< p< o0, and on C[I]if p=oo. It is a measure of how well the function
f can be approximated by smoother functions (in LJ[/] or C'[/]) while
maintaining a control on the size of the rth derivative of the approximant.



60 PRELIMINARIES

The parameter ¢ controls the balance between the size of the derivative and
the error in the approximation. The following theorem lists some elemen-
tary properties of the K-functional:

THEOREM 2.65
Let I<p< o0 and r>0. Then

K (+0)f <27 K ,(t)f+ K, (L)f]; (2.132)
K (N fi+L) <K (Ofi + K (1)fy: (2.133)
K ,(Df<K, (0)f ifi<s (2.134)
K, (Df<|Ifll,: (2.135)
K (0f<t|Dfll, iffeLl[ab]. 1<p<ew
iffECTa.b], p=oo: (2.136)
}i_rgK,'p(t)f=O iffeL[ab], 1<p<oo 2.137)
iff€C[a,b], p=co;
if lim:™'K, ,()f=0,  then feP,. (2.138)

Proof. Most of these properties follow directly from the definition. For
details; see Butzer and Berens [1967] or Johnen and Scherer [1977). [ ]

Some further properties of the K-functional are established in Theorems
2.71 and 2.72 below. We now turn to the task of establishing the equiva-
lence of the K-functional with the modulus of smoothness introduced in
the previous section. An essential tool in proving this equivalence is the
following lemma which shows how to construct a smooth approximation to
a given function.

LEMMA 2.66

Let | <p< oo, t >0, and suppose r is a positive integer. Let J=[c,d] and
J=[c.d+ r¥). Then for all fE L [.I] there exists g € L;{J] such that

1/ =gl L < fo I8, fll ppydu <r" o (fin)gi]  (2139)

and

(Y Dgll sy < (2= 1) max A0Sy <772~ e (fi D) [7] (2.140)
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Similarly, if J=[c — r%,d], then the same inequalities hold with 4, and A},
replaced by A" ,, and A”_,,, respectively. Similar results hold for fec [J ]
with p = o0.

u

Proof. We prove only the case of 1<p<oo. The proof for p=o0 is
similar. Given f € L,[/], we need to construct an approximation g€ L;[J].
To this end we take the so-called Steklov average of f:

8(x)= [ [ S+ (= 1w ] TS

- S (-1 ‘*‘( )f fx+ u)m"ﬁ, (2.141)

i=1

where N7 is the function that appears in the representation (2.107) of the
rth forward difference. Let F= D ~’f [cf. (2.28)]. Then by (2.107), for all
1<i<r,

[ ) BB [ L iy, ),
It follows from (2.141) that

2= 3 (="' F)in) A, F, (2.142)

i=1

and thus that g€ L[/]. Now by the properties of N,
I1f= gl < fo ISl g N7 () du < fo 185 f 1l iy <77 0 (£ )1 (5],

Here we have used the Minkowski inequality—cf. Remark 2.2. We have
proved (2.139).
If we differentiate (2.142) r times, we obtain

De(x)= 3 (=1(})in 800

Since E,_,( ) 2’—1 and

max ||A7J||z,u] <r'wfi)L[i}

1<

the inequality (2.140) also follows. [ ]
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The following theorem clarifies the close relationship between the X-
functional and the modulus of smoothness:

THEOREM 2.67

Let /=[a,b] and 1 < p < c. Then there exist constants C, and C, (depend-
ing only on r, p, and /) such that

Clwr(f;[)P <1<r.p(t)f<C‘Z(""r(f;t)li' (2143)

for all f€ L,[/]. A similar assertion holds with p= oo if f& Cla,b}.

Proof. We consider only the case of 1<p<oo; the case of p=o0 is
similar. Let g€ L;[/]. where we write /=[a,b]. Then by the properties
(2.106) and (2.109) of divided differences,

vl L1 < HA;.(f— 2l L4,4] + (A8l IRIA

<2() f- gl Lirt | Dgll 1,[1,,,]),

where 1, =[a.b— rh]. Taking the infimum over all g on the right-hand side,
and then the supremum over all 0 <A <t, we obtain the left-hand side of
(2.143) with C,=1/2".

The proof of the upper inequality in (2.143) is somewhat more com-
plicated. Let n,=a+i(b—a)/3, i=0,1,...,3, and define J,=[ny,n,}, J,=
[n.m5), and Jy=[n,,n,]. Let g, and g, be the functions associated with f
and the intervals J, and J, as in Lemma 2.66. We now blend g, and g,
together to form a function g defined on 7/ which approximates f well and
does not have too large an rth derivative.

To this end, let y € L] [/] be any function such that 0 <y(r)<1 on /,
Y()=0 on [ngm], Y()=1 on [nyns], and || DY, ;) <Ce<co, i=
0,1,...,r. Such a function is constructed in Theorem 4.37. Then

g=(1-yY)g,+yg, =g, +y(g,—g))

belongs to L,[/]. We now estimate || f—gl| and || D'g].
By Lemma 2.66,

”f—gHLﬂ[l] <l f—gl LP[J,]+ Ilf— 82”1_,[./2) <G f; ’)L,,[ll-
Using the Leibniz rule and the properties of ¢, we obtain

107811110, < Co{ 1 DBl 0+ MmaX [ D'gy = Digill1,10,)-
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Now, estimating the intermediate derivative (cf. Theorem 2.5) gives
I D’g“L’[J,] < C5(2|| D'g\|| L,l73) + || D’g,|| L,lJ5) +il g — &l Lp[.l,])

<2C(ID Bl L,y + 1D Bl s+ max (1= &l1,00)
Q2G(ID Bl L1+ 1D Bl + max 11 =&l 10):

where we have also used the fact that J,CJ, and J;CJ, The same
estimate for D’g holds on J, and J, since g reduces to g, and g,,
respectively, on these intervals. We conclude that

|1 Dgll iy < Cy max (ILf=gll L+ 108 L, 1)
1<ig2 g 4

<C3wr(f;t)Lp[[].

Combining this with our previous estimate for || f— g{|, we see that
K, (Of<I|If-gll Lint Dl i< Cyw0,(fi e, ]

The remainder of this section is devoted to some applications of the
K-functional. Our first result shows that in obtaining error bounds for
various approximation processes, it is often sufficient to establish the
bounds for smooth functions only, and the desired bounds for less-smooth
function classes will follow automatically.

THEOREM 2.68

Let 1<p<oo, and suppose r is a positive integer. Let & be a set of
functions in L,[/] such that for each g& L][/] there exists an element
s, ES satisfying

| g—sll, <Co+ Cyt"|| Dgll some t >0, (2.149)

with C, and C, constants depending only on . Then there exists a constant
C, (depending only on r, p, and 7) such that for each f € L[] there exists
s;ES satisfying

1= 57ll, < Co+ Co0,(f: 1), (2.145)

For p=o00, (2.145) holds for all f& C[/] provided (2.144) holds for all
geC[I].
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Proof. We consider the case of 1 <p<oo. Let f€L,[I]. Then for any
ge L],

I1f=sgll, <ILf—&ll, + 118 = sgll, < Co+max(Cy, (I g = fll, + 17| D8l )

Since the K-functional is defined as an infimum, if we vary g in L[/}, we
can find some g* € L][/] so that this inequality becomes

| f= sgell, < Co+2max(1,C) K, ,(1)f.
We may now use the upper bound on X in terms of w, in Theorem 2.67 to
complete the proof. The proof for f & C[I]is similar. [ |
The following variant of Theorem 2.68 shows that the same idea can be
applied to linear approximation processes:
THEOREM 2.69

Let 1< p< o0, and suppose r is a positive integer. Let L be a bounded
linear operator mapping L,[/] into itself. Suppose that for >0,

llg— Lgli, <Co+ C\t"|| Dgll,, allge L[ I]. (2.146)
Then there exists a constant C, (depending on r, p, I, and ||L|}) such that
1f~ L, <Co+ Cao,(fi1)y,  allfEL[I]: (2.147)
For p=c0, (2.147) holds for all f&€ C[/] provided L is a bounded linear
mapping of C[/] into itself satisfying (2.146).
Proof. We treat only the case of 1<p<oo. For any f€L[]] and g€
L1},
Wf=Lfll, <l f—gll, + g~ Lgll,+ I Lf— Lgll,

< Co+max(LC)(I+IILIN(If—gll, + 1 D8l ).

The rest of the proof is exactly as in Theorem 2.68. [ ]

In a number of applications it is useful to be able to extend a function
from an interval J to a larger interval /. This is trivial if we do not care
how smooth the resulting function is—we can just define the extension to
be zero outside of J. When f has a certain number of derivatives on J, it is
also easy to extend it to / to be a function with the same number of
derivatives—for example, to extend the function beyond the right endpoint
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of J we may tack on a polynomial that agrees with the Taylor expansion of
f at that point. On the other hand, if we want to extend a function while
preserving some moduli of smoothness, the problem is no longer quite so
simple. We have the following elegant application of the K-functional to
the solution of this extension problem:

THEOREM 2.70. Whitney Extension Theorem

Let J=[a,b]C/=]c,d]. Suppose 1 < p< oo and r> 1. Then there exists a
linear operator T mapping L [J]into L,[/] such that Tf extends f from J to
I [ie., Tf(x)=f(x), all x&€J] and

W TH D)L <Cw,(fi)L,u) (2.148)
Moreover, if f€ L][J], then Tf € L,[]], and
WD T Lin <GPS oy (2.149)

The constants C, and C, depend only on r and the ratio {/|/|J|. A similar
result holds for continuous functions with p = 0.

Proof. We give the proof only for 1< p < oo. We consider first the case
where J=[0,1] and /=[—-1,1]. Given fE€ L,[J], let

S(x), 0<x<1

Tf(x)= iocif(_z_i")’ 1<x<0, (2.150)

where ¢, ...,c, are chosen as the solution of the system

r

Se(-27Y=1, j=0,1,..,r (2.151)
i=0

Clearly T defines a linear extension operator mapping functions defined
on J into functions defined on /. The condition (2.151) assures that TP= P
for all polynomials P €%,. This in turn assures that for any g€ LJ[J], its
Taylor expansion about zero for x » O agrees with the Taylor expansion of
Tg about zero for x < 0. This means that Tg has continuous derivatives up
to order r —1 at zero, hence Tg € L[I]. For any such g we also have

1D Tl i <Gl DBl Loy

where C, depends only on r. This proves (2.149).
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Now for any fe L,[J] and ge L][/],

147 Tf”[_’[ll <AL T(f— g)”l_,[l]'*' 1as Tg”[_pm
<27 T(f_g)”LP[l]+h’“D’Tg”L’[1]
<C;(lff—gHL‘,u]‘*’h'||D'8||L‘,U])~

Taking the infimum over all g€ L/[J] on the right-hand side and the
supremum over all & <7 on the left-hand side. we obtain

wfit)e i <C3K,‘p(t)1f.

Applying Theorem 2.67 to estimate K in terms of w,, we obtain (2.148), at
least for J=[0,1] and /=[—1,1]. A similar argument shows that f can be
extended from J to [0,2]. It remains to prove the general case. We
accomplish this with a change of variables. Given f € L,[a,b], let F(y)=fla
+(b—a)y]. Then F€EL,0.1], and by property (2.124) of moduli of
smoothness,

1
b—a

1/p
w’(Flf)L,,lQl]:( ) wr[f:(b_a)’]LP[a,b]'
Let TF be the extension of F to [— 1.2}, and define

3y —d—2c¢) ]

Tf(y)= TF{ T

Clearly Tf€ L, [c,d]. and

d—c\'/? 37
WA Tfi 1) e, =( ) w{TF: }
f L ,[c.d] 3 (d_'C) Li-12)

Now, using property (2.124) of moduli of smoothness, we obtain

d—c\'/?7
( 3 ) w (fi 1)L 1a.)

W Tfi 1)L fe.a) <C|L(b‘a)J< bla )'/"[ dic

It is now clear that the constant depends on |/{/|J]. A similar proof
works for f € Cla, b]. n

We conclude this section by proving two of the more difficult properties
of the K-functional—certain so-called Marchaud-type inequalities. In view
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of the equivalence of the K-functional with w,, these results establish the
classical Marchaud inequalities for the modulus of smoothness (cf. Theo-
rem 2.61).

THEOREM 2.71. Marchaud Inequality
Let 1 <p<oo and 0<z< 1. Then for every f€ L [a,b],

K (0)f < C.I’[Iifll,,+f's“‘fK,_,,(s)fds , (2.152)

J=12,...,r—1. Here C, is a constant depending only on j, r, and {a,b}.
The same inequalities hold for p= oo if f& C[a,b].

Proof. We consider the case of 1 < p<o0. Let fE€ Lp[a,b]. For each h 30,
let g, € L)[a,b] be such that

1f = 8ll, + A"l D7g,l, < 2K, ,(R)f. (2.153)

Given 0<r< 1, let n be such that 1/2<2"% <1, and define ¢, = g,,. Then
8,= @, can be written as the telescoping series

n—1

Po= 2 (Pu—Ps) + P,
k=0

Fix 1<,/ <r—1. Then applying Theorem 2.5 to estimate the jth derivative
of each term (via the Oth and rth derivatives), we obtain

n—1

U1, <Cr T 27 [Il0e= Bell, + 2401 D0 9
k =

+27 gl + @01 D, ]

By adding and subtracting f inside the norm of the first term on the right
and applying the triangle inequality we obtain

V(D I, <Cy X 2741~ ell, + 20 ID Rl | +277 1,
k=0

<C2 2 2 _ijr,p(zkt)f+2-"j||f||p'
k=0
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The second inequality follows from (2.153). Since (2.153) also asserts that
||f— gl”p < 2Kr,p(t)f’

K, y(0f < Il f=gll,+ || Dgl,

<C2{2""Hf|l,, +0 (2"t)_jK,.,,(2"t)]
0

k=

2+ [T K ()|
t

1 :
<Gyt + sT'UK, (s)fds|.
A [an,, [, L) ]
The result follows since

1 X ol )
f /23_'_1K,‘p(s)fds <Y f sTVUK, (5)fds. m

I3 4

Our next Marchaud-type inequality for the K-functional i1s a kind of
inverse approximation theorem. It asserts that if f can be approximated
sufficiently well by smooth functions (in the sense that the K-functional is
small), then f itself must be smooth (in particular, it must possess an
appropriate number of smooth derivatives).

THEOREM 2.72

Suppose 1< p<oo, and that 7 is a positive integer. If f&€ L,[a,b] is such
that

fo's—'—fk,,p(s)fdm o, (2.154)
for some 1< <r— 1, then f € L/[a.b] with
1011, <C 11, + [ 571K, ()ds (2.155)
and
K _, ()Df< Clj;ls”'"f](,_p(s)fds. (2.156)

Here C, 1s a constant that depends only on j, r, p, and [a.b]. If f € Cla,b]
and (2.154) holds with p=occ, then we conclude that f€& (’[a,b], and
(2.155) and (2.156) are also valid with p=oo.
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Proof. We consider only the case of 1<p<co. Given f€ L)[a,b], let g,
be defined as in (2.153). By the same techniques used to prove Theorem
2.71, we obtain

D 1D =@ I, <Cq 2 275 7/K, 2757 0)f
k=0 k=0
<G, fo 'sTVIK, (s)fds. (2.157)

We conclude that T (9, — @,+,) converges in L/[a,b], hence ¢, must
also have a limit element in L}[a,b]. But by (2.153),

”f— q)k”p < 2Kr,p(2—kt)fs

which goes to 0 as k— o0 since K, ,(¢) is monotone increasing in ¢ while the
integral (2.154) is finite. We conclude that ¢, converges to f, and thus that
Je L’{ [a,b].

To establish the inequality (2.155), we use (2.157) for t=1, giving

IDA1, < | Dgll, + Co 2 277K ,[27 4P,

Taking account of the monotonicity of K, , and using (2.153), we obtain
(2.155).
To get (2.156), we note that

K _ (ODS<|ID/(f-g)ll,+1"/|D" /D%,
<ID/(f-g)ll, +t" | Dgll,

o0
< kzonbf(qok—qom)n,,+r’—qu’g,n,,.

Using (2.153) and (2.157) again, we get
. t . .
K,_, () Df< cz[ fo sTIK, (s)fds+1~ K,_P(t)f],

which immediately implies (2.156). (. ]
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§ 2.10. n-WIDTHS

In this section we briefly review the theory of n-widths. The idea is to
obtain estimates on the maximum rate of convergence one can expect in
using finite dimensional linear spaces to approximate given classes of
smooth functions. The results are useful in deciding when we should be
satisfied with the approximation power of particular approximating spaces.

To motivate the definition of n-width, consider approximation of func-
tions in the space LS[a,b] by polynomials. Given a function f & LJ[a,b],
we define the distance of f to &, by

d( f, Lz?n)L,,(a.b]‘_' gienfr ”f_g”LP{a,b]'

Jackson’s theorem (see Theorem 3.12) asserts that

1 a
A3 e <C( 5 ) 1Dl oy allfELI[ab]. (2158)

This bound can be arbitrarily large for functions f in L][a,b]. Thus we
introduce the class

UL [a,b]={f€L[a.b]: 1Dl ¢ a0y < 1}, (2.159)
and consider the distance of the entire set UL, from ¢, defined by

AUL T o= SUP AL Tt fas

The result (2.158) implies
l a
UL D) g0 <Cif 5 ) -

This says that the worst function in UL, can still be approximated to order
(1/n)° by polynomials of order n.

In view of the above discussion, we may now ask the following question:
is it possible to get a better order of convergence if we use some other
n-dimensional linear space rather than the polynomials %,? To answer this
question, we define the quantity

d,(UL;,L,)= inf d(UL}. X,), (2.160)

where the infimum is taken over all n-dimensional subspaces X, of L [a,b].
If d, > C,(1/n)°, then we can conclude that the polynomials do as well (in
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order of approximation) as any other n-dimensional linear spaces. We shall
see later that this is indeed the case for UL, . The quantity 4,(UL;,L,) is
called the n-width of UL in L,.

The idea of n-width of a set can be cast in a more general setting.

DEFINITION 2.73. n-Width

Let X be a normed linear space with norm || -|| . Given an n-dimensional
linear subspace X, C X, we define the distance of f € X from X, as

d(f,X,)x= inf ||f—gllx. (2.161)
g8EX,

Given a subset 4 C X, we define the distance of A from X, to be

d(A,X,),= supd(f,X,),. (2.162)
fe4

Finally, we define the n-width of A in X as

d(A,X)= i)r(lfd(A,X")X, (2.163)
where the infimum is taken over all n-dimensional subspaces X, contained
in X.

The n-width d,(4,X) is a measure of how hard it i1s to approximate
functions in A using arbitrary n-dimensional linear subspaces of X. In a
way, it measures how nasty A4 is. We are primarily interested in the
asymptotic behavior of d,(4,X) as n—>o00. We shall write

d,(4,X)~n, (2.164)
provided 7, is a sequence such that for some constants 0 < C, <C, < oo,
Cm, <d,(A,X)<Cy, as n—oo.

The importance of knowing the asymptotic behavior of d,(A4,X) is that it
may help to decide if a given sequence of linear subspaces X, does a good
job of approximating functions in 4. We introduce the following defini-
tions:

DEFINITION 2.74. Optimal Sequences

If X, is a sequence of n-dimensional linear subspaces of X with

d(A,X,) ~d,(A,X),
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then we say that X, is an asymptotically optimal sequence. If we are lucky
enough to find a sequence of n-dimensional linear subspaces X, of X with

d(A.X,)=d,(4,X),

then we say that X, is an optimal sequence.

While asymptotically optimal sequences are not very hard to find,
optimal sequences are somewhat rarer. Thus it is interesting to note that
for several common smooth spaces of functions, certain spaces of splines
turn out to be optimal.

We turn now to the question of calculating the behavior of d,(4,X) for
a particular 4 and X. To this end, we observe that if X, is any particular
subspace of X of dimension n, then

d(A4,X)<d(A4,X,),. (2.165)
On the other hand, if F, is a sequence of functions in 4, then

inf d(F,.X,) <d,(4,X). (2.166)

We may use (2.165) to obtain upper bounds on d,, and (2.166) to obtain
lower bounds. The latter can often be used in conjunction with the
following simple lemma.

LEMMA 2.75

Let X be a normed linear space and X, =span {¢;}] be an n-dimensional
linear subspace of X. Suppose A is a bounded linear functional on X such
that

Ap, =0, i=12,...,n. (2.167)
Then for all fE X,
a(f,x,), > :f};\_fI: (2.168)
Proof. For any {a;}],
n }‘(f— E ai(pi)’
_ S5 _m
If~ 2 aellx> |

= Y Y
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To illustrate these ideas, we now compute the n-width of the set

UL;[a,b] defined in (2.159) as a subset of L,[a,b].

THEOREM 2.76

Let 1< p<oo, and ULJ[a,b] be as defined in (2.159). Then

d,(UL?, L )z(%) (2.169)

Proof. The upper bound on d, follows from (2.165) with X, =%  (cf.
Example 3.14). We derive the lower bound using Lemma 2.75. Given
X,=span {g,}]. define A on L,[a,b] by

n M+
N= . d,
Y goc.fm A1)t

where n,=a+ih, i=0,1,...,n+1 and h=(b—a)/(n+1), and where {c,}}
are chosen so that

i i+
M= of Tgndi=0.  j=12...n.
i=0

2

We may normalize the ¢’s so that £7_g|c¢,|” =1, where 1/p+1/p’=1. Then

n

2 ex:(1)

§a=

n

2 X

=0

i< Lo ar<fl,

>

P

where x; is the characteristic function of I,=(n,,7,, ). Since

n 1/p
~(Starfa) =n,
P L

n
2 C:Xi
i=0 i=0

we conclude that ||A]| <h'~ /7,
We now construct a nasty function in UL). In Theorem 4.34 we
construct (a perfect spline) B= B_, | such that
B EC"“[—],]]
D/B(—1)=D’/B(1)=0, ;=0,1,....,0—1
1
f B(x)dx=1
-1

|D°B(x)|=2°""o!, all —1<x<1.
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Let

} lp/p

2(X—T_') 1
= W fpe-1/
F(x)= 'go amrsen(e )B[ . ]h ’,
where 7, =(n,+n,,,)/2, i=0,1,...,n. Then clearly F € L[a,b], and

n
. M+
ID°Flg= 3 leffh™" [ "dr=1.
i=0 L]

On the other hand,

l |l+p/p y he+i-1/p
o- /P h= —
|AF| lgo 220 lh h 0!220—1 ’
By Lemma 2.75, we conclude
. ho+l—l/p he 1\°
d”(ULP’LP)> g1yt —1/n T 201 >C2(;) : L

Theorem 2.76 shows that the sequence of polynomial spaces ?,,%,,... is
an asymptotically optimal sequence of approximation spaces for ULJ[a,b] in
L,{a,b). The problem of determining the n-width of UL][a,b] in L a,b]
for p#q is quite delicate. We quote the following result:

THEOREM 2.77

Let 6 > 1. Then
1 a+1/2-1/p
(;) , 1<p<2<g< o0
l o
(;), 2<p<g< oo
d,(ULS[a,b],L,[a,b])~ | \ox1/a-1/
(—) R 1<p<g<2
n
(l)l7 I<g<p<
n) qsps©
(2.170)

Discussion. The proof of this theorem has engaged the talents of a
number of researchers over quite a period of years. Kolmogorov [1936]
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first established the case of p=¢g=2. The cases (p,q)=(1,2) and (o0, )
were treated by Stechkin [1954]. A number of authors have contributed to
the case of p>g¢q, including Lorentz [1960}, Tihomirov [1960, 1969].
Babadshanov and Tihomirov [1967], Makavoz [1972], Solomiak and
Tihomirov [1967], Korneichuk [1974], and Scholz [1974]). The case of p <gq
is more difficult. For 1<p<¢<2, it was done by Ismagilov [1974].
Gluskin [1974] and Mayorov [1975} focussed on the (1, 0) case. For the
remaining cases, and a historical discussion, see Kashin [1977a, b]. For a
discussion of the role of splines as optimal subspaces, see Dahmen,
deBoor, and DeVore {1980]. [}

§ 2.11. PERIODIC FUNCTIONS

Given a < b, we define the space of continuous periodic functions on I =[a,b]
by

C[a.b]={feC[ab]: f(b)=Fa)}. (2.171)

Similarly, we define the space of m-times continuously differentiable periodic
functions by

C™[a,b]={fE€C™[a,b]: D’f(a)=DIf(b), j=0,1,....m}. (2.172)

We define the periodic Sobolev space by
Lr[a.b]=L[a.b]nC™ [ a,b]. (2.173)

These spaces are all normed linear (in fact, Banach) spaces with the usual
norms defined in Section 2.1.

At times it is convenient to think of periodic functions as being defined
on a circle obtained by bending the interval [a,b] such that the endpoint b
is joined to the endpoint a. Periodic functions have a natural extension
from [a,b] to all of R—for example, to extend f from [a,b] to [a,b+(b—
a)], we may take

fx)=flx—(b-a)], b<x<b+(b—a). (2.174)

If f belongs to one of the spaces defined above, then its extension belongs
to the analogous space on [a,b+ (b — a)}.

To measure the smoothness of periodic functions we introduce the
periodic modulus of smoothness:

@, (f;1),= sup ”A;JHL,[a,b]' (2.175)

O<h<t
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This definition assumes that f has been extended periodically from [a,b] to
[a,b+(b— a)]. It differs from (2.111) in the nonperiodic case only in that
the p-norm is taken over all [a, b] rather than over a shortened interval.

It is a simple matter to show that the periodic modulus of smoothness
has exactly the same properties as the modulus of smoothness discussed in
Section 2.8. We can also introduce the K-functional corresponding to our
periodic spaces. We define

K,,(nf= inf (I f—gl,+t™D"gl,). (2.176)
g€ L a.b)

The fact that this functional is equivalent to the modulus of smoothness is
proved in almost exactly the same way as the proof of Theorem 2.67 in the
nonperiodic case. We also note that the important applications of the
K-functional to establishing approximation theorems incorporated in The-
orems 2.68 and 2.69 also have immediate periodic analogs.

The n-widths of various spaces of periodic functions can be computed
by the same techniques illustrated in Section 2.10 for the nonperiodic case.
In particular, we note that the n-widths

4,(UL;[.b]. L[ ab])
have exactly the same behavior as in the nonperiodic case—cf. (2.170).

§ 2.12. HISTORICAL NOTES

Section 2.1 -

The spaces and notation introduced here belong to classical analysis.
Sobolev spaces (especially of multidimensional functions) play an im-
portant role in the theory of differential equations. For a detailed treat-
ment, see Adams [1975]. Theorem 2.5 which connects the norms of various
derivatives of a function is proved by Adams [1975], page 71, for 1 < p < o0
(his statement looks a little different, but reduces to ours if we set his
e=1t'/™). See also Friedman [1969)], page 19.

Section 2.2

Taylor’s expansion and the use of the Green’s function to solve initial
value problems belong to elementary calculus and the theory of ordinary
differential equations, respectively.
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Section 2.3

The matrices and determinants discussed here arise frequently in ap-
proximation theory and numerical analysis. We have followed Karlin and
Studden [1966] and Karlin [1968] in our choice of notation. The ideas
inherent in Lemma 2.9 belong to the standard bag of tricks for this
area—see for example, Karlin and Studden [1966], page 8.

Section 2.4

In defining sign changes and zeros we have followed Karlin and Studden
[1966] and Karlin [1968] where further results and more references can be
found. Rolle’s theorem is a part of calculus. The extended version given in
Theorem 2.19 is taken from Schumaker [1976b].

Section 2.5

Tchebycheff systems and their various refinements play an important role
in many parts of analysis as well as in probability and statistics. For an
extensive treatment, see Karlin and Studden {1966] and Karlin {1968].
These books deal only with functions that belong to C(/), where [ is an
interval. For a discussion of discontinuous T-systems on general sets see
Zielke [1979]. We have followed classical notation for the most part. Order
Complete Tchebycheff systems are referred to as Descartes systems in the
literature—we have introduced the adjective “OC” as we want to use it
with ET- and WT-systems also. In approximation theory the T- and
ET-spaces are sometimes referred to as Haar and Markov spaces, respec-
tively.

Section 2.6

In this section we have given a fairly complete treatment of the basic
properties of WT-systems. Although WT-systems were mentioned in the
book by Karlin and Studden [1966], they have not received too much
attention until recently. A number of results on WT-systems can also be
interpreted as results in the theory of total positivity—see Karlin [1968].

One of the earliest papers on WT-systems per se was by Jones and
Karlowitz [1970], where the basic characterization Theorem 2.39 was
established for a WT-system of continuous functions on an interval.
Theorem 2.39 was later established for general WT-systems using a Bern-
stein polynomial smoothing approach (cf. Remark 2.5). The direct proof
given here is credited to Zielke [1979].

Theorems 2.40 and 2.41 can be found in the article by Stockenberg
[1977b] with different proof. Theorem 2.41 was also established (for the



78 PRELIMINARIES

case of continuous WT-systems on an interval) independently by Sommer
and Strauss [1977], using the smoothing technique outlined in Remark 2.4.
The variation-diminishing property for OCWT-systems in Theorem 2.42
also follows from general results on totally positive matrices—see Karlin
[1968].

Zero properties of WT-systems were developed by Bartelt [1975], Stock-
enberg [1977a), and Sommer and Strauss [1977]. The latter authors dealt
only with continuous WT-systems. We have followed Stockenberg; how-
ever, our proof of Theorem 2.45 is much simpler than the original.

There is an important moment theory for T-systems (cf. Karlin and
Studden [1966]). Much of this theory can also be carried over to WT-
systems—see Micchelli and Pinkus {1977].

Section 2.7

In most numerical analysis texts divided differences are introduced via the
recursion relation (2.91)—this is one of the reasons why the case of
mulggple ¢’s is often ignored. The definition via quotients of determinants is
credited to Popoviciu [1959]. Still another approach is to define them as
coefficients of certain interpolating polynomials (cf. deBoor [1978] or
Conte and deBoor [1972]).

We have not included every possible known result about divided dif-
ferences. On the other hand, a number of the results presented here are not
easily located in the classical literature—for example, the Leibniz rule, the
explicit formulae for derivatives, and the exact expressions for the dif-
ferences of x’/. For additional information, consult Richardson [1954],
Milne-Thompson [1960], Conte and deBoor [1972], Isaacson and Keller
[1966], and deBoor [1978].

Section 2.8

For more information on moduli of smoothness, see Timan [1963] or
Lorentz [1966] and the references therein. Johnen [1972] has recently given
a unified treatment including the case of several variables.

Section 2.9

The K-functional was introduced by Peetre [1963, 1964], and it has proved
to be an important tool in several parts of analysis. For its role in
approximation theory as well as development of its basic theory, see Butzer
and Berens [1967]. Our definition (2.130) is at minor variance with the
standard one in that we have used ¢ in place of ¢t as the multiplier of
I|Dgli,- Our rationale for doing this is that now the parameter 7 in the
K-functional and the parameter ¢ in the modulus of smoothness play the
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same role. Qur discussion of the connection between the moduli of
smoothness and the K-functional follows the work of DeVore [1976],
where the history of this equivalence can be found. Our proofs of the
Marchaud inequalities for the K-functional in Theorems 2.71 and 2.72
follow the work of Johnen and Scherer [1977]. The elegant applications of
the K-functional in Theorems 2.68 to 2.70 are taken from the article of
DeVore [1976].

Section 2.10

The theory of n-widths was initiated by Kolmogorov. It has not received
much attention in the general approximation theory books with the not-
able exception of Lorentz [1966], which we have followed.

Theorem 2.76 is, of course, contained in Theorem 2.77. We have given a
complete proof to illustrate the techniques required to get lower bounds
(and to provide a nice application of the perfect B-spline). The n-widths of
the unit balls in Besov spaces (cf. § 6.5) have also been calculated (see e.g.,
Scholz [1974)).

§ 2.13. REMARKS

Remark 2.1

The discrete Holder inequality asserts that for all nonnegative a,,...,q,,

n P n
(Ea,.) <nP' Y a?,  1<p<oo.
i=1 i=1
Conversely, it is known that

n n P

> af(( > a,.) .

i=1 i=1

For these and other related inequalities, see Hardy, Littlewood, and Polya
[1959] or Beckenbach and Bellman [1961].

Remark 2.2

The Minkowski inequality for functions of two variables asserts that

A

[rnad &) < [*([Anxmpa)
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with equality holding precisely when f(x,y)=®(x)(y). See Hardy,
Littlewood, and Polya [1959], p. 148, or Beckenbach and Bellman [1961], p.
22.

Remark 2.3

The question of when a T-space is a CT space is somewhat delicate. The
fact that this is so on open intervals is proved in the articles by Nemeth
[19,69] and by Zielke [1973]. The failure of this assertion for other types of
intervals was demonstrated by examples in the works of Volkov [1958],
Nemeth [1966], and Zielke [1975). See Zielke [1979] for more details.

Rexftark 2.4

We have given direct proofs of all results on WT-systems. For WT-systems
of continuous functions on an interval, it is possible to derive many of
their properties from analogous results on T-systems using an important
smoothing idea. The idea is to smooth the functions {%}" into a T-system
{u,.}7. One approach to doing this is to define

b
u (0= [Cu(DL(Gx)dx,  i=12,.m,

where

1 1{t—x\?
L(t;x)= ex (——(——) ), all x,¢.
0= v 2l

It can be shown easily that u, ,—u uniformly on [a’,b] as £|0 for any
a<a' <b’'<b. Moreover, using a basic composition formula (see Karlin
[1968], p. 16) and the strict total positivity of the kernel L, (see Karlin
[1968], p. 99), it follows that (i, }] is a T-system.

Remark 2.5

There is an alternate way to smooth WT-systems in C[a,b] into T-systems
as a result of the work done by Bastien and Dubuc [1976]. It utilizes the
classical Bernstein polynomials defined by

e e (=

i=0
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For an extensive treatment of Bernstein polynomials, see Lorentz [1953]. It
is known that

5 b—
IIf- anHC[a‘b]< Zw[f; (\/;a) }

Now to smooth a WT-system {«;}]', we may take
U (x)=B,u(x), i=12,...,m.

As n—co these functions converge uniformly to the w; on [a,b]. Moreover,
by the vanation-diminishing property

Z a.0)(B,f) <S (a.15(B,f) <S [0.5)(f)

of Bernstein polynomials (cf. Polya and Schoenberg [1958)), it is easily
argued that {y ,}7" forms a T-system on (a,b) for n sufficiently large. This
approach can also be used to derive some properties of WT-systems on
arbitrary sets /1.

Remark 2.6

The following is a standard result from linear algebra, but for convenience
we state it explicitly here:

LEMMA 2.78

Let M be a (not necessarily square) matrix such that rank (M\ith row of
M)<rank (M). Then there exists ¢ such that Mc=r, where r has all 0
components except for the ith which is 1.

Proof. By the assumptions, it follows that the rank of the augmented
matrix [ M |r] is the same as the rank of M. Thus is follows that r must be a
linear combination of the columns of M. [ ]

Remark 2.7

If {#)7 and {4)7*' are T-systems on [a,b], then given any function
defined on [a, b], we can define its generalized divided difference with respect

10 {u)7*! by
pf e tnen
Uy, f

YR
Upy ooy Uy o

a<t,<--- <t

L

1 <b.
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Such generalized divided differences were introduced by Popoviciu [1959].
It is clear that many of the basic properties of ordinary divided differences
carry over. If {#}7"*! is actually a CT-system, then it is even possible to
give recursion relations—cf. Miihlbach [1973]. When {#,}7'*' is an ECT-
system, we may allow repeated ¢’s. Such divided differences are studied in
more detail in Section 9.1.

Remark 2.8

The classical Binomial Theorem states that for all real numbers x and y,

=3 (7

i=0

where (:)=r!/(r—i)!i! are called the binomial coefficients. They satisfy

the recursion
(D+(-0)=("%")
’

Taking x=y =1 in the binomial theorem, we obtain 2"= 1_0( i)'

Remark 2.9
If for some constant C,
f(r)<Cg(r) as 1—0,
it 1s standard practice to write
An=E1g0].
If f(r)/g(1)—0 as 1—0, then we write
flry=o[ g()].

The symbols € and o are called “big oh™ and “little oh,” respectively.
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POLYNOMIALS

The space of polynomials %,, has played an important role in approxima-
tion theory and numerical analysis for many years. In Section 1.2 we have
listed a number of properties of %, that help account for the usefulness of
this space. In this chapter we develop some of these properties in greater
detail. We concentrate on polynomials in one variable only—for several
variables, see Section 13.3. It is not our purpose to provide a compre-
hensive treatment of polynomials, but rather to provide background
material and to illustrate a number of techniques to be used later.

§ 3.1. BASIC PROPERTIES

Throughout this chapter we are interested in the space

m
@m={p(x)= 2 C’-xi—l, CloreesCppy X real} (3.1)

=1

of real-valued polynomials of order m with real coefficients. We begin by
showing that %, is a finite dimensional linear space with a convenient
basis.

THEOREM 3.1

% is a linear subspace of C *(R). Moreover, given any real number a, the
functions 1,x—a,...,(x —a)"~! form a basis for P

Proof. 1t is clear from the definition that each p&® _ is infinitely often
differentiable on R. Since ap + Bg€ P, for all p,g& P, and all a, B ER, it
follows that 9, is a linear subspace of C ®(R). Since each of the functions
l,....(x—a)"" ! is clearly in ?_, to show that they form a basis we need

83
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only prove that they are linearly independent. Suppose p(x)=Z"_ c(x—

a) ~'=0. Then for any b, all derivatives of p must vanish at b; that is,
p(b)
Dp(b)
D™~ 'p(b)
1 b—a (b—a)} - (b—a)""! ¢ 0
{0 1 2b-a) - (m=DB-a)" || |_|0
0 0 0 (m—1) ¢ 0

This is a homogeneous system of m-equations which is clearly nonsingular,
and it follows that ¢,=c¢,=--- =¢,,=0. [

The practical significance of Theorem 3.1 is that once having chosen a
basis for %?,,, each polynomial will have a unique set of coefficients
associated with it. This formally establishes the fact that polynomials can
be stored on a digital computer. The following well-known algorithm
shows that polynomials are easily evaluated, and thus that %  satisfies
both properties (1.4) and (1.5) of computer compatibility.

m
ALGORITHM 3.2 Horner’s Scheme to Compute p(x)= >, c{(x—a) !
i=1
1. uex-a,;
2. pec,:
3. Foriem—1step —1 until 1 do peus*p+c,.

Discussion. The fact that the final value of p will be p(x) follows from the
observation that p(x) can be written in nested form as

p(x)=c,+u{cz+u[c3+ e tu(c,)] }

It is clear that this algorithm requires just m —1 multiplications and m
additions and/or subtractions. n
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It follows from the definition that the derivative and indefinite integral
of a polynomial are again polynomials. In particular, if p(x)=27_ ,c{x—
a) !, then

m—1
Dp(x)= 2 ic; o (x— a)‘_l
im]

while
- * __m+l Ci—1 i1
D, p(x>=fap(t>dt— gz G

The coefficients of Dp and D, 'p are easily computed from the coefficients
of p. Once we have them, we can evaluate Dp or D, 'p at any given x by
Horner’s scheme. The derivatives of p can also be computed directly by
synthetic division—see Remark 3.1.

We close this section by stating two important Markov-type inequalities.

THEOREM 33
Let g€, . Then

2Am+1)?
1 Dgll L _ta,p) < —Eb—_‘% ll&ll L a5} (3.2)
Moreover, for all 1 <p<g< o0,
Hp+1 1/p—1/q
gl om < | 22D (12 181l et (3.3)
¢ (b a) L,
Discussion. See Timan [1963], pp. 218 and 236. [ ]

§ 3.2. ZEROS AND DETERMINANTS

One of the most important properties of the space ¥, is the following
bound on the number of zeros a nontrivial polynomial in ?,, can have.

THEOREM 34

Given p, let Z*(p) denote the number of zeros of p on the real line,
counting multiplicities as in (2.61). Then

Z*(p)<m-—1 for all nontrivial p€®,,. 34)
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Proof. For m=1 the result is clear since a nonzero constant can never
vanish. We now proceed by induction. Suppose the assertion is valid for
m~—1. 1t pe?, and Z*(p)>m, then by Rolle’s Theorem 2.19 the poly-
nomial Dpe P _, has at least m—1 zeros. By the inductive hypothesis,
this is possible only if Dp is identically zero. But then p is a constant, and
since it vanishes at least one point. it must itself be zero. ]

We can now establish that P is an ET-space.

-

THEOREM 3.5

The set of functions u; =1, u,(x)=x...., u,(x)=x"""forms an ET-system
on R. In other words, the VanderMonde determinant

fhveint
V(Il.tz,....tm)=D( ! "')

1s positive for all 1, <1, < -+ <1,
Proof. By Theorem 2.33, either {u,....,u,} or {u,,...,u, , —u,} must
form an ET-system; that is. ¥(¢,,...,t,) must have one strict sign. Thus to

complete the proof, it suffices to show that V is actually positive for some
choice of ’s. But by examination,

m—1

V(0,0,...,0)= [] it>o0. =

=1

There are several other proofs of the positivity of the VanderMonde
determinants. In fact, explicit formulae for their values can be derived [cf.
(2.66)~(2.67)).

An immediate corollary of Theorem 3.5 is the fact that the Hermite
Interpolation Problem 2.7 can be solved using polynomials. In particular,
we have the following:

THEOREM 3.6. Hermite Interpolation

Let 7, <r1,<--- <1, and positive integers /,,/,,..../, be prescribed with
39_,L,=m. Then for any given set of real numbers {z,}.., 7| there exists

a unique p <P with

m

D/ lp(t)=2, j=12,...

i=1,2,....d.
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Proof. 1f we write p(x)=Z"_, ¢, x'~", then the desired coefficients can be

computed from the linear system Mc¢=z whose determinant is V(z,,...,1,)
with

4 I
—_—— —_——
LS KL T Ty T ey Ty ey Ty

(cf. the discussion of Problem 2.7). For other ways of finding p numeri-
cally, see the classical numerical analysis books. Using divided differences,
it is possible to give an exact expression for the difference between f and p.

We have
Lyeooslpy X
D
_ L...tm\f

D(z,....,tm.x)
Le,....t™

Expanding both numerator and denominator out, we see that

fx)=p(x)=(x=1)  (x= () 1ot f. (35 ®
In Theorem 3.5 we have shown that the functions u, = l,...,um=x’"_'
form an ET-system on R. Since this is true for all m, we have actually
shown that they form an ECT-system. The following theorem shows that if
we restrict ourselves to the interval (0, c0). this set of functions forms an
OCET-system:

THEOREM 3.7

Let uy=x'"', i=1,2,....,m. Then for all I <p <m,

ST tp O<[l<[2< ...gtp
D >0 for all o K . (3.6
u,.l,....u,-p 1<11<12< ---<1p<m

Proof. Let G be the number of gaps in the sequence of integers i|,...,i,.

We proceed by induction on G and p. If G =0 then by inspection we have

i—1
D %)= T (37)

j=1
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But then for all 1 <i<i+p<m and all 0<¢,<t,<--- <1,

P
t t t t i1
D TR =D( 0,...,0 )D 1o dp / 11
Uiy ppeer iy, Upyooos Y Uiy sy, J=1
i~ 1
_ 0,...,0,¢y,...,1, /‘Hj!
Upoo s Uity |/ 0

i—1

=V(0,....0,1,,....1) ) TLjt>0.

Jj=1

This proves the result for G=0 and all p.

Suppose now that (3.6) has been established for p —1 and for sequences
of #’s with, at most, G — 1 gaps. Consider a sequence of ¢’s with G gaps. For
expediency, in the remainder of the proof we shorten the notation for the

1,...,
determinant D in (3.6) to D(i p

1ol

). Then by a basic identity for

determinants (see Remark 3.2),
L....,p~1 i,..., I,....,p—1 1,...,
D(. P )D(. ‘.’)=D(. P )D(. P )
lyyeensly ¥ i, Iyyoisdy fpeonsdy_yo¥

_D( 1.,...,,;.—1)1)(.1,...,.,, )
fyyenesdy_y PR &

where v is any integer in the set {i;,i, + 1, ..., i,)\li, ..., i}. The
determinant D in (3.6) is the second on the left. Each of the other determinants
is either of order p — 1 or is formed from a sequence of #’s with, at most,
G — | gaps, and thus are all nonzero. We conclude that D is also nonzero.
1,....,p
i,,...,ip
integers i; and i, ;. Then, taking account of the number of interchanges
necessary to put iy,...,i,_,» into natural order, we see that the first
determinant on the left has sign (— 1)? /~!. A similar consideration shows
that the second one on the right has the same sign, while the last has the
opposite sign. Since the first and third determinants on the right are
positive, (3.6) follows for sequences with G gaps. [}

To determine the sign of D( ), suppose v lies between the

Theorem 3.7 is not true if #’s are permitted to take nonpositive values.
For example, the determinant D( :‘2 ) = can be negative, zero, or positive,
depending on ¢.
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§ 3.3. VARIATION DIMINISHING PROPERTIES

In this section we make some observations about how the shape of a
polynomial can be related to the sign structure of its set of coefficients.
The simplest manifestation of this phenomenon is the obvious fact that a
polynomial with all positive coefficients is positive throughout (0, 00). Our
first theorem 1s a generalization of this observation.

THEOREM 3.8. Descartes’ Rule of Signs

Let Z§ ., count the number of zeros on (0, o) with multiplicities, and let
§ ~ count strong sign changes [see (2.45)]. Then

Z*(o_w)( > c,-t"_')<S_(cl,c2,...,cm), (3.8)

i

for all ¢,...,c,,, not all 0.

Proof. Since 1,x,...,x™ ! form an OCET-system on (0, o0) by Theorem
3.7, the assertion (3.8) follows immediately from Theorem 2.34. [ ]

Theorem 3.8 gives bounds on the number of zeros a polynomial can
have on the interval (0, o). The following result deals with the case of an
arbitrary interval (a, b):

THEOREM 3.9. Budan-Fourier

Let p be a nontrivial polynomial in %, . Then
Z‘(a.b)(p) < S - [ p(a)» Dp(a)a . -’Dm_ Ip(a)]

—S [ p(b), Dp(b)....,D™ " 'p(b)]. 3.9

If we assume that p is of exact order (i.e., its m — 1st derivative is a nonzero
constant), then we can state this in the slightly stronger form,

Z*an(p)<m—=1-S"*[ p(a), = Dp(a),....(=1)""'D""p(a)]

~§*[ p(b), Dp(b),...,D" " 'p(b)]. (3.10)

Proof. We prove the stronger version first. For m=1 it is trivial. We now
proceed by induction on m. Suppose m>1 and that (3.9) has been
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established for polynomials of order m~ 1. For expediency, we introduce
the notation

4= [ VD@ 11D )]

B,=S*[ D/p(b),....,D" 'p(b)]
forj=0,1,....m—1. Let a=A,— A4, and 8= B,— B,.

Clearly, « and 8 can take on only the values 0 or 1. We claim that a=1
i1s only possible if a is a left Rolle’s point (cf. Definition 2.18) for p. If
p(a)=0, then a is automatically a Rolle’s point. Say p(a) >0. Then 4, must
have the pattern

r

p——— +1
(+1,0,...,O,(—l)' ,) for some 0<r.
This implies D" *p(a) >0, and thus
Dp(t)=f1-~-f§'7'D’+'p>0 for a<t<a+e
a a

if £ >0 is sufficiently small. This proves that a is a left Rolle’s point in this

case. If p(a) <0, the proof is similar. The same kind of argument may be

given to show that 8=1 is possible only if b is a right Rolle’s point for p.
We now claim that

Z*(p)<Z*(Dp)+1—a-— B (3.11)

To prove this, we consider two cases:

1. Z*(p)=0. Then (3.11) surely holds; if not, both « and B are 1. But if
they are both I, then by the extended Rolle’s Theorem 2.19, Dp has a zero
between the Rolle’s points a and b.

2. Z*(p)>0. Suppose p has zeros z, <z, < --- <z,. Then Dp has at least
k—1 zeros in [z,,z.]. In addition, if a=1, then Dp has a zero in (a,z,),
while if 8=1, then Dp has another zero in (z,,5). Thus for any combina-
tion of values of a and B, (3.11) holds.

Now combining (3.11) with the induction hypothesis, we obtain
ZY(p)<Z*(Dp)+1—a—-B<m-2+1-a—-B—A,— B,
<m—1—Ay— B,

which is (3.10). The bound (3.9) in terms of strong sign changes follows
from the identity (2.48). [ ]
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The following example shows that the assumption that p be of exact
order in the second part of Theorem 3.9 cannot be dispensed with.

EXAMPLE 3.10
Let p(2)=1t.

Discussion. If we consider p to be a polynomial of order m =3, then (3.10)
would assert

2t )(p)<2=-8SH(~.—-,00-57(+,+,0)=0,

which, of course, is incorrect since p has a zero at 0. [ ]

The Budan-Fourier theorem can be used to give a short proof of
Descartes’ rule of signs for polynomials. Indeed, suppose we choose a=0
and b very large in (3.9). Then since ¢;=D'"'p(0)/(i— 1!, i=1,2,....m,

S_[p(O),Dp(O)....,D’"‘p(O)]=S_(C,,...,cm).

On the other hand, if b is sufficiently large, then p(b), Dp(b),..., D™ 'p(b)
all have the same sign, and the second term in (3.9) is zero. Thus (3.9)
reduces to the statement (3.8) of Descarte’s rule of signs.

§ 3.4. APPROXIMATION POWER OF POLYNOMIALS

In this section we justify our claim that polynomials are capable of
approximating smooth functions well. There is a very extensive body of
material on this subject, and only a few core results will be presented here.
We start with one of the seminal results in the area, proved in 1885.

THEOREM 3.11. Weierstrass Approximation Theorem

Let ¢ >0. Then for any f € C[a,b] there exists a polynomial p (depending
on f and €) such that || f—p|}, <e.

Discussion. 'We shall prove this in Theorem 3.13 below. For a direct proof,
see any book on approximation theory. [ ]

Weierstrass’ approximation theorem asserts that every continuous function
on a closed interval can be approximated uniformly to any prescribed
accuracy by a polynomial. It should be emphasized, however, that the
theorem does not say anything about the order of the polynomial. Indeed,
if the function f is rather wild, then it will generally take an extremely
high-degree polynomial to approximate it well. Considerable work has
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gone into the question of relating the smoothness of a function to how well
it can be approximated by a polynomial of given order. Of particular
interest is the rate at which the error approaches zero as the order of the
polynomial is increased. The following theorem gives precise information
on this connection in terms of the modulus of smoothness of the function:

THEOREM 3.12. Jackson’s Theorem

Let 1< p<oo and 1 <o <m. Then there is a constant C, (depending only
on p and [a,b]) such that for every f& L,[a,b] there exists a polynomial
P,E?P, with

1=l <Cuo5: 42 (3.12)

The same result holds with p= oo if f € Cla,b].

Proof. We prove the result only for 1 <p< oo, as the case of p=c0 is
similar. We assume at first that /=[a,b}=[—1, 1]; the general result will be
obtained later by a change of variables. We shall construct the polynomial
P, associated with f explicitly. As a first step toward the construction, let T
be the operator extending f € L[] to Tf in L[ —4,4]. By Theorem 2.70, T
has the property

W (T )L 1 -4,41 < Cow,(f3 )L 11,1

Using Legendre polynomials, it is possible to construct polynomials V,, €
?,, with ¥, (x)>0 and

f”" V_(1di=1 (3.13)
-1/0

I PV (1) dt < Cym™®, (3.14)
-3

where C; depends only on 6. We outline this construction in Remark 3.3.
In terms of the polynomials V,,, we now define a linear operator L,
mapping L,[/] into ¥, by :

L f(x)= f_22 Tf(») @y — x)dy,

where

wn()== 2 D)k Va( %)
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Our first task is to establish a bound on || f— L,,f||,. For all 1 <k <o and
—1<x< 1, we have

(-2-x) _ =1 _1_Q-x)
k < o <0< '

Thus we can write

Vm[w]dy _@-xy/

2 k k
| o) —— - TH(x+ ky) Vo 9)
-2 (—2-x)/k

=" Tt )V + Ri(),
where

R(x)= [ TAx+k)V, ()

x.

and

ra=[ S 2N -1.5)

It follows that
/o a+1
L,f(x)= f_l/ [ £ +(= 1) 8 TH0) | V) b

+ E.(_ 1)"*'(k)Rk(x). (3.15)

Let L{f and L¥f be the first and second terms of this expansion,
respectively.
We work on the second term. Let

J={y:%<|y|<3}g[—3,3].
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Since a|y|> 1 for all y €J, using (3.14) and Minkowski’s inequality (see
Remark 2.2). we obtain

IRl in= [ TR+ R V() Bl

Tl [ V) <1 f [ (el V)
<Con I fll Ly
This proves that
ILSS N i < 2°Cem ™) fll gy (3.16)

We turn now to the first term in (3.15). Assume for a moment that
SE€LJ[I]. Then by Theorem 2.70,

ID°TH N -2 <ID°TfliL [ -a0 < C7||Dan”LP[I]'

By (3.13),

1/0
fx)= 77 JxIW (),
~1/a
and using (2.109) to estimate the oth forward difference, we obtain

1/0
=L < [ I8 TV n(0) b

SUD T gz IVl 2y SCom ™ DT |1,
3.17)

Combining the estimates (3.16) and (3.175, we have
Wf~Lm Sy <Cs[m WSl Liny+m U DYS Nl 1]
for all f€ L)[/]. Applying Theorem 2.69, we find that
=Ll in < Ca[ m™ W fllint o fim™ Den]  (3.18)

for all f€ L[I].
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Statement (3.18) is very nearly the statement of the theorem. It remains
to remove the extra term involving | f]|, on the right-hand side. By
Theorem 3.18 below, there exists a polynomial g €%, such that

1f= 4l ,in < C30o(f; 2),in= C3(2m)°wo( fim ™) L 1.
Now set
P=L,(f—q9)+q.
Then since w,(f— ¢;)=w,(f;7) (as gEP,), (3.18) implies
= Pl i < W= @)= L,(f = @Il 11y
<Cym™ || f— 4||L,,[11+‘*’a(f— gm~ )< C,(fim ™
(3.19)

The proof is complete for /=[—1,1].

To get the result for general [a,b], we make a change of variables. Given
fEL,a,b], let F(v)=f(lv(b—a)+(b+a)]/2). Then FELJ[-1,1], and
there exists P, satisfying (3.19). We now define

Ax—a)—(b—a) )

Px)= P HE

This is again a polynomial in %,,, and using Theorem 2.60 on change of
variable in a moduli of smoothness, we obtain

1f= PAl £ ta.er=11F = Prll 11,1 < Cowg(Fim ™ )11y

b—a)“/" b—a
[ .

<C2( 2 2m )Lp[a,b].

Although the proof of Theorem 3.12 is mathematically constructive, it is
clear that it does not immediately translate into a numerical method for
producing polynomial approximations. Indeed, it is not an easy task to
design a numerical algorithm realizing the order of approximation guaran-
teed by Jackson’s theorem. Interpolating polynomials certainly do not do
the trick (see Section 3.6)—neither do the Bernstein polynomials (see
Remark 3.4).

The following simple corollary of Jackson’s theorem provides a proof of
the Weierstrass approximation theorem.
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THEOREM 3.13

Let 1<p<oco. Then for every fe& L[a,b] there exists a sequence of
polynomials P,,f€%P,, with

I f— me”LP[a.b]—‘)O as m->o0.
Thus the sequence of spaces ¥, %,,... is dense in L [a,b]. The same result
holds for p= o0 if f€ Cla,b].
Proof. By Jackson’s theorem there exist P, f €%, such that

1= Pafl, < Cof f —”‘—")

2m

But as m-»>oc the modulus of continuity goes to zero [cf. (2.121)]. ]
To emphasize the fact that Jackson’s theorem provides rates of conver-

gence, we give two simple examples.

EXAMPLE 3.14

If 1< p<oo, then for all f€ L][a,b],

41,9, <C (2 ) 1D 1 gar

The same holds with p=oc if f € C[a,b).

Discussion. This estimate follows from (3.12) and property (2.120) of the
modulus of smoothness. Here the rate of convergence is (1/m)°. By
Theorem 2.76, we observe that a better order of approximation cannot be
achieved with any other finite dimensional linear spaces. More precisely,

d(ULe, @M)Pzdm(ULp",Lp)z(%)

so that ?,,9,,... is an asymptotically optimal sequence of spaces for
approximating UL in L,. ]
EXAMPLE 3.15

Let

AL={f€C°[a,b]: ((DF;1)< Cu(t),C< 0}, (3.20)
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where w is a given continuous function on [0,b—a] with w(0)=0 and
w(t;+ 1) < (1)) + w(1y). Then

4(£.9,), <c,(%)°w(i). (321

m

Discussion. 1t 1s known (cf. Lorentz [1966]) that d,(AZ[a,b],C[a,b]) >
C,w(1/m), hence

1 1

d(8z[ab].Clab])~(5) o 5)

m m

Thus the sequence of polynomials ¥, %,,... again provides an asymptoti-
cally optimal sequence of approximating spaces. The best known example
of A? is the space Lip™“[a, b}, where w(r)=¢* [cf. (2.128)]. [ ]
§ 3.5. WHITNEY-TYPE THEOREMS

In the previous section we gave estimates of how well smooth functions
can be approximated by polynomials of order m. Our bounds involved the
quantity 1/m. In this section we give a different kind of estimate for
da(f, @m)p in which the length of the interval, rather than the order of the
polynomial, plays the key role. To illustrate the kind of result we are
looking for, we begin with two simple examples.

THEOREM 3.16

For all f € C[a,b],
d(1,9). < gl ib-a)

Proof. To obtain this estimate, we define g€ P, by g=[max,, ,f(x)~
min, ., ,f(x)]/2. Then for any a <x <b,

|f(x)~ g(x)| < 5l ;b a). .

THEOREM 3.17
For all f€ Cla,b),

d(f,Fy), S wy(fib—a).
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Proof. Let g be the polynomial in &, that interpolates to f at the points a
and b. Let

M=f=qllo= max 8(x),  8(x)=]f(x)—q(x)l

Suppose 8 assumes its maximum at 7. If n is in the first half of the interval,
then with A=n-—a,

|f(n—h)=2f(n) + f(n+ h)|=|8(n—h) =28(n) +8(n+ h)| > M.

This implies that M <w,(f;h) <w,(f;b—a). A similar argument can be
used when 7 falls in the second half of the interval [a, b]. [ ]

The following general result of this type is called a Whitney-type
theorem:
THEOREM 3.18

Let 1 <p <oo. Then there is a constant C, (depending only on p and o)
such that for every f € L,[a,b] there exists a polynomial g€ &, with

=4l a.6) S Cr00(fi b= @) L fa,b)- (3.22)

A similar result holds with p = oo for all f € CJa, b}

Proof. We consider only the case of 1 < p < oo. It suffices to establish the
result for /=[a,b]=[— 1,1}, as the general result follows from a change of
variables as in the proof of Theorem 3.12. Now, given f € L [/], by Lemma
2.66 and the Whitney Extension Theorem 2.70, we can find g € L[/] such
that

/=8l < Cawo(f5 D)

and
1Dl L 11y <Gy, (f; Do in-
Now let
-1 j j
D’g(0)x/
a(x)= 2 ——g(-,)
j=0 J

be the Taylor expansion of g about zero. Then

ID'(g—q)(x)| < LXID”'(g— )W) du < | D™ (g= @l 1y
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and so
||Di(8“ Q)HLP[” < 21/p||Di+l(g_‘1)||Lp[/], i=0,1,...,0- L
This implies
Ng—qll. i< zo/p”DogHLpU) <Gy, (i D ry
and we conclude that
Nf=all i <If=gllintilg—qllLin<Cw,(f: Dr,in. |

Theorem 3.18 was used in the proof of Jackson’s theorem on polynomial
approximation power in the previous section. In Section 6.4 we will need
the following improved version of Theorem 3.18 in which a polynomial is
constructed that approximates as in (3.22), and whose derivatives ap-
proximate the derivatives of f simultaneously.

THEOREM 3.19
Let 1 <o <m. Then there is a constant C, (depending only on m) such that
for all f& C°~ '[a,b] there exists a polynomial pEY,, with
ID(f= P jas) < Cilb—a)y ™"V, (D7 fib—a) oy
(3.23)

for j=0,1,...,0—1 and 1 <¢ < co.

Proof. Since D°”f € C[a,b], by Theorem 3.18 there exists a polynomial
gER, _,,1 such that

1D~ gl <C10p o4 (D7 fib—a),. (3.24)
Now define
S Df(a)(x—aY | b (x=»)3 e(y)dy
P= 2 [y

Since g€P,,_, .1, p,EP,, and (cf. Theorem 2.3) D°~'p,= g, while D/p[a)
= D/f(a), j=0,1,...,0—2. Thus

|D/(p—f)(x)| < fle” =)Dy <(b—a) D" N f=P)llw- (3.25)
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for j=0,1,...,6 —2. This implies that

ID/(f =Pl < (B—a)° 7 D" (f~ Pl

=(b—a)’ " D°"Yf—gl|.

Coupling this with (3.24), we obtain (3.23) for g=o0. To obtain it for
1 <g< o0, we simply integrate the gth power of (3.23) over [q,b] and then
take the gth root of both sides. a

There is also a version of Theorem 3.19 for Lp" functions.

THEOREM 3.20

Let 1 <p< oo and 1 <o <m. Then there is a constant C, (depending only
on m and p) such that for every f& L)[a,b] there exists a polynomial
pEP,, with

ID(f =Pl pay < C(b=a)* /47 20 (Dfib—a)r s (3.26)

for j=0,1,...,0—1 and all 1 <g < oo.

Proof. Since D°f € L {a,b], by Theorem 3.18 we can find g€, _, such
that

1D —gll, <C\w,_o(DSf;b—a),. (3.27)

We now define

o—1 J x—a ] _ c—1
px)= S Df(a)j(! )’+fab(x y(zj_;g)fy)dy_

j=0

Then p, €%, and Dp,=g, while D’p(a)= D’f(a), j=0,1,...,6—1. Apply-
ing Holder’s inequality to the integral in (3.25), we obtain

ID/(f=p) (0 < (b=a)' ™" D/ (f-p I,

Integrating this over the interval [a, 4], we obtain

1D/(f=plly <(b—a)| D' (f=pI,
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for j=0,1,...,0—2. A similar argument with Hoélder’s inequality shows
that

1D~ (f=pllg < (b—a) = /** V2 D(f=p -

Combining these estimates with (3.27), we obtain (3.26). [ ]

§ 3.6. THE INFLEXIBILITY OF POLYNOMIALS

In Section 1.2 we asserted that the main defect of polynomials for
approximation purposes is their relative inflexibility. In this section we
illustrate how this inflexibility manifests itself, and give some indication of
what the underlying causes are.

We begin with an example. Suppose we want to approximate the
function f(x)=1/(1+x? on the interval [—5,5] by polynomials. One
natural approach is to choose m points in the interval, and to interpolate at
these points. Suppose we take equally spaced points; that is,

(i—1) .
t=-5+10 , =1,2,....m. 32
. m=1) i m (3.28)

Then by Theorem 3.6 there exists a unique polynomial L _f in %,, which
interpolates f at the points {f,}7". We graph fand L, ffor m=5 and m=15
in Figure 5.

Figure 5 shows that the polynomial L, f does a much better job than
L, f in the middle part of the interval [—35,5], but it is much worse at the
ends. It seems reasonable to hope, however, that if m is increased (so that
L,.f and f match at more and more points), L, f will approximate f well

Figure Sa. Lagrange interpolation of 1/(1+ x?) at five equidistant points on [— 5, 5).
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Figure 5b. Lagrange interpolation of 1/(1+ x?) at 15 equidistant points on [—5,5].

throughout [—5,5]. The following theorem shows that this does not
happen:

THEOREM 3.21. Runge

Let f(x)=1/(1+ x?) on [—5,5], and let L, f be the polynomial of order m
that interpolates f at m equally spaced points as in (3.28). Then

Iim |f(x) — L, flx)l>x as m—x for |x| > 3.64 .

Discussion. See Runge [1901] (or e.g., Isaacson and Keller [1966], p. 275).
The nonconvergence here is certainly not due to a lack of smoothness of f
since f is clearly infinitely often differentiable on R. [ ]

Theorem 3.21 shows that sequences of polynomials interpolating at
equally spaced points may not converge. The following theorem shows that
convergence cannot be guaranteed for any predetermined sequence of
interpolating points. (There are some choices of interpolating points that
do quite well for low-order polynomials, however. See Remark 3.5.)

THEOREM 3.22

Let [a,b] be fixed, and suppose that foreach m> 1, ¢, <1,,<--- <t,, is
a collection of points in [a,b]. Then there exists a function f € C[a,b] such
that

Wf~ L flle—>0 as m—oo,

where L,f is the unique polynomial of order m interpolating f at
t t

P LEREEY fesg)
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Discussion. The original proof of this result is credited to Faber [1914]}.
For a modern proof using the uniform boundedness principle, see Cheney
[1966], page 215. While this result shows that we cannot make interpolating
polynomials converge to arbitrary continuous functions no matter how we
select the interpolation points, it is possible to establish convergence results
on special sets of interpolation points for smoother classes of functions.

The nonconvergence phenomenon in Theorems 3.21 and 3.22 can be
regarded as a manifestation of the inflexibility of polynomials. If poly-
nomials are forced to follow a curve in one interval, they may respond by
oscillating wildly elsewhere. This tendency to oscillate becomes increas-
ingly pronounced as the order of the polynomial is increased. For low
orders (say at most 5 or 10) it may be acceptable. Unfortunately, in order
to achieve suitable accuracy we usually have to use fairly high-order
polynomials (cf. Jackson’s Theorem 3.12).

One way of explaining the tendency of polynomials to oscillate is the
following observation: The coefficients of the derivative of a high-order
polynomial will be much larger, in general, than the coefficients of the
original polynomial. Indeed, the coefficient of x™~? in Dp is (m—1)a,,
where a,, is the coefficient of x™~ ! in p. This implies the likelihood of
steep derivatives.

Another factor in the inflexibility of polynomials is deeply rooted in one
of their most conspicuous properties, heralded earlier as a virtue: poly-
nomials are smooth. In fact, polynomials are too smooth. As a function of
a complex variable, they are analytic, which means that their values
everywhere in the complex plane are determined by their value in any
arbitrarily small set. We may establish an assertion of this type on R
without reference to complex variables as follows:

THEOREM 3.23

Let pe 9, . Then p(x) is determined for all x €R by its values in any
interval (¢.d), no matter how small.

Proof. Given any points ¢ <t, <t,< - -+ <1, <d, p is uniquely determined
by its values at these m points. |

§ 3.7. HISTORICAL NOTES

Section 3.1

The material here is classical, and can be found in most books on
approximation theory or numerical analysis.
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Section 3.2

The results on zeros, YanderMonde matrices, and Hermite interpolation
can be found in practically any book on numerical analysis. The result of
Theorem 3.7 on subdeterminants of the VanderMonde is probably less
well known in such circles than it should be. The polynomials are utilized
as prime examples of various forms of T-systems in the books by Karlin
and Studden [1966] and Karlin [1968]. The method of proof of Theorem
3.7 follows ideas used by Karlin [1968)].

Section 3.3

Descartes’ rule of signs for polynomials can be proved in a variety of ways.
For example, a different proof is given by Karlin [1968], page 317. The
Budan-Fourier Theorem 3.9 also has a number of different proofs. Karlin
[1968], page 316, gives a proof based on Descarte’s rule of signs. The
inductive method presented here was developed for splines; see Schumaker
[1976¢c]. Still another proof can be found in the article by Melkman
[1974a].

Section 3.4

Jackson-type theorems have a long and nich history. It began with the
proof of Theorem 3.12 for p= o0 and o=1 by Jackson in 1913. His proof
relied on converting the problem to one involving approximation of
periodic functions by trigonometric polynomials. Later, several other
authors gave direct constructive proofs for the case of p=oc and for all
6 > 1. The theorem for p < oo seems to be of more recent vintage. Potapov
[1956, 1961} considered the case of o=1, 1< p<oo. Bak and Newman
[1972) also did this case independently. The complete result as presented
here is credited to DeVore [1976], and we have followed his proof. For
another proof, see Oswald [1978]. Recently there has also been consider-
able interest in bounds for approximation of monotone functions by
monotone polynomials: see, for example, DeVore [1977a] and references
therein.

Section 3.5

The first Whitney-type approximation theorem was given by Whitney
[1957), where the case of p= o0 and f € Cla,b] were considered. His proof
delivers estimates for the size of the constants. The result for 1< p< oo is
credited to DeVore [1976], and we have followed his proof: see also
Brudnyi [1964].



REMARKS 105
Section 3.6

The observation that interpolating polynomials do not always converge to
the function being interpolated was made early by Meray [1884, 1896]. The
example given here is taken from the work of Runge [1901]. These results
led to a quest for conditions on the interpolating points or on the functions
to be interpolated which suffice to guarantee convergence. A host of both
positive and negative results are known, and the problem remains an active
research area.

§ 3.8. REMARKS

Remark 3.1

The following generalization of Horner’s scheme computes the derivatives
of a polynomial at a given point.

ALGORITHM 3.24. Synthetic Division—To Compute D’p(1)/j!, j=0,1,...,d—1
for a Given Polynomial p(x)=3"_ ,c,(x—a)' ™)
l. ue—t—a;
2. Forj«1 step 1 until 4
For ie~m~—1 step — 1 until j
c(De—c(i+ ) -u+ c(i).

Discussion. Upon completion of this algorithm, we have c(i)=
D7 p(t)/(i=1), i=1,2,...,d. If it is run with d=m—1, it produces all
dertvatives of p at z. For a proof, see the standard numerical analysis texts
(for example, Conte and deBoor [1972)). [ ]

Remark 3.2

Let A=(A4,);_;*1, be any r by r+ 1 matrix of numbers. Given an
§lim=1j y

1<y <0 < <r and 1<, <+ <j,<r+1,

we define an associated minor of A by

PN
A( g ) det(A,_,”)y_l#_l

Jis--
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It is shown in the book of Karlin [1968], page 8, that

A(Z,...,r—l,r+l)A( l,...,r)=A( 2,...,r )A( l,...,r—l,r+1)
I,....r—1 1,....r I...,r—1 I,....r
_ l,...,r—l) (2,...,r+l)
A(l,...,r~—l A L,...,r J

If A is r4+1 by r instead, then the same result holds with the rows and
columns interchanged.

Remark 33

We sketch here the construction of the polynomials ¥, used in the proof
of Jackson’s Theorem 3.12. Let n=4k, and let P,, be the Legendre
polynomial of degree 2k defined on [—1,1] (see e.g., Szegd [1939]). Then
P,, has 2k zeros

—I<=xfP < <= xP<0<xP < <xfP <L

Given | <o <k, define

ka(x) 2

AN P) B+ D) |

W (x)= c,,l =

where ¢, is chosen so that [' ,w,(x)dx=1. Clearly W,(x)>0. Using the
Gauss-quadrature rule and some properties on the location of the zeros of
the Legendre polynomial, it can be shown that

1
f [x]°W (x)dx<Cin~°,
-1

with a constant C, dependent only on o. For arbitrary n >4, we define
W,= W ,/a,, where as usual | n/4| denotes the biggest integer in n/4.
The desired V, are obtained after a change of variable from the interval
[—1.1] to [a.b]. For more details, see DeVore [1968, 1976].

Remark 3.4

By the error bound in Remark 2.5, the Bernstein polynomials introduced
there can be used to provide a proof of Weierstrass’ Approximation
Theorem 3.11. However, since B,, is a positive linear operator, there are
saturation results (cf. Lorentz [1966] or DeVore [1972]) which assert that
no matter how smooth a function may be, || f— B,,f|| cannot go to zero



REMARKS 107

faster than 1/m unless f€<P, (i.e., fis a polynomial itself). Thus the
Bernstein polynomials do not produce good enough approximations to be
used to prove Jackson’s theorem.

Remark 3.5

Despite the negative nature of Theorem 3.22. there is at least one set of
interpolation points that produces relatively good approximations for
polynomials of low order. For example, it is known that for m <20,
interpolation at the zeros of the Tchebycheff polynomial. given by

Ij___[a+b—(a—b)cozs((2j—l)'rr/Zm)]. =120 m,

produces a polynomial whose deviation from f (in the uniform norm) is no
more than four times as great as the error obtained by using the best
approximating polynomial. For more on this point, see deBoor [1978].
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POLYNOMIAL SPLINES

In Chapter | we discussed the need for convenient classes of functions for
approximation purposes. Our discussion of polynomials and their proper-
ties led us to the conclusion that spaces of smooth piecewise polynomials
should be useful for approximation purposes. In this chapter we present
the basic properties of such spaces.

§ 4.1. BASIC PROPERTIES

Let [a,b] be a finite closed interval, and let
A={x}¥ with a=x,<x, < -+ <x, <X, =b
be a partition of it into k + 1 subintervals
[=[x,x4,), i=0,1,...k—1and I, =[x,x,,]

Let m be a positive integer, and let 9 =(m,,...,m,) be a vector of integers
with 1 <m, <m, i=1,2,... k.

DEFINITION 4.1. Polynomial Splines

We call the space
S(?,,; DN ;A)={s: there exist polynomials sg,...,s,
in ¥, such that s(x)=s,(x) for x€1, i=0,1,...,k,
and D’s,_(x;)=D’s(x;) for j=0,1,....m—1—m,
i=1,...,k}

the space of polynomial splines of order m with knots x,,...,x, of multiplici-

ties my,...,m,.

We call 90 the multiplicity vector. It controls the nature of the space
S(9D,,; I; A) by controlling the smoothness of the splines at the knots. If
108

(4.1)
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m,=m, we interpret the definition to mean that the two polynomial pieces
5;_, and s, in the intervals adjoining the knot x; are unrelated to each other
(and thus there may be a jump discontinuity at x;). If m; <m, then we have
forced these two polynomial pieces to tie together smoothly in the sense
that the spline s and its first m — 1 — m, derivatives are all continuous across

the knot.
To illustrate the nature of the spline space &(%P,,; 9N ; A) as we vary I,
we give two examples.
EXAMPLE 4.2
If O =(m,m,...,m), then

S(P,,;MA)=F P,_(A),

where @ 9P_(A) is the space of piecewise polynomials (cf. Definition 1.1).

Discussion. This space contains functions with possible jump discontinui-
ties at the knots. It is the least smooth of the spline spaces. [ ]

EXAMPLE 4.3
Let M =(1,1,...,1). Then

S(P; M 58)=5,,(8),

where &,,(A) is the space of splines of order m with simple knots (compare
Definition 1.2).

Discussion. This space of splines is a subset of C™ *a,b]. It is the
smoothest space of piecewise polynomials of order m with genuine knots at
the points x,...,x,. (If we tried to make the pieces join together any
smoother, the knots would disappear.) [ ]

In most practical applications, the natural setting for approximation
problems is a closed interval [a,b], and thus we have elected to define
splines on such intervals. On the other hand, every spline has a natural
extension to the whole real line. Indeed, if s&€5(%P,,; 9N ;A), then we
define

so(x), x<a

5. (x), x>b, (4.2)

where s, and s, are the polynomials defining s in the intervals /; and I,
respectively [cf. (4.1)].
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We now show that 5(%,,; 9IL;A) is a finite dimensional linear space,

and we give a basis for it. First we identify the dimension of &.

THEOREM 4.4

Let K=3*%_,m,. Then

S(P,,; M ; A) is a linear space of dimension m + K.

Proof. It is clear from the definition of & that it is a linear space. Let s be
a typical element in &, and suppose that s,,5,,...,5, are the associated
polynomial pieces on the intervals /,,1,,...,1,, respectively. We can write
each such polynomial in the form

(=3 ¢
s(x)= 2 ¢;——.
j=1 Y (j - l)'
For each i=0,1,...,k, let ¢,=(c;....,¢,,)"- Then the continuity conditions

on s can be written as the following linear system of equations:

Al —Al
Co
A, —A, .
Ac= Ay — A, .l =0,

Cx

| A, —A,(__ |
where
[ 1 x, x?/2 e x N  (m=1)
a=| 0 1 x X (m-2) |
0 0 1 .- x™/m)!

The matrix A, is of size m—m; by m. It is clear that the matrix 4 has rank
equal to the number of its rows, namely 3%_ (m—m). Since 4 is a
transformation from the m(k + 1) dimensional vector space R™**1 into
RZ1m=m) it follows that the linear space of all vectors ¢ which satisfy

Ac=0 is of dimension

m(k+1)— é (m—m)=m+ ﬁ m=m+K.

i=1 i=1

This is, of course, also the dimension of &. ]
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In the proof of Theorem 4.4 we have counted the number of free
parameters in the piecewise polynomial representation of elements in &,
and subtracted the number of conditions on these polynomial pieces to
obtain the dimension. The introduction of the matrices A4; was just to check
that all the conditions are independent of each other.

Now that we know the dimension of &(%F,,; I ; A), we may construct a
basis for it. Since obviously

P CS(P, M A),
any basis for & must include at least a basis for . We may take the
functions l.x—a,..., (x—a)""!'. To find an additional K basis elements,
we recall the notation
(x=p)h=(x=y)(x=y)% >0,
where

0, x <y
| X2Zy.

(We have already encountered these functions in the Taylor expansion,
and as Green's functions for initial-value problems: see Section 2.2.)

THEOREM 4.5
A basis for (0, M 1 1) is given by

(o (x)=(x=x)71 )" L (43)

J=la=0

where x,=a and my,=m.

Proof. By definition. (x —x,)7 is identically 0 for x <x, and is a poly-
nomial of degree j for x > x,. Since

D' (x—x),l =0 v=01..../—1,
it follows that each of the functions in (4.3) at least belongs to &. Since
there are precisely m+ K of them. it remains only to check that they are

linearly independent.
Suppose that for some set of coefficients {c;}. the spline

k m,

s(x)= > 2 cx=x)7"/ (4.4)

=0 =1
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is identically zero on the interval [a,b]. Then for x € I, we have Z7_ coi(x
—xo)" /=0, and by the linear independence of these functions (cf. Theo-
rem 3.1), ¢g; ="+ =¢o,, =0. But then for x&1,, s=0 implies Z71,c ,(x -
x,Y"/=0. These are again linearly independent polynomials, so these
coefficients must also be zero. This process can be continued moving one
interval to the right at a time to show that all of the ¢’s are zero, and the

desired linear independence is established. (]

Theorem 4.5 shows that every spline s€&(9,,; 9 ;A) has a unique
representation in the form of (4.4). We call the basis in (4.3) a one-sided
basis for &. While this basis is useful for theoretical purposes, it is not well
suited for numerical applications. For example, to evaluate s(x) for x near
the right end of the interval [a, ], it is necessary to evaluate all of the basis
elements and compute the entire sum. In the next section we shall show
that it is possible to define a more local and more symmetric basis for &,
which is very important for numerical applications.

§ 4.2. CONSTRUCTION OF A LOCAL BASIS

To motivate what we want to do in this section, consider the following
example:

EXAMPLE 4.6

Let [a,b]=[0,5] and A= (1,2,3,4}. Find a basis for 5,(A).

Discussion. The basis of one-sided functions for this space i1s given by the
functions (see Figure 6)

Lx (= Dy (x=2) 4, (x=3)4, (= 4) (4.5)

On the other hand, it is clear that the “hat” functions B,,..., B shown in
Figure 6 are also linearly independent members of 5,(A), hence they also
form a basis. Each of these functions is nonzero only on a relatively small
set, and the basis has considerably more symmetry. B

Given a function f, we define its support to be the set
support(f)= closure{ x: f(x)#0}. (4.6)

Example 4.6 suggests that it may be possible to construct a basis for
S(9,,; M ; A) consisting of splines with relatively small supports. Clearly,
any such basis must be constructed from linear combinations of the
one-sided basis elements in Theorem 4.5. The following lemma deals with
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Figure 6. Local versus one-sided bases for $,(4).

the question of when it is possible for a linear combination of such
functions to vanish outside of a finite interval:

LEMMA 4.7

Let 7, <7,<--- <7ty and 1</, <m, i=1,2,...,d be given. Then if 39_,/ >

i1
m, there exist {a;},Z, %), not all 0, so that

4 & ey
Bx)=3S S Gtk

i=1 =1 7 (m=))!
satisfies
B(x)=0 for x <t and x >r,.

On the other hand, if £9_,/ <m, then no such nontrivial B exists.
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Proof. By the one-sided nature of the plus functions, it is clear that for
any {qa;}, B(x)=0 for x <7,. If B(x) is to be zero for x >1,, then we must
require

B=3 S ,,2 2 )T

—Q =0, all x >r
i=1j =1 y= (m—_]—ll)' 4

(where we have used the binomial theorem to expand (x — 7,)” /). Setting

_ m-—j—»
£_.1-‘)—_, r=0,..

Yijv= (m—_]—l/)'
0, v=m—j+1,....m—1,

we can rewrite this set of equations as

& m—1

Ea P v, — Y= 2 E Ea,,v.,y

u'M&

»=0 r=0 i=1 j=1
Since the powers 1,x,...,x™" " are linearly independent, this is equivalent
to
d
>y a; Y, =0, v=0,1,....m—1. 4.7)
i=1 =1

This is a homogeneous system of m equations for the =9
and thus it always has a nontrivial solution if £7_,/>m.

It is of interest to examine the system (4.7) in more detail. Writing the
equations in the order r=m—1,...,0, we can write them in matrix form as

I, coefficients,

i=1

Qg

ay,



CONSTRUCTION OF A LOCAL BASIS 115

where fori=1,2,...,4d,

[ 0 o |
—r 1
1
M=\ (cry?
(m-2)!
(_'Ti)m—l (—T.)m_z ("Ti)m_l'
(m—1)! (m-2)! (m—-1)!

Suppose now that 3¢_,/ <m. Then the square matrix in the first T7_,/,

rows of this matrix is a nonzero multiple of the VanderMonde matrix, and

so it is of full rank. It follows that in this case the only solution to (4.7) is
the trivial one with all «’s equal to zero. [ ]

Lemma 4.7 shows that in order to construct a linear combination of the
plus functions which vanishes outside of a finite interval, we must have
$?4_,1,>m+ 1. We now consider the case where this sum is exactly m+1 in
more detail. In this case we have one more unknown than equations, and
by a result of linear algebra, B(x) must be given by

R 0 1o 0 ]
1 0 T4 |1 0
=1 [EDY

B(x)=C,det :

'rl"'" 1‘;""'

(m—1)! (m—1)

(x=m)7 ! (x=r)™ " (=) (=7 "
m-nt m—1) m—Dt T (m=i) J

where C, is a nonzero constant. If we compare this with the definition of
the divided difference [see (2.86)], we see that (except for a constant

multiplier) B(x) is the m + st divided difference of the function (x ~y)7 !
taken over the points

[1 Id
——r— ——t—
TheeosThooe TayeensTg -
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This observation suggests that in order to construct local support basis
elements for the space &(%,,; I ;A), we should work with divided dif-
ferences of the function (x—y)"~'. We do exactly that in Theorem 4.9
below. First we state another definition.

DEFINITION 4.8. Extended Partition
Leta<x,<x,<--- <x,<band 1<m;<m, i=1,2,...,k be given. Suppose
NP8 S Yppmuk

is such that

n<--<y,<aq, LYk 1< Yok (4-8)
and
m, m,
———f—— ——h——
Vme1S " CYpak=Xpeeos X seves Xgseaos X o

Then we call A={y,}}"*X an extended partition associated with $(9,,;
M ; A).

We note that the points { y;}7*X, | in an extended partition A associated
with & (?,,; 9; A) are uniquely determined. The first and last m points in
A can be chosen arbitrarily, subject to (4.8).

THEOREM 4.9

Let A={,}3"*X be an extended partition associated with S(@,,; I ;A),
and suppose b<y,, . x- Fori=12,... . m+K, let

B(x)=(—1)"(Vism —yi)[yi""’yi+m](x~y)’:_l’ a<x<b. (49)

Then { B,}7*** form a basis for &(%,,; I ; A) with

B(x)=0  for x&[y,Vism] (4.10)
and
B.(x)>0 for x E(¥Viem)- 4.11)
Moreover,
m+ K

> B(x)=1 for all a <x <b, (4.12)

i=]
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and

m+ K
S”( > c,.B,.) <S (€. sCnyx)y  ANY Cpy...yCpy g NOtall 0.

i=1
(4.13)

Discussion. The fact that B, ...,B,, . are splines in the space
S(?,,; I ; A) is shown in Theorem 4.14, while their linear independence
follows from Theorem 4.18. The properties (4.10) and (4.11) are discussed
in Theorem 4.17, while (4.12) is dealt with in Theorem 4.20. The variation-
diminishing property (4.13) follows from Theorem 2.42 and the fact
(shown in Theorem 4.65 below) that { B,}7* ¥ is an Order-Complete Weak
Tchebycheff system. [ ]

The B,,...,B,, ., defined in Theorem 4.9 are called B-splines. We
discuss them in great detail in the following section. The use of B-splines in
numerical computation is described in Chapter 5. We have included the
factor (—1)" in the definition of the B-splines in order to make them
positive (where they are nonzero). The factor (y,, ,, —J;) is a normalization
factor designed to produce the identity (4.12) which asserts that the
B-splines form a partition of unity. Property (4.13) is called the variation-
diminishing property of B-splines.

The following corollary of Theorem 4.9 deals with the case where the
extended partition A is chosen with

b=ym+K+l='”=y2m+K‘ (414)

This is fairly common practice in applications.

COROLLARY 4.10

Suppose A is an extended partition associated with $ (%,,; DN ; A) such that
(4.14) holds. Define {B,)7** -as in (4.9) with the exception of B, , 4,
whose value at b we alter to

Bm+K(b)= 11?; Bm-O-K(x)' (415)
Then {B,})7*% form a basis for $(%,;9M;A), and properties (4.10) to
(4.13) hold.

Proof. The proof is identical except that we must now use (4.15) to assure
that B, x lies in §. Indeed, if (4.14) holds, then by the properties of the
function (x—y)7~!, the divided difference defining B, , ,(x) in (4.9)
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vanishes at b, and does not reduce to a polynomial in &, in the last
interval I,. This point is further clarified in the next example. [ ]

EXAMPLE 4.11
Construct the B-spline basis for the space $,(A) defined in Example 4.6.

Discussion. We choose the extended partition y,=y,=0, y;=1, y,=2,
ys=3, y¢=4, and y,=ygs=5. Then we may apply Corollary 4.10. The
resulting B-splines are shown in Figure 6. The last B-spline is given by

(- D)’[4,55)(x—y)e =(x—4), = (x—5), —(x—5)5, 0<x<5
By(x)= lim By(x)=1, x=5,

whereas [4,5,5](5—y), =0. ]

§ 43. B-SPLINES

In the previous section we have seen that divided differences of the
Green’s function (x —y)7 ™! turn out to be piecewise polynomials which
are useful for constructing local bases for spline spaces. In this section we
examine such objects, called B-splines, in more detail. The discussion is
independent of Section 4.2.

We begin with the definition of the objects of interest to us in this
section.

DEFINITION 4.12. B-Splines
Let

o KY_ SYeSY Sy < e

be a sequence of real numbers. Given integers i and m >0, we define

Q,’"(x):{(_])m[yi""’yi+m](x_y)’:_l’ ifyi<yi+m (416)
0, otherwise

for all real x. We call Q" the mth order B-spline associated with the knots
YireosVivm:
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For m=1, the B-spline associated with y, <y, is particularly simple. It
is the piecewise constant function

1
Qil(x)= (Yie1—>) ’

0, otherwise.

yi<x<yi+l (4 17)

We can also give explicit formulae for Q" in case either y; or y,, , is a
knot of multiplicity m.

THEOREM 4.13

Suppose y; <y;41=""* =V;4m- Lhen
(x 'yx’)m_l
0" (x)= Giem=2)" ’ Vi SXiem (4.18)
0, otherwise.
Similarly, if y,=--- =y, .. <V then
(yi-f-m—x)m—]
e Iy R GBI D
0, otherwise.

Proof. In these cases the determinants in the numerator and denominator
of the divided difference can be computed explicitly [cf. (2.66)-(2.67)]. W

We now discuss the basic structure of Q,”(x) in general. The following
theorem shows that it is a polynomial spline of order m with knots at

YiseosYiem-

THEOREM 4.14
Let y, <y, n» and suppose

4 ly
———t— ——r—
Vi€ RV iam = ThreesTioeees TgseensTy.
Then
d b
or(x)=3 T aulx—1)77" (4.20)

=l k=1



120 POLYNOMIAL SPLINES
with aj,ja&O,j= 1,2,...,d. Moreover,

DXQr(r)=DXQM(r), k=01..m—L—1, j=12,..d.
(4.21)

Thus Q™ is a polynomial spline of order m with knots at r,...,7; of
multiplicities /,,..., 1.

Proof. The expansion (4.20) follows from the expansion (2.89) for divided
differences. The continuity properties (4.21) hold for the individual plus
functions, and thus also for Q,”. [ ]

Our next result will be useful in delineating the structure of Q" for a
general set of y,,...,y;, .. It is also of crucial importance in numerical
computations involving B-splines.

THEOREM 4.15
Let m > 2, and suppose y; <y,, - Then for all x ER,

(x—y)Q™" (x)+ Viem— )01 '(x)
Diem—2) )

Qm(x)= (4.22)

Proof. For y, <y, 1= " =Yiom OFT ;=" =Y, 1<Virm the result
follows from Theorem 4.13. Thus we may assume y,, ,<y;,, and y;<
Yiem—1- Observe that (x—y)7 '=(x—y)? *x—y). Applying Leibniz’s
rule for the divided difference of a product (see Theorem 2.52), we obtain

(=D [ Yiam ) =2 = (= D)7 [2p2i01 ] (x =)
ivrreoYiom] =PV A=y H =D [ Firee o Viam [ (x=2)T 72

Substituting

(= D" [P eVirm)(x=p)2 77

-1 m—1 e -

= (Fy )_y) {[yi’--.vyi+m—l](x-y)+ 2_[)’,-+|,---,yi+m](x_)’)+ 2}
i+m i

and rearranging, we obtain (4.22). [}

Theorem 4.15 provides a recursion relation whereby B-splines of order m
can be related to B-splines of order m — 1. The following result shows that
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the derivative of a B-spline of order m can also be written in terms of two
B-splines of lower order:

THEOREM 4.16

Let y;, <y;, .. and suppose D, is the right derivative operator. Then

[ o Y(x)- Q%Y l(x)]
(Yiem—Y)

D, QM(x)=(m—1) : (4.23)

Proof. 1If either y, or y,,, has multiplicity m, then the result follows
directly from Theorem 4.13. If not, then

D, OMx)=(=1)"[ Ve Yiam] Dy (x=p)7 7"
=(=D)"[ Y Viam [(m=1(x=p)77?

{[yi+l""’yi+m](x ")’)T_z_ [yi""9yi+m—l](x —)’):_2}
(Viem=2)

=(=D"(m-1)

(0" '(x)-0771'(n)]

S Py R -
We can now say considerably more about the shape of Q.
THEOREM 4.17
Let m> 1, and suppose y, <y, , .- Then
07(x)>0 fory, <x <y m (4.24)
and
Q7 (x)=0 for x <y,and y,, ,, <x. (4.25)

At the endpoints of the interval (y;,y;,,) we have

(=" %pkom(y)=0, k=0,1,....m-1—a,

>0, k=m—aqa;,....m—1 (4.26)
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and
(=)™ A D Q¥ e m)=0, k=0,1,...m—1-8,,
>0, k=m—8,,,....m—1, (4.27)
where
ay=max{jiy, =" =y}
Biom=maxX{ iVt m=""" =i}
(q; tells how many of the points y, < --- <y, are equal to y,, while 8, .

tells how many of them are equal to y;, ,..)

Proof. To prove (4.24), we proceed by induction on m. For m=1 it is
clear from (4.17). Assume now that it holds for order m—1. Then for
¥, <x <V; ,+m» both factors (x —y,) and (y,,,, — x) in the recursion (4.22) are
positive. Moreover, both Q" '(x) and Q/77'(x) are nonnegative, and at
least one of them is positive. It follows that Q,"(x)>0.

By the definition of the plus functions, it is clear that Q"(x)=0 for
x <y;. On the other hand, for x >y, .. @(x) is the mth divided difference
of the polynomial (x —y)"~', and thus is also zero. The vanishing of the
indicated derivatives at y, and y,,,, now follows from the fact that Q" is
zero outside of (y,,y,, ). coupled with the continuity properties (4.21) of
these derivatives.

It remains to establish the assertions about the remaining derivatives in
(4.26) and (4.27). If either ;= m or B,,, =m, we may verify the signs of
these derivatives directly. If both o; and B, are less than m, we may
proceed by induction on m. The case of m=2 is easy to check. Now
suppose (4.26) holds for splines of order m—1. Then coupling

(=1 " oD -1om=(»)>0  and (- D! T DA 1My 50

with formula (4.23), we obtain (4.26) for k=m~— «,,...,m— 1. The proof of
(4.27) 1s similar. [ ]

Theorems 4.13 to 4.17 provide rather detailed information on the shape
of the B-spline Q,”'(x). It will be shown in Theorem 4.57 that

Z,, (DLO™ <) j=L...m-1

In fact, if D/, Q" is continuous, then it has exactly j zeros in (y,y,, ). To

give a feeling for what the B-splines look like, we have graphed some

typical B-splines for various choices of m and knot locations in Figure 7.
Our next theorem deals with the linear independence of B-splines.
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Yo Jisev JYie2 Y = Yien Yis2 R Yie1 = Jiva

m= 2 m= 2 m= 2

/1\1 1/1\1 { |

Y Her div2 Jie3 Y Jis1T Yie2 Yiea Yi T D Yie2 Yi+3
m=3 m=3 m=3
/\ l\ | | | )
YT Yivt Yis2 TViss Yi =Vis1 = Jis2 Yi+3 Yi Yien Jis2 Yi+3  iea
m=3 m=3 m=4

Figure 7. Shapes of some B-splines.

THEOREM 4.18
Let y, <y, ,. Then the B-splines {Q/"}._,,,_,. span ¥ _ on [y,y,,,). More
generally, if /<r and y, _,<y,, then

i=l—m+)

{on }’_' are linearly independent on [y,.y,).

Proof. Restricted to the interval I,=[y,y,,,), each of the splines
{Q™Y,s1_m is in @ . Hence to establish the first assertion, we need only
show that these functions are linearly independent on /,. Suppose now that

I
s(x)= X  ¢QM(x)=0 forall xel,. (4.28)

i=[+1—-m
Suppose not all ¢; are zero, and let ¢, be the first nonzero one. Suppose

I8 i
——t— ——t—
Yprooos V= Ty s Tseens Tgyeans Ty
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Then

! d
§(x)= 2 QM(x)= 2 2 ajk(x"rj):—k

i=p j=1 k=1

with a;;, #0. We also observe that §(x)=0 for x <y,=r, and for x >y,=1,.
But since E‘,.’_l I, <m, this contradicts Lemma 4.7, and we conclude that all
of the ¢’s in (4.28) must be zero, which is the desired linear independence
assertion.

Now suppose [y,,y,) consists of more than one nontrivial subinterval,
and that s(x)=372}_, ,,¢07(x)=0 on it. Then by the above argument,
the coefficients of all the B-splines with support including the interval
[¥,y,4+) must be zero whenever [y,,y,,,) is a nontrivial subinterval of
[y,.y,). But this implies that all coefficients must be zero, and the proof is

complete. ]

So far we have said nothing about the size of B-splines. The B-splines
Q" introduced in this section can have wildly different sizes depending on
the location of the knots. For example, in the interval [ y,,y;, ;) the B-spline
Q.'(x)=1/(y;,,—;) can be extremely large or extremely small, depending
on the spacing of the y’s. For computational purposes it is not acceptable
to deal with functions that are too small or too large. This suggests that we
should introduce some normalization of the B-splines.

DEFINITION 4.19. Normalized B-Splines

Let

N (x)=(Yiem =2 Q7 (%), (4.29)

where Q" is the B-spline defined in Definition 4.12. We call N the
normalized B-spline associated with the knots y,,...,¥; ;-

For m=1, the normalized B-spline associated with y;<y,,, is given by

N.'(x)={ Lo yni<x<yiay (4.30)
) 0, otherwise.

It follows from our next theorem that for all m > 1,

0<N"(x)<1, all xER. (4.31)
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THEOREM 4.20
The B-splines form a partition of unity; that is,

J

S Nr(x)=1 for all y, < x <y, . (4.32)

i=j+1—m

Proof. By (4.30) the assertion is trivial for m=1. We now proceed by
induction. Assume the result is correct for splines of order m—1. Then by
the recursion relation (4.22)

' '21_ N"(x)= ' 21_ [(x_yi)Qim_l(x)+(yi+m x)Q%1 (x)]
= 2 (. —0Q ()= X NTU()=1L =
i=j4+2—m imj+2—m

The same kind of argument used in Theorem 4.20 can also be used to
derive explicit expansions for important polynomials in terms of B-splines.

THEOREM 4.21
Let /<r and y,<y,,,. Then for any y €R,

r

(y-— x)m_ = 2 %.m()’)Nim(x)s ally, <x<y,,,, (4.33)

iml+1-m
where
m-—1
Pm(¥)= Hl (Y =Yisy):
Moreover, for j=1,2,...,m,
7 '= ¥ EINM(x),  ally,<x<py,,, (4.34)

i=l+1—m

where

gD =(~1)" 1((1 ll))' D" g, (0), i=l+1-m,...r.
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Proof. We proceed by induction on m. For m=1 the assertions follow
immediately from (4.30), and the fact that ¢, ,(»)=£ =1 for all i. Assum-
ing the result holds for m— 1, we now prove it for m. Using the recursion
relation, we have

, Iél_ (pi.m(y)me(x)=‘ Iil_ (p’.‘m(y)[(x_yi)Qim—l(x)

+(Viem— X)) l(x)]~

Rearranging this sum and using the fact that Q77! (x)= Q7' (x)=0 for
x in the interval [y,,y,, ), we obtain

i O M) [(x=Y)Pim D+ Vigm 1 = 09— 1l P) ]

iml+1—m
Now the quantity in brackets can be rewritten as
P A N2 Vs )+ Gism =Ny =) ]
= Qum— 1V =X Vis o —20)-

We conclude that

3 0N =) 3 N

=(y—x)y—x)"t=(y-x)""".

The identity (4.34) follows if we differentiate (4.33) m —j times with respect
to y and evaluate it at y =0. [ ]

The coefficients £’ in Theorem 4.21 can also be written in terms of the
classical symmetric functions (see Remark 4.1) as

Symmj—l()’ia’l’---’)’nm—l)

g0 = p— (4.35)
gy
For reference, we note that
R S TRy
§§1)=l and £i(2)= (y1+1 yl+m—l) (436)

(m—1)
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At times it is useful to have bounds on the size of derivatives of
B-splines. Even for the normalized splines, such bounds depend heavily on
the spacing of the knots. For example, the linear B-spline

X—y.
Gy e
Niz(x)__. i+1 i
()’i+2"x) y <x<y
(y,'+2_y,'+|), i+1 i+2
has derivative
! yisx<
) i X yi+|
(_Y,- _)’,-)
D N )=
- 3 y <x<y' .
(Viv2=Yis1) 1 +2

This becomes arbitrarily large if the knots are close together. The following
theorem gives bounds on the size of the derivatives in terms of the knot
spacing.

THEOREM 4.22

Let N™(x) be the normalized B-spline defined over the knots y,<--- <
Yiem- Suppose [ and x are such that y, <x <y, ,, and define

Ai,IJ=min{(yy+j_yy):yi SV V<V 1S Vs <yi+m}

for j=1,2,....m. Suppose 6 >0, and that 4, ., >0. Then

rma
|DT N™(x)| < A A , (4.37)

ilm-—a

where

__(m-D (7 o (m—1
Fo = (m—o—l)!([EJ)<2 (m—o—1)!"

and as usual, | 0/2 | =max{,:j<o/2}.
Proof. By the definition of N/™(x),

(_l)m(m_l m—o—1

DINT(x)= (m—o— 1)!)! (yi+m—yi)[yi""’yi+m](x_y)+
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Repeatedly using the relation (2.91) to express the divided difference in
terms of lower-order ones, we obtain
{DLN"(x)|

[

R ) | ERRS SN CE0 il

(m—o—1)! (Ai,l,m"'Ai,l,m—aH)
< (m-1) ( ; ) $ M)
(m—o—l)’ l.EJ y=0 (Ai,l.m—l'”Al',l,m—o)<
The result follows since the B-splines sum to 1. u

Our next theorem establishes the so-called Peano representation for
divided differences. It also gives values for the moments of the B-spline

or.
THEOREM 4.23

Fix 0<j<m — p, where p is the maximum multiplicity of y,---,y.... Then

(Yoo Yioml f= f e (7P Q(",:(f)lﬁm_ﬂx) & @

for all f &€ LY /[v.v;+,.]. Moreover,

0,
Yiem o
(- 1YD4 QM (s dx=) #i(m=DL
j;' (m+ V—j)!p"_j(yi""yyi+m)s

v=0,1,...,j—1
(4.39)

v=j,...,m—1.

where p is the function defined in (2.95). In particular, the first two
moments of Q" are given by

T O (x)dx = (4.40)
¥i m
and

it Yiem

fyime,”‘(x)dx =%

5 m(m+ 1) (4.41)
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Proof. By the dual Taylor expansion (2.19), if f€ L /[y,,y;, .}, We can
write

m—j—1 (— l)kD’ff(yi-o-m)(yH'm—y)k
kgo k!

fy)=

yiem (= 1) DJ(x = y)~ D If(x)dx
+f,i (m—1)! '

Applying the divided difference operator [y,,...,y;,,,] to both sides, we
obtain (4.38). To establish (4.39), take f(x)=x™"/*" and recall formula
(2.94) for its divided difference. [ ]

Before proving our next result, we need to introduce another B-spline
Q. It is closely related to Q" and, in fact, it is identical except at m-tuple
knots.

LEMMA 4.24

Given y, <y, ., let

Or ()= Y- Viam](y—x)77",  allxeR. (4.42)
Then
Om(x)=Qm(x)  forallxER\J,

where J" = {m-tuple knots of 0} (cf. Definition 4.12).
Proof. 1t is easily checked that

(=) = (=D (y =0T = (x—p)""".
Applying the divided difference over [y;,...,y;, ,.], we see that
[Direoosbiam ] (=) T = (= D) [ oo Vi [ (y = x)7 ' =0
since the m™ order divided difference of the polynomial (y — x)"~'is 0. @

The reason for the difference between Q" and Q" is that Q" is left
continuous while Q" is right continuous. This makes no difference, of
course, except at an m-tuple knot.
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As another application of the representation (4.38) of divided dif-
ferences, we have the following interesting result connecting inner products
of B-splines with divided differences.

THEOREM 4.25

Let y, <y, ,, and y; <y, ,. Then

(= D)™ (n=1)(m—1)!

(m+n—1)!

[7 orxgr(xydx=

m+n— ]

[ Yo Fiem) L Ve dpan] (0 = 0)X
(4.43)

(The subscripts x and y on the divided difference symbols indicate which
variables they operate on.)

Progf. Let f(x)=[y»....5;+, ¥ = x)"*"~'. Then (= 1)"D"f(x)=(m+n~
)'Q”(x)/(n — I)!. Substituting this in (4.38) and using the fact that Qj"(x)
and Qj"(x) are equal (except perhaps at one point), we obtain (4.43). [ ]

Inner-products of B-splines play an important role in several applica-
tions. It should be emphasized that although (4.43) is an important
theoretical tool, it is not necessarily a good way to compute inner products.
See Section 5.4.

Our next theorem deals with the question of what happens to a B-spline
when we make a small perturbation in the location of its knots. The result
will be a useful tool later on.

THEOREM 4.26

Lety,<--- <y,, .. and suppose y < --- <y®
with

2 . 18 a sequence of points

yj(”)-—)yj, J=i,...,i+masy—o0.

Let Q" and Q, be the mth order B-spline associated with these knot sets,
respectively. Then for all £=0,1,...,m—1,

DX QM(x)-»>DXQ"(x),  all xERVJF
where

J¥={y;: y;is a knot of Q/" of multiplicity m — k or more}.



B-SPLINES 131
The convergence is uniform on any closed set excluding JF.

Proof. We consider the case k=0 first. If y, =y, ., then Q/"(x)=0 for all
x. Since Q%(x)=0 outside of [y{",y%,], which is shrinking to the single
point y,, the assertion follows in this case.

Suppose now that y; <y,,,,. For m=1 the result is obvious. We proceed
by induction on m. Using the recursion relation (4.22) on both Q@ and
Qm, we obtain

i,y

| (x)— Q:":,(x)l

< 107 H () x =y )R m =)= O (XN x =y ) By pm =)
Diam =) (2R m=>)

+ Q%7 I(x)(yi+m - x)()"u(:»)m _)’:(v)) - Q,’:Tl(x)()h(i)m - 'x)(yi+m =y
(Vitm _yi)(y?;-)m _)’x('y))

The expressions on the right go to zero as v—o0. They go to zero uniformly
on any closed interval excluding J..

For k>0 our assertion follows from the fact that the derivatives of a
B-spline can be written in terms of lower-order B-splines (cf. Theorem
4.16). [ ]

Two examples of the convergence of B-splines defined on perturbed sets
of knots are shown in Figure 8. The second example shows clearly that
there is no convergence at an m-tuple knot of Q.

In Theorem 4.26 we have shown the continuity of B-splines as functions
of their knots. In some applications it is useful to have more—namely, the
actual derivatives with respect to the knots. The following theorem gives
explicit expressions for such derivatives, where they exist.

i Yier Yie2 Yi = Yisr Yiv2

Figure 8. B-Splines with perturbed knots.
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THEOREM 4.27
Suppose

I L L
—_ —~ —_

YViSYipi S 0 SYium=T < 1 << 1y

Fix 1</ <d, and suppose /; <m—2. Then

d
E;_Ni(x)

J

( -
(_l)m—l 1|+ l,[z' . .[d_l

m-—1 p e
TTas s Ty Cr=y)s ifj=land/ =1,

- (= Dl den et U ymet g e dand 1, =1,

LT Td-1Ta
.
ATV B i )
Oaem=)(D7) Ly [T otherwise,
(4.44)
Here 3/97; is to be interpreted as a right derivative if 7,=17,_, and as a left
derivative if 7, = 7,,,. The same formulas are valid when /;ism — 1 orm

for all x excluding x = 7,

Proof. 1f j=1and /=1, then

m_9 _ 0L _oym—1__ a [hy--ly—1 _ym—1
("1) E_IN.’(X)" a,rl{ ""’Td}(x s 3ty | T (x »i.

T2

The first term is zero, and the second term can be computed using
Theorem 2.55 on the derivatives of divided differences. The case where
j=d and [,=1 is similar. In all other cases we may apply Theorem 2.55
directly. ]

To illustrate what can happen, we give a number of examples.

EXAMPLE 4.28
Let m =1 and y, <y,.

Discussion. In this case we have

9 _ N0 0 Xy,
e Nx(x)‘[)’hYI](X y)e= { not defined, x=y, -
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EXAMPLE 4.29
Let m=2 and y, <y, <y;.

Discussion. In this case we have

1
O N(x)=]" [Yerurya](x=y)s, x#Eyy
W, not defined, x=y,.

In Figure 9a we show N, and its derivative. We also graph the B-spline N
corresponding to a slight perturbation of y, to illustrate the direction in
which N, is changing. Taking the derivative with respect to y,, we obtain

—a—N (x)= (y3_yl)[yl’y2’)’2vy3](x—)’)L, Xy,

W, not defined, x=y,.
See Figure 9b. -
EXAMPLE 4.30

Let m=3 and y, <y, <y; <y,

Discussion. Here we compute

]
W Ny(x)=— [)’2’)’2’)’3’)’4]()‘ "}’)i + [)’1’)’2:)’2’)’3]()‘ _)’)2+:
2

valid for all x. We illustrate this derivative in Figure 9c. [ |

EXAMPLE 4.31
Let m=3 and y, <y, =y;<y,.

Discussion. We write y, < - -+ Ky,=7,<7,=7,<7;. Then the derivative
of N, with respect to 7, is given by

9 —2[ yprarsra](X=y)s +2[ Yuyayuys|(x =24 x#y,
Ni(x)= .
97, not defined, x=y,

See Figure 94. [}
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N, N,
NE a2

(a) L | pl |

(b)

N,
A2

|

(c)

R4 Y2 Vi ¥ Ya

b

Y2 Y3 Ya

N,
9y,

M ¥2 y g Yo W V2 Ya
BRI R4

Figure 9. Derivatives of B-splines with respect to the knots.

,_‘

(d)

§ 44. EQUALLY SPACED KNOTS

In many applications of splines it suffices to work with equally spaced
knots. This leads to simplifications in the theory as well as to substantial
savings in computation. In this section we discuss B-splines with equally
spaced knots.

We say that a set of knots ---y,y,, ... IS uniform with spacing h
provided

Yis1—Vi=h for all i. (4.45)
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For uniformly spaced knots it turns out that any B-spline can be obtained
from one basic B-spline by translation and scaling. Let

ifm ym—1
mam m— m - l) . (X—l)
o (=t G (T )e-0r
Q™(x)= poy y = ;} o . (4.46)
This is the usual B-spline associated with the simple knots 0.1,..., m. It

belongs to C™ %(— o0,00). Associated with O™, we also introduce the
normalized version

N™(x)y=mQ™(x). (4.47)
The following theorem shows that any B-spline associated with uni-
formly spaced knots can be obtained from Q™ or N by a translation (and

possible scaling):

THEOREM 4.32

Suppose y,,....y,,,, are uniformly spaced with spacing h. Then
m - 1 m XY,
or(x)=50m(—>) (4.48)
and
N7(x) = N”'( f;—y ) (4.49)

Proof. For equally spaced y's the divided difference in the definition of
Q" in (4.16) becomes the forward difference operator, and we have

o m m—1
omny= CACT & ()=t
/ h™m! =0 h™m!
m X
p .
Assertion (4.49) follows since N;"(x) = mhQ."(x). [ ]

Concerning the size of the normalized spline N™, we note that

NN L jom =N L _o.m =1 (4.50)
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and thus

NN Lio.m <1 for all I <g < . (4.51)
For convenient reference we give the explicit formulae for the polynomial
pieces of N™ for m=2,3,4 in Table 1. The normalized B-splines N3 and

N* are shown in Figure 10, along with their values at the knots.

Table 1. The B-Splines N™(x) form=2,3,4

Nz(x)= X, 0<x<1
{(Z—x), I<x<2

x1/2, 0<x<1

N¥(x)= [(—2x2+6x—3)/2, 1<x<2
B—x)/2, 2<x<3;

x3/6, 0<x<1

N*x)= [(—3x3+12x2—12x+4)/6, 1<x<2
N44-x), 2<x<4.

Several of the formulae involving B-splines in the previous section can
be simplified in the case of equally spaced knots. For example, the basic
recursion formula (4.22) (which we now need only for Q™) reads

xQ" Y x)+(m=-x)Q™ " (x=1) ’

or in terms of the normalized B-spline N™,
N™(x)=xQ" (x)+(m—x)Q@™ (x—1). (4.53)

Similarly, formula (4.23) for the derivative of the B-spline can now be
written as

D,N™(x)=N""'(x)- N""Y(x—1). (4.54)

2/3

NF————————

|
|
A
1

[}

1

)

i
0 1 2 3 0
Figure 10. The B-splines N* and N*.
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For uniformly spaced knots the Peano representation formula (4.38) for
divided differences becomes a representation for forward differences:

a0 = [ " N™(x) D™f(x)dx (4.55)
0
for all f&€ L{"[0,m]. By a change of variable, we obtain
m _pm—1 mh m _x_ m
ATF(1)=h fo N (h )D f(x + 1) dx (4.56)

for all >0, all >0, and all f€ L"[t,t+ mh].
The inner products of B-splines on uniform partitions can be computed
explicitly. In particular, define

e (NN G, =00 mml (@57

Then if {N/} are the B-splines associated with a uniform partition of
spacing A, then for all i/ and j,

f’""N,.'"(x)N,.zj(x)dx =hI™n, j=0,1,..,m—1  (458)
0

We give the values of I/»™,...,I;»" in Table 2 for the most commonly
used values of m.

Table 2. Inner Products of B-Splines

J

m 0 1 3 4

1 1 0 0 0
4 1

2 e rq 0 0 0
66 26 1

3 120 120 120 0 0

4 2,416 1,191 120 1 0

5,040 5,040 5,040 5,040
5 156,190 88,234 14,608 502 1

362,880 362,880 362,880 362,880 362,880
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For our next theorem we need to introduce a slightly translated version
of the B-spline N™ defined in (4.47):

M"'(x)=N’"(x+ %) all xER. (4.59)

This spline is symmetric about the origin and has support on [—m/2,
m/2]. For m even it has simple knots at the integers, while for m odd the
knots are at the midpoints between the integers. The following theorem
shows that M™ can be defined by a convolution process:

THEOREM 4.33

Forall 1I<i<m—1,

Mm(x)= MM ()= [© Mi(x= )M (). (460)

Morcover,
M™(x)= 2—1,” f_i\[zm(u)ei“"du, (4.61)
where
¢m(u)=(s—i“lf;—§2))m. (4.62)

Proof. To prove (4.60) it suffices to prove that
M™(x)y=M""Ts MY x)=M'« M™ " }(x). (4.63)

This we prove by induction on m. The case of m=2 is easy. Suppose now
that it holds for m-—1. Then substituting the explicit expansion of
M™~Y(x) in terms of plus functions [cf. (4.46) and (4.48)], we obtain

_pfm-!
oS ST o ms e,

j=0 2 +

=’"z"iﬂ_)[(ﬁg_j)“_(ﬁﬂ_j_x)'""]

=0 (m~1)!

B iR RV S S
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provided we interpret ( m——ll )=( m'; I
nomial coefficients (cf. Remark 2.8), we see that this sum is precisely the
expansion of M™(x).

To prove (4.61), we take the Fourier transform of M™:

)=O. Now, combining the bi-

/\ 0 )
M’"(u)=f M™(x)e ™ dx.
-0
For m=1 we have

/\//l\'(u)= s_in;(%a)’ (4.64)

by direct evaluation of the integral. Now since M™=M"'+--- « M is the
convolution of m copies of M, it follows that

A AN
M7 (u) = M(u)]™ = Y(n). (4.65)

Now formula (4.61) is just the inverse Fourier transformation. [ ]

§ 4.5. THE PERFECT B-SPLINE

In this section we introduce a special B-spline with some particularly nice
properties.

THEOREM 4.34. The Perfect B-Spline
Let

y,.=cos('"_’)w, i=0,1,....m, (4.66)
m

and let
Br(x)=m(—= )" yopyi--ym(x=y)7 7" (4.67)
We call B* the mth order perfect B-spline. It has the properties
f_l’B,;(x)dx=l (4.68)
and

|ID7IBA(x)|=2""2(m—1)!, all —1<x<L (4.69)
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Proof. The property (4.68) follows from (4.40) and our choice of normali-
zation. To prove (4.69), we use the fact (see Remark 4.3) that with y,,...,y,,
as in (4.66),

2m—2
m
+o A (=D 2y ) H (= D)) ]
(4.70)

(=D YoY1seeVm] f= [ A(0)—2f(y1) +2f(2)

It follows that
DT7'BA(x)=2""(m~ D[ (x—pg)° —2(x—y,)%

+oo (=) (x=y)5% ],

and thus that

DT 'BAx)=(—-1)2""Y(m~1)!  fory,<x<y,,i=0,1,....m—1.

471) =m

The B-spline B} has support on [—1,1]. It is called perfect because its
m — 1st derivative is of constant absolute value. For convenient reference
we list the formulae for the polynomial pieces of the perfect B-splines of
order m=2 and m=3.

EXAMPLE 4.35

For m=2 the perfect B-spline is given by

Brx)=!x+1 —-1<x<0 )
(%) {l—x, 0<x<1l (4.72)

For m=3 the perfect B-spline is given by

2(x+1), —-1<x<-1/2
Bi(x)={1-2x2 -1/2<x<1/2 (4.73)
2(1—x), 1/2<x<1.

Discussion. For higher m the knots continue to be located symmetrically
about the ornigin, and thus B} is always symmetric about zero. ]
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It is also of interest to have bounds on the intermediate derivatives of
the perfect B-spline. Theorem 2.4 yields such bounds, but without good
estimates for the constants. We have the following more precise result:
THEOREM 4.36
For 0<j<m-2,

2 (m—1)!
(m—j=2) "~
Proof. See deBoor [1976c¢]. [ ]

| D/, BA(X)|| cp=1.1) < (4.74)

The bounds (4.74) are not sharp. For 1 < <|m /2| they can be improved
by noting that Bf =m/2-N} and applying Theorem 4.22.

One important application of the perfect B-splines is to the construction
of transition functions that smoothly connect one function with another.
The following theorem deals with a rtransition function connecting the
function 0 with the function 1 (see Figure 11), which is optimal in a certain
sense.

THEOREM 4.37
Let
0, x<—1
X
g(x)={ [ Bud,  —1<x<I (4.75)
1, 1<x.
4
1 I ]
-1 erz 0 NET] 1
D*yg
| 1 1 | | —
-1 -3 0 Vi 1

Figure 11. The optimal transition function for m=4.
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Then g€ LZ[R]. Moreover, it is the unique solution of the minimization
problem

m?érr&me ”Dmf”Lm[R]’ (4.76)
where
U= {feLg[R]:f(x)EOfor x< —land f(x)=1for x>1 }

Proof. In view of (4.68), it is clear that g belongs to U. To prove that it
provides a minimum in (4.76), we note that by integration by parts,

f‘ D™(x)DT, (x)dx=(—1)"""2""Im! (4.77)

for any f€ U, where T, is the mth Tchebycheff polynomial of the first
kind (see Remark 4.2). Now suppose f € U is such that || D™f|| < || D"g|| .
Then with §=g —f, the fact that D™§ has the same sign as DT,, every-
where on (—1,1) (note that the zeros of DT,, are precisely at the
Yiroos¥Vm—1)» We have

O<fl D"‘(S(x)DTm(x)dx<fl D™g(x)DT, (x)dx
-1 ~1
—f‘ D™f(x) DT, (x)dx <0,
-1

Here we have used the fact that
[D™g(x)|=2""%m—1)!, all —1<x<1

as well as (4.77). It follows that D™ §(x)=0 almost everywhere on (—1,1),
and thus that § €% ,. But since both f and g are in U, 8 and its first m— 1
derivatives must vanish at zero, and we conclude that § =0. [ ]

The optimal transition function for the case m =4 is shown in Figure 11
along with its fourth derivative. It is clear that on (—1, 1) the function g is
also a perfect spline; that is, its mth derivative has constant absolute value.
Transition functions for other intervals can be obtained from g by a simple
change of variables.

§ 4.6. DUAL BASES

Throughout this section we shall be dealing with the spline space
5(D,,; O ; A) and its normalized B-spline basis { N"}], n=m+ K. A set of
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linear functionals {A;}] defined on & is called a dual basis provided

1 ifi=j
7t Y 0, otherwise. (4.78)

The usefulness of a dual basis is implicit in the fact that
n
if s= 21 oN/M, then\s=c, j=1,2,...,n. (4.79)
i=
For example, we may use a dual basis to examine the connection between
the size of a spline and the size of its B-spline coefficients.

THEOREM 4.38
Let s=23"_,¢;N™. Then

il

sl _cr) <€l = l‘??i‘nlcil- (4.80)
Conversely, if {A;}7 is a dual basis for (N}, then

llelle < max IS, _m) (4.81)
1<j<n

where

A1l = sup [Ass|/llsll . _my-
SES
s#0

Proof. The assertion (4.80) follows directly from the fact that the sum of
the absolute values of the B-splines is 1. The inequality (4.81) follows from
4.79). [ ]

Before giving a construction of a dual basis for general m, we first give
two examples to show that for m=1 and for m=2 the construction is
simple.

EXAMPLE 4.39
Find a dual basis for & =span{N/,...,N!}.

Discussion. We construct two different dual bases. Clearly, one possibility
is to take

As=s(y;), Jj=L2,...,n (4.82)
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For this dual basis we have |Aj||=1,/=1,2,...,n.
We may also construct a dual basis using local integrals. Let

Y1 s(t)de .

As= —_—  j=12,...,n 4.83
’ ‘[’, ()’j+l_)’j) ( )

Again, ||)\j||<l,j=l,2,...,n. (]

EXAMPLE 4.40

Construct a dual basis for & = {NZ,...,N}}.

Discussion. Again, there are several possibilities. For example, using
point-evaluation functionals, we can define

S(YI.H)» ifyj<yj+l<yj+2
)\js= 5()}-+T)’ ifyj=yj+l<yj+2 (4'84)
S(yj+1_), ifyj<yj+]=yj+2’

for j=1,2,...,n. This basis satisfies ||A]|=1,j=1,2,...,n.
To get a different dual basis, we may use local integrals. Choose
0<e<1, and for j=1,2....,n, define

Yi+2

As= f s(n)e (1)t (4.85)
Yj

where
(+e)
5hj+| ' Yis1 SU<y; teh
(pj(t)= —£ Vi teh <1<y,
(1—e )hj+ 1 otherwise,
0,

provided A, =(y;,,—¥;+,) >0, and

— €
(1—e)h’ y <1<y, +(1—eh,
g()=1 (1+¢) yi+(l—e)h <1<y,
eh; otherwise,
0’

provided A,=(y,,,—y)>0.
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It is easily checked that the linear functionals (4.85) form a dual basis.
Moreover,

sl < lsilon [ 1 (D1a < (142615l

so Al <14+2ej=12,....n ]
In the following theorem we construct a dual basis for {N/"}] using

local integrals:

THEOREM 441

Lety,<--- <y,,,, besuch thaty,<y,,,..i=12,....n. Let N",...,N" be
the associated normalized B-splines. Then there is a dual set of linear
functionals A,...., A, with

S < (2m+ l)9"‘“hj"/"nf||l,[,-l}, 1<p< oo, (4.86)

where ij=(yj,yj+m) and b=y, ,—v,j=12,....n.
Proof. For each,;j=1,2,...,n, let

2x Vi Vi+m )

G. X})=
(x) g( o=,

where g is the transition function defined in Theorem 4.37. By the
properties of g. we have
G(x)=0, x <y,
0<G(x)< 1, Vi€ X< Vjiem
G(x)=1  x3y.,

Moreover, with A, =(y,,,, —v,). we have

(4.87)

”Dmg_/“w:(i) (m—1!

h, 4
and

. 4 m"k(m—l)!
m - ke —
|| D (;j.||w<(hj) =D k=12,....m. (4.88)
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For each /, let

¥(x) = G(x)g,(x),

where

(x_yj'+l)' e (x _yj+m—l)

#{x)= (m—1)!
We define the dual basis by
Y+ m m .
>\js=f s(x)D™y(x)dx,  j=12,...,n. (4.89)

Yj

We first check that this is indeed a dual basis. By the representation
(4.38) of divided differences, we have

AN = f V" Nm(x) D™ (x) dxe = (m = D)5,y = 3)

[ FireeTiem] e (4.90)

For i>j this is zero since y; agrees with the polynomial ¢; on the points
Yis---2Yiem> and its divided difference is zero. For i<j we again get zero
since now y; agrees with the function O on y;,...,y,, . Finally, for j=i, y;
agrees with the polynomial (t~)9)(g(t)/(yj+m—yj) on y,....¥;4m This
polynomial is of degree m, and its mth divided difference is equal to
1/(m—= DYy m—y) It follows that AN =1.

Now we estimate ||Aj]|,,. For all f& L (R) we have

. X 1,1
MU @)IP Yl @)y 5+ o =1 (491)
We may easily check that
h.'"—l_k
D*qpl, < —F—-—, k=0,1,....m—1, .
1 D%l m—k=1)] 0,1,....m—1 (4.92)
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while ||D™|l,=0. Thus using Leibniz’s rule (2.97) together with the
estimates in (4.88) and (4.92), we obtain

m <« (m —
BIDle <ty 3 (5 )ID 510l D7 G

4\"(m=DIR"  mol (g \™TE (m— )k
<(—hj) 4(m—1)! +k§l(k)(;j) (k=D m—k—-1)!

<4mia ME_I(’:)('Z:lz)M-"(m— 1)

m-—1 m—1
<4m—l+ 2 m 2m—k‘ 2 (m—z)zm—k(m_ l)
k_l(k) SV k—1

<A™ +2(m—1)-3"3""2< (2m— )9\, m

It is of some interest to determine to what extent the bounds on the
linear functionals in Theorem 4.41 can be improved with another choice of
dual basis. Thus given m and A={y,<--- <y, .}, we define

D(m,A)= inf { max |Al: {}] form a dual basis to {N,}7} (4.93)
{A,)f 1<i<n )

and

D(m)= sup { D(m,A): y, <y; 4 i=12,...,n}. (4.94)
A

A related question is how small can we make the constant in the inequality
(4.81). We define the best possible constant as

ll€H oo
n

2 N7

i=1

D(m,A)=sup , (4.95)

o
and set

D~(m)=sup{D~(m,A):y‘.<y,.+m, i=1,2,...,n}. (4.96)
A
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By (4.81) we note that
D(m.A)<D(m,d)  and D(m) <D(m). (4.97)

The following theorem gives some information on the size of these con-
stants:

THEOREM 4.42

Let
(2m—3)
d=—m=2) (4.98)
m-—2
(1 2372))
Then
d,<D(m)<D(m)<(2m—1)-9™"". (4.99)
The values of d,, for m=1,2,...,10 are shown in Table 3. In general,
Mo gm-sagy < M gm-32, (4.100)
m m—1

Table 3. The Constants in Theorem 4.42 ‘
m 2 3 4 5 6 7 - 8 9 10.
d, 1 3 5. 112 21 46 85¢ i83$ 3472

Proof. The upper bound on D(m) in (4.99) follows from Theorem 4.41
since the constant (2m— 1)9™ ! derived there was independent of A. For
the lower bound on ﬁ(m), we choose a specific A and find a spline s so
that the ratio |lc||l./|Is|le2d,. Choose A={—l=y,=---=y_ .y, .,

=-..- =y, =1}. The associated normalized B-splines are
N,’"(x)=2'_"'(':,':ll)(l—x)'""i(l+x)i_l, i=1,2,....m. (4.101)

We now construct a linear combination of these B-splines with large
coefficients, but with norm equal to 1. Consider the Tchebycheff poly-
nomial (see Remark 4.2):

T,,_(x)=cos[ (m—1)arccos(x) ].
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It has norm ||7,,_,||.,=1. Moreover, by differentiating the associated
Rodrigues formula

(_ l)m—l(l _xz)l/ZDm—l(l _XZ)m—3/2

T, (x)= 1-3-5-----(2m-3) ’

we find that the B-spline expansion of T,,_, is

(2m—3)
m— m - m—i 2.—
T () =(= D" 'NP(x)+ 3 (-1 23
i=2 (m—Z)
i—-2
The largest coefficient is precisely d,,. We have established the lower
bound in (4.99).

It remains to prove the estimates (4.100). To this end we use Wallis’
inequality:

N(x). (4.102)

2n 2n
2—”<(2")< 2 alas1, (4.103)
Vin+1/2)7 n nmw _
which also implies the related inequality
22n— ! n—1 1 2 22n -1
— <[ " <<(“")< (4.104)
\/(n+l/2)7r ( n ) 2(") nm

We conclude that for m even,

m—2 m—3/2 m—3/2
V—_m——l/2 2 <d, <2 ,
while for m odd,
m-—1 LAm—3/2 m ,ym=-3/2
v—m—l/2 2 <d, < p— 2 .

Using the facts that d,=1, d;=3, and \V/(m—2)/(m—1/2) 2 (m—1)/m
for mz 4, we obtain (4.100). [

_Theorems 4.42 and 4.41 together show that the quantities D(m) and
D(m) have an order of growth that lies between 2"~ ! and 9"~ '. In any
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case, this is a substantial growth as m increases. With a careful construc-
tion of a dual linear basis, it can be shown that d,,= D(m) form=1,...,10
(cf. Examples 4.39 and 4.40 where m=1,2 are handled). It is conjectured
that equality holds for all m.

The constants D(m) defined in (4.94) can also be used to give an
estimate of how independent the various B-splines are from each other.
This gives some measure of how well conditioned the B-spline basis is.

THEOREM 443

Foralli=1,2,...,n,

(N7, span{N7)7_\ )
1 5 1 S 1 5 1
D(m,A)  D(m,8) = D(m)  (2m—1)9~""’

(4.105)

where, in general, d(f, Y), denotes the distance of f to the linear subspace
Y in X; that is,

d(f,Y)x= gifelfy”f_g“x- (4.106)

Proof. For any constant B such that |c|| <B{|Z7.,¢;N™||., we have

n
d(NimvSPan{ij}/"l-l,jaei)=inf{ jgl N 6= }
> Linf(ell; ¢=1) > =
Linf(llcl =1} > 3.

Since 5(m,A) is the inf of such constants, the first inequality in (4.105)
follows. The others follow from (4.94), (4.97), and (4.99). ]

_If we restrict attention to equally spaced knots, then the constant
D(m,A) defined in (4.95) is, in fact, independent of the spacing, and thus
independent of A. Thus we define

D2 =D(m,A), A any uniform partition. (4.107)
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THEOREM 4.4
For all m>1,

m—2 m
(g) <D,:<(%) . (4.108)
Proof. It suffices to work with unit spaced knots. We begin by showing
that D} is bounded from below by %(w /2)""2. As in the proof of Theorem
4.42, we obtain the lower bound by constructing a spline with ||s|{,, small
and with |¢||,=1. We take s to be the restriction to the interval [a,b]=
[m,n+ 1] of the spline

E (x)= § (- 1)’N"(x~j), allx€ER. (4.109)

Jj=—00

(Note that even though this is defined as an infinite sum, E,(x) makes
sense for every x since at most m of the N’s have value at any given x.)
Now we observe that

S (-1YM7(i-))

j=—o

AL TR < TN R S
E"'(’+7)'j_=2_w( WyN(i+ 3 )
(-1 3 (—1yM"()).
Jj=—0o0
AN
To evaluate this sum, we observe that with y,, as in (4.62), y,,= M™ =M™
and thus the function

o= S g (x+2m) (4.110)

j=—oo

has a Fourier series given by

)= S M)

y= —

If we evaluate this at x= 7, we obtain

on(m= 3 (—1YM™()),

Jj=—c0
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that is,
L VR
Em(z+7) (= Dy, (7). (4.111)
On the other hand, by (4.54)
E,(x)=2 2 (= 1YN™ " Nx~j)=2E,_(x).
Jj=—00
From this we conclude by induction that for all J
E,(x) is monotone on the intervals (i+£2n—,i+l+%)
o om+lY
Em(1+ 3 )-—O
. om+1y o om+1 .om ) m
Em(x—l 3 )— Em(:+ 3 x) for1+2 <x<1+1+2
. omy .oom 1 m+1
Em(x~1 7)—Em(1+2 x) fort+——2 <x <+—2 .
(4.112)

(Compare Figure 12 where the splines E,, are shown for m=2,3.) Property
(4.111) together with (4.112) implies

| Enll oo = ().

By some classical manipulations (see Schoenberg [1969a], pp. 177, 180.

o= § LU /3 (5 <1/ 5(3)

) _1)'"

This shows that D > 1/¢,(7)> 3(Z)" 2.

l/i\ll/L\Ll .I/L\U[x\ >
VARVARY SR VAR

Figure 12. Euler splines [cf. (4.114)].
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To complete the proof of (4.108), we now show that D2 < 3(7/2)y" %
Let s(x)=270 _ ,¢;N™(x—)). Then

=

[> o}

s,,=s(v+%q-)= > GM™(v —)).

j=—w

This is a discrete convolution transform whose inverse can be found (see
Schoenberg [1972]):

o0
——— m
6= > WS,
y=—00

where " are the coefficients in the Fourier series expansion of 1/¢,(x);
that is,
l o0

S wre. (4.113)

(pm(x) N p= —00

It is also shown by Schoenberg [1969a, pp. 177, 182]. that (—1)’w" >0,
and that

oo o0
”c”c\o < 2 lwvml S\lp !svl < 2 |wvml”5“00'
— 00 v

v= —00

But by (4.113) with x =,

oo o0 1
2 lotl= 2 (-1 er= :
y= — o0 = — oo (Pm('”)
This implies D¥ < 1/¢,(7), and the theorem is proved. [}
The spline
E (x
E:,(x)=~——”'( ) (4.114)
@, (7)

has norm 1 and interpolates the values (— 1)’ at the points i + m/2, all i. It
1s called the Euler spline.
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§ 4.7 ZERO PROPERTIES

In Chapter 3 we saw that it was quite useful to have bounds on the number
of zeros a polynomial can have. In this section we give similar bounds for
polynomial splines. The results of this section will be used to show that
spline spaces are Weak Tchebycheff spaces, and to examine important
determinants formed from B-splines.

Our approach to zeros of polynomial splines will be similar to that used
for polynomials. In particular, we intend to establish our bounds by
induction, working with derivatives and an appropriate form of Rolle’s
theorem. To be useful, such a Rolle’s theorem should assert that if a spline
s has z zeros, then its derivative should have at least z —1 zeros. To
formulate a precise theorem of this kind, we need to agree on what we
mean by the derivative of a spline, and on how to count zeros.

The task of defining a zero count is complicated by the fact that (1)
splines and their derivatives may have jumps at the knots, and (2) splines
may vanish identically on intervals. (Even if we look at splines that do not
vanish on intervals, as soon as we take their derivative, zero intervals may
appear.)

DEFINITION 4.45. Isolated Zero

Let x,<x,<---<x;, and 1<m;<m, i=1,2,...,k. Given a spline s€
S(?,,; M ;A), we define the multiplicity of a zero at a point tER as
follows:

Isolated Zero at t. Suppose that s does not vanish
identically on any interval containing ¢, and that
s(t=)=D_s()=--- =D""'s()=0#D"s(r), while (4.115)
s(t+)=D, s(t)=--- =D 's(t)=0%#D", 5(¢). Then
we say that s has an isolated zero at ¢ of multiplicity

a+l, if a is even and s changes sign at ¢
z={a+l, if a is odd and s does not change sign at ¢
a, otherwise,

where a =max(/,r).

Some observations are in order. First, in this definition we have consid-
ered s to be defined on all of R (cf. the discussion about extending splines
to all of R in Section 4.1). The meaning of “s changes sign” in (4.115) is the
usual one-—cf. Definition 2.14. If s jumps through zero at the point ¢ (i.e.,
if I=r=0 and s changes sign at ¢), then the point ¢ counts as a zero of
multiplicity 1. In general, odd-order zeros are associated with a change in
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sign, while even-order ones are associated with no change. We now define
interval zeros.

DEFINITION 4.46. Interval Zeros
Let s€$(P,,; I ; A). We define interval zeros of s as follows:

Left-End Interval. Suppose that s(x)=0 for — oo <
x <x,, while s(y)#0 for some x,<y<x,,,. Then  (4.116)
we say that (—o0,x,) is a zero of s of multiplicity
p—1
z=m+ 2 m;.
i=1
Interior Interval. Suppose that s(x)=0 for x, <x <

x, and does not vanish identically on any larger (4.117)
interval containing (x,,x,). Then we say that (x,, x,)
is a zero interval of s of multiplicity

a+1, if a is even and s changes sign
z=<a+l, if a is odd and s does not change sign
a, otherwise,

where a=m+3292), m,.

Right-End Interval. Suppose that s(x)=0 for x, <x
< o0, while s(y)#0 for some x,_, <y <x,. Then we  (4.118)
say that (x,, o0) is a zero interval of s of multiplicity

k
z=m+ 2 m,.
g+1

Concerning Definition 4.46, we note that if s vanishes on an interval,
then the endpoints of that interval must be either — oo, o0, or a knot. The
meaning of “s changes sign” in (4.117) is that for every £ >0 there exist
x, — &<ty <x, <x, <t <x,+e, with s(£,)s(z;) <0. As with isolated zeros, a
spline changes sign across an odd interval zero, but it does not change sign
across an even one.

Definition 4.46 allows zero intervals to be counted with multiplicity
greater than m. The exact count depends on where the knots of the spline
are located. Figures 13 and 14 illustrate some of the possible types of zeros
that can occur for linear and quadratic splines, respectively.

We are now ready to define our zero counting procedure.
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Simple knot MMM

interval zero

[}

Double knot @

Zero of multiplicity

Figure 13. Zeros of a linear spline.

DEFINITION 4.47

Given a spline s€&(?,,; ON;A), let T,,T,,...,T, be points or intervals
where s has zeros of multiplicities z(T}),...,z(T,), counting as in Defini-
tions 4.45 and 4.46. We call

d
Z%(s)= 2 «(T)) (4.119)
i=
the number of zeros of s on R, relative to S =5(P,,; O ; A).

It is clear that the count Z%(s) depends on . Since a given spline s can
belong to more than one space &, the way we count zeros of s will depend

|
|
|
|
!
{
|
t
S

b e b 5 6

' = Simple knot VYWWWWWW = |nterval zero

Doubie knot @ = Zero of multiplicity /

[
H

B = Triple knot

Figure 14. Zeros of a quadratic spline (m).
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on which space we are counting in. The following example makes this
point clearer:

EXAMPLE 4.48
Consider the spline s shown in Figure 13.

Discussion. 'We may consider s to belong to the space & (%,,; I ; A), with
m=2, A= {l 2,...,13}, and OM =(1,1,2,1,1,...,1). Relative to this space
we have Z° (s)— 14 On the other hand, we may also regard s as being a
member of the splme space &(9,.; ;O A), with m= 3, A as before, and

=(2,2,3,2,2,...,2). Relative to thls space we have V4 ®(s)=17, since the
intcrval (— oo, 1) now has multiplicity 3, while the interval (9,11) now has
multiplicity 5. As still another example, we can also regard s as belonging
to 5= S, S A), with m=2, A={1,2,3,4,5,7,8,9,11,12,13}, and 9
=(1,1,2,1,...,1). Here we have discarded the unused knots at 6 and 10.
Now Z S(s)— 12. An infinitude of other counts can be obtained by consid-
ering s to be in spline spaces of higher order, or with additional unused
knots. [ |

While the dependence of Z ™(s) on the space S may seem unnatural, in
practice we shall usually be working with one fixed space &(%,,; I ;4),
and we will not have to worry about other counts.

Before stating Rolle’s theorem for polynomial splines, we need to say
something about derivatives. Because of their piecewise nature, polynomial
splines do not have derivatives of arbitrary order at all points. It is clear
from Definition 4.1, however, that there is no problem if we work with
right derivatives.

THEOREM 4.49

Let s€&(9P,,; O ;A). Then D, s(x) exists for all x and is a right continu-
ous function. Moreover,

D,s€S(9,,_,;9M";A), (4.120)

m—1
where
M’ =(my,...,m), m/=min(m—1,m,),i=12,....k. (4.121)

Proof. The fact that s is a piecewise polynomial assures that D, s(x)
exists for all x €A, while at the knots both left and right derivatives exist.
The continuity of the right derivative follows from the fact that s is defined
to be a polynomial on the left closed interval [x;x;,,) for each i=
1,2,...,k. Clearly D,s is a piecewise polynomial of order m— 1. But if
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s,D,s,...,Ds are all continuous across a knot x, then so are
D,s,...,D7'D s, and (4.121) follows. [

THEOREM 4.50. Rolle’s Theorem For Splines
Suppose s €S (P,,: I ; A) and that s is continuous. Then

ZG[Das,b](D+s)>Z?a.b](s)— 1, (4.122)

where D& =5(P,,_,; IM’;A) with N’ as in (4.121).

Proof. By Theorem 4.49, D s belongs to the space DS . Now, if s has a
z-tuple zero at the point ¢ (relative to S), then we claim that D, s has a
z— 1 tuple zero at the same point or on the same interval (relative to 0 &).
For example, for isolated zeros we have the following situation:

a s changes sign  z,(s) «a—1 Ds changessign z/(Ds)
Even Yes a+1 0Odd No a
Even No « Odd Yes a—1
Odd Yes o Even No a—1
Odd No a+1 Even Yes a

A similar situation holds for interval zeros. In addition to the zeros that
D, s inherits from s, we observe that by the extended Rolle’s Theorem
2.19, between any two zeros of s, the spline D, s must have a sign change.
(Recall that we are assuming s is continuous, and thus it is absolutely
continuous since it is a piecewise polynomial.) Assuming that there are a

total of 4 points and intervals T,..., T, where s has zeros of multiplicities
zyy...024 With 85 ,(5)=39_,z,, we find that
d
ZR5(D,s)> 2 (=D +d—1=Z%, 4(s)— 1. »

i=1

Rolle’s Theorem 4.50 for splines has been proved only for splines that
are continuous (i.e., with no jumps). The following lemma will be useful in
smoothing out splines with jump discontinuities:

LEMMA 4.51

Let s be a spline of order m with an m-tuple knot at §. Given any 8 >0,
there exists a spline s5 of order m with a simple knot at £—- 8 and an m—1
tuple knot at £ so that

ss(x)=s(x) for all x2(£—6,%). ' (4.123)
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Moreover, if p, and p, are the polynomial pieces of s to the left and right
of &, respectively, then for 8 sufficiently small,

Pr(x) <s5(x) €< pp(x), §-86<x<¢& (4.124)

Similarly, there exists a spline 55 of order m with an m—1 tuple knot at §
and a simple knot at £+ § such that § agrees with s outside (§,£+6), and
(4.124) holds on (§,£+6).

Proof. We discuss the construction of s;; the construction of §j is similar.
Suppose

=m0+ S LB

i=0

for x in a neighborhood of £. Say ¢, >0, then for any 6 >0,

Ss(x)=pL(x)+c0M+m_l|:ci_ 8_ico }(x—g)'*\

(m—1)18m"" & (m=i—1)! il

is an mth order spline with a simple knot at §— 6 and an m —1 tuple knot
at £. Clearly (4.123) holds for x <¢— 8. For x > {— 8 we have

(x—¢+8)77" "I (x—§)8

(m—D1em=1 Sy (m—i—D

Substituting this in sz(x), we see that (4.123) also holds for x >§.

To prove assertion (4.124), suppose for concreteness that ¢,>0. Then
clearly s5(x) > s(x)=p,(x) for £— 8 < x <§. On the other hand, s5(§) = pr($),
while D s5(§—)— o0 as §}0. This implies 55(x) < pp(x) for §—6<x<{if §
is sufficiently small. [ ]

Figure 15 illustrates some of the typical cases arising in Lemma 4.51.
The following lemma makes use of this method for splitting multiple knots
to show that given any spline s, there is a continuous spline s; with the
same number of knots, which is a perturbation of s, and which has the
same number of zeros as s.

LEMMA 4.52

Let s€§(P,,; I ;A) with K=3%_,m; knots. Then for all § >0 sufficiently
small, there exist A and G.)IL with K=3*_ m, and m,<m, i= 1,2,...,k, and
a spline s5 in S(9,,,; 9 ; A) such that s and S are 1dentlcal except in small



160 POLYNOMIAL SPLINES

1
-8 1
El 13 N //Sai
i I -
Lo /) ¢ £+ o
1 7
| rd '
|z
/__
r—_/
Sg/:
7
rd
/ = |
s
. /
55 /)

ey
|
O
-
~N
~
~
=
Lasd
N
=gl
o

Figure 15. Splitting m-tuple knots.

intervals of length § near the m-tuple knots of s, and such that
Zi%a.b](ss) =Z ?a.b](s)'

Proof. We may use Lemma 4.51 to sphit each m-tuple knot of s into a
simple and an m— 1 tuple knot. We need to exercise a little care at knots
that are isolated zeros of s. If s(§+)=0, we should split the knot by
moving one knot to £~ 8. If s(§—)=0, one knot should be split off and
moved to £+8. Figure 15 shows some typical situations. It is easily
checked that if we observe this rule, then s and s; have the same sign
change properties, and the same multiplicity of zero at §. If 5 vanishes on
an interval (x;,x;), then s, will vanish at least on an interval of the form
(x;+8,x,— §). Smce ss will change sign exactly when s does, the multiplic-
ity of the interval zeros of s and s; will also be the same. [ |

Our main theorem concerning zeros of splines is the following:

THEOREM 4.53
For all s€&(P,,; I ; A), 50,

Z3(s)<m+K—1. (4.125)
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Proof. For m=1 the theorem is concerned with piecewise constants, and
k = K. In this case the only kind of isolated zero possible is a jump through
zero at a knot. If s vanishes on an interval (x,,x,), then the interval can
count at most ¢ —p + 1. We conclude that any such s can have at most k
zeros, and the theorem is proved in this case.

We now proceed by induction on m. Suppose the theorem has been
established for order m—1 splines. Let s€5(%P,,: M ;A) be such that
Z%(s)>m+ K. Suppose for a moment that s has no m-tuple knots. Then
s € C(R), and by Rolle’s Theorem 4.50 for splines, ZDS(D+s)>m+ K-1.
By the inductive hypothesis, we conclude that Ds=0. It follows that s must
be a piecewise constant, but since s is continuous, it must actually be a
constant. Now since s vanishes at least once, we conclude that s=0. We
have proved the theorem in this case.

It remains to deal with the case where s may have m-tuple zeros. Given s
with Z%(s)>m+ K, by Lemma 4.52 there exists a continuous spline g
which also has K knots (none of which are m-tuple), and which also has
m+ K zeros. The above argument shows that s, =0. But since s(x) = s,(x),
except in small neighborhoods of the m-tuple knots (in particular, in the
middle third of each interval), it follows that s=0 also. )

The bound given in Theorem 4.53 is the best possible, as the following
theorem (to be proved in the next section) shows:
THEOREM 4.54
There exists a spline s€& (P, ; IM; A) with

Z8s)=ZY(s)=m+K—1, (4.126)

where Z! counts only simple, distinct zeros and jump zeros.

The bound on the number of zeros of a spline in the space (¥, ; I ; 4)
is precisely one less than the dimension of this space. This is the same
relationship that we observed for polynomials (and, in general, for
Tchebycheff systems). On the other hand, since & always contains splines
that vanish on intervals (e.g., the plus functions), it does not form a
T-space. The following theorem shows that & is a Weak Tchebycheff-
space:

THEOREM 4.55

The space S (9,,; M ;A) is a WT-space.

Proof. For any nontrivial s€S(9,,; 9; A), by Theorem 4.53
ST(s)<Z%(s)<m+K~1.
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Since & is of dimension m+ K, Theorem 2.39 implies & is a WT-space. W

In the following section we shall examine more closely determinants
formed from the B-splines. There we shall see that the basis of B-splines
{B)7*X for § forms an OCWT-system. An important tool for our
analysis of B-spline determinants is the following simple corollary of
Theorem 4.53:

THEOREM 4.56

Let y,<y,<:-- <y,,,, be given with y,<y,,,., i=12,...,n. Suppose
{N/}] are the corresponding B-splines. Then for every s=37_,¢,N™ that
does not vanish on any subinterval of (y,,5,, ),

Zyye(8)<n—1, (4.127)

where Z counts isolated multiple zeros as in (4.115).

Proof. Let & be the space of splines with knots at y,,...,»,,,- Then
s€S, and by Theorem 4.53, Z3s)<n+2m—1. But s vanishes on
(—o0,y¢) and (¥, ., ), and thus these are both m-tuple zeros. It follows
that in (;,7,4 ) the spline s can have at most n — 1 zeros. ]

If we apply Theorem 4.56 with n=1, we have another proof of the fact
that the B-spline associated with y,...,y;,, is nonzero throughout
(¥isYi+m)- Theorem 4.56 can also be used to discuss the derivatives of a
B-spline.

THEOREM 4.57
Let N™ be the B-spline associated with the knots y,,...,y;, ,,. Then

Z, \DANPY<G,  j=01...m—1, (4.128)

where Z counts multiplicities as in (4.115). Moreover, if D/7'N/™ is
continuous on the closed interval [y,,y,, .}, then D/, N/ has exactly j zeros
in(Y,Yism)-

Proof. By (4.23), D,N/™ is a linear combination of N/~! and N7
Theorem 4.56 thus implies that Z, , (D, s)<L On the other hand, by
Rolle’s Theorem 4.50 for splines, if N is continuous on {y,y,,,.), then
D, N™ must have a zero between the zeros y; and y, , ,,. The argument can
be repeated for higher derivatives. a

Theorem 4.53 gives a bound on the number of zeros of a spline on
(— 00, 00). In general, we can give even better bounds on a finite interval
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[a,b], provided we have some information on the behavior of the denva-
tives of the spline at the points a and b. The following theorem is the
analog of the Budan-Fourier Theorem 3.9 for polynomials:

THEOREM 4.58. Budan-Fourier Theorem For Polynomial Splines

Suppose a=xy<x,<- - <x, <x,,,=b, and let A={x)* Let M=
(my,...,m;) be a corresponding multiplicity vector with 1<m,<m, i=
1,2,...,k. Given s€S(P,,; I; A), let p, denote the polynomial piece of s
on (x,x,.,), i = 0, 1,...,k. Suppose that p, = 0 and p, # 0. Then

Z3%s(s)<m+ K—l—S*[s(b—-),D_s(b),...,D'f"s(b)]

—-5*[s(a), =D, s(a).....(- )" 'DT s(a) ], (4.129)

where S+ counts weak sign changes as in (2.46).

Proof. For m=1 the statement reduces to Theorem 4.53. We now pro-
ceed by induction on m, assuming the result has been proved for splines of
order m— 1. Suppose for the moment that s is continuous. Let

A, = STI(= DL sta). . . .. (— 1" 'D 7 s(a)]
B, =S D_sth). . ... D (b)),

for j=0,1,... and let a=A4,— A4, and 8= B,— B,. The numbers a and f8

can only be 0 or 1. As shown in the proof of the Budan-Fourier Theorem

3.9 for polynomials, a=1 can happen only if a is a left Rolle’s point for

s=p, whereas B=1 can happen only if b is a right Rolle’s point for s=p,.
The essential ingredient in our proof is the inequality

Z3 () <ZW (D, s)+1—a—B, (4.130)

which we now prove. There are two cases:

CASE 1. Z%(s)=0. Then (4.130) clearly holds if not both « and B are 1.
But if they are both 1, then by the extended Rolle’s Theorem 2.19, D, s has
a zero between the Rolle’s points a and b.

CASE 2. Z%(s)>0. By Rolle’s Theorem 4.50 for splines, D s has at least
Z®(s)-1 zeros in (a,b). If both a and B are 0, this establishes (4.130). On
the other hand, if a=1, D_s must have another zero between a and the
first zero of s in (a,b). (Note: p, cannot be identically zero on an interval
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by assumption.) Similarly, if 8 =1, then D s has another zero between the
last zero of s in (a,b), and the point b.

We are now ready to prove (4.129) for continuous s. Suppose (4.129)
does not hold for such an s. Then using (4.130) we obtain

ZV(D,s)>Z% ()~ 1+a+p
>m+K—-—A,~Byta+B=m+K—-1—-A,—B,.

This contradicts the inductive hypothesis, and the theorem is proved in this
case.

Suppose now that (4.129) does not hold for a general s. Then we may
replace s by a continuous spline s; with the same number of zeros and the
same number of knots. (We may accomplish this with the help of Lemma
4.52, and in such a way that s and s; agree outside of small intervals
around the multiple knots of s, and, in particular, near the points a and b.)
In this case (4.129) also fails for s5;, and the above argument leads to a
contradiction as before. [ ]

The following example shows how improved bounds on the number of
zeros a spline can have in an interval of the form (a,b) can be obtained
with the use of the Budan-Fourier Theorem 4.58.

EXAMPLE 4.59

Let [a,b]=[0,3], A={1,2}, and DN ={2,1}. Let s be the spline in
& (Py; ;5 A) shown in Figure 16.

Discussion. Here m=3. Theorem 4.53 asserts that Z5(s) <m+ K—1=5.
On the other hand, since S *[s(a), — D, s(a), D2s(a)]=2 while
S *[s(b), D_s(b), D2 s(b))=1, the Budan-Fourier Theorem yields the
bound Z(%_”(s) <5-2—-1=2. ]

The following example illustrates why it is necessary to assume p, * O,
2o # 0 in the statement of the Budan-Fourier Theorem 4.58:

1

I
]
A\

Figure 16. The spline in Example 4.59.
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EXAMPLE 4.60

Let[a,b] = [0,5]and A = {1,2,3,4}, andm = {1,1,1,1}. Let s be the spine in
& (A) = & (%; 9n; A) shown in Figure 17.

Discussion. Here m = 2 and k = 4. We note that

Stista), — Dys(a)] =

I

STIs(h). D _s(b))

Il

Thus if we tried to subtract both of these, we would get the bound
z Sm,(s) = 5-1-1 = 3, whichis incorrect since s actually has five zeros in this
interval. [ ]

§ 4.8. MATRICES AND DETERMINANTS

Suppose y, <y, < - <y,,. is a sequence of points with y, <y, ., all i,
and suppose N[",...,N" are the associated normalized B-splines. In this
section we examine various matrices formed from these B-splines. We
begin with the matrix that arises in Lagrange interpolation with N[",...,N,”
(cf. Problem 2.6).

THEOREM 4.61
Let ¢, < --- <t,. Then the matrix

ool e\
M( N{",...,Nn"‘)=(M (t,.)),_d__I (4.131)
is nonsingular if and only if

L Eo0,=tx: N"(x)#0}, i=12,..,n (4.132)

Figure 17. The spline in Example 4.60.
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Proof. For convenience, we note (cf. Theorem 4.17) that

iYi+m if f < i em—
o= (YoYiem) i Dieme 133)
[Yidiem) otherwise,

i=1,2,...,n. The statement of the theorem is easily checked for m=1.
Suppose now that m>1. We first show that if (4.132) fails, then the
determinant D of the matrix M is zero. There are two cases.
CASE 1. Suppose 1 is too far left to lie in g;. Then N;*(1)=0 for all
1<y <j< pu<n. In this case the first j rows of D are clearly dependent,
and so D=0.
CASE 2. Suppose f is too far right to be in ;. In this case a similar
argument shows that the elements in columns 1,2,...,j and rows j,...,n are
all 0. Again, D =0 follows.

Suppose now that (4.132) holds, but that M is nevertheless singular.
Then there exist c,,...,c,, not all zero, such that

s(t)= 3 ¢N™1)=0, i=12,..,n

j=1

Let / be such that ¢, is the first nonzero coefficient, and let r=min{; >/:
s(x)=0 on an interval with left endpoint y,,,}. The fact that s(x)=0 on
(Ve msYr+m+1) implies by the linear independence of the B-splines that
Cop1=""" =C 4,1 =0. Again, there are two cases:

CAase 1. 4;,>y,. Then §=2%]_,c;N/" has zeros at t,,...,¢, in (¥,,5,,,,)- This
contradicts Theorem 4.56.

CASE 2. t, =y, This can only happen if y,=--- =y, .. Butthen we get
the contradiction 0= s(¢,)=¢,N,"(¢,)#0.

We have shown that M cannot be singular when (4.132) holds, and the
theorem is established. B

Applying this result to Lagrange interpolation, we obtain the following
corollary:
COROLLARY 4.62
Suppose t,,...,t, satisfy (4.132). Then for any given v,,...,v, there exists a
unique spline s=27_ ¢, N” such that

s(t)=v, i=1,2,...,n. (4.134)

The coefficients of s can be determined by solving the system Mc=v,
where M is defined in (4.131), and where v=(v,,...,0,)", c=(c,,...,c,)".
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This matrix is 2m — 1 banded (cf. Remark 4.4). The entries of M can be
computed stably and accurately using Algorithm 5.5.

Proof. The bandedness of the matrix M under the conditions (4.132)
follows from the support properties of the B-splines. It has been shown (see
Remark 4.6) that the matrix M is numerically well conditioned. ]

While Theorem 4.61 and its corollary are stated in terms of a general set
of B-splines, it is clear that they can be applied immediately to the B-spline
basis { B;}}, n=m+ K, for the spline space 5(%&,,; I ;A).

THEOREM 4.63
Let a<t, <1, <--- <t,<b. Then

oot "
M( B:,...,B )=(Bf(’f))u-n

n

is nonsingular if and only if
t,€6,={x: B(x)#0}, i=1,2,...,n (4.135)

Proof. The only difference between the B’s and the N’s is that B, () >0,
whereas N,(b) can be zero if the extended partition defining the B’s is
taken with b=y, ,=--- =y, ., (cf. Corollary 4.10). The proof that M is
singular when (4.135) fails proceeds exactly as in the proof of Theorem
4.61. The converse also proceeds unchanged when ¢, <b. On the other
hand, if ¢,=b, then we must have b=y, ,=--- =y,,,. Then the spline
s=3"¢; B, satisfies 0=s(t,)=c, B,(%,), and so c,=0. But then §=3"_]¢,B,
can be used to arrive at a contradiction, just as in the proof of Theorem
461. [ ]

We can now use Theorem 4.61 to establish Theorem 4.54 on the
existence of splines with a maximal number of simple zeros.

Proof of Theorem 4.54. Given {y;}}*™, it is clear that we can always
choose some a <1, <t,<--- <1, <b so that the condition (4.135) is satis-
fied. Then by the nonsingularity of M, we can solve the interpolation
problem

n

s(t)y="3 ¢B(1)=(-1), i=12,..,n
j=1
Then it is clear that s must have at least one zero between each pair of ’s
for a total of at least n—1=m+ K — 1. However, since s is nontrivial, it
can have at most m+ K — 1 zeros, and we conclude that each of these zeros
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must be a simple, distinct zero; that is, Z(s)= Z\(s)=m+ K—1. If there
are no m-tuple knots, each of these zeros is an ordinary zero of the
function. If there are m-tuple knots, then a zero at such a knot may be a
jump zero. |

In Theorem 4.55 we showed that the set of B-splines { N/} span a
WT-space on R. The following theorem provides an alternate proof of this
fact, and moreover, also shows that { N/"}] is, indeed, a WT-system.

THEOREM 4.64
For any ¢, <t,< -+ <t

nr

fyeeort, o
D( N,'",...,N:')=det(Nf (tf))iJ-l >0, (4.136)

and D is positive precisely when the conditions (4.132) hold.

Proof. Since we have already shown in Theorem 4.61 that D =0 whenever
conditions (4.132) fail, it remains only to show that D >0 for all t=
(¢,...,1,) in the set T*={t: a<t,<t,<--- <t,<b, and (4.132) is satis-
fied}. We already know from Theorem 4.61 that D is never zero as t runs
over T*. We now show that D has one sign on T*.

First, we claim that for all 1 <i<n and 1<, <n, the B-spline B(s,) as a
function of ¢, is a continuous function of ¢ as it runs over the set ¢; defined
in (4.133). Indeed, it is clear that the interval (y,,y,, ,,) cannot contain any
m-tuple knots, so all B-splines are continuous for ¢, in this set. On the other
hand, since the B-splines are right continuous, they are all continuous as
t,| y; also. It follows that D is a continuous function of t as t runs over T™.
Since it never vanishes, it must have one sign throughout.

It remains to compute the sign of D. Let yy <y;<--- <y;,, be such
that y/—y, as r—oo. Let p/<¢, <y’ . i=12,...,n. Then it is clear that
D, >0 since in this case the corresponding matrix defining D, has positive
diagonal elements and all zeros above the diagonal. Now as r—o0 it also
follows (cf. Theorem 4.26) that D,— D. ]

It is clear that the analog of Theorem 4.63 holds for the B-splines
B,,....B, on the interval [a,b]. The determinant associated with any
a<t;<t,<--- <t,<b will be positive precisely when conditions (4.135)
hold. This means that the B-spline basis functions { B;}] form a WT-system
on [a,b].

The following theorem shows that the set of B-splines { N”}7 form an
Order Complete Weak Tchebycheff system on R:
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THEOREM 4.65

For any integers 1 <»,<:-- <p,<n and any points , <t,<--- <¢,,
Lyyonont
D P

(N yoosN )>0

€0, i=12...p, (4.137)

where {0;}] are the sets defined in (4.133).

Proof. The fact that D=0 when (4.137) fails is established exactly as in
the proof of Theorem 4.61. We now assume that (4.137) holds, and proceed
to show that D >0. Let g be the number of gaps in the sequence v,,...,»,;
that is, g =cardinality of the set {v,r;+1,....9,}\{»,...,5,}. We proceed
by induction on g and p.

To begin the induction, we note that the result holds for g=0 and all
1<p<n by Theorem 4.64. Suppose now that the assertion has been
established for determinants of size p—1, and for determinants of size p
with at most g— 1 gaps. We now prove the result for the determinant D
with g gaps. There are three cases.

CASE 1. Suppose IJ-GEo,,)+I for some 1<, < p—1. Then

[l Lirseosty

D‘D( NVI,...,N,,I)D(N N

Each of these is positive by the induction hypothesis.
CASE 2. Suppose tjeo,,l_l for some 2 << p. Then

Lpooosliy Lyt
D_D(N ,..sN, ‘l)D(N oo N

il ] ] ]

and again both of these are positive by the induction hypothesis.
CASE 3. Suppose

Jj=12,...,p—1

Ji=23,...p. (4.138)



170 POLYNOMIAL SPLINES

Let i be one of the missing indices in the sequence Visooos¥p, SRy 1 <000 <
v <i<w,,<-:-v,. Then by a basic determinantal identity (see Remark
3.2),

b TSN T Y AT S b reoond,

Npp-isN,NuN, N, NN,
B (tl,...,tp_l)D( Lot lpy g iy )
NppoosNy | T\ N, a N NGN, LGN,

Lsevorly ) Dol ity oeenl,
+D D .
( N,‘,...,N,,_]) ( Nyz,...,N,,,N,.,N,,M,...,NVP
The desired determinant is the second on the left-hand side. All the other
determinants are either of order p—1 or have only g — | gaps. Moreover, in
view of (4.138), all of these other determinants are positive by the induc-
tion hypothesis. We conclude that D >0 also, and the theorem is proved.

The analog of Theorem 4.65 also holds for the B-splines {B;}] of
Corollary 4.10 if we require that a <7, <--- <t, <b and replace the ¢’s by
d’s. This establishes that {B;}] is an OCWT-system on the interval [a,b].

So far we have been examining the matrix that arises from Lagrange
interpolation problems. It is also of interest to study the analogous matrix
associated with Hermite interpolation problems. Since polynomial splines
do not have arbitrarily many derivatives everywhere (in particular, higher
derivatives may not exist at knots), it is convenient to introduce a slightly
modified form of the Hermite Interpolation Problem 2.7.

PROBLEM 4.66. Modified Hermite Interpolation

Let 1, <t,< --- <1, and real numbers v,,...,v, be given. Define
d=max{j: t,=---=1t_;}, i=1,2,...,n (4.139)
Given sufficiently smooth functions{q,}}, find s=2"_ ¢, such that
D4s(t)=v, i=12,...,n. (4.140)
Discussion. The only difference between this problem and the usual

Hermite interpolation problem is that we have used right derivatives rather
than ordinary derivatives. [ ]
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The following theorem gives conditions under which the modified
Hermite interpolation Problem 4.66 can be solved using a set of B-splines:

THEOREM 4.67

Let N[",...,N)" be a set of B-splines of order m associated with the knots
MK KYppm Let ;< <y, with 1, <¢,, ., all i. Then

) N =(D4N(1)), ., >0 (4.141
Nl,...,N" - + N ] = > . )

and strict positivity holds if and only if
4E€0,=(VpYem)U {x: DEN(x)#0}, i=1,...,n  (4.142)

where d,,...,d, are defined in (4.139).
Proof. Theorem 4.17 implies that

pri+m) if d>m—aq
" E;”;:mi otherwise, (4.143)
where
R (4144
i=12,...,n.

The fact that the determinant D is zero when condition (4.142) fails is
established by the same kind of argument used in the proof of Theorem
4.61. Our next task is to show that when (4.142) holds, then D is nonzero.
Suppose the contrary. Then there must be a nontrivial set ¢,,...,c, such
that the spline s =237_ ¢, N/" satisfies

D%s(t)=0, i=12,...,n. (4.145)

We now show that this leads to a contradiction. Let / be such that ¢, is the
first nonzero coefficient. Let r=min{j > /:s(x) =0 on an interval with left
endpoint y,, . }. The linear independence of the B-splines implies that
Ce1="""=Crm_1=0. As in the proof of Theorem 4.61 there are two
cases.

casE 1. 4>y, Then §=37_,c;N” has r—I+1 zeros (counting multi-
plicites as in Definition 4.45) at ¢,...,¢, in (y,y,, ) This contradicts
Theorem 4.56.
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CASE 2. t,=y,. Since (4.145) is satisfied. we must have d, > m — a,. But then
we get the contradiction 0= D%s(t,)=¢,D%N™(1,)#0.
We have proved that D is nonzero whenever (4.142) holds.

We now establish our assertion about positivity. The case where ¢, <1,
< .-+ <, follows from Theorem 4.61. But by Lemma 2.9 the sign of D
does not change as the t’s are allowed to coalesce. (Note: this is an
application of Lemma 2.9 where the underlying functions are only right
continuous.) |

Theorem 4.63 holds for the B-splines {B}" spanning $(<%,; 9%; A) on [a, b]
provided thatifr, = b, then we defined, = max {j:t, = ... = 1_} and replace
D N(t) in (4.141) by (-1)*D* B(t), and substitute

6,=(V¥iem)U{x: D4B,(x)#0]}. i=1,2.....n (4.146)

in (4.142). In this case we must take /efr derivatives at b.

EXAMPLE 4.68

Let [a,b]=[0.3] and A={1,2}. Given t,,....t,, find s€5,(4) such that
s(0)y=v,, D,s5(0)=v,, s(3)=1v,, and D _s(3)=1,.

Discussion. We take the B-splines { B,}{ spanning S,(A) corresponding to
the extended partition {0.0,1,2,3.3}. Then the required spline s is given by

s=3%_ c,B,, where c=(c,....,c )" is the solution of the system Mc=v with
v=(vy...,vy)" and
1 0 0 0
0,0,3,3 -1 1 0 0
M=M =
(B,,...,B,,) 0 0 I -1
0 0 0o 1
This matrix is nonsingular since its determinant has the value 1. ]

Since polynomial splines may have discontinuous derivatives at their
knots, it is possible to consider a still more general kind of Hermite
interpolation problem for splines in which both left and right derivatives of
appropriate orders are specified at the same point. In particular, if a spline
has a knot of multiplicity p at the point ¢, then s and Ds,...,D™ °" s are
all continuous across ¢. On the other hand, D’ s(r) and D, s(¢) may have
different values for i=m—p,....m—1.
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PROBLEM 4.69 Extended Hermite Interpolation By Splines
Let y,<y,<--- <y,,, be given, and suppose { N/"}] are the associated

normalized B-splines. Let ¢, <1, < --- <1, and define
p; =number of y’s equal to ,, i=1,2,...,n. (4.147)
Let 8,,...,8, be a sequence of signs, and define
max{j: =---=¢f_;, withf=--- =6,_,}, if 4=+
"I m-ptmax{jig=--- =1, withg=---=0,), iff=-"
(4.148)
i=1,...,n. Then given real numbers v,,...,v,, we seek s=257_,cj}V]f" such
that
Dg‘f's(t,-)=v,-, i=1,2,...,n. (4.149)

Discussion. 'We make the following basic assumptions about the relation-
ship between the #’s and ’s in this problem:

0<d, <m—1; (4.150)

if ;= +and §,,,= —, then 1, <1, ; (4.151)
if=—and§,,,=+,then,=¢,, ,_,and b, = - =60,, ,=+.

(4.152)

In (4.150) we have required that the problem does not involve derivatives
higher than order m—1. Condition (4.151) assures that the r’s with
associated signs are in a natural order. Finally, condition (4.152) is in-
troduced so that a complete set of m—p,— 1 right derivatives are specified
at a knot ¢, of multiplicity p; before any left derivatives are specified.

It is easy to check that if we choose plus signs for all points 7, <b and
minus signs for all points equal to b, the extended Hermite interpolation
problem reduces to the modified Hermite Interpolation Problem 4.66. The
solvability of the extended problem for arbitrary data depends on the
nonsingularity of the matrix

M| 8,....6, | =[ DINM(1) ] (4.153) m

n
ij=1"
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The analogous problem can be posed for interpolation with the basis
splines { B;}] for a spline space &(%,,; 9N ; A) defined on an interval [a, b].
Then we would restrict the #’s to lie in [a,b], and we would also require
that

ift,=a,thena=1,=---=tandf,=--- =8,= +; (4.154)

H

if ;t=>b,thent,;=--- =t =bandf=---=6,=—. (4.155)

These conditions assure that only right derivatives are specified at a, while
only left derivatives are specified at b. Before discussing the matrix M in
(4.153), we give an example of an extended Hermite interpolation problem.

EXAMPLE 4.70

Let [a,b]=[—1,1] and m=2. Let B,, B,, B, be the basis of B-splines for the
space §,(A) with A={0}. Consider the extended Hermite interpolation
problem with ¢, =1,=1,=0,8,= —,0,=8,=+.

Discussion. Here the interpolation problem calls for specifying the values
of D_s(0), s(0), and D _s(0). This problem has a solution for any given
data v,,v,, v, since the determinant of the associated matrix M in this case
1s

D_B,(0) D _By0)  D_B,0)

0, 0, 0
D) —.+,+ =1 B(0) B,(0) B4(0)
B\.B»Bs) \p,B,(0) D,B,0) D, By0)
-1 1 0
=l 0 1 ol=-1 n
0 -1 1

We now give precise conditions on when the matrix M which was
defined in (4.153) in connection with extended Hermite interpolation
problems is nonsingular.

THEOREM 4.71
The matrix M defined in (4.153) is nonsingular if and only if

tEo, i=12,...,n, (4.156)
where

0,=(yyiem)U{x: DN(x)#0},  i=1,2,...,n
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Proof. First we note that by Theorem 4.17, the sets o, are given by

[ YiYiem)s if ;= +and d, >m—q,

=4(VoYiem)  H6=—andd>m—B,, (4.157)
(VisYigm)s otherwise,
where
a=max{jiy;=--- =y, |}
Biom=maX{J: Vis =" =Yitm 1)
i=1,2,...,n.

The proof that the determinant D of the matrix M is zero when (4.156)
fails proceeds in the same way as in our earlier theorems. The proof that D
is not zero when (4.156) holds is also similar. In particular, if D=0, then
there exists a spline s =237_,c; N, with coefficients, not all zero, such that

Dis(1)=0, i=12,....n (4.158)

We shall now show that s or a related spline § has too many zeros.

Let / be such that ¢, is the first nonzero coefficient of s. Define
r=max{i: /I<i<p, ¢;#0}, where p=min{j>/: s(x)=0 on an interval
with left endpoint y;, ,}. By definition, ¢,,,=--- =¢c,=0. By the linear
independence of the B-splines, ¢, =" =c,,,,_,;=0. It follows that
§=237_,c;N/" agrees with s on the interval (y,,y,,,). Now there are three
cases.

CASE 1. 4=y, Then the assumption that (4.156) holds implies that d, >m
— a,. This yields the contradiction 0= Dy's(1)= ¢, D\N(1,)#0.

CASE 2. t =y, .. In this case d, >m— g, ,,, and we have the contradic-
tion 0= Dgts(1,) = ¢, DgEN™(1,) #O.

CASE 3. y, <t and ¢, <y,,,,. We now show that § has too many zeros on
the interval (y,,y,,,,). Suppose that the point set #,...,t, consists of the
points 7, <--- <7, where each 7, is repeated /, times with a minus sign,
and », times with a plus sign. Then r—/+1=2%_,(/+r,). We examine
what happens at 1,. Suppose p; knots fall at 7, (if no knots fall at r,, we take
p;=0) . Depending on the relative sizes of /, p;, and r,, the homogeneous
interpolation conditions (4.158) may force § to have additional continuity
at 7, which implies that it can be regarded as a spline with fewer than p,
knots at 7,. Table 4 gives the number of continuity conditions e, satisfied
by § at 7;, the number of knots §; that can be removed, and a lower bound
on the multiplicity z; of the zero at r;, counting as in Definition 4.45.
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Table 4 Continuity of § in the Proof of Theorem 4.71.

Case € §; z;
rr<m—p;, ;=0 m—p; 0 r
m—p, <ri<m—p;+1; r; —m+r;+p; m—p,+/
m—p;+ 1 <r; m—p;+/; l; 7;

We observe that in all cases z;=/+r,— 38, Thus the number of zeros
(counting multiplicities) of § on (¥, 5, . ) 18 2=2f_,z,=r—1+1-2%§;. On
the other hand, since § can be regarded as a spline with only r+m—17—1—
2#8; knots in this interval, it can be written as a combination of only z
B-splines. This contradicts Theorem 4.56, and the converse is proved. W

Theorem 4.71 gives precise conditions on when the determinant D of the
matrix M in (4.153) is nonzero. In some applications it is also important to
know the sign of such determinants. The exact sign depends on the
relationship between the #’s and the d’s. To take account of this relation-
ship, we define

ool

D 0, =det[ 02DJN/(1) |

) (4.159)
Np..oN

n
ij=1

n

Except for the sign, this is the determinant of M.

THEOREM 4.72

The determinant D in (4.159) i1s always nonnegative, and it is positive
precisely when condition (4.156) is satisfied.

Proof. By Theorem 4.71 we know that D is nonzero precisely when
condition (4.156) is satisfied. Now if a <7, <¢,<--- <1, <b, then the fact
that D is positive follows from Theorem 4.64. On the other hand, if we now
let the ¢’s coalesce, then by Lemma 2.9 the signs remain the same in the
limit. Lemma 2.9 must be applied with care at the knots. In particular, the
necessary Taylor expansions will have to be made to the left in case the 7’s
have negative 8’s associated with them. The factors 4% introduced in the
definition of D are designed to take account of the powers of —1 which
arise in the Taylor expansion when working leftward. [ ]

We can now prove an even stronger property about determinants
formed from minors of the matrix M.
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THEOREM 4.73
For any integers 1 < v, <-.- <v, =n, any points a <{, < ... <f, <), and any
sequence of signs 8,, ---, 6,,

and strict positivity holds if and only if
L, EG(DIN)= (2,0, 4 m)U { X DN (x) %0},

Proof. The proof follows along the same lines as the proofs of Theorems
4.64 and 4.65 for simple ¢’s. [ ]

The role of the signs % in Theorem 4.72 and 4.73 can be better
appreciated by looking at some simple examples; see Example 4.70. There
are obvious analogs of Theorems 4.72 and 4.73 for the matrices and
determinants formed from the set of basis splines B,,....B, for a spline
space &(P,,: M ; A) defined on an interval [a,b]. We do not bother to state
them.

§ 49. VARIATION-DIMINISHING PROPERTIES

In this section we show that there is a close connection between the shape
of a polynomial spline s and the behavior of the coefficients of its B-spline
expansion

s(x)= 2": N (x). (4.161)

i=1

We begin with two simple examples illustrating this connection.

EXAMPLE 4.74
If ¢,20,i=1,2,...,n, then s(x) >0 for all x.

Discussion. This assertion follows immediately from the fact that the
B-splines take on only nonnegative values. ]

EXAMPLE 4.75

Suppose the sequence c,,...,c, is monotone increasing; that is, ¢, >c,
i=1,2,...,n—1. Then s(x) is also a monotone-increasing function.
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Discussion. Using (4.23), we can show (cf. Theorem 5.9) that

D s(x):(m— l)nil _(ﬁ._ci;l)N’"_l(x)
+ j >
=t Gisma =)
where we set c,= ¢, ;=0 and ignore terms in the sum with a 0 denomina-
tor. Now if ¢,...,c, is monotone increasing, then the coefficients of the

B-spline expansion of D_s are all nonnegative, and by Example 4.74,
D, s(x)>0. n

To state a general variation-diminishing result for B-spline expansions,
we use the concept of sign changes introduced in § 2.4.

THEOREM 4.76

For any nontrivial vector ¢=(c,,...,c,),

s,;( 2 c,N,."') <S ~(c). (4.162)

i=1

Proof. In Theorem 4.65 we have shown that the B-splines form an
OCWT-system on R. But then the assertion (4.162) follows immediately
from Theorem 2.42. ]

If we are working on the interval [a, b} with the B-spline basis { B;}} for
S(?,,; I ; A) in Corollary 4.10 [remember: B, may differ slightly from N,"
since B,(b)=lim,,, N,"(x)], then the variation-diminishing property reads

Sl;‘b]( 2 ciBi) S I T, B (4.163)

i=1

The result again follows from Theorem 2.42 since (cf. the discussion
following Theorem 4.65) { B;}7 form an CCWT-system on [a,b].

Theorem 4.76 yields both Example 4.74 and 4.75 as special cases. For
example, if ¢,...,c,, are monotone increasing, then for any constant d, so
is the sequence ¢, +d,...,c,+d, and it follows that

n n
2 (c;+d)N" = 2 N +d
i=1 i=1
can only have one sign change. Since this is true for arbitrary 4, s must be
monotone increasing.
Our proof of Theorem 4.76 is based on general results about OCWT-
systems. If we are willing to do a little more work, then we can exploit the
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local support properties of the B-splines to establish a stronger version of
this variation-diminishing property.

THEOREM 4.77
Suppose s(x)=27_,c;N™(x) is such that

(—1)’s(5)>0,  j=12.....q (4.164)
for some #, <1,<--- <t,. Then there exist 1 </} <i, <--- <i, <n such that
(=N (1)>0,  j=12,...q. (4.165)

Proof. We say that s alternates on ¢,...,7, when property (4.164) holds.
We assume that s does not alternate on a larger set £, <t, < -+ <z, since if
it did, we could work with ...,z instead. This assumption is equivalent
to s(t) € O for r<r,, which means that the first nonzero coefficient of s
must be negative. )

Let S (¢)=d—1. By Theorem 4.76, ¢ <d. Our proof proceeds by
induction on d. If d=1, it is trivial. Suppose now that it has been proved
for d—2 sign changes in ¢. We now prove it for & — 1 sign changes. To this
end, suppose c,,...,c, have been divided into d groups as in (2.69). Since
the B-splines forr.. an OCWT-system, the set of functions ¥ = {v,}¢ defined
in (2.70)- form a CWT-system (cf. the proof of Theorem 2.42.). In view of
the form of the v’s, to prove (4.165) it will suffice to show that there exist
N<ip < <j, with 5,(£) >0, i=1,...,q

Suppose v, (1,)>0, i=1,2,...,r. We may choose j,=i, i=12,...,r. If
r=gq, we are done. If not, we must show how to choose the remaining j;’s.
There are two cases. .
case 1. v, ,(£)=0, all £>¢ . In this case the spline §=37_ (- )y,
alternates on the points #,,,...,%, and the inductive hypothesis may be
-used to choose j, , ,...,j,-

CASE 2. v,,.7(#)>0 for some 7 >¢,_,. Then by the local support structure
of the v’s, it follows that v, . ,(£)="--- =v,(1), i=1,2,...,r+ 1. If r=0 this
would .nean that s(¢,)=0, contradicting our assumptlon about s. If r>0,
then this would mean that §=37_,(— 1)’y alternates on ¢,,...,,,,. This
would mean that it has r sign changes (but only r—1 sign changes in its
coefficient vector), contradicting Theorem 2.39 for the WT-system {v;}]. @

Theorem 4.77 subsumes Theorem 4.76, since if (4.164) holds (i.e., s has
q — 1 sign changes), then its coefficient vector must have at least ¢ — 1 sign
changes. The assertion (4.165) is more precise, however. It says that g
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must be the coefficient of a B-spline which is positive at ¢ (ie., ¢
. . 7
influences the behavior of s only near ).

§ 4.10. SIGN PROPERTIES OF THE GREEN’S FUNCTION

The Green’s function

gn(t5x) = %;—1{2%:— (4.166)

has played an important role in our development of spline bases. Since it is
a Green’s function (cf. Theorem 2.3), it is also important in the theory of
differential equations. Hence it is of interest to examine the signs of
determinants formed from g,,,.

We recall from (2.21) to (2.24) that

Dlg (t;x)=g, (t:;x), j=0,1,...m—1
(—l)’D){gm(t;x)=gm_j(t;x), Jj=0,1,....m-—1,
where D, stands for the right derivative with respect to x, and D, stands for
the left derivative with respect to 1. We may also take mixed derivatives

DiD/g, (t;x), and these will be zero if i+ >m.

THEOREM 4.78

Let p be any positive integer, and suppose

1<ty <L,

(4.167)
NSy LY,
are given with £, <y, and y, <y,, . all i. Associated with these sets define
d=max{j:t,_,=--- =1}
(4.168)

ei=max{j:yi—j= M =)’,~},

i=1,2,....p. Then the determinant

fonty dme. (. 1P
gm(yljm’)f;)—det[D,'Dyfgm(t,,yj)]i‘j_, (4.169)
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is always nonnegative, and it is positive precisely when
yi<ti<yi+m’ i=1’2v-"9p; (4170)

where equality is allowed on the left if y,=--- =y,,,_,_,, and the right
side is ignored if i+m>p.

Proof. The proof is very much like the proofs of our earlier theorems
dealing with determinants of B-splines, so we can be brief. The fact that
the determinant is zero when (4.170) fails is established by examining
subdeterminants, just as in the proofs of Theorems 4.61, 4.67, and so on.,
On the other hand, if (4.170) holds but the determinant is zero, then we
can construct a spline with too many zeros.

Now we claim that the determinant D in (4.169) maintains one sign over
all sets of ¢’s and y’s satisfying conditions (4.170). If the y’s and ¢’s are all
distinct, this is clear from the continuity of the Green’s function (and this
the continuity of D), it remains to see what happens if we allow the y’s or
£’s to coalesce. For given distinct y’s, we may use Lemma 2.9 to see what
happens as the #’s come together. Once we have the fact that the sign does
not change for coalesced ¢’s, we may allow the y’s to come together, again
using Lemma 2.9,

Finally, to see what the sign of D is, we need only compute the sign for a
particular set of £’s and y’s satisfying (4.170). Consider the case when
yi<t;<y,. i=1,2,...,p. Then clearly D is the determinant of a matrix with
positive diagonal elements, and zeros below the diagonal, and thus is itself
positive. [}

§ 4.11. HISTORICAL NOTES

Section 4.1

The early history of piecewise polynomials and splines has been discussed
in Section 1.6. The origin of the terminology “spline function” was dis-
cussed in Section 1.4. The space S(%,;IM;A) has been treated in
numerous papers—there does not seem to be any standard notation for it.
The idea of using a multiplicity vector such as 9 to describe the
smoothness at the knots is attributed to Curry and Schoenberg [1947]. We
have elected to work with splines that are right continuous. This tradition
began with Schoenberg [1946a, b].

Section 4.2

If we are willing to accept the definition of B-splines via divided dif-
ferences as a fait accompli, then this section can be skipped (except for
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Lemma 4.7 which is used later). Qur purpose here has been to show that
the B-splines arise naturally out of an attempt to construct splines with
small support sets.

Section 4.3

It is hard to say when B-splines were first used. Schoenberg [1946a, p. 68]
suggests that they were known to Laplace in connection with their role as
probability density functions. Favard [1940] used them (without calling
them splines). In the articles by Schoenberg [1946a, b] they were referred
to as “basic spline curves.” In [1967] he shortened the name to B-spline.

Schoenberg [1946a] dealt first with B-splines on equispaced knots, and,
in fact, defined them via the Fourier transform formula (4.61). He also
observed that they could be written as divided differences of the Green’s
function. The definition of B-splines for arbitrary knot sequences was
suggested by Curry [1947], and carried out in the articles by Curry and
Schoenberg [1947, 1966]. Most of the basic properties, including their
linear independence, were already known to these authors. Schoenberg
continued to champion their use as a theoretical tool throughout the 1960s.
B-splines were used for computing interpolating splines by Greville
(1964a].

The importance of B-splines (particularly for numerical applications)
was greatly enhanced by the discovery of the basic recursion relation
(4.22). It was discovered by at least three different authors simultaneously.
Cox [1972] established it for simple knots via some direct calculations. The
result for general knots (and the method of proof used here) is credited to
deBoor [1972]. In his paper he mentions that Lois Mansfield had also
discovered the recursion. The derivative formula (4.23) can also be found
in the article by deBoor [1972]. The strong form of linear independence
given in Theorem 4.18 was established by deBoor [1973a] using a certain
dual set of linear functionals. We have elected to give a direct proof.

The fact that the normalized B-splines form a partition of unity was
observed in the article by Marsden and Schoenberg [1966]. The related
identity (4.33) is credited to Marsden [1970]. Estimates on the size of the
normalized B-splines were given in the article by deBoor and Fix [1973]
and in the work of Lyche and Schumaker [1975].

In many early papers B-splines were introduced via formula (4.42) rather
than (4.16). The connection between these two definitions was shown in
the text by Greville [1969b]. The Peano representation (4.38) for the
divided difference was given in the articles by Schoenberg [1946a, b] and
Curry and Schoenberg [1947, 1966] for equally spaced knots and for
general knots, respectively. The orthogonality of the jth derivative of the
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B-spline to polynomials of order ;j stated in (4.39) is credited to H. G.
Burchard—see deBoor [1976b]. The double divided difference formula
(4.43) for inner products of B-splines was used in the paper by Greville
[1964a].

The continuity of the B-splines as a function of the knot locations is a
part of the folklore about B-splines. A formal proof of this fact, using
properties of divided differences, can be found in the article by deBoor
[1976b]). We give a different proof based on the recursion relation.

Section 4.4

For more on the theory of spline functions defined on equally spaced
knots, see the monograph by Schoenberg [1973] and references therein.
Many of the properties listed in this section were obtained already in
Schoenberg [1946a]). The inner products given in Table 2 were hand
calculated.

Section 4.5

Perfect splines first arose as solutions of optimal interpolation problems,
where we minimize [[D7f||, i, over some set U of the form U={f€
L7a,b}: A=y, i=1,2,...,N} with {\,}¥, a set of linear functionals. In
this connection we mention the paper by Favard [1940]. The minimization
problem (4.76) is of this type. It was solved by Louboutin [1967]. The name
seems to be attributed to Glaeser [1967, 1973]. The development presented
here follows the article by Schoenberg [1971].

Section 4.6

The leading exponent of the use of dual linear functionals to study
B-spline expansions has been deBoor [1966, 1968¢, 1973a, 1975, 1976b, c].
The construction of the dual basis in Theorem 4.41 follows the article by
deBoor [1976c¢] (see also deBoor [1966] and Jerome and Schumaker [1969]
for some related constructions). The constants D(m,A), and so on, and
their connection with the conditioning of the B-spline basis, were studied
in deBoor’s papers. The lower bounds given in Theorem 4.42 for these
constants were obtained by Lyche [1978]. It is conjectured that d,, = D(m)
for all m. This has been shown for m=1,2,...,10 by deBoor [1975, 1976¢],
and it seems to be born out by numerical experience for higher values of
m. The analysis of D} for the case of equally spaced knots is credited to
deBoor [1973a]. For more on Euler splines (and splines on equally spaced
knots, in general), see the monograph by Schoenberg [1973] and references
therein.
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Section 4.7

The first paper giving bounds on the number of zeros of a spline seems to
be by Johnson [1960]. He considered splines with simple knots and
counted zeros (with multiplicities) according to a procedure introduced by
Schoenberg [1958] for monosplines. In this count, intervals are considered
to be shrunk to a point. The case of multiple knots (but counting only
simple zeros) was discussed in the dissertation by Schumaker [1966] (see
also Schumaker [1968b]). Braess [1971] showed that the same bound holds
for splines with multiple knots, even if we count double zeros twice.

Stronger counting procedures for splines were introduced by Schumaker
[1976b). T was motivated to consider such counts by similar ones which
had been used by Schoenberg [1958] and by Micchelli [1972] for mono-
splines (cf. Section 8.4 for results on zeros of monosplines). In Schumaker
[1976b], a version of Theorem 4.53 was established in which interval zeros
were counted as being of multiplicity m or m+ 1. The idea of also counting
the number of knots in an interval zero when evaluating its multiplicity is
credited to Pence [1976]. The knot-splitting Lemma 4.51 is taken from the
article by Schumaker [1969]. The bound on the number of zeros of
derivatives of B-splines given in Theorem 4.57 was established first (with a
different proof) by Curry and Schoenberg.[1966].

Budan-Fourier type theorems for splines were developed independently
by Melkman [1974a), deBoor and Schoenberg [1976], and Schumaker
[1976¢c]. The statements vary somewhat due to different counting proce-
dures for multiple zeros and interval zeros. The result presented here is an
improvement of the version in my 1976 paper, but with a much simpler
proof.

Section 4.8

Results on determinants associated with splines were first obtained for the
matrix associated with the Green’s kernel. We discuss this development in
the notes for Section 4.10. The first result on matrices formed from
B-splines was obtained by Karlin [1968), page 503. There he established
Theorem 4.67 by using results on the Green’s function. Burchard also
obtained Theorem 4.67 -in -his- dissertation [1968]. A simple direct proof
relying on Rolle’s theorem can be found in the paper by deBoor [1976a].
The proof given here follows that given in the article by Schumaker
[1976b), and it provides a nice application of our results on zeros of splines.

Theorem 4.65 asserts that the matrix (4.131) of B-spline values is rotally
positive (cf. Karlin [1968] for the definition and significance of this prop-
erty). This theorem (without the exact conditions on when the determi-
nants are positive) was also established by Karlin [1968, p. 527]). The
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stronger version presented here (and the proof of it) follows the work of
deBoor [1976a}.

The problem of extended Hermite interpolation (Problem 4.69) was
studied independently by Melkman [1974b] and Lyche and Schumaker
[1976]. We have followed the latter paper. Melkman’s proofs are based on
his version of the Budan-Fourier theorem for splines, and his results also
cover certain interpolation problems with prescribed boundary conditions.
For more on interpolation with side conditions, see Karlin [1971], Karlin
and Pinkus [1976a], and Melkman [1977].

Section 4.9

The idea of variation-diminishing transformations is an old one. For a host
of results and references, see Karlin [1968]. Theorem 4.76 for splines was
first proved by Karlin [1968,] using the total positivity of the matrix of
B-spline values and general results on variation-diminishing properties of
totally positive matrices. The strengthened version of Theorem 4.76 is
credited to deBoor [1976a].

Section 4.10

Green’s functions are very important in the theory of differential equa-
tions. An early paper dealing with determinants formed from the Green’s
function was that by Krein and Finkelstein [1939], where Theorem 4.78
was proved for ’s and y’s without repetitions. The study of -the determi-
nant (4.169) in connection with splines was first carried out by Schoenberg
and Whitney [1949, 1953]. They rediscovered the result for distinct £’s and
»’s using the methods of Fourier analysis as a tool. A version of Theorem
4.78 allowing multiple y’s was established in Schumaker’s dissertation
[1966]. The complete result allowing multiple ¢’s as well was established
first by Karlin and Ziegler [1966], using a complicated tripie induction.
The proof given here, based on zero properties of splines, follows Schu-
maker [1976b].

§ 4.12. REMARKS

Remark 4.1

The classical symmetric functions symmy(zy,...,t,) are defined by the rela-
tion
P

Q()=(r+ 1)t +1) - (t+1,)= 2 #/symm(s,,...,1,). (4.171)
j=0
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Thus symm(¢,,...,2,)= D* ~Q(0)/(p—j)!. For example, we have

symmg(?,,...,2,)=1;

symmy(¢y,...,0,)=t,+ - +1,;

symm,(¢,,....0,) =41, - 1,.

An elementary calculation shows that, in general,

symm.(t,,...,1,)= > Lyt (4.172)

1<iy << -+ < <p
L. p
This is a sum of j terms.

Remark 4.2

Tchebycheff polynomials play an important role in numerical analysis and
approximation theory. For a complete treatment, see Rivlin (1974]. The
Tchebycheff polynomial of the first kind is defined by T,(x)=cos[m:
arccos(x)]. It is a polynomial of degree m; in particular, 7, (x)=2""'x"
+.-- for m>1. The first few Tchebycheff polynomials are given by
To(x)=1, T)(x)=x, Ty(x)=2x%—1, and Ty(x)=4x>—3x. T, is symmetric
about the origin, and on (—1, 1) it takes extreme values of + | at the zeros
of 7T,, which are cos(im/m), i=1,2,....m—1. We also have T, (—1)=
(— 1", while T,(1)=1.

The Tchebycheff polynomials satisfy (as do all sequences of orthogonal
polynomials) an appropriate three-term recurrence relation. They also
satisfy the differential equation

(1-x¥)D°T,(x)—xDT,(x)+m?T,(x)=0. (4.173)

Remark 4.3

The following observation is useful (cf. Schoenberg [1971]):

LEMMA

If x;=cos[(m—i)yn/m), i=0,1,...,m, then

2m—2
(fxo) =2f(x) + - -

m

+(= )" 20, ) +H(=D(x,).  (4.174)

(=D [ xgs--er %] f=
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Proof We use the expansion (2.87). Here w(f)=[(r>—1)DT, (1)]/ m2™~".
Using the differential equation (4.173), we calculate

(=D""'m

2:—' . i=12...,m—1.

Dw(x;)=

Now (4.174) follows since Dw(—1)=(—1y"m/2""? while Duw(l)=
m/2m"2, u

Remark 4.4

A matrix M =(M,) is called (2b — 1) banded provided

TJ-I
M,;=0 whenever |i —j| > b. (4.175)

In this case, M has zeros everywhere except on the diagonal and on b
super- and b subdiagonals. Banded matrices can be stored and manipu-
lated efficiently.

Remark 4.5

Let M=(M,))[L7 ., be an m by n matrix with m<n. We say that M is
totally positive provided all minor determinants (of all orders up to m) are
nonnegative. More precisely, using the notation of Remark 3.2, we require
that for all 1 < p<m,

1<i) <+ <i,<m

[ FEY |
Ml 1>0 for all : .
1</, <0 <, <n.

Juseosdp

For a comprehensive theory of totally positive matrices, see Karlin [1968].
If a matrix M is totally positive, then as a transformation it is variation
diminishing; that is,

S " (Mc)<S ().

See Karlin [1968], Chapter 5. It has recently been shown by deBoor and
Pinkus [1977] via a backward error analysis that for totally positive
matrices M, the linear system Mc=r can be solved by Gauss elimination
without partial pivoting. This can mean a substantial saving in computa-
tional effort without any loss in accuracy.



188 POLYNOMIAL SPLINES
Remark 4.6

Theorem 4.65 shows that the matrix M formed from any set of n B-splines
N™,...,N at any set of points ¢, <t, < --+ <¢, is totally positive. Since M
is 2m— 1 banded whenever it is nonsingular (cf. Corollary 4.62), it follows
from Remarks 4.4 and 4.5 that the system Mc=r can be handled in band
form and by Gauss elimination without partial pivoting. Such systems arise
in performing Lagrange or Hermite interpolation with splines (cf.
Corollary 4.62 and Problem 4.66).

Remark 4.7

If N+, ,N™*! are the normalized B-splines associated with the ex-
tended partition

Y= =" =V,=4a, b=y 1= =Vamar>

then

~,.~'+'<x>=(':’)(;;:;‘)"(’;Z;‘)""'! i=0,1,...,m,

These are the polynomials appearing in the definition of the Bernstein
polynomial of degree m (see Remark 2.5).
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COMPUTATIONAL
METHODS

One of the main reasons for the importance of polynomial spline functions
is the fact that they are easy to deal with on a digital computer. In this
chapter we document this assertion by examining some algorithms for
storing, evaluating, and manipulating splines on a computer.

§ 5S.1. STORAGE AND EVALUATION

Throughout this chapter we work with the m + K dimensional linear space
S(P,,; I ;A) defined in Definition 4.1. As shown in Theorem 4.9, if
{N/™}7*X are normalized B-splines associated with an extended partition
{,}im*X, then every s€S(?D,,: I ; A) has a unique expansion of the form

n

s(x)= 2 N (x), ally,, <x<yp,ix+p (5.1

i=1

where for convenience we write n=m+ K. We call (5.1) the B-spline
expansion of s.

Because of the unique connection between a spline s and its B-spline
expansion coefficients c,,...,c,, to store a spline s on the computer, it
suffices to store the coefficient vector ¢=(c,,...,¢,). There are, of course,
other ways of uniquely representing polynomial splines (e.g., via the
one-sided basis discussed in Theorem 4.5 or via the piecewise polynomial
expansion discussed in Section 5.3). But as we shall see in this chapter, for
most applications the B-spline expansion is preferred.

We turn now to the question of evaluating a given B-spline expansion at
a given point. Our first result shows that because of the local support
properties of the B-splines, to compute s(x) we need only compute a sum
involving m of the B-splines.

189
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THEOREM 5.1
Let s be as in (5.1), and suppose for some m </ <n that y, <x<y,,,. Then
/
s(x)= X NT(x). (5.2)
i=l+1—-m

The values of the B-splines needed to compute s(x) can be found by
generating the triangular array

Q/l(x)
le—l(X)Q12(X)
a2 m(x) (5.3)
N —m(X) NZaomx) = N (N ().

This array can be generated stably and efficiently.

Proof. By the support properties of the B-splines, for y, <x <y,,, only the
B-splines N7 ,_ .,...,N/” have value at x, hence s(x) is as in (5.2). The
triangular array (5.3) can be generated recursively, starting with the fact
that Q/'(x)=1/(y,,,—»,)- Each of the succeeding rows 2 through m—1
can be computed using the recursion relation (4.22). This is a numerically
stable process since only convex combinations of nonnegative quantities
are involved. The last row of the array can be computed from the
next-to-last row using the recursion

N7 (x)=(x =) Q7 () + (Vi m— ) Q7T (%), (54)
which follows from (4.22) after multiplication by (y,, ,, ~ ). [ ]

At times it is required to compute the value

s(yipy—)= lm s(x). (5.5)

xTViay

If y,, , has multiplicity m, this will generally be different from the value of
s(y;+,+). In practice, this situation arises, for example, if we choose the
extended partition with

y1="'=ym=a<b=yn+l=”'=yn+m (56)

and desire the value of the spline at x =5 (cf. Corollary 4.10 and Example
4.11). The following corollary of Theorem 5.1 shows how to compute (5.5):
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COROLLARY 5.2
Let s be as in (5.1), and suppose y, <y,,,. Then

l
sV )= 2 NI (Vw1 —)s (5.7)

i=l+1—m

and the values of the required B-splines can be found by generating the
array (5.3) with x=y,, .

Proof. We observe that Q,'(y,,,—)=1/(y;,,—»); cf. (4.17). Taking the
limit as x1y,,,, we observe that both of the recursions (4.22) and (5.4) are
valid at y, ., —. |

It is clear that to make use of Theorem 5.1 for the evaluation of s(x), we
first have to locate the interval [y,,y,,,) in which x lies. This is a standard
search problem. One possibility is to use simple bisection.

ALGORITHM 53. Bisection—Given that x Lies in [y,,),) to Find / Such that
VSX<Yra

I. lep, uegq;

2. Ifu—-I<1, quit;

3. mid<—[(1+u)/2J;

4. If x < y(mid), then u«<mid and go to step (2);
5. l<mid and go to step (2).

Discussion. The number of operations required to perform bisection
depends on where x is located. It can never exceed », where » is such that
2 l<qg-p<2. (]

Often it is required to evaluate a B-spline expansion at a fairly large
number of x’s (e.g., in graphing it). In this case the particular x we are
interested in very likely will lie in the same interval as the last x that was
considered, or in an adjacent interval. Algorithm 5.3 can be modified to
take advantage of this information.

ALGORITHM 54. Given x in [y,,y,) and a Guess for / to Find / Such that
Vi <X <Y

1. If x 2y(]), then
(a) if x<y(I+1), quit;
(b) if x<y(/+2), then /—/+1 and quit;
(c) perform bisection on [y, ¥,);

2. If x>y(I—1), then /«-/~1 and quit;

3. Perform bisection on [y,,y,_,).
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Discussion. On input, / must have some definite value. If it is a good
guess for the correct /, then the search will be considerably faster than in
Algorithm 5.3. a

Having found the correct / to use with x in (5.2), we now need to find
the values of the corresponding B-splines. In view of Theorem 5.1, a stable
and efficient way for accomplishing this is to generate the triangular array
(5.3). The following algorithm may be used:

ALGORITHM 5.5. Given x in [y, y,,,) to Generate N/3,__(x),...,N™(x)

1. Forje1step 1 until m—1
Q())<-0;
2. Q(m)ye1/[y(1+ )= y()], Q(m+ 1)0;
3. Forje2step 1 until m—1
for iem—j+1 step 1 until m
(@) denomey(i+/—m+j)—y(i+I1—m),
(b) ale[x—y(i+!—m)]/denom;
(¢) a2el—al;
(d) Q()e—alsQ(i)+a2e Qi +1);

4. Forie1step 1 until m

Q(i)e~[x—p(i+1=m)]*Q()+ [ y(i+1)—x]+Q(i +1).

Discussion. The denominators computed in step 3(a) can never be zero;
indeed, denom >y (/+ 1) — y(/). Since we are interested only in the last row
of the array (5.3), we have been able to use a one-dimensional array Q,
overlaying the values as we proceed. The operation count (counting only
multiplications and divisions) is (3m?+ m—4)/2. As observed in Corollary
5.2, if this algorithm is carried out with x =y, ,, then it produces the values

N1 =) s NP (Vi —)- ]

We can now give a complete algorithm for evaluating the B-spline
expansion of a spline s€S(P,,; N ; A) at a given point x in [a,b].

ALGORITHM 5.6. Evaluation of s(x) for Givena<x <b

1. Compute / using Algorithm 5.4;
2. Use Algorithm 5.5 to compute N7, _,(x),..., N(x);
3. Compute s=the sum in (5.2).

Discussion. 1f x = b, we should set /=n in step (1). The summation in step
(3) requires m operations, and hence the total operation count for steps (2)
and 3) is 3m*+3m—4)/2. =
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There is an alternate algorithm for computing s(x) that does not make
use of the array (5.3) of B-spline values, and which is more efficient than
Algorithm 5.6. It 1s based on the following theorem:

THEOREM 5.7

Let s be as in (5.1). Then for any 1 < <m,

n+ji—1
s(x)= 2 )N (x), (5.8)
i=1
where
(‘E”(x)=ci, i=1,2,...,n, (5.9)

and the cV/l(x) can be computed recursively by setting ¢!/} (x)=c§)(x)=0,
all j. and using

0, fYism;—2i=0
W (xy={ (x =y xX)+ (¥4 py = X)W (%) ,
. otherwise
(yi+m—j_yi)
(5.10)

fori=1.2,....n+jand j=1.2,..., m— 1. In particular, if y, <x<y,,,. then
s(x)=c}m(x). (5.11)
and this value can be computed by generating the array
My (%) c(x)

chap(x) - clf)(x) (5.12)

Cll"'](x).
If this array is generated using the value x=y,, . then we obtain

s(y;01—)= lim s(x)=cl"(x). (5.13)

X1V

Proof. Using the recursion (4.22), we obtain

)= S ] CINTTD) | G = ONET ()
i=1 (yi+m—l y,-) (_yHm yi+|)

’
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where terms in the sum with zero denominator are to be interpreted as
zero. Collecting the coefficients of N/””'(x), we see that (5.8) holds for

J =2, with c(x) given by (5.9). The process can be continued to find similar
expansions in terms of the lower-order B-splines. the formula (5.11) for s(x)
follows from (5.8) with j = m along with the fact that if y,<x<y,,,, then the
only first-order B-spline with value at x is N/(x) (and its value is 1).

To see what happens when we take x=y,,,, we need only take the limit
in (5.8) as xty,,,, and we conclude that (5.10) also holds at x=y,, ,—.
Since N,!(y,,,—)=1, (5.13) follows. B

Theorem 5.7 leads to the following alternate method for evaluating a
spline:

ALGORITHM 58. To Evaluate the B-Spline Expansion (5.1) of s at Given x in
[a,b]

I. Find the correct / using Algorithm 54;
2. Forj<1 step | until m
cx(f)e~c(j+1—m);
3. Forje<2step | until m
for ie~m step — 1 until j
(a) denome—y(i+/—j+1)—y(i+!—m);
(b) ale|x—y(i+!—m)]/denom,
ale1-—al,
cx(De—al=ex(i)+ a2xex(i—1).
4. secx(m).

Discussion. The denominator in step 3(b) is never zero since y,<y,.,.
Ignoring the work required to find /, the operation count is (3m?-3m)/2. this
is considerably cheaper than Algorithm 5.6—see Table 5 for comparison.
If x = b, we should set/ = n in step (1). [ |

Table 5. A Comparison of the Operation Counts of Algorithms 5.6 and 5.8

Algorithm 5.6 Algorithm 5.8
3m*+3m—4 Im®-3m
m 2 2
2 7 3
3 16 9
4 28 18
5 43 30
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§ 5.2. DERIVATIVES

In this section we discuss the computation of derivatives of a B-spline
expansion. Theorem 4.49 shows that the right derivative of a polynomial
spline of order m is a polynomial spline of order m—1. The following
theorem shows how to find its B-spline expansion:

THEOREM 5.9
Let s=237_,¢,N/, and suppose | <d<m. Then for all y, <x <y
[N I R m n+1s
DY s(x)= X (NI (x), (5.14)
. i=d
where ¢!"=¢, i=1,2,...,n, and
(C(/_”_CU_II)
- (m—j+1)-— S f(Vigmiv1—¥)>0
V= (Viem—jer1™ ) Gismeje1 =) (5.15)
0, otherwise

fori=/,...,nand j=2.3,....d.
Proof. For d=1, there is nothing to prove. Now, using (4.23),

D, s(x)=(m=1)3 e[ Q" (x) - 077 (x)]

i=1

=(m-1) i (¢ )@ Hx)= i cONPH(x).

i=2 =2

For x in the interval [y,,y,.,), the B-splines Q,""'(x) and Q;”\(x) have no
value, hence we were able to leave these terms out in rearranging the first
sum. This same argument can be repeated to compute the higher deriva-
tives. ’ [}

It is a relatively easy task to convert Theorem 5.9 to a numerical
algorithm for computing the coefficients of the B-spline expansions of all
derivatives up to order m— 1 of a given spline. Derivatives of order m and
higher are of no interest as they are zero wherever they exist. Let

D4 s(x)= 2 cd(d,j)N""**(x), a<x<b. (5.16)

j=d
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ALGORITHM 5.10. Computation of the matrix [ed(/,)I]-,,;2;

I. Forielstep | untiln
cd(1,De—c(i);
2. Forje2step 1 until m
mje—m-—j+1
for ie—n step —1 untilj
(a) denomev(i + mj) — v(i);

0, if denom=0
(b) cd(jiye—y  [edj—1Li)—cd(j=1,i—1)] .
ny , otherwise.
denom
Discussion.  This algorithm requires (m— 1)(2n — m) operations. n

We can now give an algorithm for computing the values of derivatives of
a B-spline expansion at a given point.

ALGORITHM 5.11. Computation of D“ " 's(x) for Given a<x <b

1. Compute / by Algorithm 5.4.
2. Use either Algorithm 5.6 or Algorithm 5.8 with m=m—d+1 and ¢ set
equal to the dth row of the matrix cd.

Discussion. If we use Algorithm 5.6, then the operation count to compute
D% 's(x) is 3m*—3m—4)/2. If Algorithm 5.8 is used, the count is
(B3m?—3m)/2. (]

Our next algorithm deals with the problem of computing the entire set of
derivatives s(x), Ds(x),...,D™ 's(x).

ALGORITHM 5.12. Computation of s(x),Ds(x),...,D™ 's(x) at Given a<x<b

1. Compute / by Algorithm 5.4;
2. D™ Y(x)ecd(m,l);
3. For de1 step 1 until m—1 compute D9 's(x) using Algorithm 5.11.

Discussion. Not counting the work to find / and assuming that the array
cd has been precomputed, this algorithm requires 37 ,(3i*—3i)/2=
(m+1)ym(m—1)/2 operations. ]

There is a second approach to computing the set s(x), Ds(x)
,...,D™ s(x) which (as we shall see) is more efficient for m > 6. The idea
here is to use the fact that for y,<x<y,,, and any 1< <m,

I
DT s(x)= X% cdim—j+ lyi)(yi+j—.Vi)Qij(x)~ (5.17)

i=l4+1—j
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The values of the Q’s needed to compute these derivatives are all con-
tained in the array (5.3). Thus following the ideas developed in Algorithm
5.5, we have the following alternative to Algorithm 5.11:

ALGORITHM 5.13. Computation of s(x),Ds(x),...,D™ 's(x) at given a <x <b

1. Compute / by Algorithm 5.4;
2. D™ 's(x)e—cd(m,l);
3. Forjelstep | until m—1
Q())<0;
4. Q(my—1/[y(I+1)=y(Dl; Q(m+ 1)0;
S. Forj<2step 1 until m—1
(a) forie—m—j+1step | until m
(i) denome-y(i+!{—m+))—y(i+I1—m);
(1) ale—(x—y(i+/—m))/denom;
(iii) ae-1—al;
(iv) Q(i)—al*Q(i)+a2+Q(i+1);
(b) D™ Is(x)=ZL_ ., cd(m—j+1,0)[y(v+)) = y(v)]s
Q(m—1I+v);
6. For i«1 step | until m
Q(i)—Lx — y(i+ 1~ m)]s Qi) +[ (i + 1) = x]s Qi + 1);
7. s(x)eZ, (o) Q(m—I+v).

Discussion. Ignoring the work to compute / and the matrix cd, the
operation count for this algorithm is (5m?+ m—8)/2. We compare Algo-
rithms 5.12 and 5.13 in Table 6 where we see that Algorithm 5.13 is more
efficient for m > 6. In practice, however, this is not very significant since
we usually work with m<6. n

Table 6. Comparison of the Operation Counts of Algorithms 5.12 and 5.13

Algorithm 5.12 Algorithm 5.13
(m+1)ym(m—1) Sm*+m-—8

m 2 2

2 3 7

3 12 20

4 30 38

5 60 61

6 105 89

§ 53. THE PIECEWISE POLYNOMIAL REPRESENTATION

While the B-spline expansion is the preferred way to deal with splines on a
computer in most cases, there are some situations where it may be
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advantageous to generate the coefficients of each of the polynomial pieces
(e.g.. when we have to evaluate the spline at a large number of points, as
might be the case if we want to graph it).

DEFINITION 5.14. Piecewise Polynomial Representation

Let A={x,<x,<--- <x,}be a partition of the interval [a,b] into pieces
ly=la,x\),1,=[x,x;),..., I, =[x, b]. Suppose s,s,,...,s, are the polynomi-
als representing a spline s€5(%,,; 9;4) on each subinterval I,...,1,,
respectively. In particular, suppose

solx) = > CWOj(x_le_l (5.18)
j=1
and
s(x)= > Cwy-(x—x,)’_l, i=1,2,... k. (5.19)
J=1

We call this the piecewise polynomial representation of s.

It is evident from Definition 5.14 that the piecewise polynomial repre-
sentation of a spline s is completely determined by the matrix

CW=(cw) et (5.20)
Thus this representation provides an alternate way of storing a polynomial
spline. In general, this representation is bulkier than the B-spline expansion
in that m(k + 1) values must be stored here as compared with m+ K for the
B-spline expansion.

Given the B-spline expansion of a spline, it is a relatively easy matter to
compute the matrix CW of its piecewise representation. From (5.18) and
(5.19) we find that

_ DSy =12 m

=P S 5.21
IO RTY i=1.2.....k, (521)
and

cwy, = T J=12,...,m (5.22)

This leads to the following numerical method:
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ALGORITHM 5.15. Conversion From the B-Spline Expansion to the Piecewise
Polynomial Representation

1. Compute the matrix c¢d by Algorithm 5.10;
2. Forje«1 step | until m

compute fac(j)=(( —1)!;
3. Forie1step I until &

(a) compute s(x,),..., D™ 's(x;) by Algorithm 5.12;

(b) forje«1 step 1 until m

CW(ij)— D~ 's(x,)/fac(j);

4. Compute s(x,—),D_s(x,),...,D™ 's(x,) by Algorithm 5.12;
5. Forj<«1 step 1 until m

CW(0,j)« D’ s(x,)/fac(}).

Discussion. Not counting the calculation of fac or c¢d, the operation count
for this algorithm is (k + l)m(m?+1)/2. ]

Once we have the piecewise polynomial representation of a spline, we
can use Horner’s scheme to evaluate it at any given point. This requires (cf.
Algorithm 3.2) only m—1 operations as compared to the 3m(m—1)/2
operations required by the most efficient of the methods discussed in §5.2
using the B-spline expansion. This difference can become quite significant
if it is required to compute s at a large number of points. Derivatives can
also be computed from the piecewise polynomial representation (using
Horner’s scheme or synthetic division—see Remark 3.1) with significantly
fewer operations than required by the methods of §5.2.

The decision as to whether it pays to carry out the conversion to the
piecewise polynomial representation can only be made once the user has
decided how often the spline and/or its derivatives will be evaluated. For
m=2,3,4 the breakpoint is about two evaluations per interval.

§ 54. INTEGRALS

In this section we deal with definite and indefinite integrals and with inner
products of splines. We begin by showing that the indefinite integral of a
spline is again a spline.

THEOREM 5.16

Let s€S(P,,; ON; A). Then

D 's(x)= [ "SdesS(9,,, ;M; ). (5.23)

a
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Proof. Itis clear that D,”'s is a piecewise polynomial of order m + 1. But
if 5,..., D’s are continuous at a knot x,, then D" 's,...,D/*'D s will also
be continuous at x;, and we conclude that D,”'s€S(P,,, ,; IN; A). ]

In view of Theorem 5.16 the antiderivative of a spline can be expanded
in terms of B-splines of order m + 1. The following theorem shows how the
coefficients of this expansion can be computed from the coefficients of the
B-spline expansion of s:

THEOREM 5.17

Suppose s=37_,¢,N™. Then for all x<y,,,,

n

D 's(x)= [ s(r)di= 3 eTON(), (5.24)
Y1 i=
where
_ d (ym+j—yj) .
= G i=12,...,n (5.25)

=1

Proof. Choose yo <y, and y,, o1 >Vn+m- Then on[y.y,,,] we know that
D, s(x) can be expanded as a linear combination of the B-splines
NS+ N suppose

n

D, 's(x)= 20 TN (). (5.26)
We note that c§™" =D, 's(y))/Ny*'(y)=0. To find the other

coefficients, we observe that s= D, D ~'s, and so by applying Theorem 5.9
to the B-spline expansion (5.26),

(dh—ed
&= (Viem—2)
0, otherwise,

’ ifYiem—y, >0

and (5.25) follows. [ ]

We note that the following corollary of Theorem 5.17 gives the B-spline
expansion of the antiderivative of a single B-spline:
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COROLLARY 5.18
Suppose y, <y .- Then

0, X <y
(ym+k_.yk) k+m=1 m+ 1
pINp={ w5y
(Vmak = Vi)
Mt 2], Ik <.

Proof Let ¢,=1 and ¢;=0, all i#k in Theorem 5.17. Then

0 if i<k

N ) —

¢ (Vmax — Vi) £ isk [ |
m

Theorem 5.17 is easily converted to a numerical algorithm. Let
x n
mD,”'s(x)=m f s(yde=S CIG)N™\(x). (5.28)
i i=1

ALGORITHM 5.19. Computation of the Coefficients of mD, I

. Sum<0;

2. Forie-1step | until n
(a) sumesum+|[y(i + m)—y(i)]=c(i);
(b) CI(i)e—sum.

Discussion. This is simply formula (5.25), where to save work we have not
divided by m at every step. The number of operations is clearly n. [ ]

Now we can describe an algorithm for computing definite integrals.

ALGORITHM 5.20. To Compute I= f‘:s(t)dt for Given a<c<d<b

1. Use Algorithm 5.8 to compute Id=mD,” 's(d);
2. Similarly compute Ic=mD, 's(c);
3. I=(d~Ic)/m.

Discussion. It is assumed that the coefficients { CI(j)}] of the antideriva-
tive of s have already been computed by Algorithm 5.19. The operation
count (ignoring the computation of the matrix CI and the location of the
intervals in which ¢ and 4 lie) is 3m?>—~3m+ 1. ]
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We now discuss the question of computing inner products of B-splines
with each other, and with other functions. In particular, suppose we want
to compute

[ "N f(x) dx (5.29)

Yi

for a function f defined on (y,y;,,)- If f is a polynomial, then one
approach to computing (5.29) is to use the explicit formulae for the
moments of the B-spline given in (4.39). Since this involves computing the
functions p,(;,---,¥;4 ), this will only be practical for polynomials of very
low order.

In general, we recommend the use of Gauss quadrature. To this end, we
recall the following result from numerical analysis:

THEOREM 5.21. Gauss Quadrature
There exist points
—1<z, <z, < <z, <]

(symmetric about zero) and positive weights w,,...,w, so that the quadra-
ture formula

[ r~or= S wf(z)

J=1

for integrating functions f on [ — 1, 1] is exact for polynomials of order 2m;
that is,

f‘ fx)dx=0f forallfe®,,
-1

Discussion. This result is proved in most numerical analysis texts. The
weights are also symmetric. For low values of m we give the sample points
and weights in Tables 7 and 8, respectively. If f is defined on an interval
[a,b], then we may make a change of variables to obtain

(b— a)2 w Z(b a) L (b+a)

f Ax)dx~Qf= 5| (530)

J=1

and this formula will also be exact for all f€ @ém. |
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Table 7. Gauss Quadrature Sample points

m z, z4 Z4 Zs

2 0.5773502692

3 0 0.7745966692

4 0.3399810436 0.8611363116

5 0 0.5384693101 0.9061798459

Table 8. Gauss Quadrature Weights

Wy W, Wy Ws
1
0.8888888889 0.5555555556
0.6521451549 0.3478548451
0.5688888889 0.4786286705 0.2369268851

Wb Wy

While for arbitrary functions f the Gauss quadrature rule in (5.30) only
produces an approximation to the inner product (5.29), it can be used to
compute inner products of B-splmes exactly. In particular, if we write

Yiem i+m—1 Y+
G,= f, N (x)N(x)dx = a fy NI(x)N7(x)dx, (5.31)

then the value of G; can be computed exactly by applying Gauss quadra-
ture to each of the m integrals in this sum. By the support properties of the
B-splines, it is clear that G is zero except for i+1—-m<j<i+m~—1.

The matrix

G=(Gij);:,'.. 1, (532)
with G; given by (5.31), is called the Gram matrix associated with the
functions {N,}]. It is positive definite, symmetric, and is 2m—1 banded.
We recommend the following algorithm for computing the Gram matrix:

ALGORITHM 5.22. Computation of the Gram Matrix (5.32)

1. For vemstep 1 until n
if y,.,>y,, then for u«1 step 1 until m
(a) use Algorithm 5.5 to compute the B-splines with value at the
point £, =2, (¥, s 1= Y)/ 2+ (Vour1 +¥,)/2;
(b) for alli andj such that both N and N;” have value at ¢,,, add
w, N7(1,,)N(1,,) to G
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Discussion. Since G is a banded matrix, it should be stored in banded
form. This algorithm requires order nm> operations, and since it is based
on B-splines, it is extremely stable. The Gram matrix can also be computed
by taking divided differences (in both variables) of the Green’s function
(x—y)>™~! (see Theorem 4.25). If the computation is properly arranged,
this can be done in order nm? operations. However, it is well known that
the use of divided differences is a relatively unstable process. For a
numerical comparison of the two approaches, see Remark 5.1. The use of
divided differences can only be recommended for small m and for knots
with relatively uniform spacing. For equally spaced knots the inner prod-
ucts can be given explicitly—see the following section. ‘ ]

§ 5.5. EQUALLY SPACED KNOTS

As we saw in Section 4.4, there are some substantial simplifications in
various formulae involving B-splines in the case of equally spaced knots.
In this section we show how these simplifications can be exploited to
design more efficient algorithms. We begin with a definition.

DEFINITION 5.23. Uniform Partition

Given an interval [a,b] and an integer & > 1, let

x;=a+ih, i=0,1,...,k+l,whereh=Ei:_[;;. (5.33)
Then we say that A={x;}¢ defines a uniform partition of [a,b] with mesh
size h.

In this section we deal with the space $,,(A) of splines with simple knots
(cf. Definition 1.2) at the points of a uniform partition A. As a basis for
this space we shall take the normalized B-splines { N/"}], n=m+ k, corre-
sponding to the extended partition

y;=a+(i—m)-h, i=12,.. k+2m. (5.34)

The advantage of this choice of extended partition is that all B-splines are
translates of the basic B-spline N defined in §4.4 (cf. Theorem 4.32).
Thus every spline s €5, (A) has a unique expansion of the form

n x—V.
s(x)=3S ciN"'(T-y—'). (5.35)
i=1
It follows from (5.35) that to store s on a computer we may store its
coefficients ¢,,...,c,. To evaluate s(x) we may use the following simplified
version of Algorithm 5.8:
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ALGORITHM 5.24. Evaluation of s(x) for Given a <x <b

1. Find / using Algorithm 5.4;
2. xdhe(x—a)/h—1+m;
3. Forje1 step 1 until m
cx(fe=c(j+1—m);
4. For j«2 step 1 until m
for ie—m step —1 until j
cx(De—(xdh+m—xcex(D)+(i—j+1—xdh)scx(i—1);
5. secx(m)/(m— 1.

Discussion. This algorithm takes a total of m(m — 1)+ 2 operations if we
assume that the value of (m—1)! has been precomputed. This is a slight
savings over Algorithm 5.8 for m>2. In particular, for m=4 (cubic
splines) this algorithm requires 14 operations as compared with 18 for
Algorithm 5.8. |

It is also possible to evaluate s(x) using Algorithm 5.6. In this regard it is
useful to have a streamlined version of Algorithm 5.5 for computing
B-splines. The following algorithm makes use of the recursion relation
(4.52):

ALGORITHM 5.25. Generation of N3, _,(x),...,N/™(x) for y; <x<y;,,

1. xdhe(x—a)/h—I1+2m;
2. Forj<1step 1 until m—1

Q()<0;
3. Q(m)e1, Q(m+ 1)0;
4. Forj<2 step 1 until m

for i—m—j+1 step 1 until m

O(i)—(xdh — i) Qi)+ (i +j — xdh)x Q(i + 1);

5. For i<l step |l until m

Q(D=Q()/(m—1NL.

Discussion. Assuming that the value of (m—1)! has been precomputed,
this algorithm requires m?+2m — 1 operations. This is somewhat cheaper
“than Algorithm 5.5 if m> 3. For example, for m =4 it uses 23 operations as
compared to 24 for Algorithm 5.5. [ ]

If Algorithm 5.25 is going to be used for evaluation of splines, then it
may be reasonable to delete step (5), since we can always divide out the
factor (m —1)! after summing up the B-splines times the coefficients.

Dealing with the derivatives of B-spline expansions for uniform parti-
tions is also somewhat simpler than in the general case. First, we note

D;N’"(x)=N’"_'(x)—N’""'(x—l). (5.36)
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Now if s has the B-spline expansion (5.35), then for all a <x <b,

m+k

Dis(x)=h~*S Vi N™- d(x y’), d=0,1,...,m~1, (537)
i=d+1 h

where V is the backward difference operator defined by

d .
v = 3 (=1 4)x- . (5:38)

i=0

Let

N gd—1 d 1,2,....m
cd(d,i)=V*"¢, —d o = mtk. (5.39)

These are the desired coefficients without the #~¢ factor. The array cd is
produced by the following algorithm:

ALGORITHM 5.26. To Compute the Array cd Defined in (5.39)

1. Fori<1step I until n
cd(1,)e—c(i);
2. For j<2 step 1 until m
for i/ step 1 until n
cd(j,iye—cd(j—1,0)—cd(j—1,i—1).

Discussion. This algorithm does not require any multiplications or divi-
sions. » |

Algorithm 5.24 may now be used to compute derivatives (cf. Algorithm
5.12). It is also possible to design a streamlined version of Algorithm 5.15
for converting the B-spline expansion of s to a piecewise polynomial
representation.

The computation of indefinite and definite integrals of B-spline expan-
sions with equidistant knots proceeds exactly as in the general case. For
example, the indefinite mtegral is given by

D 's(x)= [ “S(di=h'S 3 c,.N"'“("—;&). (5.40)

Y1 im=] j=]

Inner products of B-splines on uniform partitions can be computed ex-
plicitly as shown in Section 4.4.
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§ 5.6. HISTORICAL NOTES

Section 5.1

It is difficult to say when the first numerical computations with splines
were made. It seems likely that Eagle [1928], Quade and Collatz [1938],
and Schoenberg [1946a,b] made at least some hand calculations. The use
of splines on large-scale digital computers had to wait, of course, for such
machines to become generally available. Serious computer calculations
with splines seem to have begun with researchers trying to model the
mechanical spline on the computer—see, for example, MacLaren [1958],
Theilheimer and Starkweather [1961}, Birkhoff and Garabedian [1960],
Asker [1962], Fowler and Wilson [1963], Berger and Webster [1963], and
Berger, Webster, Tapia, and Atkins [1966].

Most early methods for computing with splines used some form of
piecewise polynomial representation. The possibility of using one-sided
basis elements was also tried, but was quickly discarded as being too
numerically unstable. At first there was not much use of the B-splines. In
one early application, Greville [1964a} used them to compute interpolating
natural splines (of order 2m) by representing the mth derivative of the
desired spline as a B-spline expansion. Despite all of the nice features of
B-splines, the use of piecewise polynomial representations remained popu-
lar (cf. Carraso and Laurent [1968), Cox [1971], and Reinsch [1967]).
Perhaps users were somewhat wary about the fact that B-splines had to be
computed by divided differences. _ s

The importance of B-splines for numerical computations was im-
mediately and enormously enhanced by the discovery of the recursion
(4.22) by Cox [1972] and deBoor [1972]. Both authors observed Theorem
5.1 and described the associated algorithm for stably computing B-splines.
Cox [1972] concentrated on the case of distinct knots, and gave a detailed
backward error analysis to back up the assertion that the method is stable.
deBoor [1972] allowed multiple knots, and later published a package (see
deBoor [1977]) of FORTRAN programs based on his paper. Most of the
ideas of this section come from deBoor’s papers. We have elected to
describe the algorithms in 4n informal language so that the user can write
his own programs—we give operation counts to help in selecting which
algorithm to program.

Section 5.2

Theorem 5.9 is established in the article by deBoor [1972]. For equally
spaced knots it appears already in the paper by Schoenberg [1946a] [cf.
(5.37)). Cox [1971] has given some recursion relations for the derivatives of
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B-splines, which together with (4.23) lead to a variety of methods for
computing them. Butterfield {1976] has carried out a careful comparison of
these methods based on backward error analysis.

Section 5.3

In defining the piecewise polynomial representation of a polynomial spline,
we have decided to work with expansions of the polynomials in terms of
powers of (x—x;). While it is well known that the power basis for
polynomials is not well suited for numerical computations if m is mod-
erately large or if the interval is moderately long, we expect that, in
practice, there should be no difficulty with this choice since we will, in fact,
be working with small m and on small intervals. An alternative would be
to work with Tchebycheff polynomial expansions—see Cox [1971] or
Riviin {1974]. Here we have discussed only the problem of converting a
B-spline expansion of a spline to a piecewise polynomial expansion.
deBoor [1977, 1978] also discusses the reverse process, although it seems
much less likely to be required.

Section 5.4

Theorem $5.17, giving formulae for the B-spline coefficients of the antide-
rivative of a spline, was found by deBoor, Lyche, and Schumaker [1976].
The formula (5.27) for the antiderivative of a B-spline had been found
earlier by Gaffney [1974]. Our discussion of the computation of inner
products of B-splines is based on the article by deBoor, Lyche, and
Schumaker {1976}, where an explicit ALGOL program can be found. For
some quadrature formulae for computing integrals against B-splines, see
Phillips and Hanson [1974].

§ 5.7. REMARKS

Remark 5.1

To illustrate the difficulties that can arise in computing inner products of
B-splines using the double divided difference formula given in Theorem
4.25, deBoor, Lyche, and Schumaker [1976] considered the problem of
computing the value

5 v
f NYx)N*(x)dx  corresponding to the B-spline N*(x)
5
of order 4 over the knots y,,...,y;,,4=15,6,6+107",8,9 for various values of

r. This integral was computed first by using Theorem 4.25, and then by
using Gauss quadrature as described in Algorithm 5.22.
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The results of this experiment are shown in Table 9. The values found
using Algorithm 5.22 are all correct to nine decimal digits, while the values
produced by the divided difference formula are increasingly inaccurate as r
becomes larger (and the spacing of the knots becomes more nonuniform).
For ease of comparison we have underlined the first incorrect digit in each
value produced by the divided difference method.

Table 9. A Comparison of Two Methods For Computing the Inner Product of
B-Splines

r Gauss Quadrature Divided Differences
0 4.194444445 4.194444445
1 4.066497736 4.066497716
2 4.040109644 4.040109621
3 4.037345542 4.037344000
4 4.037067900 4.037048708
5 4.037040124 4.036818046
6 4.037037346 4.037239721
7 4.037037068 4.020766567
8 4.037037040 4.041030623
9 4.037037037 2.016235838




6

APPROXIMATION POWER
OF SPLINES

In this chapter we examine the relationship between the smoothness of a
function, and how well it can be approximated by polynomial splines. We
include direct theorems, lower bounds, inverse theorems, and saturation
results. In addition, we characterize some classical spaces of smooth
functions in terms of their order of approximation by polynomial splines.

§ 6.1. INTRODUCTION

Suppose ¥ is a class of smooth functions defined on the interval [a, b], and
that & is a space of polynomial splines defined on the same interval. In
this chapter we are interested in relating the smoothness of f to how well it
can be approximated by splines in &. In order to provide a measure of
how well f €% can be approximated, we define

d(1.5)x= inf /=5y, (6.1)

where X is some normed linear space containing both & and &. In
practice, we shall be interested primarily in the spaces X=C[a,b] or
X=L,[a,b], with 1 <p<ococ.

The most important part of this chapter is Section 6.4, where we obtain
upper bounds on the size of d(f, S ). Our results will be similar to the direct
theorems established in Chapter 3 for polynomial approximation. There we
established bounds of the form

d(f, ), < Cw,( %)

where C is a constant independent of m and f, and where w{(7) is some
function describing the smoothness of f. We were especially interested in
the behavior of the bound as m—oo.

210
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For spline approximation, however, we are not interested in large values
of m. To get accurate approximations using splines we would prefer to
keep m fixed at a rather low value, and increase the number of knots.
Hence our direct theorems for spline approximation will have the form

d(f,8)x <Ciwofd), allfed, (6.2)
where A is the mesh size of the partition A= {x,}&*" associated with the
spline space &, defined by

A= max (x;,,—x). (6.3)
0<i<k
Our main direct theorems for spline approximation are contained in
Section 6.4. We shall concentrate on giving bounds for the space of splines
S,,(A) with simple knots. Indeed, since

S, (8)CS(D,,; ON; A), all 9,

it follows that
dl f, $(2,,; M;48)1<d[ £, 5,(8) ],

and our upper bounds will automatically be valid for all spline spaces
S(D,,; O ; A).

As companions for the upper bounds on d(f,5),, we shall also give
corresponding lower bounds of the form

d[F,99,(8)], >Cyxwld), someFeEYF, (6.4)

where & P, (A) is the space of piecewise polynomials of order m associated
with the partition A. Since

S(P,;M;A)CP P, (A),  all O,

the lower bounds for @ %, (A) will automatically produce lower bounds for
all spline spaces &(%,,; N; A).

In those cases where we can establish both (6.2) and (6.4), we will be
assured that our bounds have the correct order. Moreover, by comparing
the sizes of C; and C,, we can get some information on how good the
constants are. In this case we are also able to conclude that all of the spline
spaces between ¥ ?_(A) and S, (A) have the same approximation power,
independent of how the multiplicity vector I is selected.
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It is natural to expect that the order of approximation attainable with
polynomial splines will increase with the smoothness of the class of
functions ¥ being approximated. Up to a limit this is true. We will show in
Sections 6.8 to 6.9, however, that if ¥ N %,, #¢, then the maximal order of
convergence possible for the class F is A’" no matter how much smooth-
ness ¥ is assumed to have. This is a saturation result. Results of this kind
will follow from various inverse theorems in which we will estimate the
modulus of smoothness of a function in terms of how well it can be
approximated by piecewise polynomials or by splines.

In Section 2.10 we observed that the sequence of polynomial spaces
?,,%,,... is an asymptotically optimal sequence of approximating spaces
for several classical spaces of smooth functions (in the sense of n-widths).
In this chapter we shall show that the spline spaces 5,,(4,), S,,(4,),... for
appropriate sequences of finer and finer partitions A, A,,... are also
asymptotically optimal approximating spaces.

§ 6.2. PIECEWISE CONSTANTS

In order to illustrate the relationship between the smoothness of functions
and their order of approximability by splines, in this section and the
following one we consider two simple special cases. Here we examine
approximation by piecewise constants; in Section 6.3 we consider ap-
proximation by piecewise linear splines.

Let

A={a=xy<x, <+ <x <X o1 =b}
be a partition of the interval [a,b)], and let §,(A) be the corresponding

space of piecewise constant functions. Corresponding to A, we define the
mesh spacing by

A= max, (x;01—x)- (6.5)

0<i

Then we can establish the following direct theorem, giving bounds on the
approximation order for several typical spaces of smooth functions:

THEOREM 6.1

For any A,

d[ £,5,(8)] <30(f;8),, allfeB[ab]; (6.6)
d[ £,6,(8)],< A" "rvDfll,,  allfe€Lj[ab], 1<p<g<co; (6.7)

d[ £,5,(8)] < 3AlDfll,,  allfeC'[a,b]. (6.8)
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Proof. See Section 2.1 for the definition of these various spaces. Suppose
now that f € B[a,b]. Let

.+ M.
s(x)= @LE——'), xel, i=0,1,...,k, (6.9)
where
m; = ess inf f(x), M; = ess sup flx),

YEL; YEy,

where I,,...,1, are the subintervals of [a,b] defined by the partition A.
Clearly s € ,(A). Moreover, for all x€ I,

60 =gl < P < 2o 1:3),

This proves (6.6). (We could also obtain this directly from Whitney’s
theorem—see Theorem 3.16.)
Suppose now that f € L! [a,b]. Then there exists £ € I, such that

s0)=stg)= M)

, allxel,

hence

)= s <L) =A< [ DA <BIDfl),  (6.10)

Xl

for x € I. Since this holds for all i=0,1,...,k, we have proved (6.7) for
p=q= 0. The estimate (6.8) follows since C'[a,b]C L. [a,b].

To prove (6.7) for general 1 < p <q < o0, we apply Holder’s inequality to
(6.10) to obtain

_ Xy t/p

S =sCl< BV [ ipfopar) , xel,
This implies

Xi+1 . Xi4} a/p

1) = sl dx <Be-ee( [ iDgoear)

and summing over i=0,1,..., k yields

1/q

/ ""“|Df(t)|"dr)"’

X

. k
I f=sl, <A‘-‘/’“/"[ > (

i=0
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Finally, applying Jensen’s inequality (see Remark 6.2) to the last sum, we
find that it is bounded by

k Xia 1/p
[2[ IDf(t)I”dt} =11 Dfll,-

i=0"x

We have proved (6.7). n

We can also give error bounds for piecewise approximation of L,
functions. Since we shall give L, results in §6.4 for splines of arbitrary
order, we do not bother with them here.

To illustrate how lower bounds corresponding to the upper bounds given
in Theorem 6.1 can be obtained, we establish lower bounds for functions
in C[a,b] and C'[a,b]. Lower bounds for functions in the Sobolev spaces
can be established similarly.

THEOREM 6.2

Given any A, there exists a function F, € Cla,b] such that
d[ F.5,(8)],, > 3o(Fy:8),. (6.11)

Moreover, for all £ >0, there exists a function F, € C '[a,b] such that

dF. 5], > US2 pF.. (6.12)

Proof. Let [x;,x;,,] be a subinterval of [a,b] corresponding to A with
x; .1~ x;=A. We define

0, x £x;
Fi(x)=1{(x—x)/(x;4,— X)), X KX KX,
1, Xip1SX

Then since d[F,, S,(4)],, = 1/2 while w(F,;A),, =1, we have proved (6.11).

Given ¢>0, we define g(x) to be zero for x&[x;,x, ], to be 1 on
[x; + €A, x, ., —€A], and to be linear in between. Then the function F(x)=
Jx8(ndr is zero for x<x;, is (1— e)A for x>x,,, and is monotone
increasing in between. It follows that d[F,,S,(A)]w=K(l—e)/2. On the
other hand, | DF,||, =] gllo =1, and (6.12) follows. [ ]
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The lower bounds in Theorem 6.2 show that the upper bounds (6.6) and
(6.8) for functions in C[a,b] and in C'[a,b] are the best possible, including
the constants.

We turn now to the inverse question of estimating the smoothness of a
function in terms of how well it can be approximated by piecewise
constants. As a first step in this direction, we establish the following
theorem, where we use

A= 021‘,12,( (Xi41—X): (6.13)
THEOREM 6.3
For any f € C{a,b],
~ A
o /:3), <4 Z]d[f;g,(A)]w, (6.14)

where [Z/é] =min{,: A/A<).

Proof. Suppose y —x <A. then the interval (x,y) can contain at most one
knot. If it does not contain any knots, then

| f(3) =fCOI < S(») = s(») +s(x) —f(x)| <2d[ f,5,(8)].
On the other hand, if (x,y) contains the knot x;, then
LAY = Al < A() = fO) +] fx) — A(x)| <4d[ £,5,(8) ].

In either case we conclude that w(f; A) < 44| f,$,(A)]. Now, combining this
with the fact that
)<|

we obtain (6.14). n

Theorem 6.3 by itself does not actually say very much about the
smoothness of the function f. In order to have information on the smooth-
ness of f, we need to know the behavior of w(f;f) for at least some
sequence of £’s converging to zero (rather than just at a single point as in
Theorem 6.3). To get such information, we must know something about
the size of d{f,&,(A,)] for a sequence of partitions A, In view of the
dependence of the bound in (6.14) on the ratio A,/A,, it is clear that not

!

B

u>l|
15| B>

w(f;L_X)<w(f; ]w(f;é),
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every sequence of partitions will do, and we will need some control on the
mesh ratios. We are led to make the following definition:

DEFINITION 6.4. Quasi-Uniform Partitions

Let A}, 4,,...be a sequence of partitions of [a,b]. If ¢ >0 is a constant such
that

>l

<o all », (6.15)

then we say that A, is a o-quasi-uniform sequence of partitions.

In addition to controlling the mesh ratios, in order to get information on
w( f; t) for small ¢, we have to assume that A —0. On the other hand, we
do not want the ratio A, /A, , , to be too big. Hence we make the following
definition:

DEFINITION 6.5. Steadiness of a Sequence of Partitions
We say that the sequence A, of partitions goes steadily to zero provided
there exist constants 1 €a < oo and 1< < oo such that for all »

al,, <A, <BA,, . (6.16)

Before proceeding to our first inverse theorem for piecewise constant
approximation, we give two important examples of sequences of partitions
that go steadily to zero.

EXAMPLE 6.6. Uniform Partitions
Forv=1,2,..., let
(b—a)

14

A=A =

=0 vy =

A,={a+id,},

Discussion. For each v, A, divides [a,b] into » subintervals of equal
length. A uniform partition is 1-quasi-uniform. This sequence of partitions
goes steadily to zero with constants a=1and 8=2. =

EXAMPLE 6.7. Nested Uniform Partitions
Forv=12,..., let

A={a+r)}_, &=
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Discussion. We call this sequence of partitions nested since 4, CA, .. It
goes to zero steadily with constants a= f=2. [ ]

The following theorem is an inverse theorem for approximation by $,(4,)
on a sequence of partitions A,.
THEOREM 6.8
Suppose A, is a sequence of o-quasi-uniform partitions of [a,b] with mesh

size going steadily to zero. Also suppose f € C[a,b] is such that

d[ £,5,(8,)] <¢(4,), alr=12,., (6.17)
where ¢ is 2 monotone-increasing function on (O,z_k,). Then

w(f;)<4[ B)[o]e(r)  allO<s<A, (6.18)
where B is the constant in Definition 6.5 of steadiness and [,8] =min{J:

B<Jj}.

Proof. Let » be such that ZH, <t<Z,,. By the monotonicity of w and ¢,
(6.17) coupled with Theorem 6.3 implies

o(f;t)<(f;3,) <w(f; BB,.,) <[ Ble(f;4,, 1)
<4 B[ o]d[ £.5:(8,, )] <4 B][o]#(B,,,) <4[ B][o]e(r). m

The following simple corollary of Theorem 6.8 shows that there is a limit
to how well functions can be approximated by piecewise constants, no
matter how smooth the function may be. This kind of result is called a
saturation theorem.

THEOREM 6.9

Let A, be a sequence of partitions as in Theorem 6.8. Suppose f € C[a, b] is
such that for all »

d[f’SI(Av)]w<CZV¢(Zv)’ (6‘19)

where C is a constant and (¢) is a function with n(¢) monotone and
¥(#)—0 as r—0. Then f must be a constant; that is, fEP,.

Proof. Theorem 6.8 together with (6.19) implies that w(f;7)/t—0 as t—0.
By properties of modulus of smoothness [cf. (2.122)], this implies f is a
constant. u
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Theorem 6.9 asserts that the maximal order of convergence attainable
with piecewise constants defined on a sequence of quasi-uniform partitions
4, going steadily to zero is one. This order of ¢convergence is attained as
soon as f belongs to L! [a,b], as shown in Theorem 6.1. Higher order of
convergence occurs only for constants (which are approximated exactly).
This does not exclude the possibility, however, that for a given function f
some higher order of approximation might be possible if an appropriate
{non-quasi-uniform) sequence of meshes is used. See Chapter 7 for results
in the case where the knots are free parameters.

We may now combine our direct and inverse theorems to obtain a
characterization of the Lipschitz space Lip® defined in (2.128).

THEOREM 6.10

Let A, be a sequence of partitions as in Theorem 6.8. Then a function
fe(la, b] belongs to Lip* if and only if for all »

d[ £.5,(a,)].,<C(4,)" (6.20)

for some constant C.

Proof. If fELip®, then w(f;t)<Ct* and (6.20) follows from Theorem
6.1. On the other hand, Theorem 6.8 shows that if f satisfies (6.20), then
w( f; )=0(r"), and thus f€ Lip”~. (]

The assumption that f& Cla,b] cannot be removed in Theorems 6.8
through 6.10 without some further assumption on the sequence of meshes.
Consider the following example:

EXAMPLE 6.11
Approximate f(x)=(x —(a+b)/2)% by piecewise constants.

Discussion. Clearly w(f;¢)=1 for all 0<?<b— a. On the other hand, if A
is a partition that contains the point (a+ 5)/2, then d[f,$,(4)]=0. Thus
(6.14) cannot hold. Similarly, if A, is a sequence of partitions each of which
contains (a+ b)/2 (which might easily be the case with nested partitions,
for example), then Theorem 6.10 cannot hold. Indeed, (6.20) holds trivially
with any «, but since f is not continuous, it certainly does not belong to
any Lipschitz class. [ |

It is possible to establish analogs of Theorems 6.8 to 6.10 for f € B{a, b]
and approprnate A,. First we prove a sharper version of Theorem 6.3.



PIECEWISE CONSTANTS 219
THEOREM 6.12
For any f € Bla,b].

1> | 1

w(f:3)<{ 1(4(1[]:5{(‘3)} + max jump][ f] /). (6.21)

1<k
where
jump[f}x,,=f(xj+)—f(xj—), J=12.... k.

Proof. The proof is very much like the proof of Theorem 6.3. Let
y—x<A. Then (x.y) contains at most one knot. If there are no knots in
(x.y), then |[f(y)— fix)| <2d[f.5,(A)] as before. If x, is a knot in (x.y),
then

L) = fON < A(y) = flx, +) 1+ [ +) = flx, =)+ flx, =) = fix)].

This implies that «(f:4)<4d[f. > I(A)]-t—ma)<l</<,dump[j'] Now (6.21)
follows by the estimate w( f;A) < [A/A}w(f A). ]

We can now prove an improved version of Theorem 6.8 (with a stronger
hypothesis on the partitions).

THEOREM 6.13

Let A, ={x"}5-*" be a sequence of a-quasi-uniform partitions going stead-
ily to zero, and suppose that for all 1<i<k, there exists n;,, >» so that
x/ @A, . Then if f € Bfa.b] is such that

4 £.5,(8,)], <(4,), (6.22)
with ¢ monotone increasing on (O,K,), it follows that
w(fit)<6[a][ Blo(r),  allO<r<A,. (6.23)

Proof. Let v be such that A,, , <t<A,. For each i we know x”*'&A
and thus

LAPSY

s+ ) = =) <2d] £.8,(8, L) ] <26(0).
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It follows that

“’(f§ A, I) <6[ole(1),
and arguing as in the proof of Theorem 6.8 we obtain (6.23). [ ]

COROLLARY 6.14

Let A, be a sequence of partitions of {a,b] as in Theorem 6.13. Then a
function f € B[a,b] belongs to Lip® if and only if (6.20) holds.

Proof. The proof proceeds exactly as in Theorem 6.10, using Theorem
6.13 in place of Theorem 6.8. [}

We observe that both Theorem 6.13 and its corollary can be applied in
the case of a sequence of uniform partitions as in Example 6.6 (since it is
easily seen that given any x;” in A, there is a later partition that does not
contain x;”). On the other hand, the results do not apply for the sequence
of nested partitions given in Example 6.7.

In this section we have concentrated on inverse and saturation results
for the co-modulus of continuity. Similar results can be established for the
p-modulus of continuity in terms of d| f,S,(A,,)]p—see Section 6.9.

§ 6.3. PIECEWISE LINEAR FUNCTIONS

In this section we further illustrate the connection between the smoothness
of a function and the order of its approximation by splines. Here we deal
with linear splines (the case m =2) and with the uniform norm only. Our
first theorem contains upper bounds for several spaces of smooth func-
tions.

THEOREM 6.15
Let A be a partition of [a,b] with mesh spacing A. Then

d[ £,55(8)], <«(f:4), all f€ C[a,b]; (6.24)
d[ £,5,(8)], <wy(f;4/2), allfeC[a,b]; (6.25)
d[ £,5,(8)] < %w(Df; a), allfeLl[ab]; (6.26)
d[ £,5,(8)], <Al DS, allfeLl[a,b]; (6.27)

d[ £,5,(8)], < %zupzfnw, all fe L2 [a,b]. (6.28)
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Proof. Given f& Cla,b], let

s (is1 =f)x—x)
s(x)=4" (X, —x) x; <x <X, (6.29)
i=0,1,...,k,

where, in general, we write f,= f(x,), i=0,1,...,k+ 1. This is the piecewise
linear polynomial that interpolates f at the points a=x,<x, <+ <x, <
X, 41 =b; that is,

s(x,)=f(x,), i=0,1,... . k+1.

Now, for any 0<i <k and x; <x <x,,,, by the continuity of f there must
exist §, in I, =[x, x,, ] such that s(x)=f({,). But then

|£(x) = s(0)| =] f(x) — fEN < (f:8)  for xEL

We have established (6.24).
Suppose now that

M=[|f=sl.= max 8(x).  8(x)={f(x)=s(x)]

Since & is continuous, there exists  (which we suppose lies in the interval
I =[x, x,,,]) such that M =48(n). Then if x,<n<(x;+ x,,,)/2, it follows
that

| f(n—h)—2f(n)+f(n+h)|=|8(n—h)—28(n)+8(n+h)| > M,

where A=mn— x;. This implies that M < w,(f;h) < w,(f; 5/2). If x is in the
second half of 1, a similar argument with h=x,,,—7n yields the same
estimate, and we have proved (6.25), (cf. Theorem 3.17).

Assume now that f€ L! [a,b]. Then for any 0<i<k and x,<x<(x;+

X0/ 2,

) =50l < [ 1D~ Ds(vlde< 3B sup D))= Ds(o).

X RIKX; 4

But Ds(¢) is a constant in I, and since s and f agree in value at x; and x, |,
it follows that inf, o, Df(#) < Ds(f) < sup,,; Df(¢), hence

sup | Df(t) — Ds(1)| < o(Df; B).
(el
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Substituting this in the above, we obtain | f(x)— s(x)| < %Zw(Df; A). If x is
in the second half of the interval I, then we use

S =s(x)l < [ D)= Ds(o)iat,

and proceed as before. Since i is arbitrary, we have proved (6.26). The
estimate (6.27) follows immediately

Finally, suppose f €& L%[a,b]. Then by the explicit remainder formula
given in (3.5) for polynomial interpolation, we have

f(x)-s(x)=(x—xi)(x_xi+l)[xi'xi+l’x]f~
By (2.93), [x,, X;4 1> X]f< 3|| D%f || - On the other hand, it is clear that for

X, Kx< X, [(x—=x,)(x—x,,,)| <A%4, and (6.28) follows. ]

We now give some lower bounds that are companions to the upper
bounds of Theorem 6.15. We do not bother to compute the best possible
constants.

THEOREM 6.16

Given any A, there exists a function F, € L! [a,b] such that

d[FP9,(8)], > 5 e( Fy: ). (6.30)
d[F|, P (8)] > sz(Fl,A) (6.31)
A
d[ F\.P,(8)] > gw(DF,,A) (6.32)
and
D op Z
d[ F). 9 Dy(8)], > Z||DF Il (6.33)

Moreover, there exists a function F, € L2 [a,b] with

d[ Fp, P P(A)] > 3—]232|[D2F2]|w. (6.34)
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Proof. Given A, let I, =[x, x;,,] be a subinterval of length A. Let

2(x = x) /(X 01— X X <x<=(x+x,,)/2
Fi(x)= Ax; 1= x)/ (x40 — X)), X, KX <Xy
0, otherwise.

We note that d[F,. PP (A)=1/2, w(F; A)=1, wy(F; A)=2, w(DF; )
=4/A, and || DF,|, =2/4. The inequalities (6.30) to (6.33) follow. This
function is the normalized B-spline with knots x,, X,, x, .

We now define F,. Let Fy(x)= BF([2x —(x;,+ x;, )1/(x; , — x,)). where
B} is the perfect B-spline of order 3—see Example 4.35. Then since
F((x,+ x,,)/2)=1, d[F,,? ?,(4)]=1/2. On the other hand, ||D*F,||, =
(2/A)}||D*B||, while || D2B?||_ =4. Putting this information together, we
obtain (6.34). |

In Sections 6.8 to 6.9 we give inverse theorems, saturation theorems, and
characterization theorems for approximation by splines of arbitrary order
and for approximation in any p-norm, | < p < c0.

§ 64. DIRECT THEOREMS

In this section we give bounds on how well functions in various smooth
spaces can be approximated by splines in the space $,,(A). To establish our
error bounds, we construct a linear operator ) mapping Bla,b] into S, (A).
We need the following lemma:

LEMMA 6.17

Let A={a=x,<x,<--- <x,<x,,,=b} be a partition of the interval
[a,b]. Then there exists an associated partition A*={a=x§ <x? <--- <x}
<xM.,=b} with A* CA such that

SA*<A*< . (6.35)

The partition A* is 3-quasi-uniform (cf. Definition 6.4).

Proof. Let x¥=a, and define x},...,x* recursively b
0 1 ! y by

B>

4 2 -2

[ ]

. A 3
x?‘=m1n[x,:xj‘_1+— <x; <x} ,+-—Aandx,<b—-—}.

This process does not stop until b—3A/2<x?. Now let x?, ,=b. The
property (6.35) follows by construction. ]
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Lemma 6.17 shows that any partition can be thinned out to get a
quasi-uniform partition. We return now to the construction of Q. Corre-
sponding to the partition A*, define the extended partition

=" =Vy,=a, ym+l=x’l.""’ym+l=‘xl" b=ym+l+l= = Yomrr
(6.36)
For convenience write n=m+ /. Associated with this extended partition,

let B,,..., B, be the set of normalized B-splines forming a basis for §,,(A*).
For eachi=1,2,...,n, let

— 1
1-,.j=y,+(y,~+,,,—y,-) ((rjn—l))’ Jj=12,....m, (6.37)
and
S gD TN, (0), .
aij—yglw _]—1,2,...,m, (638)
where
(v)=(_‘_1)_y__l_(_‘i_‘_1)1 (m=»)
gi (m_ 1)' (pl.m (O)’
and
m—1 Jj—1
(pi.m(t)__— HI (’_yi+r)’ 4’1‘\/(’)= Hl(t—'rir)’ \Pi,l(’)z—‘-l-
Let
ASf= i ay[fn,...,v',-j]f, i=1,...,n. (6.39)
j=1
THEOREM 6.18
For any f € B{a,b] define
Qf(x)= 2 (A f)B(x). (6.40)

i=1

Then Q is a linear operator mapping B[a, b] into §,(A*)CS, (A). More-
over,

Qp=p forallpe® . (6.41)
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Proof. By construction, Qf is a spline in S, (A*). This spline space is a
subspace of 5,,(A) since A*CA. We now prove (6.41). First we claim that
foralli=1,2,...,n,

if p(x)= > ¢, x "', then \p= >, c . (6.42)

r=1 r=1

To prove this, we show that it holds for each of the polynomials
Y1+ ¥ m (Which clearly span & ,). For each j=1,2,...,m we have

j t’
\Pi\j(t): rgl l)'

-1

¥ P(0),

while

m m g(’)‘l/(’ l)(O)
Ay, = T g ma= S 2T 2
i, j r§] atr[ T Tlr],‘l/l,j alj ,§| (r . 1)|
and (6.42) follows.
Now suppose p(x)=3"7_,c,x""'. Then using Marsden’s identity (4.34),
we have

Op= 2 O\iP)Bi—_' 2 2 Crgi(’)Bi= 2 ¢, 2 gi(r)Bi':p' ||

i=1} im] pu=] r=1 =1

The following lemma gives some information on the size of the
coefficients a;; used in the construction of the linear functionals A;:

LEMMA 6.19

Let {a; be defined as in (6.38). Then

Tly=1

051 < Grem =2 7 < (mB) TS (6.43)
Proof. For any i we have a;;=1, so (6.43) holds for j=1. For j > 1 we use
an identity on polynomials (see Remark 6.1) to write

a,=(-1)" ’E"’ 11;' 2 (y,,—m)---(y,,_.—f.-,j—n),

where the sum is taken over all choices of distinct »,,..., Vi1 from
{i+1,...,i+m—1}. This is a sum of exactly (m—1)!/(m—)! terms. The
largest any one term can be is (y;, ,, — ), and (6.43) follows. [ ]

.....
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We are now ready to give error bounds for how well Qf approximates f.
Our first theorem is local in nature; that is, the error bounds in an interval
I, will depend only on the behavior of f in a somewhat larger interval
including /7,.

THEOREM 6.20
Let m<!<n, I,=[y,y,;4,} and 1~,=[y,+,,m,y,+m ]} Then for any 1 <o <m,

1D (f= @Dl <CB) e, o (DT B)L ]

r=0,.... o— 1. - B 644
I1DOf Nl 1y <C(A) (D7 f,4),.[1] (64
r=o...., m—1

forall feCce '[I ] The constant C, depends only on m.
Proof. Foro<r <o —~ | wewrite E(r) = D'f(t)y — D'Qf(1).

Fix 1, and let € [,. To estimate E (1), we are going to first approximate f
by a polynomial on /,. By Theorem 3.19 there exists p,€ %, such that

D/(f=p )OI B o (DT FiB) ), (645)

j=0.1,....0—1, all rel,. We write R(t)=f(1)—p(t). Since Qp,=p,, it
follows easnly that E(t) = D'R(t) - D'QR(2).

To prove the first part of (6.44), it remains to estimate D'QR(¢).
By the definition of Q,

DOR(IS 3 S fo I, RIDB()

We have estimates of the |a;| in Lemma 6.19. By Theorem 4.22,

r,,
DB < 55

where T, | is the constant given in (4.37). We now examine |A;R]|.

Forj=1,2,..., o we have
|D/'R(n,)| DT RI[4)]
(-n (=D

'A R’ ][ 'l""'TU]RI=
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For ¢ <j <m Theorem 2.56 gives

J—¢ (j;o)‘[T:.V+l""'7.i,v+o:|R|

AR| < ,
A I‘EO Yoo Y-

where y,=min,, ., ,|7.,,,— 7., As each y, is bounded below by
A* /m [cf. the definition of the ’s in (6.37)], we obtain

2m y-o 1P R[]

I)\URI<(—é_t) ——m!—, j=o+1,....,m.

Combining our estimates on |a,], |\, R|, |D'B/|, and | D’R|, we obtain

|[D'QR(1)| < Cmem—a+l(Do~lf; Z‘)C[I-,].rm.r(é‘)_r

[ é (mZt)f'l(Zt)a—J-’— § (_zﬂ)j—o(mxw)f—' }

J=1 (j=D! jmos1\ A (o—1)!
We now use the fact A* /A* <3 while A* <A to obtain

E()ISCE o (D7 FiB) o[ )
r=0,1,...,m—1. For g= o0 we are done. The result for g < oo follows by

integration.

To prove the second part of (6.44), we let R(x) = f(x) — p(x), where p is
the Taylor expansion of f of order o about the point ¢t. Then for o<rsm-1,
we have D'Qf(r) = D'QR(r). To estimate D'QR(¢), we proceed as above
using the fact that D*'R(x) = D"'f(x) - D"'f(¢) and

D7'R(x) = D"'R(§) (x-)"I(c—)!,j = 1,..., 0,
for some £(x) between x and ¢. Since ID'f(x) - D"'f() I < (2m-1)
(I)(D(Hf;A;I,) for all x € I, the result follows. ]
We also have the following global version of Theorem 6.20:
COROLLARY 6.21
Let 1 <o <m. Then for all f€ C° '[a,b],

1D (f= @l ctasy KCB) ™ '@y s (D7 Y3 B) qusy

r=0,..., o—1
ID"Of | ctapy SCUB)™" ' @(D” f;B8) o (6.46)
r=g,..., m-—1

The constant C, depends only on m.
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Proof. We simply apply Theorem 6.20 to each subinterval of {a,b] and
then take the maximum. [

We have made no attempt in Theorem 6.20 and Corollary 6.21 to obtain
the best possible constants. On the other hand, it will be shown in the
following section that there are lower bounds corresponding to the upper
bounds given here, and thus the orders of approximation given are the best
possible. In fact, it will be shown in §6.7 that the orders of approximation
obtained here agree with the asymptotic orders obtainable by arbitrary
finite dimensional spaces, and thus the splines are asymptotically optimal
spaces in the sense of n-widths (cf. Section 2.10).

The bounds given in (6.44) and (6.46) show that Q is a remarkable
operator: (1) it delivers approximations that admit local error bounds; (2)
the derivatives of the spline approximate the derivatives of f simulta-
neously; (3) the operator Q is linear; and (as the next theorem shows) (4) it
1s bounded from C{a,b] into C[a,b].

THEOREM 6.22
For every f€ Cla,b],

1Of I cla.) < 20) " || fll cla.ye (6.47)

Proof. Foralli=1,2,...,nand all j=1,2,...,m, by Theorem 2.56,

) ”f”C[a.b]'

;A,.ﬁ.f|=1[7,l,...,f,j]f1<(2("’ D

—Ji

Coupling this with the estimate (6.43) for a;;, we obtain

NI < 2 oI, f] < S 2m)” "1 A e

J=1

< (Zm)'"llfllqa,b]-

Now since 27

=1

B.(x)=1, (6.47) follows. [ ]

While the operator @ does reproduce %P, usually QOss for all s&€
S,,(4), and thus, in general, it is not a projector (cf. the following example).
It is possible to construct projectors if desired—see Remark 6.3.
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EXAMPLE 6.23
Let m=2. Then for i=1,2,...,n,

(yi+l—yi)[f(yi+2—f(yi)]
(yi+2_yi) .

Af=fy)+

Discussion. In this case the B-splines have the property that B(y;, )=,
i,j=1,2,...,n. It follows that

Of(yiv 1) =NS, i=1,2,...,n.

Thus Qf is the piecewise linear spline that interpolates the values A,f at y, .,
i=1,2,...,n. Moreover, A;f= Py, ), where P, is the linear polynomial

!

interpolating the values of f at the points y; and y, , ,. See Figure 18. [ ]

We turn now to some estimates of how well Qf approximates functions f
in various Sobolev spaces. First we prove a local result.

”

THEOREM 6.24

Let 1<p, g< o, and I<o<m. Let m<I<n, I,=[y,y,, ], and I=
(Y141 =m:Y1+m)- Then for any function fe LJ[1],

1D (S~ Dy <GB P a,_ (DF:B) 1)

r=0,..., o—1

(6.48)

] ] | ] |
h=: Y3 Ya Vs Yo = V1

v

Figure 18. The operator Q does not reproduce S, (8).
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Proof. By the Whitney Theorem 3.20 there exists p, €%,, such that for all
(€1,

1D/ (f= ) < CA" P, (DS B),[ )

Jj=0,1,...,0— 1. Now if we use this inequality in place of (6.45), then the
proof of Theorem 6.20 carries over directly to establish

(D)l <CA" Ve, (DF:B) i)

Now integrating this over /,, we obtain (6.48). [}

Next we give a global version of Theorem 6.24.

THEOREM 6.25
Let 1 <p<g<oo and 1 <o <m. Then for every f € L][a,b]},

I1D"(f= QNI 1 fa.)
r=0,..., o—1 <CIZG_’+l/q‘l/pwm—o(Dly‘;Z)Lp[“»b] (649)

The constant C, depends only on m and p.

Proof. By Theorem 6.24, for each m </ <n,

I+ — m a/p-
f’y llE,(t)]"dt<C"A"-‘°"+‘/""/")(fyl |D°f(t)]"dt)

Yi Yi+1-m

If we sum these inequalities over /=m,..., n and take the qth root, we
obtain

_ n 1/q
IE N £ (0.5 <K(A)""*'/"“/”( > IID"fII‘i,,“',])

l=m

For p <q < oo Jensen’s inequality (see Remark 6.2) implies

n 1/q n Y/p
( 2 HD"fH"L,,[i,]) <( 2 ”Doinp[i,]) <(2m—1)”Dof”Lp[a,b]'
I=m

I=m
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Note: I~,C[y,+,_m,y,+m], so each piece of the interval [4,b] is added into
the sum at most (2m — 1) times. Substituting this in the above yields

1D"(f~ O 1 gaty

r=0,..., o—1 Ao r+tl/q-1/p

h <Cy(A) IDfl 1 1061 (6.50)
1D"Qf | 1 gty 2 el
r=o,..., m—1

To replace || Df|| by w,,_ (D°f; A), we use the K-functional of §2.9. First
suppose 0<r<o—1. Let g€ L"[a,b}. Then

1D (f= NI, <IID"(f— ), + 1D (g~ @)l + I D'Q(f~ &),
Since f—g &€ L/[a,b), (6.50) implies
1D°Q(f =)l <CID(f— ),
It also asserts that
1D (g = Q8)l, <CA™ | D7g|l,.
Combining these estimates, we obtain
1D"(f= @D, < 1+ C[ID"(f= )|, + A" | D™Dl ]
Now, as we vary g over L"[a,b], D’g varies over L "[a,b]. Since the

infimum of the expression in brackets as D’g varies over L;"""[a,b] is the
K-functional applied to D’f, we find that

ID"(f= Qg <21+ G)K,, (B)DTF< Cy0p (D'f3 B),.
But by properties of the modulus of smoothness,
@ (Df18), < CA" "6, (Df:A), <CA "+V/a" ey (Df:A),
and substituting this in the above leads to the inequality (6.49) for

O0sr=sg—- 1L
Suppose now that o < r < m. Then for any g € L'la.b].

1D°Ofil, <IDQ(f— &), + 11 P"Qgll,

<G [A7 Ve P Do(f—g)|j, + A"+ /P D D g ]
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where we have used (6.50) for f—g and for g. Since g is arbitrary, we
conclude that

| D"Of |, <2C, A"+ Va~PK (A)(D°f)
<2G,ATHVam ey, (Df; A),.

This is (6.49) for 6 <r <m—1, and the theorem is proved. n

Since Theorem 6.25 gives estimates for how well f and its derivatives are
approximated, we may restate it in terms of the Sobolev norm:

||f||L;[a,b]= 2 “fo“Lw[a,b]' (6-51)
i=0

COROLLARY 6.26

Let Q be as in Theorem 6.18 and suppose 1< p <g< oo. Then for any
0<r<o—1<m—1 there exists a constant C independent of A such that
for all fe L)[a,b],

1f~OFf Wl 10,51 < C(BY ™"V Df || )

<SCB) VIV F Y oo - (6.52)

We conclude this section with an estimate for how well functions in the
space L,[a,b] can be approximated by polynomial splines.

THEOREM 6.27

Let | < p < . Then there exists a constant C, (depending only on m and
p) such that for f € L [a.b], (f € Cla,b] if p = ),

d[ 1,8,,(8)], <Ciw,(f;8),. (6.53)

Proof. By (6.50) we have

d[ £,6,(8)], <CA™ DIl 1 1a)

for all f& L,"[a,b]. Applying Theorem 2.68 we obtain (6.53). n

Theorem 6.27 gives a result on the L, -distance of a function f to the
space 5,,(A). We cannot show that f— Qf satisfies (6.53)—indeed, Of is not
even defined for arbitrary functions in L,[a,b]. On the other hand, the
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same order can be achieved with an appropriate bounded linear operator
Q mapping L[a,b] into §,,(A); see Remark 6.4.

§ 6.5. DIRECT THEOREMS IN INTERMEDIATE SPACES

In the previous section we have given an assortment of theorems detailing
how well polynomial splines approximate functions in the classical spaces
Cla,b],...,C™[a,b] as well as in the Sobolev spaces Lp[a,b],...,Lp"'[a,b].
Using the theory of intermediate spaces, these results can be further
refined to produce direct theorems for various smooth spaces of functions
lying between these spaces. To illustrate how this can be done, we need to
review the main features of the theory of intermediate spaces.

Suppose X, and X, are two Banach spaces with norms |||, and |||,
respectively. Suppose both are contained in a common linear Hausdorff
space X such that the identity mapping from X, into X is continuous for
i=0,1. (We say X, are continuously imbedded in °X.) Now we may consider
the linear space

Xo+ X\ ={f=fo+fi.f EX, i=0,1}

with norm

flryex, = inf (ol 141
S=fo+ i

If +>0, we may define a functional on the Banach space Xy+ X, by

H(Of= it (ol Al

oJ1

S=ht+h
THEOREM 6.28
Fix 1< p’< o0 and 0<8 < 1. Then the set

(XO’Xl)ﬂ,p’= {fEX0+X1: Sl xo )6, < °°}
P

with the norm

(j;l[t""E}C(t)f]p,t“dt)l/p’, 1<p' < o0

esssupt K (1)f, p'=

o<l

I f ||(xo,x,),,,,. =

is a Banach space.
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Discussion. For the basic theory of intermediate spaces, see Peetre [1963],
Butzer and Berens [1967], or Lofstrom [1970]. [ ]

We illustrate this process with an important example.

EXAMPLE 6.29
Fix 1<p’, p< o0, and 0<8 <1, and define

Bpa’pl[a’b] =(Lp[a’b]’me[a’b])0,p' ’ (6'54)

where 6 =8m. We call Bp""" a Besov space.

Discussion. To describe the norm on the Besov spaces in more detail,
define

, 1/p’
(fl[t“’wm(f,t)p]" -‘—?) , 1<p' <o
0

Ifla.p.p',m = (655)
ess supt °w,(f, 1), , p'=o00.
>0
Then Bp"""[a, b] forms a Banach space relative to the norm
WSl sora sy =S N L a5y +flo,p.prm (6.56)

Equivalent norms can be defined on B;”" that do not involve m directly.
For example, it is known that there exist constants ¢, and ¢, such that for
all f€ By ?'[a, b},

Cl”f”s;»’ <{ S L‘;'+|DLan|o-Lo_j,p,p',l <6'2”f”3;vr' (6.57)
if ¢ is not an integer, and
Cx||f”3;-v' < ||f”1.;’;l +|Da—lf|l,p,p',2 <Cz||f||a;-" (6.58)
if ¢ is an integer. For 1 < p < o0, the Besov space Bp""' satisfies
Lp""[a,b] ng"“”[a,b] cL)[a,b].

If p’=p = o0, then the Besov spaces reduce to spaces of functions whose
derivatives satisfy Lipschitz or Zygmund conditions. In particular,

BL *[a,b]=Lip™[ab], 0<a<l,



DIRECT THEOREMS IN INTERMEDIATE SPACES 235

and
BT+ ®[a,b]=%"[a,b)={f: D"f€Z[a,b]}

[see (2.128) and (2.129)). -

The key to obtaining bounds on how well polynomial splines approxi-
mate functions in intermediate spaces (and, in particular, in the Besov
spaces) is the following general theorem from interpolation space theory:

THEOREM 6.30

Suppose 0<8<1 and 1 <p’'< oo. If T is a bounded linear operator map-
ping X; into Y, with norm M,, then it is also a bounded linear operator
mapping ( Xy, X,), , into (Yy, Y)g ,- With norm M < M(‘)"Mll -9,

We can now give bounds on f— Qf for fin a Besov space, where Q is the

spline operator defined in §6.4, Theorem 6.18.

THEOREM 6.31
let 1<p<g<oo and 1<p,q < oco. Suppose 1<o<m and that
0<t< | o—1]. Then there exists a constant C, such that for all functions
fEB P a,b),
AN\ —-T— 1}
1= Ol sotar <L) 77 fll pestaer- (6.59)

Proof. We proceed in two steps using Theorem 6.30. First, we prove that
for any 1 <o <m and 0<r <o —1 (where r is an integer),

1= Ol irtasr <GB T2 fll ey (6.60)

For this we apply Theorem 6.30 with X,= Lp’“"[a,b], X,=L[ab], Yo=
Y,=L/[a,b], and T=1- Q. Now by (6.52),

1+6

1Tl y, < C3(B) "[I fllx,
TSIy, <CaB)" 21l

where 6=1/g—1/p. Let 0<f#<1 be such that o=8(r+1)+(1—-80)m.
Then 8(1+68)--(1—8)(m—r+8)=0—r+ 6. Theorem 6.30 yields (6.60).
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For the second step, we choose X, =X, =B "Pla, b, Y,= L,a, b}, Y, =
L°""|a,b], and T as above. Then by (660)

1Tf lly, < Cs(B) "N fllx,

TS 1y, < Go(B) 7718 1 )
Now for each 0<8<1, let r=0|o0—1]. Since 8(o— |o—1|+8)+(1—
) o+8)=a-1+38, (6.59) follows. B
$§ 6.6. LOWER BOUNDS

In this section we give explicit lower bounds for how well certain smooth
functions can be approximated by piecewise polynomials. These bounds
will show that the results given in Section 6.4 are of optimal order. Our
first result provides lower bounds that are companions to the upper
bounds established in Corollary 6.21. Define

dj[f’ P @M(A)]p= se@i’rg,,(A) HDj(f_ 5)||1,,[a,b1- (6.61)

THEOREM 6.32

There is a constant C,>0 (depending only on m) such that for any
partition A of [a,b] and any 1 <o <m there exists a function F € C°~[a, b}
with

CB o (DB <4[FO D, (M), j=0l.o-1 (6:62)

Proof. We make use of the perfect B-spline By, defined in (4.67). Given
a partition A, suppose that » is chosen so that x,, , — x,=A. Now define

A\ . 2(x—x,)= (X, —X,)
, <x <
F(x)= ( ) B"*'[ (%41—%,) WRXSN41 (6.63)
0, otherwise
By construction, F € L7 [a,b] and
||DGF”L°°[a,b]=20-IG!. (6.64)

By property (2.119) of moduli of smoothness, this implies

Omeost(D°7'F38) B||DF ||, <CA. (6.65)
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Now fix 0<j<o—1 and let

dj= iqf, ”Dj(B:+l—g)”Lw[—l,l]

ge

Since B}, is not a polynomial of order m, C,=ming ;¢,.;4,>0. On the

other hand, by change of variables,

—o+

Cosd< max (DB ()-g))i=(5) T max 1DAR()-g0)

X, KIKX, 41

where

Z )u_jo[ 2(t_xy)—(x,+|°xy) } (666)

g(’)=(5 S ——

v+1

is also a polynomial of order m. Since this holds for all g€, we
conclude that

Ci<A " Yd[F,9%,(4)]

Combining this with (6.65), we obtain (6.62). [ ]

A similar argument can be used to obtain lower bounds in the L -norm.

THEOREM 6.33

Let 0<o <mand | < p,q < 0. Then there exists a constant C, >0 (depend-
ing only on m, g, p, and g) such that for all partitions A of [a,b] there is a
corresponding function F € L’[a,b] with

CA°/+V/a=Vry _ (DCF; Z)Lp(a,b1<dj[F,@@m(A)]q, Jj=0,1,...,6—1.
(6.67)

Proof. Let F be the function constructed in (6.63). Then in view of (6.64)
and the fact that F is zero outside of an interval of length A, we have

IDF || 11,0 < AP | DF | a5y < CA'%. (6.68)
Now fix 1 <g < o0, and define

C,= i inf || D/(B*,  — e
3 0<§'n<12—lglen@m” (B4 g)HL,( L)
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But then, for any 0<,<o—1 and any g€%,,,

C3<(fjl,Dj[B;+l(x)—g(x qu) (2f D[ F(1)=g(1)]|° A’)W'

E —o+j E —o+j—1/q )
(5) <(5) IDXF~ )1 ga.00s

where g is defined in (6.66). We conclude that
Cy<A Vg F. PP (A)] Ljabl
Combining this with (6.68), we obtain
CA VI VPDF oy <SG F P D (B) ] oy (6:69)
Finally, to obtain (6.67), we observe that
W o D°F;8), <277°| D°F|,. [ ]
As a corollary, we have the following companion to Corollary 6.26:

COROLLARY 6.34

Let 1 < p,g < o0 and 0<r <o <m. Then there is a constant C, >0 (depend-
ing only on p,q,r,0,m) such that for all partitions A of [a,b] there exists a
corresponding function F € L[a,b] with

CA VP Fl petany <AL E, P D(B)] gty (6.70)

Proof. Let F be defined as in (6.63). Then summing the inequalities (6.69)
for j=0,1,...,r, we obtain

C§Zo-r+l/q_l/l7”D"F“Lp[a‘b] < 2 dj[ F, @@m(A)]Lq[a,b]
j=0
<dl: F, @@m(A)] Lj{a.b]
But since F and its derivatives up to order o— 1 all vanish at the point x,

(cf. the definition of F), it follows by applying Hélder’s inequality to the
Taylor expansion that

(b—a)’™” .
”DF”L[a b]<(—__l_)'”D F”Lp[a,b]’ Jj=0,1,...,0.
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This implies that

° (b—a)®™’
2 ~~ 7

DI )uD"FuL,[a,b,.
J= " .

1F Il 251,01 <(

Combining these estimates, we obtain (6.70). [ ]

§ 6.7. n-WIDTHS

In this section we show that polynomial splines provide asymptotically
optimal sequences of approximating spaces (in the sense of n-widths) for
several classes of smooth functions. Throughout this section we shall deal
with the sequence of spaces

X,=5,48,_,), n=m+1, m+2,...

where A, _,, is the uniform partition of the interval [a,b] with n— m knots
(cf. Example 6.6). For each n>m, X,, is an n-dimensional linear space.

Our first result concerns the unit ball UL’[a,b] of the Sobolev space
L;[a,b] (cf. Theorem 2.77).

THEOREM 6.35

Fix 1<o<m and 1<g<p<co. Then X, is an asymptotically optimal
sequence for approximating UL]{a,b] in L [a,b]. In particular,

l o
d(ULpo[a,b],Xn)Lq[a‘blm(-;) . (6.71)
Proof. For n>2m we have A,_ =(b—a)/(n—m)<2(b—a)/n. Thus by
Theorem 6.27, for every fEe UL][a, b],

d(f.X,),<d(f.X,),<C8,_,) <C,[2(b—a) ]°( % )

Theorem 2.77 asserts d,(UL/[a,b), L [a,b))~C,(1/n)°; and (6.71) follows.
|

Theorem 6.35 also holds for 1<p<g<2. On the other hand, for
2< p<g< oo Theorem 2.77 asserts that

a(ULglablrfab]) ~(+)"
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whereas by (6.50) and (6.69), the best possible order for X, is

. 1\e+V/a-1/p
a(uL;[ab].x,),~(5) .

Thus for these values of p and ¢ the spline spaces X, are not asymptotically
optimal for approximation of UL, in L,. The same is true for 1<p<2<gq
< 00. In this case, Theorem 2.77 asserts that

1 o+1/2-1/p
d,(UL[a.b], L [ a, b])m(;)

3

whereas (6.50) and (6.69) show that the best possible order for X, is

. 1 o+1/q-1/p
d(ULp[a,b],X,,)qz(-;) ‘

Our next result shows that the spaces of splines X, in Theorem 6.35 also
provide asymptotically optimal approximation for the set A [a, b] in
Cla, b}.

THEOREM 6.36

Let 1 <o<m, and let A% [a, b] be the set of smooth functions defined in
(3.20). Then

AN a,b]. X,) ~d, (N[ a,b],Cla, b])z(%)ow(l).

n
Proof. The n-width of A7 is computed in Example 3.15. On the other
hand, Corollary 6.21 shows that for every fEA° [a, b],

A0S %) S CBan) o(Bam) < &3 ) ol 3 ) .

§ 6.8. INVERSE THEORY FOR p=oc

In this section we obtain inverse, saturation, and characterization theorems
for approximation by polynomial splines in the L _-norm. Similar results
for the L,-norms are given in the following section.

The idea of inverse theorems is to estimate the modulus of smoothness
of a function in terms of how well it can be approximated by a sequence of
spline spaces. As we shall see, the analysis depends to some extent on how



INVERSE THEORY FOR p=o 241

much smoothness we require of the spline spaces. We begin by discussing
approximation with a sequence of piecewise polynomial spaces P ¥, (A,).

As Example 6.11 showed, it is impossible to get estimates on the
smoothness of a function in terms of d{f,??,(4A,)], without some
assumption on the behavior of the sequence of partitions A,. We make the
following definition:

DEFINITION 6.37. Mixing Condition
Forv=1,2,---let

A, ={a=xi<xy<- - <xp<x{,,=b} (6.72)

be a sequence of partitions of the interval [a,b]. We say that A, satisfies the
mixing condition provided there exists a constant 0 <p <1 such that for all
vand all 1<i<k,

supd(x/,A,)> pA,, (6.73)
na>y
where
d(x,A,)= i —x"|.
(x,4,) qurgkrzﬂlx x|

Before proceeding to our first inverse theorem, we show that the
sequence of uniform partitions (see Example 6.6) satisfies the mixing
condition.

THEOREM 6.38

The sequence of uniform partitions

v - _{(b—a)

i=0 14 =v

8,={a+i3,) (6.74)

satisfies the mixing condition with p=1/6.

Proof. We may assume [a,b]=[0,1]. Let 1<a<v and 0<S8<a~1 be
integers, and suppose that (68+2)/6a<i/v <(68+4)/6a. Then we easily
check that

i+B i i+B+1
v+a v v+a
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In fact,

This shows that x”=i/» satisfies (6.73) with n=» + a and with p=1/6.

It remains to check that all of the points x,=i/»,i=1,...v —1 are
contained in an interval [,z =[(68+2)/6a,(6+4)/6a] for some choice of
a and B. To this end, we show that .= U, _,Ug_1,z=(2/6r,(6r—2)/6r).
For r=1 this is trivial. Now we proceed by induction on r. It is easily
checked that the intervals

; _( 2 4 )
RO 6(r+1) T 6(r+ 1)
and

I} _( 6r+2 6r+4 )
hee(r+1) 7 6(r+1)

both overlap the interval /,. This shows that I, | also has the stated form.
Now I,=(1/3»,1—1/3»), and this contains all the points x/,1 <i<k, =
v—1. n

For sequences that are mixed we can now estimate w,(f;4,).

THEOREM 6.39

Let A, be a sequence of partitions of [a, b] satisfying the mixing condition.
Then for any f € Bla, b},

wonl f: Kv)<zm+'{% ]msupd[f,@@m(A,,)]w. (6.75)

nav

Proof. For each n let 5, € PP (A) be such that | f—s,| <
2d[f, P ¥,(A,)) Now fix », and let h <pA,/m and a <x <b—mh. Let i be
such that x” <x <x/, ;. If x<x7 ,—p4,, then

AR =187 (f= s )N <27 f= 5, <27 Y[ £, 9 9D, (4,)]

o
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On the other hand, if x/,,—pA, <x, then by the mixing condition there
exists n and / so that x" <x <x+mh<x/, |, and

|ARf () = A7 (f = s,)(x)| <27 [ £, 9 P ()] -
We conclude that

A
wm(f; Pm,, ) <2"*'supd[ £, 9 P,.(A,)] .-

n>v

Combining this with

wm(f; KV)=wm(f: _’pﬁ PAV)

m

N
——
° |3

es

3
—

sl

)

-

y

we obtain (6.75). | |

The following theorem shows that the estimate (6.75) cannot hold unless
the mixing condition does.

THEOREM 6.40
Suppose A, is a sequence of partitions such that for all f € B[a,b] and for

all » in some infinite set V,

wy(f:4,) <Csup d f,PP(A,)] (6.76)

nav

0"

Then A, must satisfy the mixing condition.

Proof. Fix v and i with 1 <i<k,. Let f(x)=(x—x?),, and let n be such
that

sees( f:8,)<d[ £.99(8,)].,.

Let j be such that x7 <x} <xJ,,. Let h=x! —x] and A=x", —x!. Now
there are two cases.
case 1. If h<h, then with P(x)=x—x", we see that

CASE 2. If h<h, then with p(x)=0, we have

d[ £.9 P, ] <If-pl=h
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We conclude that w,( f; §V)/2C< min( A, };)=d(x;’, 4,). But we may easily
check that w,(f;4,)=4,, and it follows that A, satisfies the mixing
condition with constant p=1/2C. u

We now give a complete inverse theorem in which w, (f;7) is estimated
for all small ¢.

THEOREM 6.41

Let A, be a sequence of partitions going steadily to zero as in Definition
6.5 and satisfying the mixing condition. Suppose in addition that f&€
Bla,b] is such that

d[ £.9 9,.(8,)], <(8,). (6.77)

where ¢ is a monotone increasing function on (0,4,). Then

w(fi)<Cip(r)  forall0<r<A,. (6.78)

Proof. Let i be such that A, , <t<A,. Then
W f1 ) <0 f38,) <@ f1 B8,11) <[ B0 £ B,1)-

On the other hand, by the monotonicity of ¢ and Theorem 6.39,

wm(f§ Zi+1)<2m+l{%’—]m sup d[f’@@m(A")]w

n>i+1

<zm+'[ﬂ” sup ¢(Z")<2m+‘[ﬁr¢(2\i+,).

n>i+t p

Since ¢(4,, ) <$(2), (6.78) follows with C,=2"*'[B]™ [m/p]™. [

The following saturation result shows that (except for polynomials that
are approximated exactly) no matter how smooth a function f may be, it
cannot be approximated to order better than A™ by a sequence ¥ P, (4,)
of piecewise polynomial spaces with A, satisfying the conditions of Theorem
6.41.

THEOREM 6.42

Let A, be a sequence of partitions of [a,b] as in Theorem 6.41. Suppose
f € Bla,b] is such that

d[ £,99,(8,)],<an(4,) (6.79)
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for some function y(¢) with ™y(¢) monotone and y(¢)—0 as r—0. Then
fE®R,; that is f is a polynomial of order m.

Proof. Theorem 6.41 implies that if (6.79) holds, then w,,(f;1)/t" < Cy(1)
—0 as r—0. By properties of moduli of smoothness, cf. (2.122), this implies
that fE€ P, . o

We emphasize again that the limit on the order of convergence attain-
able using a sequence of piecewise polynomial spaces given in Theorem
6.42 holds only for sequences of partitions satisfying the hypotheses of
Theorem 6.41. Higher-order convergence can occur for a specific function
with a proper choice of knot locations (cf. Chapter 7).

Putting the direct theorems of §6.4 together with the inverse theorems
established here, we can now characterize some of the classical smooth
spaces in terms of how well they can be approximated by piecewise
polynomials.

THEOREM 6.43

Suppose A, is a sequence of partitions of [a,b] as in Theorem 6.41. Then

d[ £, 99,.(4,)], <C(A*=) (6.80)

if and only if
fE€Lip**[a,b], when 0<k<m-—1and 0<a<l; (6.81)
feZ*a,b], when 1<k<m—1and a=0; (6.82)
fe€Lip™ “Ya,b], whenk=ma=0; (6.83)
fEP,, when k+ a >m. (6.84)

For the definition of these spaces, see (2.128) and (2.129).

Proof. The assertions that (6.80) follows from (6.81) to (6.84) are direct
theorems, and they were proved in Section 6.4. Conversely, if (6.80) holds,
then by Theorem 6.41, w, (f;1)=0(t***). If k+ a >m, this implies fEP,
by the saturation Theorem 6.42. In all other cases it implies that f belongs
to the spaces indicated in (6.81) to (6.83). [ ]

So far we have been working with the space P% (A) of piecewise
polynomials of order m. We have seen that the mixing condition plays an
important role in the inverse theory for such spaces. In the remainder of
this section we shall examine inverse theorems for approximating spaces S,
contained in P, (A)N C/[a, b] with 0</<m—2. In this case we will be
able to establish inverse theorems without a mixing condition. The results,
however, are weaker than those obtained above, and they do not lead to
complete characterization theorems in all cases.
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In preparation for our first inverse result, we now give an estimate for

the modulus of smoothness of a piecewise polynomial.

THEOREM 6.44

Let A be a partition of [a,b], and let 0<e <A. Then for any s€ P P, (A),

m—1

w,(s;6) <2m)™ Y I(Ds), (6.85)

j=0
where

J(D’s)= max | D’s(x;+)— D’s(x,—)|.

If s€PP,.(A)N C'la,b)], then we have the estimate

m—1

0, (5,6)<Q2m)" S I(D%s). (6.86)

j=I+1

Proof. We observe that w,( f; €) <m™w,(f; e/m). Now let h<e/m. Then
for any x, the interval (x, x + mh) contains at most one knot of s. If it does
not contain any knots, then A7 s(x)=0. Suppose it contains one knot, say
x;. Then for all ¢ in (x, x+mh), s can be written in the form

i Cj(’ - 'xi)’:-—j
s(t)=p(t)+j§l W

’

where p€%?,, and ¢;=jump[D™ %], j=0,1,...,m. Thus

” L P cj(x+rh——x,.)':—j
0= 3 (7Y S T

Since |x+rh—x;| <e, (6.85) follows. If s& C'[a, b), then s and its deriva-
tives up to the /th order have no jumps, and we obtain (6.86). [ ]

Our next task is to estimate the size of the jumps for a sequence of
splines with A,—0.
THEOREM 6.45

Let A, be a sequence of partitions of [a, b] such that A, O, Ap={a,b}. For
each » let §,€9 %P, (A, )N C'[a,b] be a linear space of splines. Given
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fEBla,b), lets,€S, be such that || f—s,||<2¢,. Then for j=/+1,...,
m—1,
- (€r+£r—l)

J(D’s,)<C, El — (6.87)

where C, depends only on m.

Proof. We proceed by induction. For »=0 the result is trivial since
Ap=[a,b], and neither s, nor its derivatives have any jumps. Now suppose
the result has been established for » — 1. We then obtain (6.87) for j=m—1
and all » if we can establish

J(D™ s, )<CA (e, +e,_ ) +J(D™ s, ). (6.88)

To prove this, let x” be one of the knots of A,. Let j be such that

x' 7' <X <x/7,'. There are three cases.

case I x/ —x!>4,/4and x/ —x]"'>4,/4. Let I=[x! —A,/4,x!)
and J=[x!,x!+A,/4). Then g=s, —s,_, is a polynomial on both 7 and J.
Moreover,

[D715,],=[ D7 g],= D7 g(x7 )~ D™~ lg(x7 )

since s, _, has no knot at x}. (Here we have written [ ], for the jump at x}).
By the Markov inequality (cf. Theorem 3.3),

B A,, 1—-m
| D™ lg”Lm[l]<C3(_T) glle i

and a similar estimate holds for the interval J. Since
Il <lis, =fI+1Is,oy —f 11 <2( e, +e,_1).

(6.88) follows in this case.

CASE 2. x/—x;"!'<A,/4 In this case x/, | —x’ >4, /4 since A, | >4,.
Nowlet/ = [x57' — A, /4, x5 YandJ = [x), x, + A,/4). Again, gisapoly-
nomial on each of these intervals. Now we estimate

[D™'s,], =D 'g(x; +)= D™ 'g(x; —)+[ D™, ]..

1

If xj-”_' =x!, we can estimate the values of D™~ 'g just as in Case 1, and
(6.88) follows. If xj”' < x!, then using the fact that D™ g is constant on
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[x;", x’], we note that

{D’"_'s,]i=D”'#'g(x,’-'+)—D’"_‘( vl )+[D"‘" l]j.

Using Markov’s inequality, we again obtain (6.88).
case 3. xJ7| —x/ <A, /4. This case is the mirror image of Case 2.
To prove (6.88) for general j, suppose it is established now for m—1,...,

J+ 1. Again, it suffices to show that
J(D’s,) <CA (e, +¢,_,)+J(D’s,_,). (6.89)

The proof of this breaks into the same three cases as above. Case 1 is
virtually identical except that the Markov inequality is used to estimate
D’g. Suppose now that we are in Case 2. If x} ''=x?, then the analysis is
as in Case 1. Suppose now that x”" <x]. Then we wnte

[D’s ] =D'g(x; +)—D’g(x)"" )+[D/’sv”,L
+DJg(x!™"+)—D'g(x! —).
We estimate the value of D’g at x/+ and x;“' — using the Markov
inequality on the intervals / and J as before. It remains to deal with the
last two terms. By Taylor’s expansion, we have
& D)

Dig(x; =)= D7%(x:™ ‘+)— Y

v v—1)}9
(xr —x;71)"

q=1
But
|D/*ag(xr = +)| < | D/ 9g(x; ™t =)+ [ D/*9s, ],
<CA (e, +e,_ ) +J(D/s, )
(using the Markov inequality). Since x} —xj”‘l <4,, we obtain

|D/g(x; —)—D’%g(x)~ l+)I<C2 (E—Z—'),
r=1 et

r

where we have used (6.87) for »—1 and for m—1,...,j+ 1. Combining
these results yields (6.89), and the proof is complete. [ ]

We can now combine Theorems 6.44 and 6.45 to give an inverse
theorem for rather general sequences of partitions.
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THEOREM 6.46

Let A, be a sequence of partitions of [a,b] with A, |0 and Ay={a,b}. For
each » let S, be a linear space of splines contained in ¥ 9, (A,) C'[a,b].
Given f € B[a,b], let £,=d(f,S,). Then

+
o (fiA) <CAl S S—Z:T“
r=1

; (6.90)

where C, is a constant depending only on m.

Proof. Lets, €5, be such that || f—s,|| <2¢,. Then

wn(f,4,) < 6,(s,,8,)+w,(f~5,,4,).

Clearly w,(f—s,,4,)<2™*%,. On the other hand, by Theorems 6.44 and
6.45,

+
@, (5,,8,) < C, 2 p s et
j=1+1" r=1 A
Now for all r=1,...,», A, /A, <1, hence the sum over j can be estimated
by the term with j=/+1. [

We now characterize some classical smooth spaces in terms of ap-
proximation by splines on a sequence of partitions not necessarily satisfy-
ing the mixing condition.

THEOREM 647
Let A, be a sequence of o-quasi-uniform partitions with A,={a,b}.
Suppose A, satisfies the steadiness condition

ad,<A,_,<A,_,<BA, withl<a<oand 1<B<o. (691)

Let 0</<m—2, and let S, be linear spaces of splines in ? %, (4,)N
C'[a,b] but not in C'*!. Finally, suppose f € B[a,b] is such that

d(f£,5,)=0(ak*=). (6.92)

Then
feLip**[a,b] if0<k</and0<a<l; (6.93)
fe%""[a,b] if 1 <k</and a=0; (6.94)

fE€Xab] ifk+a>i+]l. (6.95)
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When k+a=1[1+1,
W (f;)=0[1"*"log(1)}]. (6.96)

Proof By (6.92) we have ¢, —@(A"*"‘) By the steadiness assumption,
_1<BA,and so e _ = G(A"*“) also. Theorem 6.46 then implies

] Zk"‘d
0 (f:4,) <CA"! El X’,:T (6.97)

—-r

Now for k+a </+ 1, we have

— k+a
v A A I+l ~k—-a
ol fi8) < CE T S (-A—) ('A'—)

r=1

But by (6. 91) 4,/4, <(1/a)”7. Then, since the geometric series
S (1 /a)iri=k “e¥ converges to a finite number, we conclude that
@, (f;4,)=0(A***). By the same kind of argument used in the proof of
Theorem 6.8, we can convert this to w,(f;#)=0(t***), and (6.93) and
(6.94) follow.
If k+a>/+1, then

I+1
Ak+a—1-1

)r(k+a—l—l)

Ll>| (=l

© (fA)<CA’“2(

r=1

(1

<C.glt 1A+ (_

3 - rgl @
<A

In this case, we obtain w,(f;7)=0(+'*"), and (6.95) is proved.
Finally, if K+ a=/+1, then by the same argument, we obtain

© (f A )<COI+IAHI( 2 1)
r=1
Now by (6.91), A, <(b—a)/a’, hence vlog(a)<log((b—a)/4,). Combin-
ing this with the above, we have w_(f:4,) <C,A*'log(4,)]. This converts
directly to (6.96). ]

The inverse assertions in Theorem 6.47 are the correct companions for
the direct theorems proved earlier as long as k + a </+ 1. For these cases,
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the direct and inverse results combine to give characterizations of
Lip*®[a, b] and £*~![q, b] in terms of approximation by linear spaces of
splines in C'[a, b] defined on sequences of partitions not necessarily
satisfying the mixing condition. For k+a>/+1, however, the inverse
results do not match the direct theorems. This is the sacrifice we must
make for dropping the mixing condition.

The hypothesis (6.91) on A, is satisfied for nested uniform partitions
with a=f8=2. Given a sequence of o-quasi-uniform partitions that go
steadily to zero, we can always find a subsequence satisfying (6.91).

It can be shown by example that the assertion (6.96) of Theorem 6.47
cannot be improved; that is, there exist functions that can be approxi-
mated to order A'*! for which w,(f; )=0[¢'*"|log()|). The assertion (6.95)
is also sharp. Indeed, if (6.95) could be strengthened to w,(f;f)=
O(+'*'**) with a >0, then for a nested sequence of knots it would follow
that

8,,(;Lip’“""[a,b]gC’“[a,b],

which contradicts the definition of /.

Without the assumption of mixing, it is not possible to establish a
saturation result for arbitrary functions. But we can show that for
sufficiently smooth functions, the maximal order of approximation is K’,,"
unless the function is a polynomial of order m.

THEOREM 6.48

Let A, be a sequence of partitions with A,|0. Suppose f € C™[a,b] is a
function such that

d[ £,99,.(8,)],,<CATW(a,), (6.98)

where i is a monotone-increasing function with y(¢#)—0 as r—0. Then

fe®,,.

Proof. Let s, be such that || f—s,| <2e,:=2d[f, 99,(4,)]. Now,
On(f;4,) <@, (f=5,;4,)+w,(s,;4,), while w,(f—s,;4,)<2™*'e,. By
Theorem 6.44,
m—1
wm(sv; év) < C‘2 2 é{"](Djsv)'
j=0

We‘must estimate J(D’s,) for j=0,1,..., m—1. For each 1<i<k,, let
[s,)/ =jump{D’s,],,. Fix i, and let e=6A, with §<1. By Whitney’s Theo-
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rem 3.18 there exists g, €9, such that
NS —&illL 121 S Cse™IDfll L 210

where 1, =(xi"—e,xi*+s). The function s, ~g; is a polynomial on each of
the intervals ,” =(x”—¢,x”) and I*=(x",x”+¢). Using the Markov
inequality, we obtain

sj[ Sv]{= ej[(s” - g,)],J < C4(Hs,, =&l s — &l Lm[l,*])‘

But |is, — gl <|ls,—fll + || f—&l| and ||s, — f|| < 2¢,. Combining these facts,
we obtain
m—1
wm(sv; _A_v) < CS 2 0—_j(£v +8m“Dmf H L,,[a.b])'
j=0
Taking §=[y(4,)]'/™, this implies

m—1 m-—y
m

wn(fi8,)<C S [W(E,)] ™ =ofan).

Jj=0

Since Z,,LO with »— o0, it follows that f€P . [}

§ 69. INVERSE THEORY FOR 1<p< o0

In this section we carry out the same program as in Section 6.8, but now
we use the p-norm instead of the co-norm. The basic ideas are the same,
but the details are a bit more complicated. We begin with an important
estimate for the smoothness of a piecewise polynomial in terms of the
jumps in the various derivatives at the knots.

THEOREM 6.49

Let A be any partition of the interval [a,b], and let 0 <e <A. Then for any
spline s€ 9P P, (4),

m—1
W, (55€), <Ce'/? X &1,(D%), (6.99)
j=0
where

k 1/p
Jp(Djs)=( > |jump[Djs]x,|”) . (6.100)

i=1
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Proof. We first show that for any 0<j<m—1,

W (D'sie), <Cy[ e'/2) (Ds) +w, _, (D/*'s;e),].  (6.101)

i=1

Fix j. Let g(x)=3F_,[s1/(x—x,)%, where we write [s]/ =jump[ D ’s], .
Then [g], =[s]/, i=1,2,..., k. Moreover,

WA D’si6)p <, _(g:8),+w, (D's—g;e),
For the first term we note that
W (8:6) <277 7wy g58).
Since D(D’s —g)= D’*'s, almost everywhere, for the second term we have
WO D's—g18), <@, _,_(D/*s;¢),.

Now as x runs over the interval [a,b—h] (with h<e), the function
|g(x+h)—g(x)| is a piecewise constant. It takes on the value |[g],|=|[s]/]
on the interval I, =(x;, —h, x;), i=1,2,..., k, and is otherwise zero. Thus

E)p= "M e(x - x”xl/p £)'/? 2
ar(g:)p=sup( [ Is(x+ W) =gl dx) 7 < 26) 70, (D%5).

a

Combining these estimates, we obtain (6.101). Now (6.99) follows by
stringing the inequalities (6.101) together. [ ]

In order to apply Theorem 6.49, we need estimates on the size of the
jumps in the various derivatives of a sequence of splines s,. As in the
uniform norm case, such estimates cannot be obtained without assuming
either that the splines have some kind of global smoothness, or that the
partitions satisfy some sort of mixing condition. We consider the case of
mixed partitions first.

DEFINITION 6.50. p-Mixing Condition

Let A, ={x,)%:¢" be a sequence of partitions of [a, b], and let 1 <p< co.
We say that A, satisfies the p-mixing condition provided there exists C, >0
such that for every » there is a sequence a’ =(a,, ,, a,,,,...) with
2,100 <1 so that for all 1 <i<k,,

S akd(x!,A)™ > C A, (6.102)

n=v+1

There are many examples of sequences satisfying the p-mixing condition.
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The following theorem shows that the sequence of uniform partitions is
one such example:

THEOREM 6.51

The sequence of uniform partitions A, ={a+ih};_, with h=(b—a)/v
satisfies the p-mixing condition for any 1 < p < 0.

Proof. We choose

1/2, n=r+1
a,=41/2p, n=v+2,....2v.
0, n=2r+1,...

Fix i, and let d; ,=d(x/,A,), n=v+1,.... We note that Z7_,, a, <1.
Now the proof of (6.102) divides into three cases. Assume [a, b}=[0, 1].
Case 1. 1/3<x!=i/v<2/3. Then x] is in the interval /, , defined in the
proof of Theorem 6.38, and by the estimates there, 4, ,,, > A, /6. Thus

e mp+1_
S ad ) > (5) &

n=pr+1

CASE 2. 1/v<x] <1/3. First we compute d, ,, , for each 1 <a<». Given
such an a, there must exist an integer 0 < 8 < such that a is in one of the
intervals

1/2 -1/2
,ﬂ+=[gy_,(ﬂ+_/ )v) o JB_=[(B l/ )V,&)_
i i i i
But then
i+,B<i'<i+B+l or i+B-1 i 1+/3,
v+a v v+a r+a y r+a
and thus

Hazpr/D) eyt
d N 202 g
i,v+a I(BV/I‘“(X)

a€EJy .
202 A
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This implies

2v i
S (4= 2[ S @)+ S (d,-_n)"*’“]

n=y+1 B=0| acJy acld
i /2] s\ ;o\l Lv/2i]
> 202 (5) -5) ez e
Now
Lv/2i]

[(v/2i)—1]""2

S st [ g
mp+2

s=1

(=]

Since i /v < 1/3, (v/2i—1)>»/6i. Combining these facts, we obtain

2v 2» . +1
1 1 i \™ p \mp+2
v mp+1 . 1 ] mp+1 1 e
n=§+lan(di,n) >2V "=§+l(d1.n) >VC2( 2]}2) (61)
1 mp+1
>C‘](——) ’
14

which is (6.102).
CASE3. 2/3<i/v<(vr—1)/». This case is almost identical to Case 2. @1

With the p-mixing condition, we can now establish the analog of
Theorem 6.39.

THEOREM 6.52

Let A, be a sequence of quasi-uniform partitions of [a,b] satisfying the
p-mixing condition. Then for every f& L [a.b],

w,.(f;4,),<C supd[ .9 P,(4,)], (6.103)
nav

Proof. Let 5, €P P (A,) be such that | f—s,||, <2¢, where ¢, =
dlf,9?,.(4,)],- Then

wn(fi8,), <0, (f=5,34,), +0,(s,:4,),.
For the first term we have

o f=5,58,), <271 f=s,[l, <27,
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To estimate the second term, we use Theorem 6.49 to get

0n(18,), < [0]"0n(5,58,), <CAY? 3 J(DYs,).

j=0

We now estimate Jp(Dfs,,). Fix i, and suppose n>v is such that 4, =
d(x/,4,)>0. Then

[s_,]{: =jump[Djs,,]x,= (s, —sn]f,

and s, —s, is a polynomial of order m on each of the intervals I, =(x”~
d ,.x")and I} =(x',x"+d, ). Applying the Markov inequality (see Theo-
rem 3.3) to each of these intervals, we obtain

1

l[%]fKQW

(HS,. =5, L +lls, _anLP[l,f,])-

We conclude that

k, AP*(s, -5, 018
—. ) v v [7; ]
AYVP)(DIs, )< Gyl X 7

=1 (d- )JP+1
! HLn

Since A, /d, , > 1, the maximum of this expression for 1 <j <m occurs for
j=m. Thus using (6.102) to estimate A™”*! we obtain

o0

W | 2 e, )
el i n=y+1
Aj.«+l/pjp(DjSu)<Cz > o ”5."‘5,.”2,,[1,‘,,]

i=1 (di‘n)

o0

<G > a:”S»_sn”i,[a,b]<C|SUP£n- [ |
n=p+1 nav

We can now prove the following analog of Theorem 6.41:

THEOREM 6.53

Let A, be a sequence of quasi-uniform partitions going steadily to zero and
satisfying the p-mixing condition. Suppose f € L [a,b] is such that

d[ £,99,(8,)],<e(8,) (6.104)
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where ¢ is a monotone-increasing function with ¢(¢)—0 as 1—0. Then

ol f:1)p < C1(2). (6.105)
Proof. The estimate (6.105) follows directly from (6.104) and Theorem
6.52, exactly as in the proof of Theorem 6.41. [ ]

The inverse Theorem 6.53 can now be used to establish a saturation
result and to characterize various Lipschitz and Zygmund classes.

THEOREM 6.54

Let A, be a sequence of partitions as in Theorem 6.53. Then f € L,[a,b]
satisfies

d[ £,99,(8,)],=0(&k*=) (6.106)

if and only if
fELipt“[a,b] when 0<k <m—1and 0<a<1; (6.107)
f€Z;" " a,b] when 1<k <m-—1and a=0; (6.108)
feLipy~"'[a,b] whenk=m,a=0; (6.109)
fe®, when k+a >m. (6.110)

Proof. The direct assertions follow from theorems proved in Section 6.4.
Conversely, if (6.106) holds, then by Theorem 6.53, w,,(f; t)1,=®(t"+").
This implies that f is in the various spaces listed in (6.107) to (6.109),
depending on the value of k£ and a. |

We note that the sequence of uniform partitions satisfies all of the
hypotheses of Theorem 6.54. As in the case of p = co, certain functions can
be approximated to higher order if the sequence of partitions does not
satisfy these hypotheses (cf. Chapter 7).

In the remainder of this section we examine the extent to which an
inverse theory can be developed without assuming that the sequence of
partitions satisfies the p-mixing condition. We have the following inverse
theorem (cf. Theorem 6.46 for the case p= 0):

THEOREM 6.55

Let A, be a sequence of partitions of [a,b] with A, |0 and Ay={a,b}. For
each v let S, be a linear space of spline functions contained in ¥ ?,,(A,)N
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C'la,b},1 0. Given f € L,a,b], let s,,=d(f,8,,)p. Then

+
LA (6.111)

-1 Al+l+l/p

w (fA) <CAI+]+l/p2

where C, is a constant that depends only on m and p.

Proof. The proof follows that of Theorem 6.46. Let 5, €S, be such that
Nf—s,ll, <2¢. Then

wm(f; év)p < wm(S,,; év)p +wm(f-— Sy év)p'

Now, w,(f—5,;4,)<2"*',. By Theorem 6.49 and the fact that the deriva-
tives of s, up to order / are all continuous, we have

m—1
wnfi8),<CA" S MI(D%),

=i+l

It remains to estimate Jp(DfsV) for j=I41,..., m— 1. Here, the proof of
Theorem 6.45 can be carried over with only minor changes. First consider
J=m~1. Then by induction it suffices to show that

J(D"" ‘s)<c — +J (D™ s, ). (6.112)

Am l+l/p

To show this, let 1 <7< k,. We must examine three cases, as in the proof of
Theorem 6.45. In all cases the Markov inequality (cf. Theorem 3.3) gives

[Dm15, 1< I D™, L1+-CA gl g

where g=s, —s,_, and /, is a subinterval of [x! —A4, /2, x! +4,/2]. Now,
using Holder’s inequality, we have

k, /'S 1/p k, 1/p
(EI[D”“‘s,]iI”) <(2|[D'""‘s,_.],.l’) +Cé’:'“(2ugll’£,u,.1) :

i=1 iwm] =]

Since the /I, are disjoint,

k, 1/p
( 2 I g”’ip[l,]) <liglh o <8, = fllLrast 8y~ =Sl 1 1,61

i=1

= 2, + €,-),



INVERSE THEORY FOR 1<p< o0 259

and by induction, we obtain

. 4 +
Jp(DJsv)<Céil'/p 2 ETE

r=/+1

(6.113)

&

for j=m— 1. Arguments similar to those used in the proof of Theorem 6.45
can now be used to establish (6.113) for 1 <j<m—2. Then

m—1 v A j+1/p
onfis) <€’ S 3 (F] e,
J=i+1r=1\=r

Since A, /A, <1, the largest term occurs for j=/+1, and (6.111) follows. @

We can now translate the inverse assertion of Theorem 6.55 into an
inverse theorem involving classical smooth spaces.

THEOREM 6.56

Let A, be a sequence of quasi-uniform partitions with Ag={a,b} . In
addition, suppose

al, <A, <A,_,<BA, withl<a<owand I<B<o0. (6.114)

Let 0</<m—2, and let §, be linear spaces of splines in PP _(A,)N
C'la,b}, but not in C'*'{a,b). Finally, suppose f € L,[a,b] is such that

d(£,5,),=0(ak*=). (6.115)
Then
fELipkela,b]  if0<k</+1and0<a<l; (6.116)
feZa,b] if 1<k</+1and a=0; (6.117)
feZ/la, b) if k+a>I+1+1/p. (6.118)
If k+a=I!+1+1/p, then
W (f;)p=0[ 1" [log(1)]]. (6.119)

Proof. By the same arguments used in the proof of Theorem 6.47, if
k+a<l+1+1/p, the assumption (6.115) together with the inverse Theo-
rem 6.55 implies w,,(f; t)p=®(t"“'). The assertions (6.116) and (6.117)
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follow. When k+a>/+1+1/p, we get w, (f: t)p=@(t’”), which gives
(6.118). The case k+a=/+1+1/p also follows, as in the proof of Theo-
rem 6.47. a

As in the case of p= oo, treated in Section 6.8, the inverse assertions of
Theorem 6.56 are the correct companions for the direct theorems proved
earlier as long as k+a </+1+1/p. For these cases the direct and inverse
theorems combine to give complete characterizations of the spaces
Lip¥®[a,b] and Z;~'[a,b], respectively. For k+a>/+1+1/p, however,
the inverse and direct theorems do not match. As for p = o0, these inverse
theorems cannot be improved.

We close this section with a saturation theorem for approximation by a
sequence of piecewise polynomial spaces P P, (A,). We do not assume that
the partitions A, satisfy a mixing condition. The result shows that (except
for polynomials) smooth functions cannot be approximated to an order
higher than A”.

THEOREM 6.57

Let A, be a sequence of partitions with Z,iO. Suppose f € L,"{a,b] is such
that

d[ £,99,(8,)],<CA¥3,), (6.120)

where ¢ is a monotone-increasing function such that (7)—0 as r—0. Then

f€P,,.

! Proof. The proof is similar to the proof of Theorem 6.48. In particular, if
5, is such that || f—s,|, < 2¢,:=2d[f, P ¥ ,,(4,)],, then

wm(f; év)p < 2m+ ]Ey + wm(sv; év)p'

Using Theorem 6.49, we have

m-—1
wm(sv; év)p<c 2 é{“]p(Djsv)'

Jj=0

To estimate J,(D’s,), we note that by Whitney’s Theorem 3.18 there exists
a polynomial g€, such that N~ &l Ly <€™ND"fll gy i=1,....k,
where I, = [x” —€,x”+ €]. Now, using Markov’s inequalities (3.2) and (3.3),
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we have
e[s,)/=¢[s,—£3/<Cls, =gl umr + 15, —&ill Lgs21)
<Ce 25, —gill iy <Ce ™ P(1 =5, M 1,y HE™ N D™ N 1 yiry)-

Applying the discrete Holder inequality (see Remark 2.1) to the pth power
of this inequality and then summing over i=1,2,..., k,, we obtain

&) (D%s,) < Ce='7(|| f=sll, +e™ || DS || ,)-

It follows that with e=6A»,
m—1

©n(f34,),<C X 07/(e, +e™ || D™f]],),

Jj=0

and the rest of the proof proceeds exactly as in Theorem 6.48. [ ]

§ 6.10. HISTORICAL NOTES

Section 6.2

The approximation power of piecewise constant functions was studied in
the lecture notes of Kahane [1961]. His notes include direct theorems, the
inverse theorem (for equally spaced partitions only), and the characteriza-
tion of Lip® (for f€C[a, b]). An inverse theory for B[a, b} was developed
later by Nitsche [1969b] and DeVore and Richards [1973b). The characteri-
zation of Lip® in the case of fEB[a, b] was given in the latter paper. A
different proof was given later by Shisha [1974b].

Section 6.3

The approximation power of piecewise linear polynomials was also dis-
cussed by Kahane [1961], and independently by Brudnyi and Gopengauz
[1963]. Both papers include inverse results (although only for equispaced
partitions) as well as direct theorems. See also Malozemov [1966, 1967].

Section 6.4

Prior to the mid-1960s there were only a few isolated papers dealing with
the question of how well classes of smooth functions can be approximated
by piecewise polynomials or splines. We have already mentioned the
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papers by Kahane [1961] and Brudnyi and Gopengauz [1963] in connec-
tion with approximation by piecewise constants and piecewise linear
polynomials. Other early papers include those by Peterson [1962] and
Smoluk [1964].

The intensive development of the theory of interpolating splines that
began in the eariy 1960s (cf. the discussion in the historical notes for
Section 1.4), led to a concommitant development of error bounds for them.
As we are not discussing interpolation by splines here, we will not give a
complete historical account of these developments. Some of the early
contributors include Ahlberg and Nilson [1963], Birkhoff and deBoor
[1964], Ahlberg, Nilson, and Walsh [1965 a, b], Atkinson [1968], Sharma
and Meir [1966], Cheney and Schurer [1968, 1970], Birkhoff, Schultz, and
Varga [1968], Swartz [1968], Hall [1968], and Varga [1969]. The refinement
of these bounds to the point where they yield the direct theorems given in
this section (where we have mixed norms, p-moduli of smoothness, and
local results) remained a rather lengthy process involving considerable
machinery. To get an idea of how this progressed, see the papers by Swartz
[1970], Hedstrom and Varga [1971], Swartz and Varga [1972], Demko and
Varga [1974], and Scherer {1974b].

A number of authors have constructed approximation schemes of the
form (6.40). For example, Birkhoff [1976] and Birkhoff and deBoor [1968b]
developed methods of this type based on local moments. deBoor [1968¢]
studied a broad class of such operators abstractly, and also discussed an
explicit formula of this type based on point evaluations of f. Another
explicit method (based on point evaluations of f and its derivatives) was
introduced by deBoor and Fix [1973). They called such methods quasi-
interpolation methods. Still other examples of quasi-interpolation methods
can be found in the article by Lyche and Schumaker [1975] along with a
detailed analysis of their approximation power.

We have elected to develop direct theorems for spline approximation by
using the explicit quasi-interpolation operator Q defined in Theorem 6.18.
This approach permits, in my opinion, the shortest and cleanest develop-
ment of the complete range of direct theorems including the mixed norms,
the p-moduli of continuity, and the local results. The proofs in this section
are based on the methods of Lyche and Schumaker [1975]. The idea of
thinning out a partition to get a (sub-) partition that is quasi-uniform is
credited to Sharma and Meir [1966].

Section 6.5

Error bounds for spline approximation in Besov spaces were obtained first
by Hedstrom and Varga [1971]. Their approach was to use the interpola-
tion method described in this section on certain spline interpolation
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operators. For further results in intermediate spaces, see Demko and Varga
[1974] and Scherer [1974b].

Section 6.6

Lower bounds for the order of approximation of smooth functions by
piecewise polynomials have been discussed in a number of papers. The
basic idea is contained already in the article by Birkhoff, Schultz, and
Varga [1968].

Section 6.8

Inverse, saturation, and characterization theorems for approximation by
piecewise constants were obtained by Kahane [1961]. Similar results for
piecewise polynomial approximation were obtained by Kahane [1961],
Brudnyi and Gopengauz [1963], and Nitsche [1969a,b].

The first inverse results for splines of order m were saturation theorems
obtained by Ahlberg, Nilson, and Walsh [1967b, p. 174}, Golomb [1968],
and Gaier [1970]. Gaier’s result was established for arbitrary integrable
functions—the others worked with smoother classes of functions. Nitsche
[1969b] also obtained saturation results, as well as inverse theorems, but
instead of working on sequences of partitions he considered the order of
approximation on all possible partitions. Characterization theorems for
some classical smooth spaces in terms of approximation by splines on
equally spaced partitions were obtained by Scherer [1970b] and by
Richards [1972]. Scherer’s proofs are based on a general approximation
theoretic theorem of Butzer and Scherer [1969, 1970].

The first paper to deal with nonequally spaced partitions was that of
DeVore and Richards [1973a, b]. They observed that such results could not
be proved without some kind of mixing condition (cf. Example 6.11) and
proceeded to introduce the condition given in Definition 6.37. The fact
that equally spaced partitions satisfy this mixing condition has often been
asserted, but there appears to be no published proof. (The arguments used
by Richards [1972] serve to show that an appropriate subsequence of the
equally spaced partitions satisfies the mixing condition). The estimate
(6.75) for w,,(f, -) can be simplified to one involving only two terms on the
right if we consider a sequence of equally spaced partitions (see Gaier
[1970]. In Theorem 6.43 we have given only a few of the possible char-
acterization results. For example, Scherer [1974a] has given similar char-
acterizations for generalized Lipschitz spaces.

The first inverse theorems for nonmixed sequences of partitions were
obtained by Johnen and Scherer [1976] for nested partitions. A general
treatment of nonmixed partitions, which we have followed here, was given
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by DeVore and Scherer [1976]. See also Scherer [1976, 1977). The satura-
tion result for nonmixed partitions comes from this last paper.

Section 6.9

Except for some results on piecewise constants and on piecewise linear
polynomials, most of the early results for splines dealt with the uniform
norm. The first results for the p-norms for splines of order m were obtained
by Scherer [1970a], again using the abstract theory of Butzer and Scherer
[1969, 1970]). Direct proofs of inverse, saturation, and characterization
results were first given by Butler and Richards [1972]. Both of these papers
dealt with sequences of equispaced partitions. Theorem 6.52 can be
strengthened in the equally spaced case to an estimate involving only two
terms on the right—see Scherer [1974b]. The early results for nonequally
spaced partitions involved a so-called “strong-mixing condition,” see De-
Vore and Scherer [1976], Johnen and Scherer [1976), and Scherer [1976).
The idea of replacing this complicated condition (which apparently was
already too strong to encompass uniform partitions) by the p-mixing
condition of Definition 6.50 is credited to Scherer [1977]. The idea for the
condition (as well as for the proof that uniform partitions satisfy it) comes
from some calculations performed by Butler and Richards {1972].

For nonmixed partitions, the first result is again credited to Johnen and
Scherer [1976) where nested partitions were considered. Our development
here follows the work of DeVore and Scherer [1976]—see also Scherer
[1976, 1977]. The saturation results for nonmixed partitions follows the
work of Scherer {1977].

§ 6.11. REMARKS

Remark 6.1

The following identity for multivariable polynomials was needed in the
proof of Lemma 6.19.

LEMMA 6.58

Let 2<<m, and suppose y, <y,< ‘- <y,,_; and 7, <7, < - <7;_, are
given. Let

G('r,,...,'rj_,)— ((: JI;' 2()’,.—1'1) (y,}_l_'rj—l),

where the sum is taken over all choices of distinct iy,...,#;_, in the set
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{L,2,...,m—1}. Then

G=3 (—1y—Lme =Dl s o),

=l (m - l)'
where s, (y)=symm,_(y},...,Vp—1) and 5;_ (7)=symm,_ (7,...,7;_,).
For properties of these symmetric functions, see Remark 4.1.
Proof. For any choice of »,,...,v, we may easily compute
0, if any two »’s are equal
9GO _| (=1 (=1=nlm=j+n)
67,,,-'-37, (m—l)! Sj—l—r(.y)’
otherwise.

We note that these partial derivatives do not depend on the r’s. Now by
the multidimensional Taylor expansion,

G= G(0)+2—¢+22 aTaT

Uy ENUZL=nlmegant

r=0 (m - l) !
which after a change of summation index is the desired expansion if G. 1

Remark 6.2
If 1<p<gq, then for any real numbers w, >0, i=0,1,..., N,

(i§OWip)l/P>(i§0wf)l/q.

This inequality is called Jensen’s inequality. For a proof, see Beckenbach
and Bellman [1961, p. 18].

Remark 6.3

If Y is a linear subspace of the linear space X, we say that an operator P
mapping X into Y is a projector provided Pg=g for allg€ Y. As we saw in
Example 6.23, the spline approximation operator Q defined in (6.40) maps
Cla,b] in & =span{B,}], but is generally not a projector. The following
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lemma gives conditions on the {A;} which guarantee that Q will be a
projector onto S :

LEMMA 6.59

Q defined in (6.40) is a projector onto & if and only if {A;}] form a dual
basis to {B;}].

Proof. Q is a projector if and only if QB;=37_,(A;B)B;=B, for all
J=12,...,n. This is equivalent to the requirement that }\,.Bj=8,.j, i, j=
1,2,...,n. [

In the following remark we use Lemma 6.59 to construct a projector of
L,[a, b] onto the splines which delivers optimal error bounds. For some
other explicit constructions, see Lyche and Schumaker [1975].

Remark 6.4

Combining Lemma 6.59 with the dual linear functionals of Theorem 4.41,
we can construct a projector of L,[a,b] functions onto splines producing
optimal order approximations.

THEOREM 6.60

Let {»,}7*™ be an extended partition of [a,b], and let {N/"}] be the
associated normalized B-splines. Let {A;}] be the linear functionals defined
in Theorem 4.41 forming a dual basis for S =span {N;"}]. Then for any
1< p<oo,

0r= 3 AHN(x)

i

defines a bounded linear projector of L,[a,b] onto &. Moreover, for all
fE€Lja,b],

/= Qfll, <CA(f, &)

Proof. Q is defined on L,[a,b] since Af is defined for all f€L,[a,b]. In
fact,

ST < WAV sl D™l g

where I,=(y,,y;,..)- Applying the estimates of || D",)|,, obtained in the
proof of Theorem 4.41, we have

IS <CIS gyt 72,

where Bi=Yiem=— Vi
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But then for x € [y, y...),
lofin 1< InfINrG)=C 2 If 1l p;0e

and integrating the pth power over /,, we obtain

||Qf il i,u,] <C|f S [ L,1,)"

Summing over i=m, m+1,..., n, we obtain

N1Qf L1060 SCUS N L ga,6)>

which shows that Q is bounded. The fact that Q is a projector follows from
Lemma 6.59. Finally, the fact that Qf approximates f to order d( f,S)p
follows from the elementary inequality

W= Qfl, <l f=sll, +1Q(Sf= )i, <A+ QIDNS— sl
which holds for all s€S ; that is,

/= Qfll, <(A+(1Q1Nd(f, ). |

Remark 6.5

It is easy to construct examples to show that the requirement that a
sequence of partitions go to zero steadily (as in Definition 6.5) is a
necessary condition in order to obtain saturation results.
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APPROXIMATION
POWER OF SPLINES
(FREE KNOTS)

In this chapter we study the question of how well smooth functions can be
approximated by polynomial splines where the knots of the spline are
regarded as free parameters that can be adjusted to the particular function
being approximated.

§ 7.1. INTRODUCTION
N

The aim of this chapter 1s to study how well smooth functions f on an
interval [a,b] can be approximated by polynomial splines of order m with
k knots. To express this more precisely, let S, , be the space of polynomial
splines of order m with k knots in (a,b) defined by

S R is a polynomial spline of order m with &
m.k knots in (a,b), counting multiplicities

}, (7.1)

and let
d(f, 8, 4)p= sei%f,,_,‘ If = 5ll (a5 (7.2)

Our goal here is to relate the smoothness of f to the behavior of d(f,5,,;),
as k—o0.

Since we are primarily interested in asymptotic results, it will be con-
venient to introduce two additional spaces closely related to §,, .. Let

1 _ | s: s is a polynomial spline of order m with k (1.3)
m.k — | simple knots in (a,b) ’ )
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and

_ [ s: s is a piecewise polynomial of order m with
P P = { k knots in (a,b) - 04

The following theorem shows that the distances d(f, 9 P, 1), d(f, S, 1),
and d(f, S}, k)p all have the same asymptotic behavior, and thus we will be
able to restrict our attention to the somewhat more tractable space ¥ 9, ,:

THEOREM 7.1
For any function f € Lp[a,b],

d(f’@ @m,k)pmd(f’ gm,k)pzd(f’ g;ln,k)p (75)

as k—o0.

Proof. Clearly, S) ,CS,, ,CP P, «, and thus

d(f, P @m,k)p <d(f’ Sm,lc)p <d(f’ S'l”-k)P'

On the other hand, if s€ 9 ?P,, ,, then by Lemma 4.51 each of the m-tuple
knots of s can be pulled apart into m simple knots to obtain a spline
§€S,, .« which differs from s only in small intervals around each knot of
s. This can be done in such a way that

= Sllo =11/~ 5la-
It follows that

d(f’@éym k) "’d(f Smmk p?

which in turn implies (7.5). B

In view of Theorem 7.1, in the remainder of this chapter we shall restrict
our attention to PP, .. It is clear from the definition that # P, , is a
rather large space; indeed,

FPmi= U F2.(8),
A

where the union is taken over all partitions of [a, b] with k break points. It
is also clear that ¢ &, , is not a linear space. On the other hand, if s, and
s, are two elements of $ &9, ,, then their sum s,+s, is an element of
# P, 2 Furthermore, even though ¥ ®, , is not linear, it is a computer-
compatible space in the sense discussed in §1.5—indeed, each element
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SEP P, . is uniquely determined by its set of knots and an associated
coefficient vector. These same remarks apply to the spaces 5,,, and S}, ,.

In view of the fact that PP, , contains all linear spaces of piecewise
polynomials with k& knots (and thus the space of piecewise polynomials
with equally spaced knots, for example), it follows from the results of
Chapter 6 that wide classes of smooth functions can be approximated to
high order by ¥ ?,,. .. Thus, for example, we know that

(]
d(S P 9,0, =0 o ). allser;[ab]. forl<o<m.
On the other hand, since %, , is so large, it is reasonable to expect that
such orders of approximation should be obtainable for much wider classes
of smooth functions (by taking advantage of the freedom of the knots). We
shall see that this is indeed the case.

The main results of this chapter are the direct and inverse theorems of
§7.4 relating the smoothness of f (as expressed in terms of an appropriate
modulus of smoothness defined in §7.3) to the asymptotic behavior of
d(f.¥?,, ), These theorems give a complete characterization of the
function classes corresponding to various orders of convergence. In §7.5
we show that (as in the linear case) order m convergence is the maximum
that can be obtained (for smooth functions). Because of the unusual form
of the moduli of smoothness, we cannot generally describe the classes
where a particular order of convergence takes place in terms of classical
notions of smoothness. In §7.6 we examine some classes of functions where
mth order convergence holds.

§ 7.2. PIECEWISE CONSTANTS

In this section we consider approximation using the space P, , =5, ,.
We begin with an example that shows that substantial gains in approxima-
tion order can be achieved when using free knots.

EXAMPLE 7.2

Let 0<a <1, and define f,(x)= x®. Approximate f, on the interval [0, 1] by
piecewise constants.

Discussion. It is clear (cf. Figure 19) that if A, ={i/(k+1)}*2} is the
uniform partition of [0, 1] with k knots, then

—

419 7,0)= 3 (57 ) -
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Figure 19. Approximation of x“ by piecewise constants.

On the other hand, if we take

then

P — oy =
d(fo, $ 1) d[fm .’.‘,(Ai.")]oc 2+ 1)

Thus by allowing free knots we obtain order 1 convergence rather than
order a. (]

Example 7.2 suggests (cf. Figure 19) that if f is any continuous mono-
tone-increasing function on [0, 1], then with the partition

Ap={xp=f"G/(k+1)}i2,

we have

This idea can be applied to an even larger class of functions, which we
now introduce.
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Given a function defined on the interval [a, b], let

n—1

V‘f’(f)=sup{ 20 |f(ti+l) _f(ti)l: n>1and

ast < .- <t,,<b}. (7.6)

We call V2(f) the variation of f. It is easily verified that

V2N VN + VIS all a <c <b; (1.7)

VI(f+8) <V +V(8) (7.8)

Va(af) <la|V2(f); (7.9)

Vo(f)= f”|Df(x)|dx, allf€ L![a,b]; (7.10)

VA< lim V(s,) if 5,(x)>f(x), for all x€[a,b]. (7.11)
k—oo .

We define the set of functions of bounded variation on [a,b] by
BV[a,b]={f€EB[a,b]: VI(f)<o}.

Clearly BV[a,b] is a linear space that by (7.10) contains L|[a,b]. On the
other hand, BV[a,b] is much larger than L][a,b], and includes many
functions that are not even continuous (e.g., all monotone-increasing
functions). It is known that every f& BV[a,b] can be written as the
difference of two monotone-increasing functions. It also follows from the
definition that every f € BV[a, b] can have at most a finite number of jump
discontinuities.

THEOREM 7.3
If f€ Cla,b]N BV][a,b), then

1/ 1 ,
df 50 < 3 (757 ) V20N (1.12)
Conversely, if f € C{a,b] 1s such that

1
s L .
(5, ,_k)w<c( — ) all k>0, (7.13)
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then f € BV |[a,b], and, in fact,

V()= klim 2(k+1)d(f,8, 1) (7.14)

Finally, if f€ C[a,b] and
(k+1)d(£,35, )0 as k—o0, (7.15)

then f is a constant on [a, ).

Proof. 1f f€Cla,b]ln BV{a,b], then there exists a partition a=x,<x,
<--- <X 4 1=b of [a,b] such that

Va(f)

ml—), =0,l,...,k.

Van(f)=
Now we define a piecewise constant approximation of f by
s(x)=|(M; + m)/2 on [x,x;,),
i=0,1,...,k,

where M, =max, ..., f(x) and m;= min_, f(x). Clearly,

b
00001 < H( = m) <LV < e,

all x, Kx<x,,,, and all i=0,1,...,k. We have proved (7.12).
Suppose now that f € Cla,b] and that (7.13) holds. Then for each k we
can find s, €S, , such that

1 1 1
1= Sl <ACS, 81 1) + K+ 1) <C(k+l )+ (k+1)

The sequence s, of piecewise constants converge uniformly to f, and
moreover,

k
Vab(sk)= 420|5(xi+|)‘5(xi)| L2k + D f— sl <2(C+1)

for all k. It follows from (7.11) that

V2(f)< lim V2(s)<2(C+1),

k—o0
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so f € BV[a,b]. In fact, using (7.12),

V()< lim V(s,)

k—»00
2
< T (2064 D510+ 7 ) <D,

and (7.14) follows. If (7.15) holds, then by (7.14) it follows that V2(f)=0,
which can only happen if fis constant. [ ]

Since Theorem 7.3 contains both direct and inverse assertions, we obtain
the following characterization result:

J€C[a.b] belongs to BV[ a,b] if and only if d(£,5,,0)= 8 77 )

Statement (7.15) is a saturation result. It shows that the maximal order of
convergence obtainable for continuous functions using piecewise constants
is 1 (except for the trivial class of constants, which are approximated
exactly). There are, of course, some discontinuous functions that are ap-
proximated exactly if k is sufficiently large; for example, all piecewise
constants.

Because of the saturation phenomenon, for functions that are C'[a,b] or
smoother, there is nothing to be gained by using splines with free knots.
On the other hand, Theorem 7.3 shows that for less smooth functions, the
order of convergence using free knots can be considerably better than with
a fixed predetermined set of knots. We illustrated this for a specific
function in Example 7.2. The following example illustrates it for a large
class of relatively smooth functions:

EXAMPLE 74
Let f€ L)[a,b], 1<p< 0.
Discussion. By (7.10) and Hélder’s inequality, we have

b -
VA< [IDA)dx < (5= a)' "I Dfl| a1
Coupling this with Theorem 7.3, we obtain

(b—a) 7'

DA g a5
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which is order 1 convergence. On the other hand, by the results of Chapter
6, we know that using splines with equally spaced knots, for example, the
maximal order of convergence is 1 —1/p. [ ]

So far we have concentrated on the case of the uniform norm. We turn
now to some analogous results for the g-norms, 1 <¢g< c0.

THEOREM 7.5
Let f€ BV[a,b], and let 1 <g< oo. Then

v

(7.16)
Proof. We recall that f& BV{a,b] implies it can have at most a finite
number of jump discontinuities, say at 7, <f,<--- <f,. Now we can
modify f in a neighborhood of each ¢ so that the resulting function f
satisfies

Va(h)

ey AV (f) < V(). (7.17)

lf— f||Lq{a IS 3o

We can accomplish this, for example, by replacing f by a linear function in
(4, — &, 1, + ¢) with ¢; sufficiently small. Then if s; is the spline constructed as
in the proof of Theorem 7.3 associated with f, we have

1= il gy S W= Fll g0+ 1 F= 57 £ fa 1
Using Theorem 7.3 for f, we obtain (7.16), where we may take C= [+

(b-a)'/7). |

Theorem 7.3 asserts that d(f, P @, ;),=0(1/(k+1)) for all f€ BV[a,b).
The following example shows that the converse is not true; that is, there
exist some functions that are not in BV{[a,b] which can nevertheless be
approximated to order 1 by piecewise constants.

EXAMPLE 7.6

Let f€ BV[a,b] and g be a function that is a constant almost everywhere.
Then

d(f+g,@??,,k)q=@(ﬁ). (7.18)
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Discussion. Clearly, if s is a spline that approximates f to order 1, and if ¢
is the value that g takes almost everywhere, then s+ ¢ provides an order 1
approximation of f+g. The function g can be quite nasty. For example,
the function g defined to be 1 on the rationals and O on the irrationals is
constant almost everywhere, but does not belong to BV |[a, b]. [ ]

As in the uniform norm case, there is a limit to how well smooth
functions can be approximated in the g-norms by piecewise constants—we
prove a general saturation theorem in §7.5.

§ 7.3 VARIATIONAL MODULI OF SMOOTHNESS

In order to discuss the order of approximation of smooth functions by
polynomial splines with free knots, it is convenient to introduce a new kind
of modulus of smoothness. Given m > 1, we define

Vo(fi) o= igfsup{wm(f; DL n:I=[c,d]<[a,b] and ¢(d)—¢(c) <1},
(7.19)

where the infimum is taken over all monotone-increasing functions on
[a,b] with V2(@)=¢(b)— p(a) <b—a. We call »,(f;1) the variational mod-
ulus of smoothness of f of order m. The following theorem shows that »,(f; #)
behaves very much like the classical modulus of smoothness w,,(f;?):

THEOREM 7.7

For any m> 1,
v, (f:t,) <y, (f: 1), all0<t, <t,<b-a; (7.20)
v,(f; ) <w,(f51); (7.21)
v (f;0) <277 (fi1), 1<j<m; (7.22)
v fit) <Cty, _(Df;2t)  if DFEB[a,b]; (7.23)
v(f;)<SCtVE(f)if fEBV]a,b]. (7.24)

Proof. Property (7.20) follows directly from the definition, while (7.21)
can be proved by taking ¢(x)=x. Property (7.22) follows immediately
from the analogous property of w,(f; -). The proof of (7.23) is somewhat
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more delicate. Given any ¢ € BV([a, b], let §(x)=[@(x)+ x]/2. Then

Y (fi 1) < sup{ @, (fi [Ty ] = [ ¢,d] satisfies §(d) — ¢(c) <t}
= sup{wn( 5 I uiny: 1= c,d] satisfies g(d)— p(c) +(d—c) < 2¢)
< sup{ 11— (Df: 1) eoiry: 1= c,d] satisfies p(d) - p(c) +11| <21}
<2t5up{p_1(Df; ) eoiry: I= ,d] satisfies g(d) — p(c) <2t).

Now taking the infimum over all monotone ¢ with V2(¢)<b—a, we
obtain (7.23).
To prove (7.24), let p(x)=(b—a) V(f)/ V2(f). Then

v(fit)< Sup{wl(f; e I= [c,d] satisfies

b_
(—V:(T"))[ V(s - V:(f)]<t}.

Since w,(f; 1) _i1 < VA, (7.24) follows. ]

It is also convenient to introduce a p-version of », (f; ). We define

Ym(f3 1)p= infsup{( 2 (S " L=[cd] is a
i=0
disjoint set of subintervals of {a, b]

with o(d)— @(c) <t, i=0,...,n}, (7.25)

where again the infimum is taken over all monotone-increasing functions ¢
on [a,b) with V2(p)<b—a.

THEOREM 7.8
Forany m>1 and 1 <p< oo,

Vol 3 80p S¥m(f3 82) all0<t,<t,<b—a; (7.26)
V(3 0)p K27 I0,(f31)ps 1<j<m; (7.27)
vl f31), <Cty,,_(Df;21),, iffE€L)[a,b]; (7.28)

v, (f:0), <CU DS || 1 a5y iffeLi[a,b]. (7.29)
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Proof. Properties (7.26) to (7.28) follow just as in the p=co case. To
prove (7.29), let @(x)=(b— a)f%|Df|/ [5| Df|, and note that

n

1/p
v (f; 1), <sup ( > w(f; |1,-|)’,”_’[,‘,]) : I =] ¢,,d;) satisfies
i=0

@ d’]Df|<t.
[Clpa "

Now,

d—h x+h V4 d: V4
w,(f3 11, <sup | ( D)((ii-ci( 'D)
(Siltu<sup [ ([ TIDA) < (= [ 7101
t b u
< (di—ci)(mj; |Df|) -
Substituting this in the above and noting that 37_,(d;—c¢)<b—a, we
obtain (7.29). ]

An important property of the classical moduli of smoothness is the fact
that w,,(f; 1), can go to zero faster than ¢” only if fEP,,. We now state an
analogous result for v,(f;),. We delay its proof until Section 7.5.

THEOREM 7.9

If f€ C™(a,b] and »,(f;/)=0(t™), then fED,,. Similarly, if f€ L,"[a,b]
and »,(f;1),=o(t™), then fEP .

§ 74. DIRECT AND INVERSE THEOREMS

We are ready to relate the order of approximation of a function f by
piecewise polynomials of order m with k free knots to the smoothness of f
as measured by »,.(f;7),.

THEOREM 7.10

Suppose f € L,[a,b] if 1<p< oo or that f€ C[a,b] if p=o0. Then

(s, P @m,k),,mm( f;%%)p as k0. (1.30)
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Proof. Consider first the case of p=oc0. Let s€ P P, , be such that

1= 5llo <AL, D P i) + .

Suppose the knots of s are at {x,}}, where a=x,<x,<::- <x,,,=b.
Then @(x)=(b—a)=*!(x—x)% /(k+1) is a monotone-increasing func-
tion with ¢(b)— @(a)=b—a, and

v (f k+l)<sup{ (S ey 1={c,d] and ¢(d) — @(c) < k+l}

Now, by the definition of ¢ (it has jumps of (b — a)/(k + 1) at each x,), the
condition that ¢(d)~¢@(c)<(b—a)/(k+1) implies that only intervals
which do not contain any of the knots {x;}¥ enter into the supremum. But
for any such interval we have

O HDLann <27 =5l L 111 <271 f = 5l o

We conclude that

” (f z+‘l’)<z'"d(f,@@,,,k) (1.31)

To complete the proof of (7.30) in the case of p =00, we now prove an
inequality in the opposite direction. Suppose ¢ is a monotone-increasing
function on [a, b] with @(b)— ¢(a)= b —a such that

sup {6 (£ )e.ns 1= c.d] and @(d) = 9(c) < 75 +e
_b-a
<2Vm(f, +1 +€).
Let A={x*=¢ i(b—a)/(k+1))}%*). Now on each interval I,=
[x* x* ], the Whitney Theorem 3.18 asserts the existence of a polynomial
p,E€P,, with
Nf=pill g1y < Cwon( 5 D L 15
Let

s*(x)={pi(x), xF<x<xX,, i=0,1,...,k.
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Since I, is such that @(d)—e(c)=(b—a)/(k+1)<(b—a)/(k+ 1)+, it
follows that

A, PP i) <N f—s*II< max | f—pll,_7)<C max «, (f;|L]) (1)
0<i<k 0<i<k
b—a
< 2CPm(f, T+ +8).
Since € >0 is arbitrary, this implies

df. 99, )< zc»,,( £ 7’1—;—‘]‘ ) (1.32)

Combining this with (7.31), we have proved (7.30) in the case of p = c0.
The proof of (7.30) for 1 < p< oo is quite similar. First, to prove the
analog of (7.31), suppose s€® ?, , has knots {x;}¥ and is such that

“f_s”p <d(f’ g) (‘;Pm,k)p+ E.
Then with p(x)=(b—a)Zi2 (x— x)% /(k+1), we have

(Son(f; III)’Z,U])'/’ =[c.d)

b—a
Vm(f, —m)p < sup

k+1

Again the condition on the I, implies that each of them contains no knots
in its interior, hence
On( LMD 1101 < 27N f = sl g1
But then
a - 1
(f m) <2 sup{(EHf—s”’i,[,,]) ’P. I as above}
2" f—sll, <27d(£,P P, 1), e

As €>0 is arbitrary, we have proved

v Z;’) <2d(£,99,.,), (1.33)
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It remains to prove the analog of (7.32) for 1<p<oo. Let ¢ be a
monotone-increasing function on [a, b] with @(b) — @(a)= b — a such that

sup{(zwm(f; Y1) 1= [ e ) and @(d) ~ p(c) < Z:lz * e}

<2v,,,(f; %% +e)p.

Define {x*}¢*! as in the p=o0 case, and let p,€ ?,, be the polynomials in
the Whitney Theorem 3.18 such that

W f=Pill 1,010 < Com( S5 1) a1

i=0,1,...,k. Then with s* defined to be p; on I,, we have

k 1/p
d(f’ QP qpm,k)p < ”f— s‘”p =( .20 Ilf—pl“L[l,])

S e b—a
<C( 2 w,(f; |Ii|)’z,[l.']) < 2C"m(f; T+l +e).

i=0
As €>0 is arbitrary, this implies

Ad(£,99,,),< 2c»,,,( f: %—‘l’- ),,' (1.34)

Combining (7.33) and (7.34), we have proved (7.30) for all 1 < p < co. [ ]

Theorem 7.10 allows us to describe the order of convergence of poly-
nomial spline approximation to a given function directly in terms of its
smoothness. In particular, we have the following characterization theorem:
THEOREM 7.11
Suppose fE€Cla,b] if p=oo or fELJa,b] if 1<p<co. Then for any
0<f#<m,

b—a)a

Ad(f,9 9, ,),=0 ( o (1.35)

if and only if

U3 1) =0(2%). (7.36)
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Proof. If (7.36) holds, then (7.35) follows immediately from Theorem
7.10. To prove the converse, suppose ¢ >0 is given, and let & be such that
(b—a)/k<t<(b—a)/(k+1). Then by the monotonicity properties (7.20)
and (7.26),

i)y <o i 22 <CAL D),

b— ]
ka) <Cy(t9). ]

<c(

To illustrate how Theorem 7.11 can be used to obtain rates of conver-
gence for approximation of smooth functions by piecewise polynomials (or
splines) with free knots, we introduce still another space of smooth
functions. Given any integer o > 1, let

BV°~'[a,b]={f€ L] '[a,b]: D°"fEBV[a,b]}.  (137)
In view of (7.10), we note that L[a,b]C BV° '[a,b].

THEOREM 7.12
Suppose f € BV~ Y[a,b], some 1 <o <m. Then

45,9 9,00, =0( 257 )

all 1< p< 0.

Proof. 1t suffices to prove the result for p=oco as d(f, 99, ,), <
(b—-a)\/?d(f, P P, x)oo- NOWw, using properties (7.22) to (7.24) of »,( f 1),
we have

Vm(f; t) <C1Vo(f; t) <C2t°_lyl(D°“lf; 20—11)
< Cyt°VE(DoY).

Theorem 7.11 now implies the desired result. ]

Theorem 7.12 shows that order m convergence holds for all functions in
the rather large class BV™ Y[a,b]. In §7.6 we show that order m conver-
gence obtains for an even larger class of functions. On the other hand, the
results of the following section show that (for smooth functions) the
maximum order of convergence is m.
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§ 7.5. SATURATION

We begin with a lemma that gives an explicit expression for the L -error in
approximating a function f € C™[a,b] by polynomials.

LEMMA 7.13

Suppose f&€ C™[a,b] and that 1 <p < occ. Then there exists a <£<b such
that

(£, 9, 1,1a61= G.m(b~ @)™ 7| DTSE)), (7.38)

where

o= 570
m Lo

Proof. Fix 1<p< oo, and let a<xf<x$<--- <x}<b be such that
Ox=xt)- - (x = xp )l ety = (lf‘lf} N(x—x)- - (x— Xm)ll 11a,5)

Let Q(x)=(x—x¥)- - - (x — x), and suppose that ¢,€ ¥, is the polynomial

interpolating f at { x*}7". Then by (3.5) and (2.93), we have

100 - g0 =0 22 | omea<g, <o,

and it follows that

IIQII,,

d(f!@m)L[ab]<“f qfll, < —=— max | D"f(x)|.
a<x<b

Now suppose that p,€®,, is such that || f-p/ll,=d(f,9,,),. We shall
show in a moment that p, must interpolate f at some m points; that is, there
exist a < X; <%, < --- €%, <b such that

Ax)—p(%)=0, i=12,....m.
But then

= 2) e Gl

m! a<x<b

d(f.? ) iae=11f =P, >

S IIgI'I,, ,,

min |D™f(x)|.
<x<b
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Combining this with our previous estimate of d(f,9,,), from above and
using the continuity of D”f, we conclude that

”gllplD"’f(ﬁ)l, some a <{<b.

d(f, va,,.)Lpla.b] =
Now a change of variable argument shows that

“Q“L’[a,b] _(b—a) m+1/p

slet) (b minf|(t= 1) (1= L) oy

xm

= _ m+1/p
(b~ a) d( = ’@"')uovu’

and (7.38) follows.

It remains to establish our-assertion that p, interpolates f at m points.
For p=o0 this follows from the fact that f—p, must alternate between
*||f-p/ll, at least m times on [a,b], (cf. Remark 7.5). Suppose now
1< p<oo. Then (cf. Remark 7.6), it is known that p, must satisfy the
orthogonality condition

fbx’|8(x)|’“‘sgn[8(x)] dx=0, r=0,1,...m—1,  (7.39)

a

where 8(x)=f(x)—p/(x). This condition for r=0 implies that §(x) must
have at least one zero on [a,b]. Suppose it has only the zeros a<x; < --- €
x, &b with n<m. Then clearly (x—x,)---(x— x,)6(x) is nonnegative
throughout [a,b], and

f”(x— X))+ (x = x,)|8(x)]P~"sgn[ 8(x) ] dx >0,

contradicting (7.39). This completes the proof that p, interpolates f at m
points, and the lemma is proved. [ ]

We can now prove our saturation result.

THEOREM 7.14

Suppose f € C™[a,b] and that
b—a\™
G =o| ——
4990, =0 157) -

Then f is a polynomial of order m.
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Proof. For convenience, set a=(m+1/p)~'. Given any partition A=
{a=xo<x| <+ <x,,=b}, we define

k
ELJKJZA)= :S d(ﬂ(?m)LUﬂ’ (7A0)

i=0

where I, =[x, x;,,), i=0,1,...,k. By Lemma 7.13 we note that
k
B,,_m(f, A)= Com 20 (X1 = XD,

where £ €1, i=0,1,...,k and Cpom is defined in Lemma 7.13. Let A, =
{(i(b—a)/(k+1)};Zy for each k. Then B, .(f.4,) is clearly a Riemann
sum, and so

M o b e [ l/o m
Jim B, (5807 = ([ 107N 2x) " = D

On the other hand, applying the Holder inequality with dual exponents
1/me and p /o to (7.40), we have

k mo/ k o/p
Bp,m(f,A)<( > 1) (2 d( f,@,,,)‘;,x,i])

i=0 i=0
<k + 1™ d(£, 9 D)o tab1 (1.41)

It follows that

Gl Dl e < im B, (87 < lim (k+1)"d(£, 9 9,,0),.

Combining this fact with our assumption that d(f,9 %, ,),=ol(b—a)/
(k+DJ™, it follows that ||[D"f|| (4 5=0. Since f& C™[a,b], we conclude
that f € 9, ; that is, f is a polynomial of order m. n

With some additional work (see Remark 7.2) it can be shown that for
m > 1, Theorem 7.14 continues to hold assuming only that f € L"[a,b}. In
any case, the theorem shows that for smooth functions, m is the maximum
rate of convergence obtainable using polynomial splines of order m. This
saturation result does not preclude the possibility that certain nonpoly-
nomial functions which do not belong to C™[a,b] (or L{"[a,b]) can be
approximated to order better than m.
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EXAMPLE 7.15
Let f be a polynomial spline of order m with knots at a <x, < --- <x, <b.

Discussion. We do not say anything about the multiplicity of the knots.
Thus f may lie in C™~ '[a,b] or it may not even be continuous. In any case,
it is clear that

d(f.9?,.),=0 for all k > mK,

and thus that

b—a) as k—o0. [ ]

d(f,PL,.4), =0( 71

We can now prove that the only smooth functions with »,(f; 1), =0(t™)
are the polynomials.

Proof of Theorem 7.9. Suppose f € C™[a,b] is such that v, (f;),=0(t").
Then by Theorem 7.11 it follows that d(f,9 %, ), =ol(b—a)/(k+ 1)},
which by Theorem 7.14 implies that f€ . ]

§ 7.6. SATURATION CLASSES

In view of the saturation Theorem 7.14, it is of interest to examine the class
of functions for which approximation by piecewise polynomials of order m
in the p-norm is of order m. By Theorem 7.11 this class is given by

Sat(pom)={ 1: (1.9 9,,,0,=0( 757 ) | = vul iy =0},

Theorem 7.3 shows that
Sat(oo,1)= C[a,b] n BV[ a,b].

Unfortunately, for other values of m and p, no precise description of
Sat(p,m) in terms of classical notions of smoothness is known. By the
results of §7.4 we know that Sat(p,m) contains all the functions in
BV™ Ya,b). Example 7.15 shows that it also contains all polynomial
spline functions of order m with a finite number of knots, counting
multiplicities. The following example shows that it contains other functions
that are not in BV™ " ![a,b]:
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EXAMPLE 7.16

Let 0<a <1 and f,(x)= x°. Then on the interval [0, 1], f, €ESat(p, m) for all
m>» 1 and 1< p< co.

Discussion. We show that

b—a\™
d(fa’@@m,k)w=®( k+l ) *
Let x,=[i/(k+ D]™/%, i=0,1,...,k+1, and let [,=[x,,x,,,}. For 1<i<k,

let p,€%,, be the polynomial approximating f, on /; as in the Whitney
Theorem 3.18. Then

1 fe—Pill L[] < C-s‘*’m(f; |Ii|)L_,[1,.] < Csllilm”Dmfa” FARTAT

Let p,=0, and set

s(x)=p,(x) for x; Kx <x; 41 i=0,1,...,k.

It is clear that || f,—s|l._;;<[1/(k+DJ". On the other hand, for i=
L2,...,k,

“i[m“Dmf”L,,ll,-] (X1 xi)m(a)' (a—m+1)xsT"

<(m-1[(i+ l)"'/“——i”'/“]’"(—lz—_l;-—l—)mim(a—rvl)/“.

Using the fact that (i + 1)™/*—i™/* < Cy(i+1)"/*~! for some constant C,
(depending only on m and a), we obtain

1 m i+1 m(m/a—1) 1 m
ufa—suL,[o,u<C:(—k+1) lfi‘?i‘k(—i ) <C(k+1)' -

Example 7.16 is quite impressive since it asserts that x® can be ap-
proximated to order [(b—a)/(k+1)]" by splines of order m with free
knots, while the best we can do with splines of order m with equally spaced
knots is [(b—a)/(k+ D]

In order to help answer the question of what other functions lie in
Sat(p,m), we now introduce a generalization of the space BV™ ![a,b].
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Given any 1< p< oo, leto=1/(m+1/p) and

Vilabl={f€L,[a.b]: [flymasn<eo}, 1<p<o

vola.b]={feC[a.b]: Iflyman<®}, p=o. (1.42)
Here
1 vrtasr= 1A gta1+ Ny, (7.43)
with o = 1/(m +1/p) and
N, m(f)= sup B, ,.(/.8), (7.44)

where B, ,(f,4) is defined in (7.40) and the supremum is taken over all
partitions of [a,b].

It is clear that V,"[a,b] is a linear space, and it is easily seen that (7.43)
defines a seminorm on 1it. Since it can be shown by standard arguments
that V,"[a,b] is complete, it follows that it is in fact a Frechét space (cf.
Remark 7.1).

The following theorem shows that every function in ¥,"[a,b] can be
approximated to order m by %, ., and thus that V,"[a,b]CSat(p,m):

THEOREM 7.17
For any f€ V,"[a,b],

d(f, 99,0, <(k4l—1) NN,

o=1/(m+1/p).

Proof. We say that a partition A= {a=x,<x,<--: <x,,,=b} is bal-
anced provided that for some d,,

d(f’@m)LP[l,]=d? i=0,1,...,k,

where I,=[x;,x,,,). We claim that for any given function f, there are
balanced partitions for all k=0,1,.... To prove this, we proceed by
induction. Clearly, there is a balanced partition for k=0. Now suppose
d, _ (a) corresponds to the balanced partition of [a,a] with k —1 knots. Let
B=inf{a: d(f.9,,)p (a.0y= d - 1(@)}. It follows that if a= x0<x < <
= 8 provides a balanced partition of [a, B8], then a=x,<x,; < <x,‘+ =
b provides a balanced partition of [a,b].
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To complete the proof, suppose A* is a balanced partition of [a, b} with k
knots. Then

5990y \ V7
d(f, ng)L’[l,-]=( [ k+1 ]L’[ b]) ’

i=0,1,...,k. But then

B d ’@@m A*)12 \o/p
B, .(f,a")= zd(fa@m)z.[li]:(k"'])( - k+1( )]’)
i=0
=(k+1)™d[ £,99,(a%)];.

We conclude that

1 1/0
= B, m(£,8%)

d(f,9 P i)y <d[ £,F P, (8%)], < T

<7 ) MoV, n

We turn now to a discussion of the kinds of functions that lie in
V,"la,b]. In the case of m=1 and p = co, we can be very precise.
EXAMPLE 7.18
V!@la,b)=Cla,b]n BV|a,b].

Discussion. We have already seen that V![a,b]CSat(co,1)= C[a,b]N
BVla,b). Suppose now that f € Cla,b]n BV[a,b]. Then for any partition
A={a=xy<x;<--+ <x4,,=b} of [a,b], we have

k k
Bao, l(f’ A) = 2 d(f’ @I)L,[l,-] < 20 V;:“l(f) < V:(f)

i=0

It follows that N (/) < V2(f), and thus f € V L [a,b]. ]

We saw in §7.4 that the functions in BV™~'[a,b] can be approximated
to order m by splines of order m. The following theorem provides another
proof of this fact. It shows that BV™ " '[a,b]C V,"[a,b].
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THEOREM 7.19
Let 1 < p < . Then for any f € BV™ " ![a,b],

(b a)l/a 1
(m-1)!

Proof. By a slight extension of the Taylor expansion in Theorem 2.1,
there exists p,€ %, such that

N,m(N'°< VE(D™"'f).

f(x)=pf(x)+LX(x—t):m_‘11D):” f(t)

It follows that

m—1 P 1/p
d(f, D) jan) < (fab[fa L?;i'—l)!—ldpm-‘f(t)lJ dx)
(b a)l/a 1
(m—1)!

A similar proof establishes the same inequality for p=o0.
Now let A be any partition of [a,b] into kK + 1 subintervals. Then

< ve(D™ ).

k
Bm(f8)= 2 d(f, T i)

< rZI—n-—l—:l 2 (Xie1— x)l on“(D'" lf)"
1/o—1 k L4
< 1 2 (xip1— %) 2 V;:ml(Dm—lf)
(m (m=—1)!| S, 2
< [ (m D1 (b—a)l/o—lVab(D,,,_lf):Iu'

Taking the infimum over all A and then the oth root, we obtain the desired
inequality. |

Theorem 7.19 shows that V,"[a,b] contains a large class of smooth
functions. Example 7.16 suggests that it may also contain functions (such
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as x®) that are smooth except at a finite number of points. Our next
theorem shows that this is indeed the case.

THEOREM 7.20

Suppose 1 <p < o and that f € Cla,b] if p= oo or f € L,[a,b] otherwise. In
addition, suppose f& L["[a,b—¢] for all ¢>0, and that there exists a
monotone-increasing function g such that |D™f(x)| < g(x) almost every-
where on (a,b). Then f€ V;"[a,b], and, in fact,

1

ag= m—; . (745)

N, () <C, | 81T 1a.6)5
where C,,=1/m! and C,=(m!(mp+1)'/?)"" for 1< p< 0.
Proof. For any a <c¢ <x <b we have by the Taylor expansion that

—t)"' 'D7f(1)dt
~1y

)~ p,(x)l-l [

<e(x): f————————(x-t)ml);g(t) di,

where p{x)= 2,-0 [Df(c)(x—cY)/JED,,. It can be shown (cf. Lemma
7.21 below) that for any ¢ <d <b, ||®ll ;< C, | &ll L fc,ap and it follows
that

(£, 9 ) Lic.a1 <Gl 8ll fe.ar

Now if A={a=xy<x,< - - <x;,,=b} is any partition of [a,b], then

(f A)= 2 aif, s )L[I]<(C) 2 I 8l [1,]<(Cp)°”g”2,[a.b]'

i=0

Taking the supremum over all partitions, we have (7.45). ]

The way Theorem 7.20 is stated, it actually deals with functions that
have a singularity at point b, but it is clear that a similar singularity at a
could be handled in the same way. The function f,(x)=x® on [0, 1] is then
covered by the theorem since [[D™f||,<cc as long as a>—1/p. The
theorem also applies to functions with a finite number of singularities since
in choosing the knots of the approximating piecewise polynomial we are
free to put one at each singularity, thereby reducing the problem to
separate problems of the type covered by the theorem.
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The following lemma was needed in the proof of Theorem 7.20:

LEMMA 7.21

Let g be a positive monotone-increasing function on the interval [¢,d], and
let

9(x)= [ (x=0"'g(r)a. (7.46)

Then for all 1< p < oo,

1

by (1.47)

ol ,ie.a) <1l &l 1 1c.ar
where d,=1/m and d,=1/m(mp+1)"/?, 1 <p < 0.

Proof. We consider first the case of p=o0 and o=1/m. Clearly (7.46)
holds for m=1. Let

)= [ [1srma]”

Both ¢(x) and y(x) are monotone-increasing functions, and ¢(c)=1y(c).
We now compare their derivatives. We have

dqc)l(xX) =(m-— l)fcx(x — 0" g(d)at,

while

W) [ ety ma]" 0> [ [ e O]

It follows from the inductive hypothesis that do(x)/dx <dy(x)/dx for all
x, and thus @(x) <yY(x), all ¢ <x <d. We have proved (7.47) in the case
p=00.

Suppose now that 1< p < oo, and let

) lg(t)dtlp dx

V)= s | [ eor a]”
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Both of these functions are monotone-increasing functions of y, and
@(c)=y(c). Now,

B | [ =0 "gwa

S faora] oy

> ;]-;[j;yg(t)'/'"dt}"v.

By the result for p= oo, we conclude that d¢(y)/dy <diAy)/dy, and thus
@(y) <yY(y) for all ¢ K y <d. This statement for y =d is precisely (7.47). W

§ 7.7. HISTORICAL NOTES

Section 7.1

The study of approximation by piecewise polynomials with free knots
began with the case of piecewise constants. Some early papers dealing with
this problem include those by Kahane [1961], Ream [1961), and Stone
[1961]. Piecewise linear polynomials and piecewise polynomials of order m
were studied later by Brudnyi and Gopengauz [1963], Tihomirov [1965],
Birman and Solomjak [1966, 1967], Sacks and Ylvisaker [1966, 1968, 1970},
Phillips [1968], Rice [1969a], Freud and Popov [1969], and Subbotin and
Chernyk [1970], as well as in a number of later papers that we mention
below. The observation that it suffices to work with piecewise polynomials
in order to get results for splines (cf. Theorem 7.1) seems to have been part
of the folklore—see, for example, Rice [1969a}, Burchard and Hale [1975],
or Burchard [1977].

Section 7.2

The direct and inverse theorems given here for piecewise constants are
credited to Kahane [1961}] for p =00 and to Birman and Solomjak [1966]
for 1< p<oo. The saturation theorem for p < oo follows from general
results of Burchard [1977}.

Section 7.3

The idea of introducing a new kind of modulus of smoothness in order to
deal with spline approximation with free knots is credited to Popov
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[1975a,b], where only the case of p =00 was considered. Our definition of
v,(f;1) is a minor variant of his. The introduction of »,(f;?), for p<eco
seems to be new.

Section 7.4

Our main direct and inverse Theorem 7.10 follows the ideas of Popov
[1975a,b]), where the case of p= oo is done. Direct theorems for functions
in C™[a,b] or L"[a,b] were obtained in a number of early papers—see
Brudnyi and Gopengauz [1963], Tihomirov [1965], Birman and Solomjak
[1966, 1967], and Brudnyi [1971]. Direct theorems for BV ™ ![a,b] were
established in the papers by Subbotin and Chernyk [1970], Freud and
Popov [1969], and Sendov and Popov {1970a,b].

Section 7.5

Lemma 7.13 is credited to Phillips [1970], while our main saturation result
Theorem 7.14 comes from the work of Burchard and Hale [1975). The
result for L™[a,b] functions follows from certain asymptotic formulae
derived by Burchard and Hale [1975]—see Remark 7.2.

Section 7.6

Example 7.16 is credited to Rice [1969a). It motivated Dodson [1972] and
deBoor [1973b] to establish order m convergence for the kind of functions
found in Theorem 7.20. Sat(p, m) was studied in greater detail by Burchard
[1974], Burchard and Hale [1975], and Burchard [1977]. The spaces
V,"[a,b] are introduced in the paper by Burchard and Hale [1975], and
Theorem 7.17 is established there. These papers also contain exact asymp-
totic formulae (see Remark 7.2), and the 1977 paper by Burchard also
includes certain inverse theorems (cf. Remark 7.4). Theorem 7.20 (as well
as a refined version of it) can be found in the paper by Burchard and Hale
[1975]). Lemma 7.21 is credited to Dodson [1972] and deBoor [1973b]. We
also note that there have been several papers giving little oh saturation
classes—see Remark 7.3. Spaces related to V,"[a,b] have also been in-
troduced by Brudnyi {1974] and by Bergh and Peetre [1974].

§ 7.8. REMARKS

Remark 7.1

A Frechét space is a complete linear space X with an invariant metric p;
that is, a functional p:X—R such that p(f+g)<p(f)+po(g), plaf)=
lalp(f). and p(f — g) = p(f) — p(g). A Frechét space is a Banach space if p
is a norm. See, for example Dunford and Schwartz {1957].
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Remark 7.2

A number of authors have obtained exact asymptotic expressions for
d(f,9?,.), for certain classes of smooth functions. For example,
Burchard and Hale [1975] have shown that

1

. m = /o =
len:o (k+ 1) d(f! @ 6~Pm.k)p Bp,m(f) ’ o m+ I/P (748)
B, .(f)= lim B, (fA)
A—0
for all functions in the linear space
AC; " '[a,b)=closure L{"[ a,b] in V,"[ a,b]. (7.49)

It is also shown there that AC‘,"'"'[a,b] is a Frechét space, and that it
contains any f € L;"[a,b] (and, in fact, any f satisfying the hypotheses of
Theorem 7.20). For such f they show that (7.48) holds with

BN =d( 259, D" s

m!’ ’")L,[o,u

It follows from (7.48) in this case that if d(/, ?P,?Pm,,‘)p =o[(b—a)/(k+ 1],
then ||D™f||,=0, hence f€%P, . This is a strengthened version of the
saturation Theorem 7.14. When o <1, Burchard [1977] has shown that
BV™ " 'a,b]C AC" " '[a,b], and that if f€ BV™ " '[a,b] is such that D"f(x)
=0 almost everywhere, then Bp_,,,( f)=0, hence

lim (k+1)7d(£,9 9, 1), =0.

For m=1 and p = oo, the asymptotic formula (7.48) asserts that
im (k+Dd(f, 9P, ). =3[ V2(f)], allfeC[ab],
k—o0 !

a result established by Kahane [1961]. For m=2 and p=2, (7.48) was
established by Ream [1961]. For p=2 and general m, see Sacks and
Ylvisaker [1966, 1968, 1969, 1970]. For some other special cases, see
Phillips [1970], McClure [1975], Dodson [1972], and deBoor {1973b].

Remark 7.3

Burchard [1977] has shown that

b—-a)""l

fEACrab)  implies (3 9, =0( 5T
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This shows that little oh convergence of order m — 1 occurs for a very large
class of functions. He also shows that

ACP'"_'[a,b] - Vp’"[a,b] QACP’"‘z[a,b].

A weaker version of (7.50) was established by Freud and Popov [1970],
who had in turn extended a theorem of Korneicuk for f € Lip! with m=2
and p = o0. Since AC2[a,b]=ACla,b), (7.50) improves Korneicuk’s result.

Remark 7.4

Burchard [1977] also contains several inverse theorems. For example, it is
shown that

>0 impliesfeAC;,’"‘z[a,b].

d(f’@@m.k)p=@( b—a)'"-l+a

k+1
(7.51)

For other results of this type as well as an analog of the K-functional,
Stechkin-type results, connections with generalized derivatives, and results
on asymptotically optimal knot distributions, see Burchard [1977]. For
some different inverse theorems, see Brudnyi {1974] and Bergh and Peetre
[1974).

Remark 7.5

The following alternation theorem of Tchebycheff can be found in any
book on classical approximation theory: Suppose f € C[a,b] and that U,
is a T space. Then u€QL,, is the best approximation of f in the uniform
norm on [a,b] if and only if

(=D o(f — wt) = ||f — ullzfa.b)s i=0,1,..., mo= %1,

for some a <<t < -+ <1, <b.

Remark 7.6

Best approximation in the p-norm, 1<p <o, can be characterized by a
certain orthogonality condition. We have the following well-known result;
see, for example, Holmes [1972], p. 77: Let f€ Lj[a,b], and suppose
AU,, =span{y;}7". Then u €9, is the unique best approximation of f in the
L,-norm on [a,b] if and only if

[~ wr = sen(f—)(Ou() =0, i=1,2,....m.
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OTHER SPACES OF
POLY NOMIAL SPLINES

In this chapter we discuss several spaces of piecewise polynomial functions
that have proved useful in applications. These include periodic splines,
natural splines, g-splines, monosplines, and discrete splines.

§ 8.1. PERIODIC SPLINES

In many problems in applied mathematics it is necessary to approximate a
function that is known to be periodic. As it is usually desirable to work
with periodic approximation functions in such cases, we devote this section
to the study of a space of periodic splines.

Let a <b. By identifying b with a, we may regard the interval [a,b) as a
circle with circumference L=5—a. Now given A={a<x,<x,< -+ <x,
<b}, we may think of A as partitioning the circle into k subintervals,
L=[x,x,), i=1,2,...,k—1, and I, =[x,,x,). Given m>1 and M =
(my,...,m,), a vector of integers with I <m,<m, i=1,2,... k, we define

s: there exist polynomials sy,...,s, of order m
so that s(x)=s(x) on [, i=1,2,....k and
D/ s, _(x)=D'"s(x), j=1,...m—my, i=|
1,2,...,k, where we take sy=3s,

$S(P,,; M:A)= (8.1)

We call $ the space of periodic polynomial splines of order m with knots at
Xys- .o X of multiplicity my,...,my.

It is clear that 5(%,,; 9; A) is a linear space of piecewise polynomials.
In fact; it follows directly from the definition that it is a linear subspace of
the space of polynomial splines defined in (4.1). We have

sES(D,,; M;A): sV(b)=sY)(a),

g(@m;%;A)={ ;
Jj=0,1,....m—1

}, (8.2)

297
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This observation will be of value in dealing with periodic splines on a
computer.
Since $(9,,; M ;A) is of dimension m+ K with K=3k_ m, it is to be

expected from (8.2) that the dimension of g(@m; 9 ;A) is K. The follow-
ing theorem verifies this:

THEOREM 8.1
Let K=3%_, m, Then

$(9,,;9M;A) is a linear space of dimension K. (8.3)
Proof. The proof follows the same pattern as for Theorem 4.4, with

A, — 4, (o)

Now the matrix 4 is a transformation of R™ into REV™~7) with rank
equal to the number of rows X%(m — m,). It follows that the dimension of &
ismk—3k_(m—m)=K. ]

Following the blueprint of Chapter 4, we turn to the construction of a
basis for 5(%,,; I ; A). While it is possible to deal with the case of K <m,

we shall consider only the case of K >m. This will permit us to find a basis
of B-splines. Let

m, my
———— ——t——
Pt lre s Vma k= XpreoosXseees Xgsurrs X (84)
and
Yi=Viex— L, Ykamasi=Ymai+ L, i=12,....,m, (8.5)

where L =5 —a. We define the periodic B-splines by
N™M(x)=N"(x), i=m+1,..,.K, (8.6)
and

N™(x), a<x<Yism

i=1,2,...,m. 8.7
NP (X),  pam<x<b, m (87)

Nim(x)= {
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THEOREM 8.2
The periodic B-splines {1\°’,’"}f form a basis for g(@m; I ; A).

Proof. Each of the B-splines 1\7,,':'+ . < is automatically periodic since
it vanishes outside [x,,x,]. By the choice of the y’s in (8.5), we observe that
N'(x)=N7 (x+ L), i=1,2,...,m. It follows that the 1\°’,."' are also peri-
odic for i=1,2,...,m. It remains to check that these K functions are
linearly independent. But this follows from Theorem 4.18, and, in fact, on
each subinterval /, defined by the partition, the set of all B-splines with
values in the interval are linearly independent. ]

Theorem 8.2 asserts that each periodic spline sES(éP,,,; 9M;A) can be
written uniquely in the form

K

stx)= 2 Ciﬁim(x)' (8.8)

i=1

Thus to store and work with a periodic spline on the computer, it would
suffice to store the vector ¢=(c,,...,cx). In practice, however, it is more
convenient to work with a representation involving nonperiodic B-splines.
The next theorem shows how:

THEOREM 8.3

Let s=3X ,c,N™, and define ¢,, x=c;, i=1,2,...,m. Then s can also be

il

uniquely written in the form

m+ K
s= > ¢NM (8.9)

i=1
Proof. This follows directly from the definition of the N’s. [ ]

Theorem 8.3 shows that periodic splines can be manipulated on a
computer using the algorithms developed in Chapter 5 for nonperiodic
splines. In particular, we may use these routines to evaluate the spline and
its derivatives, to convert to a piecewise polynomial representation, and to
find antiderivatives and integrals.

We turn now to zero properties of periodic splines. Given s€&
$(§Pm; M ; A), let Z°(s) denote the number of zeros of s on the circle [a,b],
counting multiplicities as in Definition 4.46. The - on this notation is to
remind us that we are working on a circle so there are no end intervals;
that is, if s vanishes on [a,7) and on [¢,)), then this should be considered as
just one interval [¢,7). We also observe that since this counting procedure is
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defined so that s changes sign at odd order zeros and does not change sign
at even order ones, Z(s) must always be an even number.

THEOREM 84
If s Eﬁ(‘?m; DM ; A) and is not identically zero, then

s K-1 if Kis odd
V4
(s) < { K if K is even.

Proof. For m=1 we are dealing with periodic piecewise constant func-

tions whose only possible jump points are at the x,,...,x, and the result is
easily checked. Now we may proceed by induction on m, using Rolle’s
theorem just as in the proof of Theorem 4.53. [}

We give two simple examples to illustrate the difference between K odd
and K even.

EXAMPLE 85

Let m=2, A={1/2,3/2}, and let s(x)=—x+2(x—3), —2x—-3/2),,
where [a,b]=[0,2].

Discussion. The spline s is illustrated in Figure 20. It belongs to gz(A),
has two knots, and has two zeros. [}

EXAMPLE 8.6
Let m=2, K=3, and let A={1/2,3/2,5/2},[a,b}=[0,3].

Discussion. Every periodic spline in gz(A) has at most two zeros on [0, 3].
A typical spline in this class is shown in Figure 21. B

In Section 4.8 we were able to use the basic bound on the number of
zeros of a polynomial spline to establish important results about the
nonsingularity of determinants formed from B-splines. We can do the

0] 1/2 3/2 2
} ]

i

I

i

!

[}

[l

Figure 20. The spline in Example 8.5.
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\ |
0 172

[0 Y P—

3/2 5/2 Figure 21. The spline in Example 8.6.

same for periodic splines in the case where K is odd. An analogous result
cannot be established for K even because our zero bound is weaker in this
case—see Example 8.10.

We begin by posing a periodic version of the Hermite interpolation
Problem 4.69.

PROBLEM 8.7. Periodic Hermite Interpolation by Splines

Let ¢, <t,< - - <t be points on the circle [a,b) of circumference L=5—
a. Suppose f,—1,<L. Let §,,...,0, be a sequence of signs, and let
N,...,Ng be the set of periodic B-splines of Theorem 8.2. For i=
1,2,...,K, let

0, ifreh 410
T m, if ,=x,EA. (8.10)

The integer ¢; counts the number of knots equal to ¢, if any. Define

e m—e+max{j: t,,,=---=tandf, ,=--- =6}, if §,=—
' max{j: ,=---=f_,and f;=--- =6, .}, if 6=+
(8.11)
We assume that the #’s and #’s are chosen so that
0<d <m—1; : (8.12)
if=+and ¥, ,=—, then ¢, <¢,, |; (8.13)
ifg=—and¥d,, ,=+, thent,,,_, =" =t =t. (8.14)

The Hermite interpolation problem is as follows: Given {9,}¥, find s€
g(@m; 9N ; A) such that

Dgis(t) =1, i=1,2,....K. (8.15)
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THEOREM 8.8
Let K be odd, and let li°',.=1\7"', i=1,2,...,K be periodic B-splines as in

i

Theorem 8.2. Given {£,}¥ and {,}¥ as in Problem 8.7, let

R .
D| 6y.....0¢ =det[0,¢1>,,féj(z,.)]fj_l. (8.16)
B,,..., By
Then, for all 1 <¢g<K,
Loty Lyyeosly
D 8,,....0 =D| 0),....0¢ | >0. (8.17)
B,...By.B,,...B,_, B,,...,By

Moreover, the determinant is positive if and only if for some choice of
1 < g <K, the B-splines
Bt,...,Bt=B,....B.B,....B

q—1
satisfy

/
Leo*=(y*y* U {x: Dé"éi*(x)#O}, i=12,...,.K, (8.18)

where y*,...,y* , are the knots (thought of as lying on the circle)
associated with Ii-", i=12,...,K.

Proof. Since K is odd, there is no change in the value of the determinant
if we change the order of its columns from 1,2,...,K to X, 1,2,...,.K—1.
This can be repeated as often as desired, and the equality of determinants
asserted in (8.17) is established.

The proof that D0 when (8.18) holds can be carried out using the
same ideas as in the proof of Theorem 4.71. In particular, if D=0 and
(8.18) holds, then we can find {¢,}¥, not all zero, so that

K
Dis(t)= 2 ¢DiB(1)=0, i=12,.. K
j=1

If s does not vanish on any subinterval of the circle, then it is a spline in
S(@,,; I ; A) with K zeros counting multiplicities, (no two zeros can be
swallowed up in an interval where s vanishes in this case). This contradicts
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Theorem 8.4. On the other hand, if s does vanish on some interval, then we
may arrive at a contradiction using ordinary B-splines just as before.

The proof that D is positive when (8.18) holds can also be established
along the lines of the proof of Theorem 4.72 via a limiting argument. We
turn now to the proof of the fact that D=0 whenever (8.18) fails. This is
more delicate than in the nonperiodic case.

Suppose (8.18) fails. In particular, suppose Bl,...,BK have been renum-
bered so that t,€0;, i=1,2,...,p <K, with p maximal. Since p is maximal,
t, ., must either be too far right or too far left (on the circle) to belong to

(2
0, We consider these two cases separately

CASE 1. Suppose 4, is too far right for B, . Let B, be the first B-spline
following B, , so that

tp+1 EO(D0?:,|ér)=(yr’yr+m)U {X: D0?++llér(x)¢0}‘

Renumber the B’s as B,, .. .,BK so that Bp+ = B,, and consider the matrix

= [0‘¢D9"4B (t )]l j1

Since p is maximal, 4 eo(D B) for some 1 << p. Since the support sets
of {B } are further nght than those of the {B }, this can happen only if for
some 1</ <p, is too far left for B But then columns j through p of M
have nonzero entrres only in rows j+1 through p, and it follows that
D =det(M)=0.

CASE 2. Suppose 4, is too far left for BpJrl Let B, be the first B-spline
preceding B,,, so that t,,HeG(D,;f':I'B). Renumber the B,,...,By as
B,,...,BK so that §p+l=§/' Since p is maximal, 5.950(Déf5Bj) for some
1<j<p. Since we have shifted the B-splines so that their supports lie
further to the left, we conclude that for some 1 <j < P is too far nght for
B It follows that the columns 1 through j and p+2 through K of M have
zero entries in rows j through p + 1. This means that this set of K-p+j—1
columns has nonzero entries in at most K—p +j—2 rows, and D= det(M )

The need to introduce the integer ¢ in the statement of Theorem 8.8 is
due to the fact that on the circle there is no natural way to choose the
numbering of the #’s. In fact, (8.18) can hold for more than one choice of g,
as the following example shows.

EXAMPLE 89
Let [a,6)=[0,3), m=2, K=3,and A={1,3,3}. Lett,=1,1,=1, and 1,=2.
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Discussion. In this case (8.18) holds with ¢ =0. It is easily checked that it
also holds for g=1. We have

él(t])Boz(tl)é3(tl) éz(tl)é:i(tl)él(tl) 1
él(’z)éz(tz)éa(tz) = éz(’z)é3(t2)él(’z) =%
l;l(t3)l§2(t3)1§3(t3) é2(t3)é3(13)él(t3)

See Figure 22. n

The following example shows that Theorem 8.8 cannot hold in the case
where K is even:

EXAMPLE 8.10
Let [a,b)=[0,2), m=2, K=2, and A={1/2,3/2).

@ = Knots

Figure 22. B-Splines for Example 8.9.
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Discussion. The two periodic B-splines forming a basis for gz(A) are
shown in Figure 23. It is clear that ¢, =0,2,=1 satisfy (8.18), but

sl )=
B,,B,

In the remainder of this section we discuss the approximation power of
periodic splines. Our main tool for obtaining direct theorems will be a
periodic analog of the local spline approximation operator Q defined in
Theorem 6.18. Given a partition A of the circle [a,b) into k subintervals, it
is clear that the method of Lemma 6.17 can be applied to choose a
thinned-out partition A* with

Il
e

[STE STE
[STESE ST

A .. 7x. 3A
3 SAT<A*< =,
where A and A are the lengths of the smallest and largest subintervals of
the circle [a,b) corresponding to A, while A* and A* are the analogous
quantities corresponding to A*.

Suppose we number the points in A* as A*={a<y,,, ;< " <YVpir <
b). Associated with A* define the extended partition A* = { y,}"**" by

Yi=Yigre— L, Viemtks=Vmeit L, i=12,....m,

Figure 23. The B-splines for Example 8.10.
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where L=b—a. Let {B,}7**" be the usual B-splines associated with the
extended partition A¥, and let {B,}X" be the corresponding periodic B-
splines [cf. (8.6)—(8. 7)] Finally, let {7;}7."1{" and {a,}7. 2% be de-
fined as in (6.37) and (6.38).

We are ready to define our spline approximation operator. Given any
periodic function defined on [a, b], let

(x)-z 2( o[ Tir-- 1 1S ) Bi(x), (8.19)

i=1 =1
where f is the periodic extension of f to [a— L,b+ L] defined by

Ax+ L), a—L<x<a
f(x)=4f(x), a<x<b
Ax—1L), b<x<b+L

The following theorem gives several basic properties of Q

THEOREM 8.11

Q is a linear operator mapping the periodic functions on [a,b] into
SM(A*)Q gm (A). It can also be written in the form

m+k* m

Ofix)= 3 X (ay[7y--o7;]f )B(x), a<x<b, (820)

i=1 j=1

Moreover, O reproduces polynomials locally. More precisely, if fisa
polynomial of order m on an interval of the form [y, |_,.V/4+m] then
Of(x)=f(x) for all y, <x < y,,,, any m+1<I<m+k*.

Proof. It is clear from the definition that Qf es (A‘)CS (A). The
alternate expression (8.20) for Qf follows from Theorem 8.3. The reproduc-
tive property is then a consequence of Theorem 6.18 and the local
character of Q. [

It is now clear that Theorem 6.20 and Corollary 6.21 can be applied to
give bounds for D’(f— Qf) and for D’'Qf. These results translate im-
mediately into error bounds on Qf For example, Corollary 6.21 yields the
following theorem, where the spaces G, l;" and the periodic modulus of
continuity are as defined in Section 2.11:
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THEOREM 8.12
Let A be an arbitrary partition of the interval [a, b], and suppose | <o <m.
Then for all f€ C°™ '[a, b],
1D (f~ QN>  r=0.....0—1
1 D"Of oo r=o,...,m—

Moreover, if f € I:p"[a,b] and 1 <p<g< oo, then

} <C(A) " 'o(poTY,A).  (821)
1

ID(f~ 0NNy r=0.1,.0-1 i
q l <C2(A) +1/q I/p”Dtrf“p- (8.22)

I D Of Il r=o,..,m—1.

Since Theorem 8.12 involves estimates for derivatives, we can restate it
in terms of the Sobolev norm (cf. Corollary 6.26).

COROLLARY 8.13

Suppose 0 <r<o—1<m=1. Then there exists a constant C such that for
all fe Lp"[a,b],

2 \o—r+1/q-1
1f = Ol £1asr CAY T2 fll fotansy
I1<p<g< .

We can also give an estimate for l;[a,b] functions.

THEOREM 8.14

Suppose 1<p<oo. Then there exists a constant C such that for all
fe€L)a,b]

d[ £,5,(8)], < Ciéon(f;8),- (8.23)

If fe é[a,b], the same inequality holds with p = o0.

Proof. For every g€ [:p’"[a,b], Theorem 8.12 guarantees that s= Qg satis-
fies

If=sl, <! f—gl,+lig—sll, <|lf—gll,+ C,A™|| D"gl|,.
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Taking the infimum over all g€ l;"'[a,b], we obtain
d[ £,5,(8)], <C:K,,,(B)

(assuming C, > 1). The assertion now follows from the equivalence of the
K-functional with the modulus of smoothness (cf. §2.11). ]

We also have the following result in terms of the modulus of smoothness
of a derivative:

THEOREM 8.15

Let 1<o<m and 1< p<g<oo. Then there exists a constant C such that
for all f€ L){a,b],

e Ayo+1/q— o of. A
d[ £.5,.8)], <, @)%, _ (DY B),.
Proof. Given ge ipm[a,b], let G=g“"€1:p"'_"[a,b]. Then
If=Ofll, <I(f—8)— O(f— &)l + g~ Qgll,-
Using Theorem 8.12 we obtain
IS~ Ofll, < B+ /9= VP(Cy|| D = G|, + CA™°|| D™ ~°G ||, )-

The expression in the parentheses is bounded by a constant times
K, _.(8)D’f, and the assertion follows from the equivalence of the K-func-
tional with the modulus of smoothness. [ ]

The above discussion shows that the direct theorems for ordinary
polynomial spline approximation can all be carried over easily to the
periodic case. The ambitious reader can check that there are analogous
results for periodic Besov spaces and for other intermediate spaces.

This same comment applies to lower bounds and inverse theorems.
Indeed, the lower bounds established in §6.6 for ordinary polynomial
spline approximation are also valid for periodic spline approximation since
the functions constructed there are all locally defined, hence they can be
extended trivially to be periodic. The n-width results of §6.7 also carry over
directly. Finally, we also note that various classes of periodic functions
(e.g. certain periodic Lipschitz spaces Lipﬁ"" or periodic Zygmund spaces
2*) can be characterized completely (cf. §6.8 —6.9 for the nonperiodic
case) in terms of approximation by periodic splines.
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§ 8.2. NATURAL SPLINES

In this section we shall consider a linear subspace of 5(%,,,; 9N ;A)that
plays an important role in applications. Suppose M =(m,,...,m,) with
1<m;<m, i=12,....k. We call

NE(Poyps M; )= {5 ES(D,,,; M;A): 55=5](4,x,)
and s, = s|,, ) belong to ¥} (8.29)

the space of natural polynomial splines of order 2m with knots at x,,...,x; of
multiplicities m,,...,m,.

Since the dimension of &(%,,,; 9N ; A) is 2m+ K while we have enforced
2m extra conditions to define NS (P,,,; IN; A), it is natural to expect the
dimension of N & to be K. The following theorem confirms this:

THEOREM 8.16

NS(P,,,; I ;A) is a linear space of dimension K.

Proof. Proceeding again as in Theorem 4.4, we now find that the ties
between the various polynomial pieces can be described by Ac=0 with

f £ .
4, -4,
A= A2 _AZ ,
Ay —Ak
L E |
where now
1 x - x2 N /2m—1)
A= 0 1 e x,.z"'—z/(Zm—2)! ,
0 o 1 cee XM/ (2m— m)!

and E is the m by 2m matrix with zeros in the first m columns and the m
by m identity in the last m columns. Now, the matrix 4 is again seen to be
of full rank, 2m + Z¥(2m — m,). Since ¢ is a vector with 2m(k + 1) compo-
nents, we deduce IS is of dimension K. [ ]
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In some applications it may be possible to deal with natural splines by
using a basis for &(%,,,; 9W;A) and enforcing the end conditions. For
other applications it is desirable to have a basis for IS (P,,,; M ; A) itself.
We now show how to construct such a basis consisting of splines with
small supports.

Givenj>1,n>1,andy, <y, <--- <y, ;, we define

n-1
Li7,(x>={[yi""’yi+j](y v B (w25)
0, Yi=Viaj
and

Y[ yeoyin: J(x=y)37 0, <y
R,'?j(x)={( )’[yl yl+j](x y)+ yl<yl+j‘ (8.26)
0, Yi=Vij

The usual B-spline defined in Section 4.3 1s given by
Q/(x)=L,(x)= R/, (x) (8.27)

except possibly when x falls at an n-tuple knot, cf. (4.16). Clearly L;”; and
R ; are polynomial splines of order n. We collect a number of their
properties in the following theorem:

THEOREM 8.17
For all 0 < <n,

=0 for x>y, ;
LY , 8.28
"J(x){ >0 for x <y,,, (8.28)
L,{’j(x) is a polynomial of exact order n—j for x <y;;  (8.29)
D+Li7j(x)= —(n— l)L,.f'j—l(x); (8.30)
L' N (x)+(y,, =X)L (x if j>1
Lr(x)=1 " ) (y_'f’ M) AN}
(Yis;— x)Lifl_j (x) if j=0.
Similarly,
=0 for x <y,
R ' 8.
"J(x){ >0 for x>y,’ (8.32)

R(x) is a polynomial of exact order n— for x >y,, ;, (8.33)
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D+R,-f’j(x)=(n~ l)Rif'j"(x); (8.34)
Rif'j(x) = Rif'j_—ll(x) +(x .—yi)Rit'j“ l(x)’ Jj>L (8.35)

Proof. We concentrate on the L’s; the properties of the R’s can be
established similarly. The first part of (8.28) is clear since (y—x)%™!
vanishes identically for x >y. The positivity assertion follows inductively
from the recursion (8.31) and the fact that L o(x)=(y,— x)% '. The dif-
ferentiation formula (8.30) follows directly from the definition. Finally, to
prove the recursion, we apply Leibnitz’s rule to (y — x)"%(y — x) to obtain

Lif'j(x)‘_" [)’i’ . "yi+j—l](y - x):'—z[yi-}-j— 1,)’,-.”]()’ —Xx)
+ [yi""’yi+j](y—x)'l—z[yi+j](y— x)
=Li7j-ll(x)+(yi+j—x)Li:Ij—l(x)' a

THEOREM 8.18
Let K >~2m, and set

Lr%l”-:-l,m-(-i—l(x), i=12,....m
Bx(x)= N,-zm(x), i=m+1’”.,K__m (8.36)
R ki i=K—m+1,... K.

Then { B,}{ is a basis for NS (P,,,; IM; A).

Proof. By Theorem 8.17 each of these splines belongs to IS . Since we
already know the dimensionality of IS is K, it remains only to establish
the linear independence. Suppose 3¢, B,(x)=0. Then for x <y, we have
2Vc; B,(x)=0. But each of these splines reduces to a polynomial of exact
order m—i+1, and so the ¢’s must be zero. A similar argument on the
right end shows the ¢x_,,, 1,...,cx t0o be zero. But the remaining ¢’s must
also be zero by the linear independence of the B-splines N*™, i=m+
,...,K—m. [ ]

We have introduced the restriction that K >2m in Theorem 8.18 in
order that there be a complete set of m natural splines on both ends. In
practice, we will normally use small m and large K, so the assumption is
not unreasonable. If K=2m, then none of the usual B-splines are needed.
We should point out that the first and last m basis elements in Theorem
8.18 are not local support functions in the usual sense, but each of the
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splines does have support on at most 2m of the intervals defined by the
partition, where (—o00,x,) and (x,0) are included. Figure 24 shows a
typical case of Theorem 8.18 with cubic natural splines.

Our next theorem shows how a B-spline expansion for a natural spline
can be manipulated to obtain expansions for its various derivatives. The
result is useful for numerical applications.

THEOREM 8.19
Suppose s EN S(P,,,; I ;A) is given by

m K—m K
s(x)=ECiL3|'11,m+i—l(x)+ E CiN.‘zm(x)"‘ 2 CiRi,zr’n"+K—i(x)'
1 m+1 K—m+1
(8.37)
Then for 0<d<m,
m-—d K—m
Dis(x)= X L2 0+ X dONYTTUx)
i=1 i=m-—d+1
K-d
+ KE lc:(d)Ria-md,_r:+K—i—d(x)’ (8.38)
i=K—m+
where
cO=c, i=12,...,K;
d_ —_
c‘(d)=(2m—d)(cl(+ll)—cl('d l))’ i=m_d+l,...,K_m,
(Vomei=Vied)
and
@D = —(2m—d)c? Y, i=1,2,....m—d '
Cm—d)c{dP i=K-—m+1,....K—d
Moreover, for m<d<2m—1,
K-2m+d
Dis(x)= 2 cPNITUx), (8.39)
i=1
where
2m—d)cd=D — @d=1
oy = @ =Xl 1) i, K-2me+d

(y3m+i—d—l_yi+m)



NATURAL SPLINES 313

MY A)

3 3
L3, N3 N2 Ng NS R},
D S, A)
V3 Ya Vs Vs ¥ Ve k¢
N2 NZ N2 NZ N?
D23y A)
) Va Vs Yo V2 Vs Vg
N, N, Ng Ng N} Ng
D3 S(1g; A)
I 1 1 ] | | |
Y3 Ya s Ye Yy Vg Yo

Figure 24. Bases for cubic natural splines and derivatives.

Proof. For d=0 there is nothing to prove. We now proceed by induction.
Suppose (8.38) has been proved for d—1, 0<d <m. Then differentiating,

we obtain

d —d+1
Distx) __ " S @by m-
(2m—d) l ¢ m+ 1, m+.—1(x)
K—d+1
( —
+ « 2 1C 4 I)R:2+md—‘1 m+K—i—d+1
-—m+

m 2
+ Z, C,(»d—l) H'-"d—dl(x) _ :imd d(x)

K=d+2 Yivzma1—Yiea-1) Vivzm—Yivd)
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But
2m—d
L2m—d __Q2m—d= N"H’l
m+1,2m—d~ Xm+1 ( _ )’
YVim—d+1" Vm+1
and
2m—d
RZm—d — 2m—d _ NK—m+d
K—m+d2m-d K—-m+d

(yK+m ——yK—m-#-d) '

Thus by combining terms and rearranging (compare the proof of Theorem
5.9), we obtain (8.38) for d.

Equation (8.39) for d=m agrees with (8.38) for d=m. To prove (8.39)
for m<d<2m—1, we again proceed by induction. [ ]

Figure 24 shows the shape of the various splines involved in the
expansions of the derivatives of a cubic natural spline. All of the B-splines
shown in Figure 24 can also be found in the array shown in Figure 25. For
any given x, all of the nonzero entries in this array can be computed
recursively. In particular, if y, <x<y,,, with 3</<7, then we may start
with Q'(x)=1/(y,,,—»,) and generate the pyramid lying under this
element. This pyramid is outlined in Figure 25 for the case of /=6. The
entries of the form L, can be computed using the recursion (8.31). Those
of the form R; may be computed using (8.35), and the Q" can be obtained
from the elements above using the recursion (4.22). The process is a stable
one in that all elements of the array are nonnegative, while within the
pyramid all of the coefficients in the recursions are also nonnegative.

If we are interested in x <y,, then we may start with L;,O(x)= 1, and
generate the pyramid lying under it using the recursions for the L’s.
Similarly, if x>y, we start with Rgy(x)=1, and generate the pyramid
lying under it.

Lo 0;
/N /N
2 2
I’J,O L:l,l
/N 7 N\
3 3 3
L3p L3, L3,
/N 7 N 7\
4 4 4
Lo Ly, L3,

Figure 25. The B-spline array for the splines in Figure 24.
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We now discuss some algorithms for dealing with natural splines
numerically. Our first algorithm may be used to evaluate B-splines at a
given point (cf. Algorithm 5.5).

ALGORITHM 8.20. To Compute the Pyramid of B-Splines With Values at x,
given y; <x <ypryy

1. If x<y, .
a. SetLl, o=1
b. Compute the pyramid lying under L}, 1,0 using the recursion
(8.31);
2. Ify,<x<y,,, forsomem+1</<m+K~-1:
a. Set Q'=1/(y.1—»);
b. Compute the pyramid lying under Q,' using (8.31), (4.22), and
(8.35) as necessary;
3. Ifx2y, .k
a. SetR,, xo=1;
b. Compute the pyramid lying under R, x o using (8.35).

The next algorithm can be used to find the coefficients of the B-spline
expansions of the various derivatives of a natural spline.

ALGORITHM 8.21. To Compute the Array ¢/’ of Theorem 8.19

1. Forje«1 step 1 until K
cd(0,))c());
2. For d<1 step 1 until m
a. forjem-—d+1step 1 until K—m
cd(d,jy—Q@m~ dys[cd(d—1,j+ 11— cd[d— 1))/ [y(2m +j)—y(j +
d)};
b. forje1 step 1 until m-—-d
cd(d.j)e——(2m—d)xcd(d— 1, j);
cdld, K—m+j)e-2m—d)xcd(d—1,K—m+j+1);
3. For de-m+1 step 1 until 2m~1
for j<1 step 1 untit K—2m+d
cd(d,j)— 2m—d)s[cd(d—1, j))—cd(d— 1, j—D)/[yBm+j—d—1)
—y(i+m)].

Algorithms 8.20 and 8.21 can now be combined to produce an algorithm
for evaluating a natural spline and its first 2m — 1 derivatives.

ALGORITHM 8.22. To Compute s(x),...,D¥™ s(x) for given a <x <b

1. Find / such that y, <x<y,,, by Algorithm 5.4;
2. Compute the pyramid of B-splines with value at x by Algorithm 8.20;
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3. For d=0 step 1 until m compute D%(x) by formula (8.38);
4. Ford=m+1 step 1 until 2m— 1 compute D %(x) using formula (8.39).

Discussion. It is assumed that the array [c®] of coefficients of the
B-spline expansions of the various derivatives has already been computed
by Algorithm 8.21. [ ]

Algorithm 8.22 can be applied in the same way as in the ordinary
polynomial spline case (cf. Algorithm 5.15) to convert the B-spline expan-
sion of a natural spline to a piecewise polynomial representation. There are
some obvious simplifications that can be made in the algorithms in the
case of equally spaced knots. We should also mention that it 1s possible to
establish the analog of Theorem 5.7 and to design an algorithm based on it
that is similar to Algorithm 5.8. This would produce a somewhat more
efficient alternate to Algorithm 8.22.

We close this section by noting that it is possible to develop zero
properties and to examine the sign structure of determinants formed from
the natural B-splines in much the same way as was done for the ordinary
polynomial splines. But as there is little need for these results in practice,
we do not bother to work them out here. We should also emphasize that in
applications of splines we would generally not select the space of natural
splines for a particular numerical process. We have examined the space
and how to handle it on a computer primarily because natural splines turn
out to be the solution of various best interpolation and smoothing prob-
lems.

§ 83. g-SPLINES

In this section we study certain linear spaces of generalized polynomial
splines (called g-splines) that arise naturally in several applications (includ-
ing best interpolation, smoothing, and the construction of optimal quadra-
ture formulae). We begin with their definition.

Let A={a=x,<x,<--- <x,,,=b} be a partition of the interval [a,b]
into subintervals I, =[x, x;,,), i=0,1,...,k—1 and I, =[x, x, ., ,]. For each
i=1,2,...,k, suppose | <m; <m and that

ri={v " (8.40)

=1
is a collection of linear functionals defined on %,,. We define the space of
g-splines by
s: there exist s,...,5, €, with
$(9,,;T;4)=1sl;,=s,i=0,1,...,k such that . (84)

YiSic1=vysiforj=1,....m—m;andi=1,....k
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Although many of the results presented here are valid for general linear
functionals (cf. Chapter 11), throughout this section we shall restrict our
attention to the case where the linear functionals y; are linear combina-
tions of derivatives; that is, we suppose

vi=e. S yD", (8.42)

v=1

where e, denotes the usual point evaluator functional defined by e f=f(x)
If T,={y;}7=\™ is a set of linear functionals of the form (8.42), then we
refer to I'; as a set of Extended Hermite- Birkhoff (EHB-) linear functionals.

Before proceeding to the basic constructive properties of S(%,,;T'; A), it
is instructive to consider several examples.

EXAMPLE 8.23

Let m=2, [a,6]=[0,5], A={1,2,3,4), and T'= (e} ese,}, where e/f=
fG).

Discussion. The space &(%,;T'; A) consists of piecewise linear polynomi-

als such that across the knots the slope is continuous, but the function
itself need not be. A typical member of this space is illustrated in Figure

26. |

EXAMPLE 8.24. Hermite-Birkhoff Linear Functionals

Suppose each I'; consists of linear functionals of the form
v;=e D%  j=12,....m—m, (8.43)
where

O<y, ;< <y,

,»,m_mi<m—1,

i=1,2,...,k. We call such a set I'; of linear functionals a Hermite- Birkhoff
(HB-) set.

\
\

\

.
L

w

‘

o

\

Figure 26. A g-spline (cf. Example 8.23).
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Discussion. A set I'=U*_ T, of HB linear functionals can also be con-
veniently described in terms of a so-called incidence matrix

(8.44)

u.=11=1’ y

. m __I
E=(E) ™ E={0 if e, D™/ €T
1 otherwise.
The number of functionals in I' is equal to the number of unit entries in E;

namely, K=2%_,m,. The set I' in Example 8.23 is an example of an HB set
of functionals. The corresponding incidence matrix is given by

SO O Q

We can specialize T still further so that (%P, ; I'; A) reduces to the space
of polynomial splines &(%P,; O ;A) discussed in Chapter 4.

EXAMPLE 8.25. Hermite Linear Functionals
Suppose

I‘,.={e e,

X0

ex<’""""‘)}, (8.45)

i=1,2,...,k where e() e, D”, in general. We call T'= uk
Hermtte lmear functtonals in this case.

Discussion. Here &(9,,;T;8)=8(?,,; M ;A) with M =(m,,...,m,). In
this case the ith row of the incidence matrix consists of a sequence of m,
ones, followed by m — m; zeros, i=1,2,... k. B

I'; a set of

i=]

It is clear that the space of g-splines & (%, ;T;A) is a linear space. The
following theorem gives its dimension. We assume here and throughout the
remainder of the section that for each i=1,2,...,k, the linear functionals
Yits+-+»Yim—m making up T, are linearly independent over &,. This is
equivalent to the assumption that the matrix

)M mm

G=(v;, (8.46)

j=1,p=1

is of full rank m—m,.
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THEOREM 8.26
The dimension of S(%,,;;A) is m+ K, where K=Skm

Proof. The proof is exactly as in Theorem 4.4, except that now the matrix
A is given by

A, -4,

where V,=V(x;,...,x;) is the m by m VanderMonde (in this case
Wronskian) matrix. Since V; is rank m and G, is rank m— m, each 4, is

i

also of rank m—m,. [}

We would now like to construct a basis for $(%,,;T'; A). As in Chapter
4, we will begin with a basis of one-sided splines. Clearly, we should
include the functions 1,x,...,x™ ", In addition, we will want to construct
m; splines associated with each knot x; and in such a way that they vanish
for x <x;. The following lemma considers the possibility of such a con-
struction:

LEMMA 8.27

Suppose

B }
- | =0, (8.47)
By

where G, is the matrix of coefficients of the linear functionals T'; associated
with the knot x,—see (8.46). Then

p(x)= 2 B, (x %)%

y=1 V)!
is a g-spline in the space (& ,,;T;A).

Proof. Clearly p is a piecewise polynomial. We need only check that it
satisfies the proper smoothness conditions at the knot x;; namely,

( x)m 14 )
2 B, 2 Y,,,D“ ! (m—v)' =0, Jj=12,....m—m,

v=1 p=1 X =x;

But these are just the equations (8.47). [}
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Since (8.47) is a system of m—m, equations with m unknowns, there
exist m; different (linearly independent) solutions. We are now ready to
construct our one-sided basis for &(%P,,;T; A).

THEOREM 8.28
For each i=1,2,...,k, let

BY=(By.....BY), Jj=12,...m,

be a set of m, linearly independent solutions of (8.47). Set

o= £ T T e
and

Po;(x)= x/1 Jj=12,...,my with my=m. (8.49)
Then

{pij(x)}f-o, j’n-l

is a basis for S(%,,;T’; A). Moreover, each pij(x) vanishes for x <x;.

Proof. By Lemma 8.27 each of these functions belongs to &. For their
linear independencc, suppose ZEST ¢;p;(x)=0. Then for x in (a,x,) we
have S7c, x’~' =0, which implies ¢, = - - - = ¢,,,, =0. Now, looking at x in
(x,x,), we have Z7"c;;p,,(x)=0. But by the linear independence of the
B',....,B'™, the splines p,,,...,p,,, are linearly independent on this inter-
val, and again the ¢’s are zero. This process may be continued to argue that
all ¢’s are zero, so the splines {p,} are linearly independent. Since there are
m+ K of them, in view of Theorem 8.26, they form a basis. [ ]

We give several examples:

EXAMPLE 8.29
Suppose T is a HB-set of linear functionals.

Discussion. In this case the one-sided basis is somewhat easier to de-
scribe. It is given by

{l,x, [ ,x”'_'} U {(-X - Xi)’i_/}i./' such that £,=1s
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where E is the incidence matrix associated with I' as in Example 8.24 In
other words, at each knot we take the splines (x — x;Y, with

JE{OL,....om~1}\{», ,...,»

i,m—m,.}9 i=l,2,...,k,

where the »’s list the derivatives in I (see Example 8.24). [ ]
EXAMPLE 830

Give a one-sided basis for the space &(%,;T’;A) discussed in Example
8.23.

Discussion. Applying Example 8.29, we may take the functions

0 Yk
{l’x}u{(x_xi)+}i-l' a
Our next task is to construct a local support basis for the space of
g-splines. This is not a trivial assignment, as the following example (where
there does not even exist a local support basis) shows.

EXAMPLE 831

Construct a local support basis for the space of splines discussed in
Examples 8.23 and 8.30.

Discussion. Any spline in &(%,;T'; A) that vanishes outside of an interval
is forced by the continuity of the slopes to have zero slope everywhere.
Thus the only local support splines in &(%,;I';A) are those with zero
slopes; that is, piecewise constants. But the spline s(x)= x belongs to the
space, and clearly it cannot be represented as a linear combination of
piecewise constants. It follows that § (%,;I'; A) cannot have a basis consist-
ing solely of local support splines. ]

As a first step toward constructing a local support basis for S(9,;T'; A),
we put the one-sided splines in lexicographical order:

= —1
ProeeosPmek = LiX,oo,x™ sPi o> Pimyp s Prts e+ > Phom - (8.50)
If we introduce the notation
m, my,
Ym+1 <ym"’2< T <ym+l(= Xpseros Xpseeay Xpyoney Xy

where each x; is repeated exactly m; times, i=1,2,...,k, then by the
construction in Theorem 8.28, each of the splines p,(x) vanishes identically
for x<y, i=m+1,...m+K.
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For convenience, we write x,=a and mgy=m. Then there exists
coefficients C; so that

0, x <y

p(x)=1 & S ¢ x- Y /G- 1)t x>, (8.51)

{
1—1

(withy,=...=y, =a).

The basis {p,}7** for S(¥,,;;A) is completely described by the set
{y}7*% and the matrix C=(C)/=7/X. We shall use the notation
Cd{i,,...,i,» to denote the submatrix of C obtained by taking only the
columns /,....1,.

The following analog of Lemma 4.7 shows when it is possible to form a
linear combination of one-sided splines to produce a spline with local

support:

LEMMA 8.32

Suppose 1<i; <i,<--- <i,<m+ K, and suppose 8=(§,,...,8,)7 is a solu-
tion of

Cliy,...,i. >8=0. (8.52)

Then

B)= 3 40,1

is a spline in & which vanishes for x <y;, (if i, >m) and for x >y,.

Proof. Clearly BES as it is a linear combination of the p’s. Since all of
the p; (x),...,p; (x) vanish for x <y, by definition (if i/, >m), it follows that
B(x) also does. Now for x>y,, each of the functions p is given by its
expansion

p,)(x)=[1,x,...,x’"“']Ci.

7

Thus

B(x)=[1Lx,...,x" '] C{iy...,i,>8=0 for x >y,. (]
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In applying Lemma 8.32 to the construction of local support splines, we
may choose any value of r for which a corresponding nontrivial 8 satisfy-
ing (8.52) can be found. In some cases, local support splines can be
constructed using only two one-sided basis splines. In general, however, it
will be necessary to use larger values for r. (For example, in the polynomial
spline case, we saw in Lemma 4.7 that it was necessary to take r>m+1.)

Lemma 8.32 can be used to construct local support splines as linear
combinations of one-sided splines. An important question associated with
this process is: When are the resulting splines linearly independent? The
following lemma -gives simple algebraic conditions which assure linear
independence:

LEMMA 833

Suppose {B,=(B,1.--- By m+x)}?=1 1s a set of g linearly independent
vectors with m+ K components, and that

m+ K
B,(x)= > B,p,(x), v=1,2,...,q. (8.53)
j=1
Then the splines B, ..., B, are linearly independent.

Proof. 1f d\B,+--- +d,B,=0 on [a,b], then

q m+ K m+ K q
v= Jj=1 Jj= v=

By the linear independence of the p’s, it follows that 4,8, + - -- +4,8,=0.
This in turn implies that d,=--- =d =0 since we have assumed the
vectors B,,..., B, are linearly independent. [ ]

Lemmas 8.32 and 8.33 together show how a local support basis for &
could be constructed. We must find m+ K linearly independent vectors in
R™*X to serve as the coefficients of local support splines. Whether we can
choose such vectors will depend heavily on the properties of the matrix C.
Our next theorem gives a set of conditions on the matrix C which is
sufficient to guarantee the existence of a basis for & which consists of
splines whose support intervals are not too big.

THEOREM 8.34

Let ¢,=0, and define

§=¢_,+m_, i=12,.. k+1



34 OTHER SPACES OF POLYNOMIAL SPLINES

Suppose the matrix C defining the one-sided basis {pj}'1"+K has the
property that

Clgg 1+ s €iimery is of full rank m (8.54)

for each i=0,1,...,k —m. Then there exists a basis { B;}7"* X for & with the
properties that

B, 1B, have support on [ x;, x4, |, i=0,1,... . k—m,
(8.55)

B, 1s-osB have support on [ x,,b], i=k—m+1,... k.
(8.56)
Proof. We construct coefficient vectors 8,,...,8,,, x. Fori=0,1,....k—m

and j=12,...,m;, choose B,,; to be a vector in R™*X whose ¢ +/
component is equal to 1, whose ¢, ,+1,...,¢, ,,,,, components are equal
to 8, where 8 is any solution of the system

Clg o+ L, 81 00=—C{g+ >,

and whose remaining coefficients are zero. For i=k—m+1,...,k and
Jj=L12,....m;,let B, ,; be an m+ K vector with its ¢+ j component equal to
1, and all other components equal to zero. By the construction we see that
the corresponding B-splines have the stated support properties. In particu-
lar, we note that
B, i =Py +j Jj=12,....m, i=k—m+1,... k.

Moreover, by the construction, these coefficient vectors are clearly linearly
independent, and the result follows from Lemma 8.33. [ ]

Some discussion of the &’s in Theorem 8.34 may be in order. They are
defined so that
g+ 1=min{j: y,=x};
& =max{j: y;=x]}.

Thus the part of the matrix C involved in the hypothesis (8.54) of Theorem
8.34 is precisely those columns which are related to one-sided splines
associated with the knots x;_ ,...,x;, .. The condition (8.54) is not satis-
fied for the matrix C corresponding to Example 8.31.
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As an application of Theorem 8.34, we now discuss one commonly
occurring situation where a local support basis for a g-spline space can be
constructed.

COROLLARY 835

Suppose none of the functionals in T involves the m— 1** derivative. Then
(8.54) holds, and Theorem 8.34 provides a tocal basis for &.

Proof. The matrix in (8.54) contains the submatrix

Cl&ptre e sEiom
Since

~1-1
y+j)m

(x=x,, )7 " mQtx(=x
v

pe,¢j+l(x)= x>x,,+j,

this matrix is just a constant multiple of the VanderMonde matrix
V(X,41---2%,+m) Which, of course, is nonsingular. [}

While Corollary 8.35 does produce a basis for the space of g-splines
which consists of splines with relatively small supports, we emphasize that
we have not shown that these basis splines are positive in the interior of
their support. In general, they will not be. In addition, it is also not
generally the case that the local support splines constructed here have the
smallest possible support sets—there may be other splines forming a basis
that have smaller supports.

In the remainder of this section we discuss zero properties of g-splines.
We begin with a rather weak result.

THEOREM 836

For each i=1,2,...,k, let m be such that the Hermite functionals €

€, .,ef‘:"* 1=7) are contained in T',, i=1,2,..., k. Then for every nontrivial
sin §(2,,;T;4),

k
Z(s)<m+ X m;— 1,
1

where Z(s) counts the number of zeros of s with multiplicities as in
Definition 4.47.
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Proof Since $(P,;T;8)CS(D,; M;48) with F=(m,,..., M), the
assertion follows immediately from Theorem 4.53. ]

In order to get sharper bounds, we now restrict our attention to the case
where I' consists of HB-linear functionals. Given such a set of linear
functionals, suppose E is the corresponding incidence matrix as in Exam-
ple 8.24, Our zero bound will depend on the structure of E. To state it, we
need some additional terminology. A sequence of I’s in E i1s any sequence
of consecutive 1’s appearing in a given row of E. There may be more than
one sequence of I’s in a given row of E (separated by at least one zero).
Each row contains at least one sequence of 1’s. A sequence of 1’s is called
an odd sequence provided it has an odd number of I’s in it.

THEOREM 8.37

Let T be a set of HB-linear functionals, and let E be the associated
incidence matrix. Let K be the number of 1’s appearing in E, and let p be
the number of odd sequences of 1’s in £ that do not start in the first
column. Then for any s €S (,,; T'; A) such that D™ 's does not vanish on
any interval,

Z(sysm+K+p—1, (8.57)

where Z(s) counts the number of zeros of s with multiplicites as in
Definition 4.47.

Proof. The proof is similar to the proof of Theorem 4.53. First, by the
assumption on D™ 's, we know that s and all of its derivatives have only
isolated zeros. On the other hand, we cannot apply the trick of pulling
multiple knots apart to get a nearby continuous spline, and thus we have to
deal directly with the jump zeros of s; that is, with the points where
s(t—)s(t+)<0 and s(t—)#s(t+). We classify the jump zeros of s as
follows:

tis type + if Ds(t —)Ds(t+)<0;
tis type c if Ds(¢t—)Ds(t+)>0 and s(¢ —)Ds(t —)<0,s(t +)Ds(t+)>0;
tis type — if Ds(t—)Ds(t+)>0and s(t+—)Ds(t—)>0,s(t +)Ds(t+) <0;
t is type O otherwise.

We illustrate these various types of jump zeros in Figure 27. The important

point to note is that if ¢ is of type ¢, then it can serve as a Rolle’s point (cf.
Definition 2.18) for both of the intervals with end-point ¢. If ¢ is of type +
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Figure 27. Types of jump zeros.

or type O then it is a Rolie’s point for at least one of these intervals. If 7 is
of type —, then it is not a Rolle’s point for either interval.

Suppose now that s has zeros at the points ¢, <t,<--- <¢, with multi-
plicities /, i=1,2,...,r. Then Ds has a zero of multiplicity /,—1 at ¢,
i=1,2,...,r. Now suppose that p~, u*, and p® denote the number of zeros
of s of type —, +, and 0, respectively. Then the ¢’s define r — 1 —p ™ — u°—
p” intervals where both endpoints are either points where s has no jump
discontinuity, or are points with jump discontinuity of type ¢. We throw
out all such intervals that contain type— jump zeros. This leaves r—1—
2u” —pu* intervals on which the extended Rolle’s Theorem 2.19 can be
applied to conclude that Ds has a zero in the interval. We deduce that

Z(Ds)> 2 (h—D)+r—1-2p" —p—p+p*,

i=1
which can be rewritten as
Z(s)<Z(Ds)+1+2u~ + u°

Similarly, the number of zeros of Ds can be related to the number of zeros
of D%, and so on.

It remains to count zeros. To this end it is convenient to introduce a
companion matrix to E which describes the types of jump zeros that s and

its derivatives have at the knots. We define E*=(E} ¥ =1, where

2 if D™ /s has a zero of type —at x;
EF=1{1 if D™ has a zero of type 0 at x,

0 otherwise.

Now, if we string the inequalities relating the number of zeros to the higher
derivatives together, we obtain

k m
Z(s)< X X Ef+m—1+Z(D" ).
im=1 j=2
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Since D™ s is a piecewise constant, it can have zeros only at the knots,
and in particular, only at those knots where E3} =1. We conclude that

k m
Z(s)< X X Ef+m—1.

i=1j=1

We now relate the sum to the original incidence matrix. First, we note
that the only time E} =2 is possible is if D™~ Js has a zero of type — at x,.
But then D™ /*'s does not have a discontinuous zero at x;, so it follows
that E}_,=0. On the other hand, if D™/~ s has a jump zero at x; whose
derivative D™ /s is also a jump zero of type —, then D™ /s changes sign at
x;, so D™/~ s has a type + zero at this x;. We have shown

Er=2 implies j > 1, E}_ =0, and if j <m, E}, | =0.

Now we compare the sum 32X E} with Z3 E;. Consider the ith row of E.
If it has a string of 1’s with an even number in it, then the corresponding
string in E* has a sum no larger than the number of I’s. (Indeed, if any of
the E}’s in this string is 2, then the entry in front of and behind the 2 must
be a zero, so the sum is the same.) Consider now a string of 1I's of length r
with r odd. If this string starts in the first column, then since Ej cannot be
2, it follows that the sum of the corresponding E*’s is at most r. On the
other hand, if this string starts in the second column or later, then the
corresponding string of E*’s has a maximal sum when it has the form
2,0,2,...,0,2, in which case it adds up to r+ 1. In summary, we see that

k m k m
2 2 E;< 2 2 Eij +p
i=1j=1 i=1j=1
and the theorem is proved. ]

The following example shows that the hypothesis on D™ s is necessary
for the strong zero bound of Theorem 8.37. It is possible to give bounds
without this hypothesis, but then the counting procedure must be signifi-
cantly weakened.

EXAMPLE 8.38

Let m=9 and A= {0,1}. Let

_[100000001
100000001 ]
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and
—x& x<0
s(x)= 1, 0<x<1
—(x—=1), 1<x.

Discussion. Clearly s has a zero of order 9 at each of the points 0 and 1,
hence Z(s)=18. On the other hand, K=4 and p=2,so m+ K+p—1=14,
Thus (8.57) does not hold. The reason is, of course, that Ds (and all higher
derivatives) vanish identically on [0, 1]. [ ]

There is a slight variant of Theorem 8.37 that holds for confined splines;
that is, for splines that vanish outside of a finite interval. To state the result
we need more notation. We say that an odd sequence of I’s in the
incidence matrix is supported provided it begins with an element E;=1
with 1<i<k and 1</ and provided there exist i’ <i<i” and | <j’,j" <j
such that E, ,=E, ,.=1.

THEOREM 839

Let T and E be as in Theorem 8.37, and suppose s€S(P,,;T;A) is a
g-spline such that D™~ 's does not vanish on any subinterval of (x,x,).
Suppose s vanishes identically outside of (x,,x,). Then

Z(xlvxk)(s) <m+K~+ﬁ_ 1,

where K counts the number of 1’s in rows 2,...,k—1 of E, and p counts
the number of odd supported sequences in E.

Proof. The proof is nearly identical to the proof of Theorem 8.37. Since
we are counting zeros only on (x,,x;), we do not need to add in the values
of E*, for i=1 and i= k. Moreover, since s is identically zero outside of
[x1, %), if D™ s has a type— jump zero at some x, in (x,,x,), then at least
one of the functions D™ /*, ..., D™ 's must have a jump zero to the left
of x; (otherwise D™ /s would be identically zero to the left of x;, and x,
could not be of type —). This means that E, .=1 for some i <i and for
some j’ <j. A similar argument applies to the right of x;. [ ]

We give only one simple example to illustrate Theorem 8.39.

EXAMPLE 8.40
Let A={—1,0,1},m=3, and
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NEANA

Figure 28. A g-spline with four zeros (cf. Example 8.40).

Discussion. By Theorem 8.39, if s is a g-spline in S(¥P,;1;4) with T’
corresponding to this incidenge matrix £, and if s vanishes outside of
[-L1], then Z_, (s)<m+ K+p—1=3+1+1-1=4. In Figure 28 we
illustrate a member of this spline space which has four zeros. [ ]

§ 8.4. MONOSPLINES

In this section we consider a class of piecewise polynomials (called mono-
splines) that play an interesting role in several applications including best
approximation and optimal quadrature formulae.

Given a set A={x,<x,<---<x,} and a multiplicity vector M =
(my,....m)y with 1 <m;<m, i=1,2,...,k, we define the class of polynomial
monosplines of degree m as

ms(@m;m;m={i‘m—";+s(x):SES(@M;@K;A)}. (8.58)

While IMS(P,,; IM;A) is obtained by translating the linear space
S(P,,; O ;A), it i: clear that DS itself is not a linear space (it is convex).
Despite this fact, monosplines are easy to deal with on a computer—in-
deed, it suffices to work with their spline parts. Many of the results
obtained in Chapter 4 for polynomial splines imply analogous results for
monosplines. To give just one example, we state a simple property of
derivatives of monosplines:

THEOREM 841
Let fEMS(P,,; IN; A). Then

D, fEMS(P,_,:ON";4),

m—1>

where I =(mj,...,m;), and m/ =min(m,m—1), i=1,2,... k.

Proof. This is an immediate corollary of Theorem 4.49. [ ]
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There is no need to list explicitly the many other simple properties that
monosplines inhent from polynomial splines. Instead, we turn now to
some results on zeros of monosplines which are very useful in applications.
First we give a Budan-Fourier-type theorem that provides an upper bound
on the number of zeros a monospline can have.

To state the Budan-Fourier theorem for monosplines, we must first
agree on how to count multiple zeros. Because of the monomial term,
monosplines cannot vanish on intervals, and we are spared that complica-
tion. We still have to deal with zeros occurring at a knot, however. We
shall use the following counting procedure (cf. Definition 4.45 for the case
of polynomial splines):

DEFINITION 8.42

Suppose f is a monospline of order m such that f(t—)=D_f($)=--- =
DTf(y=0+D" f(r) and f1+)=D, fi)="-- =D '{(1)=0+D", f(1),
some /,r > 0. Let a =max(/,r). Then we say that f has a zero of multiplicity z
at ¢, where

a+1, if a 1s even and s changes sign at ¢
z=Ja+l, if a is odd and s does not change sign at 7
a, otherwise.

Definition 8.42 counts a point where a monospline jumps through zero
as a zero of multiplicity 1. The definition is such that odd-order zeros are
associated with sign changes, while even-order ones are not. The maximal
order a zero can possess is m+ 1. Given a monospline f, we write Z( f) for
the number of zeros on the entire line R, counting multiplicities as in
Definition 8.42. Similarly, if (a, ) is any subinterval of R, we write Z, ,(f)
for the number of zeros of f on (a,b).

THEOREM 8.43. Budan-Fourier Theorem For Monosplines

Given A= {x,<--- <x.} and multiplicities m,...,m,, define
0, if m; is even £.59
0,= .
) 1, if m, is odd. (8.59)

Then for any fEM S(P,,; I ; D),

Z(f)<m+ é (m;+o0,). (8.60)

i=1
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More precisely, for any a <b,
k
Zn(f)<m+ X (m+0)—S*[ fla),— D, f(a),....,(—1)"D7 f(a) ]
i=1

—S*[Ab),D_f(b),....,DT f(b)], (8.61)

where S * counts weak sign changes (cf. Definition 2.10).

Proof. Statement (8.60) follows immediately from (8.61). To establish
(8.61), we apply the Budan-Fourier theorem for polynomials (Theorem 3.9)
to each subinterval I, =(x,x,, ), i=0,1,...,k, where for convenience we

set a= x, and b= x, , ,. Because of the monomial term, f is a polynomial of
exact order m+ 1 on each such subinterval, and Theorem 3.9 implies

Z(X.'v"ml)(-f) <m - L,‘+ 1~ Ri’

where

R=S*[f(x;+), =Dy f(x),....(=)™DT f(x)],  i=0,1,....k;
Li=S*[f(x),D_f(x),...,D7 f(x))], i=12,... k+1.

Suppose f has a zero of multiplicity z; at x;, i=1,2,...,k. Then summing up
the above bounds and rearranging, we obtain

k
Zas(f)<Sm+ X (m+06)—Ry— L,

i=]

- é (v,—1+0), (8.62)

i=1
where

v,=L+R+m+1—m—_z,.

The statement (8.61) now follows if we can show that y, >0 for all
i=12,... k.

The proof that y; > 0 requires several cases. We carry out only the case
of 0<z;, <m—m,— 1. Taking account of the fact that f and its derivatives
up to order m—m;—1 are all continuous across x;, and using the simple
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equality (2.48) for weak sign changes, we have
yy=m+1l-m—z;+ L+ R=m+1—-—m—z+2z
+S8*[ D% f(x),....D” f(x)] + S*[Dﬁf(x,.),...,(— l)m"fDTf(x,.)]
>m,-+l—m+z,-+S+[sz(xi),...,D’"_""_lf(xi)]
+S*[DH(x) ... (= )" DM () |
>m+1l-m+z,+m—-—m—1—2z=0.
Now y, =0 implies (— 1)™\D™~ "~ f(x,) <0 so m, must be odd. ]

The assertion (8.61) can also be established directly by the same kind of
inductive proof used to prove the Budan-Fourier Theorem 4.58 for poly-
nomial splines. Here we have been able to use the Budan-Fourier theorem
for polynomials in each of the subintervals because in each such subinter-
val a monospline is a polynomial of exact degree m.

Our next two theorems present some important properties for mono-
splines possessing a maximal number of zeros.

THEOREM 8.44

Let fEMS(R,,; M ;A) have zeros t,<--- <ty with N=m+IT*_ (m +
6,). Then for i=1,2,...,k,

<X <lyyy v if m;<m, (8.63)
X, =1, if m;=m and m is odd, (8.64)

where li=2;_,(mj+ 0,). The inequalities in (8.63) are strict if x; is at most
an m— m;-tuple zero.

Proof. Suppose x, <i,. Then the monospline f, which agrees with f on the
interval (x;,00) has at least m+3%_.  (m+o)+1 zeros, but only
2}‘_,-+lmj knots, counting multiplicities. This contradicts Theorem 8.43. If
4, falls at x;, it can still be counted in obtaining this contradiction for fg
provided that the multiplicity of the zero of f at x; is at most m— m;. The
upper inequalities in (8.63) are established similarly. Finally, to prove
(8.64) we note that if m is odd and m,=m, then /,=/_,+m+1, and the
upper and lower bounds in (8.63) coincide. (]
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THEOREM 845

Let f be as in Theorem 8.44 (i.e., f has a maximal set of zeros). Suppose we
expand f as

m—1 J kK m m—j
x" ax (x - xi)+
fx)=—+ — + ¢, , 8.65
) m! jgo J! igl jgl Y (m—j)! ( )
Then for all 1<i<k with m; odd
¢; <0, all odd j with 1 <j <m,. (8.66)
Moreover,
Df(x)>0, j=0,1,....m—1, all x > x, (8.67)

(—1)"’Dif(x)>0, j=0,1,...m—1, allx<x,.

Proof. If f has a maximal set of m+ Z*_,(m,+ o,) zeros, then by the sharp
form (8.62) of the Budan-Fourier theorem, we must have

S*[ f(a), = Df(a),....(=1)"D"f(a)] =0
S*[ f(b),Df(b),...,D™ f(b)]=0

and
v=1—o9; i=1,2,...,k.
Since a <x, and b >x, are arbitrary, the first two of these assertions imply
(8.67).
Suppose now that 1<i<k and that m; is odd (so that o,=1). Then we

must have y,=0. But the string of inequalities used in the proof of
Theorem 8.43 to show that y, > 0 shows that y,=0 can happen only if

S*[D% f(x),-.., D f(x,)]
+S*[ D% f(x),...(~1)""* DT f(x)]
=S*[ D% f(x),....D" ™ f(x;)]

+S8*[ D% f(x),...(=D)" DT () = m—m— 11—z,
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This can happen [cf. (2.48)] if and only if all components of these vectors
are nonzero, and since D7 f(x;)= D7 f(x;)>0 it follows that
D*f(x;)#0, v=2z,....m—m—1
D* f(x;)>0, v=m-—m,...,m

(=1D)™7"'D% f(x;)>0, v=m-—m,...,m.

But ¢; = DT f(x,)— D™ /f(x,), and assertion (8.66) follows for odd j with
1<j<m,. [ ]

Theorem 8.43 showed that the maximal number of zeros a monospline
can possess is N=m+3%_ (m,+ 0. In the remainder of this section we
consider the problem of constructing a monospline with a given set of N
zeros (counting multiplicities). This problem turns out to be more difficult
than it sounds. We begin by considering the case of m=1.

THEOREM 8.46

Let 7, <1,< - -- <t,,,, be prescribed points with ¢, <¢,,,, i=1,2,...,2k— 1.
Then there exists a unique monospline f of degree 1 with k simple knots
such that f has zeros at ¢,...,7; -

Proof. 1f f is to be a monospline of degree 1 with k simple knots
x;<x,<--- <x, and the 1+2k zeros ¢, <t,< --- <t,,4, then according
to Theorem 8.44 the knots must be located at the points

X, =1y, i=12,.. k.

Now we know that such a monospline can be written in the form

fAx)=x+ i ci(x—x,-)(i + ¢, (8.68)

i=1

It remains to determine the coefficients cq,cy,..., .. If the ’s are distinct,
we have the following nonsingular system:

0 0
bo(n—x), e (T X))y Co — 4
0
1 (5—x)), ¢ — 1

0 0
V(e x>y 0 (ke — X))y Ck —lke
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The result for a general set of ¢, < - - - <t¢,,,, follows by taking the limit of
a sequence of monosplines with simple zeros. By construction, it is clear
that the corresponding monospline (8.68) always vanishes at one or both of
the points t,,, ,— and t,,, ;+, i=0,1,...,k. Thus, for example, if ¢, <1, <¢,,
then f has a simple zero at ¢, and (since f has slope 1 almost everywhere) f
jumps down through zero at ¢,. Similarly, if t,= ¢, <¢;, then f has a double
zero at ¢, and if 1, <t,=t;, then f has a simple zero at ¢, and a double zero
at ¢,. Figure 29 shows the various cases. This argument can be continued to
show that f has precisely the zeros {7,}}*%*. A typical linear monospline
with the various cases combined in one example is shown in Figure 30.
Since both the knots and the coefficients are uniquely determined, it
follows that f is also unique. [ ]

It should be observed that in Theorem 8.46 we were able to specify the
number of knots of the desired monospline, but not their locations. This
suggests that if we are seeking monosplines of order m > 1 with a maximal
set of prescribed zeros, we should be able to specify the number of knots
and their multiplicities, but not their locations. The following theorem
shows that this is indeed the case, at least when the prescribed zeros are all
simple and distinct:

THEOREM 8.47

Let m and 1<m;<m, i=1,2,...,k be prescribed, and let

g, =

0, if m; is even
I, if m;, is odd.

Then for any ¢, <t,<--- <ty with N=m+Z*_,(m; + a,), there exists a set
of knots x, <x,< --- <x, and a corresponding monospline f of degree m
with knots at the x; of multiplicity m, such that

A)=0, i=12,...,N.

If m,,...,m, are all odd, this monospline is unique.

Figure 29. Zeros of a linear monospline.
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Figure 30. A linear monospline with 1+ 2k zeros.

Proof. We assume first that all m,,...,m, are odd, and furthermore that
m<m-—2,i=1,2,...,k. To prove the theorem in this case we proceed by
induction on k. The result is obvious for £ =0. Now suppose it has been
established for monosplines with £ — 1 knots; that is, there exists a unique
monospline

xm —1 M (e x )™
g(x) = __' g 2 EJSL'_);

i=1 j=1 (m_])'

with g(1,)=0, i=1,2,. .,n=m+32*}(m,+1). To establish the result for k
knots, we are going to show that there exists an interval I= 3 £] such that
for each ¢ €1 there exists a monospline of the form

= SN0

ff(x) = ,g a; (g)_ + ’?‘:l jgl i 'W s (869)
with
filt)=0, i=1,2,..,N—-1  andf,(i,)<O0. (8.70)

It will turn out that f; is the monospline that vanishes at all of the 7,...,¢,.

To define the interval / and the mapping §—f,, we first have to show
that there is at least one monospline satisfying (8.70). We construct such a
monospline by tacking something onto the monospline g. Let
l|(x),...,4, (x) be the Lagrange polynomials of order m, associated with
Lagrange interpolation at the points ¢, ,,. (cf. Problem 2.6). Then
for any given ¢, <£<t¢ ., it 1s clear that

n+m,(

< ) (x
ff(x) g(x) (_x g)’" ’"kz g(tn ) ( )

— 8.71
= (t"+j__£)m—m,( ( )
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is a monospline of the desired form which vanishes at ¢,,...,r,_,. Since
limg ,, f(ty)=—o0, it follows that there is some t,<¢<t,,, such that
fi(1x) <0. Since f;(zy) depends continuously on § we have now set up a
mapping from £ into f; satisfying (8.69), at least for £ in a sufficiently small
interval with right end-point £&. We now extend this mapping as far
leftward as possible. In particular, define

7 for all T <¢< £ there is a unique
monospline f; as in (8.69) satisfy-
¢=inf{ ing (8.70), and the mapping from }.
B (¢,x) into f,(x) is a C' function for

all (¢.x)E(r,£] <R

In general, £ may be smaller than ¢,.

For each € I=(¢,£], the fact that f(zy) <0 while f,(x) increases to co as
x—o00 implies that there exists 7, (§) >y such that f,[1,(§)]=0. Since f; can
have at most N zeros, 7,(§) is in fact unique. We now show that it is an
increasing function of & To prove this, it suffices to show that for all
x>1y, fe(x) is an increasing function of £ To this end, we compute the
partial derivative with respect to §:

_ -'a@n- &y @
fe(X) 2o ,§1 jgl WO (m—j)!
/
k m; m—j—1
-3 = c,.,(g)x;(z)( o T T
i=1, =1 :
_ 3! xi(g))’:_j
B ,-; “ (g) ! + Igl jgl (g) ( _j)'
(x—x(9))} "
- B oo
where we have written d, = ¢, — ¢;_,x/ in order to achieve a more tractable

form. Since for any 1 <v <N—1, fi(,)=0, we also have

m—l (BN
0= ; a(&)—'+ gl gl (5)—(Tnf§—.)))!+‘—

(- x8)7 ™!
1§%®<a( ey U
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v=1,2,...,N—1. These are N equations for the N values of ay,...,qa,,_,
{d, };-l =1 and {c;, x]}%_,. Solving for CimX;» We Obtain
Lite X
dfg 0I E) ¥ .
( ‘)g L T P veren - X TEREEY \, ...... X K Xl\
e ml e - -
m m+1 m, m + 1
C:m,'\’l,=( - l)m‘
Hoooo. In-1,X
g 0..... 0. x,.....0 ST Xpsooos: X
mlc —
m my+ 1 my + 1

where the determinants formed from the Green’s function g, are defined
in Theorem 4.78. This expression is well defined since f; has a maximal set
of zeros, hence the conditions (8.63) hold (strictly), and thus by Theorem
4.78, the determinant in the denominator is positive. By the same theorem,
the determinant in the numerator is nonnegative, while the factor (—1)" is
negative since m; is odd. On the other hand, by Theorem 8.45, ¢,,, <O for
all i. We conclude that since x;(§)=§ =1, df,(x)/0£{>0. We have proved
that 7,(£) is an increasing function as asserted. As a by-product of this
argument, we also observe that x/(§) >0, i=1,2,...,k— 1.

We now define a monospline f.(x) associated with £ Since #7y(§) is
monotone increasing, it follows that for all £€ 17 all N zeros of f; lie in a
fixed bounded interval. This implies (cf. Lemma 8.48 below) that all of the
coefficients of f, are uniformly bounded, hence they converge for some
sequence of §, going to £ As f; is the pointwise limit of f; , it follows that
f=/; satisfies (8.70). We claim that f also vanishes at 7, hence it is the
desired monosplines.

To show that f(z,,) =0, we consider the mapping

@ (s s @y 1o s Crpre s Clms X s oo Chpse ooy Ciom s E) > [ K85 f(10) ]

If f(zy) <0, then the Jacobian of ¢ with respect to its first N —1 variables is
nonzero when evaluated at the coefficients of f. By the implicit function
theorem, we could then extend the definition of f, to §<§, contradicting
the definition of £& We have proved the existence in the case where all
knots are of odd multiplicity at most m—2. Concerning uniqueness in this
case, suppose f were another monospline of the form (8.69) with the zeros
ty,...,ty. By the same kind of analysis just carried out, we can deform f
continuously such that (8.70) remains satisfied until its largest knot reaches
t,. Since uniqueness was assumed for monosplines with k —1 knots, the
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deformation must be equal to the monospline in (8.71) at £=¢,. But this
monospline was uniquely deformed into f;, and we conclude that f= fe

We now show that the result also holds if some knots have éven
multiplicity, m; <m—2, all i. Let & ={j: m; is even} and O={j: m is
odd}. Let N= m+2,-1(m + g;). Then, ngen any £, <--- <ty there e)usts
a monospline

f0=E s S S Geen) 7 T S oot

i=1 j=1 i=]l ju=]
i€k ie®

with zeros at ¢,,...,ty. Let n=m+Z*_,(m,+ 1) >N, and define a mapping
¥ from R” into RY by

(@l 15 €13 Clpmp X s o5 Chtr e+ Chmm s X )P [ S(21)5 o f(20) ]

where

f)= 24 2 LS T o x-x)

i=1j =1

Note that  vanishes if we put in the coefficients of f*. The Jacobian of ¢
with respect to all of its variables except for {x;: i€b} is

Fioeonsly

J=cl]l ¢  detg,, 0,.00,0, Xppeuey Xy yunny Xpgones Xy |,
i€0 - m + o, my + oy
where C is a nonzero constant. J is a continuous function of its arguments.
Since f* has a maximal set of zeros, Theorem 4.78 asserts that J is not zero
at the coefficients of f*. By the implicit function theorem, the monospline
f(x) will have the same zeros for all coefficients in a neighborhood of those
of f*.

We now establish the result allowing knots with multiplicity greater than
m—2. Suppose for the moment there is just one such knot, say x,, with
m,=m—1, m even. Let f; be a monospline with f,(¢)=0,i=12,....,.n=m
+E;:l'(mj+ 0,), and fz a monospline with k —» knots satisfying fz(#,)=0,
i=n+1,...,N. By (8.60), f,(x)>0 for x >, and fr(x)>0 for x<t,, ,. Thus
there exxsts a unique ¢, <x,<t,,, such that f;(x)=fg(x). Clearly the
monospline

Jr(x), x<x,
fx)= fx),  x>x,
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has the desired zero set. If m is odd, then we construct f; to vanish
at (t,+4,,1)/2, t,4 .- ty since o,=landso N—n=m—1+3%  (m+0).
Again, we can piece f, and fr together to produce a monospline f with the
desired zeros. (Clearly this construction is not unique.) A similar argument
works if m;=m. [ ]

Theorem 8.47 coupled with the bound (8.60) is usually referred to as the
Jundamental theorem of algebra for monosplines. The following lemma was
used in the proof of Theorem 8.47, but since it is of interest in its own
right, we state it separately:

LEMMA 8.48

Suppose f is a monospline as in (8.69) with {m,}¥ odd and N=m+3Z*_ (m,
+ 1) distinct zeros in the interval (— K, K). Then there exists a constant C
(depending only on m and K) such that

la| <C, i=0,1,....m—1

le;l <C, J=L2....m,
i=12,... k.

Proof. The proof proceeds by double induction on m and on k. The case
of m>1, and k=0 is obvious. The case of m=1 and & > 1 follows directly
from properties of the linear monosplines (cf. Figures 29 and 30). Now
suppose the result has been established for all monosplines of degree m — 1
with & knots and for all monosplines of degree m with k — 1 knots. We now
establish it for monosplines of degree m with k knots. Let f be such a
monospline. Suppose that m,<m, i=1,2,...,k. Then by applying the
analog of Rolle’s theorem for monosplines (cf. Theorem 4.50), we conclude
that the monospline D, f has N—1 distinct zeros in the interval (— K, K).
Since by Theorem 8.41 D _ fis a monospline of degree m — 1, the induction
hypothesis assures that its coefficients are bounded. We conclude that
except possibly for a,, the coefficients of f are also bounded. But since f
vanishes at least once, a, is also bounded.

If f has some m-tuple knot, say x, then it is easily seen that the
monosplines f; and fg, which agree with f to the left and right of x,
respectively, both have a maximum set of zeros, and by the inductive
hypothesis must have bounded coefficients. The result follows. [ ]

It is easy to show by example that Lemma 8.48 does not hold when
knots of even multiplicity are present.

We illustrate the difference between the cases where the multiplicities
are even and odd in the following example. It shows clearly how non-
uniqueness occurs in the even case.
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: feUS (8,0 (1); 3/2)
\ : @ = Simple knot
.

O 1 3 2_ 3

2

fe NS (20 8)

1
\L /\ x = Double knot
N1 ¢ 3

Figure 31. Monosplines of Example 8.49.

EXAMPLE 849

Find a monospline of degree 2 with one knot (of either multiplicity 1 or
multiplicity 2) that has the zeros 0, 1, 2, and 3.

Discussion. 1f we want a monospline with one simple knot, then the
unique solution of the problem is given by

x(x—1) x<—3-

L .
x—2)(x—3) 3

2 > X237

This monospline is shown in Figure 31. If we consider monosplines of
degree 2 with one double knot, then there is a whole one-parameter family
of solutions; namely,

x(x—1)
s
(x—2)(x—3)
s —

x<¢
fg(x)=
x>¢

for any 1 <§¢<2. A typical monospline in this family i1s also depicted in
Figure 31. ]

§ 85. DISCRETE SPLINES

In this section we examine certain linear spaces of piecewise polynomials
(called discrete splines) defined on discrete subsets of the real line R. In
particular, given a fixed a and 4 >0, we are interested in splines defined on
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the discrete line
R.,={....a—haa+ha+2h,..}
or on discrete intervals of the form

[a,b]h={a,a+h,...,a+Nh}, b=a+ Nh.

We begin with the definition of the space of discrete splines. Let A={a=
Xo<x < oo <xe, =b}CR,, be a set of points partitioning the discrete
interval [a, b], into intervals I,,1,,...,1,. Let 9N =(m,...,m,) be a vector of
positive integers with m, <m, i=1,2,...,k. Then we define the space of
discrete polynomial splines of order m with knots at x,,...,x, of multiplicities
my,...,my, by

s: there exists sq,...,s, in ¥, with

S(9,;M;ah)=1%0 =8 i=0 1. k andl g 4
Di7's,_(x)=Di~'s(x) for j=
l,...,m m,i=12,... .k

where Dj is the difference operator defined by

i) _ é (’;)(“V'W””")_

Dif(x)= -

(8.73)

The space S(%P,,; I ;A h) is very similar to the space of polynomial
splines studied in Chapter 4 except that the ties between the polynomial
pieces are described here in terms of forward differences instead of
derivatives. As in ordinary polynomial splines, we shall write

S (8;h)=8(D,; M A;8) i OM'=(1,...,1)

for the space of discrete splines with simple knots.

Although our definition of & (%,,; 9N ; A; h) makes sense for any interval
[a,b], and any partition A, in order to rule out special (and uninteresting)
cases, we shall henceforth assume that

each interval /; contains at least m; points, i=0,1,...,k, (8.74)

where for convenience we set my=m. This prevents the conditions tying
the polynomials together at the knot x; from involving points that do not
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lie in the interval immediately to the right of x;. It also assures that [a,b],
contains at least m + K points, where K=3%_, m,.

It is clear that S(%P,,; 9; A; k) is a linear space. The following theorem
gives its dimension:

THEOREM 8.50

Suppose (8.74) holds. Then S(%P,,; 9N ;A; h) has dimension m+ K, where
K= 2’:- 1 ;.

Proof. The proof follows along the same lines as the proof of Theorem
4.4 with

X X xm !
1,2 1,.m—1
A= 0 1 Dy x; D,/x; -
0 0o -.- | B D,:"_'_""x,.”'_'

We turn now to the task of constructing a one-sided basis for &. As we
shall see, it is convenient to introduce the factorial functions

X =1, xr=x(x—h)---[x~(n—Dh], n>l (875

. /
The nice thing about these functions as compared to the usual powers of x
is that

ntx(n =0 i
; —_—. <j<
Dixr={ (n—j) I (8.76)
0, n<j.
We shall also need the discrete plus function
(x =) =(x=y)"(x=»)%. (8.77)

It is clear that this function is identically zero to the left of y, is a
polynomial of order n to the right of y, and vanishes at the points
y,y+h,....y+(n—1)h. We also note that

Df(x=y){ M cmy=n'8,,,

j=0,1,....n. (8.78)
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The results of Chapter 4 now suggest that a one-sided basis for & should
be given by the functions

m, k

{P.-,-(X)= (x— xi)(:_j)h}j- Li=0

where m,=m, and this can, in fact, be established by the same methods as
used in the proof of Theorem 4.5. The following theorem gives an alternate
(and somewhat simpler) one-sided basis:

THEOREM 8.51

Lety,=a—(m—i)h,i=1,2,...,m, and let
Y1 <t Ypex=x;—(my—=Dh,...x;—hx,....x—(m—1)h,... x.

Then the functions {p,(x)=(x—y) ™M}7*X form a basis for $(&
O ; As k).

m?

Proof. First, we claim that each of these functions belongs to $. To show
this, consider a typical one, say

p(x)= (x—x,— LR

By the definition of the factorial function, p is zero at the points x; —
Ih,...,x;+(m—1—2)h. It follows that for x €[a,b],, p is a polynomial of
order m for x > x; and p(x)=0 for x <x;. In addition,

Dip(x)=0, j=0,1,...m—1I1-2.

It follows that p belongs to & as long as 0 </<m, — 1. The one-sided nature
of the p’s is clear, and the proof can be completed by showing their linear
independence by the same kind of argument used to prove Theorem 4.5. |

Theorem 8.51 asserts that if we take A= {y,}7* X, then
S(P,,; ;A k)= Sm(A;h).

It should perhaps be emphasized that this equivalence holds considering
the splines as functions on [a,b],. Since elements in these spaces are
piecewise polynomials, they make sense for all x €&R—the two spaces do
not agree on this larger set, however.

Our next task is to construct a basis for & consisting of local support
splines similar to the basis of B-splines constructed in Chapter 4 for the
usual polynomial splines. The development there suggests that we should



346 OTHER SPACES OF POLYNOMIAL SPLINES

define basis splines as divided differences of the function (y — x)J"~ » over
an appropriate extended partition. We do exactly that in the following
theorem:

THEOREM 8.52

Let {y}7*% be as in Theorem 8.51, and:set y, , x,,=b+(i—Dh, i=
1,2,...,m. Foreach i=1,2,...,m+ K define

B(x)=(=1)"Wiem =Y Vi Fiam ] (y = 0) TR
Then {B;}7* X is a basis for &(,,; JN;A; h), and
B(x)=0 for x <y, and y,, ,, <x;

B(x)>0 fory,+(m—2)h <x <y, . i=12,....m+K;

m+ K
2 B(x)=1, all a <x <b.

i=1

Proof. By the definition of the divided difference, for x €{a,b], each B, is
a linear combination of the functions p,,...,p,,, x of Theorem 8.51, and
thus is an element of &. The linear independence of the B’s as well as the
other stated properties follow from general results on B-splines, to be
established below. ]

We now briefly recount the main properties of discrete B-splines. Since
the development follows that in §4.3 for polynomial B-splines, and since
we do not need to work with multiple knots, we can suppress most of the
details. We begin with a definition.

Suppose y; <y;,, < --- <V;,,, are points in R, ,. Then we call

0m(x)= { (=D [ Yoo Tiam =), YiViem  (8.79)
0, otherwise

the mth order discrete B-spline associated with the knots y,,....y,, . It is
also useful to introduce the normalized version

N =Dk m = 2) QT ().

For m=1 and 2 it is clear that the discrete B-splines are identical with
the usual polynomial B-splines. For m>2 they differ slightly from the
usual B-splines because we are using the factorial function (y— x){* ™™
instead of the Green’s function (y — x)7~'. In particular, if we consider
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QO (x) as a function of x €R, then we see that it has a small ripple in the
interval [ y,,y; +(m —2)h] (where it even goes negative). See Figure 32. It is
true (but we do not make use of it) that if y,....,y,, ,, are held fixed and A
is allowed to go to zero, then Q. (x) approaches Q;"(x) for all x ER.

As in the usual case, discrete B-splines satisfy an important recursion
relation.

THEOREM 8.53
Let m > 2. Then for all xR,

[x=y,=(m=2h] Q7" () + [ Yism— x+(m=2)h] Q17 (%) ‘

Q:;x(x)= Do =)
(8.80)

Proof. The proof proceeds exactly as in Theorem 4.15 by applying the
Leibnitz rule for divided differences of a product of functions to

(x=y)" M= (x =)™ P x—y—(m=2)h]. m

The recursion (8.80) is clearly an important tool for dealing computa-
tionally with discrete B-splines. It is also a valuable theoretical tool. For
example, by a simple inductive argument (cf. Theorem 4.17), we may show

that

O (x)>0, yit(m=2)h<x <y, (8.81)
while from the definition,
Q74(x)=0, X<y Yiem SX. (8.82)

We have already noted above that Q,7,(x) takes on negative values in some
subintervals of [y,,y, +(m—2)h]. On the other hand, clearly for x €R,,, it

R T l S S l J ] Ll
V,V i Yie2 Yi+3 Yita

Figure 32. A discrete cubic B-spline.
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is a nonnegative function; indeed,
Qi:';|(yi+jh)=0, J=0,1,...,m—2.

To discuss the linear independence of discrete B-splines, we first need an
analog of Lemma 4.7.

LEMMA 8.54
Let 7, <7,< .-+ <7, and suppose
m

jg,l aj(x—~rj)(+""l)"=0 for all x >r,,.
Then a;=--- =a,,=0.
Proof. The proof follows immediately after substituting

m—1
(e=m)™" = 2 (7 )= ) Dt (8.83)

and using the linear independence of 1, x(,...,x™ = (cf. the proof of
Lemma 4.7). [ ]

THEOREM 8.55

Suppose /<r and that y,<y,,, and y,_,<y,. Then {Q7}}ia/s,_n are
linearly independent on the interval [ y,,y,),.

Proof. The proof proceeds exactly as in Theorem 4.18, using Lemma 8.54.

|
Our next result is the analog of Marsden’s identity.
THEOREM 8.56
Let /<r and y,<y,,,. Then for any x,y ER, ,,
P=x+(m=2n)"" "= 3 @, IN(x) (884

i=l+1—m

where

m—1

(pi,m(y)= H (y _yi+v)'

y=1
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Moreover, for j=1,2,...,m,

r

xU D= 2 (J)N’"(x)’ (885)
i=l+1—-m
where
— '—l(j — ) m— H A—
I‘l - ( ), —_———D "puu[(.} - m)hL ] = l ----- m.

(m — !

Proof. For m=1, we have 2735 N\ (x)=271%N'(x)=1. Now we pro-
ceed by induction on m. For convenience we write 8§ =(m—2)h. Using
(8.80), we obtain

m+ K

2 @ INEL(X)

i=]

m+ K

2 ¢l.l}l(.\})l(’r - Vi 6)N:’_’,,_'(X) + (,\1:+m - X + 6)N:'£+_|!/,(.\')l

i=]

3K (x=y;=8)9; (W) F+ (Vivm 1= X+ 8)p,_, . (¥)
= N-m_] x i i,m i+m—1 i—1l,m
,-g, “h (=) ()’.‘+m—1")’i)

forall a=y, <x<b=y,,, x.,- But the quantity in brackets (cf. the proof
of Theorem 4.21) is exactly ¢, ,,_(¥)(y — x+ &). Hence assuming (8.84) for
m—1, we obtain

m+ K m+ K

S @nING)= B @D = X+ ONGT = (y = x+8) "

i i=]

If we apply the operator D,” ™/ to (8.84) and evaluate at y =(j — m)h, we
obtain (8.85). n

The most important case of (8.85) is the case of j=1. Since £} =1,
i=1,2,...,m+ K, we obtain

m+ K
2 Nh(x)=1 for all a <x <b,

i=1

that is, the discrete B-splines also form a partition of unity.

We now give some results on differences of discrete splines. First we
observe that the difference of a polynomial discrete spline of order m is a
discrete spline of order m— 1.
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THEOREM 8.57

Let s€&5(Y,,;9M;A;h). Then D,s€S(P,_,;M';A;h), where M=
(mj,...,m) with m/=min(m—1,m,), i=1,2,... k.

Proof. The proof is nearly identical with the proof of Theorem 4.49, using
the fact thatif pe?,, then D,p P, _,. .

The following result shows that the difference of a discrete B-spline of
order m can be written as a linear combination of two discrete B-splines of
order m—1:

THEOREM 8.58
Let y, <y, .- Then

m—1 __ m—1
D,Qm"=(m—1 —"-———*M) 8.86
th ( )( y,‘+m_yi ( )

Proof. The proof follows that of Theorem 4.16, using the fact that

Dy(x =)0 P =(m—1)(x—p)" " =

Theorem 8.58 coupled with the proof of Theorem 5.9 yields the follow-
ing result, which is useful in computations with discrete splines.

THEOREM 8.59
Let s=37_,c;N[,, and suppose 1<d <m. Then

=%
n

D ls(x)= X fONTTY,
i=d

where {c/?} are as given in Theorem 5.9.

The size of the differences DJN,", of the normalized discrete B-splines
can be estimated by the same methods used in Theorem 4.22. We have the
following theorem:

THEOREM 8.60

Suppose 1 <r<m and thaty,<x <y,,,. Let T, and the quantities A, ,,, be
as in Theorem 4.22. Then

rmr
IDIN()| < 2

i,l.m—l' il.m—r
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Proof. We have

(=D"(m—

DN 0= SR =) i i) = 3

)

and this can be estimated in terms of divided differences of order m—r,
just as in the proof of Theorem 4.22. [ ]

We now examine to what extent the results on integrals of polynomial
splines can be carried over to discrete splines. First we need to replace the
integral by an appropriate sum. Given any function f defined on [a,b5],
with b=a+ Nh, let

0, b—a<h

b —
f,,f(x)d"":= hNEIf(a+ih), b—a>h. (8.87)
i=0

We observe that

fb xrd x  pUF D g+ Dy

T R oy (8.88)

The following theorem is a discrete version of the Taylor expansion (cf.
Theorem 2.1):

THEOREM 8.61

For every x €[a,b],,

mz-l D'jx'f(a)(x_a)(/')h+fb(x_y_h)(:l‘1)n

Py J! a (m—1)

flx)= Df(y)d,y. (8.89)

Proof. The formula is clear for m=1. Now, applying the summation by
parts formula

[ U0 Doy = [u(n)o(]2= [ oy + R D,u(»)dyy. (8.90)

a a
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we obtain
b(x_y_h)(-:-n_Z)hDhm_lf(y)dhy - —1 (mM—Dpprym—1 b
/ ot = G LD ) ]
b (x=y=h)" "
<+ m
j; (m__l)' th(y)dhya
and the result follows by induction. (]

As in the continuous case, there is also a dual version of the Taylor
expansion which is useful at times.

THEOREM 8.62
For all y €[a,b],,

e (= D)/ Dif(b—jh)(b—y)""

=2 ,
j=0 J:
T CRRIUT € T Tl Gt L)
+=n7f Ty Dyf(x)d,x.
(8.91)
Proof. This formula follows by integration by parts using (8.90). [ ]

Theorems 8.61 and 8.62 lead immediately to Peano representation
theorems for linear functionals defined on B[a,b], which annihilate the
polynomials of order m. In particular, we have the following important
representation for the divided difference:

THEOREM 8.63
For any f defined on [a,b], and for any y,,...,y,,,, chosen from this
discrete interval,

mlx = Dh|Df(x)d,
[y,-,...,y,.+,,,]f= f;b i, [ +("zm~)l)]' f(X) hx. (892)

Proof. We apply the divided difference [y,,...,y,,,,] to the Taylor expan-
sion (8.91). Since it annihilates polynomials of order m, (8.92) follows. 1B

The representation (8.92) for divided differences can also be established
by applying the divided difference to the Taylor expansion (8.89). In this
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case we would obtain

e Yiwm](y—x =)D
[y"’""y"*'"]f=fab[y : (,]n(fl)f Df(y)dyy.

While this looks formally different, it is, in fact, the same representation
since

(y=x =R = (= ) (x =y +(m— AT~ = (y = x— B,

and so

m(x+H(m=DR) =y, Y]y —x =)

Analogous to our development in Chapter 4 of the theory of ordinary
polynomial splines, we now examine zero properties of discrete splines.
Since we are working on a discrete set and do not have derivatives at our
disposal, we need to introduce some slightly different counting techniques.

Let f be a function defined on the discrete set [a,b],. We say that fhas a
zero at the point ¢ €[a,b], provided

An=0 or f(¢)-f(t + h)<O.

When f vanishes at a consecutive set of points of [a,b],, say f is O at
t,....,t+(r—1)h, but f(t—h)-f(t+rh)+0, then we call the set T={¢,t+
h,....t+(r—1)h} a multiple zero of f, and we define its multiplicity by

r, if f(r— h)-f(t+ rh) <0 and r is odd
Z(f)=1r, if f(1— h)-f(t+ rh)>0 and r is even
r+1, otherwise.

This definition assures that f changes sign at a zero if and only if the zero
is of odd multiplicity. (See Figure 33 for some examples.)

If we are dealing with discrete polynomial splines, then it is possible for
such a spline to vanish identically on an interval. When this is the case, we
count the multiplicity of the interval exactly as in Definition 4.46. We now
define

P

Z%(s)= X 2(T),

i=1

where T,..., T, are the zero sets of s, counted according to their multiplic-
ity. As in Section 4.7, we have written the superscript & on the symbol Z
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TR W R R 7 \ | .l
IR 2>

®
® ® [ ]
®
Simple zeros Double zero Triple zero

Figure 33. Zeros of a discrete spline.

to remind us that this counting procedure is relative to the space & =
S(9,,; M ;A h). The key to establishing bounds on Z°(s) is the following
version of Rolle’s theorem for discrete splines (cf. Theorem 4.50 for the
usual spline case):

THEOREM 8.64. Rolie’s Theorem For Discrete Splines
For any s€& (P,,; IM; A; k),

ZP¥(Dys)>Z%(s)—1, (8.93)

where DS =5(%,,_,: OM’; A; h), with I’ as in Theorem 8.41.

Proof. First, if s has a z-tuple zero on the set T={¢,...,.t+(r—1)h}, it
follows that D,s has a z— l-tuple zero on the set T'={¢,...,t+(r—2)h}.
Similarly (cf. the table in the proof of Theorem 4.50), if s has a z-tuple zero
on an interval, then D,s has a z — 1-tuple zero on the same interval. Now if
T, and 7, are two consecutive zero sets of s, then it is trivially true that
D, s must have a sign change at some point between 7, and T,. Counting
all of these zeros as in the case of ordinary polynomial splines, we arrive at
the assertion (8.93). [ ]

THEOREM 8.65
For every s€5(9,,; 9; A; h) that is not identically zero,

Z3(s)y<m+K—1,

where K=3%_,m, (This bound is one less than the dimension of the
space.)

Proof. For m=1 the discrete spline is a piecewise constant, and it can
have zeros only at the knots (where it jumps to or through zero). To prove
the result in general, we may proceed by induction using our discrete
Rolle’s theorem—cf. the proof of Theorem 4.53. [ ]
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Theorem 8.65 is an assertion about the number of zeros of a discrete
spline s (counting multiplicities appropriately) in the discrete line R, ,. The
result does not follow from the bounds on the number of zeros given in
Section 4.7 for ordinary polynomial splines—the discrete splines have a
different kind of smoothness across the knots.

We turn now to some results on determinants formed from discrete
B-splines. Suppose y, <y,<--- <y,., are given points in the discrete line
R, and let B(x)=N[(x), i=1,2,...,n be the corresponding discrete
B-splines.

THEOREM 8.66

Let m >2, and suppose ¢, <t,<--- <1, are prescribed points in the dis-
crete line R, ;. Then

)=det[Bj(t,)]" >0 (8.94)

=1 ’

and strict positivity holds if and only if

€0,={xER,,: B(x)>0}=(y;+(m=2)h,y,, ) i=1,2,...,n.
(8.95)

Proof. The fact that D=0 whenever the conditions (8.95) fail follows
directly from the support properties of the discrete B-splines, just as in the
proof of Theorem 4.61. Conversely, if D=0, then there exists a nontrivial
spline s = X ¢; B, which has zeros at each of the points ¢,,...,¢,. But if (8.95)
holds, this leads to a contradiction on the number of zeros a discrete spline
can have, just as in the proof of Theorem 4.61. Finally, the fact that D is
positive when it is nonzero can be established by the same kind of
argument used to prove Theorem 4.64. [ ]

Theorem 8.66 does not remain valid if we allow the £’s to range over the
entire real line R rather than over the discrete version R, ;. Indeed, for a
simple example to illustrate this, we need only consider the case of n=1
and recall that a discrete B-spline takes on some negative values (at points
outside of the discrete set R, ,)—cf. Figure 32, page 347.

The following result shows that considered as functions on R, ,, the
discrete B-splines form an OCWT system.
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THEOREM 8.67

Let { B;}] be a set of discrete B-splines associated with knots y, <y, < ... <
Yn+mERq . Then for any 1<y, <y, <+ <y, <nand any (<5, <- -+ <4,
in Ra,h’

ST A
D(B B ) det[B (z)}u_l 0, (8.96)

v, v,

and strict positivity holds if and only if
Y, (m=2)h<t,<py, .., i=L2,...,p. (8.97)
Proof. The proof proceeds along the same lines as the proof of Theorem
4.65, using Theorem 8.66. [ ]
The OCWT-property of the discrete B-splines leads immediately to a
variation-diminishing property for discrete B-spline expansions.

THEOREM 8.68

For any nontrivial s=3"_,¢,B,

Tl Ut et

S 7(s)<S (o), (8.98)
where S~ counts strong sign changes as in Definition 2.10, and ¢=

(¢},..-,¢,) 1s the vector of coefficients of s.

Proof. The result follows immediately from Theorem 2.42 since {B;}]
form an OCWT-system on R, ;. [ ]

We mention one other result connected with determinants of discrete
splines, and in particular with the discrete Green’s function
( t— x)(m— Da

+

T (8.99)

Emn(t; x)=

THEOREM 8.69
Let m > 2. Then

oot C\1p
20 e RS ENT) AREL I
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for all 1, <t,<--- <t and y, <y, <+ <y

» in R, ,. Moreover, this de-
terminant is strictly positive precisely when

4, <y, <t;—(m—2)h, i=12,...,p,

where the left-hand inequality is ignored when i <m.

Proof. The proof proceeds exactly as in the proof of Theorem 4.78, using
Theorem 8.65 on the number of zeros a discrete spline can have. [ ]

We devote the remainder of this section to error bounds for approxima-
tion with discrete spline functions. While it is possible to establish some
results for approximation of functions on actual intervals, it is perhaps
more interesting to work with functions defined only on a discrete interval
[a,b],. Thus our error bounds will involve the discrete norms

||f||lw[a,b];,= xmax | f(x)], (8.101)

€la.b),

and

. 1p N 1/p
=] [ 0Pd,x] ={h > |f(a+ih)l”} . (8.102)
a i=0

where b=a+ Nh. To measure the smoothness of a function defined on
[a,b],, we introduce the discrete modulus of continuity defined by

o(fil)i(asy=sup |f(y)—fx)| (8.103)

|y — x| <1
x.y €[a,b},

This modulus of continuity has most of the properties of the usual one.

The key to obtaining error bounds for approximation by discrete splines
is provided by a certain local spline approximation operator similar to the
one constructed in Section 6.4 for ordinary polynomial splines. Let A be a
partition of [a,b},. Using Lemma 6.17 we can select a coarser partition A*
such that

<4*<Z*<%.

| B

Now suppose that y, <y, <--- <y, ., Is an extended partition associated
with A*, and let {B;=N["}]., be the associated normalized discrete
B-splines. We suppose that A is small enough so that each interval
(¥:»¥: +1)s contains at least m points of [a,b],.
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For each i=1,2,...,n, let 7, <1,<--- <1, be points chosen from
(YirYi+mn» and let oy, ..., a,, be defined as in (6.38) with §,=¢ ,. Set

Af=D ay[ Ty 1S i=12,...,n
J=1
THEOREM 8.70
For any f € B{a,b],, define
Of(x)= 2 (AS)B(x). (8.104)
i=1

Then Q is a linear operator mapping B[a,b], into §,(A*; A)CS,,(A;h).
Moreover,

Op=p forallpe?®, .

Proof. This theorem is proved in the same way as Theorem 6.18, using
the discrete Marsden identity in Theorem 8.56 in place of the usual one. W

We are ready to give a local approximation result.

THEOREM 8.71

Let m<I<n, I;=[y,y,.1)s and L =[Y141—msYi+mly Then for any 1 <o <m
and any f € B[]},

1D~ Nl 11

r=0,1,...,0—1 ~\o—-r—1+1 e

: <C @)V D7 R B
N DZOf Nl 11,
r=g,....m-1

where C, is a constant depending only on m.

Proof. The proof is very similar to the proof of Theorem 6.20 for ordinary
polynomial splines. There we used a Whitney-type theorem to produce a
polynomial useful for comparison purposes. For our purposes here it will
be enough to take the discrete Taylor polynomial. In particular, let

(x _ t)(j)"

Pf(x)= 2

Jj=0

5 D))
;!

and set R(x)=f(x)—p{x). Then defining E.(¢) just as in the proof of
Theorem 6.20, by the same kind of arguments used there (using the
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reproductive power of ), we observe that it is enough to estimate
D/QR(t) for each r=0,1,...,m— 1. But

! m
ID;OR(DI< X X ||\ RIID;B(1)].
i=i+1-mj=1

We estimate |a;| as in Lemma 6.19 and the differences of the B-splines in
Theorem 8.60. It remains to examine |A;R|.

By the definition of A;R and the integral representation for the divided
difference [cf. (8.92)], we have for | < <o,

ID}{‘]R(ZU)[

ARE T R|< ,
Ilj I ![Ttl T] ' (_]“1)’

3Ty some z; €1,

Since D/ R(t)=0, i=0,1,...,6 —2, expanding D} 'R in a Taylor expansion
about r and applying the mean-value theorem to the integral remainder, we
find that

[D,;" 'R(2,)(z,— z)“’"’*}
(o —))! ’

D,{_‘R(zij)=0

where Z;; is also in I, and 0<@< 1. But
D77 Rz =105 [ fz) = K0 I <D~ i ). ]
Since |I,| < 2mA, combining these various facts we obtain
I\ R| < CA" V(D75 Z):,,[i,]» j=0,1,....0.

Forj=0+1,...,m we use Theorem 2.56 to reduce the order of the divided
difference defining A; to a divided difference of order o — 1. This yields (cf.
the proof of Theorem 6.20)

I\, R| < ngf-ow(u,, —’R;Z\),m[,-l], j=o+1,...,m.

The constant depends on how we spread the 7’s throughout (y,,5,, ), If
we make them as equally spaced as possible, it will depend only on m,
however.

The remainder of the proof now proceeds exactly as in the proof of
Theorem 6.20. ]
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Theorem 8.71 has a local character—the error bound in the interval J,
depends only on the behavior of fin a somewhat larger interval /,. We may
give the following global version of this result:

THEOREM 8.72
Let f € Ba,b],, and suppose | <o <m. Then

| D (f— @)1 _ta.614

r=0,1,...,0—1 —gmr—1 =
, < CI(A) w( Dh 1f’ A)lw[a,bl'.'
”DthHI,,[a,b]h
r=0,....m—1
Proof. We simply apply Theorem 8.71 with g = co. ]

Theorems 8.71 and 8.72 have been stated in terms of the discrete
modulus of smoothness of the difference D7~ !f. In analogy with the
continuous spline case, it is also possible to give error bounds in terms of
1Dl 411 OF 1D Lla.bl," Lower bounds can also be established.

§ 8.6. HISTORICAL NOTES

Section 8.1

Although periodic splines have appeared in a number of papers (e.g., they
arise as solutions of certain best interpolation problems in the papers of
Walsh, Ahlberg, and Nilson [1962], deBoor [1963], and Schoenberg
[1964a)), there seems to be very little explicit discussion of their construc-
tive properties in the literature. The method of constructing periodic
B-splines is part of the folklore. Our results on zeros and determinants of
the periodic B-splines follow those of Schumaker [1976b]. The available
results on the approximation power of periodic splines center around error
bounds for periodic spline interpolation—see the papers quoted in the
notes for Section 6.4. The construction of a local spline approximation
operator used here is a simple adaptation of the similar nonperiodic
version introduced in Section 6.4.

Section 8.2

Natural splines arose as solutions of best interpolation problems and also
in connection with optimal quadrature formulae—see, for example, the
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early papers of Sard [1949], Meyers and Sard [1950a,b], Holladay [1957],
Golomb and Weinberger [1959], Schoenberg [1964a], and the many papers
on the subject appearing later. The construction of a local support basis
given in Theorem 8.18 is credited to Greville [1969b]. Theorem 8.19 is
credited to Lyche and Schumaker [1973], who used it to develop ALGOL
programs for computing natural splines. For related FORTRAN pro-
grams, see Lyche, Schumaker, and Sepehrnoon [1980].

Section 8.3

Once again, the g-splines seem to have appeared first as solutions of best
interpolation problems, this time with Hermite-Birkhoff interpolation con-
ditions; see Ahlberg and Nilson [1966] and Schoenberg [1968], where the
name was introduced. The problem of constructing one-sided and local
support bases for classes of g-splines was first studied by Jerome and
Schumaker [1971]. A more general treatment was later given by Jerome
and Schumaker [1976], which we have followed here. The idea of using an
incidence matrix to describe g-splines for HB-interpolation seems to have
resulted from the work of Schoenberg [1968]. Zero properties of confined
g-splines were treated by Ferguson [1974] and by Lorentz [1975]—see also
G. D. Birkhoff [1906] and Jetter {1976].

Section 8.4

Monosplines were introduced by Schoenberg [1958], and Johnson [1960]
dealt with them in connection with the best approximation of x™ by
splines of order m. They are also closely connected to optimal quadrature
formulae—see the articles in the text by Schoenberg [1969b]. The history
of zero properties of monosplines began with Schoenberg [1958], who
stated the fundamental theorem of algebra (i.e., an upper bound on the
number of zeros and the existence statement of Theorem 8.47 for simple
knots). The upper bound was first officially established in the article by
Johnson [1960]. The existence of monosplines with simple knots and
prescribed multiple zeros was established first in the article by Karlin and
Schumaker [1967]—see also Schumaker [1966]. The result for multiple
knots and simple zeros (and the method of proof used here) is credited to
Micchelli [1972]. The Budan-Fourier theorem for monosplines is also the
result of work done by Micchelli [1972]. The problem of constructing a
monospline with multiple knots and with multiple zeros appears to be open.
For results on the fundamental theorem of algebra for monosplines with
boundary conditions, see Karlin and Micchelli [1972] and Micchelli and
Pinkus [1977].
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Section 8.5

Discrete splines were found by Mangasarian and Schumaker [1971, 1973)
as solutions of certain discrete best interpolation problems. Constructive
aspects of discrete splines for the case of h=1 were discussed by Schu-
maker [1973]. A more complete development of constructive aspects of
discrete splines was carried out by Lyche [1976]. For a different approach
to their best interpolation properties, see Astor and Duris [1974].

§ 8.7 REMARKS

Remark 8.1

In Theorem 8.15 we have examined the approximation power of periodic
splines with the help of the linear spline operator Q defined in (8.19). As in
the nonperiodic case (cf. Example 6.23), Q is not a projector. By construct-
ing a dual basis for the periodic B-splines (following the development in
Section 4.6 in the nonperiodic case), we can follow the ideas discussed in
Remark 6.4 to construct a projector that produces the same error bounds

as Q.

Remark 8.2

In Theorem 8.71 the approximation power of discrete splines was ex-
amined using the linear spline operator Q defined in (8.104). By construct-
ing a dual basis for the discrete B-splines, we could obtain the same results
with a projector—cf. the construction in Remark 6.4.

Remark 8.3

The discrete B-splines also turn out to be useful for expressing the divided
difference of a function over a given set of points in terms of divided
differences over a refinement of this set of points. These relations can be
used in turn to obtain B-spline expansions of splines on one set of knots in
terms of B-splines on a finer set of knots. See deBoor {1976b].
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TCHEBYCHEFFIAN
SPLINES

In the first eight chapters of this book we have dealt exclusively with
polynomial splines. Here and in the following two chapters we develop the
theory of similar spaces of generalized splines. We begin this development
by studying Tchebycheffian splines, where, as we shall see, almost all of
the results for polynomial splines can be carried over.

$ 9.1. EXTENDED COMPLETE TCHEBYCHEFF SYSTEMS

Let I be a subinterval of the real line R, and suppose U, = {u,}7 is a set of
functions in C™ '{I]. We call U, an Extended Complete Tchebycheff
(ECT-system) provided

D(;,,...,Z()>O forallf,<t,< -+ <t inl 9.1

Proeo Uy

and all k=1,2,...,m. In this section we show that the ECT-systems are
natural generalizations of the space ¢ of polynomials, and that many of
the convenient properties of polynomials remain valid for ECT-systems.
We begin with an equivalent condition for a set of functions to form an
ECT-system.

THEOREM 9.1
A set of functions u,,...,u, in C™~'[7] form an ECT-system if and only if

their Wronskian determinants are positive for all x € I; that is,

W(u,,...,u)(x)=det[ D' 'u(x)]¥ _,>0, allxel,

ij=1 ’
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Proof. The necessity of this condition is clear from the definition of
ECT-system. The converse is established by a standard argument for
pulling apart multiple £’s—see Karlin and Studden [1966], page 377. [ ]

If A, is an m-dimensional linear space with a basis U, that forms an
ECT-system, then we call Q_, an ECT-space. The following theorem shows
that any ECT-space has an especially convenient ECT-system basis:

THEOREM 9.2

Suppose w, € C™~'*![I] are positive on 1, i=1,2,...,m. Then

u)(x)=w,(x)

uy(x)= Wl(x)faxwz(sz)dsz 9.2)

tn(x)= () [ “wy(sy) / L f T () dsyy - dsy

form an ECT-system on /. We say it is in canonical form. Moreover, if AL,
is any ECT-space, then there is an ECT-system in canonical form that
forms a basis for A,,.

Proof. See Karlin and Studden {1966], page 379. [}

The following two simple properties of ECT-systems are very useful:

THEOREM 9.3

If U,={w)}7 1s an ECT-system on [a, b}, then we can extend each of these
functions to be defined on any larger interval [c,d] such that U, is also an
ECT-system on [c¢.d].

Proof. We assume that u,,..., u,, are in canonical form. Then we simply
extend each of the functions w,,...,w,, to the larger interval in such a way
that they remain positive and retain their smoothness (i.e., such that
w, €C" T ed). i = 1,2, ..., m). u

THEOREM 9.4

If {4}7 i1s a canonical ECT-system on [a,b], then there exists a function

u,,, such that U_,,={u)7*" is a canonical ECT-system of m+ 1 func-

n

tions on [a,b].
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Proof. We simply choose w,,, ;=1 and set
x 53 Spr
Uy (X)=w(x wy(s Wb 1 (Sms 1)y dsy. (9.3
=) [ s [T [ T (5 )iy dsy (93)

The most tmportant example of an ECT-system is provided by the
classical polynomials:

EXAMPLE 9.5
The space ¥, of polynomials is an ECT-space on any interval [a, b].

Discussion. A canonical basis for ®, on [a,b] is given by the functions
u(x)=1 and uy(x)=x—a,...,u,(x)=(x—a)""'. These functions can be
written in the canonical form (9.2) using the weight functions w (x)=
Lw(x)=i—1,i=2,...,m. [ ]

Many properties of polynomials involve working with derivatives. When
dealing with ECT-systems it is convenient to replace the usual derivatives
by some related differential operators. We define D, f=f, and

Dif=D(—{7), i=1,2,...,m. (9.4)

i
Now set

L=D,D,_,---Dy  i=0,1,...,m. (9.5)

The operator L, can be regarded as a substitute for D', It is, in fact, just a
perturbation of D', since by Leibniz’s rule, there exist a,¢---,a; ;. such
that for all f,

D f(x) S

L f{x)= o (3) - + jgo a;(x) D’f(x). (%.6)

Clearly, if U,, is a canonical ECT-system, then @, =span(U,,) is the null
space of L,, and

=0,1,...,i—1
Lu(a)=w/(a)s; ST 9.7
ju,(a) wl(a) /] i=1,2’“.,m. ( )

=1
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An important property of the polynomials is the fact that the derivatives
of polynomials are again polynomials (of one order less). A similar
situation persists for canonical ECT-systems. Let

u ((x)=w,, (x)

4, 20) =W, () [ W, als, 1)1

X 5+2 Sm -t
uj,m—j(x)zn'j+l('x)f w:j+2(sj+2)f e f “ym(sm)dsm..'dgj-t-Z
a a

a

(9.8)

for each j=0,1,..., m—1. We call U= {u, ,}]] the jth reduced system. In

view of Theorem 9.2. it is itself a canonical ECT-system. In addition, we
have

LX) =j+1,...,m
Lu(x)= u;;_(x) i=j m (9.9)
7 0, i=1.2,...,j.
We write UY =span (UY), j=1.2,....m—1. It follows that if u€U,,

then L,u€ Y, Lyue AP, and so on.

The determinants D involved in the definition of ECT-systems [cf. (9.1)]
are the determinants introduced in Section 2.3, where repeated ¢’s call for
taking (ordinary) derivatives. In view of the importance of the differential
operators L, introduced in (9.5), it is natural to expect that there may be
some advantage to working with determinants in which D’ is replaced by
L,. We define

Dy (ty.....t,)=det| Lyu(1)]” (9.10)

INEEN
where

d=max{j: t,="---=1_}, i=12,....m.

Using (9.6), it is easy to see that by adding appropriate multiples of various
rows to others, we can convert the determinant in (9.10) to the one in (9.1):
that is,

D( fooos tm)=DUm(tl ..... 7). ally, <1, <--- <1, €L
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We conclude that the determinants (9.10) are also positive for all
t,<---<t, in I. The following result gives more precise information
about the size of Dy, :

LEMMA 9.6
Let
M;= min w(x)
x<b
_asEs . i=12,....m. (9.11)
M;= max w;(x)
a<x<b
Then for all a <t <1, < -+ €17, <b,
CV(ty, . 5t,) <KDy (1,0 1,) SC (1, . 00 1,), (9.12)

where V' is the VanderMonde determinant [cf. (2.65)], and where C, and
C, are positive constants depending only on m and the quantities (9.11).
Moreover, for all a <x <b,

CID*V (11t X)) < |LeDy (24t 1, %))
<G| DMV (1, .. it _ 1 X)) (9.13)

Proof.  First we claim that D, can be written as a multiple integral (over
positively oriented intervals) whose integrand is a product of the weight

functions w,,...,w,.. To see this, suppose
11 Id
A ——
HSLS S, =100, 1 < < Tyl Ty

Next, by factoring w,(7,) out of the first row, w,(1,) out of the /, + Ist row,
and so on, and then by subtracting each row with a 1 in the first column
from its predecessor with a 1 in the first column, we obtain (after
expanding about the first column)

DUM =w (1) wi(7,)

L-1 L1 -1

T2 Ta —A— ——t— — Ay
f f DU”)'<T,,...,‘r,,sl,'rz,...,'rz,sz,...,Td....,'rd)ds,-udsdﬁ].
T Td-1

Our claim follows by induction.
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We now establish (9.12). Suppose we replace all the w’s by their upper
bounds M,,...,M,,. The value of the multiple integral is then larger. But
with constant w’s, the functions u,,...,u, reduce (modulo some factorials)
to the powers 1, x,...,x™ !, and thus the multiple integral is a (constant)
multiple of the VanderMonde. The lower bound is obtained by replacing
all w’s by lower bounds on them. The proof of (9.13) is similar, taking
account of the fact that in view of (9.9), the row in the determinant L, D,
corresponding to x has zeros in the first k columns. =

In Section 2.7 we gave a detailed treatment of divided differences based
on defining them as quotients of determinants. This approach suggests a
natural generalization to divided differences with respect to an ECT-
system. Suppose U,, 1s an ECT-system in canonical form, and suppose
u,,, is the natural extension [cf. (9.3)] to an ECT-system U, ,,. Then

given any sufficiently differentiable function f, we define its mth order
divided difference with respect to U, , by

D(tl,...,tm+})

Uy Uy,

N P
D( Ps-- )

. (9.14)
I itm+1

7P T S

We suppress the subscript U, ., on the divided difference symbol
whenever there is no chance of confusion. The following theorem gives
some elementary properties of the generalized divided differences:

THEOREM 9.7

The generalized divided difference defined in (9.14) is a linear functional
such that

[t e sty Ju=0  forallue,, (9.15)

and
[t]""’tm+l]um+l=1' (9.16)

Moreover, if

HWELE Kt === <LK y=-ee =1, (9.17)
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then

[t1eestmar | = 2 2 i1 (), a, #0, (9.18)

i=1j=1

and

[f1oeeostmar ] f= 2 2 B, D’ Y(r), B, #0,i=1,....d. (9.19)

i=1 j=1
Finally, if f and g agree on the points {£}7*' in the sense that

=121

D/~ Y(r)=D’"'g(1),
f() 8(7) =12

then [¢,,....0,, . 0 f=[t,,. ..t 4 1l 8.

Proof. Properties (9.15) and (9.16) follow directly from the definition. The
expansion (9.18) is obtained by using the Laplace expansion on the
determinant appearing in the numerator of the definition of the divided
difference. The alternate form (9.19) follows from (9.6). These expansions
show clearly that the divided difference is a linear functional defined for
all sufficiently smooth functions, and that if f and g agree on the points
{t,}7*", as in (9.17), then their divided differences are equal. [ ]

One of the most important properties of ordinary divided differences is
the recursion relation given in Theorem 2.51. The following theorem gives
an analogous recursion relation for generalized divided differences:

THEOREM 9.8

Suppose ¢,5t,,, ;. Then
[tostmirJu S [t tm) oS

I TN P S

[tv---”m+l]u,,,,,f=

(9.20)

Proof. Miihlbach [1973]. ]

The recursion (9.20) reduces to the usual one when U, = {1,x,...,x™}.
As an application of the generalized divided difference, we now give an
exact error expression for interpolation by functions in an ECT-space.
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THEOREM 9.9

Let &u, be an ECT-space on I, and let 1, <7,<..-<7, be prescribed points
in I. Let /,,...,l, be positive integers with 2_/, = m. Then for any given
real numbers {z,}/_,¢_, there exists a unique u € 4, such that

J=12...1

D' u(r)=z,
(r)=2, i=1,2,....,d.

Moreover, if {z;=D’"'f(r)}'_, {-, for some function f, then
f)—u(x)=9(X)[ 1)y sty x]y S (9.21)
where

D, (ty... t,,x)

i+ 1 > tm2

Dy, (ty,...,1,)

P(x)=

Proof. This result is the direct analog of Theorem 3.6 for polynomial
interpolation. The existence of a unique interpolant follows from the fact
that the interpolation conditions yield a system of m equations for the
coefficients of u=37_, c,u, which is nonsingular since 9 _ is an ECT-
space. The error expansion (9.21) follows by expanding the determinants in
the numerator and denominator of the divided difference. [ ]

Theorem 9.9 shows that we can always perform Hermite interpolation
with an ECT-system. The interpolating conditions here are described in
terms of ordinary derivatives, but it is clear that the analogous interpola-
tion problem, using the derivatives L, in place of DY, can also be uniquely
solved for any given data, and that the error expression (9.21) also holds in
this case.

An important result concerning polynomials is the Markov inequality
given in Theorem 3.3. The following theorem states a similar result for
functions in an ECT-space:

THEOREM 9.10. Markov Inequality

Let 9, be an ECT-space on I, and let 1 <p,q < o0. Then there exists a
constant C, (depending only on “ll,,, p, and ¢) such that for y € U

m

\|Dj”|\11,|1]<Cnh‘]+l/pfl/q|\”||1‘q[1]~ (9.22)

where A is the length of /.
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Proof. We prove this inequality for a still wider class of functions in
Theorem 10.2. m

Our next aim is to establish a form of Budan-Fourier theorem, giving a
sharp estimate of how many zeros a function » in an ECT-space can have
in an interval. In dealing with such u, it is somewhat more convenient to
define multiple zeros in terms of the derivatives L, rather than in terms of
the usual derivatives D/. In particular, we say that u has a zero of
multiplicity z at the point t provided

u(y=Lu(t)=--- =L, _u(t)=0+%L u(1). (9.23)

This definition is actually equivalent to the usual one, since in view of the
connection (9.6), (9.23) holds if and only if

u(t)=Du(t)=--- =D*"'u(t)=0#Du(1). (9.24)

The advantage of defining multiple zeros as in (9.23) is that if ¥ has a zero
of multiplicity z at ¢, then L,u has a zero of multiplicity z— 1 at the same
point. This observation allows the use of inductive-type arguments. In this
connection, we now give a version of the extended Rolle’s Theorem 2.19 in
which D is replaced by L,.

Let f be a function such that L, f exists on the interval (a,b). We say that
a<c<b is a left Rolle’s point of f provided either f(c)=0 or for every e >0
there exists ¢ <t <c+¢e with u(s)L,u(t)>0. Similarly, a <d <b is called a
right Rolle’s point for f provided either u(d)=0 or for every ¢>0 there
exists d — e <t <d with u(#)L,u(r) <O (cf. Definition 2.18).

THEOREM 9.11. Extended Rolle’s Theorem

Suppose L, f exists on (c,d) and that ¢ and 4 are left and right Rolle’s
points of f, respectively. Then L, f has at least one sign change on (c,d). If
L, f is continuous on (c¢,d), then it has at least one zero there.

Proof. We simply apply the extended Rolle’s Theorem 2.19 to the func-
tion f/w,. u

We can now extend the Budan-Fourier Theorem 3.9 for polynomials to
functions in an ECT-space U,,,.
THEOREM 9.12
Let U, ={u;}7 be an ECT-system, and suppose u=23"_ cu, with ¢, #0.

=
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Then

Zt (W) <m—1-8* [ u(a), — Lyu(a),...,(— l)"'—'Lm_,u(a)]
-8§*[ u(b),L,u(b),...,Lm_lu(b)],

where Z* counts multiplicities as in (9.23) and S* counts strong sign
changes.

Proof. The proof parallels that of Theorem 3.9, using L, instead of the
usual derivative D, and replacing the usual Rolle’s theorem by Theorem
9.11. The only point that perhaps needs mentioning is that the argument
that the constant a=A4,— A4, with

4,=S*[(=1)Lu(a),...,(— D" 'L,,_u(a)]
can be 1 only if a is a left Rolle’s point is now based on the fact that

Lu()y=wo) [ w8+ [ L,y (&)t . .

The assumption that ¢,, 70 in Theorem 9.12 assures that v does not lie
in the smaller ECT-space L,,_,. It is the analog of the hypothesis that p be
of exact order in the usual Budan-Fourier theorem. It follows immediately
from Theorem 9.12 that Z*(u) <m— 1 for any nontrivial function in U,,.
This fact also follows from Theorem 2.33 on ET-systems.

We close this section by introducing an important dual set of functions
associated with a canonical ECT-system {}7". Given u,...,u,, defined as
in (9.2) by the weights w,,...,w,,, we define the dual canonical ECT-system

m={u*}7-1 by

ut(x)=1

ui(x)= fa Won (S ) Sy 025

x Sm S3
ur(x)=1 w,(s, wy(sy)dsy: -+ - ds,,.
2= [ o) [ 7o [T walsds,
Associated with this ECT-system, we have the operators

L*=Dr---D§  i=0,1,....m, (9.26)
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where D§f=f, and

i

Df, i=12,....,m. (9.27)

Win—i+1

Clearly, U* =span(U2) is the null space of L}, and
Lru*(a)=0, j=0,1,...,i-2,i=12,....m. (9.28)

The operator (1)L is the formal adjoint of the operator L,.. On the other
hand, L* is not generally the adjoint of L, for i=1,2,...,m—1. Given a
dual canonical ECT-system U} as in (9.25), we define its jth reduced
system by

u;,(x)=1,

12 (5) = [ W (5 )5

(9.29)
x Smr—j 53
ujfm~j(x)='£ wm_j(sm_j)j; e j; wy(s,)dsy- - - ds,,_j,
Jj=0,1,...,m~1. We write U= {u*}7_{. We observe that
0, i=1,2,....j
L*u*=
5 Ui { W, i=j+1,...,m. (9:30)

§ 9.2. A GREEN’S FUNCTION

In this section we generalize the results of Section 2.2. We begin by
introducing the analogs of the functions (x—y)4{~'. Suppose @, is an
ECT-space with a canonical ECT-system basis {u}T corresponding to
weight functions {w;}T". For each j=1,2,...,m, let

h(x;y), x»
g,-(x;y)={ y(x37) o (9.31)
0, otherwise,

where

B =m(x) [ “wals,) / T / Tw(s)ds s, (932)
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The following theorem shows that g;(x;y) has the characteristic properties
of a Green’s function:

THEOREM 9.13

Fix a < y <b. Then for all x and y,

J

hj(X;.V)= 2 ui(x)u:t—j,j—i+l(y)(—l)j—i’ (9.33)
im=1
Jj=12,...,m. Moreover
Ligi(x;))|xmy =8, ;- ywi(y), i=0,...,j—L (9.34)

Proof. To prove (9.33), we establish even more; namely, that for all
r=0,1,..../—-2,

X rS42 Si—1
Woi) [T [T (s, )y g
y vy y

) e S ) (9.35)

i=r+1

We prove this by induction on r. For r=;—2 we have
x x y
w_1(x) [ w(s)ds=w,_ (%) [ w(s)ds—w,_o(x) [ ws)ds,
Y a a
= Uy (U ()

U, l(x)ur:—j,2(y)’

which is (9.35) in this case. Now we assume that (9.35) holds for r+1,...,
J—2, and we prove it for r. We have

wr+l(x)f e fl— wj o W,+2=W,+|(X)f \P(S,+2)ds‘,+2
y y a

W) [ "W, 4 2)ds e (936)

where (using the induction hypothesis)

Sra2 Sji—1
\P(sr+2)= wr+2(sr+2)f T f wj W3
y ¥

J .
= 2 (_1)1 l“r+1,.‘—r-1(Sr+2)“;’::-1,1—:41()’)~

i=mr+2
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Substituting this in the first term of (9.36), we see that it reduces to
j PR
2 (-1’ ur,i—r(x)ur:—j,j—i-l-l(y)'
i=r+2
Now, a simple induction argument shows that

Y rr+2 Sj—1 : Y rS; Sr43
. PPN =(—-1}y"" e .o
f f f w; W2 ( 1) f f f W42 W;.
a vy y a a

a

Since u, |(x)=w, , (x), the second term of (9.36) is

(- l)j_r_]ur,l(x)u:r—j,j—r(y)’

and (9.35) is proved for r. The assertion (9.34) is easy. [ ]

It follows directly from (9.30) and (9.33) that the function g; can be
obtained from g, by differentiation:

g(x;y)=(=1)""7LY_;g,(x;), (9.37)

Jj=12,...,m—1 (where, here, L}_ ; operates on the y-variable). Before
showing how g can be used to solve initial-value problems, we give a

simple example to illustrate the expansion (9.33).
EXAMPLE 9.14
Let U, ={1,x,...,x™" '} on [a,b]=[0, 1].

Discussion. In this case wi(x)=1 and w(x)=i~1, i=2,...,m. A simple
calculation shows that uf(y)=1, while

(m~1)ty~! =2,

ui*(y)=m, 1= Y (S

It follows that the expansion for Ai(x;y) reduces to the usual binomial
theorem

h(xiy)=(x—y)"'= é (j: : )x’"b'"‘(* /" m

i=1\1
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THEOREM 9.15

Let he L,[a,b], and suppose f,,...,f,,_, are given real numbers. Let u be
the unique member of A, such that

Lu(a)=1, i=0,1,....m—1.

Then

fx)=u(x)+ [ g (xiv)h(r)dy (9.38)

is the unique solution of the initial-value problem

L, f(x)=h(x), x€[a,b], (9.39)
L fla)=f, i=0,1,...,m—1. (9.40)

Proof. It is easily checked that
b
L[ 8n(5in)h(0)dyeea=0,  i=0,1,...,m—1,

and thus f satisfies the initial conditions (9.40). On the other hand, since

Wo(X), x>y
L1 8mlx5y)=4 ™ .
18n(X3) { 0, otherwise,
we have
Ly 1 S(x)= Ly u(x) + [ o (x)R(3) .
a
Applying the differential operator D,,, we obtain (9.39). ]

As in the polynomial case, the function g,, plays an important role in a
kind of Taylor expansion.

THEOREM 9.16. Generalized Taylor Expansion
Suppose L,,f € L,[a,b]. Then for all a<x<b,

) =u0)+ | ’ gm(X:2) L f(¥) 0, (9.41)
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where u, is the function in @, such that
Liuf{a)=L, f(a), i=0,1,....m—1.
Proof. Let
b
g(x)=ulx)+ [ gn(x:9) Ln f(¥) .
Theorem 9.15 implies that L, f(x)= L,g(x), all a <x<b, and thus f—g€

Q,,. But Theorem 9.15 also asserts that L(f—g¥a)=0, i=0,1,...,m—1,
and we conclude that f=g. [ ]

The function g, (x;y) also serves as a kind of dual Green’s function for
the adjoint operator L}. Indeed, since [cf. (9.37)]

Lrgm(x:3) = (= 1)'gp_i(x;¥),
we observe that for any fixed x,
Lrg (x;¥)=0, all x<y<b;
Li‘g,,,(x;y)ly_x =(- l)iwl(x)S,-,m_ 1 i=01,....m—1.

THEOREM 9.17

Let h€ L,fa,b], and let f,...,f,_, be given real numbers. Let u* be the
unique function in l,, such that

L*u(b)=f, i=0,1,....m—1
Then

b m
F)=uwt () + [ (= 1) h(x)g(x;p) dx (9.42)
a
is the unique solution of the terminal-value problem

Lyf(y)=h(y), a<y<b;

Li‘f(b)=f;', i=0,1,...,m—1.
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THEOREM 9.18. Dual Taylor Expansion
Let L* f€ L,[a,b]. Then for all a<y <b,

S =)+ [ ()= D)"La f(x)dx, (9.43)

where u? is an element of L, such that

Lrup(b)=Lrf(b), i=0,1,....m—1.

§ 9.3. TCHEBYCHEFFIAN SPLINE FUNCTIONS

Let A={a=xy<x,;<--- <x, <x,,,=b} be a partition of the interval
{a,b], and let I =(m,,...,m,) be a vector of integers with 1 <m, <m,
i=1,2,...,k. Suppose U, is an m-dimensional ECT-space.

DEFINITION 9.19

We call
s: there exist sg,...,s, in U, with
S(U,,; M;A)= s'(’f""‘l“)=s” i=.0’l""’k’ and (9.44)
D™ s;_y(x) = D/~ lsi(xi)a
Jj=L...m—m,i=12,.. .k
the space of Tchebycheffian spline functions with knots x,,...,x, of multiplici-
ties m,,...,m,. We use the notation $(?U,,;A) in the case of simple knots.

This is a natural generalization of the space of polynomial splines
discussed in Chapter 4. Indeed, the space &(QU,,; IN;A) reduces to the
space of polynomial splines when we choose AU, =%, . In defining
S(U,,; M ;A) we have required continuity of ordinary derivatives across
the knots—we could just as well have required continuity of the deriva-
tives L; in view of the equivalence of (9.23) and (9.24).

It is clear that the space & (U, ; O ;A) is a linear space. By arguments
similar to those used in the proof of Theorem 4.4, we can easily prove that

K
dim S(U,,; M;A)=m+K,  where K= m,.

i=1

The following theorem gives a one-sided basis for &:
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THEOREM 9.20

The functions

m, k
pi,j(x)={gm—j-f-l(x:xi)}j_l‘,'_oy (945)
with my=m, is a basis for S(QU,,; I ; A).

Proof. From (9.33) and (9.34) we conclude that each of the functions p;
belongs to & [recall the equivalence of (9.23) and (9.24)]. Since the
dimension of & is m+ K, it remains only to check that the p’s are linearly
independent. The proof of this is exactly like the proof of Theorem 4.5 in
the polynomial case. [ ]

In view of the relation (9.37), we see that each of the one-sided splines in
Theorem 9.20 can be defined directly in terms of the Green’s function g,,,;
namely,

- =1,2,...,m,
C(xX)=(=1)"""L* EIEAR J= DLl 9.46
pl,j( ) ( ) v lgm( ) i=0,1,._.,k_ ( )
The following analog of Lemma 4.7 discusses the possibility of construct-
ing splines with local support:
LEMMA 9.21
Let 1, <7, <--- <ryand 1 </, <m, i=1,2,...,d be given. Then

d
> > Ci8m—y+1(x:7)=0 for all x >7,, (9.47)
i=1 =1

with 3¢

i=]

[, <m, implies that the ¢’s are all zero.

Proof. Define u*(y)=0 for i=m—j+1,...,m. Then substituting (9.33) in
(9.47) and interchanging the order of the summation, we obtain

m d I;
2 u"(x) 2 2 CijL;—lu(Im—u+l(Ti)("‘1)1_150
v=1 im] j=1

for x >7,. By the linear independence of the u,,...,u,, this implies

d I
S DLt (t)(=1Y =0,  o=12,...m.

i=1j=1
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(Here we have written u*=ug,;, i=1,2,...,m.) Since Uy ={ur}]" is an
ECT-system in canonical form, the first 27_, /, equations provide a nonsin-

gular homogeneous system for the ¢’s, and we conclude that they must all
be zero. ]

Lemma 9.21 suggests that (as in the polynomial case) local support
splines should be constructed as linear combinations of m +1 one-sided
splines. By the same arguments used in Section 4.2, we are led to define
Tchebycheffian B-splines as (generalized) divided differences. We study
such B-splines in detail in the following section.

§ 94. TCHEBYCHEFFIAN B-SPLINES
Given a set of points
YifYir1 < Siem with y; <y, 4 m,

we define the associated Tchebycheffian B-spline (TB-splines) as

Q(X)=(=D)"[ V- Viwm]us, Bm(X2) (9.48)

m+

where the divided difference is taken with respect to the dual canonical
ECT-system U}, associated with U, ,,—cf. (9.14).

The following theorem collects some of the basic properties of TB-
splines:

THEOREM 9.22

Suppose
i I
Vi€ Yipt S K Yiem =TT <00 < Tyyenn, T4
Then
d &
Qi(x)= 2 2 Cjkgm—kﬂ(x?"'j), (9.49)
=1 k=1

where the g’s are the Green’s functions defined in (9.31). The B-spline has
the properties

Q.(x)=0, x<y;and x>y, .; (9.50)
Q:(x)>0 fory, <x <y 4 m: (9.51)
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Proof. The expansion (9.49) follows by the Laplace expansion of the
determinant in the numerator of (9.48), recalling that g, _, =(— 1)*L?g,.
The denominator in (9.48) is always positive. The fact that Q,(x) is zero for
x <y, follows automatically from the one-sided nature of g,,. For x>y, .
we have the divided difference of a function in AU} =span{w*}7, hence
Q.(x) is also zero there. The positivity of Q, in (y;,5;, ,,) follows from the
normalization and the fact that it cannot have any zeros in this interval (a
fact that we establish in Corollary 9.31). [}

We are now ready to give a local-support basis for the space of
TB-splines.

THEOREM 9.23

Let A, ={y,}i"*X be an extended partition of [a,b], as in Definition 4.8,
with b <y,,, .« Let Q,(x) be the B-spline associated with y,,...,y,, . as in
(9.48), i=1,2,...,m+ K. Then {Q,}7* ¥ is a basis for &(U,,; IN; A). More-
over,

Q.(x)=0, x<y,and x>y, .,

and
Qi(x)>0’ Vi <X Vit ms

i=12,...m+K.

Proof. In view of Theorem 9.22 we see that each of the Q, is a spline in
S (U, ; DM ;A) with the asserted properties. Since the dimension of & is
m+ K, it remains only to check that the Q’s are linearly independent. We
may establish this exactly as in the proof of Theorem 4.18, using Lemma
9.21. [ ]

It is also possible to define a B-spline basis for & in the case where the
extended partition A, is such that b=y, .. In this case we must define

Qm+K(b)= l:?; Qm+K(x)

(cf. Corollary 4.10).

We now continue with properties of the B-splines. First, we have the
following simple analog of the Peano representation of divided differences
given in Theorem 4.23:
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THEOREM 9.24
Let L, f€ L\[y,y;sm) Then

Vi+tm
[YorereViemlugo J= [ QU LEA) dx. (9.52)
Yi
Proof. We simply apply the divided difference to the dual Taylor expan-
sion (9.43). [ ]

If we take f=u} ., in (9.52), we obtain the interesting fact that

1= ["""0(x)dx. (9.53)

Yi

As in the polynomial spline case, it is useful to have a normalized
version of the TB-spline. We define

Ni(x)=0,Q,(x), (9.54)
where

Du,:*,()".-, . "yi+m)DU;,_|(yi+ e Yiem—1)
Dys(¥ivvs--Yiem)Puys(Vis- - Yivm—1)

Q=

This factor is well defined, and it is positive since Uy, , is an ECT-system.
In the case where A, =%,, it can be shown after some calculation (cf.
Example 9.14 where the u*’s are calculated) that o;=(y,,,, —»))

We can now establish the following version of Marsden’s identity for
normalized TB-splines (cf. Theorem 4.21 in the polynomial spline case):

THEOREM 9.25
Let {N,})7*X be the normalized B-splines defined in (9.54), and let

DU;(yi+l""’yi+m—l’y)
DU;_,(yi+l""’yi+m—l) ’

o(y)= (9.55)

for i=1,2,...,m+ K. Then the function 4, defined in (9.32) satisfies

m+ K

h,(x;y)= 2 (_l)m—lq’i()’)Ni(x)- (9.56)

i=]
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Moreover, for all y,, <x<y,,, x»

m+ K

u(x)= 2 N(x). (9.57)
i1
We also have
m+ K )
u(x)= > 9IN(x), j=2,3,...,m, (9.58)
i=1
where
==L ()], (9.59)

In particular,

yi+l""’yi+m—l)

D( ut u* ., u*
@ _ Poosolm_2 Uy,

. , (9.60)
Du;_l(y,'+]9~"’yi+m—1)
and
Yistseo s Yiem—
D( * *! * +t l *)
75 yeeesUpy Uy U,
= (9.61)

DU:'_I(yi+1,~-~’yi+m—l)

Proof. Fix m<I</+1<m+K+1 and y,<x<y,,,. For each i there is a
unique polynomial in U}, , (call it p;) which interpolates g, (x;y) at the
pointsy =y,,...,y;, .- By the remainder theory for interpolation from U},
(see Theorem 9.9),

R()=8n(%:9) =PA3) = by mad(V) [ Vir- - Yiamd | Bm(X39),

where ¢, ., is the unique element of Uy, with leading term u«,, and
zeros at y,,...,y; . - We observe that

Dys (Vire- s Viem)

m+2

Du;m()’i’ oo Yiem)

¢i,m+2(J’) =
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From properties of the generalized divided difference, we note that

Givtmi t N[ Vivrse-YiemY ) 8m— [ Vis- e Viem] 8m)
= i,m+2(y)[yi7""yi+mvy] g".’

and

¢i+l,m+](y)([yi+I”"’yi+m’y] Em— [yi+l""’yi+m+l] gm)
=it me2D) [ Vivv Yieme 15V ] 8me

Subtracting these two expressions and setting B; =(—1)"(Q;, we obtain

R(y)— R, 1()’)=¢i+l,m+|()’)(Bi+ i(x)— Bi(x))'

If we sum these identities for i=/—m,...,/ and note that B,_, (x)=
B,, ,(x)=0, then after rearranging we can write

{
Rl—m(y)_Rl+l(y)= 2 Bi(x)(¢i,m+1()’)_¢i+|,m+l(J’))-

i=l+1-m

Since R, (y)=g,(x;y) while R,_,(y)=g,(x;y)—h,(x;y), this gives an
expansion of h,(x;y). It is clear (since they both have leading terms u,, )
that the difference of ¢, ., () and ¢, ,,+(») is an element in U} with
zeros at ¥, . 1,-+-»Yi4tm—1- Thus

i+ l()’) —Dis,m+ 1(V)=a¢,, l,m(y) = ai‘Pi()’)

for some constant g;. The fact that g, equals a; as in (9.54) follows by
letting y approach y,, ,, from above. We have established (9.56).
To prove (9.58), we note that by (9.33)

m

h(x;y)= 2 “i(x)“;:—iﬂ()’)(_l)m"i-

i ]

Then applying Ly} _, to both sides of (9.56) and evaluating at y =a, we are
led to (9.58). The exact values of the n’s can be found by evaluating
Ly _@(»)l,-, carefully. ™

The expansion (9.57) shows that the normalized B-splines N(x) are
bounded by M,=max,, <, (x). This assertion in conjunction with
Markov’s inequality for derivatives of an ECT-system (see Theorem 9.10)
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shows that

ID*N(x)| < Aﬁ, k=0,1,....m—1, (9.62)

where the constant depends only on m and the weights w,,...,w, involved
in the canonical basis for QU,,.

As we saw In Chapter 4, it is useful to have a dual basis for the set of
B-splines. We turn now to the construction of a dual basis for the TB-
splines of Theorem 9.25. We shall construct a set {A\}7*X of linear
functionals defined on L,[a,b] such that

AN, =8

U’

ij=12,...m+K. (9.63)

Following the construction method for the polynomial spline case in
Section 4.6, for each i=1,...,m+ K we define

NI = [T RO Lyt (x) dx (9:64)
with

¥i(x) = a,@,(x) Gi(x),

where G;is the transition function described in Theorem 4.37, and where ¢,
is defined in (9.55) and «; is defined in (9.54).

THEOREM 9.26
The linear functionals {\,}7"** defined in (9.64) form a dual basis for the
B-splines { N,}7*X. In addition,

Al

<CA~>, (9.65)
||f”la,[)’1v)’i+m] -

Al =sup

i=1,2,...,m+ K, where C is a constant depending only on m and the
weights w,,...,w,, involved in the basis for AL,,.

Proof. First we must show that the A’s satisfy (9.63). By the support
properties of the B-splines, it is clear that

N.=0, Jj=L2,...,i—m,i+m,.... m+ K.
J
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On the other hand, by the Peano representation (9.52), we have
AN= o Yoo Yjam] vz, Y

By construction, the function i, vanishes at the points y,, ,....0;  m—)
(with multiplicities) as well as for all x <y,. It follows that

}\fN,:O forj=i—m,...,i—1.

On the other hand, for x >y,,, the function y,(x) takes on the same values
as the function g,(x), at least on the knots. But the divided difference of
functions in Q% is zero, hence we conclude that A,N,=0 also for j=
i+1,...,i+m—1. It remains to check the value of A, N,.

On the points y,,...,¥;, . the function y,(x) agrees with the function

gy Dl Piam)
\X)= .
Du;,()’.-,---,yf+,,,_l)

Indeed, both y; and 6, vanish at the points y,,...,y;, ,,_; (with multiplici-
ties), and both have the value

DU’:H(Y},~-~, yi+m—l’yi+m)
Du;(y,'a~--’yi+m—l)

at the point y,, .. On the other hand,
0(x)=u* (x)+---,
hence
AN= (Yo Viem] s, bi=1

m

We now estimate the norms of the linear functionals A, Let I, =
[¥:s¥i+m)- By Holder’s inequality, we have

l’\:.f' = l'f'IL,,WI'Lfs‘/fi”L,)I/,l»

with 1/p+1/p’=1. Using the Leibnitz rule, it is easy to show by induction
on m that

“ ck(x) -k
*./ x)= —e m G X L: a1 X)),

where ¢, (x) depends only on the values of {w;}T" and their derivatives,
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while d,(x) depends only on powers of {w;,}7". Since

C

m—k m-—k —-
||D G,.(x)||L”[,i]< — k=0,1,....m
i+m i)
and L} ¢, =0, this implies
|Af] — ||Ll:‘Pi||L,,[1,.]
o <Giem=2) WO I —.— (9.66)
Lln) k<=1 (Yiem—Yi)
By Lemma 9.6, and the definition of ¢,
|Lte(x)| <Cy|D*®(x)], x€I,
where
(p(x)= V(yi+l""’yi+m—l’x)
! V(Yisvr-sViem—1)
Now suppose
I I
——r— —
Vizvroosiama1= Tpors Ty < os < Ty Ty
Then by (2.67)
d
o(x)= II (x—7)",
i=1
and it follows that
|D¥®,(x)|<C,A™'"%, k=0,1,....m—1.
Substituting this in (9.66) yields (9.65). (]

The dual basis {A,)7*¥ for {N,)7** can now be used to examine the
conditioning of this basis.

THEOREM 9.27
Fix 1<p<ow. Fori=12,....m+K let

B, (x)=A""?N/(x). (9.67)
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Then there exist constants 0 <C, and C, < co depending only on m and the
quantities { M, M;}7" in (9.11) such that

m+K 1/p
( 2 |Ci|P) <C,

i=1

m+ K

2 ¢ Bi,p

i=1

m+K 1/p
<C2( > |C.-|‘") (9.68)
Lya.b]

i= ]

for all sets of coefficients ¢,...,¢,, 4 -
Proof. Let s=371%c,B,. Then by (9.65) with I, =[y, y;, ]
m+ K m+ K m+ K
2 lolff= 3 \slP<C, 2 s, 1 < CollsI fa.b

=1 i=1

Conversely, by our normalization of the B-splines,

|B, ()| <M-A""?,  i=12,...m+K.

Thus
j 14
Xji+1
S sy dx= S L7LE B
j=0 i=j—m+1
k Xion . J m+ K
<3S [T max B ymtTt S [6F<C D lolm
j=07x% l<i<m+K imj—m+1 im1

§ 9.5. ZEROS OF TCHEBYCHEFFIAN SPLINES

In this section we give several results on the zeros of T-splines similar to
those given in Section 4.7 for polynomial splines. First we need to agree on
how to count zeros. Throughout this section we shall count the zeros of a
T-spline according to Definitions 4.45 to 4.47. The key to establishing
bounds on the number of zeros a T-spline can possess will be an ap-
propriate version of the Rolle’s theorem for such splines. Before stating it
we need the following result which shows that the derivative L;s of a
T-spline is again a T-spline (with respect to the first reduced ECT-system).

THEOREM 9.28
Let s€5(U,,; 9 ;A), m>1. Then

Lis€S(ULY; MD; 4),
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where QU is the space spanned by the first reduced system U!", and
where MDY =(mj,...,m;) and m/=min(m,,m—1), i=1,2,...,k.

Proof. Since s is piecewise in A, it is clear that Ls is piecewise in the
first reduced space Q. The tie conditions on L,s follow directly from
those on s. [ ]

We are ready to state Rolle’s theorem for T-splines.

THEOREM 9.29
Suppose s €8 (U, ; IN ; A) and that s is continuous. Then

Z(L;s)»Z%(s)—1,

where D & =§(UL; MM; A) is the space defined in Theorem 9.28.

Proof. The proof parallels that of Theorem 4.50 in the case of polynomial
splines, using the extended Rolle’s Theorem 9.11 for ECT-systems. [ ]

We can now prove our main result concerning the zeros of T-splines.

THEOREM 9.30
For all nontrivial s€&(U,,; I ; A),

Z3(s)<m+K—1.

Proof. The proof is similar to that of Theorem 4.53. We proceed by
induction on m. For m=1 we are dealing with splines that are constant
multiples of the positive function u#, in each subinterval defined by the
knots. We conclude that Z®(s)<m+k—1=k in this case. Now if s is
continuous, the same inductive argument used in proving Theorem 4.53
applies, where now we use the Rolle’s Theorem 9.29 for T-splines. The
extension of the result to splines that have discontinuities (i.e., some
m-tuple knots) also proceeds as before. It suffices to note that the per-
turbation Lemmas 4.51 and 4.52 both have analogs here. [ ]

The following corollary of Theorem 9.30 gives bounds on the number of
zeros of derivatives of B-splines. It also establishes that the TB-splines are

positive on (¥,5; 4 m)-

COROLLARY 9.31
For alli=1,2,...,m+ K and all j=0,1,...,m—1,

Z(y.-.y,*...)( LJQ,) <J.



390 TCHEBYCHEFFIAN SPLINES

Proof. L;Q; is a T-spline of order m —j with m + 1 knots. Thus Z(L,Q) <
2m—j. But L;Q, has an m—jth order zero on (—o0,y,) and on (y,,,, ),
so it can have at most j zeros in (y,,); 1 n)- n

Corollary 9.31 can be improved to produce a form of Budan-Fourier
theorem for T-splines.
THEOREM 9.32
Suppose s is a T-spline in &(U,,; I ; A) and that L, s(a)#0 and L, s(b)+*
0. Then
Z3un() <m+K—1=S5"[s(a), = L;5(a),....(= )™ ' Lys(a) ]
- S+[s(b),L,s(b),...,Ldks(b)]. (9.69)

Proof. The proof follows the same lines as that of Theorem 4.58. Here we
must use the extended Rolle’s Theorem 9.11 for ECT-systems. [ ]

$ 9.6. DETERMINANTS AND SIGN CHANGES

In this section we discuss various determinants formed from the B-splines
and from the Green’s function g,,. We also show that the TB-splines form
an OCWT-system, and conclude from this that the T-splines satisfy an
important variation-diminishing property.

We begin with determinants formed from B-splines. Given

1, <t,< 0 <ty

let
d,=max{j: t;=---=1_}, i=1,2,...,N.
Let {B;}} be a set of TB-splines associated with a knot sequence y, <y,
< -+ €y,.n Then we define the matrix
M| fooot =[L,B(1)] (9.70)
B,,...,By CRONCEIV I :

cf. (4.141) for the polynomial spline case. This matrix arises if we attempt
to find a linear combination of the B-splines { B;}Y to solve the Hermite
interpolation problem

L4s(ti)=v,-, i=12,...,N.
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Liseeorly

B,,....,By
gives the precise conditions under which M is nonsingular:

Let D( )‘denote the determinant of M. The following theorem

THEOREM 933

The determinant D of the matrix M in (9.70) is nonegative. It is positive if
and only if

L€, i=1,2,...,N (9.71)

where

[yi’yi+m)’ lf,v: = ... TVirm—
(¥»Vi+m)» Otherwise

i

Theorem 9.33 shows that the B-splines basis {B,}7*¥ for the space
S(U,,; O ; A) of T-splines is a WT-system. As in the polynomial case, we
can prove even more; namely, that the basis is actually order complete (an
OCWT-system).

THEOREM 9.34

Let { B;} be a set of B-splines as in Theorem 9.33. Then for any choice of
1<y <:--- <y, <Nandany 1, <--- <z,

| SV 4
D( b )>0, (9.72)

and strict positivity holds if and only if
tiE(yyi,y,,’+m)U{x: L“_Bvi(x);&O}, i=12,...,p. (9.73)

Proof. The proof is a direct analog of the proof of Theorem 4.65. [ ]
As an immediate corollary of Theorem 9.34, we have the following
variation-diminishing result for T-spline expansions.
THEOREM 9.35. Variation-Diminishing Property
m+ K
S(.a,b)( > CiBi)<S—(Cl""’ m+ k) (9.74)

i=1

for any cy,...,c,,, g, not all zero.
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Proof. In Theorem 9.34 we have shown that the B-splines form an
OCWT-system. Theorem 2.42 now applies. [}

The determinants associated with certain extended-Hermite interpolation
problems can also be examined for T-splines. In particular, if 8,,...,8, is a
sequence of signs, then we may define

Liseoosly
M| 6,....0,|= [Oi“'L;‘Bj(t,.)]:vj_l. (9.75)
B,.....B,

The analogs of Theorems 4.71 to 4.73 then hold. The proofs are nearly
identical to the polynomial spline case.

The Green’s function g,,(x;y) also exhibits strong total positivity proper-
ties. We have the following analog of Theorem 4.78:

THEOREM 9.36

Let p be a positive integer, and suppose
L<H< e <L,
Y1 Sy,<--- <)’p

are given with ¢, <

+m and y, <y, , .., all i. Define
d=max{j: t,_;=t]}
g, =max{j:y,_;=y;}, i=12,...,p.
Then

tyeoint 1
detgm(y P ) =det| L,L%g,(:5;) ],.’j_l >0, (9.76)

A
and strict positivity holds if and only if
yi<ti<yi+m’ i=1,29---,P, (9.77)

where equality is allowed on the left if v, = . . . = v,,,_,_,, and the right
side is ignored if i + m > p. [In (9.76), in the definition of the determinant,
the first operator L operates on the r-variable, and the second operates on the
y-variable.]

Proof. See Theorem 4.78. [ ]
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§$ 9.7. APPROXIMATION POWER OF TCHEBYCHEFFIAN
SPLINES

In this section we discuss how well smooth functions can be approximated
by T-splines. We shall see that, in general, we can achieve the same orders
of approximation as with polynomial splines (cf. Chapter 6). For some
related inverse theorems, see Section 10.7.

Our approach to deriving estimates for the approximation power of
T-splines will be to construct an explicit local spline approximation opera-
tor similar to the one constructed in Remark 6.4 for polynomial splines.
Given a partition A={a=x,<x;<::+ <x, <x,,,=b} of the interval
{a,b), suppose A* is the quasi-uniform, thinned-out partition constructed in
Lemma 6.17. Associated with these points, let {y,}7*™ be an extended
partition as in (6.36), and let {B;}] be the associated normalized TB-
splines. Finally, let {A;}] be the dual basis corresponding to { B,}] con-
structed in Theorem 9.26. Now for any f € L,[a,b], we define

Of(x)= 2 (ASf) Bi(x). (9.78)
i=1

It is clear that Q is a linear operator mapping L,[a,b] onto the T-spline
space & (U,,;A*)C S (A,,; I;A). In fact, since the A’s form a dual basis,
Q is actually a linear projector onto S(U,;A*) ie., Qs=s for all s€
S (AU,,; A*). The following theorem gives an error bound for approximation
using this projector:

THEOREM 937

Fix m</<n, and let I,=[y,,y,,,] and 1.,:—-[y,+,_m,y,+m]. Then there exists
a constant C, such that for any f& L{"[]}],

1D/(f= @Dl Ly < CA™ V2= VP L fll [ 5), (9.79)

Jj=0,1,....m—1.

Proof. Fix 0<j<m—1, and let y,<t<y,,,. By the generalized Taylor
expansion (9.38), we have

f(x)=uf(x)+f,xg,,.(x;y)L,.,f(y)dy,

where u, €, is such that

Ljuf(t)=Ljf(t), Jj=0,1,....m—1,
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or in view of (9.6), equivalently,
D/u(t)=D'f(r), j=0,1,....m—1.

Since Qu;=u,, using the boundedness of the linear functionals A, we
obtain

|D/(f— @) =D/ (1, — Qf ) ()| =] D'Q(up~ f)(1)|
{ ]
= 2 Ai(uf_f)DjBi(t) <C5é*_‘/p 2 “uj—f”[?[i,ﬁDjBi(’)l'

i={+1—m i=l+1—m

Applying Holder’s inequality to the remainder in the Taylor expansion and
using the integral expansion (9.31) and (9.32) for g,, to establish

| 8 (X30)| < Cylx—y|™ 4, all x and y,

we obtain
1= w4l [ ] S CA*™ N Luf Wl [ 7]
On the other hand, as observed in (9.62),
|DIB,(1)| < Cx(a%)

and combining these inequalities with the fact that A*/A* <3 and A* <A,
we obtain (9.79). [ ]

Theorem 9.37 gives a bound on f— Qf in an interval 7, which depends
only on the behavior of L, f in a slightly larger interval I,. We can give the
following global version:

THEOREM 9.38

For any f€ L"[a,b] and any 1 <p <g< oo,

ID/(f= O 1 fapy SCLB™ 7 * VAP L fl 1t (9-80)

Jj=0,1,....m—1.

Proof. We simply add the inequalities (9.79) together fori=m,m+1,...,n
and use the Jensen inequality (cf. Remark 6.2) on the term

Z ILufllg[i]<m 2 WLnfll iy .

i=m i=m
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It is also of interest to give estimates for how well less-smooth classes of
functions can be approximated using T-splines. The following theorem is a
kind of Jackson theorem (cf. Theorem 6.27 for the polynomial spline case
and Theorem 3.12 for polynomials):

THEOREM 9.39

Fix 1< p<oo. Then for any f € L [a,b],
d f’g(q‘l’m;%;A)]Lp[a,b]<c[wm(.f; B + Z"'|l.f“tniu.hl] . (9.81)

where C is a constant depending only on m and @,,. Similarly, with p = oo,
(9.81) holds for all functions f € C{a,b].

Proof. The operator L, has the form

Dm m—1 )
L=—2" 4> ap
'm w‘wz...wm j=0 7

with g, € C™/[a,b]. Thus Theorem 10.1 implies that for all feLy [ab]

||me||1,[a,b] < C(||Dmf”1,[a,b]+ “f”[,[a,b])'

Inserting this in (9.80) with j =0, we obtain
d £,8 (U3 M58 a5y < CA™(I DS 1.0+ 1 1| y1a,)-
Now we may apply Theorem 2.68 to obtain (9.81). [}

§ 9.8. OTHER SPACES OF TCHEBYCHEFFIAN SPLINES

In this section we discuss several other spaces of T-splines useful in
applications. These will include spaces of periodic T-splines, natural T-
splines, T-splines with HB ties, and T-monosplines. Since the development
closely parallels that in Chapter 8, where similar spaces of polynomial
splines were discussed, we can afford to keep the details to a minimum.
We begin by defining the space of periodic T-splines. Let a<b, and let
A={a<x;<-- - <x,<b}. If we think of [a,b] as a circle, then A partitions
it into k subintervals I, =[x, x,, ), i=12,...,k—1, and I, =[x, x,]. Now
given an ECT-space A, and a multiplicity vector I =(m,,...,m,), we
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define the space of periodic T-splines by

s: there exist s,,...,5 in U, with s(x)=
g(QLm; M;A)= 5;(x) Cir: I, l‘=1,.2,...,k, and Dj_ls,‘_,‘(xi) (9.82).
=D/"s(x), j=1,...m—m, i=

1,2,...,k, where s4=35,

. It is easily seen by the same kind of argument used in Theorem 8.1 that
S(AW,,; M;A) is a linear space of dimension K=3%_ m. A basis of
periodic TB-splines can be constructed from the usual TB-splines by the
same method used in (8.6) and (8.7).

Concerning zero properties of periodic T-splines, the situation is very
similar to the case of periodic polynomial splines. Assuming that 2(5)
counts the number of zeros of s on the circle [a, b) (relative to the space g),
we have the following result:

THEOREM 9.40
For every nontrivial s € g(%m s O; ),

5 K—1 K odd
Z >
(s) < { K, K even.

Proof. The proof proceeds by induction. The case of m=1 is easily
verified. The remainder of the proof is exactly as in the polynomial case
(cf. Theorem 8.4), using the extended Rolle’s Theorem 9.29. [ ]

The cases where K is odd and where K is even are essentially different, as
shown in Examples 8.5 and 8.6.

Just as in the polynomial spline case, Theorem 9.40 can be used to
establish important results about the nonsingularity (and even the signs) of
various determinants formed from the periodic TB-splines. For example,
Theorem 8.8 has a direct analog for T-splines, with the only change being
that the derivative D,‘f appearing there should be replaced by the differen-
tial operator L, ,, where L, is the differential operator defined in (9.5),
and the subscript 8, indicates that the derivatives are to be taken from the
left or from the right, respectively. It is also possible to give results on the
approximation power of periodic T-splines.

We now discuss the analog of the natural splines introduced in Section
8.2. Suppose U,,, is a canonical ECT-system, A={a=x,<x, < - <X,
=b} is a partition of [a,b], and M =(m,,...,m,) with 1<m,<m, i=
1,2,...,k. Then we define the space of natural T-splines by

NE(Upp; M;A)={sES(Uypy; M;A): 50,5 EU,, ), (9.83)
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where s, and s, are the pieces of the spline in the first and last intervals,
respectively.

Arguing as in Theorem 8.16 for natural polynomial splines, it is easy to
see that SOU,,; N; A) is a linear space of dimension K = 2., m,. We
now construct a basis with small supports. In analogy with the polynomial
spline case, we introduce

L,%T(x):[yi,...,y,-ﬂ]Ul-ﬂg;m(y;X), (9.84)
and

RE(x)= (= 1Y [ Yo Din, ] g o (X0 (9.85)

where g,,, and g3, are the Green’s functions associated with the ECT-sys-
tems Q,,, and AUy, respectively. The following theorem summarizes the
properties of L?7 and R?7:

THEOREM 941
Suppose y; <y,,, and 0<j<2m. Then

2m -
Li(x)=0 forx>y,,;

L2(x)>0  for x<y,, .
Moreover, for x <y, L¥™"(x)=(—1D*""u,__ (x)+322" 7/ lo u(x). Simi-
1 1 i (W) 2m —j y=] v¥y

arly,

RX(x)=0 for x <y,
2m
R7T(x)>0 for x>y,

and for x>y, , ;. RZ(X)= g, _(x)+ 30777181, (x).

Proof. We discuss only LT as the properties of R?" are established
similarly. Since the divided difference involves a combination of g,.(y; x)
for y=y,...,yi4,, it is apparent that it vanishes for all x >y, .. Clearly L,?;'.'
is a T-spline relative to the space Q,,,, and the positivity assertion follows
by counting zeros and using Theorem 9.30. Finally, to establish the nature

of Lf’;‘(x) for x <y,, we note that by the expansion of g3, [cf. (9.33)},

2m

L) = 3 [ VoD i (D)t i (B)(= 1",

v=1
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for all such x. Now the divided difference of w} is zero for v=1,2,...,j,
and is 1 for v=j+1. It follows that L,f’;? has the asserted expansion for

x <y;. B

We can now give a local support basis for the space of natural T-splines.

THEOREM 9.42

m, m,
——tr——— —— .
Let K>2m,and lety, < -+ <y, x={Xp..., X5 .05 Xp»..., X } IN Na-
tural order. Define
LY i), i=12,...m
B(x)= N,'zm(x), i=m+1,....K—m,
Ri?:n”+,(_,(x), i=K-m+1,... K

where N?™ is the normalized TB-spline associated with the knots
VireesVivamr i=m,...,K—m. Then ({B;}f form a basis for

NS (Uy,,; I A).

Proof. The proof is very much like the proof of Theorem 8.18 in the
polynomial spline case. The linear independence argument makes use of
the fact that we know the exact structure of each of the L’s for x <x, and
each of the R’s for x > x;. [}

As pointed out in the historical notes for Section 8.2, the natural splines
arise as solutions of certain best interpolation problems. Thus, although we
have been able to define natural-splines associated with an arbitrary
ECT-space 9,,, it turns out that the more important spline spaces arise
when 9QL,,, is the null space of a self-adjoint differential operator. The
following lemma shows how an arbitrary canonical ECT-system U,, can be
extended to a canonical ECT-system U,, in such a way that the corre-
sponding space ‘ll,,, has this property.

LEMMA 943

Let U, ={u}7 be a canonical ECT-system associated with the weights
W,,...,W,,. Suppose w,€ C*"~/[a,b], i=1,2,...,m. Let w,,,€C™ '[a,b]
be a positive function on [a,b], and define w,,,,=w,,_;,,, i=2,3,....m.

Then the canonical ECT-system U,,, defined as in (9.2) with the weights
W,,..., Wy, is the null space of the self-adjoint differential operator L*L,
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where
L=—~2t ptp- Lt ..pl, (9.86)
Vw1 Wm Wm-i Wi
and
peelplp . Lp 1 ©047)
W W Ym  Vw, .,

1
D,=D—, i=1,2,...,m;
Wi
1
D,..,= ;
! wm+l
1
D,.,,.=D s i=2,....m
wm—i+2

It follows that Q,,, is the null space of L*L=D,, ---D,D,, while A, is
the null space of L. [ ]

So far we have been discussing T-splines where the ties between the
various pieces are described in terms of the continuity of a sequence of
consecutive derivatives. As in the polynomial case, it is also possible to
define linear spaces of T-splines where the ties are described in terms of
the continuity of EHB-linear functionals (cf. Section 8.3). In particular, if

= ()7

FLIREY!

is a set of EHB-linear functionals as in (8.42), then we define the space of
Tchebycheffian g-splines (Tg-splines) by

s: there exist sg,...,5, in U, with Sll.-=
S(W,,; T58) =15, i=0,1,....k, and v,5,_, =v;5, . (9.88)
j=12,....m—m;and i=12,... ,k

When T consists of a set of Hermite linear functionals (cf. Example 8.25),
the space &(9L,,; I'; A) reduces to the space of T-splines studied in Sections
1 to 7 of this chapter.
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The constructive theory of Tg-splines parallels that of the polynomial
g-splines. For example, by the same arguments used in Theorem 8.26, we
can show that 5(9L,,;T;A) is a linear space of dimension m+ K, where
K=3*_,m,. As in the polynomial case, the construction of a basis for the
Tg-spline space is somewhat complicated. A useful tool is provided by the
following analog of Lemma 8.27:

LEMMA 9.44

Suppose B is a solution of the (m— m;) by m system

B
G| : |=0, G=(v, )j",._l,':"‘_"l, (9.89)
B,
where yj'i, . .,yjﬁ,, are the coefficients of the linear functional y; as in (8.42).

Then
p(x)= ESlﬁLgm_p(x;XJ
—

is a one-sided Tg-spline in the space S(U,,;T;A).

Proof. It is clear that p is zero for x <x;, and that it is an element of 9,
for x > x;. To prove it belongs to &, we need only check that it satisfies the
required continuity conditions at the knot x;, namely,

n m

282 Y, D" g, (X3 X)) =0, j=12,....m-m,.
1

p=t = xmx,

But since [cf. (9.34)]

Dy_lgm—p(X;xi)tx-x,-#O’ V_1=m_y'
=(, otherwise,
this is precisely the system (9.89). ]

Since (9.89) is a system of m — m; equations in m unknowns, there always
exist m; linearly independent solutions. We can now exploit this fact to
construct a one-sided basis for &(U,,; T; A).
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THEOREM 9.45
For each i=1,2,...,k let

Bim (Bl B).  J=12em,

be a set of m; linearly independent solutions of (9.89). Set

m
pij(x)= 2 Bvljgm—v(X;xi)’ j=1’2""9mi

v=]

i=1,2,....k, (9.90)

and
Po;(x) = 1(x), J=12,. .. .my=m. (9.91)

Then {P.j}f-of-l is a basis for §(,,;; A) with the property that p;(x)
vanishes for x <x;, all / and j.

Proof. The proof of this result parallels that for Theorem 8.28. In particu-
lar, the fact that these functions lie in & follows directly from Lemma 9.44,
as does their one-sided nature. Their linear independence is proved exactly
as in the polynomial g-spline case. [ ]

As in the polynomial g-spline case, the one-sided basis constructed in
Theorem 9.45 for the space & (%, ;T;A) of Tg-splines takes a somewhat
simpler form in the case where I' consists of HB-linear functionals as
defined in Example 8.24. In particular, if E=(E; f-‘= . is the incidence
matrix defining the HB-set I', then in this case a one-sided basis for

S(,,;T;A) is given by the functions
{ui};"u{gm—j+l(X;xi)}i,jsuchthatE,-j-l (992)

(cf. Example 8.29 for the polynomial g-spline case).

Following the development in Section 8.3, our next task is to construct a
local support basis for S(,,;T;A). As shown there, this will not be
possible for arbitrary sets I'. As a first step to seeing when local support
bases can be constructed, we begin by putting the one-sided splines (9.90)
in lexicographical order:

Provr P K =Upseeslys PriseesPims-+ s Phs = -> Pom, - (9.93)
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Introducing the notation

m my
ol S SV k™= Xpoee s Xy seney Xpnonos Xp s

it follows from the construction of the p’s that p(x) vanishes for x <y,
i=m+1,....,m+ K. For convenience we write xo=a, mg=m, and y,
=... =y, =a. Then we may write

0 x <y;

pj(X)= ﬁ Cijui(x)’ X2V (9:94)

i=1

i=12,....m+K.

As in the polynomial g-spline case, the basis {p,}7*% of one-sided
splines for & (U,,; T'; A) is completely described in terms of the set { y,}7*¥
and the matrix C=(C,)/277X. At this point we are in a position to
establish the exact analogs of Lemmas 8.32 and 8.33 and Theorem 8.34.
Indeed, these results now hold for Tg-splines, with the only change being
that the functions 1,x,...,x™ ! are to be replaced by the functions
uy,...,u4,,. In particular, Theorem 8.34 now gives conditions on the matrix
C under which a basis for 5(,,;I'; A) can be constructed with relatively
small supports. We state an analog of Corollary 8.35 showing that Theo-
rem 8.34 can be applied whenever I' contains all of the point evaluators
€pppeerCy -

THEOREM 9.46

Suppose none of the functionals in T involves the m — 1% derivative. Then
5(,,;T; A) has a basis of local support splines as in Theorem 8.34.

Proof. As in Corollary 8.35 it suffices to show that the matrix
C<é€4ys--+1€,4,, > 1s nonsingular. But since for x >x

v+m
“ I
pe,,l-f-l(x):gm(x;xv*-j): 2 (—l)m ul(x)u;—l+l(xv+j)’
I=1

this matrix is a constant multiple of the nonsingular matrix
Dye (Xysees X, ) ]

We conclude our discussion of Tg-splines with a few remarks about the
number of zeros they can have. First, for general T it is clear that we can
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apply Theorem 9.30 to establish the exact analog of Theorem 8.36. To get
better results, we have to restrict ourselves to the case where I" consists of a
set of HB-linear functionals. In this case we can establish direct analogs of
Theorems 8.37 and 8.39. The only change necessary in their statement is
that we should replace the hypothesis that D™~ 's does not vanish on any
interval by the hypothesis that L, _,s does not vanish on any interval. The
proofs also carry over practically unaltered. Again, we need to replace the
ordinary derivatives D/ by the operators L;, and we must apply the
extended Rolle’s Theorem 9.11 for ECT-systems in place of the usual one.

We turn now to a brief discussion of T-monosplines. Suppose U, .=
{u,}"*" is an ECT-system. Then given A={x, <x,<-:- <x;} and M =
(my,...,m) with 1 <m;<m, i=1,2,...,k, we define the space of T-mono-
splines by

ME( WUy M5 A8)= {1, +5:5€ES(U,,; IM;4)}, (9.95)

where U, = {u;}7].

As in the polynomial monospline case, IMS(U,,, ;I ;A) is not a
linear space, but since it is the translation (by u,,,,) of the linear space
S (U, ; DN ;A) of T-splines, its basic properties are clear. Thus it suffices
here to describe briefly the analogs of the results of Section 8.4 on zeros.
The key to the kinds of inductive proofs used there to establish bounds on
the number of zeros a polynomial monospline can have is the fact that the
derivative of a monospline of degree m is a monospline of degree m— 1.
Our first theorem is an appropriate version of this result for T-mono-
splines.

THEOREM 947

Let fEMS (U, 4,3 IM;A). Then L, fEM S (AU,,; IMD; A), where MDY is
defined in Theorem 9.28.

Proof. This follows immediately from Theorem 9.28. [ ]
We can now state the following analog of Theorem 8.43:

THEOREM 9.48. Budan-Fourier Theorem for Tchebycheffian Monosplines

Given A={x,<--- <x;} and a multiplicity vector IR =(m,,...,m,), let
6y,...,0, be defined as in (8.59). Then for any fEM S (U, ,; IN; A),

Z(H<m+ i (m;+0,), (9.96)

=]
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where Z counts the zeros of f on R with multiplicities as in Definition 8.42.
More precisely, for any a <b,

k
Zan(N)<m+ X2 (m+0)— S*[A(b), L, f(b),...,L,f(b)]

i=1
~ S*[ f(a), = L, f(@)s....(= )"Lf(a)]. (9.97)

Proof. 1t suffices to prove the stronger version (9.97). To this end we use
the Budan-Fourier Theorem 9.12 for ECT-systems on each interval in the
same way as was done in the proof of Theorem 843. Here we should
remember the equivalence of the definitions (9.23) and (9.24) of a multiple
zero of a function in an ECT-space. ]

As in the polynomial monospline case, for several applications it is
important to establish the existence of T-monosplines possessing a2 maxi-
mal set of zeros. Such a result together with the bound (9.96) would then
constitute a kind of fundamental theorem of algebra for T-monosplines.
As a first step toward establishing an existence theorem of this kind, we
note that Theorem 8.44 immediately generalizes to T-monosplines. In
addition, we have the following analog of Theorem 8.45:

THEOREM 9.49
Suppose fE€IM S(U,,, ;M ;A) has zeros ¢, <--- <ty with N=m+
X _((m;+0,). Then
Lf(x)>0, j=01,....m—1, all x > x;;
(-D)"Lf(x)>0, j=0,1,...m—1, allx<x,.  (9.98)

Moreover, if f is expanded in the form

m kK m
f(x)=u,(x)+ 21 “,‘l‘j'(x)+ Z 2 Cijgm~j(X;xi)’ (9:99)

i=1j=1
then for all 1 <i<k with m; odd,
¢; <0, alloddj, 1 <j<m, (9.100)

Proof. These results follow from the Budan-Fourier Theorem 9.48 in the
same way as in Theorem 8.45 for polynomial monosplines. [ ]

With these results in hand, we can now deal with the existence of
T-monosplines with a prescribed maximal set of zeros.
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THEOREM 9.50

Fix m and 1 <m,<m, and let ¢; be as in (8.59), i=1,2,...,k. Then for
any given ,<t,<--- <ty with N=m+3Z*_ ,(m,+0,), there exists a set
of knots x, < --- <x, and a corresponding T-monospline f €&
MS (U, 4y DM A) with f(£)=0, i=1,2,...,N. If m,,...,m, are all odd,
then this monospline is unique.

Proof. The proof closely parallels that of Theorem 8.47. Some points to
keep in mind in carrying out the details are the following: Since we are
dealing with ECT-systems, we have the direct analogs of the Lagrange
polynomials associated with an interpolation problem. Because of the form
of the functions u,,...,u,,,,in a canonical ECT-system, it follows that any
function of the form wu=u, ,,+27_ cu behaves like 1™ for large {—in
particular, u(¢)->00 as t—o0. [ ]

As in the polynomial monospline case, we have stated here only the case
of simple zeros and possible multiple knots. It is also possible to establish a
version of this theorem for multiple zeros and simple knots.

§ 99. EXPONENTIAL AND HYPERBOLIC SPLINES

In this section we define two classes of T-splines which arise in practice.
We begin with the so-called exponential splines. Given any a, <a,<--- <
a,, let 9 =span {e™*,...,e**}. Since elements of the space A, are
usually referred to as exponential polynomials, it is natural to call
(A, ; I ; A) the space of exponential splines.

The basic properties of exponential splines all follow from the general
results developed in this chapter once we show that 9 is an ECT-space.
To show this, we need only display a canonical ECT-system that forms a
basis for it. Let U,,= (u;}T be the canonical ECT-system defined in (9.2)
with respect to the weight functions

w(x)=e"";
w,(x)= e %-0x i=2,....m. (9.101)
It is easy to see that

u(x)= 3 c,e™,  i=12..,m ;%0

v=1]

and thus that U, =span(U,,). We have shown that Q , is an ECT-space.
There is no need to go into detail on the properties of exponential
splines since they are all direct translations of our general results on
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T-splines. On the other hand, it may be useful to say a little more about
the differential operators, dual ECT-system, and Green’s function
associated with QL . The operators D; defined in (9.4) are given here by

D f(x)= D[ e~ f(x)], i=1L2,...,m.

After some calculation, it is easily seen that the operator L, =D, --- D, is
a nonzero multiple of the differential operator

L=(D-a) - (D~a,)

(which is to be expected since Q,, is clearly the null space of L).
In view of the form of u,,...,u,, it is clear that the associated jth
reduced system is given by

i
400 = 3 4,60,

y=]

i=1,2,...,m—j. It is also an easy matter to compute the dual canonical
ECT-system (9.25) associated with w,,...,w,. We obtain

up(x)=1

i1
uX(x)= > b, e m-I0% =2 om.

v=1

The Green’s functions g;(x;y) associated with the operators L; and the
initial conditions L, _; f(a)=0, »=1,...,j— 1, can be found by evaluating
the integrals in (9.32). For j >2 we have

J
a(y —x)
g(xin)=] 2 e X (9.102)

0, x <y,

with appropriate functions {g; ,(y)} such that g; (y)>0.

To close this section, we now consider a related space of natural
T-splines that arises in connection with a certain best interpolation prob-
lem. Suppose 0=a, <a,< -+ <a,,. Now let w_, ,(x)=e2*>*, and choose
Woei =W, _it2 i=2,3,...,m. Lemma 9.43 asserts that the canonical ECT-
system U,,, = {u;}3™ associated with these weights spans the null space of
L*L, where L is given in (9.86). A simple calculation shows that

U,,, =span(U,,,)=span{1,x,e” ** e, . e~ % ™~}
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This is the null space of L*L, where
L=D(D-a,) - (D-a,)
L*=D(D+a,) - (D+a,,).
It is clear that the space Q,,, is also spanned by the functions
I, x, sinh(a,x), cosh(a,x), ...,sinh(a,,x),cosh(a,, x).

In view of this fact, we call the space NS (AU,,;IM;A) of natural
T-splines associated with QU,,, the space of hyperbolic splines.

§ 9.10. CANONICAL COMPLETE TCHEBYCHEFF SYSTEMS

So far we have been working with spaces of generalized splines where the
pieces are required to be elements of a given ECT-system. Our motivation
for working with ECT-systems was the fact that they closely mirror the
properties of ordinary polynomials. In this section we show that there is a
still larger class of functions that retain most of the features of the
ECT-systems.

DEFINITION 9.51

Let u, be a bounded positive function on the interval [a,b], and suppose
G5,...,d,, are bounded, right continuous, monotone-increasing functions on
[a,b]. Let

wo(x)=1(x) f “doy(sy), (9.103)

t(x)=101(2) [ ) / AeE / T o (5, - do(sy).

We call U, ={u;}1" a Canonical Complete Tchebycheff (CCT-) system.
The set of CCT-systems is quite large. It contains all ECT-systems, for
example, as is clear if the o’s have the form

o,(t)=f'w,.(s)¢s, i=2,....m

with w,,...,w, positive functions with w,E C™ '*'[a,b]. The following
example presents a CCT-system that is not an ECT-system:



408 TCHEBYCHEFFIAN SPLINES
EXAMPLE 9.52

Let u,(x)=1, uy(x)=2x'?, u3(x)=§x3/2, and u4(x)=§'x5/2, and let I=
[0,1).

Discussion. This set of functions is a CCT-system corresponding to the
functions 6,(¢)=2t'/2, 6,(¢)=t, and a,(t)=1. These functions do not form
an ECT-system on [0,1] since the function u, does not have enough
derivatives at t=0. u

Because of the close relationship between the definition of a CCT-sys-
tem and the canonical expansions (9.2) of an ECT-system, it is not
surprising that many of the results for ECT-systems can be carried over
without difficulty. For example, it is clear that the analogs of both
Theorems 9.3 and 9.4 hold for CCT-systems. In the remainder of this
section we discuss analogs for the other results of Section 9.1.

We begin by defining the analogs of the differential operators D, and L,
defined in (9.4) and (9.5). Given any function ¢ defined on [a,b], we define

_ ¥
Dy(t)= w()
DHuls) = Y1 +8)—y(1) _ _
Dy (1) = hon(Hs) 5D’ j=12,...m—1; (9.104)
and
L*=D*---D*D,,  j=01....m—1 (9.105)

It is clear that

Lj+ui(t)|t-a=8j_i_|, j=0,l,...,i—1

9.106
i=1,2,....m ( )

It is also of interest to define reduced systems associated with U,,. For
each j=1,2,...,m— 1 we define the jth reduced system associated with U,
by

wa(=1
t
“j.z(f)=f doj+2(sj+2);

()= [ [ (5, doyals0)
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We write UY={u,}7.7{. These reduced systems arise when we take

iw=1-

“derivatives” of the CCT-system U,,. In particular,

0, =1,2,....
{ ' J (9.107)

Ui i=j+1,...,m

Thus if #u €, =span(U,,), then L u UL, LrueUP, and so on.

An important property of the ECT-systems is the fact that determinants
formed from them are always nonnegative. A similar situation persists for
the CCT-systems. Suppose we define

D( fioee sl )=[L4uj(z,.)];j‘j_l, (9.108)

U ..U,
where 1, <t,<--- <t and

d=max{j:t;=---=1_}, i=12,...,m.
We have the following result:

THEOREM 9.53
Let {«}7" be a CCT-system on the interval /. Then

Lyyoonst .
D(u‘ u"')>0 foralls, <5< --- <1, in I.
7

Proof. We proceed by induction on m. For m =1 the result is trivial. Now
suppose the result has been proved for all CCT-systems of m—1 functions.
We shall reduce the determinant to one involving m—1 functions in the
first reduced system. The key to this is the relation

“j(“'z) _ “j('rl)

u(r)  uy(ry)

Now suppose

= f Liu(s)doy(s), 2<j<m.  (9.109)
T

h la
A e, ——h——\
H& LK KL,=7,...,7 < < Tpeoo) Ty

Then the only nonzero entries in the first column correspond to the d rows
starting with u,(7)),...,u,(1;). If we factor these expressions out of their
rows, we are left with I’s in these positions. Now by subtracting the last of
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these rows from the preceeding row, then the next-to-last row from its
predecessor with a 1 in column 1, we are left with a determinant with a 1 in
the upper-left-hand corner and zeros in the remainder of column 1.
Expanding by the first column and using (9.109), we obtain

Upy.nny

Lireeorly, i T4
D( ! “m)=-/;, j;d‘lll’(sl"'"sd—l)dGZ(sl)'”dOZ(Sd—l)’

where

Threees TS 13T 3T 89 e e s Sq 1Ty ey Ty
‘P(s"""sd—‘)=D(L,*uz,...,Lrum )’
where 7, appears /,—1 times, i=1,2,...,d. Since the g, are monotone
increasing, there is mass in each of the intervals /,=[r,_,,7;], and since the
integrand is positive throughout the interior of the region over which the
integral is being taken, it follows that the integral itself is positive. [ ]

With this concept of determinant formed from a CCT-system, it is now
clear that we can define divided differences of functions with respect to U,,
in the same way as was done in (9.14) for ECT-systems. By the same
arguments used before, this new divided difference has all the properties
listed in Theorem 9.7 (where D/ is replaced by Lj+ ).

We now make some remarks about zeros of elements u€ U,,. We say
such u has a z-tuple zero at the point ¢ in [a, b] provided

u(t)=Liu(t)y="---=L* u()=0%L"u(1), (9.110)

where 1 <z <m— 1. We say u has an m-tuple zero at ¢ if L u,...,L}_,u all
vanish at 7. The following is the analog of Theorem 3.4 for polynomials:

THEOREM 9.54

Let U, be spanned by a CCT-system, and let Z(«) denote the number of
zeros of ue U, counting multiplicities as above. Then for all « not
identically zero,

Z(u) <m-—1.

Proof. If u=2Z7_,c,u; has m zeros, say at points 7, < --- <t,, then the
vector ¢=(c,,...,c,,) must satisfy the system

M( Livononly, )c=0'

Up,..., U,

Since this is a nonsingular system, it follows that ¢=0 and u=0. [ ]
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It is also possible to improve this result to obtain a form of Budan-Four-
ier theorem for functions in the CCT-space A, =span (U,). To this end
we need a version of the extended Rolle’s theorem for such functions.
Defining left and right Rolle’s points exactly as in Section 9.1 (but with L,
replaced by L;"), we may state it as follows:

THEOREM 9.55

Suppose u €, and that for some a <c¢ <d <b the points ¢ and d are left
and right Rolle’s points of u, respectively. Then L,"f has at least one sign
change on (c,d). If L[f is continuous on (c,d), then it has at least one zero
there.

Proof. We may use the same arguments used in the proof of Theorem
2.19 in the polynomial case. [}

We emphasize that Theorem 9.55 applies only to functions u in the
CCT-space Al,,, whereas the extended Rolle’s Theorem 9.11 connected
with ECT-systems is valid for any function such that L, f exists.

We can now use Theorem 9.55 and the same arguments as before to
prove a direct analog of the Budan-Fourier Theorem 9.12 for functions in
an ECT-space. The only change required is that the operators L,,...,L
should be replaced by L}',...,L}.

As we saw above, an important tool in dealing with T-splines was the
dual canonical ECT-system defined in (9.25). Clearly we can define the
analog here with the weights w,,...,w,, replaced by the measures o,,...,0,,.
Carrying the analogy further, we may define the Green’s functions
associated with U, by (9.31) with

h(xiy)=u(x) [ day(sy)- - [ doy(s,) (9.111)

J=12,...,m. With this definition, it is an easy matter to establish the
analog of Theorem 9.13 giving an explicit expansion for A;.

§ 9.11. DISCRETE TCHEBYCHEFFIAN SPLINES

In this section we briefly indicate how the ideas of Section 8.5 can be
combined with the ideas developed in this chapter to produce a reasonable
class of discrete T-splines. Throughout this section we follow the notation
of Section 8.5. In particular, we write R, ,={...,a—h,a,a+ h,...} for the
discrete line and [a,b],={a,a+h,...,a+ Nh}, b=a+ Nh, for a discrete
subinterval of it. We also use the discrete “derivatives” D} defined in
(8.73), and the discrete “integral” defined in (8.87).



412 TCHEBYCHEFFIAN SPLINES

The starting point for developing a space of generalized discrete splines
is to find a suitable substitute for the space of polynomials. Guided by the
discussion of CCT-systems, we suppose that U, = {u}T" is a set of func-
tions defined on the discrete interval [a,b], by

ul(x) = WI(X),

()= w,(x) [ “wos)dyss (9.112)

n(x)=wi() [ EXCARE / T (5 sy

where w|,...,w,, are arbitrary positive functions on [a, b],.

An example of a set of functions of the form (9.112) is provided by the
polynomials. Indeed, if we set w,=1 and w,=(i —1), i=2,3,...,m, then we
obtain the factorial functions u,(x)=1 and

u(x)=xC"Ds i=2,3,....,m,

defined in (8.75).

We can now define the space of splines of interest in this section. Given
a set of functions U, as in (9.112), let AU, =span(U,), and suppose
A={a=xy<x;<- - <x,,=b)C[a,b], and I =(m,,...,m,), with 1<
m<m, i=1,2,....k, are given. Then we define the space of discrete
Tchebycheffian-splines by

s: there exist s;,...,5, in A, withs|,
S(G&m;%;A;h)= =5, i=0,1,...,k, and Dlj;—lsi—l(xi)= . (9113)
D7 s(x), j=1,2,....m—m, i=1,2,...,k

This is clearly a linear space of functions defined on [a,b],. Before
developing its properties further, we need to say a little more about U,,. In
view of the way in which U, is defined, it should be apparent that many of
the properties developed in Section 9.10 for CCT-systems have analogs in
this setting. To describe some of them, we start by introducing certain
difference operators associated with U,,. Let

pr-n(L) e o

J
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and define L,f=f and

L'=D!D} ,---Df,  j=12,...m. (9.115)

7 J
Then clearly

Lj"u,-(x)]x_a=8j’i_lwi(a), J=0,1,...,i—1
i=1,2,...,m. (9.116)

Associated with U, we define the reduced systems U$={w }7./

exactly as in (9.8) (but using the discrete integral instead of the usual one).
It then follows that

u. .., i——j+1,...,m
h, — i)
lju',_

9.117
0, i=1,2,....j. (5-117)

Thus if u€9L,,, then Liu €U =span[U"), and so on.

We turn now to some properties of determinants formed from u,,...,u,,.
It will be enough to consider determinants associated with a set of distinct
points ¢, <t,<--- <t, chosen from [a,b],. We have following analog of
Theorem 9.53:

THEOREM 9.56
Let U,={u)7 be as in (9.112). Then

Upyoos iy,

lyroort,, v
o 17 )= Dy ()= () |y >0

for all 1, <t,<--- <t, in [a,b],.

Proof. The proof proceeds along the same lines as the proof of Theorem
9.53, where now we use the following analog of the fundamental theorem
of calculus:

L)~ L= [*Lifs

any c,d in [a,b],. [

Clearly these determinants can be used to define generalized divided
differences with respect to U,,, and the analog of Theorem 9.7 can be
established with D’ replaced by L.



414 TCHEBYCHEFFIAN SPLINES

In order to discuss an appropriate kind of Green’s function (which will
be useful in constructing a one-sided basis as well as in constructing
local-support versions of the B-splines), we need to introduce the dual
system associated with U,,. We define U} = {u*}7., by the same formulae
used in (9.25), but by using the discrete integral instead. Associated
reduced systems and dual difference operators can then be defined in the
same way as before.

For each j > 1, let g(x;y)=h(x;y)(x —»)%, where

By (xiy) =u,(x) f i) [ WSty (9.118)

It is easy to carry over the arguments of Theorem 9.13 to show that the
expansion (9.33) holds for all x,y in [a,b], and that the initial conditions

L,."gj(x;y)|x_y=8,’j_,wj(y), i=0,1,...,/—1 (9.119)
hold. The following two results highlight the importance of g,,:

THEOREM 9.57

Let y be any function defined on J=[a,b— mh],, and suppose r,...,7,, _,
are prescribed real numbers. Then

Sy=u)+ [ g6 )W(0)dy (9.120)

is the unique solution of the initial-value problem

Lif(x)=y(x), allxeJ; (9.121)
Lj"f(a)=r}, Jj=0,1,....m—1. (9.122)
Proof. Compare the proof of Theorem 9.15. (]

THEOREM 9.58. Discrete Generalized Taylor Expansion

For any f defined on [a,b],,
f)=uf(x)+ [ g5 9) LAF(Y)duy (9.123)
all x €[a,b],, where u,€ U, is such that

L'u(a)=Lf(a), j=0,1,....,m—1. (9.124)
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Proof. The proof proceeds along the same lines as the proofs of Theorems
8.61 and 9.16, using the discrete integration by parts formula (8.90). [ ]

There are also dual versions of these two theorems—cf. Theorems 8.62,
9.17, and 9.18. Using the Green’s function g,(x;y), we can now define a
one-sided basis for the space of discrete T-splines.

THEOREM 9.59
Let {y,}7*X be defined as in Theorem 8.51. Then

p(x)=g.(x;y), i=12,...m+K

form a basis for S(U,,; N ;A; k) such that p(x)=0 for x <y, all i.

Proof. The fact that each of these functions is a discrete T-spline follows
from the fact that g, (x;y;) can be expanded as a linear combination of
u,(x),...,u,(x) for x>y, while it satisfies the appropriate smoothness
conditions at y,—cf. (9.119). The linear independence of the p’s follows by
the same arguments used in proving Theorem 8.51. ]

It is now possible to construct appropriate B-splines forming a basis for
S(U,,; ON; A; k). The following theorem is a synthesis of Theorems 8.52
and 9.23:

THEOREM 9.60

Let {y,}7*X be as in Theorem 9.59, and let y,,, ., =b+(i—Dh, i=

1,2,...,m. For each i=1,2,...,m+ K define
Qi(x)=(—l)m[y,.,...,y,-+,,,]U;”gm(x;y), (9.125)

where the divided difference is to be taken with respect to the expanded
dual system UZ,,. Then {Q;}7*X is a basis for §(U,,; I ;A; h). More-
over, if x €[a,b],,

0i(x)=0, X<y, Yigm<X, (9.126)
and

Q.(x)>0, YVit(m=2)h<x <y, (9.127)
Proof. Compare the proofs of Theorems 8.52 and 9.23. [}

Having gotten this far with the idea of discrete T-splines, it seems safe to
assert that a number of other common features of discrete and
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Tchebycheffian splines can be carried over to the present setting. In
particular, we mention that there is a direct analog of the Peano repre-
sentation of Theorems 8.63 and 9.24 giving an integral representation of
the divided difference of a function with respect to U,,. In addition, by the
same methods used in Theorems 8.56 and 9.25, we can show that the
normalized discrete B-splines N, = a,Q, with «; as defined in (9.54) satisfy

m+ K

2 N(x)=u(x). (9.128)

i=1

The methods of these theorems can also be used to give a version of
Mardsen’s identity expressing the functions u,,...,u,, in explicit B-spline
expansions.

Another common feature of the discrete and Tchebycheffian splines was
the existence of a dual basis of linear functionals for the normalized
B-splines. Following the construction of Theorem 9.26, it is quite easy to
construct a similar dual basis here. It can, in turn, be used to establish
discrete error bounds.

We conclude our discussion of discrete T-splines with a brief outline of
available results on zeros and on determinants. Here we need an amalga-
mation of the ideas of Sections 8.5 and 9.5. As the proofs are again
inductive, the key observation is that the analog of Theorems 8.57 and 9.28
holds. It asserts that if €& (U,,; DN ;A; k), then L]'s is in an appropriate
discrete T-spline space (associated with the first reduced system).

Before dealing with zeros of discrete T-splines, it is necessary to define
what we mean by zeros and multiple zeros. Here we take precisely the
definitions used in Section 8.5 for discrete polynomial splines. With this
definition, it is now an easy task to follow the proofs of Theorems 8.64 and
9.29 to obtain a version of Rolle’s theorem. Once we have this, the proofs
of Theorems 8.65 and 9.30 carry over with no difficulty to show that

Z5(s)<m+K~-1, all nontrivial s€ S(U,,,; M ; A; k). (9.129)

It is also possible to give a Budan-Fourier theorem for discrete T-Splines.

The results on determinants of discrete T-splines are also direct analogs
of those for discrete and Tchebycheffian splines given in Sections 8.5 and
9.6, respectively. For example, it can be shown that

N
" 150, 9.130
oy ) 0130

n
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and strict positivity holds precisely when
€6,={xER, ,;: N(x)>0}=(y;+(m—=2)h,y,,,.), (9.131)

i=1,2,...,n. The proof is based on the results on zeros—cf. Theorems 8.66
and 9.33. This result can then be extended to show that the B-splines
{N7+¥ form an OCWT-system, and thus that the B-spline expansions
satisfy an appropriate variation-diminishing property (cf. Theorems 8.67
and 8.68). Finally, the analog of Theorem 8.69 on determinants formed
from the Green’s function can also be established.

We close this section by observing that it is aiso possible to define spaces
of discrete T-splines which are periodic or natural and to define discrete
T-monosplines.

§ 9.12. HISTORICAL NOTES

Section 9.1

Extended complete Tchebycheff systems are treated in considerable detail
in the books by Karlin and Studden [1966] and Karlin [1968], and most of
the results of this section can be found there. Lemma 9.6 is taken from the
work of Scherer and Schumaker [1980]. The recursion formula (9.20) for
generalized divided differences was established by Miihlbach [1973]. We
have not been able to find the Budan-Fourier Theorem 9.12 for ECT-sys-
tems in the literature.

Section 9.2

The Green’s functions g;(x;y) are also studied in the texts by Karlin and
Studden [1966] and Karlin [1968]. The explicit expansion for A; given in
Theorem 9.13 is taken from the work of Schumaker [1976a].

Section 9.3

We outline the history of the development of nonpolynomial splines in the
historical notes for Section 11.1. Tchebycheffian splines were introduced
by Karlin [1968]. They were studied in the dissertation by Schumaker
[1966], in the articles by Karlin and Ziegler {1966], Karlin and Schumaker
[1967], and in numerous later papers.

Section 9.4

Tchebycheffian B-splines were also introduced by Karlin [1968]. The
normalization given in (9.54) is credited to Marsden [1970] where the
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identities of Theorem 9.25 were first established. The dual basis con-
structed in Theorem 9.26 is credited to Scherer and Schumaker [1980]. The
main missing property of the TB-splines is an appropriate stable recursion
for computing them.

Section 9.5

For some early results on the zeros of T-splines, see the dissertation by
Schumaker [1966]. The method and results presented here are based on the
work of Schumaker [1976a, c].

Section 9.6

The early results on determinants associated with T-splines deal with the
determinants formed from the Green’s function. In particular, Karlin
established Theorem 9.36 with distinct y’s and #’s in the mid-1960s. This
result was generalized to the case of multiple y’s in the dissertation by
Schumaker [1966]. The full result with multiple y’s and s was first
established by Karlin and Ziegler [1966] by a complicated triple induction.
Results on determinants formed from the B-splines themselves first ap-
peared in the work of Karlin [1968] and Karlin and Karon [1970]. See also
the dissertation by Burchard [1968]. The case of determinants where left
and right derivatives are distinguished as in (9.75) was discussed in the
paper by Lyche and Schumaker [1976].

Section 9.7

Bounds on the approximation power of generalized splines were first given
in an abstract setting by deBoor [1968c]. Jerome [1973a] obtained results
for L-splines by constructing an explicit approximation operator—see also
Johnen and Scherer [1976]. Here we have followed Scherer and Schumaker
[1980].

Section 9.8

Periodic and natural T-splines first arose in connection with the solution of
best interpolation problems—see Karlin and Ziegler [1966].
Tchebycheffian monosplines were first discussed in the dissertation by
Schumaker [1966], and in the article by Karlin and Schumaker [1967]
where the fundamental theorem of algebra was established for simple
knots with multiple zeros. The result presented here for multiple knots and
simple zeros is credited to Micchelli [1972]. For some related results on
monosplines with boundary conditions, see Karlin [1976a, b).
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Section 9.9

The hyperbolic splines first arose as solutions of best interpolation prob-
lems—see Schweikert [1966a, b], Young [1968, 1969] and Baum [1976a,b].

Section 9.10

Canonical Complete Tchebycheff systems were first introduced by Miihi-
bach [1973]). They were used in connection with splines by Schumaker
[1976a, c]. Tchebycheffian splines associated with a CCT-system of frac-
tional powers (cf. Example 9.52) were used by Reddien and Schumaker
[1976] in the numerical solution of singular boundary-value problems.

Section 9.11

Discrete nonpolynomial splines arose already in the paper by Mangasarian
and Schumaker [1971] in connection with certain best interpolation prob-
lems. For an alternate treatment of such problems, see Astor and Duris
[1974]. The constructive properties given here are modeled on those given
in Section 8.5 for discrete polynomial splines.
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L-SPLINES

In the previous chapter we have examined spaces of generalized splines
where the pieces were drawn from a given Tchebycheff space. In this
chapter we go one step further and consider spaces of functions that are
defined piecewise as elements from the null space of a differential opera-
tor. We illustrate the development by including a detailed discussion of
trigonometric splines.

§ 10.1. LINEAR DIFFERENTIAL OPERATORS

We devote the first two sections of this chapter to background material on
differential operators. The material on L-splines proper begins in Section
10.3.
Throughout this chapter we suppose that L is a linear differential
operator of the form
m—1
L=D"+ 2 a(x)D’, a<x<b. (10.1)
j=0

The coefficients ay,...,qa,,_, are allowed to depend on x, but they should
be smooth. More precisely, we assume throughout that

a€C’[ab], j=0,1,..,m—1
This assumption assures that L is not too far away from the derivative

operator D™. We have the following theorem:

THEOREM 10.1

Let 1<p<oo. Then there exist constants C, and C, such that for all
feLya,b],

ILAN 1ty SCi [ 11l gty + 1D gt ] (10.2)
420
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and

ID7f Nl 11a,61 < o LN 1,(a,61F ”f”z_,[a,b]]- (10.3)

Proof. Clearly

m—1

WA a1 < ID AN a1+ 20 gl £ 1as)l DAl 110,00
j=

The inequality (10.2) follows on application of the estimate (2.34) for the
jth derivative in terms of D™ and f. On the other hand,

m—1

2 oD

||Dmf||z,[a,b] < “Lf”Lr[a,b]+
j=0

’

Lya.b)

and by (2.34)

m—1
ID"fNl ga61 < I Lf Il y a1+ Cs 20 (eI fll, +e™ 11 D",)
=

for all 0<e<(b—a)/2. Now taking & such that C,27'e™ /< 1/2, and
combining the terms involving D™f, we obtain (10.3). [ ]

Given L, we define its null space by
N ={f€L[[a,b]:Lf(x)=0, a<x<b}. (10.4)

Under the assumptions above on the coefficients of L, it is a well-known
fact from the theory of ordinary differential equations that N, is an
m-dimensional linear subspace of C"|a,b]. Any set of functions u,, . . .,u,
€ (C"[a.b] spanning N, is called a fundamental solution set for L.

The following theorem gives estimates on the size of derivatives of
elements in N,. It may be regarded as a natural generalization of the
Markov inequality for polynomials (cf. Theorem 3.3).

THEOREM 10.2

There exists a constant C (depending only on N,) such that for all
intervals I C[a,b] of length A <(b—a)/2,

”DjuH[,[l]<Ch_j+]/”_l/q”“”1.q[l]’ (10-5)

forallue N, and all 1 <p,g< o0.
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Proof. 1f p=gq, then since Lu =0, (2.34) implies
“DjuHL’[I] < Ca(h —jH“HL,,[l}*' hm_jHDm“HLpu])
<Gh 71”“”1_,[1]» (10.6)

where we have used (10.3) to estimate the derivative D™u. If 1 < p <g < o0,
then by Hélder’s inequality,

||u||,7[,1 <h~ l/q+1/p“uHLq[I]7

and (10.5) follows in this case. Now suppose 1 <g<p < o0, and let £€ 1 be
such that [u(§)j=h" I/"I|u]|,_q[,]. Define

d(x)=u(x)—sgn(u(§))h~ l/qHuHLq[l]'

Then 4(£§)=0, and using Hoélder’s inequality together with (10.6) for j=1,
we obtain

|1a|[u,,=”fjou(z)dz

<hl_l/qﬂ/’,HDuHL{1]
L{1} M

(4

~1/q+1/
SCh™ VPl 1y

But

el gy < 1l gy + AT Pl )

and (10.5) follows. [ ]

An important tool in studying properties of the null space N, of a
differential operator L is the Wronskian matrix

WM(uy, ... u,)(x) = M( """ ) ) =[D""w(x)]7.,  (107)

and the associated Wronskian determinant

W(u,,...,um)(x)=det[D"*'uj(x)}:’j_,. (10.8)
It is known that if {#}7 is a fundamental solution set for L, then the
associated Wronskian determinant does not vanish for any x in [a,b].
In view of the importance of ECT-systems (see Chapter 9), it is of
interest to ask when the null space N, is an ECT-space. We have the
following important result:
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THEOREM 103

Suppose N, is spanned by functions u,...,u,, such that
W(uy,...,u)(x)>0 foralla<x<b andall 1 <k <m.

(In this case we say that L has property W of Pdélya.) Then {u )7 form an
ECT-system and ¥, is an ECT-space.

Proof. This is just a restatement of Theorem 9.1. ]

All of the operators L= L, constructed in Section 9.1 trivially possess
property W of Polya. On the other hand, there are many operators L that
do not possess it. For such operators, the corresponding null space is not
generally an ECT-space, and in fact, may not even be a T-space as the
following example shows:

EXAMPLE 104

Let L=D?+1 on [0,27].

Discussion. Here the null space of L is spanned by the functions u,(x)=
sin(x) and u,(x)=cos(x). This does not form a T-system on the interval
[0,27]. It does form a T-system on the interval [0, # ], however, and, in fact,
forms an ECT-system if we work on an interval of length less than 7. [ ]

As the above example tends to indicate, it may be possible to say more
about the space N, if we restrict it to small enough intervals. This is indeed
the case as we prove in our next theorem.

THEOREM 10.5

Suppose L is a differential operator as in (10.1) that is defined on an
interval [a,b]. Then there exists a constant § >0 such that for any subinter-
val I of [a,b] of length |I| <8, N, is an ECT-space on /.

Proof. Suppose {u;}T" is a basis for N,, and let a<{<b. For each
i=1,2,...,m we define

d(x)=[u(x),...,u,(x) | WM ~'(§)e(i,m),

where WM ~! is the inverse of the Wronskian matrix (10.7) of {u,}7, and
where e(i, m) is an m-vector with 1 in its /th component and zeros
everywhere else. It follows immediately from the definition of the ,’s that

W(ﬁ,,...,ﬂk)(£)=l_, k=1,2,...,m.
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Since each of these Wronskian determinants is a continuous function,
there exists an open interval J, around § such that they all have value of at
least 1 /4. Now since [a, b] is compact, it can be covered by a finite number
of such intervals. The result follows with § the length of the largest
subinterval which does not contain any of the endpoints of the J’s. Indeed,
if I is any interval of length less than §, then all the Wronskians W(i,,...,
i, )(x) are positive for x throughout 7/, and Theorem 10.3 implies {,}7 is
an ECT-system on /. [}

§ 10.2. A GREEN’S FUNCTION

Our aim in this section is to construct the Green’s function associated with
the differential operator L.

DEFINITION 10.6

Let G, (x;y) be a function defined on [a,b]x[a,b] such that for all fixed
y €la,b],

G.(x;y)=0, alla<x <y; (10.9)
LG (x;)=0 ally <x<b; (10.10)

and
DG (x;9)yee =8 s J=0,1,...,m—1. (10.11)

Then we call G, the Green’s function associated with L.

The following theorem shows how G, can be used to solve an initial-
value problem:

THEOREM 10.7

Let h€ L [a,b] and real numbers r,,...,r,, be given, and suppose 7 is the
unique element in N, such that

Df“uf(a)=rj, Jj=12....m. (10.12)
Then

fx)=u(x)+ [ G ()b (10.13)
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is the unique solution of the initial-value problem
Lf(x)=h(x), xe[a,b]; (10.14)
Dj_lf(a)=rj, Jj=12,....m. (10.15)

Proof. There is a unique «; solving the interpolation problem (10.12) since
the Wronskian W(u,,...,u,)(a)70. Now by properties (10.9) and (10.11),

b X
D f Gl )y = j D*G (x; y)h(y)dy
and thus
D*f(x)=D"uy(x)+ [ D*G,(x; y)h(») b,

v=0,1,...,m—1. It follows that f satisfies the initial conditions (10.15).
Differentiating this formula with y=m—1, we obtain

D™f(x)=D"uy(x)+ [ DG (x; )h(y) &+ D" 'G(x; y)h(¥)] m s
=D"'uf(x)+fxD'"GL(x;y)h(y)dy+h(x).

Now by multiplying the »th equation by a,(x), »=0,1,..., m with a,,(x)
=1 and adding, we obtain

Li(x)=Luy(x)+ [ LG (x; (0@ +h(x)=h(x).  m

An immediate corollary of this result is the following important Taylor
expansion:

THEOREM 10.8. Generalized Taylor Expansion
Let f&€ L{"[a,b). Then

fo=u(x)+ [(Giy)Lf()dy,  alla<x<b,  (10.16)

where u, is the unique element in N, such that

D’ lufa)=D'"f(a), j=1,....m. (10.17)
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Proof. Let

£ =u()+ [ "G (x:p) LAY .

Then by Theorem 10.7, Lg=Lf and so f—g€N,. But D/ 'g(a)=
D’~'fa),j=0,1,...,m—1, and thus f=g. ]

Before constructing an explicit formula for the Green’s function G,
associated with a given operator L, we give a simple application of the
Taylor expansion which is useful in estimating how well smooth functions
can be approximated by elements of N, on small intervals. It is the analog
of the Whitney-type theorems given in Section 3.5.

THEOREM 10.9

Let f€ L,"[a,b], and let u, be the function in N, defined in (10.17). Then
for any 1 < p, ¢ < o0,

1= wll g1 < (b= @) N GLII g s Lf N 01 (10.18)

where 1/p+1/p'=1.
Proof. Applying the Holder inequality to f—u, as given by (10.16), we
obtain

[f(x) = ufx)| < ”GL“Lp.(a,b]“Lsz,[a,b]-

Integrating the gth power over [a,b)] and taking the gth root yields (10.18).
a

We turn now to the problem of constructing the Green’s function G,
explicitly. For each j=1,2,...,m let

L f=(=1)Df+(=1) "' D/ Na, )+ +a,_;f  (1019)

For convenience we suppose that L} denotes the identity operator. The
L*’s are called the partial adjoints of L. The operator L*= L}, is called the
adjoint of L.

Suppose now that u,...,u

m

is a basis for N, and define
uf(x) 0
= WM Nuy...,u,)(x) g alla<x<b, (10.20)

s (x) !
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where WM(u,,...,u,)(x) is the Wronskian matrix defined in (10.7). The
uf,...,u* are the functions in the last column of WM ~'. We call them the
adjunct functions. We can now express the entire inverse of the Wronskian
matrix WM(u,,...,u,) in terms of the adjunct functions.

THEOREM 10.10

The inverse of the Wronskian matrix of u,...,u,, is given by

WM ~Nuy, .. u, ) (x)=(WM; "), e = [ L), (10.21)
for all a <x <b.
Proof. We proceed by induction. We need to show that

““ k=0,1,. —1
igl Dkui(X)L':_j_lui*(x)= akJ’ _]=0, N -1 (]022)

For j=m—1 this follows directly from the definition of the #*’s. We now
suppose that (10.22) holds for m—1,..., j> 1, and we prove it for j—1.
Differentiating the identity (10.22), we obtain

m m
- 2 Dkui(x)DLr:—j—lui'(x)= > Dk+lui(x)L,:—j—1“i‘(x)-

i=1 i=1
Adding
2 Dl (x)a(x) = 8y - 18,()
gives

S Dru(x)Lg_ut ()= 3 D** luy(x) Lyt (x) + ()8 1.

i=1] i=]

(10.23)

Since §, ;_,= 0., , we have proved (10.22) for j—1 and all k=0,1,...,m
—2. Now for k=m— 1, by substituting

Du(x)=—"S, a,(x)Du(x)

v=0



428 L-SPLINES
in (10.23), we obtain

m m m—1
.21 Dm_lui(x)Lr:—jui*(x)= - 21 20 a,(x)D"ux)Ly _;_u*(x)+a(x)

=— aj(x) + aj(x) =0,

and the induction step is complete. [ ]
THEOREM 10.11

The function

m

PR R O N L (1024)

0, x<y
is the Green’s function associated with L.

Proof. Itis clear that LG, (x;y)=0 for x >y since u,,...,u,, arein N,. The
condition (10.11) on the derivatives follows from (10.22) with j=m—1. B

The function G, also has the following properties for all fixed x in [a, b]:

G, (x;y)=0, x<y<b; (10.25)
L*G,(x;y)=0, a<y<x; (10.26)
Lj"‘GL(x;y)lx_y=8j,m_,, Jj=0,1,....m—1. (10.27)

Here the operators L* and L* operate on the y-variable. These properties
suggest that G, is a kind of dual Green’s function for the adjoint operator
L*. Indeed, we have the following:

THEOREM 10.12

Let he L [a, b] and real numbers r,,..., r, be given, and suppose u* is the
unique element of N,. such that

LY wu*(b)=r, j=1.2,...,m. (10.28)

Then

SO) =)+ [ Gy(xiy)h(x)dx (10.29)
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is the unique solution of the terminal-value problem

L*f(y)=h(y), y€[ab]; (10.30)
L*  f(b)=r, j=L2,....m. (10.31)
Proof. The proof proceeds along the same lines as the proof of Theorem
10.7. [ ]
Theorem 10.12 can now be used to establish a dual Taylor expansion for
smooth functions.
THEOREM 10.13. Dual Taylor Expansion
Let L*f€ L, [a,b]. Then

F)=up )+ [ G (x;p)LHf(x)dx, (1032)

where ©* is the unique element in N;.=span{u*}7., such that

i=]
Lrup(b)=Lrf(b), j=0,1,...,m—1. (10.33)

Proof. We simply apply Theorem 10.12 in the same way as in the proof of
Theorem 10.8. ]

§ 103. L-SPLINES

Let L be a linear differential operator of order m as in (10.1), and let N, be
its null space.

DEFINITION 10.14

Suppose M =(m,,...,m;) is a vector of integers with 1<m;<m, i=
1,2,...,k. Given a partition A={a=x,<x;<--- <x, <X, ,;=b} of the
interval [a, b}, let

s€B[a, b): SI(,ENL: i=0,1,...,k, and
S(NL;OM; A)y=3 D/ " s(x,)=D5 s(x;), j=1,2,...,m—
m,i=12,...,k

We call & the space of L-splines with knots at x,,...,x, of multiplicities
m,....m,.
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The space of L-splines & consists of functions whose pieces belong to
N, . The smoothness with which these pieces tie together is controlled by
the multiplicity vector 9N, just as in the polynomial spline case (which, of
course, is just the special case where L=D™). When L has property W of
Polya (cf. Theorem 10.3), then we have the special case of T-splines.

By the same kind of argument used in Theorem 4.4 for polynomial
splines, we deduce that

dim&S(N,; M;A)=m+K, K=2mi.

We now construct a one-sided basis for &, using the Green’s function
associated with L.

THEOREM 10.15
A one-sided basis for the space of L-splines &(N,; 9L; A) is given by

J=L2,....m

10.34
i=0,1,....k, (1034

Bij(x) =L* 1GL(x;x;),

where G, is the Green’s function associated with L defined in (10.24), and
the L*’s are the partial adjoint operators defined in (10.19).

Proof. First we observe that for each 0<i<k and 1 <j<m,

0’ x<xi
B.. =)
o(*) 2 (X)L ur(x,), x>x;.

=1

Thus each such function is clearly a linear combination of the u,’s, hence it
has the desired piecewise structure. Now in view of (10.22), we also see that

DL lBij(xi)= 21 D-‘:_luv(x)L;—lu:(xi)=8p,m—j+l’
pJ=1,2,...,m, and thus the B’s also have the correct continuity at the
knots to belong to &.

We already know that the dimension of & is m+ =} m;, hence it remains
only to check that these one-sided splines are linearly independent. It
suffices to prove that for each 0<i<k, the set {B,,...,B;,} is linearly
independent on I,=[x;,x,,,}, since then the argument used in proving
Theorem 4.5 can be applied. But it is clear that these m; splines are linearly
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independent since if 27% ¢, B; =0, then

m;
c#=DT““( > ch,-’j)(xi)=0, p=1,2,...,m,. [ ]
1

j=

Our next task is to construct a basis of local support splines for
S(N,; 9M; A). One approach is to make use of the results on T-splines
given in Chapter 9 coupled with the fact that N, spans an ECT-system on
all sufficiently small intervals. We carry this out in detail in the following
section. Another approach is to follow the ideas used in Section 4.2, where
the local support splines were obtained as linear combinations of the
one-sided splines. We do this now.

Throughout the remainder of this section we suppose that {u,}7 are
functions forming a basis for &, and that {«}}7 are the adjunct functions
defined in (10.20). The following is the analog of Lemma 4.7:

LEMMA 10.16

Let r,<7,<--- <1y and 1</, <m, i=1,2,...,d be given. Suppose U*=
span{uf,...,ur} is an ET-space on some interval (a, ) containing the 7’s.
Then if 29,/ >m, there exists a nontrivial

H

d
B(x)= 2 T L Gylxim)

i=1j=1
with

B(x)=0 for x<r, and x>7,.

On the other hand, if 3* /; <m, then no such nontrivial B exists.

=]

Proof. Any B of this form automatically vanishes for x<r, by the
one-sided nature of G,. If B(x) is to vanish for x>, then using the
expansion (10.24), we must have

d b m
B)= 3 T ¢ 3wt ()

m d /;
> u(x) 2 2 Cy'l‘j*—lu:(Ti)=0y

p=1 i=1j=1
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all 7, <x <pB. Since u,,...,u,, are linearly independent, this is equivalent to

d 4
> 2 Lk ur(r)=0, vr=12,...,m.

i=1j=1

This is a homogeneous system of m equations for the =7_,/, coefficients,

and thus it always has a nontrivial solution if % ,/,>m. On the other
hand, if 2;’_,1i =m, this system is nonsingular since its determinant is
given by

1 I
——t— ——t—
T Tyovees Tgseees T,
1° LS | s 'd>s s 'd
D )
* *®
ul, ... up,

which is nonzero in view of the assumption that 9L* is an ET-space. Note
here that L} , =(~1)’~'D’/~' +lower order terms, so using ordinary de-
rivatives in dealing with repeated 7’s is equivalent to using the L*’s. ]

As in the polynomial spline case, we now consider the case where
T4 I, =m+1. Arguing as before, it follows that the B constructed in
Lemma 10.16 must have the form

B(x)=C,D
uf,... ut, G, (x;*)
In the absence of any good choice for C,, we take it to be 1. The following
is the analog of Theorem 4.9:
THEOREM 10.17

Let A, ={y,}y"*X be an extended partition as in Definition 4.8. For each
i=1,2,...,m+ K suppose U* is an ET-space on an interval containing
[y, Yi+m)» and define

yi""’yi m
* ) (10.35)

Bi(x)=D(ul*,.‘.,u:.,GL(X; *)

Then {B,}7*¥ form a basis for S(N,; IM; A) and

B,(x)=0 for x<y,and x>y, ,- (10.36)
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Proof. The Laplace expansion of the determinant defining B,(x) shows
that if

4 b
——t———— p——h——
ViSYin1S S iam = ToeesTlreens Tgoeeas Ty

with 7, <7, <--- <7, then

d L
By(x)= 2 2 a;y'Lj*—IGL(X;Tv)'

v=1lj=1

Since each of these is an L-spline (cf. Theorem 10.15), it follows that B, is
also an L-spline. The fact that B(x) is zero for x <y, is clear from the
one-sided nature of G,. On the other hand, for x>y, , we know by
(10.24) that G,(x;-) is a member of Q* and thus the determinant

vanishes identically. The linear independence of the B,,...,B,,, . is estab-
lished in exactly the same way as was done in Theorem 4.18, but Lemma
10.16 is used in place of Lemma 4.7. [ ]

When A, is chosen as in (4.14) with y,, c 1= =V .x=0b, the

definition of the B-spline basis in Theorem 10.17 requires the same kind of
modification as discussed in Corollary 4.10 for polynomial splines.

§ 10.4. A BASIS OF TCHEBYCHEFFIAN B-SPLINES

The construction of a basis of local support splines for the space
S(N,;O;A) of L-splines carried out in the previous section is not, in
general, completely satisfactory. Perhaps the most serious deficiency is that
there is no natural way to normalize the B-splines constructed there. In this
section we shall show that when A is sufficiently small, then it is possible to
construct a basis for & consisting of TB-splines.

We begin by finding canonical ECT-systems spanning N, on various
subintervals of [a, b]. Let n be such that A=(b—a)/n<8/4, where § is the
constant in Theorem 10.5. Let a=z_,, b=z, ,=2,,,, z,=a+v-h, v=
0,1,....,n, and J,=[z,_,,2,,3], »=0,1,...,n—1. Since |J,| <38, it follows
from Theorem 10.5 that there exists a canonical ECT-system U, , = {u]}/.,
which spans N, on J,. Let U}, be the associated dual canonical ECT-
system, and let g, ,(x; y) be the associated Green’s function.

We are ready to define some local support splines in &(N,; I; A). Let
A,={y;}3"*X be an extended partition associated with the A (cf. Defini-
tion 4.8) with y,=--- =y, =a and b=y, . = " =y;,.,x For fixed
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0<v<n-—1 and all / such that z, <y, <z, ,, we define

Ni(x) = ( - ])mai[ Yiseeo ’)’i+m] U’:‘,gm,v(X;y)’ (10-37)
where o; is the constant in (9.54). For each such i, N, is the usual
normalized TB-spline associated with knots y,,...,y,, .. In order to ensure
that it makes sense, we must demand that all of the points y,,...,y,,,, lie in

the interval J, (where the »th ECT-system is defined). Hence from now on
we assume that

A= max (x,,,~x;)<h/m. (10.38)
0<i<k

The following theorem summarizes some of the properties of the B-splines
N.:

H

THEOREM 10.18
The spline N, defined in (10.37) satisfies

Ni(x)=0, x<y;,  Viem<% (10.39)
and
N(x)>0,  »,<x <Yy (10.40)

Aside from a constant multiplier, it is the unique spline in S(N,; I ;A)
that has these properties.

Proof. 1t is clear that N, has properties (10.39) and (10.40) since it is a
T-spline. But since U], , spans N, throughout J,, it follows that N, is in fact

an L-spline. Now if 1\7, were another L-spline with the same two properties,
then for some choice of B, the function g=N, — BN, would have a zero in
the interval (y;, y;, ,,). Since g is a T-spline with only m+1 knots (and an
m-tuple zero to the left of y, and another to the right of y,,,,), Theorem
9.30 asserts that g=0, and the uniqueness assertion is established. [ ]

The above construction can be repeated for each v=0,1,...,n—1 to
construct m + K local-support B-splines in & (N, ; 9; A). To illustrate that
they actually form a basis for this space of L-splines, it remains to show
their linear independence. To this end, it is useful to construct a dual basis.

THEOREM 10.19

For each i=1,2,...,m+ K, let A; be the linear functional defined in (9.64).
Then {A,}7** form a dual basis for {N,}7*X; that is,

AN,=8,, ij=12,...,m+K. (10.41)

Yy
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Moreover, there exists a constant C (depending only on [a,b] and L) such
that

IAif|<Cé—l/p||f”LP[y,, i=1,2,...,m+K, (10.42)

Yieml?
where é=min0<i<k(xi+l —X;)

Proof. First we note that the A, are well defined since the construction in
(9.64) is a local process and can be carried out using the ECT-system U, ,
used in constructing N,. Property (10.41) holds since for any given A,, all
the B-splines that have values in (y,, y,,,,) can be regarded as TB-splines
associated with one fixed ECT-system U, ,, and we know that (10.41)
holds for the TB-splines. (This is where we use the assumption that h<§/4
—cf. Figure 34.) The bound (10.42) has been established in Theorem 9.26.
The constant in the bounds on the various A; depends on the ECT-system
being used in the interval where the support of A, lies. But since we have
only a finite number of such intervals to consider, the final constant
depends only on [a, b] and L. ]

THEOREM 10.20

The LB-splines {N,}7** constructed in (10.37) form a basis for
S (N, ; 9N ; A). Moreover,

m+ K
S N(x)=u(x), z,<x<z, (10.43)

i=1
and

m+ K
> N(x)<uf(x)+u;~Y(x), 2, $X<2,, v=1,...,n

i=]

(10.44)

Proof. The linear independence of the LB-splines N,,...,N,,, , follows
immediately from the existence of a dual basis, and since & (N, ; 91 ; A) has

| | . i |

2y Yi 2y + 1 Yiem ez 2p+ 3

2y

Figure 34. Construction of LB-splines.
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dimension m+ K, we have shown they form a basis. Property (10.43)
follows from the analogous property of the TB-splines, cf. (9.57). On the
other hand, for » >0, the B-splines with nonzero values in [2,,z,, ] may be
associated with two different ECT-systems U,, ,_, and U, ,. Since those
associated with the first add up to no more ‘than uy '(x) while those
associated with the second add up to no more than u;(x), the assertion
(10.44) follows. [ ]

Our next result makes use of the boundedness of the dual basis in
Theorem 10.19 to examine the conditioning of the LB-spline basis for
S (N ; ;D).

THEOREM 10.21
Given 1 < p < 0, let
B (x)=A""PN(x), i=12,...m+K. (10.45)

Then there exist constants 0 <C, and C, < o0 (depending only on [a, b} and
L) such that

m+ K 1/p
( 2 |Ci|p) <G

i=]

2 CiBi,p

i=1

m+ K t/p
<c2( 3 [ci|’) (10.46)
Lya,b]

m+ K ’

for all sets of coefficients c,,...,c,,, x.

Proof. Let s=371 cB . Then with I,=(y,¥; 4 )
m+ K m+ K m+ K
3 = T At <C B sl <Clish o

i=1 i=1

This proves the first inequality. For the second, we note that

[fsopa=3 [ 5 jan e

i=j— m+

S [ P p—1
<Z [ max Bl um
/ %

j=0 I<i<m+
J m+ K
XX alP<C X el [
i=j~m+1 i=1

In many applications of the LB-splines (e.g., in obtaining error bounds
for L-spline approximation) it is useful to have a bound on the size of the
derivatives of the LB-splines.
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THEOREM 10.22

There exists a constant depending only on [a,b] and L such that
|D/N(x)|<C,A™,  j=0,1,....m—1, (10.47)

where A=ming; (X4 — X)-

Proof. Since N, is a piecewise element from N, , we can apply the Markov
inequality of Theorem 10.2 to each subinterval [x,,x,,,] to assert that
ID'Nill L en. s SCA NN L_x,.x, - But (10.43) and (10.44) guarantee
that the umiform norm of N, is bounded, and (10.47) follows. ]

In view of the observation in Section 10.1 that L can be thought of as a
perturbation of the differential operator D™, it is reasonable to think of the
LB-splines as perturbations of the usual B-splines. Our next theorem shows
that this is indeed the case. It helps to provide us with some feeling for
what LB-splines look like, although for a given L this theorem cannot be
used to get very precise information about them.

THEOREM 10.23

Let {N,}7*¥ be the normalized polynomial B-splines associated with the
extended partition { y,}2"*X, Suppose L™ is a sequence of linear operators

defined as in (10.1) with coefficients a{”,...,a%”, and suppose
B®™,...,B"™ . are the corresponding normalized LB-splines. Then

im |6\, _(a.5y=0, i=0,1,...,m—1

n—oc
implies

im | B =Nl (a6=0, i=12,...,m+K.
n—o0o

Proof. From the theory of ordinary differential equations, it is known
that the assumption on the a’s implies that the null spaces of the corre-
sponding differential operators L™ tend to V,,=span{l,x,...,.x™"'}. In
fact, it can be shown that for n large enough these null spaces are spanned
by an ECT-system, and the associated weights in its canonical expansion
tend to the values associated with the functions in V. It follows that the
Green’s function g, (x;y) associated with L™ tends to (y — x)™ "', while by
Lemma 9.6 the divided differences used in the construction of the LB-
splines tend to the usual divided difference. We conclude that the B™
converge to the », as asserted. [
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§ 10.5. APPROXIMATION POWER OF L-SPLINES

In this section we give some estimates for how well smooth functions can
be approximated by splines in the space S (N, ; O ; A). Since the T-splines
are special cases of L-splines, our results will apply to them as well. For
some companion lower bounds, see the following section. Inverse and
saturation results are given in Section 10.7.

We begin by constructing a useful approximation operator. Suppose
{B,}7*X are the normalized LB-splines forming a basis for $(N,; I ; A),
and suppose {A,}7"*X is the dual basis discussed in Theorem 10.19. Then
given any function f € L [a,b], we define

m+ K

Of(x)= gl (A f)B/(x). (10.48)

Clearly Q is a linear mapping of L,[a,b] into & (N,_, 9N ; A). Qis, in fact, a
projector onto this spline space since if s=37"%¢,B, is any spline in §,
then since A;s = ¢;, it follows that Qs=37"X¢,B, =s.

im]

THEOREM 10.24
Let 1 <p <g< oo, and suppose f &€ L,"[a,b]. Then for all j=0,1,...,m—1,

Am+l q

”Dj(f—Qf)”Lq[a,b] || f”L pla, b]" (10-49)

Aj+l/p

Here, C is a constant that is independent of both f and A.

Proof. Fix 0<j<m-—1, and suppose tE1I,={y,, y;,,).- Let J, be the inter-
val used in the construction of B, (so that N, is spanned by an ECT-system
throughout J,). Let u, be the unique function in N, such that

Dlu(r)=D’f(1), j=0,1,....m—1.

Since N, €S(N,;IN;A), we have Quf= u, and thus using the bound
(10.42) on A,

|D/(f— QN )(O) =D/ (us— Qf) ()| =] D’Q(us~ £)(1)]
4

< 3 INu-NIDB()

iml4+1—m
[ .
<CATVP B lu= Sl ] DB,

i=l+1—m
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where 1:.=[ YisYiem) i general. We have a bound on D/B(¢) in Theorem

10.22. It remains to estimate u,—f. Applying the Holder inequality to the
Taylor expansion

S = ulx)= [ ") L A(Y) b,

where g, is the Green’s function associated with the ECT-system spanning
N, on J,, we obtain

1= 4l ,[ 7] <CBY 1 g3 Nl gytexill Ll 1551

where 1/p'+1/p=1.
To estimate the norm of g,,, note that by (9.31) and (9.32),

| g, (x; )| <KClx—yp|"7}, all x,y inJ,.
It follows that
I 8n(X3 )l e,y < CA™ 1/ (10.50)
for all 1€ I, and all x € I,. On the other hand,

L, f(x)=W(x)Lf(x),

where W(x) is a function that depends only on the weight functions
Wis...,W,, used in the canonical representation of U, ,. Thus

I f=uslly iy <CA™,  i=l+1-m,..,1,

hence
—~ 1
. ca”
|D’(f—Qf)(t)|<mA 2 WLfllgy
a i=/+1—m
This implies
) CKm-O—l/q !
”Dj(f_Qf)“L,u,J <7,_/;— 2 ||Lf||L,[i,]-
A imi+1—m

Now, summing over /=m,...,m+ K and applying the Jensen inequality
(see Remark 6.2), we finally arrive at (10.49). ]
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The bound on the operator Q defined in (10.48) and the error bounds
(10.49) both depend on A as well as A. It is a simple matter to construct a
bounded linear operator Q mapping L,[a, 8] into S(N.; IM; A) whose
norm and associated error bounds do not depend on A. Indeed, given A,
suppose A* is the thinned out 3-quasi-uniform partition constructed in
Lemma 6.17. Then we can construct Q* associated with the L-spline space
S(Ny; IM; A*) exactly as above. Since A*/A* <3, the bound on [|Q*|| , and
the analogs of (10.49) are all independent of A*. But since S(N,; ON; A*)C
&=8(Ny; IM; A), Q* maps L,[a,b] into S. In general, @* will not repro-
duce all of §; that is, it is not a projector onto this larger space.

Theorem 10.24 gives an estimate on the distance of a given smooth
function f to the space of splines & (N, ; 9 ; A). This bound involves || Lf]|.
In our next theorem we restate this result in terms of the traditional
modulus of smoothness.

THEOREM 10.25
Let 1< p<oo. Then for any f € L [a,b],

d[ £ S (N,_; M ; A)]Lp[a,b] < C[‘*’m(f; Z)L,,[.z,b] +A" AN z,[a,b]]-
(10.51)

where C is a constant independent of f and A. A similar bound holds with
p =00 whenever f € Cla,b].

Proof. Coupling (10.49) for j =0 with the estimate (10.2) for Lf in terms of
D™f and f, we obtain

d(f,8) < CA™[IID" Ml pjasy+ I fll ypamr),  allfELT[ab].

The result then follows upon applying Theorem 2.68. n

§ 10.6. LOWER BOUNDS

The general results on n-widths given in Section 2.10 show that the
approximation orders given in the previous section for approximation of
smooth functions by L-splines are the best possible. It is, nevertheless, of
some interest to establish this directly by giving some lower bounds that
are the companions of these upper bounds. In order to be able to state our
results without having to pay attention to the multiplicity vector 9N, we
shall work with the largest possible space of L-splines associated with a
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given partition; namely,

s: there exist sg,...,5, in N, such

O] . =
FUMNLEA =] hat Sl =5 1=0,1,....k

}. (10.52)

This space is the analog of the space of piecewise polynomials ? ¢, (). It
corresponds to the space of L-splines where all knots have multiplicity m.
We note that

S(N.; IM;8)CPU(N,; D), all oM,

and thus lower bounds for & U (N, ; A) will apply to all L-spline spaces.
We begin with the companion lower bound for the case of ¢ = = and

j = 0 in Theorem 10.24.

THEOREM 10.26

Fix 1<p<oo. Then given any partition A, there exists a function F &

L)"[a,b] such that

d[ F, P W(NL;8) )L (apy > CA™ VP LF|| by (10.53)

Proof. We construct F explicitly. Given any partition A of [a,b], let v be
such that x,,,—x,=A. Let I, =[x,,x,,,]. We now subdivide /, into m+1
equal subintervals

1 .=[x' x,f*'], i=0,1,...,m,

where, in general, x/ = x, + iA/(m+ 1). Define

2(x—x/)(m+1) B

A
0, otherwise,

F(x)= (—l)'K"‘B,’:‘,+,( 1), x€l,, i=0]1,..,m

(10.54)

where B, | is the perfect (polynomial) B-spline of order m + 1 defined on
[—1,1}. (See Theorem 4.34.) By the properties of this B-spline, it follows
that F€C™ '[a,b] and

ID7F|l 1 japy=22"""m!(m+1)"4"/7. (10.55)
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This shows that F € L"[a,b]. The perfect B-spline is normalized such that
B (0)> 1/2, and thus by the construction of F, we also know that

A

F[x L +1/2) "

Y (m+1)

i=0,1,..., m. (10.56)

Now, Theorem 10.5 asserts that if A is sufficiently small, then N, is
spanned by an ECT-system on /,. But then by the well-known alternation
theorem of Tchebycheff (see Remark 7.5), it follows that zero is the best
approximation of F, and thus

Zm
d(F, NL)L,,[I,]= (I FH L.{1,] > D

On the other hand, using Theorem 10.1 and (10.55) we see that
ILF (a1 <CA'/? (10.57)

and (10.53) follows. [

To further illustrate how lower bounds companion to the upper bounds
of Section 10.5 can be established, we now prove a version of Theorem
10.26 in which the distance is measured in the L -norm, 1<g<oo. Our
approach will be the same as before: we attempt to construct a function F
lying in L;"[a,b] such that on some interval 1, =[x,,x, ] of length A the
best approximation of F from N, is given by zero. The only essential
problem is that we no longer have the Tchebycheff alternation theorem at
our disposal to characterize best approximations. We must replace it by the
orthogonality condition (see Remark 7.6)

f"'“|p(z)|q—'sgn[F(z)]u,.(:)dt=o, i=1,2,...,m.  (10.58)

x’

The following lemma is a useful tool in constructing such functions:

LEMMA 10.27

Let {4} be a set of m linearly independent functions in L,[c,d]}, and let §
and ¢ belong to C[0,1]. Then there exist points 0=¢,<¢, < --- <¢,,, =1
and signs €,,...,¢, such that the function

G()= {e.-o(r..H—r,-)qo(

'), <<ty i=0,1,...,m
Lai— k4

(10.59)
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satisfies

[f6uma=0, i=12..m (10.60)

[

Proof. Let S={é=({y£,,---,¢,)ER™: 2,_ol£l=d—c}. For each £E€ S,
define 7,=c+|&;| + &,/ + - - +|§,_1| i=12,...,m, and

sgn(so)o(|£o|)<p( = ) c<t<n,
Ge(’)=
sen(£,)6(1%, t)«p( = ) . <i<d.

Now define a function y: S-HR™CR™*! by
d
[4’(9],;[ G(Du(1)dr, i=12,...,m.

Clearly y is continuous on S and is odd; that is, y(§)= —y(—£). Since S is
the boundary of an open, bounded, symmetric set in R™*! while y(S) is
contained in the proper subspace R™ of R™*!, it follows from Corollary
3.29 in the text by Schwartz [1969] that ¢ must take on the value zero for
£*€S. Then we may take ¢, =7*,i=1,2,..., m. [ ]

We are ready to give a companion for (10.49) in the case of 1 Kg< o0
and j=0.
THEOREM 10.28
Fix 1<p< o0, 1<g<oc. Then for any partition A of [a,b] there exists a
function F € L,"[a,b] such that
d[F,9 UW(N.;8)] (00> CA* /9= VP LF| 1any.  (10.61)

Proof Let » be such that A=x,,, —x,, and let 8(+)=:"9~D and @(¢)=
[B: . ,2t—1)]"', where B%,, is the perfect B-spline of order m+1
defmed on [—1,1] in Theorem 4.34. By Lemma 10.27 there exist x, =1, <
H<---<t,,1=x,,, and signs ¢,,..., ¢, such that the function

£_j(tj+l ) m+l

=4
—— -1, §<e<g,,
Ge17 Y (10.62)

Jj=0,1,....m
0, otherwise
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satisfies (10.58). This implies that zero is the best approximation of F from
PAU(N, ; A); that is, d[F, PU(N,; M. a6y =1 FllL 1a,p)- Since at least
one of the subintervals /,; =[z,,¢,,,] is of length at least A/(m+1), we

find that
tiet t/q
f ()| dt
t;

J

d[ F,PU(N; A)] L 10,612

K m+1/q |
>(m) 2 /q”B,:H”L,[—l,l]-

Combining this with (10.57) in the same way as in the proof of Theorem
10.26 leads to (10.61). n

§ 10.7. INVERSE THEOREMS AND SATURATION

In this section we discuss inverse, saturation, and characterization theo-
rems for approximation by L-splines. Since the results given here closely
resemble those given in Sections 6.8 and 6.9 for polynomial splines, we will
keep the proofs short, emphasizing only the major changes required.

The key to obtaining inverse theorems for L-splines is to have an
appropriate way of measuring the smoothness of a function. Let L be a
linear differential operator as in (10.1), and let 1 < p < o0. Then we define
the K-functional associated with L by

K, (t)f= inf — + ™| L, . 10.
L,p( )f gell;,[a‘b](“f g”z,[a.b] 1™ g”[_’,[a,b]) (10.63)

Clearly K, (1) is a nonlinear functional defined on the space L,(a,b]. We
define a similar functional on C{a,b] by choosing p=o0 and replacing
L a,b] by C™[a,b] in (10.63). It is clear that K, (r) reduces to the
K-functional K, ,(¢) introduced in Definition 2.64 if we take L= D™. The
following theorem shows that K, ,(7) is closely related to K, (¢):
THEOREM 10.29

There exist positive constants C, and C, (depending only on L and [a,b])
such that

K, (nNf< C](Km,p(t)f+tm”f”L’[a,b]) (10.64)
K, (Df< C2(KL.p(t)f+ A l_,[a,b]) (10.65)

for all f€ L)[a,b], ] <p<oo, and for all f€ C[a,b], p=00.
Proof. We simply apply the inequalities (10.2) and (10.3). [ ]
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It is clear from the definition of K, ,(7) that it possesses properties
similar to those listed in Theorem 2.65 for K, ,(¢). Because of its impor-
tance for saturation theorems, we explicitly prove the analog of (2.138).
THEOREM 1030

Suppose 1< p< oo and that f € L,[a,b] is such that

liminf ="K, ,(1)f=0. (10.66)
t—0

Then there exists gEN, so that f=g almost everywhere. Similarly, if
fE€Cla,b] and (10.66) holds with p=oc0, then fEN,.

Proof. For any g€ L,"[a,b] and any 0<s<1,
K, ,(Df<t™"{|| f—gll, + 1"l Lgll, } <t ™K (1)f.

We conclude that K, ,(1)f=0, and thus there exists a sequence g,,g,,... of
functions in L"[a,b] with

lim || f—g,|l,= lim || Lg,|,=O0. (10.67)
But Lp'"[a,b] with the norm
ell.=1l 8l 1a,01 % 1 L& 1 (a,5)

is a Banach space, and thus (10.67) implies that g,,g,,... is a Cauchy
sequence in L,"[a,b]. Hence it must converge to some g € L,"[a,b], which
by (10.67) must satisfy ||Lg||,=0 and |{f—gl|i,=0. Thus f=g almost
everywhere, and g € N, as was to be shown. [ ]

In preparation for our development of inverse theorems for approxima-
tion by L-splines, we now give an estimate for the smoothness (measured
in terms of the K-functional) of a given spline in the space & W (N, ;A)
defined in (10.52).

THEOREM 1031

Let A be a partition of [a,b], and suppose 0<e<A. Then for any
SEPU(N,; A),

m—1
K, o(e)s<C, 3 &J(D%), (10.68)
Jj=0
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where

J(DJs)= max [jump[ D’s]_|.

X

Proof. We define

g={S+P.' On‘,i=[‘xi—€/2’xi]’ i=12,....k (10.69)

S, otherwise,

where p, €9, is chosen so that
Dp(x;—€/2)=0,  Dp(x)=jump[D’],, j=01,..m—1
By construction g€ L] [a, b], and thus

Ky o(e)s<|ls—gll,_jas) ™1 LEI L_jas)

< max . +¢e™ max ||Lp;
max | pil, g+ e” max | Lpll )

m
< max (“piHLw[J,]"'em 2> H%HLmu,]lIDVP,-HLw[J,])-
I<i<k v=0

But by a simple result on the size of Hermite interpolating polynomials (cf.
Remark 10.1),
m—1
I1D°pllL_s)<Ce™" X J(D’s),
Jj=0

and (10.68) follows. n

Our first inverse result is the analog of Theorem 6.39.

THEOREM 10.32

Let A, be a sequence of partitions of [a,b] satisfying the mixing condition
of Definition 6.37. Then there exists a constant C, such that for all
fSECla,b},

K; o(8,)f<Cysupd[ £, P UW(N.;4,)] (10.70)

npv

for all sufficiently large ».

Proof. For each v, let s, €% W (N, ;4,) be such that

Nf= sl <2d[ £, P UW(N,;4,) ]

o
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Then
KL,oo(év)f< “ f_ S, “ L{a,b] +KL,ao(éy)sv
<2d[ f,PUW(N; 8,)]+ K (8,)s,.

Thus it suffices to estimate K, (4,)s,. Here we may apply Theorem 10.31
with e=A,. By the mixing condition there exists p>0 such that for each
0<i<k,,

X! <x! = ph, <x!+pd, <xI\,

for some n(i,») > » and some 0<r< k,. But then using Markov’s inequal-
ity again, we see that for each 0<; <m—1,

jump[ Ds, ], <||D’(s, —s,)Il .

w7, x741]

< Cé:’llsy _anLm[x:,x:“] <4Cé:fsupd[ £, PUW(N,; An)]u,-

na>vy
Putting these estimates in (10.68) leads to (10.70). ]

We now give a characterization theorem that relates the order of
approximation of a function by a sequence of L-spline spaces P U (N, ;A,)
to its smoothness.

THEOREM 10.33

Let A, be a sequence of partitions going steadily to zero (cf. Definition 6.5)
and satisfying the mixing condition. Suppose ¢ is a monotone-increasing
function on (0,7) such that ct™ < ¢(¢) for some ¢>0. Then f& C{a,b]
satisfies

d[ £,PUW(N,;4,)],, <o(8,) (10.71)
if and only if
w,(f;)<Cio(t), allo<r<r. (10.72)
Proof. If f satisfies (10.71), then by Theorem 10.32,
- K, (A,)f<Cs(d,).
But then
0n(f38,) S CiKpy o (B,)f S C5[ Ky o(8,)f+ 71| fl ]

< C2¢(Zv)’
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where we have used Theorem 2.67 for the first inequality, (10.65) for the
second, and our assumption on ¢ for the third. Now the same arguments
that were used in the proof of Theorem 6.41 can be applied, using the
quasi-uniformity of A, to estimate w,(f;4,) in terms of w,,(f; 4,). The
converse assertion follows immediately from our direct approximation
Theorem 10.25. (]

Theorem 10.33 completely characterizes the approximation order obtain-
able with L-splines in terms of the smoothness of f. Using it we im-
mediately obtain characterizations of the classical Lipschitz and Zygmund
spaces in terms of their approximability by L-splines—cf. Theorem 6.43.
Theorem 10.33 applies as long as ¢(¢) does not go to zero faster than
O (¢+™). The following theorem shows that (except for functions in N, which
are approximated exactly) m is the maximal order of convergence obtain-
able no matter how smooth f may be. It is the analog of the saturation
Theorem 6.42 for polynomial splines.

THEOREM 1034

Suppose A, is a sequence of partitions as in Theorem 10.33 and that
f€ Cla,b] is such that

lim infA; "d[ f, P UW(N.;4,)],,=0. (10.73)

Then fEN,.
Proof. By Theorem 10.33, (10.73) implies that
lim ionf 17K, (1)f=0,
1—

and thus by Theorem 10.30, fE N,. [}

So far we have been working with the space PU(N,; A), as it is the
biggest of the L-spline spaces. If we are willing to work with smoother
subspaces, it is possible to establish some inverse theorems without the
mixing condition on the partitions (cf. the polynomial spline space in
Section 6.8). We now give the following analog of Theorem 6.46:

THEOREM 1035

Let A, be a sequence of partitions of [a,b] with A |0 and 8,={a,b}. For
each » let §, be a linear space of L-splines contained in @ UW(N,;A,)N
C'la,b). Given f € Cla,b), let e, =d(f,S,),. Then

d +
K, o(8,)f<CA+! 2 fX,il—. (10.74)

=r
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Proof. By Theorem 10.31, for any A and any 0<e<A, if sEPUW(N,; A)
NC'[a, b], then

m—1

K, ,(e)s<C, X ¢&I(D%s), (10.75)

J=1+1

where

J(D’s)= max jump[ D’s], .
1<i<k ‘
This is the analog of (6.86). Now, by exactly the same arguments used to

prove (6.87) substituting the Markov inequality (10.5) for the usual one, we
can show

, e+
J(Dfs,)<C32£'—A§'—'—'~, j=l+1,...m—1,  (10.76)
r=1

junt o

where s, E& are such that || f—s,|| < 2¢,. Now

K (B <KL (8,)(f=5,)+ K (8,)s,.

Since K, (A XS~ s5,)<C,)|f—s,ll, combining these results with the same
argument used to prove Theorem 6.46, we obtain (10.74). ]

Theorem 10.35 can now be used to characterize the classical Lipschitz
and Zygmund spaces in terms of how well they can be approximated by
smooth spaces of L-splines without any mixing condition on the sequence
of partitions. In particular, it is clear that by using the same kind of
arguments as in the proof of Theorem 10.33, we can show that Theorem
6.47 is valid with the space of piecewise polynomials ¥ %, (A) replaced by
the space of piecewise L-splines & U (N, ; A).

As in the polynomial spline case, it is not possible to establish a
saturation result for arbitrary functions and arbitrary sequences of parti-
tions. We can do something for smooth functions, however.

THEOREM 10.36

Let A, be a sequence of partitions as in Theorem 10.33. Suppose f €
C™|a,b] is a function such that

d[ £, P W(N,;0,)], <CAM(4,), (10.77)

where ¢ is a monotone-increasing function with (1)—0 as r—0. Then
fEN,.
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Proof. The proof follows along the same lines as that of Theorem 6.48.
Here we must replace w,, by K . In addition, we need to find a substitute
for the Whitney theorem which was used there. By Theorem 10.9 and the
estimate (10.50) there exists g, & N, such that

gl 1y < Cie" LSl o113
where [, =(x,—¢,x;+¢), i=1,2,...,k. Now the remainder of the proof

proceeds as before using the Markov inequality for N,. [ ]

We devote the remainder of this section to inverse and saturation results
for the case where the distance is measured in the p-norm, 1 <p < 0. Our
first result is the analog of Theorem 6.49 (cf. Theorem 10.31 for the case of

p=00).
THEOREM 1037

Let A be a partition of the interval [a,b}, and suppose 0<e <A. Then for
any spline s€® U (N, ; A),

m—1
K, (e)s<Ce'/? 3, €J,(D%), (10.78)
j=0
where
_ k V74
J,,(Dfs)=( 2 (jump[ D’s], [ ) :
i=1
Proof. The proof is very similar to the proof of Theorem 10.31. Indeed,

with g as in (10.69), we have

K, (e)s<||s —&ll a1y + €™ I Lell La.b)

k 1/p k 1/p
<( ) up,.us,,[,,.,) +e"'( > ||zp.-u';,u,1) :
=

i=1
Now | p;| L] <e'?| p,| L and the remainder of the proof proceeds as
before. n

We can now give an inverse result for the spaces & U (N, ; A,) assuming
that A, satisfies an appropriate p-mixing condition.
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THEOREM 10.38

Let A, be a sequence of quasi-uniform partitions satisfying the p-mixing
condition of Definition 6.50. Then for every f € L [a,b],

K, ,(8,)<Cysupd[ £, W(N,;A,)]

nav

(10.79)

»

Proof. The proof follows the same lines as the proof of Theorem 6.52 for
polynomial splines. Here we replace w,(f;4,), by K, ,(4,)f A and use
Theorem 10.37 instead of Theorem 6.49. In the estimate of J,(D’s) we use
the Markov inequality (10.5) for N, . [ ]

It is now clear that Theorem 10.38 can be used to characterize the
classical Lipschitz and Zygmund spaces in terms of their approximability
by L-splines. Indeed, by using the same argument that was used in the
proof of Theorem 10.33 to transform results about K, ,(¢)f into results
about w,(f;?),, we immediately obtain Theorem 6.54 [minus the assertion
(6.110)] with P P _(4,) replaced by &P U (N, ;A,). The saturation assertion
(6.110) of Theorem 6.54 is replaced by the following result:

THEOREM 10.39

Suppose A, is a sequence of partitions as in Theorem 10.38 and that
f€ L)[a,b] is such that

Jlim infA; "d[ £, 9 UW(N.;4,)],=0. (10.80)

Then there exists g € N, such that f=g almost everywhere.
Proof. Theorem 10.38 implies that

lim inf ¢t ="K, (1)f=0,
im inf 1=K, ,(1)f

and the result follows from Theorem 10.30. [ ]
We close this section with two results for the nonmixed case. First we

have the following analog of Theorems 6.55 and 10.35:

THEOREM 10.40

Let A, be a sequence of partitions of [a,b] with A,|0 and Ag={a,b}. For
each » let S5, be a linear space of spline functions contained in
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P U(N,;4,)N C'la,b]. Given f € Ly[a,b], let e,=d(f,5,),. Then
- € + € _1

I+1+1/
KL,p(év)f<Clév+ * pz é£+l+l/p'

r=1

(10.81)

Proof. The proof parallels that of Theorem 6.55, with the only changes
being that it is now based on Theorem 10.37 and that the Markov
inequality for N, must be substituted for the usual one. [}

The inverse result of Theorem 10.40 can now be translated directly into
a characterization for certain classical smooth spaces in terms of how well
they can be approximated by L-splines with some smoothness. The result
is essentially identical to Theorem 6.56. Our last result is a saturation
theorem.
THEOREM 1041

Let A, be a sequence of partitions with A, 0 and Ag={a,b}. Suppose
fe L [a,b] is such that

d[ £, P U(N.;4,)],<CA7(4,), (10.82)

where ¢ is monotone increasing and y(¢)—0 as r—0. Then fEN, .

Proof. We may follow the proof of Theorem 6.57. Here we use Theorem
10.9 and the estimate (10.50) to construct g; € N, such that

1f =&l g0 < Co™ LA g1

where I, =[x"—¢,x"+e], i=1,2,...,k. Arguing as before leads to the
assertion that K, ,(e)f=o0(¢™), and the result follows from Theorem 10.30.
|

§ 10.8. TRIGONOMETRIC SPLINES

In this section we consider a special kind of L-spline of considerable
importance in applications. Given m=2r let

{0)-.-,0,} ={cos(x/2),sin(x/2),...,cos[ (r— 1/2)x],sin[(r—1/2)x]},
(10.83)
Similarly, if m=2r+1, let

{uy,...,u,,} ={1,c08(x),sin(x),...,cos(rx),sin(rx)}  (10.84)
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and define the m-dimensional space J_ by

span{v,...,0,,}, m=2r
g = Pan{en ) (10.85)
span{u,,...,u,,}, m=2r+1.

We now introduce the space of splines of interest in this section.
Suppose A={a=x,<x,<--- <x,,,=b} is a partition of the interval
[a, b], and suppose IM=(m,,..., m,) is a vector of integers with 1 <m;, <m,
i=1,2,..., k. Then we define the space of trigonometric splines of order m
with knots x,,..., x, of multiplicities m,..., m, by

s: there exist sg,...,5, €Y, with s(x)
=s5(x) for x€Il,=[x;,x,,.,), i=

S(F,; M; A)=10,1,..., k, and D’7's;_,(x,)= }. (10.86)
D/ Ys(x), j=1,2,...,m—m, i=
1,2,....k

Since the space 9,

,, 1s clearly the null space of the linear differential
operator

24 (r—1/2)))---(D? 2 =2r
Lm={(D +(r=1/2%---(D*+(1/2)%),  m=2 (1087)

(D?+r?)---(D2+1)D, m=2r+1,

we see that the space of trigonometric splines is in fact a space of
L-splines. We can apply the theory of the preceding sections to derive
some properties of trigonometric splines. We begin by introducing the
Green’s function associated with L.

THEOREM 10.42
Let

m-]

G (x:9) =G, (x;y)=(x—y)% (ri~1)! [sin( ";y)]m-l. (10.88)

Then

DG (x:)yex=8 o1y  Jj=0,1,....m—1. (10.89)
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Moreover, for x >y,

et
G e
( )+2 2( ( )cos[v(x V) m=2r+1.

)(x-)')],m=2r

(10.90)
and G, is the Green’s function associated with L=L,.

Proof. To prove (10.89), we note that

Guxin)= oy [sn(332)] e 532) 10

The assertion follows. To prove (10.90), we apply known trigonometric
identities to sin™~!. Since

sin{ j(x — y)] = sin(jx)cos(jy) — cos( jx)sin(jy)
cos[ j(x—y)]=cos(jx)cos(jy)—sin( jx)sin(jy),

it follows that G, belongs to J,, for x >y, and by Definition 10.6, G,, is the
Green’s function associated W1th L=1L, ]

Before proceeding with further properties of trigonometric splines, we
observe that (10.90) can be used to identify the adjunct functions associ-
ated with {&,}T and {v,}T. We have uf(y)= (m; 1) /(m—1)! and

R A L Cn

B m=2r
ot (y)= %_D—l)_,(":;_ll )cOs( 2v2—1 )y
ugu()’)_ (2:1 11))1( r+v )cos(ry)

m=2r+1

uj, 1 (y)= (2( 11))'( ey )sm(V,V)

for v=1,2,...,r. This shows that the space 9L* spanned by the adjunct
functions [which is the null space of L, =(—1)"L,,] is in fact 9,
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The results of Section 10.3 show that $(F,; 9IL; A) is a linear space of
dimension m+K with K=3%_ m, Using the Green’s function G, of
(10.88), we can now apply Theorem 10.15 to construct a one-sided basis
for &. The methods of Section 10.3 or 10.4 can now be used to derive a
basis of local support splines for S. Here there is some advantage to
following Section 10.3, as in this special case it leads to B-splines for which
a recurrence relation can be established. In order to apply the results of
Section 10.3, we must show that the space U*=span{u},...,u%}=9, is an
ET-space on sufficiently small intervals.

LEMMA 1043

T

is an ET-space on any interval I of length |/| <27.

Proof. This fact follows from Theorem 2.33 if we can show that

Z(u)<m—1, all nontrivial u€ 9, (10.92)

where Z counts multiple zeros. But this assertion about the zeros of a
trigonometric polynomial is a result from classical analysis. |

Lemma 10.43 can also be established directly by looking at the determi-
nants formed from the functions {#)}7" or {v;}7’; see Remark 10.2. It is
easy to see that [I| <27 is sufficient to guarantee that 9, is a Tchebycheff
system on the interval I. We do not need the ECT-property in the
following construction of trigonometric B-splines.

Let 1, <t, <+ <t,,, with t,,,—t, <27 Then we define the mth
order trigonometric divided difference of a function f over ¢,,...,¢, ., by

4_rD(tl,...,tm+, )
Upyeos Uy f

s m=2r+1
D(t,,...,tm+l )
Opseens Uy
[t tman ] 1= : (10.93)
4_rD(t,,...,tm+, )
Ofyeees Ops f m=2r.

’
D(tl,...,z,,,+l )
Upseroy Upsy

The following theorem collects some elementary properties of these di-
vided differences:

v
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THEOREM 10.44
For any 1, <t, < -+ - <t ., with ¢, | — ¢, <2,

s )
[toolpsr | f= 2 -m—H—-’—-. (10.94)
/=l H sin 54
i=1 2
ikf
More generally, if
4 I3
LKL Kl 1= Ty Tiseens Tgrennr Ty (10.95)
with 7, <7,<--- <7, then
[t st ] of= 2 2 a; D7/~ f(1,) (10.96)
i=1j=1
with &, #0, i=1,2,...,d. Finally, if u is any element of § _, then
[t stmar | =0 (10.97)

Proof. The identity (10.94) can be obtained by expanding the determi-
nants in the numerator and denominator of (10.93) using Laplace’s expan-
sion and the explicit formulae given in Remark 10.2 for determinants
formed from the u’s and v’s. The formula (10.96) also follows from
Laplace’s expansion, while a;, 70 is due to the fact that it is a quotient of
two determinants formed from the «’s and v’s which by Lemma 10.43 form
an ET-system. Property (10.97) is immediate from the definition (10.93)
since when u€9,, then the last column in the numerator is a linear
combination of the previous columns. [ ]

We are now ready to introduce the trigonometric B-splines. Suppose
Ry ASYoSy S

is a sequence of real numbers. Then for any / with y, <y, ,,, we define the
trigonometric B-spline by

m—1
Q) = (= "[¥i¥ise - - ,\‘/+,,,ly-|isin<x 5 ‘)] . (10.98)

+

If y,=y,, .., we define Q" to be identically zero. For later use we observe
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that

1
Qi](x)= sin(( ;41— 5.)/2) '

0, otherwise.

Vi SX iy (10.99)

The following theorem shows that the trigonometric B-splines have proper-
ties similar to those of the ordinary polynomial B-splines:

THEOREM 1045

Suppose

1 I
r—’;\ r—’Lﬂ
Vi€ Y1 S K Y iem = Thoee s Trreees TareeesTq- (10.100)

Then Q" as defined in (10.98) is a trigonometric spline with knots at the
points 1,...,7, of multiplicities /,,...,/,. Moreover,

QM(x)>0  fory, <x <y, 4pm (10.101)
and
Q7 (x)=0 for x <y;and x>y, . (10.102)

Proof. The fact that Q;(x) is a trigonometric spline follows from the
expansion (10.96) combined with the properties of the Green’s function
given in Theorem 10.42. In particular, these properties combine to show
that Q,(x) has the correct piecewise structure, and that it ties together with
the desired smoothness at each knot. The fact that Q,(x) vanishes for x <y,
is clear from the one-sided nature of G, (x; »). For X>Yiems @i(x) 1s the

trigonometric divided difference of a function in ¥,,, hence it vanishes also.
The positivity assertion (10.101) follows mductxvely from a recursion
relation to be given below. B

Our next theorem gives an important recurrence relation for computing
trigonometric B-splines of order m from trigonometric B-splines of order
m—1:

THEOREM 10.46
Lety, <y, <+ <y, with y, <y, <y, +27. Then

sin( x;yi)Qi’"_'(x)+sin( y,+,,. )QH,T'(x)

. Diem Vi )
Sln(—‘2

Qm(x)= (10.103)
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Proof. The proof works through exponential divided differences. See
Lyche and Winther [1977]. ]

It is also of interest to have a formula for the derivative of a trigonomet-
ric B-spline.

THEOREM 1047
Lety,...,y;,» be as in Theorem 10.46, and suppose m > 2. Then

11 <05 T3 ) 0 (x) — cos( 2= ) 0y (x)
por(n=("5-)
' 2 Sln(yi+; yl)
(10.104)
Proof. See Lyche and Winther [1977]. a

Our next theorem is a Peano representation for the trigonometric di-
vided difference.

THEOREM 10.48
For all fsuch that L, fE L\[y;,¥: 4 m)

Dol = oy [ ORI Laf) . (10.105)

Proof. We simply apply the trigonometric divided difference to the
Taylor expansion formula

S =u; () + [ Gl x: ¥)L,, f(x) dx, (10.106)

where u, is the unique element of J,, such that
Dj“f()’.‘)=Djf(y5), Jj=0,1,....m—1. m

It is also possible to give a trigonometric version of Marsden’s identity
(cf. Theorem 4.21). First we need to normalize our B-splines. Let

N7 (x) = sin( y"*—;_ﬁ)g;"(x). (10.107)
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THEOREM 10.49
Let /I<r and y,<y,,,. Then for any y ER

r

— m—1
sin(y 2") = 3 @.O0)N7(x), ally<x<y,, (10.108)

i=[+1—-m

where

m—1

: y_'y, v
om0 = 11 sin( 22182,
=1

Proof. See Lyche and Winther [1977]. [ ]

The result (10.108) can now be used to obtain the expansions of the
functions in 9, in terms of trigonometric B-splines. It is also possible to
give the dual basis for the normalized B-splines explicitly.

We close this section by noting that it is also possible to define spaces of
periodic trigonometric splines as well as spaces of natural trigonometric
splines; compare the discussion for L-splines.

§ 10.9. HISTORICAL NOTES

Section 10.1

The theory of ordinary differential equations is treated in a wealth of
classical books, but some of the results quoted here are often not included.

Section 10.2

The Green’s function plays a major role in the theory of ordinary differen-
tial equations. The notion of adjunct functions can be found in the text by
Ince [1944]. Theorem 10.10 should be part of the classical theory but we
couldn’t find it anywhere. It is proved in Jerome and Schumaker [1976].

Section 10.3

We discuss the historical development of generalized splines in the notes
for Section 11.1. Early contributors to the theory of L-splines included
Greville [1964b], Ahlberg, Nilson, and Walsh [1964], and Schultz and
Varga [1967). These papers concentrated on the natural L-splines which
arise as solutions of appropriate best interpolation problems. Our develop-
ment of a one-sided basis is based on ideas developed in the articles by
Jerome and Schumaker [1971, 1976] for g-splines (cf. Section 8.3).
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Section 10.4

Local support L-splines were first constructed by Jerome [1973a]. The fact
that one can use the Tchebycheffian B-splines when A is sufficiently small
was observed by Scherer and Schumaker [1980]. The construction of the
dual basis given in Theorem 10.19 is also taken from this paper, as are
Theorems 10.20 to 10.23.

Section 10.5

The approximation power of generalized splines was investigated by
several authors. The first results were obtained via interpolating splines,
see, for example, Ahlberg, Nilson, and Walsh [1967b] and Schultz and
Varga [1967]; they were then refined in a long series of later papers. As
these results were derived for natural L-splines, they do not apply to the
general class of L-splines considered here. The first error bounds for
approximation by general classes of L-splines are credited to Jerome
[1973a]; see also Johnen and Scherer [1976]. The approach taken here is
attributed to Scherer and Schumaker [1980].

Section 10.6

Lower bounds for approximation by generalized splines were given in the
paper by Jerome and Schumaker [1974] using the theory of n-widths.
Direct proofs of the type used here were later given by Schumaker [1978].
The generalization of the Hobby-Rice theorem given in Lemma 10.27 is
also taken from this paper. The proof is based on an idea of Pinkus [1976].

Section 10.7

The results of this section are based on the work of DeVore and Richards
[1973a,b], Johnen and Scherer 1976}, and Scherer {1976, 1977].

Section 10.8

Trigonometric splines were first considered by Schoenberg [1964b]. He
considered the case where m is odd, as well as natural trigonometric
splines. The introduction of the trigonometric splines with m even is
credited to Lyche and Winther {1977]. Most of the results of this section
come from this paper.
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§ 10.10 REMARKS

Remark 10.1

The following simple fact about Hermite interpolating polynomials is
proved in the article by Swartz and Varga [1972]:

LEMMA 10.50

Let p €,,, be a polynomial such that
D’p(0)=a, D’p(h)=b, j=0,1,....m—1.

Then

m—1
| D’p|| Lion <Ch ~*1/r % h*max(la,l,|b,]).
y=0

Remark 10.2

If m=2r+1 and 1, <t,<--- <1
(10.84) satisfy

then the functions {u,}T defined in

m°

Cas 2 # ti_t'
D( AR )=4’ 11 sm( J). (10.109)

Upy ooy Uy, I<j<i<m 2

Similarly, if m=2r, then the {v;}T in (10.84) satisfy

2 . L=
D( z,,...,tm)___4,—, i sm( /)_ (10.110)

Upeeees Uy, I<j<i<m 2

These formulae can be established by relating them to certain determi-
nants formed from exponentials.
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GENERALIZED SPLINES

In the previous two chapters we have studied several spaces of generalized
splines where a large part of the theory of polynomial splines can be
carried over. In this chapter we shall look at some more general spaces of
splines where we can still say quite a bit about dimension, one-sided bases,
local bases, zeros and sign changes. In addition, we introduce a nonlinear
space of splines and look briefly at rational and complex splines.

§ 11.1. A GENERAL SPACE OF SPLINES
Let Q be a partially ordered set, and suppose
A= {Xl <X2< e <xk}

is a set of distinct elements in 2. The set A partitions £ into k+1
“intervals”

I,={x€Q: x<x};
IL={x€Q: x,<x<x;,,}, i=1,2,....,k—1; (11.1)
I ={x€Q: x, <x}.
Suppose
U, =span{u/ };_1 (11.2)
are finite dimensional linear spaces of functions defined on 1, i=0,1,...,k.

We begin by defining the analog of the space of piecewise polynomials:

(11.3)

: th ist s. Wi
@%(%...,%;A)={s there exist 5, €Y, wnh}

s=s;onl,i=01,... k.

462
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In order to define a generalized space of splines, we now introduce some
linear functionals to be used in forcing the pieces of P U to tie together
appropriately. Suppose

I=(T,: 0<i<j<k]}, (11.4)
where
L={(x/.%9)}7., 0<i<j<k, (1L5)

where {v7)}7%_, and {¥7}7%_, are sets of linear functionals defined on the
spaces AL, and U, respectively.

DEFINITION 11.1
Let

S(Uy,---», Uy ; T58)=

Y5 =105, v=12,...,r;, 0<i <j<k.

sEP W(Uy, ..., WUy ; A) such that }

We call S the space of generalized splines relative to Uy, ...,,, T, and A.

It is clear that & is a linear space. It consists of all real-valued functions
defined on £ such that in each subinterval I, s is a member of U, with
some additional conditions on how the pieces are tied together. In particu-
lar, we require that the pieces in the ith and jth intervals tie together in
such a way that a certain linear functional operating on the ith piece has
the same value as another (possibly different) linear functional operating
on the jth piece.

Definition 11.1 carnies the idea of a linear space of splines about as far
as it can go. The interval has been replaced by a general partially ordered
set; the polynomials have been replaced by (possibly different) general
linear spaces in each subinterval; and continuity of derivatives at the knots
has been replaced by the matching of general linear functionals.

Before giving several examples to illustrate how the flexibility of Defini-
tion 11.1 can be used to describe some rather unusual kinds of spline
spaces, we introduce one more piece of notation. In the case where the ties
between the pieces are described by continuity of successive derivatives, it
will be convenient to use a special notation. In particular, if R =(r,,...,r,)
is a vector of positive integers, then we write

sePUW(A,,..., Uy, ;) such that
S(WUps---» Wy ; R;4)= L2k

D/, (x)=D'"s(x.)j=1,...,r,i=

(11.6)
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Definition 11.1 clearly includes all the spaces of splines considered in the
previous chapters. It should be noted, however, that the role of & in this
case is in a certain sense the dual of the role of 9N in previous spline
spaces. The discrete splines provide an example where the set {2 is not an
ordinary interval. In Section 11.7 we introduce some spaces of splines
where @ is a curve in the plane. The Tchebycheffian and L-splines
considered in Chapters 9 and 10 provide examples of splines where the
pieces are drawn from nonpolynomial spaces. The following example
shows how the structure of these pieces can vary from interval to interval:

EXAMPLE 11.2

Let 2=[—1,2] and A={0,1}. Let Uy=P,, U, =span{e*}, and U, =
span{cos(x),sin(x)}. Suppose R =(1,1).

Discussion. In this case the space of splines & defined in (11.6) consists of
functions that are linear polynomials in the interval [ - 1,0), exponential in
[0,1), and a linear combination of cos(x) and sin(x) in [1,2]. The tie
conditions require that any spline s in & must be a continuous function on
[—1,2]. Some typical elements in & are shown in Figure 35. [ ]

e COS X
cos 1

By (x)

| L
-1 0 1 \2

sinx _ cosx

sin 1 cos 1

! It
-1 o] 1 2
x
sin x _ cos X
sin 1 cos 1
By (x)
L I i
1 2

-1 0
Figure 35. A one-sided basis for the splines in Example 11.2.

By (x)
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The g-splines discussed in Section 8.3 provide an example of where the
ties between the pieces of the splines are defined by general linear
functionals. We now give a rather different kind of example.

EXAMPLE 113
Let 2=[a,b], and suppose U, =P,, i=0,1,...,k. Let T'={(T,_, ;}%., where
ri—l,i={(ex,~_|—’ X.-—|+)’(ex.'_’exi+)’(exnl_’exml*')}
i=1,2,...,k.

Discussion. In this case the space & of splines consists of piecewise cubic
polynomials, where the ties between successive pieces take place at several
points rather than at one. In particular, for each i =0, 1,...,k — 1, the pieces
s; and ;. , have to agree at the points x;, x,,, and x; ,. [ |

We begin our study of the linear space S by identifying its dimension
under some natural conditions on the linear functionals describing I" which
assure that they are compatible with each other.

THEOREM 114

Suppose that for each j=1,2,...,k, the matrix

Ag vl - Y
45 el oo Y

Ar=| 7 |witha} = 7 (11.7)
Aj+— 1j '7::“{ T 1_';:“{5

is of full rank r,=ro;+ -+ +r,_, ;. Then

k
dim$ =ny+ 3 (n,—r).
j=1

Proof. The condition on the matrices A4 ,...,4," can be fulfilled only
when r,<n;, j=1,2,..., k. It is clear that S is a linear space, and that each
SES can be written in the form

]

s(x)={5}(x)= > cpul(x)forx€L, j=0,1,...,k.
p=1

The conditions tying the pieces together can be written as a linear system
of equations on the coefficients of 5. Indeed, if we write ¢; = (c,.,...,cj,,J)T
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for the coefficient vector of the jth piece, and define matrices 4, as in
(11.7) (but using v instead of ¥”), then the required system of equations
has the form

(AO] —Ag, 0 - 0 o
Ay 0 AOE 0 C,
~0.
Ag 0 0 — A5
0 0 0 e Ak —Ak+-l,k I Cx |

The matrix of this system has $X_on, columns and Zhar, rows. As it is
easily seen that the hypotheses guarantee that it is of full rank (equal to the
number of rows), it follows that the dimensionality of its null space is
ESn,- - Z'I‘rj. This is, of course, also the dimensionality of &. [ ]

§ 11.2. A ONE-SIDED BASIS

In this section we construct a one-sided basis for the space &, assuming
that the hypotheses of Theorem 11.4 are satisfied. Our method of approach
will be to mimic the construction of the one-sided basis for the polynomial
splines (cf. Theorem 4.5). In particular, we shall first construct my,=n,
elements in & by extending the functions u?,...,u,?o to all of Q. Then
associated with each knot x;, we shall construct m,=n; —r; splines which
vanish identically for x <x;, i=1,2,...,k. The following lemma shows how

to construct the first m, basis splines:

LEMMA 115

There exist splines By, ..., By, in & so that

By(x)=ul(x) forxel, j=12,....my=n,

Proof. Fix 1<,j<m, We define By to be equal to u’ on I, Now to
extend this function to /,,1,,..., and so on, we need to choose coefficients

ay so that
By (x)= 21 ) uf(x) forxel, p=01,... k.
9=

To assure that the pieces of By, in I, and 1, are properly tied together, we
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should choose the coefficients af,...,a¥, so that
o 01,0
any 1Y
+ . _
Aol - [=|
o o1,,0
QAyp Z’muf

Since this is a system of r, <n; equations (of full rank), it can always be
solved. Clearly, this process can be continued to extend B, into the
intervals 1,,...,7,. [ |

We now construct the m; splines associated with each knot x; for our
one-sided basis.

LEMMA 11.6

For each i=1,2,...,k there exist splines B;,,..., B,, which vanish identi-
cally for x <x,;, and which are linearly independent on 1.

Proof. Fix 1<i<k and 1<j<m. We show how to construct B;. For
x <x;, we define By(x)=0. To define B; on the interval /,, we need to find
coefficients {a}%_, so that

B,(x)= 2"1 alu (x) (11.8)

ties properly onto the function 0 at x;. To this end, let A be any n; by n;
matrix obtained from 4,* [cf. (11.7)] by adding m; rows to it. Since 4,* is
of full rank, we may assume 4 has been constructed to be nonsingular.

Now we choose the coefficients {a} as the solution of the system

i
&

Al T |=8(n.r+)),

o,
where 8(n;,r;+j) is a vector of length n; with all zero components except
for the r, + jth component, which we take to be 1. Now B;; is defined on J,
by (11.8). Using the technique of Lemma 11.5, we can now extend B; to
the intervals I, ,..., 1, to obtain a spline lying in the space &.
It remains to check that the B,,...,B,, are linearly independent on /.
To establish this, we shall construct a dual basis for these functions.
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Suppose that the »th additional row of 4 is given by (1;,' T A ),

. Artvn
v=1,2,...,m,. Then we define linear functionals )\,‘,...,A,‘,,' on U, by

M":}‘:( 2 “pupi)= 2 ap“’{r,*v,p‘
p=1 p=1

By the construction of B; on [, it is clear that {A/}7 form a dual basis for
{B;}7L,; that is,

AB;=4,, v.j=12,...,m.

1

Now we can easily prove the linear independence of the B;,...,B,, on I,
Indeed, if 27 ch,.j=0, then

j=1

m;

c,,=}\,f(2 chij)=0, v=1,2,...,m,. "

J=1

It is clear that there is some arbitrariness in the construction of the basis
elements in Lemmas 11.5 and 11.6; that is, this construction of one-sided
basis elements is not uniquely determined. The following theorem shows
that in any case we have constructed a basis for &

THEOREM 11.7

The set of splines {B,-j.};.""_,,,"‘_o defined in Lemmas 11.5 and 11.6 form a
basis for &.

Proof. Our proof follows the idea of the proof of Theorem 4.5 in the
polynomial spline case. First, it is clear by construction that each of the
splines B;; belongs to the space &. By Theorem 11.4, we know that the
dimension of this space is my+ m,--- + m,. Thus to complete the proof,
we need only check that the functions are linearly independent on .
Suppose

k. m
> X cBi(x)=0 forallxeQ.
i=0 /=1

We need to show that all these coefficients must be zero. First, restricting
attention to the interval /,, we see that co By, + - -+ + ¢, Bom, =0 there.
But since these functions are assumed to be linearly independent, it follows
that the corresponding ¢’s are zero. Now consider x in the interval /;. We
now have ¢ B}, + -+ +¢,,, By, =0 on this interval. By the linear inde-

pendence of B,,,..., B,,, on this interval, we find that these coefficients are
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also zero. This process can be continued, moving one interval to the right
at a time, and the theorem is proved. [ ]

To illustrate the construction of the one-sided basis in Theorem 11.7, we
give several examples.

EXAMPLE 11.8

Let & be the class of splines discussed in Example 11.2. Construct a
one-sided basis.

Discussion. We compute the dimension of this space of splines to be 3. A
basis of one-sided splines for & can be constructed by the process of
Lemmas 11.5 and 11.6. For example, we may take the three functions
shown in Figure 35. [ ]

The construction of the one-sided basis is somewhat simplified when all
the spaces U, are the same.

EXAMPLE 119

Construct a one-sided basis for the space of splines defined in Example
11.3.

Discussion. By Theorem 11.4, we find that this space of splines is of
dimension k+4. As a basis for S, we may take B,, By,, Bys, By, to be the
powers 1,x,x2 x3, and the remaining basis elements to be the one-sided
splines

0, asx<x,
(x =%, )= x)(x = X;4.1), x; <x<b.

B,(x)= {

i=1,2,...,k. A typical one-sided spline of this type is shown in Figure 36.
]

Bjy (x)

| A 1 | |
’ Xj xi\/xi+ 1

-1

Figure 36. A one-sided spline from Example 11.9.

wuL
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We have already seen examples of one-sided bases for g-splines in
Section 8.3 and for discrete splines in Section 8.5. A one-sided basis for the
trigonometric splines was constructed in Section 10.8.

§ 11.3. CONSTRUCTING A LOCAL BASIS

As observed in Chapter 4, the one-sided bases are usually not satisfactory
in applications, and it is desirable to construct spline bases with small
supports, if possible. In this section we give some general results that are
useful for this purpose.

Throughout this section we suppose that the hypotheses of Theorem 11.4
are satisfied. As in Section 4.2, we attempt to construct local support
splines as linear combinations of one-sided splines. While it is possible to
give results in the general case, the notation is considerably simplified if we
restrict our attention to the case where all of the spaces A, are the same,
and where

F={To, T2, Tal 1k} (11.9)

(so that only adjoining pieces are forced to satisfy some tying condition).
In the interest of saving subscripts, we write m=my=ny=n;=--- =n,,
and assume

62L,=span{uj}'|", all i=0,1,...,k, (11.10)
and

o= {(v. %)} i=L2.. .k (11.11)

Suppose now that { B;}7.,%_ is the one-sided basis for & constructed in
Theorem 11.7. It is convenient to renumber these splines with a single
subscript. We number them in lexicographical order as

P1r-eesPms k= Bots--es Bomp Birs--es Bii s Bups oo os B (1112)

where K=3%_,m,. If we introduce the notation
m, my
——t——— ——t—
Ymal SVmat2 S Y pa k= Xpsee s Xy suees Xpyoues X, (11.13)

then it follows that each of the splines p(x) vanishes identically for all
x<y,i=m+]1,...,m+ K. In general, we can write

m
p(x)= > Cu(x), i=12,...,m, (11.14)
j=
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and
o, x <y,
pi(x)= jél C,u(x). x>y (11.15)
i=m+1,..., m + K for some appropriate coefficients {C,}. The one-sided

basis in this case is completely described by the matrix C = (C).

The following lemma is a rather general result on when local support
splines can be constructed as linear combinations of one-sided splines. It is
the analog of Lemma 8.32.

LEMMA 11.10

Suppose 1<i, <i, < - <i, <m+ K, and suppose §=(8,,...,8,)7 is a solu-
tion of the homogeneous system

Cliyy...,i,>8=0, (11.16)

where C is the matrix describing the one-sided basis {p,}7*%, and where
C{iys...,i,» denotes the submatrix of C obtained by taking only columns

iy,...,i,. Then
r
B(x)= 3 8p,(x) (11.17)
J=1
is a spline that vanishes for x <y, (if /;>m), and for x>y,.

Proof. When i, >m, each of the p’s appearing in the sum (11.17) vanishes
for x <y, , and it is clear that B has the same property. On the other hand,
py(x)=[uy(x),...,u(x) ] C{;> for x>y,,

hence for x >Yis

B(x)=[u(x),...,u,(x)]|C{iy...,i,>8=0. ]

Lemma 11.10 can be used to construct local support splines as linear
combinations of one-sided splines. It remains to see whether enough
linearly independent local support splines can be constructed in this way to
form a basis for &. We have already seen in Example 8.31 that this cannot
always be done, even in the case of polynomial g-splines. In this connec-
tion we may apply the general algebraic result of Lemma 8.33. It asserts
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thatif { 8,=(B,1,-.-,8, m+x)}7= is a set of g linearly independent vectors,
then the splines

m+ K

B, = 2 B,p;s v=12,...,q
Jj=1

are linearly independent. Thus the problem reduces to finding g=m+ K
linearly independent B,’s to serve as the coefficients of our local support
splines.

As in the polynomial g-spline case, the possibility of choosing a set of
m+ K linearly independent 8,’s which at the same time produce splines
with small supports depends heavily on the structure of the matrix C
describing the one-sided splines. Theorem 8.34 provides one solution to
this problem. It gives a set of conditions on the matrix C that guarantee
the existence of a basis for & which consists of splines with fairly small
supports.

§ 11.4. SIGN CHANGES AND WEAK TCHEBYCHEFF SYSTEMS

In this section we obtain bounds on the number of sign changes or zeros a
generalized spline can have. As a by-product we will show that a wide class
of generalized splines forms a Weak-Tchebycheff space. Conversely, we
shall show that most Weak-Tchebycheff spaces are actually spaces of
generalized splines.

Throughout this section we assume that &=[a,b] and that A= {a=x;<
x; <+ <x,,=b} is a partition of it into subintervals I,...,I,. It is clear
that in order to make any assertions about the sign changes or zeros of a
generalized spline defined on £, we will have to make some kind of
assumptions about the nature of the linear spaces U,,..., 2, from which
the spline pieces are drawn. Our first result deals with the space of
generalized piecewise polynomials defined in (11.3).

THEOREM 11.11

Suppose that for each i=0,1,....k, U, ={u;}}_, is a T-system on the
subinterval I,. Then

k
d: =dim®? W(Uy,,..., W ;A)= > n,.

im0
Moreover, with J = U*_q(x;,x,, ),

Z}P(s)<d—1-k, all nontrivial s€ %P IS, (11.18)



SIGN CHANGES AND WEAK TCHEBYCHEFF SYSTEMS 473

where Z; counts the separated zeros of s on J [cf. (2.53)]. Finally,
S (s)<d—-1, all nontrivial s € % S, (11.19)

and thus ? U is a WT-space.

Proof. The dimension of ¥ U follows directly from Theorem 11.4. Since
U, is a T-system, Theorem 2.21 assures that Zix ) <m—1, each
i=0,1,...,k. Summing these inequalities yields (11.18). The reason we have
to use Z*P in the statement (11.18) is that s may vanish identically on
some of the intervals I,...,I,. Now the number of strong sign changes of s
is bounded by the number of zeros of s in J, plus a possible sign change at
each of the k knots. Thus (11.19) follows from (11.18). The assertion that

% U is a WT-space now follows from Theorem 2.39. .

Theorem 11.11 shows that the space of generalized piecewise polynomi-
als (where the pieces are drawn from T-systems) is a WT-space. The
following theorem shows that the same is true of the space of generalized
splines obtained from @ 9§ by enforcing continuity across the knots:
THEOREM 11.12

Let G?Lo,..., U, be T-systems. Then
§*'=P UW(Ug,-.., We; A)N C[ a,b] (11.20)
has dimension d*=3*_n — k. It is a WT-space, and
S (a.5)(8) KZ{Fp(s) <d*—1, all nontrivial s€&*,  (11.21)

Proof. For each i=0,1,...,k we have Z;(s)<n,— 1 since U, is a T-sys-
tem on /. Adding these inequalities together and taking account of the
continuity of s, we obtain (11.21). ]

Theorem 11.12 provides a large class of examples of WT-spaces. Our
next theorem is a kind of converse. It shows that if we rule out certain
somewhat pathological cases, essentially all WT-spaces in Cla,b] are
subspaces of the spline space & * defined in (11.20).

THEOREM 11.13

Let 9 be a d dimensional WT-space in C[a,b]. Suppose all points in [a, b]
are essential with respect to U ; that is

for every x €[ a,b] there exists some s € W with s(x)#0. (11.22)
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Suppose, in addition, that there exists a § >0 such that
s(x)=0on [C,d]g[a,b] implies d— ¢ > 8. (11.23)

Then there exist a=xy<x; < -+ <x; <x;,,=b and T-spaces U,,..., U,
such that

YW C&* =P W(AUyp,-.., A, ;A)ﬂC[a,b]. (11.24)
Proof. In view of the hypotheses, we can choose ¢ = y, <y, < ... <
v < v, = b so that s(x) = 0 on any subinterval of (v,,v,; ) implies s(x) = 0

onallof I, = (v,v,4 ). i = 0.1,...,l. By Theorem 2.40 each of the finite di-
mensional linear spaces (', = W), is a WT-space of dimension n, on I, =
[v,.v,+,]. If each of these is actually a T-space, then we have shown that each
element of @ belongs to ®* with A = {y}A and W, = O, i = 0,1, ...,k

Suppose now that V; is not a T-space on I_, In this case we have to
divide /; into two parts. First, since no nontrivial element u € °V; can vanish
on a subinterval of [, Theorem 2.47 asserts that

Zi(u)<oo for all nontrivial u €V,

But then Theorem 2.48 implies that V, is a T-system on both of the

t

intervals {y,,y; 1) or (¥,,¥;4,]. It follows that <V, is a T-system on both of
the intervals {y,,y;] and [y, y,, ], where y,=(y;,+y;,,)/2. This process of
dividing the intervals I—, into two parts, if necessary, leads to a partition
A={x;}¥ and a set of T-systems U,,..., AU, such that W C S*. ]

To illustrate what can happen, we give several examples.

EXAMPLE 11.14
Let 9 =span {x,x?} on [0,1].

Discussion. 1t is easily checked that U is a WT-space. The point O is not
an essential point with respect to S, however. Thus no matter how we
attempt to divide the interval, we cannot get a T-system on [0,x,] as

D( 3’ ’2‘ ) will always be 0. ]
2

1
EXAMPLE 11.15
Let U =span{1,u,}, where

x+1, —-2<x< -1
u(x)=: 0, —1<xx<1 (11.25)
x—1, 1<x<2.
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Discussion. WS is a WT-space on [—2,2]. Choosing x,= —1 and x,=1,
we see that UW|, =P, =U|,, while W|, =P,. Thus the space U is a
two-dimensional subspace of the generalized spline space & (%,, P, &F,; A),
which is of dimension three in this case. .

The following example illustrates the process of dividing the initial set of
intervals Iy,..., 1, into parts, as was done in the proof of Theorem 11.13.

EXAMPLE 11.16
Let U =span{u,,u,}, with u, as in (11.25) and

2 __ _
ul(x)={x 1, 1<x'<l
0, otherwise .

Discussion.  Since any s €U can have at most one strong sign change, W
is a WT-system on [—2,2]. Following the proof of Theorem 11.13, we
would take yo=—2, y,=—1, y,=1, and y;=2. Then s cannot vanish on
any part of a subinterval without vanishing identically throughout the
subinterval. But U |; with I,=[—1,1]is not a T-system (as x>~ | vanishes
at both ends). To achieve a partition so that U restricted to each
subinterval is a T-system, we have to add one more knot; for example, the
point 0. Thus A={-2,-1,0,1,2} works. [ ]

We devote the remainder of this section to a linear space of generalized
splines where the pieces are tied together by the continuity of consecutive
derivatives at the knots.

THEOREM 11.17

Let [a,b] be partitioned into subintervals I,,...,J, by A={a=x,<x,

< ...< x4, = b}. Suppose {u}" is an ECT-space, and let
U =span{u;} ™| Isn=m (11.26)
for each i=0,1,..., k. Finally, let R =(r,...,r,) be a vector of positive

integers with
r,<min(n;_,,n;), i=1,2,....k. (11.27)

Then the space &(QUy,..., Uy ; R ;A) defined in (11.6) is a linear space of
dimension

k k

d= 2 n,— 2 r.

i=0 i=]
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Proof. The assumption that the @, are ECT-spaces assures us that the
required derivatives exist. The assumption (11.27) assures that the hypothe-
ses of Theorem 11.4 hold, and the result follows. [ ]

S can be regarded as a space of generalized T-splines (where the nature
of the pieces changes from interval to interval). Our main result concerning
the space & is Theorem 11.18 below. It is a kind of Budan-Fourier
theorem giving a rather good bound on the number of zeros a spline in &
can have. At the same time we prove that & is a WT-space. Before stating
this result we need some additional notation. We suppose now that for
each i=0,1,...,k,

L. L, (11.28)

are the differential operators [cf. (9.5)] associated with the canonical basis
for the ECT-system AU, on I. Thus L, is the null space of L, ,.

Suppose now that s is an element of 5. Then for each i=0,1,...,k we
define

a(s)=min{j: L, 5(x)=0, allxel}. (11.29)

We can think of o;(s) as giving the exact order of s on I, that is, s can be
written as a linear combination of the first «; functions in the canonical
ECT-system basis for ;. The derivative L; , _,s is nonzero throughout I,.
We also need the notation

A(s,x,)=s+[s(x,.+), L 15O+ )sees (= 1)""_'L,.,ai_1s(xi+)];

B(s,x,.)=S*[s(xi—),L,.,,s(x,.—-),...,L. —15(x—). (11.30)

i,a_

THEOREM 11.18

Let S =5 (Uy,..., WUy ; R; A) be the space of generalized splines of dimen-
sion d=3%_.n.—3%_ r, discussed in Theorem 11.17. Then

Z5P(s) <d—1— A(s,a) — B(s,b), (11.31)

where 4 and B are defined in (11.30), and where J= U (x,,x, +1)- The
same bound holds for S ,(s), and thus S isa WT- space on [a,b].

Proof. We proceed by induction on k. For k=0 we may apply the
Budan-Fourier Theorem 9.12 for ECT-spaces to obtain

S (a.5)/(5) KZ{Py)(s) <d—1—A(a) — B(b). (11.32)
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Suppose now that the assertion has been proved for splines with k—1
knots. We now prove (11.31) for splines with k knots. By the induction
hypothesis (applied to the spline s restricted to [a, x.]),

k-1 k—1

Z.lgcp(s)< 2 n,— 2 ri_l_A(a)_B(xk)’
i=0 i=1

-1

where J= :(_O(x,.,x,. +1)- The Budan-Fourier Theorem 9.12 for ECT-
spaces applied to s on (x,,x, ) yields

ZE . o(8) < —1—A(x,)— B(b).

Xicet)

Adding these inequalities together, we get

Z;®P(s) < é n,— kil r,—1—A(a)— B(b)— [ 1+ A(x,)+ B(x,)+ nk-—ak].
i=0 i=1

(11.33)

The result will follow if we can show that
r. <1+ A(x)+ B(x,)+n, —a,. (11.34)

We consider two cases.
CASE 1. Both a,_, and a; are smaller than r,. In this case using (2.48) we
see that A(x, )+ B(x;) >a, — 1, and (11.34) follows since r, <n,.
cASE 2. Either o, _, or a, is at least r,. In this case A(x,)+ B(x ) >r,—1,
and (11.34) follows since n, > a.
We have proved (11.31).

The proof that the same bound holds for S ,(s) is similar. We have
already established it for k=0 in (11.32). Combining the bounds on [a, x,)
with the bound on (x,,b], we now obtain

k k—1
Siasi(s) < 21 n— 21 r,—1—A(a)— B(b) (11.35)
-—[1+A(xk)+ B(xk)+nk-ak]

plus a possible sign change at x,. If there is no sign change at x,, the result
follows from (11.34). On the other hand, if s changes sign at x,, then it can
only do so by jumping through zero, which means that r, must have been
zero. But then since trivially

A(x)+ B(x)+m — >0, (11.36)

we can again advance the induction, and the theorem is proved. [ ]
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§ 11.5. A NONLINEAR SPACE OF GENERALIZED SPLINES

In this section we define generalized splines where the pieces are members
of various nonlinear spaces of functions, and where the ties are defined by
nonlinear functionals. Let A be a partition of the partially ordered set Q
into “intervals” I, 1,,...,1, as in (11.1). Suppose Uy, U,,..., A, are spaces
of “finitely parametrizable functions”; that is for each i=0,1,...,k suppose

u(x)=u(a,,...,a,:x): for each choice of

gL =] a=(a;,...,a,) in some parameter set H, ) (11.37)
CR?* u(x) is an extended real-valued
function on 7,

For each 0<i<j <k, let
Ly={(x". 7))} (11.38)

where {v/}7%_, and {¥Y}%., are sets of (possibly nonlinear) functionals
defined on A, and A, respectively. Write

F={T,: 0<i<j<k}. (11.39)

DEFINITION 11.19
We call

s: there exists s,€Q,; with s=s, on I,
S(Ugs..., W, ; T;4)=2i=0,1,...,k and moreover, Y5, =35, v
=1,2,...,7, all 0<i <j <k

(11.40)
the space of generalized splines (relative to Uy,...,U,, I', and A)

The space of splines & consists of all (extended) real-valued functions
defined on € such that in each subinterval I, s belongs to Ql,, and such
that the pieces in the ith and jth subintervals are tied together in the sense
that certain functionals operating on the ith piece must have the same
value as certain functionals operating on the jth piece, all 0 <i<j <k.

It is easy to give examples of nonlinear classes of generalized splines. In
the following section we discuss one example that has proved useful for
applications. Because of the generality of Definition 11.19, it is difficult to
say much about the space & in general. We have worked with finitely
parametrizable functions as in (11.37) in order to have functions that are
computer compatible (see the discussion in Section 1.5).
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§ 11.6. RATIONAL SPLINES

In this section we give a typical example of a class of nonlinear splines. Let
A={a=xu<x,<+-- <x, <X, ., =b} be a partition of the interval [a,b].
For each i=0,1,...,k let

U, = {u(x)=ai+bix+ 1_'2 }, (11.41)
- (x—§)
where a,b,ER and x,<§ <x,, . Let T={(T,}%_,, where
Fi={(e,_.e,,)}, =12,k (11.42)

DEFINITION 11.20
Given QUy,..., U, and T as in (11.41) and (11.42), we call

S(Ugy .-, W3 T54)

a space of rational splines.

With this definition, rational splines consist of piecewise rational func-
tions such that in each subinterval there is one simple pole. The pieces are
tied together in such a way that the spline is continuous at each of the
knots. The splines are extended real-valued functions since they take on
the value + oo at each of the poles £, i=0,1,...,k. We graph a typical
member of this space in Figure 37.

! | | 1

é) A T4 2 *\ 3 b 4 5
& & £, £3 £4

Figure 37. A rational spline.
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§ 11.7. COMPLEX AND ANALYTIC SPLINES

So far in this book we have been dealing only with real-valued (or
extended real-valued) functions. In this section we show that it is also
possible to define a reasonable class of complex-valued splines. Such
classes are of interest in the approximation of complex-valued functions on
subsets of the complex plane. We begin by defining a complex-valued
spline on an interval. To this end we need the space of polynomials of
order m (in the real-variable ) with complex coefficients defined by

m

qu={p<z)= S i, c.,...,cmec}, (1143)

i=1
where C is the set of complex numbers.

DEFINITION 11.21

Let A={0=1¢,<¢, <+ <t, <t,,,= L} be a partition of the interval [0, L}.
Let O =(m,,...,m,) be a vector of integers with 1 <m,<m, i=1,2,.. k.
Define

s(f): there exist sgp...,5, in PC with
S(Pes M;A)=15,=5s|,, i=0,1,....k, and D/"'s;_ ()= (11.44)

D/ s, j=1,....m—m, i=12,.. k

We call S the space of complex splines on I=[0, L] with knots at t,,...,t, of
multiplicities m,,...,m,.

We emphasize that the complex splines defined above are complex-val-
ued functions of a real variable. While this space is defined on an interval
I CR, it is also possible to regard it as a space of functions defined on a
curve in C. Indeed, if  is a rectifiable Jordan curve in C of length L, then
we can find a function a(¢) defined on [0, L] such that a(?) runs over Q as ¢
runs over [0, L]. Then the splines of & can be regarded as being defined on
2, and the knots can be thought of as being at the points P,=a(s),
=1,2,...,k. Then the smoothness requirements involve the directional
derivatives at the knots, taken along the curve.

Although complex-valued splines are not covered directly by Theorem
11.4, it is clear that the arguments used there can be applied to establish
that the space & defined in (11.44) is a linear space (over the field of
scalars R) of dimension 2(m+ K), where K=3%_,m,.
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THEOREM 11.22

The functions

Py . i . . k
(iYL u{(e = )77 - )T )

form a basis for §(FPC; M ;A). (Here i is the complex unit defined by
i=V=1.)

We now define a space of periodic complex splines on an interval [0, L].

DEFINITION 11.23
We call

S(FS;M;A)={s€S(FE; IM;A): so=5,}, (11.45)

where s, and s, are the pieces in the first and last intervals, respectively, the
space of periodic complex splines.

This space is of dimension 2K over the field R. If 2 is a closed Jordan
rectifiable curve in C of length L, then we may also regard S asa space of
complex-valued splines defined on . In this case it is of interest to extend
the complex-valued splines into the complex plane.

DEFINITION 11.24
Let

- oym L [Es(a)da()
s(z). S(Z)— 2,’"'](; a(t)—Z where . (1146)

S(HES(FC; M ;A), and a(r) is the arc-
length parametrization of £

@S, (9M;A)=

We call @5,, the space of analytic splines with knots at A= {P,,...,P,} of
multiplicities m,,...,m,, where P;=a(t), i=1,2,...,k.

The term “analytic spline” is appropriate in this case because our
definition of s(z) assures us that it is an analytic function throughout C,
with the exception of the points P,,..., P, as the following theorem shows.

THEOREM 11.25
Let s€®S5,,(9N; A). Then

1 & P—z
s(z)=py(z)+ mi lej(Z)ln(ﬁ), (11.47)
J- j—1
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for ali z€C\A, where p,,...,p, are complex polynomials of order m with
Po=p. Thus s is analytic in C\A, and has logarithmic branch points at
P, .. P.

Proof. Let p\($),....p({) be the polynomials representing s for { €. In
particular, suppose

m

AL = 2 a(l ~ Pyl j=1,2,....k.

-l

Then by the definition of s(z),

_ 1 al Pj(f)df_ kol a; d§
S(Z)—ﬁjz-:]'/; §—z _jglz—m:-f;g—z
+3 35k fac-0
Jj=1vr=2 2mi j;}aﬂ’ ‘
k —
) 2 [ Bz
“Po(z)'*’jgl i hl( Pj—l_z) a

§ 11.8. HISTORICAL NOTES

Section 11.1

It is as difficult to trace the history of spaces of piecewise nonpolynomial
functions as it is to trace the history of piecewise polynomials. Neverthe-
less, we can mention some early papers where nonpolynomial splines
appear. Golomb and Weinberger [1959] found certain nonpolynomial
splines as solutions of best interpolation problems. Similar best interpola-
tion problems were discussed (independently) by Ahlberg, Nilson, and
Walsh [1964], Schoenberg [1964b], and others. Greville [1964b] was the
first to give a constructive treatment of a class of generalized splines.
Splines with continuity conditions at several points (i.e., ties between the
polynomials in nonadjacent intervals) arose in the piecewise polynomial
interpolation methods devised by actuaries in the early 1900s; see Greville
[1944] for a survey of some of these methods.

Section 11.2

Greville [1964b] gave a one-sided basis for his class of generalized splines.
His approach was adapted by Jerome and Schumaker [1971] to construct
one-sided splines for g-splines (cf. Section 8.3), and later to deal with more
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general spline spaces (Jerome and Schumaker [1976]). The treatment here
follows Schumaker [1976¢].

Section 11.3

Local support basis elements for nonpolynomial spline spaces were first
constructed for nonpolynomial splines by Schoenberg [1964b]), where a
space of trigonometric splines was treated (see also Section 10.8). Karlin
{1968, Chapter 10] gave local support basis splines for a class of T-splines
(see also Chapter 10 here). Local support basis spiines for the case of
g-splines were constructed by Jerome and Schumaker [1971] (see also
Section 8.3). These ideas were later extended in the paper by Jerome and
Schumaker [1976], which we have followed here.

Section 11.4

That spaces of polynomial splines form WT-systems was already men-
tioned in the book by Karlin and Studden [1966]. That the same assertion
holds for various classes of T-splines was observed by Schumaker [1966],
Karlin and Schumaker [1967], and Karlin [1968]. Using a different method
of proof, Bartelt [1975] showed that piecing together functions taken from
T-spaces leads to a WT-system (our Theorem 11.12). The case where no
continuities are enforced does not seem to have been handled in the
literature. The converse Theorem 11.13 also originates from Bartelt [1975],
although his method of proof required the assumption that & contain the
constant functions. This assumption was removed by Sommer [1980], who
gave a proof based on the concept of Tchebycheff rank of a set. The proof
given here essentially follows Sommer, using the results of Stockenberg
[1977a] on the separated zeros of functions in a WT-space (see Section 2.6).
Theorem 11.18 shows that various smoother spaces formed by patching
together ECT-systems are also WT-systems. This result is new.

Section 11.5

The prime examples of nonlinear spline spaces are the rational functions
and generalizations of them. This development was carried out by Scha-
back [1973] and by Werner [1974, 1976]. The very general space of
nonlinear splines defined here comes from Schumaker [1976c].

Section 11.7

Complex splines were introduced by Ahlberg, Nilson, and Walsh [1967a].
Later papers dealing with complex and analytic splines include Ahlberg
[1969] and Ahlberg, Nilson, and Walsh [1969, 1971].
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TENSOR-PRODUCT
SPLINES

In this chapter we construct a space of multidimensional splines by taking
the tensor-product of one-dimensional spaces of polynomial splines. Be-
cause of the tensor nature of the resulting space, many of the simple
algebraic properties of ordinary polynomial splines in one dimension can
be carried over. We also develop both direct and inverse approximation
theorems.

§ 12.1. TENSOR-PRODUCT POLYNOMIAL SPLINES

We begin by defining the space of tensor-product splines of interest
throughout this chapter. First we need to introduce some one-dimensional
spline spaces. Let i be an integer with 1<i/<d. Then given an interval
[a,,b,] and a positive integer m;, we suppose that

B={a=x,0<%,< " <X, 41=b} (12.1)

is a partition of [g;, 4], and that

M, =(my; y.smy i), I<m <m, j=12,....k. (122)
Then by the results of Chapter 4 we know that the spline space

) (?P,,,._ ; M5 4)) is an m; + K, dimensional linear space, where K,:Ef"_,m,.j.
Suppose

(P, M3 4;)=span{ B, (x,) ek (12.3)

Jj=1

When there is no chance of confusion, we shall write B,(x;) instead of
B, ,(x;). We are ready to define tensor-product polynomial splines.

484
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DEFINITION 12.1

We define the space of tensor-product polynomial splines by

S = & 5(9,; M5 8)=span( B, (x)) - B(x) )t
(12.4)

It is clear from the definition that & is a linear space of dimension
II*_ ,(m;+ K,). Each spline s in S is a function defined on the set

d
H= '®] [a,b,]={x=(x},-.,%z): @, <x; Kb, i=1,....d}. (12.5)

i==

If d=2, H is a rectangle in the plane. We shall call H a rectangle even
when d >2.
The partition A=A, ® - - - ®A, subdivides H into smaller rectangles:

H . ={xx,<x<x,., Jj=12...4d}. (12.6)

The following theorem shows that the tensor-product splines are smooth
piecewise polynomials:

THEOREM 12.2

If s€$, then for each i=1,2,...,d and any fixed a ;,<x;<b, j=1,2,...,
i—1,i+1,...,d,

S(XpsevesXi 175 Xig 130+ Xg) ES(D, s I3 4)). (12.7)
Moreover, for all 0<§.<kj, Jj=12,....d
slu,..,, € P (12.8)
where

P = ® D, =span{x1 7' x g )™ (12.9)

el ceabg=1

is the space of tensor-product polynomials of order m=(m,,...,m,).
Proof. Since each s€S can be written in the form

m,+ K, mg+ K,

S(XppeennXg)= X 0 > ¢ uBix) L Bux).

iy=1 ig=1
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property (12.7) follows immediately. The assertion (12.8) stems from the
fact that each of the B;(x) is a piecewise polynomial of order m;, j=
1,2,...,d. u

The exact smoothness of splines s€S can be deduced from (12.7). In
particular, since

m+ K, my+ K,
D;lll e D;:ds(x)= 2 s 2 C,‘I...,'JD:IlBil(xl)' o D::Bl}(xd)’
iy=1 ig=1

all of these partial derivatives exist, and they are continuous inside the
subrectangles while their smoothness across the faces between two such
subrectangles is controlled by the multiplicity vectors O, ..., IM,.

§ 12.2. TENSOR-PRODUCT B-SPLINES

In order to work with the space of tensor-product polynomial splines on a
digital computer, we need a convenient basis for it. Fortunately, because of
the tensor-product nature of the space, it is possible to work with the usual
one-dimensional B-splines.

For each i=1,2,...,d, suppose A, , is an extended partition (cf. Defini-
tion 4.8) associated with A;; that is

A o={y, }Rnm (12.10)

with
Yit< o KYim <G, bi<Yimike1 < <Yigeam (1211)

and

mq Mk,

A A
I's — r

Vim 1S S Yim k= Xi e X T Xy gsenes Xk, (12.12)

Let (N, ,(x)}74% be the normalized B-splines associated with the ex-

tended partition 4, .

DEFINITION 123
For each i,...,i; with 1 <p<m+K,j=12,....d, let

Nil"'id(xl""’xd)= Ni:"l(xl). .. ]Vi:"d(xd)_ (1213)

We call these the tensor-product B-splines.



TENSOR-PRODUCT B-SPLINES 487

General properties of the tensor-product B-splines can be derived from
the corresponding properties of the one-dimensional B-splines. We collect
some of the more important of these in the following theorem. Let

d
Vi = B Ohipdijar) (12.14)
and
= d
Y= B [ppdiger]: (12.15)

THEOREM 124
For any 1<1}<mj+Kj,j= 1,2,...,d,

N, ... (x)>0 for x=(x,,...,x,)EY," . ; (12.16)
N, ... (x)=0 forx & )7,.:',1._,.4; (12.17)
i iy
> ce > N, L (x)=1 forx € Y7 .. (12.18)
vi=i+1—m vg=ig+1—my

Proof. These results follow directly from (12.13) and Theorems 4.17 and
4.20. [ ]

The shape of tensor-product B-splines is most easily visualized in the
case of d=2. When m,=m,=2 they are pyramid-shaped functions with
support over four subrectangles. When m,; = m,=3 they are shaped like a
hill, and have support over nine subrectangles. See Figure 38 for some
typical examples.

Using the tensor-product B-splines, it is a relatively straightforward task
to deal with tensor-product polynomial splines on a digital computer. Since

Figure 38. Some tensor-product B-splines.
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each s€S can be identified with a B-spline series of the form

m+ K, my+ K,
S(xl""’xd)= 2 o 2 Cl iy 1. l,(‘xl’ ’xd)’ (12’19)
=1 ig=1

to store a tensor-product spline on the computer, we need only store the
coefficients {c; ..., }.

Given a B-spline expansion (12.19), to evaluate it at a point x€ H, we
must first find the vector 1=(/,,...,/,) such that

d
X= (xl’- . -sxd) ej?l [)’j,g,)’j,g-e- l).

Then
I 2
s)= X o 2 NM(x) e NM(xp). (12.20)
=l +1—m, ig=lL+1—my

This is a sum over just m;m,- - - m, terms. Each of the required B-spline
values can be computed by using Algorithm 5.5 to generate the necessary
one-dimensional B-spline values.

Concerning derivatives of the B-spline expansion (12.19), we note that by
Theorem 5.9,

Dt Ds(xy,.. ) =2 -0 2 RIIMN TN (x,) - NIV %(x,),
(12.21)

where the coefficients {¢7" '™} can be computed by the recursions of
(5.15) applied to one variable at a time. This can be accomplished
numerically using Algorithm 5.10. A similar situation persists for the
antiderivatives (cf. Theorem 5.17 and Algorithm 5.19).

It is also possible to represent tensor-product polynomial splines as
piecewise polynomials. In particular, for any i,...,i; with 0<j; <k, j=
1,2,...,d, we can write

s(x)=p; ... (x) forx=(xp,...,x)EY, . (12.22)
where
pi, ~i,(xl""’xd)
m—1 my—1 D;‘l. .. Dx”:s(xil""’xi‘)(xl _xil)'l. .. (xd__ xi‘)'d
=2 2 1.. .1 .
v =0 vy=0 Vye Va:
(12.23)

We close this section by giving a dual basis for the set of B-splines.
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THEOREM 12.5

For each i=1,2,...,d, let {A; j};f'::,"- be the linear functionals constructed

in Theorem 4.41 as a dual basis for {N}74%. Then

m+K,,..., my+ K,
1 d»i4}1|-| ..... ig=1

(A=A (12.24)

e

form a dual basis for the set of tensor-product B-splines { ¥, ..., }. More-
over,

d
A, < ‘H‘ (2 + 19~ DR RN Al (7, ) (12.25)
P

for every fe L[ )7,»1,,”.4] where

_ d
Y i =j§l [yj,,),y,-,iﬁ,,.},), (1226)
and
d
hi|~~i,,= H ()’j,‘}.—yj',x}+n5.)~ (12.27)
j=1

Proof. The fact that (12.24) form a dual basis follows immediately from
the fact that

)\in"'idNyl""’4=(}\|v"|N"?‘:l). o (Adv"aNd’?:d)

and the duality of the (A, ;} with { N*}. The bound (12.25) is an immediate
consequence of the bound (4.86) on the individual one-dimensional func-
tionals. [ ]

§ 12.3. APPROXIMATION POWER OF TENSOR-PRODUCT
SPLINES

In this section we give some direct theorems relating the smoothness of a
function to how well it can be approximated by tensor-product splines. For
convenience we restrict our attention to functions defined on a rectangle.
For references to results on more general domains, see Section 12.6.

Throughout we suppose that H is a rectangle as in (12.5), and that § is
the space of tensor-product polynomial splines defined in (12.4). Our aim
is to give estimates for

d(£,9),= sigfs i f— S“L,(H)-
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To achieve this, we construct a quasi-interpolant Q mapping L,(H) into S.
Our construction will be based on the B-splines defined in (12.13) and the
dual linear functionals given in (12.24). We suppose that the extended
partitions A, , have been chosen so that

Yin= 1 = Vim = G b, =Vim+K+1= """ Vi Kk +2m (12.28)

i=12,...,d

THEOREM 12.6
Given any f€ L,(H), let

m+ K, my+ K,
ofx)= 3 -+ X (A NN, (%) (12.29)

iy=1 =1

We call Qf the quasi-interpolant of f. It is a bounded linear operator
mapping L,(H) onto & with

QOs=s foralls€s. (12.30)

Proof. Property (12.30) is an immediate consequence of the fact that the
A’s form a dual basis for the B-splines. To prove the boundedness of Q,
suppose that x€ Y, .., . Then by Theorem 12.5,

Q)< X -+ XN, AN, ()]
<SChUMENAN (5, )
Integrating over x€Y, , , we obtain
“Qf“L,,(Y,, o = C“f“L,H.,. W (12-31)

If we sum the pth power of this inequality over all m; <i<m;+K,
Jj=1,2,...,d, and then take the pth root, we obtain

@SNl ey <CUS N oy (12.32)

which is the assertion that Q is bounded. [}

Theorem 12.6 asserts that Q is a bounded linear projector of L,(H) onto
S . We now want to give bounds on how well Qf approximates f. Our next
theorem deals with functions f in the tensor Sobolev space (see §13.2)

Ly(H)={f: Dg*---DHEfEL(H), all0<o;<r;,j=1,2,...,d}
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where r=(r,,...,r,) is a vector with
r, <m, Jj=12,....d. (12.33)

To state the theorem, we need the mesh widths

A= or<nja<xk,.(xi,j+|_xi,j)’ i=12,....4d, (12.34)
and
éi:og}ifki(Xi'j+l_Xi’j)’ - i=12,...,d. (12.35)

THEOREM 12.7

Let r be a vector satisfying (12.33). Then there exists a constant C
depending only on m,r,d, and

= &, (12.36
V=T, -36)
such that for all f € L)(H),
d
Ilf=Qfll ey <C ) AANDLSfN Loy (12.37)
i=|

1<p<oo.

Proof. Fix m<i<m+K, j= 1,2,...,d. We obtain first an error bound
for f— Qf on the rectangle Y, ... By results on multidimensional Taylor

expansions (cf. Theorem 13.18 below), there exists a tensor-product poly-
nomial p; ..., € ¥, such that

d —
”f_Pi,---i,,||1_,()",l..,,-d) <C 21 A:”D;f”g,( Viia) (12.38)

where ?i. ...;, 1s defined in (12.26). The constant C depends only on m, 1, 4,

and y. Now since Q reproduces polynomials, by (12.31)
Ilf= Qf”L,,(Y. )< ||f"1’i,---i,,”1,(¥,-l...,,)

iig

.....

d _
<C 3 BIDIL (5, )
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Taking the pth power of this inequality and summing over all m; <i; <m; +
K,j=1,2,...,d, we obtain (12.37). [ ]

7

Theorem 12.7 gives an estimate for d( f,S)p for functions f in L;(H),
r<m. We now convert this to a result involving the tensor modulus of
smoothness defined in Example 13.27 below.

THEOREM 128

Fix 1 € p < c0. Then there exists a constant C (depending only on m, p, and
d) such that for all f€ L,(H),

d(f,3)p < Cwy(f;8)p, (12.39)

where 6=(Kl,...,3 ).

Proof. Given any partition of H, we may thin out each of the A’s as in
Lemma 6.17 to get new partitions A¥CA, with A" /A <3, Then the
associated quasi-interpolant Q* maps into S, and it follows from Theorem
12.7 that

d -—
d(£,8),<llf-Q*fll,<C 21 APIDZS N oy

for all f€ L,"(H ). But then applying Theorem 13.30, we obtain (12.39).

§ 124. INVERSE THEORY FOR PIECEWISE POLYNOMIALS

In this section we establish some inverse theorems which assert that if a
function can be approximated to a certain order by piecewise tensor-prod-
uct polynomials, then the function must possess a certain amount of
smoothness. These theorems can then be used to show that there is a
saturation phenomenon for approximation by piecewise polynomials. Simi-
lar results are given in the following section for splines.

We begin by introducing the spaces of piecewise polynomials of interest.
Let H be a rectangle as in (12.5), and let A,...,A; be partitions as in
(12.1). Then given a vector m=(m,,...,m,) in Z%, we define the space of
piecewise tensor-product polynomials of order m by

P W(Py; A) = {s: sl,, w 0<ii <k, j=1,..,d}, (1240)

where 9, is defined in (12.9) and H, ..., are the subrectangles (12.6) of H
defined by the partition A=A, ®-- - Q4A,.
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As in the one-dimensional case, in order to establish inverse theorems,
we have to work with a sequence of partitions A®. Moreover, in order to
get meaningful results, we have to impose some mixing conditions on A®.
We discuss the case of p= oo first.

DEFINITION 12.9. Mixing Condition
Let

AP =AP® - - @AY (12.41)

be a sequence of partitions of the rectangle H. We say that A satisfies the
mixing condition provided there exists a constant p such that for all » and
any x € H, there is some partition A’ with n > » such that x is contained in
the interior of a subrectangle H, , defined by A", and

d(x;,0H, ) > pd?, i=1,2,...,d, (12.42)
where dH, , denotes the boundary of H, ,, and

A= min (x(,,—x). (12.43)
1</ <k

It can be shown by arguments similar to those used in proving Theorem
6.38 that if A is a sequence of partitions as in (12.41), with each &) a
uniform partition, then A satisfies the mixing condition. We are ready for
our first inverse theorem.

THEOREM 12.10

Let A™ be a sequence of partitions satisfying the mixing condition. Then
there is a constant C such that for all f€ C(H),

wal f3 87, < Csupd| f,PU(Fy; &™) ]

_J na>vy

(12.44)

o?

where w, is the tensor-product modulus of smoothness discussed in Exam-
ple 13.27 below, and A =(A}?,..., AY).

Proof. Fix 1<i<dand x€H. Suppose H, , is the subrectangle associated
with n and x, as in the definition of the mixing condition. Let

AP
h<ps (12.45)
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where p is the constant in the mixing condition. For convenience set
e, =d[f,? W(DP,;A™)],, and suppose s, € P W (P,; %) is such that

Nf=s, e <2e, all ».

Then since s, is a polynomial in ¥, on H, , and A; is small enough,
[ARf(x)| =147~ 5,)(X)| < Ce,,

where the divided difference is taken on the /th variable. Taking the
supremum over all A, satisfying (12.45) and then over all x € H, we obtain

Wme, (f;4) <Csupee,, (12.46)

nay

where e, is the unit vector in the ith variable. Summing these inequalities
overi=1,2,...,d, we arrive at (12.44). ]

Theorem 12.10 is the analog of Theorem 6.39 in the one-dimensional
case. We can now use it to give a complete inverse theorem in which
wgu(fit) is estimated for all vectors t=(¢,,...,¢,) with ,>0, i=1,....d.

THEOREM 12.11

Let A®, as in (12.41), be a sequence of partitions satisfying the mixing
condition and such that A go steadily to zero in the sense of Definition
6.5. Suppose f€ C(H) and that

d[ f, P UW(F: A) ] <&(AP,...,49), (12.47)
where
A= max (x4 —x), i=1,2,....d, (12.48)
1 <<k

and where ¢(¢,,...,¢;) is a function that is monotone in each variable. Then

e ([iOKCiH(t),  i=12,....4, (12.49)

all t=(t,,...,1,)>0.

Proof. The assertion follows directly from (12.46) and simple properties
of w, (cf. Theorems 13.23-13.24). See Theorem 6.41 for the one-dimen-
sional case. u
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Theorem 12.7 above shows that for sufficiently smooth functions [f €
L% (H) suffices],

d[ 1,9 W(Fw: 8], =O[ (BP)™ +- - +(BP)™].

The following saturation theorem asserts that unless f is a tensor-product
polynomial, this is the maximal order of convergence obtainable.

THEOREM 12.12

Let A® be a sequence of partitions as in Theorem 12.11. Suppose f € C(H)
1s such that

d £,9 U (F:a®)], < ( min (V)" )9@E").  (12:50)

where (t) is a function which is monotone in each variable and with
Y()—0 as ||t|—0. Then fEP,.

Proof. The hypothesis (12.50) coupled with Theorem 12.11 implies that

wm--e,(f; t) < C(1™)(1), i=12,....d.

Now let t,=((1/n)™,...,(1/n)™), n=1,2,.... We conclude that

4 @, (fit,
PO LTS { — ) —0  as n—sco.
=1 (1/n)™
But then by Theorem 13.26 if follows that f€P,,. n

So far we have been dealing with approximation in the uniform norm. In
order to give analogous results for approximation in p-norms, we first have
to introduce an appropriate p-mixing condition.

DEFINITION 12.13. p-Mixing Condition

Let A® be a sequence of partitions of the rectangle H. We say that A®
satisfies the p-mixing condition provided there exists a constant p such that
for every v there is a corresponding set of numbers {4,*)}{., ¥., with
Eﬁ,a,.(,"} =1 such that for every xE H,

[>.2)

S\ (5, 880)" > p(agyne (1251)

J=v

i=1,2,...,d, where 3A"” denotes the boundary of A‘/.
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The p-mixing condition is satisfied by equidistant partitions with a,.(_"}
=1/v,i=12,...,d, j=v»,...,.2v—1. We can now give an inverse theorem.
THEOREM 12.14

Let 1 < p < o0 and suppose that the sequence of partitions A® satisfies the
p-mixing condition. Then there exists a constant C such that for every
fELH),

wu(f;47), <Csupd[ f, P W(2,,;4™)] (12.52)
nav

P

Discussion. The proof of this theorem proceeds along exactly the same
lines as the proof of Theorem 6.52 in the one-dimensional case. ]

By the same kind of arguments used above, we can translate Theorem
12.14 into an inverse theorem for w,(f;t), and a saturation result. Since
the details are not substantially different, we only state the results.

THEOREM 12.15

Fix 1< p < o and let A® be a sequence of partitions as in Theorem 12.14.
Suppose A® are partitions that go to zero steadily in the sense of Defini-
tion 6.5. Finally, suppose f € L,(H) is a function such that

d[ £, D UW(Fu;AP) ], <o(AP,...,AD), (12.53)

where A are defined in (12.48) and ¢({y,...,%;) is a function that is
monotone in each variable. Then

e, (1), <Cip(t), i=12,....d (12.54)

for all t>0.

Finally, we have the following saturation result:

THEOREM 12.16
Let A® be as in Theorem 12.15, and suppose that f € L(H) is such that

d £, U (Pus 8], < ( min (A")")y@"),  (12:55)

where  is as in Theorem 12.12. Then f€?,,.
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§ 12.5. INVERSE THEORY FOR SPLINES

In this section we establish inverse theorems similar to those given in §12.4,
but where the space of piecewise polynomials ? U (P, ; A®) is replaced by
a space of splines belonging to C'(H) for some vector L. In this case (as in
the one dimensional case), we can dispense with mixing conditions and
obtain results for general partitions. In order to simplify the notation, we
restrict our attention to the case d=2 of two variables. To further simplify
matters, we assume that H is the unit square [0, 1]X[0,1].

We begin with an inverse theorem for the case of uniform approxima-
tion.

THEOREM 12.17

Let A”=A{ ® A{” be a sequence of partitions of H with A®=AQ=[0,1]
and with A{?}0 and A{”]0. Suppose that for each », s, is a spline in the
space

P UW( P AN CY(H), (12.56)

where 1= (/},/,) is a given vector with /; <m,—1, i=1,2. Then there exists a
constant C such that for every function f& C(H),

' g+
m e ([:AV) <C@AP) T L
=)

where ¢, =|| f—5,|| - A similar inequality holds for the modulus of smooth-
ness w,, . (f; AW,

Proof. By Theorem 6.44, for any 0< y <1 and any 0<e < A,

(12.57)

m—1

W [ fC7)i6] <C 2 [ DLs, (2],

J=l+1

where

J[Dis(.p)|= max [Dfs(x+.y)—Dis(x—.»)]
! 1<i<k, ! !
Now by applying Theorem 6.45 for each fixed y and afterward taking the

supremum over all 0< y < 1, the same arguments as were used in the proof
of Theorem 6.46 yield (12.57). (]

Theorem 12.17 can now be converted to a result giving estimates for
Wpe (f; 1) for all vectors t>0.
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THEOREM 12.18

Let A¥=A{"® A{” be a sequence of partitions of H such that A{” and A
each satisfy the hypotheses of Theorem 6.47. Suppose 1 is a vector with
IL<m,—1,i=12, and that &, is a sequence of spline spaces belonging to
PUW(R,,; AYN CY(H). Then for i=1,2,

d(£,5,),,=0(A")% o <f+1 (12.58)
implies
e, ()=0(17). (12.59)
If (12.58) holds for both i=1 and i=2, then
W fi ) =021+ 157). (12.60)

Proof. The first assertion follows from Theorem 12.17 and the same
arguments used to prove Theorem 6.47. Adding the statements (12.59) for
i=1,2 leads to (12.60). ]

We conclude this section with some analogous theorems for the case of
I<p<oo.
THEOREM 12.19

Let A” be a sequence of partitions of H and let s, be a sequence of splines
as in Theorem 12.17. Then there exists a constant C such that for every
function f € L,(H),

’ +
(FiA), <C@ap)'*? 3 e (1261)
=1 apy

wmlel

A similar inequality holds for w,, . (f; A®),
Proof. By the arguments of Theorem 6.55, we can now show that
m—1 .
Oppe,(f38)p < Cel’r Yy e{Jp(ijls),

J=hL+1

where

@)= ([ uenrs)”
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and

ky 1/p

L[eC.2)]=| 2 1o(x;+.y) —d(x;— p)IF

i=1
The J;’s can be estimated by methods similar to those used in Theorem
6.55 in the one-dimensional case, and the result follows. [ ]
Theorem 12.19 and arguments similar to those used in the proof of
Theorem 6.47 (cf. also Theorem 6.56) lead to the following inverse theo-
rem:
THEOREM 12.20
Let A® be a sequence of partitions as in Theorem 12.18, and let §, be a
sequence of spaces of splines in @ W (P, ;A*)N C'(H). Then for i=1,2,
d(£,5,),=0(8")*  a<i+1 (12.62)
implies
Wpe (f; ), =0(£%). (12.63)
If (12.62) holds for both i=1 and i=2, then

W (fi4),=0(t{1 +152). (12.64)

§ 12.6. HISTORICAL NOTES

Section 12.1

The idea of constructing finite dimensional linear spaces of functions of
several variables by taking tensor products of spaces of functions of one
variable is an old and well-established technique in analysis. Tensor-prod-
uct splines appeared first explicitly as the solution of a certain best
interpolation problem in the article by deBoor [1962]. Although they are
firmly entrenched as part of the spline lore, tensor-product splines are
treated explicitly in only a relatively small number of papers.

Section 12.3

The first results on the approximation power of tensor-product splines
were estimates on the interpolation error for best interpolating splines—cf.
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deBoor [1962] and Ahlberg, Nilson, and Walsh [1965b]. Quasi-interpolants
based on tensor-product B-splines have been studied by several
authors—see, for example, Aubin [1967, 1972], Fix and Strang [1969}],
DiGuglielmo [1969], Babuska [1970], deBoor and Fix [1973], Strang and
Fix [1973], Munteanu and Schumaker [1974], and Lyche and Schumaker
[1975]. All of these papers have given error bounds for their quasi-inter-
polants in terms of the total modulus of continuity. Dahmen, DeVore, and
Scherer [1980] noticed that the estimates need only depend on the tensor
modulus of smoothness. Their paper also contains direct theorems for
more general domains £ (where £ satisfies a rather complicated and quite
restrictive form of the cone condition).

Section 12.4

The inverse theorems given here are based on the work of Dahmen,
DeVore, and Scherer [1980]. Their paper contains similar results for the
more general piecewise polynomial spaces ¥ U (%P,;A), where A is a
general set of multi-indices. They also have been able to deal with
nontensor partitions.

Section 12.5

The results of this section are also based on the work of Dahmen, DeVore,
and Scherer [1980]. These authors were the first to see that the correct
inverse theorems should involve coordinate moduli of smoothness. Earlier,
Munteanu and Schumaker [1974] had given some inverse theorems involv-
ing total modulus of smoothness.
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SOME
MULTIDIMENSIONAL
TOOLS

In this chapter we collect a number of results that are useful in dealing
with functions of several variables. The topics treated include Sobolev
spaceés, multidimensional polynomials, Taylor theorems, moduli of smooth-
ness, and K-functionals.

§ 13.1. NOTATION

The main problem in dealing with functions of more than one variable is
to find a suitable notation. The standard solution to this problem is to use
vector notation. Given a positive integer d, we write

RY={x:x=(xy,...,x;), x€ER,i=12,..,d} (13.1)

for the usual FEuclidean vector space. We shall consistently use boldface
letters for vectors. Given two vectors a and b in RY we shall use the
standard notations

d 1/2
I|2l|=( 2 af) ; (13.2)

i=1
a<b if and only if q; <b,, i=1,2,...,d; (13.3)

a<b if and only if a<b and g, <b, some 1 <i<d; (13.4)

a+b=(a,+b,,...,a;,+b,). (13.5)
0=(0,...,0), 1=(1,...,1), (13.6)
€, = unit vector in the ith direction=(0,...,1,...,0). (13.7)

501
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In order to be able to subscript quantities depending on d variables, it is
convenient to introduce the sets Z, = {nonegative integers} and

Zi={a:a=(ay,...,a,), 0 €EZ_,i=12,...,d}. (13.8)

The set Z< is often referred to as the set of multi-indices. If a€ Z%, we
write

la|=a;+--- +a,. (13.9)

In dealing with vectors and with multi-indices, we shall observe the
following standard conventions:

P=xf - xf, xER?, § €R, (13.10)
XO=x e x5, xERY, a€Z%; (13.11)
D*=Dx---DY, a€Z{, (13.12)

where D, stands for the derivative in the ith variable.
Suppose now that Q is a bounded open set in R®. Given any such Q, we
define

C(8)= { f: f is continuous on 2}, (13.13)
C"(Q)={f DfeC(Q)forall 0< |a|<m]}. (13.14)
C™Q)={fDYeC(Q),all0<a<m}, (13.15)

d
meZ’.

Finally, we also need the classical Lebesgue spaces. Given any 1<p<
o0, we define

__ | f: f is a measurable real-valued
L, (@)= { function on € with || fl| g <% |’ (13.16)
where
[ 1701 ax, 1<p<oo
|lf||z,(sz)= & (13.17)
esssup|f(x),  p=oo

xeQ
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§ 13.2. SOBOLEYV SPACES

The aim in this section is to introduce the analogs of the Sobolev spaces
L;"[a,b] which were so useful in the one-dimensional theory. Suppose {2 is
a bounded open set in R?, and let

feC=(Q): f has support on a}‘ (13.18)

Co()= { compact subset 2, CQ

We call C;°(2) the set of test functions. It is possible to put a topology on
this set in such a way that convergence of a sequence ¢,EC;°(2) to a
function ¢ € C5°({2) means

1. There exists a compact set 2, such that support (¢, —¢) C€, for all n;
2. D¢, (x)—>D%(x) uniformly on &, for all a € VAR

We denote this topological vector space by D(Q).

DEFINITION 13.1. Distributions
We call
D’()={A: A is a bounded linear functional on D(R)}  (13.19)

the set of distributions on Q.

Clearly D’(Q) is itself a topological vector space. Distributions are not
themselves functions defined on €. On the other hand, every function
S € L () can be associated with a distribution fon Q in a natural way by
defining

fig)= fﬂ $(x)f(x)dx,  all$€ D(Q).

The converse of this statement is not true; there are distributions that are
not associated with functions in L,(Q). If f is a distribution that is
associated with a function f€ L, (), then it is common practice to abuse
the notation somewhat and to write f € L ().

Although distributions are not functions in the ordinary sense, it is
possible to define a meaningful derivative of a distribution. Given a
distribution f and a multi-index a, we define the ath derivative of f to be
the distribution D9 whose effect on test functions is described by the
formula

(D) e)=(— 1) (D), all € D(Q).

Before introducing the Sobolev spaces, we need one more definition.
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DEFINITION 13.2

Let 4 be a set of multi-indices. Then we say that A4 is regular provided for
some nonnegative integers ry,...,r,,

r-e, €A, i=1,2,...,d, (13.20)
and

if a € 4, then there is no B€ 4 with a<B. (13.21)

DEFINITION 133. Sobolev Space

Let A be a regular set of multi-indices, and define

Il o= EA 1Dl 1,0 (13.22)
and
”f“[,;‘(ﬂ)= ”f“[,,(n)‘*' |f|z,;'(9)~ (13.23)
We call
L) ={fELQ): [ fll ey <0} (13.24)

the Sobolev space associated with A and p.

With some work it can be shown that L,,‘(SZ) is a Banach space with
respect to the norm (13.23). We now give two especially important exam-
ples.

EXAMPLE 134. Classical Sobolev Space

Let A ={a: |aj=r}, where r is any positive integer. We call
W (Q)=L'(Q) (13.25)

the classical Sobolev space.

Discussion. In this case

H Al wrey =11l ey + [f] W@y
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where

Il W)= 2 DA L().

la] =~

For more on the classical Sobolev spaces, see, for example, Adams [1975].
[ ]

The next example introduces the space that we used in discussing the
approximation power of tensor-product polynomial splines.

EXAMPLE 13.5 Tensor Sobolev Spaces

Let A={r-e)?_, where r,...,r, are positive integers, and where e,
denotes the unit vector in the ith direction. We call

Ly(Q)= L (w), r=(ry,...,r,) (13.26)
a tensor Sobolev space.
Discussion. Here

”f“11;(9)= ”f”l_,(ﬂ) + |f| L)

with
d
|f‘1_;(ﬂ)= ‘El ||D;,"f||L’(Q)- [ |

We conclude this section with an imbedding theorem which states that
the space LPA(Q) is a subset of classical Sobolev spaces. To prove the result,
it is necessary to make some kind of assumption on £ to prevent difficul-
ties near its boundary.

DEFINITION 13.6

Let © be a bounded open subset of R?. Then we say that Q is star shaped
provided there exists an open ball

B=B, ,={x:|lx=xol<p}

such that for every x€ B and every y&€{), the line from x to y lies in Q.

Clearly every bounded open convex set Q is star shaped. Figure 39 shows
some common nonconvex star-shaped domains as well as some domains
that are not star shaped.
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(a) (b)
Figure 39. (a) Star-shaped domains. (b) Non-star-shaped domains.

THEOREM 13.7

Let € be a star-shaped domain, and suppose A is a regular set of
multi-indices (cf. Definition 13.2). Let r,,...,r, be the integers appearing in
(13.20). Then Lp"(Q)g Wp"(Q) for all kK <miny(r). More precisely, there
exists a constant C such that

A wreay <C||f||l’4(9), allfe LPA(Q). (13.27)

Discussion. See Smith [1970], page 66. [ ]

§ 13.3. POLYNOMIALS

DEFINITION 13.8

Given a set A of multi-indices in Z%, we define the associated set of
polynomials in x ER? by

P, =span{x*: aEA}. (13.28)

It is clear that %, is a linear space whose dimension is equal to the
number of indices in the set A. While &, makes sense for arbitrary sets A,
there are two special cases of particular interest. We highlight them in the
following two examples:

EXAMPLE 13.9. The Space of Tensor-Product Polynomials

Let my,...,m,; be positive integers, A={a: o;<m,, i=1,2,...,d}, and
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consider
- i— m m,

Pr=F = ®:'1-|6‘Pm.- =span{x{' Lo xy l}i,l-l ..... i1
Discussion. This space is of dimension m, - - - m,. For quick reference we
list the basis functions for several spaces of tensor-product polynomials in
two variables in Table 10. n

Table 10. Some Tensor-Product Polynomial Spaces

m, m, Dimension Basis Functions Name
2 2 4 1,x,y,xy Bilinear
3 3 9 1,x,p,xp,x%y2 Biquadratic
w2 xy, xy?
4 4 16 1,x,y,xv,x%,y? Bicubic
2 xp3, xy, xy?,
x93, x3, % xY,
x%?,xYy?

EXAMPLE 13.10. Polynomials of Total Order m

Let m be a positive integer, and let A={a: |aj<m}. Then
P, =P =span{x™: |aj <m}.

Discussion. The dimension of this space depends on both m and d. For
d=2 it is given by m(m+ 1)/2. For some specific examples, see Table 11.

Table 11. Some Spaces of Polynomials of Total Order

m Dimension Basis Functions Name

1 1 1 Constants
2 3 1,x,y Linear

3 6 I,X,)’ax)’,xz,yz Quadratic
4 10 Lx,y,x,x%y% 002, xy, x3,y3 Cubic

§ 13.4. TAYLOR THEOREMS AND THE APPROXIMATION
POWER OF POLYNOMIALS

In this section we develop some rather general Taylor expansions for
functions of several variables, and we use them to derive results on the
approximation power of multidimensional polynomials.
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DEFINITION 13.11. Taylor Expansion

Given any set A of multi-indices and any function f such that the required
derivatives exist at y, let

0= 3 Gy DAY) -Y):!D 7). (13.29)
where
al=qa,! - -a,l,
and

(x=y)*=(0x,=y)™ - (xg—ya)™

We call Ty"f the Taylor expansion of f about the point y. It is a polynomial
in the space ¥ ,.

The most important example of a Taylor expansion of the form (13.29)
is the classical Taylor expansion:
EXAMPLE 13.12. Classical Taylor Expansion
Let A={]a|<m}. Then

Df(y)(x —y)*
m — TA -
T7f(x)= T, f(x) = > s Sl (13.30)

!
o] <m a:

Discussion. The classical Taylor expansion produces a polynomial of total
order m (cf. Example 13.10). If Q is a bounded open set such that the line
from x to y lies in £, then it is known (cf., e.g., Edwards [1965]) that

fx) = Tf(x)= la‘lz-m—("%Y)-j(;ls"’_'D"'j]:x+s(y—x)]ds. (13.31)m

The Taylor expansions defined in (13.29) apply only to functions whose
derivatives are defined at the point y. For our applications we need a
Taylor expansion that applies to a wider class of functions.

DEFINITION 13.13

Suppose @ is a star-shaped domain with respect to a ball B as in Definition
13.6. Let ¢y be a function in C;°(B) with [z =1. Then given any f&
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L,(B), we define its Taylor expansion with respect to  and A by

o= 3 [ (00 s O sy, (1332)

aEA

For sufficiently smooth functions f, T‘,,Af is closely related to Ty“f. In fact,
repeated application of Green’s formula shows that

nwn=£wwnwww.

It is useful to have a special notation for the two most important Taylor
expansions. If m is a positive integer, we write

o= 3 [ (0nelen G [ar (1339

We call this the toral Taylor expansion since it produces a polynomial of
total order m. If m is a vector in Z4, then we write

0= B[00 s O iy, (334

a<m

We call this the tensor Taylor expansion since it produces a tensor-product
polynomial.

The following continuity assertion for T will be useful later:

THEOREM 13.14
For all f,gE€ L,(B),

I T — Tl wm- @ <Clf—8ll L) (13.35)

where C is a constant depending only on m, d, ¥, and [2|, and where || is
the diameter of 2 defined by |} =sup{|y—x||: x,y €EQ}.

Proof. This estimate is clear from the fact that
U-ow= 3 [0 U-pop v |4

Our aim now, is to study the remainder term R}\f=f— T, but first we
need a definition.
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DEFINITION 13.15
We say that the set A of multi-indices is complete provided that

if BE A, then all a with a<f are also in A. (13.36)
Given a complete set A, we define the boundary of A by
0A={B: B&A, butall a witha<Barein A}. (13.37)

We note that the sets A corresponding to total Taylor expansions and to
tensor Taylor expansions [cf. (13.33) and (13.34)] are both complete. In
particular, we have

A={a: |aj<m}implies 0A = {a: |a|=m}, (13.38)
A={a: a<m=(m,,...,m,)} implies dA={me;}¢.  (13.39)

THEOREM 13.16. Generalized Taylor Remainder Theorem

Let A be a complete set of multi-indices. Then for any function f € C *({),

fx)=TH(x)+ RM(x), allxeq, (13.40)
where
RY)= 3 [ K(xy)D(y)dy, (1341)
aEINYE

and K (x,y) are certain kernel functions with
|DEDIK (x,y)| < Cllx—y||i=l~ P~ =4, (13.42)

Here C is a constant that depends only on a, B, v, 4, and .

Proof. We prove the result first for the case of total polynomials; that is,
A={la|<m} and A = {|a]=m]}. If we multiply both sides of the classical
Taylor expansion (13.31) by y(y) and integrate over B, we obtain

f00-T0=m [ LI [Lmpers(y-x)]dsay.

jo| = m
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Now, by using Fubini’s theorem and the change of variables z=x+
s(y —x), we obtain

thP(y)(x—Y)“folS’""D"f[xﬂ“S(y—X)]dsdy
= [ [ 4=y DA sty —x) ] dyds
-_—flf¢[(x+s—l(z—x)](x—z)"s"D"f(z)s‘ddzds
0B
a 1 “l(z—x)]s—d4-1
=f8(x—z) D«f(z)(fo Y[x+s"z-x)]s¢ ds)dz

a!
= kaa(x, z) D %f(z) dz,
where

m(x—y)*k(x,y)
«a!

k(x,y)=j;ls“”_ Wx+s"(y—x)]ds.

ko(x,y)=

The use of Fubini’s theorem is justified since

lk(x,z)| = |.[()I¢[x+s_'(z—x)]s_""ds‘

1
f \p[x+s"(z—x)]s‘d"dsl<C|x—z|“’, (13.43)
iz—x[/1%

where |Q] is the diameter of & (cf. Theorem 13.14), and where C=
12191yl L8/ d- A similar argument shows that the derivatives of k,, satisfy
(13.42), and the theorem is proved in the case of total polynomials.

Suppose now that A is a complete set of multi-indices. Let m=1+
max, ., jal. We claim that

if |B| <m and B¢ A, then there exists §€ dA with §<B. (13.44)

Indeed, suppose |B|<m and B&A. Then if B&JA, there must be some
B, <B with B,&A. If B, €9A, we can find B, & A with B, <B,, and so on.
At some step we must find B=J, such that all @ <, belong to A (and so



512 SOME MULTIDIMENSIONAL TOOLS

BEJA), for otherwise we arrive at 0&€A which contradicts property
(13.36).

We are ready to prove (13.40). By the result for total polynomials we
know that

R
fo=TH+ 3 [EY)

) B Y(y) DPf(y) dy + I‘EM f kg(x,y) D #(y) dy.

Now if |B|=m, then by (13.44) we can write DBf(y)= DP-BDAf and
integrate |[B—f| times by parts to obtain

[ ka(x. ) DBy dy=(~1)* P [ [ DE~Fig(x.5) | DFH(y) dy

with B€dA. Similarly, if [8|<m and B&A, then
—v)B - i Y-
v B2 D8 ay= (1A D,H[ o) }Dﬂf(y)dy

with B€dA. It follows that (13.40) holds with appropriate K (x,y) satisfy-
ing (13.42). ]

We can now give an explicit error bound for f— Tff when f is a
sufficiently smooth function.
THEOREM 13.17

Let A be a complete set of multi-indices. Then for any 0 <e <1 there exists
a constant C (depending only on d, ¢, A, ¢, and ) such that

If- T.;f\f”L,(Q)<C 23 1D L (13.45)
aEdA

for all f& L)*() and for all 1 <p,q < oo such that

]| B]. 4

1. |
dl'q p d

+—,min(1—l,l)], acdA. (13.46)
P q

Proof. In view of Theorem 13.16, we need to show that

” f K,(x,y)Df(y)dy

<C|DYI, (13.47)

for all a €9dA. Fix a €dA. There are three cases.
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CAsE 1. (Ja}>d). In this case ||a|/d||>1, and we have to prove the
result for all p and ¢. Now if f € C°(2)n L34(R), then applying the Holder
inequality to the integral in (13.47) and using the fact that the K (x,y) are
uniformly bounded [cf. (13.42)], we see that (13.47) holds for g= o0, p=1.
Since C=(2)N LI*(Q) is dense in L), we have proved (13.47) for
g=o00, p=1 and for all elements of L?*(Q). The result now follows for all p
and ¢ by Holder’s inequality.

CcasE 2. (Ja|<d and 1/q—1/p+|a|/d >¢). It suffices to prove the result
for g=p < oo since all other cases follow by Holder’s inequality. It will be
enough to work with fEC*(Q)n L; A(Q) since this space is dense in
L,?A(Q). Let

|| —d < |Q|
ga(x)={ Ixgft=d, i <9l
o , otherwise

and suppose that we define D %f(x) to be zero for x outside of Q. Then it is
clear from (13.42) that for all x €,

[ K1) DI | <€ [ 2ax=1) DS
Now using Young’s inequality,
|/ KemD I ] <Clizall ol DT

where 1/s=1—-(1/p)+(1/q) > 1 —(|la]/d)+¢. Thus (13.47) follows since

1 l/s
H<Cd)| ———— | .
CASE 3. (laj<d, 1/q=1/p—|a|/d, and min(1 —1/p),1/q]>¢€). In this
case p must be less than oo (since otherwise 1/g= —|a|/d, which is
impossible). Then for any f € C>(Q)n L*(2) we have

[ Kuley) DI ds| <1 DT,

where

B (8)(x)= [ g(WIIx—yl'~?dy

is the so-called Riesz potential, and where we have assumed that D has
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been extended to R as in Case 2. The estimate (13.47) now follows from
standard estimates on the Riesz potential. [ ]

The condition (13.46) is satisfied for all but a small set of p and q.
Indeed, if |a| >4, then there is no restriction on p and q. If |a| <d, we may
describe the set of p and ¢ satisfying (13.46) geometrically; it consists of all
p and g except for those such that (1/p,1/¢) lies in the two cross-hatched
parallelopipeds in Figure 40. Each of these two parallelopipeds has width
depending on ¢ and, in fact reduce to the points (1,1—|al/d) and
(la|/ d,0) as e—0.

It is convenient to have a version of Theorem 13.17 where the depen-
dence on the size of the domain 2 is given explicitly. To measure the size
of ©, we introduce

8=(8,,....8,), where 8, =sup{|y, — x,|: x,yEQ}. (13.48)

The vector 8 contains the dimensions of the smallest rectangle enclosing .

THEOREM 13.18

Let A be a complete set of multi-indices. Then for any 0 <e <1 there exists
a constant C (depending only on d, ¢, A, and ¢) such that

1= Tl Ly < C8/P~Y9 3 8 DSl o (13.49)
ac€dA

for all f& L)™(£2) and for all 1 <¢<p < oo satisfying (13.46).

Proof. First suppose p=gq. Then if { is the unit cube with §=(1,1,...,1),
(13.49) follows directly from Theorem 13.17. The assertion for a general

1/q
1
|
|
: Vg = 1/ m+e
| _-va=ip g
{ .-.,'./ . -1 lot |
/.'v.//“/q— [J‘—d‘
s :
o7 .
// ///
-
-
.
- 1/
0 1—¢ 1 P

Figure 40. The set of p and ¢ satisfying (13.46).
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now follows by a simple change of variables. Finally, to get the result for
p#q, we simply observe that by Holder’s inequality

loll, <8'/771/7||¢|l, (13.50)

for any ¢. |

Theorem 13.18 shows that the Taylor expansion provides a polynomial
which approximates a given smooth function quite well. We now show
that, in fact, the derivatives of the Taylor polynomial are also good
approximations to the derivatives of f. First we need the following com-
mutativity result:

THEOREM 13.19

Given any multi-index 8,
DPT)f=T}BDBf,  allfe L (B). (13.51)

Proof. First consider f& C*(B). Then since Dfx*=0 for all a<p, we
have

100 3 [wepan) B

aEA ( B)'
a>f

> wr)DE+5(y) B 6,) dy
scA-B

= T,;' (D) (x).

The assertion then follows for general distributions since D# and T‘,,A are
bounded operators on L,(B) while C *(B) is dense in L,(B). ]

THEOREM 13.20

Let A be a complete set of multi-indices, and let 0 <e < 1. Then there exists
a constant C (depending only on 4, ¢, , and A) such that for all f€ L (),

IDB(f— TM)I,<C84~'7 S &D*DFf|,  (13.52)
a€3(A-B)

for any B and for all 1 <q < p < oo satisfying (13.46) with dA replaced by
(A —B).
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Proof. In view of Theorem 13.19,
I DB(f= TN, =R} PD Pl .

Now it is easy to see that if A is complete, then so is A —f. The assertion
(13.52) then follows from Theorem 13.18 coupled with (13.51). Here we
note that B+ 9(A — B) COA so that f € LX(Q) implies Df € L)*~P(Q). m

We close this section by noting that it is possible to give bounds on how
well polynomials approximate smooth functions in terms of certain moduli
of smoothness. We state the following result here. (The definition of the
modulus of smoothness can be found in Section 13.5 below).

THEOREM 13.21

Let A be a complete set of multi-indices. Then for any 0 <e <1 there exists

a constant C (depending only on 4, €, §, and A) such that
d(f,P,),<C8"1"Pw, (f£;8), (13.53)

for all f€ L,(?) and all 1 <g< p < oo satisfying (13.46).

Proof. For p=gq the result follows from Theorem 13.18 coupled with
Theorem 13.30. The result for general ¢ then follows from (13.50). [}

§ 13.5. MODULI OF SMOOTHNESS

In this section we study moduli of smoothness similar to those discussed in
Section 2.8 for functions of one variable. Given a multi-index a and any
vector h>0, let

AR =Ag- - A, (13.54)

In applying Ay to a function of 4 variables, we assume that A} applies to
the /th variable.

DEFINITION 13.22

Given | < p < o0 and a multi-index a, we define the a-modulus of smooth-
ness in the p-norm of a function f€ L () by

w(fit)p= sup Iaafll e >0, (13.55)
<t
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where
Qe p={XEQ x+a®heQ)}
a®h=(ah,,...,ah,).
The following theorem collects some elementary properties of w,(f;7),:

THEOREM 13.23
Let 1< p< 0. Then

w(fit)hy w (fir), allt<m (13.56)
wWo(f+8:t), Sw (fit), +w,(g:t),; (13.57)
W iA®Y), <[AV%w,(fit)y,  [A]*=[A )% -+ [A]™ (13.58)

Wl f: ), <291 fll 13 (13.59)

Warp(fi0)p < 2P0 (f31),; (13.60)

wol(f3 )y S DYl 105 (13.61)

warp(fit)y <CtPu (DFfit),. (13.62)

Proof. These results follow by arguments similar to those used in the
one-dimensional case. For example, using the formula (4.56) for the
divided difference of a function of one variable, we can write

A;’f(x)=h“"‘j;dN'"(Z—:)- . N’"(—:—:)D"f(x+u)du, (13.63)

where N™ is the normalized B-spline of order m defined in (4.47). Then
applying the Minkowski inequality (cf. Remark 2.2) leads to (13.61). ]

While moduli of smoothness of the form w,(f;t), will be useful as
building blocks, by themselves they are not adequate to fully describe the
smoothness of a function f. Indeed, it is clear that if some a;>0, then
wo( fi1),=0 for all t>0 whenever f is a function that is constant in the x;
variable. But such a function can behave arbitrarily badly in the other
variables.

In order to get a useful modulus of smoothness for measuring the
smoothness of a function of several variables, we must take a linear



518 SOME MULTIDIMENSIONAL TOOLS

combination of the moduli w, defined above for various values a. In
particular, in view of the above discussion, we need to include enough
different moduli to control the smoothness in each variable. Given any set
A of multi-indices, we define

wA(f; t)p= 2 wa(f; t)p- (1364)

acA

The following theorem gives several properties of w,:

THEOREM 13.24
Let 1 < p< oo. Then

W (i) <wy(fim)p,  allt<m (13.65)

w (f+g:8), <w (fit), +w,(g:t),; (13.66)
w,(iA®1), <[APw,(f;t),, B=min{B: a<B, alla€4)};

(13.67)

w (fi1), < ( ‘EA 2"‘)Hf o, @5 (13.68)

w (f31), < EA DYl @ iffELND). (13.69)

Proof. These results follow by summing over @« €4 in the inequalities of
Theorem 13.23. a

We turn now to the question of how to choose 4. The following example
shows that if w,(f;t), is to control the smoothness of f in each direction,
then it will have to contain a positive multiple of each of the unit vectors
€...,€

EXAMPLE 13.25

Suppose that for some 1 <i<d, r-e;&A for all r>0.

Discussion. Let f be a function of the variable x; only. Then for any a€ 4
there must be j#i with a; > 0. But then w,(f;t),=0 and so w,(f;t),=0 for
all t. But f can be an arbitrarily nasty function of x;. ]

In view of property (13.60) of moduli of smoothness, if a set A4 of
multi-indices contains the vector-a, then there is no need for 4 to include



MODULI OF SMOOTHNESS 519

any indices B with B> a. This observation together with Example 13.25
suggests that the sets A of most interest are those that are regular in the
sense of Definition 13.2.

To state our next theorem we need to introduce a certain space of
polynomials associated with a set 4. Given A4, let

A={B: B<aforalla€ ). (13.70)

It is clear that 4 is always complete in the sense of Definition 13.15.
Conversely, if A is a complete set, then dA is regular and dA=A.

The following theorem shows that there is a special relationship between
w,(f;1), and the class of polynomials ¥;:

THEOREM 13.26

Suppose A is a regular set of multi-indices. Then
fE€P; implies w,( f;t),=0, all t>0. (13.71)

Conversely, if 1 <p<oo and f&€ L,(Q) is such that

wqfst, .
> —"—(—{;ﬁ —0 for some sequence t, with ||t,||—0,  (13.72)
aEA »

then f € P ;. The same result holds with p= o0 if f € C(Q).

Proof. The first assertion is obvious since for every a€ 4, Agx B=0 for all
BEA To prove the second assertlon we note that since A4 is regular it
must contain the vectors re;, i=1,2,...,d for some positive integers

rys...,rg. This implies (cf. Timan [1963]) that f is at most a polynomial of
order r, in the ith variable, i=1,2,...,d. Suppose

f(x)= % agxP.

Then ag=0 for all B>r=(ry,...,r,). We now show that if a€ 4, then
ag=0 for all a <B<r. We accomplish this by using (13.60) to compare wg
and w,. We have

llagll, =I1AR fli, < wg(f3t,), SCwy(f3t,),—0  as v—co.

We conclude that ag=0, and the inductive proof is complete. We have
shown that the only nonzero coefficients are ag with B<a for all a€ 4.
But these are just the ag with 8 €A (]
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We illustrate the above discussion by introducing the modulus of
smoothness that we used for our results on the approximation power of
tensor-product splines.

EXAMPLE 13.27. Coordinate Modulus of Smoothness

Let r=(r,...,r,)€Z4, and define

d
o (fit),= _2] “’r,.e,.(f; t)p- (13.73)

Discussion. Here A ={r,e;}4. It is easy to see that

d
Pi= 4®1 P, = span {x*}. |

a<r

§ 13.6. THE K-FUNCTIONAL

In this section we introduce an alternate way of measuring the smoothness
of a function in L,(R2). We shall see that for nice sets { it is equivalent with
the modulus of smoothness of the preceding section.

DEFINITION 13.28. The K-Functional

Let 1< p < oo, and suppose A is a regular set of multi-indices. Then for
every t>0 we define the K-functional K, ,(t) by

K,,0)f= inf (nf~gn + 3 D% ) (13.74)
Ap seti@ ot 2 L@

For each choice of the vector t with t>0, K, (t) is a nonlinear
functional defined on L, (). It measures the smoothness of f in terms of
how well f can be approximated by functions gELp"(SZ) while keeping a
control on the size of the derivatives of g. K, ,(t) has many properties
analogous to those of the one-dimensional K-functional treated in Section
2.9.

THEOREM 13.29

Let © be a rectangle in R?. Then there exist constants C, and C, such that

w (f;)p SCK, (1), (13.75)
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and
K, (i) <Cro, (fit), (13.76)

for all f€ L,(?) and all £t>0.
Proof. See Dahmen, DeVore, and Scherer [1980]. [ ]

We close this section with an analog of Theorem 2.68 which allows us to
establish estimates in terms of w,(f;t), by looking only at functions in
A
LS.
THEOREM 1330

Let © be a rectangle, and suppose 4 is a regular set of multi-indices. Let &
be a set of functions in L, () such that for each gELp"(Q) there 1s an
element s, €5 with

”g_sg”L,(ﬂ)<C0+C1 2 ta“Dag”L’,(n), (13.77)

ac A

where C,, C, are constants depending only on A, p, and Q. Then there
exists a constant C, depending on the same quantities such that for each
FE L, () there exits s,€> with

1= 5/l L@ < Co+ Crwy (S5 1), (13.78)

Proof. Let f€ L,(Q). Then for any g€ L (%),

1= 5,0, <IL7—gll, +1lg—s,I, < Co+max(C,, 1)(||g—fn,,+ > t"nD"gn,,).

a€A

Since the K-functional is defined as an infimum, if we vary g in Lp‘(Q), we
can find some g* € L(Q) so that

| f= sl , < Co+2max(Cy, 1) K, (t)f.

Using (13.76) we obtain (13.78). [ ]

§ 13.7. HISTORICAL NOTES

Section 13.1

The multivariate notation used here is quite standard—see for example,
Adams [1975].
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Section 13.2

Sobolev spaces play an important role in many areas of analysis. For an
excellent modern treatment, see Adams [1975]. The book of Sobolev [1963]
is also useful.

Section 13.3

The use of multidimensional polynomials in numerical analysis and ap-
proximation theory has a long and rich history. Although the tensor-prod-
uct polynomials and the total-order polynomials appear more frequently,
there has also been considerable interest in other polynomial spaces where
certain powers are missing, particularly in the construction of finite ele-
ments. See, for example, Strang and Fix [1973].

Section 13.4

Multidimensional Taylor expansions for functions of several variables are
a part of classical analysis, and they can be found in various forms in
practically any book on the multivariate calculus. The development of
similar theorems for distributions is part of modern functional analysis.
The Taylor expansion in Theorem 13.16 in the case where A is the set of
polynomials of total order m is usually referred to as the Sobolev integral
indentity (see the book by Sobolev [1963] for the original derivation); it
was an important tool in establishing certain imbedding theorems, and for
the general study of Sobolev spaces. The development of such expansions
for general classes of polynomials is more recent—motivated no doubt by
the desire to ana.yze the approximation power of certain finite element
approximation methods. Our proof of Theorem 13.16 follows Dupont and
Scott [1978, 1980].

The problem of estimating how well a smooth function (or more
generally a distribution) can be approximated by a polynomial has been
considered by many authors. Most of the early results were based on the
Sobolev integral identity, and dealt only with polynomials of total order
(cf. e.g., Sobolev [1963]). Sobolev’s ideas were reformulated and applied to
analyze finite element approximation methods by Bramble and Hilbert
[1970, 1971]. Brudnyi [1970]) obtained estimates involving an appropriate
modulus of smoothness; he treated tensor-product polynomials as well as
total order ones. Results for more general spaces of polynomials have been
obtained only recently; see Dupont and Scott [1978, 1980] and Dahmen,
DeVore, and Scherer [1980]. We have followed the approach of the former
paper because it is more constructive. Our terminology and notation is a
mix of the two papers, however.
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Section 13.5

For a summary of results on moduli of smoothness for functions of several
variables, see Timan [1963]. Only the total modulus and the tensor mod-
ulus (cf. Examples 13.27) are discussed. The idea of working with moduli
corresponding to a general set 4 as in (13.64) is credited to Dahmen,
DeVore, and Scherer [1980].

Section 13.6

The results of this section on K-functionals for general Sobolev spaces are
attributed to Dahmen, DeVore, and Scherer {1980].

§ 13.8. REMARKS

Remark 13.1

As suggested in Section 13.2, some of the finer properties of Sobolev
spaces require an assumption on the domain and/or its boundary. We
have elected to work with the star-shaped domains because the condition is
easy to state and understand, yet still general enough to include most
domains of interest. There is a heirarchy of cone conditions which is often
invoked in dealing with Sobolev spaces, and many of the results quoted
here hold under such conditions—see Adams [1975].

Remark 13.2

We have stated Theorem 13.29 on the equivalence of the modulus of
smoothness and the K-functional only for rectangles. Dahmen, DeVore,
and Scherer [1980] have established the same equivalence for other kinds
of domains. To do so, they were obliged to introduce an appropriate “cone
condition” on the domain (this cone condition is more restrictive than the
usual ones, and it is also more restrictive than the star-shaped property).
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In this supplement we outline some of the developments in the basic theory of
splines that have taken place since the manuscript for this book was first submitted
to Wiley Interscience in 1980. We do not have space here to discuss everything
that has been done, and apologize in advance to readers whose work has been left
out. As part of the supplement we have included over 250 references that did not
appear in the original book. All citations in this supplement are to this new list of
references. Since applications were not discussed in the original book, they are also
not included here. The material in this supplement is presented in the order in which
it would have appeared in the original chapters. At the end of this supplement we
provide a list of recent books on splines.

CHAPTER 2. PRELIMINARIES

WEAK-TCHEBYCHEFF SPACES. It was observed in [Dav95] that Theorem 2.40
does not hold as stated, but is correct if one takes I = J N [a, b] for some a < b.

CHAPTER 3. POLYNOMIALS

APPROXIMATION WITH SHAPE CONTROL. In Sect.3.4 we established
Jackson-type theorems describing how well smooth functions can be approximated
by polynomials. In recent years there has been a lot of interest in the following
question: How well can we approximate a function f with a specific shape prop-
erty (such as being convex) by a polynomial with the same shape? Here we focus
on the convex case. For estimates involving norms of derivatives, it turns out that
we get the same order as without any shape constraints. However, even more pre-
cise results are known in terms of moduli of smoothness. It was shown in [Sve81]
that if f is a convex function in L,[—1, 1] with 0 < p < oo, then there exists a
convex polynomial of degree n such that | f — s||, < Cwy(f, 1/n),, where C is
an absolute constant and w, is the usual L, modulus of smoothness of order 2,
see Sect. 2.8. It was also shown that w, cannot be replaced by w4. For p < oo,
this result was improved in [DevL93, Yu87] by replacing w, by the Ditzian-Totik
[DitT87] modulus of smoothness of order 2. It was shown in [Kop94] that for
p = oo the same result holds with the DT-modulus of smoothness of order 3, see also
[HuLY94]. This result was extendedto 0 < p < oo in [DevHL96]. For results on the

524
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co-convex case, see [Kop95a, KopLS06, LevShe02a—03], and for the monotone
and co-monotone cases, see [BealL83, DevLLS97, DevLY92, DevY85, HuKY96-99,
Kop95b, KopO1, Lev88, LevM82a,b, LevSha97, LevShe97-00, YuZ94].

Brossoms. Suppose P is a polynomial in m variables. Then we say that P is
affine in the variable x; provided if we hold all of the other variables fixed, then
P(--yoaxi+(1—a)i,--)=aP(C--,x,--)+A—a)P(---, %, - ), forevery
o € R. We say that P is multi-affine if it is affine in each of the variables
X1, ..., Xpy. Suppose P is multi-affine and symmetric, i.e., P has the same value for
any permutation of its variables. Then we call P the blossom of the univariate
polynomial p defined by p(x) := P(x, ..., x). Blossoms were popularized in the
CAGD literature in [Ram87-89], although related ideas appeared earlier in work of
de Casteljau under the terminology polar form,see[Cas85, Cas93]. Blossoming
can be used to give a simple proof of the Marsden’s identity of Theorem 4.21. It
has also been used to study a variety of recursive schemes involving polynomials
and splines. For further details, see [Bar90-96, BarG93c, GonN94, Lee89b, Lee94b,
Lee96, Maz01, Mazl.96, Schm94, Sei88-93b, SteG92].

MARKOV INEQUALITIES. The Markov inequalities (3.2) and (3.3) giving esti-
mates on the norms of the derivatives of a polynomial p € P,, in terms of the norm
of p itself are useful tools in spline theory. For more recent results on Markov
inequalities for polynomials, see [Boj02, BojN02] and references therein.

CHAPTER 4. POLYNOMIAL SPLINES

B-SPLINES AND DIVIDED DIFFERENCES. It has been observed, see [B0oj88,
BooP03], that B-splines have a longer history than reported in Sect. 4.11, and in fact
several of their properties (including the recurrence relation and Marsden’s identity)
appear in [Pop34, Tsc38], although splines are not mentioned in either paper. Instead
of defining the B-splines in terms of divided differences as we did in Sect. 4.3, it is
also possible to define them using the recursion relation (4.22). Starting with this
definition, it is possible to derive all of the properties of B-splines given here, see
[BooH87], and for more details [BooO1]. For some other results on B-splines, see
[Car91, CarnP94, Lee82-86, LemS92, MasRS93, MeiMW95, San92, VerBH92].

PARAMETRIC SPLINES. Although in this book we have focused on univariate
splines as functions defined on an interval, for many applications and in particular in
CAGD, itis useful to work with parametric splines of the forms(t) = Y _'_, ¢; N (1),
where the N/" are B-splines of order m defined on some interval, and where the ¢;
are now vectors in R? or R, This gives curves in the plane or in space which can
be closed (if we use periodic B-splines) and can also self intersect. For a discussion
of the role of splines in CAGD, see [Rie73, Schu84] and the books [BartBB87,
CohREO1, Far87, Far90, Far95, HosL93, PieT95, PraBP02].
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CONTROL POLYGONS. Supposes = y ._, ¢; N/" isaspline defined on an interval
[a, b] associated with an extended knot sequence yy, ..., Yytm Witha = y; = --- =
Ym and b= y,11 = - = ypym. Let & = (yiz1 + -+ + Yigm—1)/(m — 1) for i =
1,...,n,andlet Ls be the C° linear spline that interpolates the values ¢y, . .., ¢, at
the points &1, . . ., &,. In the CAGD literature, Ls is called the control polygon
associated with s. For parametric splines, the corresponding control polygon is
obtained by simply connecting the points ¢; and ¢; 41 in R? or R? with straight lines
foreachi =1,...,n — 1. Clearly, Ls(a) = s(a) and Ls(b) = s(b), and it is not
hard to see that s lies in the convex hull of Ls. Moreover, the number of times that
any straight line cuts Ls is an upper bound for the number of times that the line cuts
s. This variation diminishing property was shown in [LanR83], and is a geometric
version of the variation diminishing properties described in Theorems 4.9 and 4.76.
A number of authors have worked on estimating the distance between a spline and
its contol polygon, see [CohS85, Dah86, LutP00, LutP01, NaiPL99, PraK94]. Here
we state a result in [Rei00].

Theorem S.1. Let Ac be defined by Ac; = m(cj —cj—1)/(Yj+m — ¥j), and let
A%c be defined by Azcj =(@m —1)(Ac; — Acj_1)/(Yj4m—1 — ;). Then for all
1 € [&1, &, [s(t) = Ls(D] < Gigm — Y* 1 A%¢]|/(8(m — 1)).

ENCLOSING A SPLINE CURVE. As mentioned above, the convex hull of the
control polygon associated with a spline encloses the spline curve, even in the
parametric case. For CAGD purposes, it is useful to find tighter enclosures for
splines. Using the arguments leading to estimates between a spline and its control
polygon, it is possible to efficiently construct two C° linear splines u and £ such that
£(t) < s(t) <u(t)forallt € [a, b], see [LutP00, LutPO1, PetW03, PetW04]. Using
this technique componentwise, one can get enclosing regions for the parametric
case.

BLOSSOMING. Blossoming can also be defined for piecewise polynomials
and splines, see [Bar90-96, Gol90, Lee94b, Lee96, MazL.96, Ram87-89, Schm94,
Sei88-93b, SteGI2]. In these papers it is shown how to use blossoming to derive
various properties of splines such as Marsden’s identity and knot insertion.

DEGREE RAISING. Suppose s := Z;zl ¢;N7" is a spline of order m defined

on an extended knot sequence A. Let A be the extended knot sequence obtained
from A by increasing the multiplicity of each knot by one. Then we can write s =

Zi’.:l ¢;N"*!, where N'*! are the normalized B-splines (see page 124) associated

with A. In particular, it was shown in [CohLS86] that

. 1 Zn m . .
CJZZ CiAi (.])a J=lv'-'sn7
i=1
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where
A:n(]) = (yH—m - yi)[yh ey yi+m]Dq";"+1»
m
W) = =L [ = 340
v=1
Here n; are arbitrary points satisfying $; < n; < ¥j4mt1,j =1,...,7i,andthe A’s

are certain discrete splines. Degree raising is useful in CAGD. For some explicit
algorithms based on these formulae, see [CohLS85].

It has been shown that if we start with a spline s and repeatedly apply degree
raising, then the corresponding control polygons converge uniformly to s. In partic-
ular, if L,, is the control polygon after degree raising m times, then it is known that
ls = L, < %||s/||, see [CohS85, PraK94] and the book [PraBP02]. For more on
degree raising, see [BarG88b, HuaHMO05, Lee94a, Liu97, Mor91, PieT84, Pra84b,
PraP91].

KNOT INSERTION. If s is a spline on a given knot sequence, then it is also a spline
on any finer knot sequence obtained by adding one or more knots. For applications,
especially in CAGD, it is useful to be able to compute the B-coefficients of s relative
to the finer knot sequence from those of s relative to the orginal knot sequence. We
now discuss how. Suppose that A := { yi}?:{“ is an extended knot sequence as in
(4.8), and that {N;"}/_, are the associated B-splines of order m. Let {Nim }:’:11 be the
B-splines associated with the extended knot sequence A obtained by inserting one
new knot 7 in the interval [y,, yei1).

Theorem S.2. Suppose
n+1

s = iCiNim = Zd,ﬂ/,’"
i=l1 i=1

Then
Cis i=1,....,. 4 —m+1,
d. = | (= y)ci (‘t‘fm}izltrgt—)l i) [ R S
Ci—1, i=£L+1,...,n+ 1.

The theorem appeared in this form in [Boe80]. It is also contained as a special
case of a more general result in [CohLR80] where A is obtained from A by
inserting several knots simultaneously. This more general result is referred to
in the literature as the Oslo Algorithm. For alternative proofs and more on
knot insertion, see [BarG88a, BarG93a,b, BarGM93, BarZ92, Boe85, BoeP85,
Gol190, GolB92, Hol00, HuaHMO5, Lee89a, Lyc88, LycM86, LycM93, MaiP(0,
Pra84a, QuG92, Rog97, Sei88]. Knot insertion is useful in CAGD as a way of
subdividing a spline curve. It has been shown that if we repeatedly subdivide
a spline curve s, then the associated control polygons L, converge to s, and in
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particular, ||s — L, 5 |lo0 < KA% Is”|lo0» Where A, is the mesh size (see page 211) of
the partition after n subdivision steps. For proofs of this result, see [CohS85, Dah86,
PraK94] and the books [CohREOQ1, PraBP02]. Convergence of knot insertion also
follows from Theorem S.1.

Knot insertion is also useful for theoretical purposes. For example, our proofs of
the total positivity of the B-spline collocation matrix in Theorems 4.63 and 4.65 are
based on zero properties of splines, but as shown in [BooD85], these results can also
be established using knot insertion. For some stability results for B-splines based on
knot insertion, see [Hol00, LycM93]. It is also possible to describe knot insertion
for tensor-product splines, see [CohLMS85].

KNOT PERTURBATION. The question of what happens to splines when their
knots are perturbed was studied at several points in the book, see pages 130, 158,
159. For a further study of this topic, see [LycM99].

PERFECT SPLINES. In Sect. 4.5 we introduced the perfect B-spline. More gener-
ally, a spline s of order m with knots x; < --- < x; is called aperfect spline
provided that s”(x) = = for some nonzero constant c at all points where the m-th
derivative is defined. Perfect splines exhibit a number of interesting extremal prop-
erties, see [Boj80, BojN02, BraD82, Che94, Dyn83, GooL78, Mor84, Pin78].

CONDITION NUMBER OF THE B-SPLINE BASIS. In Sect. 4.6 we introduced
the quantity D(m) to measure the condition number of the B-spline basis for splines
of order m. Explicit upper and lower bounds for D(m) were given in (4.99). The
problem of sharpening these bounds and extending them to p-norms has been stud-
ied by several authors in recent years, see [Boo88, Bo0o90, Lyc78, Lyc89, Sche94,
ScheSh96, ScheSh99, Var77]. To give an idea of the most recent results, suppose A
is an extended knot sequence, and that N{", ..., N," are the associated normalized
B-splines. We write N; := (m/(Yi4m — y,-))l/PNim fori =1,...,n.Let

D,(m, A) := sup el
e (D3 CiNim”p’

and let D,(m) := sup{D,(m, A):y; < Yitm, i = 1,2,...,n}. Then itis shown in
[ScheSh99] that D, (m) < m2™. This can be compared with the fact that D ,(m) >
cm™1/P2™ which follows from results in [Lyc78] for the oo-norm. It is conjectured
that D »(m) = 2™ but this seems to still be open, even for p = oo.

ZEROS OF SPLINES. In Sect. 4.7 we introduced a way to count zeros of splines,
and connected the number of zeros of a spline to the number of sign changes in its
vector of B-coefficients. There has been recent work on zero properties of polynomial
splines. As a first step, Goodman [Goo94] found a stronger way to count zeros of
splines based on knot insertion. Writing Z¢ for his count and Zg for the count in
Definition 4.47, he showed that for every spline s, Zg(s) > Zs(s), and that there are
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splines with Z5(s) > Zg(s). Moreover, he also showed that under a simple condition,
Zg(s) < S (a), where a is the vector of B-coefficients of s. More recently, [Boo97]
suggested the following different way to count zeros of a spline.

Definition S.3. Lets be a spline in a spline space S. We say that an interval z (which
may be a single point) is a zero of multiplicity m of s with respect to S provided that
s vanishes on z, and for every open interval w containing z, there exists g € S with
m sign changes in w.

Let Zp(s) be the number of zeros of a spline counted in this way. It is not obvious
from this definition how to explicitly count the number of zeros of a given spline,
but it is shown in [Boo97] that Zz(s) can be computed directly from the vector a of
coefficients of s, and Zp(s) = Zg(s). The paper also contains a slight improvement
in the inequality Zs(s) < S™(a).

CHAPTER 6. APPROXIMATION POWER OF SPLINES

The direct theorems of Sect. 6.4 showing how well smooth functions can be approx-
imated by polynomial splines are very important for applications. In this book we
have established them with the help of certain quasi-interpolation operators, but
approximation power can also be studied without using them, see [Bo092].

In recent years there has been considerable interest in the question of how well
functions with certain special shape properties can be approximated by splines of
order m with the same shape properties.

Theorem S.4. Given 1 < j < m and an interval I := [a, b], let C',’;(I) ={f €
CI(I): f(x) =0, all x € I}. Then forevery f € C;,(I) there exists a spline s which
is also nonnegative on I such that | D*(f — $)|lec < CA ™ w(fPV; A), for all 0 <
V< j.

This theorem shows that the order of approximation is the same as without the
shape constraint. An even more general version dealing with restricted range approx-
imation can be found in [Bea82a], along with an analogous result in the p-norms.
Some attempt has also been made to extend this result to the case where f has a finite
number of sign changes. Suppose that f changes signata <n; < ... <n, <b.
Then we say that s isa co-positive approximation of f if s hasthe same
sign changes as f, see [HuKY96, HuK'Y99, HuLY95].

There are analogs of Theorem S.4 for approximation of monotone and convex
functions, see [Bea81, Bea82b, ChuSW80, Kop07, LevM82a,b, YuZ94]. For more
on the special cases of quadratic and cubic splines, see [DevHL96, Hu93, HuLY9%4,
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IvaP96, KopLP06, Pry02, Pry05, She97, Utr82]. Shape preserving approximation
with free knots can be found in [KopSh03, LevSha97, Petr96].

CHAPTER 8. OTHER SPACES OF POLYNOMIAL SPLINES

DiscRETE SPLINES. In Theorem 8.67 we established a Schoenberg-Whitney
result for interpolation with discrete B-splines. In [Jia83] this result was strengthened
to show the total positivity of the discrete spline collocation matrix. For other proofs,
see [Mel96, Mor96]. We also point out that discrete splines play an important role in
knot insertion, see [CohLR80, Lyc88, Lyc90, LycM86, Pra84a]. For discrete splines
on the circle, see [MatS79].

SPLINES WITH HERMITE-BIRKHOFF KNOTS. Given a positive integer and
knots y; < --- < y,, suppose E = (¢; j);z;r?;LO is a matrix whose entries are either
0 or 1. Such matrices are called incidence matrices and play a role in the
theory of Hermite-Birkhoff interpolation. [Boj88] introduced the space of splines
of the form p + Ze;,:l aij(yi — 1)y’ “lasa generalization of ordinary polynomial
splines. Under some assumptions on E, he constructed locally supported analogs of
the B-splines, and showed that they satisfy a variation diminishing property as well

as a Schoenberg-Whitney theorem.

CHAPTER 9. TCHEBYCHEFFIAN SPLINES

RECURRENCE RELATIONS. The recurrence relations in Theorems 4.15, 8.53,
and 10.46 are important tools for dealing with polynomial, discrete, and trigonomet-
ric splines, respectively. Analogous recurrence relations were obtained for hyper-
bolic B-splines in [Schu83]. It was shown in [Schu82] that this type of recurrence
relation can only hold for polynomial, trigonometric, and hyperbolic B-splines,
but that a different type of recurrence can hold for certain classes of Tchebychef-
fian splines. For more on recurrence relations for Tchebycheffian B-splines, see
[DynR88, Lyc85, RogB00], and for results for even more general splines connected
with weak Descartes systems, see [SomS88].

DUAL FUNCTIONALS AND BLOSSOMING. For work on dual functionals and
blossoming for Tchebycheffian splines, see [Bar96, Maz01].

KNoT INSERTION. Knotinsertion for Tchebycheffian B-splines has been studied
in [Lyc86].

OTHER PROPERTIES OF TCHEBYCHEFFIAN SPLINES. Shape properties
of Tchebycheffian splines have been studied in [LauMM97] and [LauMMo097],
and their geometry was examined in [Pot93, PotW94]. For blossoms, see [Maz01].
It was shown in [NurSSS84, NurSSS85] that many of the properties of ordinary
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Tchebycheffian splines can be carried over to certain generalized Tchebycheffian
splines. For more on Tchebycheffian B-splines, see [BisP97].

CHAPTER 10. L-SPLINES

Basic THEORY. Locally supported analogs of B-splines were constructed in
Sect. 10.4 for general spaces of L-splines, along with a dual basis for them. For other
treatments, see [Gool84, Jia81, Jia82a,b, LemS92], and for recurrence relations,
see [Li85]. It was shown in [Kryt84, LycS96] that there is also a version of the
Schoenberg-Whitney theorem for LB-splines.

TRIGONOMETRIC SPLINES. Jackson theorems describing the approximation
power of trigonometric polynomials and trigonometric splines have been obtained
in [Koc85, KocL.89a, Sha83]. Further results on the approximation power of trigono-
metric splines were obtained in [LycSS98] based on explicit constructions of certain
quasi-interpolation operators. For a Marsden’s identity, see [CarnP93], and for a par-
tition of unity result, see [Wal97]. In [KocLNS95] control curves for trigonometric
splines are constructed, and it is shown that they have similar properties to those in
the polynomial spline case. This paper also includes formulae for degree raising a
trigonometric spline of order m to one of order m + 2. The analog of the Oslo algo-
rithm for knot insertion is also studied there, and it is shown that the control curves
obtained by repeated subdivision converge to the spline quadratically in the mesh
size. A certain variation diminishing property is also established. A different subdi-
vision scheme which is the analog of the Lane-Riesenfeld algorithm for polynomial
splines was investigated in [JenSDO02]. Blossoming and Marsden-type identities are
also treated. For other results on trigonometric B-splines, see [GooL.83, SakT90].

HyPERBOLIC SPLINES. Onpage 407 we introduced a space of natural hyperbolic
splines. But it was shown in [Schu83] that hyperbolic splines can also be treated
constructively as examples of L-splines. This was done by replacing sin and cos
by sinh and cosh in the definition of trigonometric splines in Sect. 10.8. Then an
appropriate Green’s function could be constructed, leading to hyperbolic B-splines
satisfying a recurrence with the same form as that for trigonometric B-splines. A
dual basis was also constructed in [Schu83].

VARIANTS OF THE HYPERBOLIC AND TRIGONOMETRIC SPLINES. Sev-
eral classes of splines whose piecewise structure is a mix of polynomials and
exponential or trigonometric functions have been developed recently, primarily
as tools in CAGD. Splines whose pieces are spanned by {l, x, e”*, e "} are
called exponential splines in tension. For constructions of locally
supported analogs of the B-splines and other properties of such splines, see
[KocL89b, KocL91, RogB03, Wal89]. For splines whose pieces are spanned by
{1,x,...,x™ ! coshx, sinhx}, see [Lu02]. Splines whose pieces are spanned
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by {1, x, sinx, cos x} were studied in [Zha96, Zha97], where they are called C-
splines. They were also studied in [PotW94] under thenamehelix splines.
Recently, a similar theory was developed in [WanCZ04] for so-called NUAT
splines whose pieces are spanned by the functions {1, x, ..., x"3 cos x, sinx}.
See also [KvaS97, KvaS99]. For degrees of the polynomial pieces vary from interval
to interval, see [Cos97].

CHAPTER 11. GENERALIZED SPLINES

B-SPLINES AND v-SPLINES. In Sects. 11.1-11.4 we developed some basic
properties of polynomial splines where the derivative conditions defining smooth-
ness at each knot are replaced by more general linear functionals. Certain spaces
of such splines were independently studied in the CAGD literature, unfortunately
without reference to Chapter 11 of this book, or to the existing spline literature
on such splines as described in Sect. 11.8. An example of such splines are the v-
splines introduced in [Nie74]. They are C! piecewise cubics associated with
a set of knots x; < --- < x; such that s"(x;") = s"(x7 )+ vis'(x]), i = 1,... k.
The v; were used to introduce tension into certain interpolating curves. A closely
related space of splines are the f-splines introduced in [Bars81] as a tool
for constructing parametric splines with geometric continuity. They were stud-
ied in a string of papers, see [BarDGM91, BarsB83, BarsD85, BarsD90, BartB97,
BartBB87, DieT89, GolBar89, Goo85, GooU85, Joe90]. A B-spline s associated
with a set of knots x; < --- < x; is just a C' piecewise cubic such that s”(x;’) =
ﬂfzs”(xi_) + Biis'(x;7 ), fori =1,..., k. The B; 1, B> can be considered as shape
parameters. Many of the properties of ordinary splines were carried over to 8-splines,
including the construction of locally supported basis functions satisfying recurrence
relations and knot insertion. There is even a version of discrete S-spline, see [Joe87].

NURBSs. In Sect. 11.6 we outlined the theory of rational splines as it was known
in 1980. For further developments, see [Schn93]. There are other kinds of ratio-
nal splines which have turned out to be very important in applications, namely the
so-called NURBs, or nonuniform rational B-splines. They were intro-
duced in [Ves75]. Suppose N{*,..., N, are a set of B-splines defined on some
interval [a, b]. Foreachi = 1,...,n, let¢; € R?, and let w; > 0. Then a NURB is
defined to be the parametric curve s(¢) := > ;_, w;¢; N"(t)/ >_;_, w; N/"(t). Curves
of this type have several advantages over the usual parametric splines, most notably
the fact that they are capable of modeling conic sections exactly. For a detailed
treatment of NURBSs, see [Far95, HosLL93, PieT95].

CoMPLEX SPLINES. In Sect. 11.7 we discuss certain complex-valued splines
defined on intervals. The section is short since not much was known at the time,
and it seems that the subject has not attracted much additional attention, but see
[Chen81, Chen83, Wal90, Wal91].
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Other New Results

BASEs IN BANACH SPACES. Splines have been used to construct unconditional
(Riesz) bases in various Banach spaces. There is a sizable literature. To get an idea
of what has been done, see [CieF82a—83, Rop76a,b].

WAVELETS. The concept of wavelets has received a great deal of attention in the
last 15-20 years. Wavelets are extremely useful tools for creating multi-resolution
representations of functions, and can be used for compression and noise reduction in
signals (and in images in the bivariate case). There are a variety of different wavelets
in the literature, some of which are based on splines. For a treatment of the theory
as it existed in 1992, see [Chu92]. For a recent survey with an extensive reference
list, see [Wan06].

We explain the main ideas for the cardinal spline case, i.e., for splines defined
on all of R, following [ChuW91-94]. Fix a positive integer m, and let N be the
normalized B-spline with support on [0, m] and knots at the integers, see Sect. 4.4.
Suppose V) is the closure in L,(R) of the span of {N"(x — k)}. This is a spline
space defined on the infinite knot sequence Z. For each integer j, let V; be the
corresponding space defined on the knot sequence 27/ Z. These spline spaces are
nested in the sense that --- C V_1 C Vp C V; C ---. In fact, one can show that
N™(x) =Yy 27 (7} )N’”(Zx — k). This is calledatwo scale relation.
Now for each j, let W; be such that V;; = V; @ W;, where & denotes the direct
sum with respect to the L, inner product. Then it can be shown that W, is the
L, closure of the span of {/"(2/x — k)}, where ¥ (x) := ZimOz g.N"(2x — n)
and g, == (=1)"27" " 3" (Y)N*"(n + 1 —i). The function ¥" is called the
mother spline wavelet and has support on the interval [0, 2m — 1]. For
full details, see [Chu92, Wan06].

The case of a finite interval is more complicated, particularly if we
allow nonuniform knots, and was studied first in [ChuQ92, CohDF92]. For
additional results, see [Bit06, BuhM92, ChoL06, ChuD98, DahKU99, DonGH96,
Go0003, Gool.94, Jia06, LaiN06, LycM92, LycMQO1, QuaW94a]. This is only a
partial list of the extensive literature. For further references, see [Wan06]. Tensor-
product spline wavelets were investigated in [QuaW94b]. L-spline wavelets were
introduced in [LycS94], see also [KouR02].

Recent Spline Books

A number of books on splines have appeared since 1983. We do not attempt to
list them all here, see [BezV01, BojHS93, Boo0O1, Chu88, Die93, Kva00, LaiS07,
Nur89, Vas83, Wang01, ZavKM80]. The reader should also consult the follow-
ing books which focus on CAGD, but which contain a considerable amount of
material on splines: [BartBB87, CohREO1, Far87, Far90, Far95, HosL93, PiegT95,
PraBP02].
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