

Preface to the Third Edition

A new edition of a text presents not only an opportunity for corrections
and minor changes but also for adding new material. Thus we strived to
improve the presentation of Hermite interpolation and B-splines in Chap-
ter 2, and we added a new Section 2.4.6 on multi-resolution methods and
B-splines, using, in particular, low order B-splines for purposes of illustra-
tion. The intent is to draw attention to the role of B-splines in this area,
and to familiarize the reader with, at least, the principles of multi-resolution
methods, which are fundamental to modern applications in signal- and im-
age processing.

The chapter on differential equations was enlarged, too: A new Section
7.2.18 describes solving differential equations in the presence of disconti-
nuities whose locations are not known at the outset. Such discontinuities
occur, for instance, in optimal control problems where the character of a
differential equation is affected by control function changes in response to
switching events.

Many applications, such as parameter identification, lead to differential
equations which depend on additional parameters. Users then would like
to know how sensitively the solution reacts to small changes in these pa-
rameters. Techniques for such sensitivity analyses are the subject of the
new Section 7.2.19.

Multiple shooting methods are among the most powerful for solving
boundary value problems for ordinary differential equations. We dedicated,
therefore, a new Section 7.3.8 to new advanced techniques in multiple shoot-
ing, which especially enhance the efficiency of these methods when applied
to solve boundary value problems with discontinuities, which are typical
for optimal contol problems.

Among the many iterative methods for solving large sparse linear equa-
tions, Krylov space methods keep growing in importance. We therefore
treated these methods in Section 8.7 more systematically by adding new
subsections dealing with the GMRES method (Section 8.7.2), the biorthog-
onalization method of Lanczos and the (principles of the) QMR method
(Section 8.7.3), and the Bi-CG and Bi-CGSTAB algorithms (Section 8.7.4).
Correspondingly, the final Section 8.10 on the comparison of iterative meth-
ods was updated in order to incorporate the findings for all Krylov space
methods described before.

The authors are greatly indebted to the many who have contributed

vii

viii Preface to the Third Edition

to the new edition. We thank R. Grigorieff for many critical remarks on
earlier editions, M. v. Golitschek for his recommendations concerning B-
splines and their application in multi-resolution methods, and Ch. Pflaum
for his comments on the chapter dealing with the iterative solution of linear
equations. T. Kronseder and R. Callies helped substantially to establish
the new sections 7.2.18, 7.2.19, and 7.3.8. Suggestions by Ch. Witzgall,
who had helped translate a previous edition, were highly appreciated and
went beyond issues of language. Our co-workers M. Preiss and M. Wenzel
helped us read and correct the original german version. In particular, we
appreciate the excellent work done by J. Launer and Mrs. W. Wrschka
who were in charge of transcribing the full text of the new edition in TEX.

Finally we thank the Springer-Verlag for the smooth cooperation and
expertise that lead to a quick realization of the new edition.

Würzburg, München J. Stoer
January 2002 R. Bulirsch

Preface to the Second Edition

On the occasion of the new edition, the text was enlarged by several new
sections. Two sections on B-splines and their computation were added to
the chapter on spline functions: due to their special properties, their flex-
ibility, and the availability of well tested programs for their computation,
B-splines play an important role in many applications.

Also, the authors followed suggestions by many readers to supplement
the chapter on elimination methods by a section dealing with the solution
of large sparse systems of linear equations. Even though such systems
are usually solved by iterative methods, the realm of elimination methods
has been widely extended due to powerful techniques for handling sparse
matrices. We will explain some of these techniques in connection with the
Cholesky algorithm for solving positive definite linear systems.

The chapter on eigenvalue problems was enlarged by a section on the
Lanczos algorithm; the sections on the LR- and QR algorithm were rewrit-
ten and now contain also a description of implicit shift techniques.

In order to take account of the progress in the area of ordinary dif-
ferential equations to some extent, a new section on implicit differential
equations and differential-algebraic systems was added, and the section on
stiff differential equations was updated by describing further methods to
solve such equations.

Also the last chapter on the iterative solution of linear equations was
improved. The modern view of the conjugate gradient algorithm as an
iterative method was stressed by adding an analysis of its convergence
rate and a description of some preconditioning techniques. Finally, a new
section on multigrid methods was incorporated: It contains a description
of their basic ideas in the context of a simple boundary value problem for
ordinary differential equations.

ix

x Preface to the Second Edition

Many of the changes were suggested by several colleagues and readers. In
particular, we would like to thank R. Seydel, P. Rentrop and A. Neumaier
for detailed proposals, and our translators R. Bartels, W. Gautschi and C.
Witzgall for their valuable work and critical commentaries. The original
German version was handled by F. Jarre, and I. Brugger was responsible
for the expert typing of the many versions of the manuscript.

Finally we thank the Springer-Verlag for the encouragement, patience
and close cooperation leading to this new edition.

Würzburg, München J. Stoer
May 1991 R. Bulirsch

Contents

Preface to the Third Edition VII

1 Error Analysis 1
1.1 Representation of Numbers 2
1.2 Roundoff Errors and Floating-Point Arithmetic 4
1.3 Error Propagation 9
1.4 Examples 21
1.5 Interval Arithmetic; Statistical Roundoff Estimation 27

Exercises for Chapter 1 33
References for Chapter 1 36

2 Interpolation 37
2.1 Interpolation by Polynomials 38
2.1.1 Theoretical Foundation: The Interpolation Formula of Lagrange 38
2.1.2 Neville’s Algorithm 40
2.1.3 Newtons Interpolation Formula: Divided Differences 43
2.1.4 The Error in Polynomial Interpolation 48
2.1.5 Hermite Interpolation 51
2.2 Interpolation by Rational Functions 59
2.2.1 General Properties of Rational Interpolation 59
2.2.2 Inverse and Reciprocal Differences. Thiele’s Continued Fraction 64
2.2.3 Algorithms of the Neville Type 68
2.2.4 Comparing Rational and Polynomial Interpolation 73
2.3 Trigonometric Interpolation 74
2.3.1 Basic Facts 74
2.3.2 Fast Fourier Transforms 80
2.3.3 The Algorithms of Goertzel and Reinsch 88
2.3.4 The Calculation of Fourier Coefficients. Attenuation Factors 92

xi

Preface to the Second Edition IX

xii Contents

2.4 Interpolation by Spline Functions 97
2.4.1 Theoretical Foundations 97
2.4.2 Determining Interpolating Cubic Spline Functions 101
2.4.3 Convergence Properties of Cubic Spline Functions 107
2.4.4 B-Splines 111
2.4.5 The Computation of B-Splines 117
2.4.6 Multi-Resolution Methods and B-Splines 121

Exercises for Chpater 2 134
References for Chapter2 143

3 Topics in Integration 145

3.1 The Integration Formulas of Newton and Cotes 146
3.2 Peano’s Error Representation 151
3.3 The Euler-Maclaurin Summation Formula 156
3.4 Integration by Extrapolation 160
3.5 About Extrapolation Methods 165
3.6 Gaussian Integration Methods 171
3.7 Integrals with Singularities 181

Exercises for Chapter 3 184
References for Chapter 3 188

4 Systems of Linear Equations 190

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 190
4.2 The Gauss-Jordan Algorithm 200
4.3 The Choleski Decompostion 204
4.4 Error Bounds 207
4.5 Roundoff-Error Analysis for Gaussian Elimination 215
4.6 Roundoff Errors in Solving Triangular Systems 221
4.7 Orthogonalization Techniques of Householder and Gram-Schmidt 223
4.8 Data Fitting 231
4.8.1 Linear Least Squares. The Normal Equations 232
4.8.2 The Use of Orthogonalization in Solving Linear Least-Squares

Problems 235
4.8.3 The Condition of the Linear Least-Squares Problem 236
4.8.4 Nonlinear Least-Squares Problems 241
4.8.5 The Pseudoinverse of a Matrix 243
4.9 Modification Techniques for Matrix Decompositions 247
4.10 The Simplex Method 256
4.11 Phase One of the Simplex Method 268
4.12 Appendix: Elimination Methods for Sparse Matrices 272

Exercises for Chapter 4 280
References for Chapter 4 286

Contents xiii

5 Finding Zeros and Minimum Points by Iterative
Methods 289

5.1 The Development of Iterative Methods 290
5.2 General Convergence Theorems 293
5.3 The Convergence of Newton’s Method in Several Variables 298
5.4 A Modified Newton Method 302
5.4.1 On the Convergence of Minimization Methods 303
5.4.2 Application of the Convergence Criteria to the Modified

Newton Method 308
5.4.3 Suggestions for a Practical Implementation of the Modified

Newton Method. A Rank-One Method Due to Broyden 313
5.5 Roots of Polynomials. Application of Newton’s Method 316
5.6 Sturm Sequences and Bisection Methods 328
5.7 Bairstow’s Method 333
5.8 The Sensitivity of Polynomial Roots 335
5.9 Interpolation Methods for Determining Roots 338
5.10 The ∆2-Method of Aitken 344
5.11 Minimization Problems without Constraints 349

Exercises for Chapter 5 358
References for Chapter 5 361

6 Eigenvalue Problems 364
6.0 Introduction 364
6.1 Basic Facts on Eigenvalues 366
6.2 The Jordan Normal Form of a Matrix 369
6.3 The Frobenius Normal Form of a Matrix 375
6.4 The Schur Normal Form of a Matrix; Hermitian and

Normal Matrices; Singular Values of Matrixes 379
6.5 Reduction of Matrices to Simpler Form 386
6.5.1 Reduction of a Hermitian Matrix to Tridiagonal Form:

The Method of Householder 388
6.5.2 Reduction of a Hermitian Matrix to Tridiagonal or Diagonal

Form: The Methods of Givens and Jacobi 394
6.5.3 Reduction of a Hermitian Matrix to Tridiagonal Form:

The Method of Lanczos 398
6.5.4 Reduction to Hessenberg Form 402
6.6 Methods for Determining the Eigenvalues and Eigenvectors 405
6.6.1 Computation of the Eigenvalues of a Hermitian

Tridiagonal Matrix 405
6.6.2 Computation of the Eigenvalues of a Hessenberg Matrix.

The Method of Hyman 407
6.6.3 Simple Vector Iteration and Inverse Iteration of Wielandt 408
6.6.4 The LR and QR Methods 415
6.6.5 The Practical Implementation of the QR Method 425

xiv Contents

6.7 Computation of the Singular Values of a Matrix 436
6.8 Generalized Eigenvalue Problems 440
6.9 Estimation of Eigenvalues 441

Exercises for Chapter 6 455
References for Chapter 6 462

7 Ordinary Differential Equations 465
7.0 Introduction 465
7.1 Some Theorems from the Theory of Ordinary Differential

Equations 467
7.2 Initial-Value Problems 471
7.2.1 One-Step Methods: Basic Concepts 471
7.2.2 Convergence of One-Step Methods 477
7.2.3 Asymptotic Expansions for the Global Discretization Error

of One-Step Methods 480
7.2.4 The Influence of Rounding Errors in One-Step Methods 483
7.2.5 Practical Implementation of One-Step Methods 485
7.2.6 Multistep Methods: Examples 492
7.2.7 General Multistep Methods 495
7.2.8 An Example of Divergence 498
7.2.9 Linear Difference Equations 501
7.2.10 Convergence of Multistep Methods 504
7.2.11 Linear Multistep Methods 508
7.2.12 Asymptotic Expansions of the Global Discretization Error for

Linear Multistep Methods 513
7.2.13 Practical Implementation of Multistep Methods 517
7.2.14 Extrapolation Methods for the Solution of the Initial-Value

Problem 521
7.2.15 Comparison of Methods for Solving Initial-Value Problems 524
7.2.16 Stiff Differential Equations 525
7.2.17 Implicit Differential Equations. Differential-Algebraic Equations 531
7.2.18 Handling Discontinuities in Differential Equations 536
7.2.19 Sensitivity Analysis of Initial-Value Problems 538
7.3 Boundary-Value Problems 539
7.3.0 Introduction 539
7.3.1 The Simple Shooting Method 542
7.3.2 The Simple Shooting Method for Linear Boundary-Value

Problems 548
7.3.3 An Existence and Uniqueness Theorem for the Solution of

Boundary-Value Problems 550
7.3.4 Difficulties in the Execution of the Simple Shooting

Method 552
7.3.5 The Multiple Shooting Method 557

Contents xv

7.3.6 Hints for the Practical Implementation of the Multiple
Shooting Method 561

7.3.7 An Example: Optimal Control Program for a Lifting Reentry
Space Vehicle 565

7.3.8 Advanced Techniques in Multiple Shooting 572
7.3.9 The Limiting Case m→ ∞ of the Multiple Shooting Method

(General Newton’s Method, Quasilinearization) 577
7.4 Difference Methods 582
7.5 Variational Methods 586
7.6 Comparison of the Methods for Solving Boundary-Value Problems

for Ordinary Differential Equations 596
7.7 Variational Methods for Partial Differential Equations

The Finite-Element Method 600
Exercises for Chapter 7 607
References for Chapter 7 613

8 Iterative Methods for the Solution of
Large Systems of Linear Equations.
Additional Methods 619

8.0 Introduction 619
8.1 General Procedures for the Construction of Iterative Methods 621
8.2 Convergence Theorems 623
8.3 Relaxation Methods 629
8.4 Applications to Difference Methods—An Example 639
8.5 Block Iterative Methods 645
8.6 The ADI-Method of Peaceman and Rachford 647
8,7 Krylov Space Methods for Solving Linear Equations 657
8.7.1 The Conjugate-Gradient Method of Hestenes and Stiefel 658
8.7.2 The GMRES Algorithm 667
8.7.3 The Biorthogonalization Method of Lanczos and the QMR

algorithm 680
8.7.4 The Bi-CG and BI-CGSTAB Algorithms 686
8.8 Buneman’s Algorithm and Fourier Methods for Solving the

Discretized Poisson Equation 691
8.9 Multigrid Methods 702
8.10 Comparison of Iterative Methods 712

Exercises for Chapter 8 719
References for Chapter 8 727

General Literature on Numerical Methods 730
Index 732

1 Error Analysis

Assessing the accuracy of the results of calculations is a paramount goal
in numerical analysis. One distinguishes several kinds of errors which may
limit this accuracy:

(1) errors in the input data,
(2) roundoff errors,
(3) approximation errors.

Input or data errors are beyond the control of the calculation. They
may be due, for instance, to the inherent imperfections of physical mea-
surements. Roundoff errors arise if one calculates with numbers whose rep-
resentation is restricted to a finite number of digits, as is usually the case.

As for the third kind of error, many methods will not yield the exact
solution of the given problem P , even if the calculations are carried out
without rounding, but rather the solution of another simpler problem P̃
which approximates P . For instance, the problem P of summing an infinite
series, e.g.,

e = 1 +
1
1!

+
1
2!

+
1
3!

+ · · · ,

may be replaced by the simpler problem P̃ of summing only up to a finite
number of terms of the series. The resulting approximation error is com-
monly called a truncation error (however, this term is also used for the
roundoff related error committed be deleting any last digit of a number
representation). Many approximating problems P are obtained by “dis-
cretizing” the original problem P : definite integrals are approximated by
finite sums, differential quotients by a difference quotients, etc. In such
cases, the approximation error is often referred to as discretization error.
Some authors extend the term “truncation error” to cover discretization
errors.

In this chapter, we will examine the general effect of input and roundoff
errors on the result of a calculation. Approximation errors will be discussed
in later chapters as we deal with individual methods. For a comprehensive
treatment of roundoff errors in floating-point computation see Sterbenz
(1974).

2 1 Error Analysis

1.1 Representation of Numbers

Based on their fundamentally different ways of representing numbers, two
categories of computing machinery can be distinguished:

(1) analog computers,
(2) digital computers.

Examples of analog computers are slide rules and mechanical integrators as
well as electronic analog computers. When using these devices one replaces
numbers by physical quantities, e.g., the length of a bar or the intensity of a
voltage, and simulates the mathematical problem by a physical one, which
is solved through measurement, yielding a solution for the original mathe-
matical problem as well. The scales of a slide rule, for instance, represent
numbers x by line segments of length k ln x. Multiplication is simulated by
positioning line segments contiguously and measuring the combined length
for the result.

It is clear that the accuracy of analog devices is directly limited by the
physical measurements they employ.

Digital computers express the digits of a number representation by a
sequence of discrete physical quantities. Typical instances are desk calcu-
lators and electronic digital computers.

Example

123101 ←→

Each digit is represented by a specific physical quantity. Since only a
small finite number of different digits have to be encoded – in the decimal
number system, for instance, there are only 10 digits – the representation of
digits in digital computers need not be quite as precise as the representation
of numbers in analog computers. Thus one might tolerate voltages between,
say, 7.8 and 8.2 when aiming at a representation of the digit 8 by 8 volts.

Consequently, the accuracy of digital computers is not directly limited
by the precision of physical measurements.

For technical reasons, most modern electronic digital computers rep-
resent numbers internally in binary rather than decimal form. Here the
coefficients or bits αi of a decomposition by powers of 2 play the role of
digits in the representation of a number x:

x = ±(αn2n + αn−12n−1 + · · · + α020 + α−12−1 + α−22−2 + · · ·),

αi = 0 or αi = 1.

1.1 Representation of Numbers 3

In order not to confuse decimal an binary representations of numbers, we
denote the bits of binary number representation by O and L, respectively.

Example. The number x = 18.5 admits the decomposition

18.5 = 1 · 24 + 0 · 23 + 0 · 22 + 1 · 21 + 0 · 20 + 1 · 2−1

and has therefore the binary representation

L00L0.L.

We will use mainly the decimal system, pointing out differences between
the two systems whenever it is pertinent to the examination at hand.

As the example 3.999 . . . = 4 shows, the decimal representation of a
number may not be unique. The same holds for binary representations. To
exclude such ambiguities, we will always refer to the finite representation
unless otherwise stated.

In general, digital computers must make do with a fixed finite number
of places, the word length, when internally representing a number. This
number n is determined by the make of the machine, although some ma-
chines have built-in extensions to integer multiples 2n, 3n, . . . (double word
length, triple word length, . . .) of n to offer greater precision if needed. A
word length of n places can be used in several different fashions to repre-
sent a number. Fixed-point representation specifies a fixed number n1 of
places before and a fixed number n2 after the decimal (binary) point, so
that n = n1 + n2 (usually n1 = 0 or n1 = n).

Example. For n = 10, n1 = 4, n2 = 6

30.421 → 0030 421000

0.0437 → 0000︸ ︷︷ ︸
n1

043700︸ ︷︷ ︸
n2

In this representation, the position of the decimal (binary) point is
fixed. A few simple digital devices, mainly for accounting purposes, are still
restricted to fixed-point representation. Much more important, in particu-
lar for scientific calculations, are digital computers featuring floating-point
representation of numbers. Here the decimal (binary) point is not fixed at
the outset; rather its position with respect to the first digit is indicated for
each number separately. This is done by specifying a so-called exponent. In
other words, each real number can be represented in the form

(1.1.1) x = a× 10b (x = a× 2b) with |a| < 1, b integer

(say, 30.421 by 0.30421× 102), where the exponent b indicates the position
of the decimal point with respect to the mantissa a. Rutishauser proposed
the following “semilogarithmic” notation,which displays the basis of the

4 1 Error Analysis

number system at the subscript level and moves the exponent up to the
level of the mantissa:

0.30421102.

Analogously,
0.L00L0L2L0L

denotes the number 18.5 in the binary system. On any digital computer
there are, of course, only fixed finite numbers t and e, n = t+ e, of places
available for the representation of mantissa and exponent, respectively.

Example. For t = 4, e = 2 one would have the floating-point representation

0 5420 10 04 or more concisely 5420 04

for the number 5420 in the decimal system.

The floating-point representation of a number need not be unique. Since
5420 = 0.542104 = 0.0542105, one could also have the floating-point repre-
sentation

0 0542 10 05 or 0542 05

instead of the one given in the above example.
A floating-point representation is normalized if the first digit (bit) of

the mantissa is different from 0 (0). Then |a| ≥ 10−1(|a| ≥ 2−1) holds
in (1.1.1). The significant digits (bits) of a number are the digits of the
mantissa not counting leading zeros.

In what follows, we will only consider normalized floating-point repre-
sentations and the corresponding floating-point arithmetic. The numbers t
and e determine – together with the basis B = 10 or B = 2 of the number
representation – the set A ⊆ IR of real numbers which can be represented
exactly within a given machine. The elements of A are called machine
numbers.

While normalized floating-point arithmetic is prevalent on current
electronic digital computers, unnormalized arithmetic has been proposed
to ensure that only truly significant digits are carried [Ashenhurst and
Metropolis, (1959)].

1.2 Roundoff Errors and Floating-Point Arithmetic

The set A of numbers which are representable in a given machine is only
finite. The question therefore arises of how to approximate a number x �∈ A
which is not a machine number by a number g ∈ A which is. This problem
is encountered not only when reading data into a computer, but also when
representing intermediate results within the computer during the course

1.2 Roundoff Errors and Floating-Point Arithmetic 5

of a calculation. Indeed, straightforward examples show that the results of
elementary arithmetic operations x ± y, x × y, x/y need not belong to A,
even if both operands x, y ∈ A are machine numbers.

It is natural to postulate that the approximation of any number x �∈ A
by a machine number rd(x) ∈ A should satisfy

(1.2.1) |x− rd(x)| ≤ |x− g| for all g ∈ A .

Such a machine-number approximation rd(x) can be obtained in most cases
by rounding.

Example 1 (t = 4).

rd(0.14285100) = 0.1429100,
rd(3.14159100) = 0.3142101,
rd(0.142842102) = 0.1428102.

In general, one can proceed as follows in order to find rd(x) for a t-digit
computer: x �∈ A is first represented in normalized form x = a × 10b, so
that |a| ≥ 10−1. Suppose the decimal respresentation of |a| is given by

|a| = 0.α1α2 . . . αiαi+1 . . . , 0 ≤ αi ≤ 9, α1 �= 0.

Then one forms

a′ :=
{

0.α1α2 . . . αt if 0 ≤ αt+1 ≤ 4,
0.α1α2 . . . αt + 10−t if αt+1 ≥ 5,

that is, one increases αt by 1 if the (t+ 1)st digit at+1 ≥ 5, and deletes all
digits after the tth one. Finally one puts

r̃d(x) := sign(x) · a′ × 10b.

Since |a| ≥ 10−1, the “relative error” of r̃d(x) admits the following bound
(Scarborough, 1950):∣∣∣∣∣ r̃d(x) − x

x

∣∣∣∣∣ ≤ 5 × 10−(t+1)

|a| ≤ 5 × 10−t.

With the abbreviation eps := 5 × 10−t, this can be written as

(1.2.2) r̃d(x) = x(1 + ε), where |ε| ≤ eps .

The quantity eps = 5 × 10−t is called the machine precision. In the binary
system, r̃d(x) is defined analogously: Starting with a decomposition x =
a · 2b satisfying 2−1 ≤ |a| < 1 and the binary representation of |a|,

|a| = 0.α1 . . . αtαt+1 . . . , αi = 0 or L, α1 = L,

6 1 Error Analysis

one forms

a′ :=
{

0.α1 . . . αt if αt+1 = 0,
0.α1 . . . αt + 2−t if αt+1 = L,

r̃d(x) := sign(x) · a′ × 2b.

Again (1.2.2) holds, provided one defines the machine precision by eps :=
2−t.

Whenever r̃d(x) ∈ A is a machine number, then r̃d has the property
(1.2.1) of a correct rounding process, and we may define

r̃d(x) := rd(x) for all x with r̃d(x) ∈ A.

Because only a finite number e of places are available to express the ex-
ponent in a floating-point representation, there are unfortunately always
numbers x /∈ A with r̃d(x) /∈ A.

Example 2 (t = 4, e = 2).

a) r̃d(0.3179410110) = 0.317910110 �∈ A.

b) r̃d(0.999971099) = 0.100010100 �∈ A.

c) r̃d(0.01234510– 99) = 0.123510–100 �∈ A.

d) r̃d(0.5432110– 110) = 0.543210–110 �∈ A.

In cases (a) and (b) the exponent is too greatly positive to fit the allotted
space: These are instances of exponent overflow. Case (b) is particularly
pathological: Exponent overflow happens only after rounding. Cases (c) and
(d) are instances of exponent underflow, i.e. the exponent of the number
represented is too greatly negative. In cases (c) and (d) exponent underflow
may be prevented by defining

(1.2.3)
rd(0.01234510 − 99) := 0.012310 − 99 ∈ A,
rd(0.5432110 − 110) := 0 ∈ A.

But then rd does not satisfy (1.2.2), that is, the relative error of rd(x)
may exceed eps. Digital computers treat occurrences of exponent overflow
and underflow as irregularities of the calculation. In the case of exponent
underflow, rd(x) may be formed as indicated in (1.2.3). Exponent overflow
may cause a halt in calculations. In the remaining regular cases (but not
for all makes of computers), rounding is defined by

rd(x) := r̃d(x).

Exponent overflow and underflow can be avoided to some extent by suitable
scaling of the input data and by incorporating special checks and rescalings
during computations. Since each different numerical method will require its
own special protection techniques, and since overflow and underflow do not

1.2 Roundoff Errors and Floating-Point Arithmetic 7

happen very frequently, we will make the idealized assumption that e = ∞
in our subsequent discussions, so that rd := r̃d does indeed provide a rule
for rounding which ensures

(1.2.4)
rd : IR → A,

rd(x) = x(1 + ε) with |ε| ≤ eps for all x ∈ IR.

In further examples we will, correspondingly, give the length t of the man-
tissa only. The reader must bear in mind, however, that subsequent state-
ments regarding roundoff errors max be invalid if overflows or underflows
are allowed to happen.

We have seen that the results of arithmetic operations x±y, x×y, x/y
need not be machine numbers, even if the operands x and y are. Thus one
cannot expect to reproduce the arithmetic operations exactly on a digital
computer. One will have to be content with substitute operations +∗, −∗,
×∗, /∗, so called floating-point operations, which approximate arithmetic
operations as well as possible [v. Neumann and Goldstein (1947)]. Such
operations my be defined, for instance, with the help of the rounding map
rd as follows

(1.2.5)

x+∗ y := rd(x+ y),
x−∗ y := rd(x− y),
x×∗ y := rd(x× y),
x /∗ y := rd(x/y),

for x, y ∈ A,

so that (1.2.4) implies

(1.2.6)

x+∗ y = (x+ y)(1 + ε1)
x−∗ y = (x− y)(1 + ε2)
x×∗ y = (x× y)(1 + ε3)
x /∗ y = (x/y)(1 + ε4)

 |εi| ≤ eps .

On many modern computer installations, the floating-point operations
±∗, . . . are not defined by (1.2.5), but instead in such a way that (1.2.6)
holds with only a somewhat weaker bound, say |εi| ≤ k · eps, k ≥ 1 be-
ing a small integer. Since small deviations from (1.2.6) are not significant
for our examinations, we will assume for simplicity that the floating-point
operations are in fact defined by (1.2.5) and hence satisfy (1.2.6).

It should be pointed out that the floating-point operations do not satisfy
the well-known laws for arithmetic operations. For instance,

x+∗ y = x, if |y| < eps
B

|x|, x, y ∈ A,

where B is the basis of the number system. The machine precision eps
could indeed be defined as the smallest positive machine number g for
which 1 +∗ g > 1:

8 1 Error Analysis

eps = min{ g ∈ A | 1 +∗ g > 1 and g > 0 }.

Furthermore, floating-point operations need not be associative or distribu-
tive.

Example 3 (t = 8). With

a := 0.2337125810 − 4,
b := 0.33678429102,
c := −0.33677811102,

one has
a+∗ (b+∗ c) = 0.2337125810 − 4 +∗ 0.6180000010 − 3

= 0.6413712610 − 3,
(a+∗ b) +∗ c = 0.33678452102 −∗ 0.33677811102

= 0.6410000010 − 3.

The exact result is
a+ b+ c = 0.64137125810 − 3.

When subtracting two numbers x, y ∈ A of the same sign, one has to
watch out for cancellation. This occurs if x and y agree in one or more
leading digits with respect to the same exponent, e.g.,

x = 0.315876101,
y = 0.314289101.

The subtraction causes the common leading digits to disappear. The exact
result x−y is consequently a machine number, so that no new roundoff error
arises, x−∗ y = x− y. In this sense, subtraction in the case of cancellation
is a quite harmless operation. We will see in the next section, however,
that cancellation is extremely dangerous concerning the propagation of old
errors, which stem from the calculation of x and y prior to carrying out
the subtraction x− y.

For expressing the result of floating-point calculations, a convenient
but slightly imprecise notation has been widely accepted, and we will use
it frequently ourselves: If it is clear from the context how to evaluate an
arithmetic expression E (if need be this can be specified by inserting suit-
able parentheses), then fl(E) denotes the value of the expression as obtained
by floating-point arithmetic.

Example 4.

fl(x× y) := x×∗ y,
fl(a+ (b+ c)) := a+∗ (b+∗ c),
fl((a+ b) + c) := (a+∗ b) +∗ c.

We will also use the notation fl(
√
x), fl(cos(x)), etc., whenever the digital

computer approximates functions
√

, cos, etc., by substitutes
√∗
, cos∗, etc.

Thus fl(
√
x) :=

√
x

∗, and so on.

1.3 Error Propagation 9

The arithmetic operations +,−,×, /, together with those basic func-
tions like

√
, cos, for which floating-point substitutes

√∗
, cos∗, etc., have

been specified, will be called elementary operations. .

1.3 Error Propagation

We have seen in the previous section (Example 3) that two different but
mathematically equivalent methods (a + b) + c, a + (b + c) for evaluating
the same expression a+ b+ c may lead to different results if floating-point
arithmetic is used. For numerical purposes it is therefore important to dis-
tinguish between different evaluation schemes even if they are mathemat-
ically equivalent. Thus we call a finite sequence of elementary operations
(as given for instance by consecutive computer instructions) which pre-
scribes how to calculate the solution of a problem from given input data,
an algorithm.

We will formalize the notion of an algorithm somewhat. Suppose a
problem consists of calculating desired result numbers y1, . . . , ym from in-
put numbers x1, . . . , xn. If we introduce the vectors

x =

 x1
...
xn

 , y =

 y1...
ym

 ,
then solving the above problem means determining the value y = ϕ(x) of
a certain multivariate vector function ϕ : D → IRm, D ⊆ IRn where ϕ is
given by m real functions ϕi,

yi = ϕi(x1, . . . xn), i = 1, . . . ,m.

At each stage of a calculation there is an operand set of numbers, which
either are original input numbers xi or have resulted from previous op-
erations. A single operation calculates a new number from one or more
elements of the operand set. The new number is either an intermediate or
a final result. In any case, it is adjoined to the operand set, which then
is purged of all entries that will not be needed as operands during the re-
mainder of the calculation. The final operand set will consist of the desired
results y1, . . . , ym.

Therefore, an operation corresponds to a transformation of the operand
set. Writing consecutive operand sets as vectors,

x(i) =

x
(i)
1
...
x

(i)
ni

 ∈ IRni ,

10 1 Error Analysis

we can associate with an elementary operation an elementary map

ϕ(i) : Di → IRni+1 , Di ⊆ IRni ,

so that
ϕ(i)(x(i)) = x(i+1),

where (x(i+1)) is a vector of the transformed operand set. The elementary
map ϕ(i) is uniquely defined except for inconsequential permutations of
x(i) and x(i+1) which stem from the arbitrariness involved in arranging the
corresponding operand sets in the form of vectors.

Given an algorithm, then its sequence of elementary operations gives
rise to a decomposition of ϕ into a sequence of elementary maps

(1.3.1)
ϕ(i) : Di → Di+1, Dj ⊆ IRnj ,

ϕ = ϕ(r) ◦ ϕ(r−1) ◦ · · · ◦ ϕ(0), D0 = D, Dr+1 ⊆ IRnr+1 = IRm,

which characterize the algorithm.

Example 1. For ϕ(a, b, c) = a+ b+ c consider the two algorithms η := a+ b, y :=
c+ η and η := b+ c, y := a+ η. The decompositions (1.3.1) are

ϕ(0)(a, b, c) :=

[
a+ b

c

]
∈ IR2, ϕ(1)(u, v) := u+ v ∈ IR

and

ϕ(0)(a, b, c) :=

[
a

b+ c

]
∈ IR2, ϕ(1)(u, v) := u+ v ∈ IR.

Example 2. Since a2−b2 = (a+b)(a−b), one has for the calculation of ϕ(a, b) :=
a2 − b2 the two algorithms

Algorithm 1: η1 := a× a, Algorithm 2: η1 := a+ b,
η2 := b× b, η2 := a− b,
y := η1 − η2, y := η1 × η2.

Corresponding decompositions (1.3.1) are

Algorithm 1:

ϕ(0)(a, b) :=

[
a2

b

]
, ϕ(1)(u, υ) :=

[
u

υ2

]
, ϕ(2)(u, υ) := u− υ.

Algorithm 2:

ϕ(0)(a, b) :=

[
a
b

a+ b

]
, ϕ(1)(a, b, υ) :=

[
υ

a− b

]
, ϕ(2)(u, υ) := u · υ.

Note that the decomposition of ϕ(, b) := a2 − b2 corresponding to Algorithm
1 above can be telescoped into a simpler decomposition:

1.3 Error Propagation 11

ϕ̄(0)(a, b) =

[
a2

b2

]
, ϕ̄(1)(u, υ) := u− υ.

Strictly speaking, however, map ϕ̄(0) is not elementary. Moreover the decompo-
sition does not determine the algorithm uniquely, since there is still a choice,
however numerically insignificant, of what to compute first, a2 or b2.

Hoping to find criteria for judging the quality of algorithms, we will
now examine the reasons why different algorithms for solving the same
problem generally yield different results. Error propagation, for one, plays
a decisive role, as the example of the sum y = a+ b+ c shows (see Example
3 in Section 1.2). Here floating-point arithmetic yields an approximation
ỹ = fl((a+ b) + c) to y which, according to (1.2.6), satisfies

η : = fl(a+ b) = (a+ b)(1 + ε1),
ỹ : = fl(η + c) = (η + c)(1 + ε2)

= [(a+ b)(1 + ε1) + c](1 + ε2)

= (a+ b+ c)
[
1 +

a+ b
a+ b+ c

ε1(1 + ε2) + ε2

]
.

For the relative error εy := (ỹ − y)/y of ỹ,

εy =
a+ b

a+ b+ c
ε1(1 + ε2) + ε2

or disregarding terms of order higher than 1 in ε’s such as ε1ε2,

εy
.=

a+ b
a+ b+ c

ε1 + 1 · ε2.

The amplification factors (a + b)/(a + b + c) and 1, respectively, measure
the effect of the roundoff errors ε1, ε2 on the error εy of the result. The
factor (a+ b)/(a+ b+ c) is critical: depending on whether |a+ b| or |b+ c|
is the smaller of the two, it is better to proceed via (a+ b) + c rather than
a+ (b+ c) for computing a+ b+ c.

In Example 3 of the previous section,

a+ b
a+ b+ c

=
0.33 . . .10 2
0.64 . . .10−3

≈ 1
2
105,

b+ c
a+ b+ c

=
0.618 . . .10−3
0.64 . . .10−3

≈ 0.97,

which explains the higher accuracy of fl(a+ (b+ c)).

The above method of examining the propagation of particular errors
while disregarding higher-order terms can be extended systematically to
provide a differential error analysis of an algorithm for computing ϕ(x) if
this function is given by a decomposition (1.3.1):

12 1 Error Analysis

ϕ = ϕ(r) ◦ ϕ(r−1) ◦ · · · ◦ ϕ(0).

To this end we must investigate how the input errors ∆x of x as well as the
roundoff errors accumulated during the course of the algorithm affect the
final result y = ϕ(x). We start this investigation by considering the input
errors ∆x alone, and we will apply any insights we gain to the analysis of
the propagation of roundoff errors. We suppose that the function

ϕ : D → IRm, ϕ(x) =

 ϕ1(x1, . . . , xn)
...

ϕm(x1, . . . , xn)

 ,
is defined on an open subset D of IRn, and that its component functions
ϕi, i = 1, . . . , n, have continuous first derivatives on D. Let x̃ be an
approximate value for x. Then we denote by

∆xj := x̃j − xj , ∆x := x̃− x

the absolute error of x̃i and x̃, respectively. The relative error of x̃i is defined
as the quantity

εxi :=
x̃i − xi
xi

if xi �= 0.

Replacing the input data x by x̃ leads to the result ỹ := ϕ(x̃) instead of
y = ϕ(x). Expanding in a Taylor series and disregarding higher-order terms
gives

(1.3.2)

∆yi : = ỹi − yi = ϕi(x̃) − ϕi(x)
.=

n∑
j=1

(x̃j − xj)
∂ϕi(x)
∂xj

=
n∑
j=1

∂ϕi(x)
∂xj

∆xj , i = 1, . . . ,m,

or in matrix notation,

(1.3.3) ∆y =

 ∆y1...
∆ym

 .=

∂ϕ1
∂x1

· · · ∂ϕ1
∂xn

...
...

∂ϕm

∂x1
· · · ∂ϕm

∂xn

∆x1

...
∆xn

 = Dϕ(x) ·∆x

with the Jacobian matrix Dϕ(x).
The notation “ .=” instead of “=”, which has been used occasionally

before, is meant to indicate that the corresponding equations are only a
first order approximation, i.e., they do not take quantities of higher order
(in ε’s or ∆’s) into account.

The quantity ∂ϕi(x)/∂xj in (1.3.3) represents the sensitivity with which
yi reacts to absolute perturbations ∆xj of xj . If yi �= 0 for i = 1, . . . ,m

1.3 Error Propagation 13

and xj �= 0 for j = 1, . . . , n, then a similar error propagation formula holds
for relative errors:

(1.3.4) εyi

.=
n∑
j=1

xj
ϕi(x)

∂ϕi(x)
∂xj

εxj
.

Again the quantity (xj/ϕi)∂ϕi/∂xj indicates how strongly a relative error
xj affects the relative error in yi. The amplification factors (xj/ϕi)∂ϕi/∂xj
for the relative error have the advantage of not depending on the scales of
yi and xj . The amplification factors for relative errors are generally called
condition numbers . If any condition numbers are present which have large
absolute values, then one speaks of an ill-conditioned problem; otherwise,
of a well-conditioned problem. For ill-conditioned problems, small relative
errors in the input data x can cause large relative errors in the results
y = ϕ(x).

The above concept of condition numbers suffers from the fact that it
is meaningful only for nonzero yi, xj . Moreover, it is impractical for many
purposes, since the condition of ϕ is described by mn numbers. For these
reasons, the conditions of special classes of problems are frequently defined
in a more convenient fashion. In linear algebra, for example, it is customary
to call numbers c condition numbers if, in conjunction with a suitable norm
‖ · ‖,

‖ ϕ(x̃) − ϕ(x) ‖
‖ ϕ(x) ‖ ≤ c‖ x̃− x ‖

‖ x ‖
(see Section 4.4).

Example 3. For y = ϕ(a, b, c) := a+ b+ c, (1.3.4) gives

εy
.=

a

a+ b+ c
εa +

b

a+ b+ c
εb +

c

a+ b+ c
εc.

The problem is well conditioned if every summand a, b, c is small compared to
a+ b+ c.

Example 4: Let y = ϕ(p, q) := −p+
√
p2 + q. Then

∂ϕ

∂p
= −1 +

p√
p2 + q

=
−y√
p2 + q

,
∂ϕ

∂q
=

1

2
√
p2 + q

,

so that

εy
.=

−p√
p2 + q

εp +
q

2y
√
p2 + q

εq = − p√
p2 + q

εp +
p+

√
p2 + q

2
√
p2 + q

εq.

Since ∣∣∣∣ p√
p2 + q

∣∣∣∣ ≤ 1,

∣∣∣∣p+
√
p2 + q

2
√
p2 + q

∣∣∣∣ ≤ 1 for q > 0,

14 1 Error Analysis

ϕ is well conditioned if q > 0, and badly conditioned if q ≈ −p2.

For the arithmetic operations (1.3.4) specializes to (x �= 0, y �= 0)

(1.3.5)

ϕ(x, y) := x · y :
ϕ(x, y) := x/y :
ϕ(x, y) := x± y :
ϕ(x) :=

√
x :

εxy
.= εx + εy,

εx/y
.= εx − εy,

εx±y =
x

x± y εx ± y

x± y εy, if x± y �= 0,

ε√x
.= 1

2εx.

It follows that the multiplication, division, and square root are not danger-
ous: The relative errors of the operands don’t propagate strongly into the
result. This is also the case for the addition, provided the operands x and
y have the same sign. Indeed, the condition numbers x/(x+ y), y/(x+ y)
then lie between 0 and 1, and they add up to 1, whence

|εx+y| ≤ max { |εx|, |εy| } .

If one operand is small compared to the other, but carries a large relative
error, the result x + y will still have a small relative error so long as the
other operand has only a small relative error: error damping results. If,
however, two operands of different sign are to be added, then at least one
of the factors ∣∣∣∣ x

x+ y

∣∣∣∣, ∣∣∣∣ y

x+ y

∣∣∣∣
is bigger than 1, and at least one of the relative errors εx, εy will be ampli-
fied.This amplification is drastic if x ≈ −y holds and therefore cancellation
occurs.

We will now employ the formula (1.3.3) to describe the propagation
of roundoff errors for a given algorithm. An algorithm for computing the
function ϕ : D → IRm, D ⊆ IRn, ϕ : D → IRm, D ⊆ IRn, for a given
x = (x1, . . . , xn)T ∈ D corresponds to a decomposition of the map ϕ into
elementary maps ϕ(i) [see (1.3.1)], and leads from x(0) := x via a chain of
intermediate results

(1.3.6) x = x(0) → ϕ(0)(x(0)) = x(1) → · · · → ϕ(r)(x(r)) = x(r+1) = y

to the result y. Again we assume that every ϕ(i) is continuously differen-
tiable on Di.

Now let us denote by ψ(i) the “remainder map”

ψ(i) = ϕ(r) ◦ ϕ(r−1) ◦ . . . ◦ ϕ(i) : Di → IRm, i = 0, 1, 2, . . . , r.

Then ψ(0) ≡ ϕ. Dϕ(i) and Dψ(i) are the Jacobian matrices of the maps
ϕ(i) and ψ(i). Since Jacobian matrices are multiplicative with respect to
function composition,

1.3 Error Propagation 15

D(f ◦ g)(x) = Df(g(x)) ·Dg(x),

we note for further reference that for i = 0, 1, . . . , r

(1.3.7)
Dϕ(x) = Dϕ(r)(x(r)) ·Dϕ(r−1)(x(r−1)) · · ·Dϕ(0)(x),

Dψ(i)(x(i)) = Dϕ(r)(x(r)) ·Dϕ(r−1)(x(r−1)) · · ·Dϕ(i)(x(i)).

With floating-point arithmetic, input and roundoff errors will perturb
the intermediate (exact) results x(i) so that approximate values x̃(i) with
x̃(i+1) = fl

(
ϕ(i)(x̃(i))

)
will be obtained instead. For the absolute errors

∆x(i) = x̃(i) − x(i),

(1.3.8) ∆x(i+1) = [fl
(
ϕ(i)(x̃(i))

)
− ϕ(i)(x̃(i))] + [ϕ(i)(x̃(i)) − ϕ(i)(x(i))].

By (1.3.3) (disregarding higher-order error terms),

(1.3.9) ϕ(i)(x̃(i)) − ϕ(i)(x(i)) .= Dϕ(i)(x(i)) ·∆x(i).

If ϕ(i) is an elementary map, or if it involves only independent elementary
operations, the floating-point evaluation of ϕ(i) will yield the rounding of
the exact value:

(1.3.10) fl(ϕ(i)(u)) = rd(ϕ(i)(u)).

Note, in this context, that the map ϕ(i) : Di → Di+1 ⊆ IRni+1 is actually
a vector of component functions ϕ(i)

j : Di → IR,

ϕ(i)(u) =

ϕ
(i)
1 (u)
...
ϕ

(i)
ni+1(u)

 .
Thus (1.3.10) must be interpreted componentwise:

(1.3.11)
fl(ϕ(i)

j (u)) = rd(ϕ(i)
j (u)) = (1 + εj)ϕ

(i)
j (u),

|εj | ≤ eps, j = 1, 2, . . . , ni+1.

Here εj is the new relative roundoff error generated during the calculation
of the jth component of ϕ(i) in floating-point arithmetic. Plainly, (1.3.10)
can also be written in the form

fl(ϕ(i)(u)) = (I + Ei+1) · ϕ(i)(u)

with the identity matrix I and the diagonal error matrix

16 1 Error Analysis

Ei+1 :=

ε1 0

ε2
. . .

. . .
0 εni+1

 , |εj | ≤ eps .

This yields the following expression for the first bracket in (1.3.8): ,

fl(ϕ(i)(x̃(i))) − ϕ(i)(x̃(i)) = Ei+1 · ϕ(i)(x̃(i)).

Furthermore Ei+1 · ϕ(i)(x̃(i)) .= Ei+1 · ϕ(i)(x(i)), since the error terms by
which ϕ(i)(x̃(i)) and ϕ(i)(x(i)) differ are multiplied by the error terms on
the diagonal of Ei+1, giving rise to higher-order error terms. Therefore

(1.3.12) fl(ϕ(i)(x̃(i))) − ϕ(i)(x̃(i)) .= Ei+1ϕ
(i)(x(i)) = Ei+1x

(i+1) =: αi+1.

The quantity αi+1 can be interpreted as the absolute roundoff error newly
created when ϕ(i) is evaluated in floating-point arithmetic, and the diag-
onal elements of Ei+1 can be similarly interpreted as the corresponding
relative roundoff errors. Thus by (1.3.8), (1.3.9), and (1.3.12), ∆x(i+1) can
be expressed in first-order approximation as follows

∆x(i+1) .= αi+1 +Dϕ(i)(x(i))∆x(i) = Ei+1x
(i+1) +Dϕ(i)(x(i))∆x(i),

i ≥ 0, ∆x(0) := ∆x.

Consequently

∆x(1) .= Dϕ(0)∆x+ α1,

∆x(2) .= Dϕ(1)[Dϕ(0) ·∆x+ α1] + α2,

...

∆y = ∆x(r+1) .= Dϕ(r) · · ·Dϕ(0)∆x+Dϕ(r) · · ·Dϕ(1)α1 + · · · + αr+1.

In view of (1.3.7), we finally arrive at the following formulas which describe
the effect of the input errors ∆x and the roundoff errors αi on the result
y = x(r+1) = ϕ(x):
(1.3.13)

∆y
.= Dϕ(x)∆x+Dψ(1)(x(1))α1 + · · · +Dψ(r)(x(r))αr + αr+1

= Dϕ(x)∆x+Dψ(1)(x(1))E1x
(1) + · · · +Dψ(r)(x(r))Erx(r)+

+ Er+1y.

It is therefore the size of the Jacobian matrix Dψ(i) of the remainder map
ψ(i) which is critical for the effect of the intermediate roundoff errors αi or
Ei on the final result.

1.3 Error Propagation 17

Example 5. For the two algorithms for computing y = ϕ(a, b) = a2 − b2 given
in Example 2 we have for Algorithm 1:

x = x(0) =

[
a

b

]
, x(1) =

[
a2

b

]
, x(2) =

[
a2

b2

]
, x(3) = y = a2 − b2,

ψ(1)(u, v) = u− v2, ψ(2)(u, v) = u− v,

Dϕ(x) = (2a,−2b), Dψ(1)(x(1)) = (1,−2b), Dψ(2)(x(2)) = (1,−1).

Moreover

α1 =

[
ε1a

2

0

]
, E1 =

[
ε1 0
0 0

]
, |ε1| ≤ eps,

because of
fl(ϕ(0)(x(0))) − ϕ(0)(x(0)) =

[
a×∗ a
b

]
−
[
a2

b

]
,

and likewise

α2 =

[
0
ε2b2

]
, E2 =

[
0 0
0 ε2

]
, α3 = ε3(a2 − b2), |εi| ≤ eps for i = 2, 3.

From (1.3.13) with ∆x =
[
∆a
∆b

]
,

(1.3.14) ∆y
.= 2a∆a− 2b∆b+ a2ε1 − b2ε2 + (a2 − b2)ε3.

Analogously for Algorithm 2:

x = x(0) =

[
a

b

]
, x(1) =

[
a+ b

a− b

]
, x(2) = y = a2 − b2,

ψ(1)(u, v) = u · v,

Dϕ(x) = (2a,−2b), Dψ(1)(x(1)) = (a− b, a+ b),

α1 =
[
ε1(a+ b)
ε2(a− b)

]
, α2 = ε3(a2 − b3), E1 =

[
ε1 0
0 ε2

]
, |εi| ≤ eps,

and therefore (1.3.13) again yields

(1.3.15) ∆y
.= 2a∆a− 2b∆b+ (a2 − b2)(ε1 + ε2 + ε3).

If one selects a different algorithm for calculating the same result ϕ(x)
(in other words, a different decomposition of ϕ into elementary maps), then
Dϕ remains unchanged; the Jacobian matrices Dψ(i), which measure the
propagation of roundoff, will be different, however, and so will be the total
effect of rounding,

(1.3.16) Dψ(1)α1 + · · · +Dψ(r)αr + αr+1.

18 1 Error Analysis

An algorithm is called numerically more trustworthy than another algo-
rithm for calculating ϕ(x) if, for a given set data x, the total effect of
rounding, (1.3.16), is less for the first algorithm than for the second one.

Example 6. The total effect of rounding using Algorithm 1 in Example 2 is, by
(1.3.14),

(1.3.17) |a2ε1 − b2ε2 + (a2 − b2)ε3| ≤ (a2 + b2 + |a2 − b2|) eps,

and that of Algorithm 2, by (1.3.15),

(1.3.18) |(a2 − b2)(ε1 + ε2 + ε3)| ≤ 3|a2 − b2| eps .

Algorithm 2 is numerically more trustworthy than algorithm 1 whenever 1/3 <
|a/b|2 < 3; otherwise algorithm 1 is more trustworthy. This follows from the
equivalence of the two relations 1/3 ≤ |a/b|2 ≤ 3 and 3|a2−b2| ≤ a2+b2+|a2−b2|.

For a := 0.3237, b := 0.3134 using four places (t = 4), we obtain the following
results:

Algorithm 1: a×∗ a = 0.1048, b×∗ b = 0.988210-1,
(a×∗ a) −∗ (b×∗ b) = 0.658010-2,

Algorithm 2: a+∗ b = 0.6371, a−∗ b = 0.103010-1,
(a×∗ b) ×∗ (a−∗ b) = 0.656210-2,

Exact result: a2 − b2 = 0.65621310-2.

In the error propagation formula (1.3.13), the last term admits the
following bound:1

|Er+1y| ≤ |y| eps,

no matter what algorithm had been used for computing y = ϕ(x). Hence
an error ∆y of magnitude |y| eps has to be expected for any algorithm.
Note, moreover, when using mantissas of t places, that the rounding of the
input data x = (x1, . . . , xn)T will cause an input error ∆(0)x with

|∆(0)x| ≤ |x| eps,

unless the input data are already machine numbers and therefore repre-
sentable exactly. Since the latter can not be counted on, any algorithm
for computing y = ϕ(x) will have to be assumed to incur the error
Dϕ(x) ·∆(0)x, so that altogether for every such algorithm an error of mag-
nitude

(1.3.19) ∆(0)y := [|Dϕ(x)| · |x| + |y|] eps

must be expected. We call ∆(0)y the inherent error of y. Since this error
will have to be reckoned with in any case, it would be unreasonable to
ask that the influence of intermediate roundoff errors on the final result

1 The absolute values of vectors and matrices are to be understood component-
wise, e.g., |y| = (|y1|, . . . |ym|)T .

1.3 Error Propagation 19

be considerable smaller than ∆(0)y. We therefore call roundoff errors αi or
Ei harmless if their contribution in (1.3.13) towards the total error ∆y is
of at most the same order of magnitude as the inherent error ∆(0)y from
(1.3.19):

|Dψ(i)(x(i)) · αi| = |Dψ(i)(x(i)) · Eix(i)| ≈ ∆(0)y.

If all roundoff errors of an algorithm are harmless, then the algorithm is
said to be well behaved or numerically stable. This particular notion of
numerical stability has been promoted by Bauer et al. (1965); Bauer also
uses the term benign (1974). Finding numerically stable algorithms is a
primary task of numerical analysis.

Example 7. Both algorithms of Example 2 are numerically stable. Indeed, the
inherent error ∆(0)y is as follows:

∆(0)y =

(
[2|a|, 2|b|] ·

[|a|
|b|
]

+ |a2 − b2|
)

eps = (2(a2 + b2) + |a2 − b2|) eps .

Comparing this with (1.3.17) and (1.3.18) even shows that the total error of each
of the two algorithms cannot exceed ∆(0)y.

Let us pause to review our usage of terms. Numerical trustworthiness,
which we will use as a comparative term, relates to the roundoff errors
associated with two or more algorithms for the same problem. Numerical
stability, which we will use as an absolute term, relates to the inherent error
and the corresponding harmlessness of the roundoff errors associated with a
single algorithm. Thus one algorithm may be numerically more trustworthy
than another, yet neither may be numerically stable. If both are numerically
stable, the numerically more trustworthy algorithm is to be preferred. We
attach the qualifier “numerically” because of the widespread use of the term
“stable” without that qualifier in other contexts such as the terminology
of differential equations, economic models, and linear multistep iterations,
where it has different meanings. Further illustrations of the concept which
we have introduced above will be found in the next section.

A general technique for establishing the numerical stability of an algo-
rithm, the so-called backward analysis, has been introduced by Wilkinson
(1960) for the purpose of examining algorithms in linear algebra. He tries
to show that the floating-point result ỹ = y+∆y of an algorithm for com-
puting y = ϕ(x) may be written in the form ỹ = ϕ(x+∆x), that is, as the
result of an exact calculation based on perturbed input data x+∆x. If ∆x
turns out to have the same order of magnitude as |∆(0)x| ≤ eps |x|, then
the algorithm is indeed numerically stable.

Bauer (1974) associates graphs with algorithms in order to illuminate
their error patterns. For instance, Algorithms 1 and 2 of example 2 give
rise to the graphs in Figure 1. The nodes of these graphs correspond to
the intermediate results. Node i is linked to node j by a directed arc if the
intermediate result corresponding to node i is an operand of the elementary

20 1 Error Analysis

operation which produces the result corresponding to node j. At each node
there arises a new relative roundoff error, which is written next to its node.
Amplification factors for the relative errors are similarly associated with,
and written next to, the arcs of the graph. Tracing through the graph of
Algorithm 1, for instance, one obtains the following error relations:

εη1 = 1 · εα + 1 · εα + ε1, εη2 = 1 · εb + 1 · εb + ε2,

εy =
η1

η1 − η2
· εη1 − η2

η1 − η2
· εη2 + ε3.

.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.......

.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.......

.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.......

.........
.........
.........
.........
........
........
........
........
........
........
........
........
........
........
.........
.........
.........
.......

..
..........
........
........
.........
.............

...

..
.........
........
........
.........
............

...

..
..........
........
........
.........
.............

...

..
.........
........
........
.........
............

...

..
..........
........
........
.........
.............

...

..
.........
........
........
.........
............

...

..
..........
........
........
.........
.............

...

..
.........
........
........
.........
............

...

..
.........
........
........
.........
............

... ..
.........
........
........
.........
............

...

....................
.....
.........
.......

.......
...........
.....

.....
.........
.......

.......
...........
.....

...
......
........
........

..
........
..........
......

...
......
.........
.......

...
........
..........
......

...
........
........
........

...
........
........
........

..
...
..........
......

...
......
.............
...

a b a b

1 1 1 1
a

a+ b

a
a−b

b
a+b −b

a− b

η1
η1 − η2

−η1
η1 − η2

εa εb εa εb

ε1 ε2 ε1 ε2

ε3 ε3

× × + −

η1 η2 η1 η2

− ×

y y

Algorithmus 1 Algorithmus 2

Fig. 1. Graphs Representing Algorithms and Their Error Propagation

To find the factor by which to multiply the roundoff error at node i in
order to get its contribution to the error at node j, one multiplies all arc
factors for each directed path from i to j and adds these products. The
graph of Algorithm 2 thus indicates that the input error εα contributes(

a

a+ b
· 1 +

a

a− b · 1
)

· εa

to the error εy.

1.4 Examples 21

1.4 Examples

Example l: This example follows up Example 4 of the previous section: given
p > 0, q > 0, p � q, determine the root

y = −p+
√
p2 + q

with smallest absolute value of the quadratic equation

y2 + 2py − q = 0.

Input data: p, q. Result: y = ϕ(p, q) = −p+
√
p2 + q.

The problem was seen to be well conditioned for p > 0, q > 0. It was also
shown that the relative input errors εp, εq make the following contribution to the
relative error of the result y = ϕ(p, q):

−p√
p2 + q

εp +
q

2y
√
p2 + q

εq =
−p√
p2 + q

εp +
p+

√
p2 + q

2
√
p2 + q

εq.

Since ∣∣∣∣∣ p√
p2 + q

∣∣∣∣∣ ≤ 1,

∣∣∣∣∣p+
√
p2 + q

2
√
p2 + q

∣∣∣∣∣ ≤ 1,

the inherent error ∆(0)y satisfies

eps ≤ ε(0)y :=
∆(0)y

y
≤ 3 eps .

We will now consider two algorithms for computing y = ϕ(p, q).

s := p2,Algorithm 1:
t := s+ q,

u :=
√
t,

y := −p+ u.

Obviously, p � q causes cancellation when y := −p+ u is evaluated, and it must
therefore be expected that the roundoff error

∆u := ε ·
√
t = ε ·

√
p2 + q.

generated during the floating-point calculation of the square root

fl(
√
t) =

√
t · (1 + ε), |ε| ≤ eps,

will be greatly amplified. Indeed, the above error contributes the following term
to the error of y :

1
y
∆u =

√
p2 + q

−p+
√
p2 + q

· ε =
1
q

(p
√
p2 + q + p2 + q)ε = k · ε.

22 1 Error Analysis

Since p, q > 0, the amplification factor k admits the following lower bound:

k >
2p2

q
> 0.

which is large, since p � q by hypothesis. Therefore, the proposed algorithm is
not numerically stable, because the influence of rounding

√
p2 + q alone exceeds

that of the inherent error ε(0)y by an order of magnitude.

s := p2,Algorithm 2:
t := s+ q,

u :=
√
t,

v := p+ u,

y := q/v.

This algorithm does not cause cancellation when calculating v := p + u. The
roundoff error ∆u = ε

√
p2 + q, which stems from rounding

√
p2 + q, will be

amplified according to the remainder map ψ(u):

u → p+ u → q

p+ u
=: ψ(u).

Thus it contributes the following term to the relative error of y:

1
y

∂ϕ

∂u
∆u =

−q
y(p+ u)2

·∆u

=
−q
√
p2 + q(

−p+
√
p2 + q

)(
p+

√
p2 + q

)2 · ε

= −
√
p2 + q

p+
√
p2 + q

· ε = k · ε.

The amplification factor k remains small; indeed, |k| < 1, and algorithm 2 is
therefore numerically stable.

The following numerical results illustrate the difference between Algorithms
1 and 2. They were obtained using floating-point arithmetic of 40 binary mantissa
places – about 13 decimal places – as will be the case in subsequent numerical
examples.

p = 1000, q = 0.018 000 000 081

Result y according to Algorithm 1: 0.900 030 136 10810−5

Result y according to nach Algorithm 2: 0.899 999 999 99910−5

Exact value of y: 0.900 000 000 00010−5

Example 2. For given fixed x, the value of cos kx may be computed recursively
using for m = 1, 2, . . . , k − 1 the formula

cos(m+ 1)x = 2 cosx cosmx− cos(m− 1)x.

1.4 Examples 23

In this case, a trigonometric-function evaluation has to be carried out only once,
to find c = cosx. Now let |x| �= 0 be a small number. The calculation of c causes
a small roundoff error:

c̃ = (1 + ε) cosx, |ε| ≤ eps .

How does this roundoff error affect the calculation of cos kx ?
cos kx can be expressed in terms of c : cos kx = cos(k arccos c) =: f(c). Since

df

dc
=
k sin kx

sinx

the error ε cosx of c causes, to first approximation, an absolute error

(1.4.1) ∆ cos kx .= ε
cosx
sinx

k sin kx = ε · k cotx sin kx

in cos kx.
On the other hand, the inherent error∆(0)ck (1.3.19) of the result ck := cos kx

is
∆(0)ck = [k|x sin kx| + | cos kx|] eps .

Comparing this with (1.4.1) shows that ∆ cos kx may be considerably larger than
∆(0)ck for small |x|; hence the algorithm is not numerically stable.
Example 3. For given x and a “large” positive integer k, the numbers cos kx and
sin kx are to be computed recursively using

cosmx = cosx cos(m− 1)x− sinx sin(m− 1)x,
sinmx = sinx cos(m− 1)x+ cosx sin(m− 1)x, m = 1, 2, . . . , k.

How do small errors εc cosx, εs sinx in the calculation of cosx, sinx affect the
final results cos kx, sin kx ? Abbreviating cm := cosmx, sm := sinmx, c := cosx,
s := sinx, and putting

U :=

[
c− s

s c

]
,

we have [
cm
sm

]
= U

[
cm−1

sm−1

]
, m = 1, . . . , k.

Here U is a unitary matrix, which corresponds to a rotation by the angle x.
Repeated application of the formula above gives[

ck
sk

]
= Uk

[
c0
s0

]
= Uk ·

[
1
0

]
.

Now
∂U

∂c
=

[
1 0
0 1

]
,

∂U

∂s
=

[
0 − 1
1 0

]
=: A,

and therefore
∂

∂c
Uk = k Uk−1,

∂

∂s
Uk = AUk−1 + UAUk−2 + · · · + Uk−1A

= kAUk−1,

24 1 Error Analysis

because A commutes with U . Since U describes a rotation in IR2 by the angle x,

∂

∂c
Uk = k

[
cos(k − 1)x − sin(k − 1)x
sin(k − 1)x cos(k − 1)x

]
,

∂

∂s
Uk = k

[
− sin(k − 1)x − cos(k − 1)x
cos(k − 1)x − sin(k − 1)x

]
.

The relative errors εc, εs of c = cosx, s = sinx effect the following absolute errors
of cos kx, sin kx:

(1.4.2)

[
∆ck

∆sk

]
.=
[
∂

∂c
Uk
] [1

0

]
· εc cosx+

[
∂

∂s
Uk
] [1

0

]
· εs sinx

= εck cosx

[
cos(k − 1)x
sin(k − 1)x

]
+ εsk sinx

[
− sin(k − 1)x

cos(k − 1)x

]
.

The inherent errors ∆(0)ck and ∆(0)sk of ck = cos kx and sk = sin kx, respec-
tively, are given by

(1.4.3)
∆(0)ck = [k|x sin kx| + | cos kx|] eps,

∆(0)sk = [k|x cos kx| + | sin kx|] eps .

Comparison of (1.4.2) and (1.4.3) reveals that for big k and |kx| ≈ 1 the influence
of the roundoff error εc is considerably bigger than the inherent errors, while
the roundoff error εs is harmless.The algorithm is not numerically stable, albeit
numerically more trustworthy than the algorithm of Example 2 as far as the
computation of ck alone is concerned.
Example 4. For small |x|, the recursive calculation of

cm = cosmx, sm = sinmx, m = 1, 2, . . . ,

based on
cos(m+ 1)x = cosx cosmx− sinx sinmx,
sin(m+ 1)x = sinx cosmx+ cosx sinmx,

as in Example 3, may be further improved numerically. To this end, we express
the differences dsm+1 and dcm+1 of subsequent sine and cosine values as follows:

dcm+1 : = cos(m+ 1)x− cosmx
= 2(cosx− 1) cosmx− sinx sinmx− cosx cosmx+ cosmx

= −4
(

sin2 x

2

)
cosmx+ [cosmx− cos(m− 1)x],

dsm+1 : = sin(m+ 1)x− sinmx
= 2(cosx− 1) sinmx+ sinx cosmx− cosx sinmx+ sinmx

= −4
(

sin2 x

2

)
sinmx+ [sinmx− sin(m− 1)x].

This leads to a more elaborate recursive algorithm for computing ck, sk in the
case x > 0:

1.4 Examples 25

dc1 := −2 sin2 x

2
, t := 2 dc1,

ds1 :=
√

−dc1(2 + dc1),
s0 := 0, c0 := 1,

and for m := 1, 2, . . . , k:

cm := cm−1 + dcm, dcm+1 := t · cm + dcm,

sm := sm−1 + dsm, dsm+1 := t · sm + dsm.

For the error analysis, note that ck and sk are functions of s = sin(x/2):

ck = cos(2k arcsin s) =: ϕ1(s),
sk = sin(2k arcsin s) =: ϕ2(s).

An error ∆s = εs sin(x/2) in the calculation of s therefore causes – to a first-order
approximation – the following errors in ck:

∂ϕ1

∂s
εs sin

x

2
= εs

−2k sin kx
cos(x/2)

sin
x

2

= −2k tan
x

2
sin kx · εs,

and in sk:
∂ϕ2

∂s
εs sin

x

2
= 2k tan

x

2
cos kx · εs.

Comparison with the inherent errors (1.4.3) shows these errors to be harmless for
small |x|. The algorithm is then numerically stable, at least as far as the influence
of the roundoff error εs is concerned.

Again we illustrate our analytical considerations with some numerical results.
Let x = 0.001, k = 1000.

Algorithm Result for cos kx Relative error

Example 2 0.540 302 121 124 −0.3410−6
Example 3 0.540 302 305 776 −0.1710−9
Example 4 0.540 302 305 865 −0.5810−11
Exact value 0.540 302 305 868 140 . . .

Example 5. We will derive some results which will be useful for the analysis of
algorithms for solving linear equations in Section 4.5. Given the quantities c, a1,
. . . , an, b1, . . . , bn−1 with an �= 0, we want to find the solution βn of the linear
equation

(1.4.4) c− a1b1 − · · · − an−1bn−1 − anβn = 0.

Floating-point arithmetic yields the approximate solution

(1.4.5) bn = fl
(
c− a1b1 − · · · − an−1bn−1

an

)
as follows:

s0 := c;
for j := 1, 2, . . . , n− 1

26 1 Error Analysis

(1.4.6) sj := fl(sj−1 − ajbj) = (sj−1 − ajbj(1 + µj))(1 + αj),
bn := fl(sn−1/an) = (1 + δ)sn−1/an,

with |µj |, |aj |, |δ| ≤ eps. If an = 1, as is frequently the case in applications, then
δ = 0, since bn := sn−1.

We will now describe two useful estimates for the residual

r := c− a1b1 − . . .− anbn

From (1.4.6) follow the equations

s0 − c = 0,

sj − (sj−1 − ajbj) = sj −
(

sj

1 + αj
+ ajbjµj

)
= sj

αj

1 + αj
− ajbjµj , j = 1, 2, . . . , n− 1,

anbn − sn−1 = δsn−1.

Summing these equations yields

r = c−
n∑

i=1

aibi =
n−1∑
j=1

(
−sj

αj

1 + αj
+ ajbjµj

)
− δsn−1

and thereby the first one of the promised estimates

(1.4.7) |r| ≤ eps
1 − eps

[δ′ · |sn−1| +
n−1∑
j=1

(|sj | + |ajbj |)],

δ′ :=
{

0 if an = 1,
1 otherwise.

The second estimate is cruder than (1.4.7). (1.4.6) gives

(1.4.8) bn =

[
c

n−1∏
k=1

(1 + αk) −
n−1∑
j=1

ajbj(1 + µj)
n−1∏
k=j

(1 + αk)

]
1 + δ

an
,

which can be solved for c:

(1.4.9) c =
n−1∑
j=1

ajbj(1 + µj)
j−1∏
k=1

(1 + αk)−1 + anbn(1 + δ)−1
n−1∏
k=1

(1 + αk)−1.

A simple induction argument over m shows that

(1 + σ) =
m∏

k=1

(1 + σk)±1, |σk| ≤ eps, m · eps < 1

implies
|σ| ≤ m · eps

1 −m · eps
.

1.5 Interval Arithmetic; Statistical Roundoff Estimation 27

In view of (1.4.9) this ensures the existence of quantities εj with

(1.4.10) c =
n−1∑
j=1

ajbj(1 + j · εj) + anbn(1 + (n− 1 + δ′)εn),

|εj | ≤ eps
1 − n · eps

, δ′ :=
{

0 if an = 1,
1 otherwise.

For r = c− a1b1 − a2b2 − · · · − anbn we have consequently

(1.4.11) |r| ≤ eps
1 − n · eps

[
n−1∑
j=1

j|ajbj | + (n− 1 + δ′)|anbn|

]
.

In particular, (1.4.8) reveals the numerical stability of our algorithm for comput-
ing βn. The roundoff error αm contributes the amount

c− a1b1 − a2b2 − · · · − ambm
an

αm

to the absolute error in βn. This, however, is at most equal to∣∣∣ c · εc − a1b1εa1 − · · · − ambmεαm

an

∣∣∣
≤

(
|c| +

∑m

i=1 |aibi|
)

eps

|an| ,

which represents no more than the influence of the input errors εc and εai of
c and ai, i = 1, . . . , m, respectively, provided |εc|, |εai | ≤ eps. The remaining
roundoff errors µk and δ are similarly shown to be harmless.

The numerical stability of the above algorithm is often shown by interpreting
(1.4.10) in the sense of backward analysis: The computed approximate solution
bn is the exact solution of the equation

c− ā1b1 − . . .− ānbn = 0,

whose coeffizients

āj := aj(1 + j · εj), 1 ≤ j ≤ n− 1,
āj := aj(1 + (n− 1 + δ′)εn)

have changed only slightly from their original values aj . This kind of analysis,
however, involves the difficulty of having to define how large n can be so that
errors of the form nε, |ε| ≤ eps can still be considered as being of the same order
of magnitude as the machine precision eps.

1.5 Interval Arithmetic; Statistical Roundoff
Estimation

The effect of a few roundoff errors can be quite readily estimated, to a
first-order approximation, by the methods of Section 1.3. For a typical

28 1 Error Analysis

numerical method, however, the number of the arithmetic operations, and
consequently the number of individual roundoff errors, is very large, and
the corresponding algorithm is too complicated to permit the estimation
of the total effect of all roundoff errors in this fashion.

A technique known as interval arithmeticoffers an approach to deter-
mining exact upper bounds for the absolute error of an algorithm, taking
into account all roundoff and data errors. Interval arithmetic is based on
the realization that the exact values for all real numbers a ∈ IR which ei-
ther enter an algorithm or are computed as intermediate or final results are
usually not known. At best one knows small intervals which contain a. For
this reason, the interval-arithmetic approach is to calculate systematically
in terms of such intervals

ã = [a′, a′′],

bounded by machine numbers a′, a′′ ∈ A, rather than in terms of single
real numbers a. Each unknown number a is represented by an interval ã =
[a′, a′′] with a ∈ ã. The arithmetic operations �� ∈ {⊕,�,⊗,�} between
intervals are defined so as to be compatible with the above interpretation.
That is, c̃ := ã �� b̃ is defined as an interval (as small as possible) satisfying

c̃ ⊃ { a � b | a ∈ ã and b ∈ b̃.

and having machine number endpoints.
In the case of addition, for instance, this holds if ⊕ is defined as follows:

[c′, c′′] := [a′, a′′] ⊕ [b′, b′′]

where
c′ := max{ γ′ ∈ A | γ′ ≤ a′ + b′ }
c′′ := min{ γ′′ ∈ A | γ′′ ≥ a′′ + b′′ },

with A denoting again the set of machine numbers. In the case of multipli-
cation ⊗, assuming, say, a′ > 0, b′ > 0,

[c′, c′′] := [a′, a′′] ⊗ [b′, b′′]

can be defined by letting

c′ := max{ γ′ ∈ A | γ′ ≤ a′ × b′ },
c′′ := min{ γ′′ ∈ A | γ′′ ≥ a′′ × b′′ }.

Replacing, in these and similar fashions, every quantity by an interval and
every arithmetic operation by its corresponding interval operation – this is
readily implemented on computers – we obtain interval algorithms which
produce intervals guaranteed to obtain the desired exact solutions. The
data for these interval algorithms will be again intervals, chosen to allow
for data errors.

1.5 Interval Arithmetic; Statistical Roundoff Estimation 29

It has been found, however, that an uncritical utilization of interval
arithmetic techniques leads to error bounds which, while certainly reliable,
are in most cases much too pessimistic. It is not enough to simply substitute
interval operations for arithmetic operations without taking into account
how the particular roundoff or data enter into the respective results. For
example, it happens quite frequently that a certain roundoff error ε impairs
some intermediate results u1, . . . , un of an algorithm considerably,∣∣∣∣∂ui∂ε

∣∣∣∣ � 1 for i = 1, . . . , n,

while the final result y = f(u1, . . . , un) is not strongly affected,∣∣∣∣∂y∂ε
∣∣∣∣ ≤ 1,

even though it is calculated from the highly inaccurate intermediate values
u1, . . . , un: the algorithm shows error damping.

Example 1. Evaluate y = φ(x) = x3 − 3x2 + 3x = ((x − 3) × x + 3) × x using
Horner’s scheme:

u := x− 3,
v := u× x,

w := v + 3,
y := w × x.

The value x is known to lie in the interval

x ∈ x̃ := [0.9, 1.1].

Starting with this interval and using straight interval arithmetic, we find

ũ = x̃� [3, 3] = [−2.1,−1.9],
ṽ = ũ⊗ x̃ = [−2.31,−1.71],
w̃ = ṽ � [3, 3] = [0.69, 1.29],
ỹ = w̃ ⊗ x̃ = [0.621, 1.419].

The interval ỹ is much too large compared to the interval

{φ(x)|x ∈ x̃ } = [0.999, 1.001],

which describes the actual effect of an error in x on φ(x).

Example 2. Using just ordinary 2-digit arithmetic gives considerably more ac-
curate results than the interval arithmetic suggests:

x = 0.9 x = 1.1
u −2.1 −1.9
v −1.9 −2.1
w 1.1 0.9
y 0.99 0.99

30 1 Error Analysis

For the successful application of interval arithmetic, therefore, it is not
sufficient merely to replace the arithmetic operations of commonly used
algorithms by interval operations: It is necessary to develop new algorithms
producing the same final results but having an improved error-dependence
pattern for the intermediate results.

Example 3. In Example 1 a simple transformation of ϕ(x) suffices:

y = ϕ(x) = 1 + (x− 1)3.

When applied to the corresponding evaluation algorithm and the same starting
interval x̃ = [0.9, 1.1], interval arithmetic now produces the optimal result:

ũ1 := x̃� [1, 1] = [−0.1, 0.1],
ũ2 := ũ1 ⊗ ũ1 = [−0.01, 0.01],
ũ3 := ũ2 ⊗ ũ1 = [−0.001, 0.001],
ỹ := ũ3 ⊕ [1, 1] = [0.999, 1.001].

As far as ordinary arithmetic is concerned, there is not much difference between
the two evaluation algorithms of Example 1 and Example 3. Using two digits
again, the results are practically identical to those in Example 2:

x = 0.9 x = 1.1
u1 −0.1 0.1
u2 0.01 0.01
u3 −0.001 0.001
y 1.0 1.0

For an in-depth treatment of interval arithmetic the reader should con-
sult, for instance, Moore (1966) or Kulisch (1969).
In order to obtain statistical roundoff estimates [Rademacher (1948)], we
assume that the relative roundoff error [see (1.2.6)] which is caused by
an elementary operation is a random variable with values in the interval
[− eps, eps]. Furthermore we assume that the roundoff errors ε attributable
to different operations are independent random variables. By µε we denote
the expected value and by σε the variance of the above round-off distribu-
tion. They satisfy the general relationship

µε = E(ε), σ2
ε = E(ε− E(ε))2 = E(ε2) − (E(ε))2 = µε2 − µ2

ε.

Assuming a uniform distribution in the interval [− eps, eps], we get

(1.5.1) µε = E(ε) = 0, σ2
ε = E(ε2) =

1
2 eps

∫ eps

− eps
t2dt =

1
3

2
eps =: ε̄2.

Closer examinations show the roundoff distribution to be not quit uniform
[see Sterbenz (1974)), Exercise 22, p. 122]. It should also be kept in mind
that the ideal roundoff pattern is only an approximation to the roundoff

1.5 Interval Arithmetic; Statistical Roundoff Estimation 31

patterns observed in actual computing machinery, so that the quantities µε
and σ2

ε may have to be determined empirically.
The results x of algorithms subjected to random roundoff errors become

random variables themselves with expected values µx and variances σ2
x

connected again by the basic relation

σ2
x = E(x− E(x))2 = E(x2) − (E(x))2 = µx2 − µ2

x.

The propagation of previous roundoff effects through elementary operations
is described by the following formulas for arbitrary independent random
variables x, y and constants α, β ∈ IR:

(1.5.2)

µαx±βy = E(αx± βy) = αE(x) ± βE(y) = αµx ± βµy,
σ2
αx±βy = E((αx± βy)2) − (E(αx± βy))2

= α2E(x− E(x))2 + β2E(y − E(y))2 = α2σ2
x + β2σ2

y.

The first of the above formulas follows by the linearity of the expected-value
operator. It holds for arbitrary random variables x, y. The second formula
is based on the relation E(x y) = E(x)E(y), which holds whenever x and
y are independent. Similarly, we obtain for independent x and y

(1.5.3)

µx×y = E(x× y) = E(x)E(y) = µxµy,

σ2
x×y = E[x× y) − E(x)E(y)]2 = µx2µy2 − µ2

xµ
2
y

= σ2
xσ

2
y + µ2

xσ
2
y + µ2

yσ
2
x.

Example. For calculating y = a2 − b2 (see example 2 in Section 1.3) we find,
under the assumptions (1.5.1), E(a) = a, σ2

a = 0, E(b) = b, σ2
b = 0 and using

(1.5.2) and (1.5.3), that

η1 = a2(1 + ε1), E(η1) = a2, σ2
η1 = a4ε̄2,

η2 = b2(1 + ε2), E(η2) = b2, σ2
η2 = b4ε̄2,

y = (η1 − η2)(1 + ε3), E(y) = E(η1 − η2)E(1 + ε3) = a2 − b2,

(η1, η2, ε3 are assumed to be independent),

σ2
y = σ2

η1−η2σ
2
1+ε3 + µ2

η1−η2σ
2
1+ε3 + µ2

1+ε3σ
2
η1−η2

= (σ2
η1 + σ2

η2)ε̄2 + (a2 − b2)2ε̄2 + 1(σ2
η1 + σ2

η2)

= (a4 + b4)ε̄4 + [(a2 − b2)2 + a4 + b4]ε̄2.

Neglecting ε̄4 compared to ε̄2 yields

σ2
y
.= ((a2 − b2)2 + a4 + b4)ε̄2.

For a := 0.3237, b = 0.3134, eps = 5 × 10−4 (see example 5 in Section 1.3), we
find

σy
.= 0.144ε̄ = 0.000 0415,

32 1 Error Analysis

which is close in magnitude to the true error ∆y = 0.000 01787 for 4-digit arith-
metic. Compare this with the error bound 0.000 10478 furnished by (1.3.17).

We denote byM(x) the set of all quantities which, directly or indirectly,
have entered the calculation of the quantity x. If M(x) ∩M(y) �= ∅ for the
algorithm in question, then the random variables x and y are in general
dependent.

The statistical roundoff error analysis of an algorithm becomes ex-
tremely complicated if dependent random variables are present. It becomes
quite easy, however, under the following simplifying assumptions:

(1.5.4)

(a) The operands of each arithmetic operation are independent random
variables.

(b) In calculating variances all terms of an order higher than the smallest
one are neglected.

(c) All variances are so small that for elementary operations � in first-
order approximation, E(x � y) .= E(x) � E(y) = µx � µy.

If in addition the expected values µx are replaced by the estimated values
x, and relative variances ε2x := σ2

x/µ
2
x ≈ σ2

x/x
2 are introduced, then from

(1.5.2) and (1.5.3) [compare (1.2.6), (1.3.5)],

(1.5.5)

z = fl(x± y) : ε2z
.=
(x
z

)2
ε2x +

(y
z

)2
ε2y + ε̄2,

z = fl(x± y) : ε2z
.= ε2x + ε2y + ε̄2,

z = fl(x/y) : ε2z
.= ε2x + ε2y + ε̄2.

It should be kept in mind, however, that these results are valid only if the
hypothesis (1.5.4), in particular (1.5.4a), are met.

It is possible to evaluate above formulas in the course of a numerical
computation and thereby to obtain an estimate of the error of the final
results. As in the case of interval arithmetic, this leads to an arithmetic of
paired quantities (x, ε2x) for which elementary operations are defined with
the help of the above or similar formulas. Error bounds for the final results
r are then obtained from the relative variance ε2r, assuming that the final
error distribution is normal. This assumption is justified inasmuch as the
distributions of propagated errors alone tend to become normal if subjected
to many elementary operations. At each such operation the nonnormal
roundoff error distribution is superimposed on the distribution of previous
errors. However, after many operations, the propagated errors are large
compared to the newly created roundoff errors, so that the latter do not
appreciably affect the normality of the total error distribution. Assuming
the final error distribution to be normal, the actual relative error of the
final result r is bounded with probability 0.9 by 2εr.

Exercises for Chapter 1 33

Exercises for Chapter 1

1. Show that with floating-point arithmetic of t decimal places

rd(a) =
a

1 + ε
with |ε| ≤ 5 · 10−t

holds in analogy to (1.2.2). [In parallel with (1.2.6), as a consequence, fl(a
b) = (a b)/(1 + ε) with |ε| ≤ 5 · 10−t for all arithmetic operations = +, −,
×, /.]

2. Let a, b, c be fixed-point numbers with N decimal places after the decimal
point, and suppose 0 < a, b, c < 1. Substitute product a ∗ b is defined as
follows: Add 10−N/2 to the exact product a · b, and delete the (N +1)-st and
subsequent digits.
(a) Give a bound for |(a ∗ b) ∗ c− abc|.
(b) By how many units of the N -th place can (a ∗ b) ∗ c and a ∗ (b ∗ c) differ

?

3. Evaluating
∑n

i=1 aj in floating-point arithmetic may lead to an arbitrarily
large relative error. If, however, all summands ai are of the same sign, then
this relative error is bounded. Derive a crude bound for this error, disregard-
ing terms of higher order.

4. Show how to evaluate the following expressions in a numerically stable fash-
ion:

1
1 + 2x

− 1 − x

1 + x
for |x| � 1,√

x+
1
x

−
√
x− 1

x
for x � 1,

1 − cosx
x

for x �= 0, |x| � 1.

5. Suppose a computer program is available which yields values for arcsin y in
floating-point representation with t decimal mantissa places and for |y| ≤ 1
subject to a relative error ε with |ε| ≤ 5 × 10−t. In view of the relation

arctanx = arcsin
x√

1 + x2
,

this program could also be used to evaluate arctanx. Determine for which
values x this procedure is numerically stable by estimating the relative error.

6. For given z, the function tan z/2 can be computed according to the formula

tan
z

2
= ±

(1 − cos z
1 + cos z

)1/2

.

Is this method of evaluation numerically stable for z ≈ 0, z ≈ π/2 ? If
necessary, give numerically stable alternatives.

7. The function
f(ϕ, kc) :=

1√
cos2 ϕ+ k2

c sin2 ϕ

34 1 Error Analysis

is to be evaluated for 0 ≤ ϕ ≤ π/2, 0 < kc ≤ 1.
The method

k2 : = 1 − k2
c ,

f(ϕ, kc) : =
1√

1 − k2 sin2 ϕ

avoids the calculation of cosϕ and is faster. Compare this with the direct
evaluation of the original expression for f(ϕ, kc) with respect to numerical
stability.

8. For the linear function f(x) := a+ b x, where a �= 0, b �= 0, compute the first
derivative Dhf(0) = f ′(0) = b by the formula

Dhf(0) =
f(h) − f(−h)

2h

in binary floating-point arithmetic. Suppose that a and b are binary machine
numbers, and h a power of 2. Multiplication by h and division by 2h can be
therefore carried out exactly. Give a bound for the relative error of Dhf(0).
What is the behavior of this bound as h → 0 ?

9. The square root ±(u + iυ) of a complex number x + iy with y �= 0 may be
calculated from the formulas

u = ±

√
x+

√
x2 + y2

2

υ =
y

2u

.

Compare the cases x ≥ 0 and x < 0 with respect tom their numerical stabil-
ity. Modify the formulas if necessary to ensure numerical stability.

10. The variance S2, of a set of observations x1, . . . , xn is to determined. Which
of formulas

S2 =
1

n− 1

(
n∑

i=1

x2
i − nx̄2

)
,

S2 =
1

n− 1

n∑
i=1

(xi − x̄)2 with x̄ :=
1
n

n∑
i=1

xi

is numerically more trustworthy ?

11. The coefficients ar, br(r = 0, . . . , n) are, for fixed x, connected recursively:

bn := an;

(∗) for r = n− 1, n− 2, . . . , 0 : br := xbr+1 + ar.

(a) Show that the polynomials

A(z) :=
n∑

r=0

arz
r, B(z) :=

n∑
r=1

brz
r−1

Exercises for Chapter 1 35

satisfy
A(z) = (z − x) ·B(z) + b0.

(b) Suppose A(x) = b0 is to be calculated by the recursion (∗) for fixed x in
floating-point arithmetic, the result being b′0. Show, using the formulas
(compare Exercise 1)

fl(u+ υ) =
u+ υ

1 + σ
, |σ| ≤ eps,

fl(u · υ) =
u · υ
1 + π

, |π| ≤ eps,

the inequality

|A(x) − b′0| ≤ eps
1 − eps

(2e0 − |b′0|),

where e0 is defined by the following recursion:

en := |an|/2;

for r = n− 1, n− 2, . . . , 0; er := |x|ar+1 + |b′r|.

Hint: From

b′n := an,

pr := fl(xb′r+1) =
xb′r+1

1 + πr+1

b′r := fl(pr + ar) =
pr + ar

1 + σr
= xb′r+1 + ar + δr

 r = n− 1, . . . , 0,

derive
δr = −xb′r+1

πr+1

1 + πr+1
− σrb

′
r (r = n− 1, . . . , 0);

then show b′0 =
∑n

k=0(ak + δk)xk, δn := 0, and estimate
∑n

0 |δk||x|k.

12. Assuming Earth to be special, two points on its surface can be expressed
in Cartesian coordinates

pi = [xi, yizi] = [r cosαi cosβi, r sinαi cosβi, r sinβi], i = 1, 2,

where r is the earth radius and αi, βi are the longitudes and latitudes
of the two points pi, respectively. If

cosσ =
pT1 p2
r2

= cos(α1 − α2) cosβ1 cosβ2 + sinβ1 sinβ2,

then rσ is the great-circle distance between the two points.
(a) Show that using the arccos function to determine σ from the above

expression is not numerically stable.
(b) Derive a numerically stable expression for σ.

36 1 Error Analysis

References for Chapter 1

Ashenhurst, R. L., Metropolis, N. (1959): Unnormalized floating-point arithmetic.
Assoc. Comput. Mach. 6, 415–428.

Bauer, F. L. (1974): Computational graphs and rounding error. SIAM J. Numer.
Anal. 11, 87–96.

, Heinhold, J., Samelson, K., Sauer, R. (1965): Moderne Rechenanlagen.
Stuttgart: Teubner.

Henrici, P. (1963): Error propagation for difference methods. New York: Wiley.
Knuth, D. E. (1969): The Art of Computer Programming. Vol. 2. Seminumerical

Algorithms. Reading, Mass.: Addison-Wesley.
Kulisch, U. (1969): Grundzüge der Intervallrechnung. In: D. Laugwitz: Überblicke

Mathematik 2, 51–98. Mannheim: Bibliographisches Institut.
Moore, R. E. (1966): Interval analysis. Englewood Cliffs, N.J.: Prentice-Hall.
Neumann, J. von, Goldstein, H. H. (1947): Numerical inverting of matrices. Bull.

Amer. Math. Soc. 53, 1021-1099.
Rademacher, H. A. (1948): On the accumulation of errors in processes of in-

tegration on high-speed calculating machines. Proceedings of a symposium on
large-scale digital calculating machinery. Annals Comput. Labor. Harvard Univ.
16, 176–185.

Scarborough, J. B. (1950): Numerical Mathematical Analysis, 2nd edition. Balti-
more: Johns Hopkins Press.

Sterbenz, P. H. (1974): Floating Point Computation. Englewood Cliffs, N.J.:
Prentice-Hall.

Wilkinson, J.H. (1960): Error analysis of floating-point computation. Numer.
Math. 2, 219–340.

(1963): Rounding Errors in Algebraic Processes. New York: Wiley.
(1965): The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.

2 Interpolation

Consider a family of functions of a single variable x,

Φ(x; a0, . . . , an),

having n + 1 parameters a0, . . . , an, whose values characterize the indi-
vidual functions in this family. The interpolation problem for Φ consists
of determining these parameters ai so that for n+ 1 given real or complex
pairs of numbers (xi, fi), i = 0, . . . , n, with xi �= xk for i �= k

Φ(xi; a0, . . . , an) = fi, i = 0, . . . , n,

holds. We will call the pairs (xi, fi) support points, the locations xi support
abscissas, and the values fi support ordinates.Occasionally, the values of
derivatives of Φ are also prescribed.

The above is a linear interpolation problem if Φ depends linearly on the
parameters ai:

Φ(x; a0, . . . , an) ≡ a0Φ0(x) + a1Φ1(x) + . . .+ anΦn(x).

This class of problems includes the classical one of polynomial interpolation
[Section 2.1],

Φ(x; a0, . . . , an) ≡ a0 + a1x+ a2x2 + · · · + anxn,

as well as trigonometric interpolation [Section 2.3],

Φ(x; a0, . . . , an) ≡ a0 + a1exi + a2e2xi + · · · + anenxi (i2 = −1).

In the past, polynomial interpolation was frequently used to interpolate
function values gathered from tables. The availability of modern comput-
ing machinery has almost eliminated the need for extensive table lookups.
However, polynomial interpolation is also important as the basis of several
types of numerical integration formulas in general use. In a more modern de-
velopment, polynomial and rational interpolation (see below) are employed
in the construction of “extrapolation methods” for integration, differential
equations, and related problems [see for instance Sections 3.3 and 3.4].

38 2 Interpolation

Trigonometric interpolation is used extensively for the numerical Fourier
analysis of time series and cyclic phenomena in general. In this context, the
so-called “fast Fourier transforms” are particularly important and success-
ful [Section 2.3.2].

The class of linear interpolation problems also contains spline interpo-
lation [Section 2.4]. In the special case of cubic splines, the functions Φ
are assumed to be twice continuously differentiable for x ∈ [x0, xn] and to
coincide with some cubic polynomial on every subinterval [xi, xi+1] of a
given partition x0 < x1 < · · · < xn.

Spline interpolation is a fairly new development of growing importance.
It provides a valuable tool for representing empirical curves and for approx-
imating complicated mathematical functions. It is increasingly used when
dealing with ordinary or partial differential equations.

Two nonlinear interpolation schemes are of importance: rational inter-
polation,

Φ(x; a0, . . . , an, b0, . . . , bm) ≡ a0 + a1x+ · · · + anxn
b0 + b1x+ · · · + bmxm

,

and exponential interpolation,

Φ(x; a0, . . . , an, λ0, . . . , λn) ≡ a0e
λ0x + a1eλ1x + · · · + aneλnx.

Rational interpolation (Section 2.2) plays a role in the process of best
approximating a given function by one which is readily evaluated on a
digital computer. Exponential interpolation is used, for instance, in the
analysis of radioactive decay.

Interpolation is a basic tool for the approximation of given functions.
For a comprehensive discussion of these and related topics consult Davis
(1965).

2.1 Interpolation by Polynomials

2.1.1 Theoretical Foundation: The Interpolation Formula of
Lagrange

In what follows, we denote by Πn the set of all real or complex polynomials
P whose degrees do not exceed n:

P (x) = a0 + a1x+ · · · + anxn.

(2.1.1.1) Theorem For n+ 1 arbitrary support points

(xi, fi), i = 0, . . . , n, xi �= xk for i �= k,

there exists a unique polynomial P ∈ Πn with

2.1 Interpolation by Polynomials 39

P (xi) = fi, i = 0, 1, . . . , n.

Proof. Uniqueness: For any two polynomials P1, P2 ∈ Πn with

P1(xi) = P2(xi) = fi, i = 0, 1, . . . , n,

the polynomial P := P1 − P2 ∈ Πn has degree at most n, and it has at
least n+1 different zeros, namely xi, i = 0, . . . , n. P must therefore vanish
identically, and P1 = P2.

Existence: We will construct the interpolating polynomial P explicitly
with the help of polnomials Li ∈ Πn, i = 0, . . . , n, for which

(2.1.1.2) Li(xk) = δik =
{

1 if i = k,
0 if i �= k.

The following Lagrange polynomials satisfy the above conditions:

(2.1.1.3)

Li(x) ..≡
(x− x0) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)

≡ ω(x)
(x− xi)ω′(xi)

with ω(x) :=
n∏
i=0

(x− xi).

Note that our proof so far shows that the Lagrange polynomials are
uniquely determined by (2.1.1.2).

The solution P of the interpolation problem can now be expressed di-
rectly in terms of the polynomials Li, leading to the Lagrange interpolation
formula:

(2.1.1.4) P (x) ≡
n∑
i=0

fiLi(x) =
n∑
i=0

fi

n∏
k �=i
k=0

x− xk
xi − xk

. ��

The above interpolation formula shows that the coefficients of P de-
pend linearly on the support ordinates fi. While theoretically important,
Lagrange’s formula is, in general, not as suitable for actual calculations
as some other methods to be described below, particularly for large num-
bers n of support points. Lagrange’s formula may, however, be useful in
some situations in which many interpolation problems are to be solved for
the same support abscissae xi, i = 0, . . . , n, but different sets of support
ordinates fi, i = 0, . . . , n.

Example. Given for n = 2:
xi 0 1 3

fi 1 3 2

Wanted: P (2), where P ∈ Π2, P (xi) = fi for i = 0, 1, 2.

40 2 Interpolation

Solution:

L0(x) ≡ (x− 1)(x− 3)
(0 − 1)(0 − 3)

, L1(x) ≡ (x− 0)(x− 3)
(1 − 0)(1 − 3)

, L2(x) ≡ (x− 0)(x− 1)
(3 − 0)(3 − 1)

,

P (2) = 1 · L0(2) + 3 · L1(2) + 2 · L2(2) = 1 · −1
3

+ 3 · 1 + 2 · 1
3

=
10
3
.

2.1.2 Neville’s Algorithm

Instead of solving the interpolation problem all at once, one might consider
solving the problem for smaller sets of support points first and then updat-
ing these solutions to obtain the solution to the full interpolation problem.
This idea will be explored in the following two sections.

For a given set of support points (xi, fi), i = 0, 1, . . . , n, we denote by

Pi0i1...ik ∈ Πk

that polynomial in Πk for which

Pi0i1...ik(xij) = fij , j = 0, 1, . . . , k.

These polynomials are linked by the following recursion:

Pi(x) ≡ fi,(2.1.2.1a)

Pi0i1...ik(x) ≡
(x− xi0)Pi1i2...ik(x) − (x− xik)Pi0i1...ik−1(x)

xik − xi0
.(2.1.2.1b)

Proof: (2.1.2.1a) is trivial. To prove (2.1.2.1b), we denote its right-hand
side by R(x), and go on to show that R has the characteristic properties of
Pi0i1...ik . The degree of R is clearly not greater than k. By the definitions
of Pi1...ik and Pi0...ik−1 ,

R(xi0) = Pi0...ik−1(xi0) = fi0 ,

R(xik) = Pi1...ik(xik) = fik ,

and

R(xij) =
(xij − xi0)fij − (xij − xik)fij

xik − xi0
= fij .

for j = 1, 2, . . . , k − 1. Thus R = Pi0i1...ik , in view of the uniqueness of
polynomial interpolation [Theorem (2.1.1.1)]. ��

Neville’s algorithm aims at determining the value of the interpolating
polynomial P for a single value of x. It is less suited for determining the
interpolating polynomial itself. Algorithms that are more efficient for the

2.1 Interpolation by Polynomials 41

later task, and also more efficient if values of P are sought for several
arguments x simultaneously, will be described in Section 2.1.3.

Based on the recursion (2.1.2.1), Neville’s algorithm constructs a sym-
metric tableau of the values of some of the partially interpolating polyno-
mials Pi0i1...ik for fixed x:

(2.1.2.2)

k = 0 1 2 3

x0 f0 = P0(x)
P01(x)

x1 f1 = P1(x) P012(x)
P12(x) P0123(x). . .

x2 f2 = P2(x) P123(x)
. . .

P23(x)
x3 f3 = P3(x)

The first column of the tableau contains the prescribed support ordinates
fi. Subsequent columns are filled by calculation each entry recursively from
its two “neighbors” in the previous column according to (2.1.2.1b). The
entry P123(x), for instance, is given by

P123(x) =
(x− x1)P23(x) − (x− x3)P12(x)

x3 − x1
.

Example. Determine P012(2) for the same support points as in section 2.1.1.

k = 0 1 2
x0 = 0 f0 = P0(2) = 1

P01(2) = 5
x1 = 1 f1 = P1(2) = 3 P012(2) = 10

3
P12(2) = 5

2
x2 = 3 f2 = P2(2) = 2

P01(2) =
(2 − 0) · 3 − (2 − 1) · 1

1 − 0
= 5,

P12(2) =
(2 − 1) · 2 − (2 − 3) · 3

3 − 1
=

5
2
,

P012(2) =
(2 − 0) · 5/2 − (2 − 3) · 5

3 − 0
=

10
3
.

We will now discuss slight variants of Neville’s algorithm, employing a
frequently used abbreviation,

(2.1.2.3) Ti+k,k := Pi,i+1,...,i+k.

42 2 Interpolation

The tableau (2.1.2.2) becomes

(2.1.2.4)

x0 f0 = T00

T11

x1 f1 = T10 T22
↘

T21 T33
↘ ↗

x2 f2 = T20 T32
↘ ↗
T31

↗
x3 f3 = T30

The arrows indicate how the additional upward diagonal Ti,0, Ti,1, . . . , Ti,i
can be constructed if one more support point xi, fi is added.

The recursion (2.1.2.1) may be modified for more efficient evaluation:

Ti,0 :=fi(2.1.2.5a)

Ti,k :=
(x− xi−k)Ti,k−1 − (x− xi)Ti−1,k−1

xi − xi−k
(2.1.2.5b)

=Ti,k−1 +
Ti,k−1 − Ti−1,k−1

x− xi−k
x− xi

− 1
, 1 ≤ k ≤ i, i ≥ 0.

The following ALGOL algorithm is based on this modified recursion:

for i := 0 step 1 until n do

begin t[i] := f [i];

for j := i− 1 step −1 until 0 do

t[j] := t[j + 1] + (t[j + 1] − t[j]) × (x− x[i])/(x[i] − x[j])
end ;

After the inner loop has terminated, t[j] = Ti,i−j , 0 ≤ j ≤ i. The
desired value Tnn = P01,...,n(x) of the interpolating polynomial can be
found in t[0].

Still another modification of Neville’s algorithm serves to improve some-
what the accuracy of the interpolated polynomial value. For i = 0, 1, . . . , n,
let the quantities Qik, Dik be defined by

Qi0 := Di0 := fi,

Qik := Tik − Ti,k−1

Dik := Tik − Ti−1,k−1

}
1 ≤ k ≤ i.

2.1 Interpolation by Polynomials 43

The recursion (2.1.2.5) then translates into
(2.1.2.6)

Qik := (Di,k−1 −Qi−1,k−1)
xi − x
xi−k − xi

Dik := (Di,k−1 −Qi−1,k−1)
xi−k − x
xi−k − xi

 1 ≤ k ≤ i, i = 0, 1,

Starting with Qi0 := Di0 := fi, one calculates Qik, Dik from the above
recursion. Finally

Pnn := fn +
n∑
k=1

Qnk .

If the values f0, . . . , fn are close to each other, the quantities Qik will be
small compared to fi. This suggests forming the sum of the “corrections”
Qn1, . . . , Qnn first [contrary to (2.1.2.5)] and then adding it to fn, thereby
avoiding unnecessary roundoff errors.

Note finally that for x = 0 the recursion (2.1.2.5) takes a particularly
simple form

(2.1.2.7a) Ti0 := fi

(2.1.2.7b) Tik := Ti,k−1 +
Ti,k−1 − Ti−1,k−1

xi−k
xi

− 1
, 1 ≤ k ≤ i ,

— as does its analog (2.1.2.6). These forms are encountered when applying
extrapolation methods.

For historical reasons mainly, we mention Aitken’s algorithm. . It is also
based on (2.1.2.1), but uses different intermediate polynomials. Its tableau
is of the form

x0 f0 = P0(x)

x1 f1 = P1(x) P01(x)

x2 f2 = P2(x) P02(x) P012(x)

x3 f3 = P3(x) P03(x) P013(x) P0123(x)

· · · · · ·

The first column again contains the prescribed values fi. Each subsequent
entry derives from the previous entry in the same row and the top entry in
the previous column according to (2.1.2.1b).

2.1.3 Newton’s Interpolation Formula: Divided Differences

Neville’s algorithm is geared towards determining interpolating values
rather than polynomials. If the interpolating polynomial itself is needed,

44 2 Interpolation

or if one wants to find interpolating values for several arguments ξj simul-
taneously, then Newton’s interpolation formula ff is to be preferred. Here
we write the interpolating polynomial P ∈ Πn, P (xi) = fi, i = 0, 1, . . . n,
in the form

(2.1.3.1)
P (x) ≡ P01...n(x)

= a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·
+ an(x− x0) · · · (x− xn−1).

Note that the evaluation of (2.1.3.1) for x = ξ may be done recursively
as indicated by the following expression:

P (ξ) = (· · · (an(ξ − xn−1) + an−1)(ξ − xn−2) + · · · + a1)(ξ − x0) + a0.

This requires fewer operations than evaluating (2.1.3.1) term by term. It
corresponds to the so-called Horner scheme for evaluating polynomials
which are given in the usual form, i.e. in terms of powers of x, and it
shows that the representation (2.1.3.1) is well suited for evaluation.

It remains to determine the coefficients ai in (2.1.3.1). In principle, they
can be calculated successively from

f0 = P (x0) = a0

f1 = P (x1) = a0 + a1(x1 − x0)

f2 = P (x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

· · ·

This can be done with n divisions and n(n − 1) multiplications. There is,
however, a better way, which requires only n(n+ 1)/2 divisions and which
produces useful intermediate results.

Observe that the two polynomials Pi0i1...ik−1(x) and Pi0i1...ik(x) differ
by a polynomial of degree k with k zeros xi0 , xi1 ,. . . , xik−1 , since both
polynomials interpolate the corresponding support points. Therefore there
exists a unique coefficient

(2.1.3.2) fi0i1...ik

such that
(2.1.3.3)
Pi0i1...ik(x) = Pi0i1...ik−1(x) + fi0i1...ik(x− xi0)(x− xi1) · · · (x− xik−1) .

From this and from the identity Pi0 ≡ fi0 it follows immediately that

(2.1.3.4)
Pi0i1...ik(x) =fi0 + fi0i1(x− xi0) + · · ·

+ fi0i1...ik(x− xi0)(x− xi1) · · · (x− xik−1)

2.1 Interpolation by Polynomials 45

is a Newton representation of the interpolating polynomial Pi0,...,ik(x). The
coefficients (2.1.3.2) are called k th divided differences.

The recursion (2.1.2.1) for the partially interpolating polynomials
translates into the recursion

(2.1.3.5) fi0i1...ik =
fi1...ik − fi0...ik−1

xik − xi0
for the divided differences, since by (2.1.3.3), fi1...ik and fi0...ik−1 are the
coefficients of the highest terms of the polynomials Pi1i2...ik and Pi0i1...ik−1 ,
respectively. The above recursion starts for k = 0 with the given support
ordinates fi, i = 0, . . . , n. It can be used in various ways for calculating di-
vided differences fi0 , fi0i1 , . . . , fi0i1...in , which then characterize the desired
interpolating poynomial P = Pi0i1...in .

Because the polynomial Pi0i1...ik is uniquely determined by the support
points it interpolates [Theorem (2.1.1.1)], the polynomial is invariant to any
permutation of the indices i0, i1, . . . , ik, and so is its coefficient fi0i1...ik of
xk. Thus:
(2.1.3.6). The divided differences fi0i1...ik are invariant to permutations of
the indices i0, i1, . . . , ik: If

(j0, j1, . . . , jk) = (is0 , is1 , . . . , isk
)

is a permutation of the indices i0, i1, . . . , ik, then

fj0j1...jk = fi0i1...ik .

If we choose to calculate the divided differences in analogy to Neville’s
method — instead of, say, Aitken’s method — then we are led to the
following tableau, called the divided-difference scheme:

(2.1.3.7)

k = 0 1 2 · · ·
x0 f0

f01
x1 f1 f012

f12
...

. . .
x2 f2

......
...

The entries in the second column are of the form

f01 =
f1 − f0
x1 − x0

, f12 =
f2 − f1
x2 − x1

, . . . ,

those in the third column,

f012 =
f12 − f01
x2 − x0

, f123 =
f23 − f12
x3 − x1

,

46 2 Interpolation

Clearly,

P (x) ≡ P01...n(x)
≡ f0 + f01(x− x0) + · · · + f01...n(x− x0)(x− x1) · · · (x− xn−1)

is the desired solution to the interpolation problem at hand. The coefficients
of the above expansion are found in the top descending diagonal of the
divided-difference scheme (2.1.3.7).

Example. With the numbers of the example in sections 2.1.1 and 2.1.2, we have:

x0 = 0 f0 = 1
f01 = 2

x1 = 1 f1 = 3 f012 = − 5
6

f12 = − 1
2

x2 = 3 f2 = 2

P012(x) = 1 + 2 · (x− 0) − 5
6 (x− 0)(x− 1),

P012(2) = (− 5
6 · (2 − 1) + 2)(2 − 0) + 1 = 10

3 .

Instead of building the divided-difference scheme column by column,
one might want to start with the upper left corner and add successive
ascending diagonal rows. This amounts to adding new support points one
at a time after having interpolated the previous ones. In the following
ALGOL procedure, the entries in an ascending diagonal of (2.1.3.7) are
found, after each increase of i, in the top portion of array t, and the first i
coefficients f01...i are found in array a.

for i := 0 step 1 until n do
begin t[i] := f [i];

for j := i− 1 step −1 until 0 do
t[j] := (t[j + 1] − t[j])/(x[i] − x[j]);

a[i] := t[0]
end ;

Afterwards, the interpolationg polynomial (2.1.3.1) may be evaluated for
any desired argument z:

p := a[n];
for i := n− 1 step −1 until 0 do

p := p× (z − x[i]) + a[i];

Some Newton representations of the same polynomial are numerically
more trustworth to evaluate than others. Choosing the permutation so that

|ξ − xik | ≥ |ξ − xik−1 |, k = 0, 1, . . . , n− 1,

dampens the error (see Section 1.3) during the Horner evaluation of

2.1 Interpolation by Polynomials 47

(2.1.3.8)
P (ξ) ≡ Pi0...in(ξ) ≡ fi0 +fi0i1(ξ−xi0)+· · ·+fi0i1...in(ξ−xi0) · · · (ξ−xin−1).

All Newton representations of the above kind can be found in the sin-
gle divided-difference scheme which arises if the support arguments xi,
i = 0, . . . , n, are ordered by size: xi < xi+1 for i = 0, . . . , n − 1. Then the
preferred sequence of indices i0, i1, . . . , ik is such that each index ik is
“adjacent” to some previous index. More precisely, either ik = min{ il |
0 ≤ l < k } − 1 or ik = max{ il | 0 ≤ l < k } + 1. Therefore the coefficients
of (2.1.3.8) are found along a zigzag path—instead of the upper descend-
ing diagonal—of the divided-difference scheme. Starting with fi0 , the path
proceeds to the upper right neighbor if ik < ik−1, or to the lower right
neighbor if ik > ik−1.

Example. In the previous example, a preferred sequence for ξ = 2 is

i0 = 1, i1 = 2, i2 = 0.

The corresponding path in the divided difference scheme is indicated below:

x0 = 0 f0 = 1
f01 = 2

x1 = 1 f1 = 3 f012 = − 5
6

f12 = − 1
2

x2 = 3 f2 = 2

The desired Newton representation is:

P120(x) = 3 − 1
2 (x− 1) − 5

6 (x− 1)(x− 3)

P120(2) = (− 5
6 (2 − 3) − 1

2 (2 − 1) + 3 = 10
3 .

Frequently, the support ordinates fi are values f(xi) = fi of a given
function f(x), which one wants to approximate by interpolation. In this
case, the divided differences may be considered as multivariate functions
of the support arguments xi, and are historically written as

f [xi0 , xi1 , . . . , xik].

These functions satisfy (2.1.3.5). For instance,

f [x0] = f(x0)

f [x0, x1] =
f [x1] − f [x0]
x1 − x0

=
f(x1) − f(x0)
x1 − x0

f [x0, x1, x2] =
f [x1, x2] − f [x0, x1]

x2 − x0

=
f(x0)(x1 − x2) + f(x1)(x2 − x0) + f(x2)(x0 − x1)

(x1 − x0)(x2 − x1)(x0 − x2)
.

48 2 Interpolation

Also, (2.1.3.6) gives immediately:

(2.1.3.9) Theorem. The divided differences f [xi0 , . . . , xik] are symmetric
functions of their arguments, i.e., they are invariant to permutations of the
xi0 , . . . , xik .

If the function f(x) is itself a polynomial, then we have the

(2.1.3.10) Theorem. If f(x) is a polynomial of degree N , then

f [x0, . . . , xk] = 0

for k > N .

Proof. Because of the unique solvability of the interpolation problem
[Theorem (2.1.1.1)], P01···k(x) ≡ f(x) for k ≥ N . The coefficient of xk

in P01···k(x) must therefore vanish for k > N . This coefficient, however, is
given by f [x0, . . . , xk] according to (2.1.3.3). ��

Example. f(x) = x2

xi k = 0 1 2 3 4

0 0
1

1 1 1
3 0

2 4 1 0
5 0

3 9 1
7

4 16

If the function f(x) is sufficiently often differentiable, then its divided
differences f [x0, . . . , xk] can also be defined if some of the arguments xi
coincide. For instance, if f(x) has a derivative at x0, then it makes sense
for certain purposes to define

f [x0, x0] := f ′(x0).

For a corresponding modification of the divided-difference scheme (2.1.3.7)
see Section 2.1.5 on Hermite interpolation.

2.1.4 The Error in Polynomial Interpolation

Once again wie consider a given function f(x) and certain of its values

fi = f(xi), i = 0, 1, . . . , n,

which are to be interpolated. We wish to ask how well the interpolating
polynomial P (x) ≡ P0...n(x) ∈ Πn with

2.1 Interpolation by Polynomials 49

P (xi) = fi, i = 0, 1, . . . , n,

reproduces f(x) for arguments different from the support arguments xi.
The error

f(x) − P (x),

where x �= xi, i = 0, 1, . . . , can clearly become arbitrarily large for suit-
able functions f unless some restrictions are imposed on f . Under certain
conditions, however, it is possible to bound the error. We have, for instance:

(2.1.4.1) Theorem. If the function f has an (n + 1)st derivative, then
for every argument x̄ there exists a numer ξ in the smallest interval
I[x0, . . . , xn, x̄] which contains x̄ and all support abscissas xi, satisfying

f(x̄) − P01...n(x̄) =
ω(x̄)f (n+1)(ξ)

(n+ 1)!
,

where
ω(x) ≡ (x− x0)(x− x1) · · · (x− xn) .

Proof. Let P (x) :≡ P01...n(x) be the polynomial which interpolates the
function at xi, i = 0, 1, . . . , n, and suppose x̄ �= xi (for x̄ = xi there is
nothing to show). We can find a constant K such that the function

F (x) :≡ f(x) − P (x) −Kω(x)

vanishes for x = x̄:
F (x̄) = 0.

Consequently, F (x) has at least the n+ 2 zeros

x0, . . . , xn, x̄

in the interval I[x0, . . . , xn, x̄]. By Rolle’s theorem, applied repeatedly,
F ′(x) has at least n+ 1 zeros in the above interval, F ′′(x) at least n zeros,
and finally F (n+1)(x) at least one zero ξ ∈ I[x0, . . . , xn, x̄].

Since P (n+1)(x) ≡ 0,

F (n+1)(ξ) = f (n+1)(ξ) −K(n+ 1)! = 0

or

K =
f (n+1)(ξ)
(n+ 1)!

.

This proves the proposition

f(x̄) − P (x̄) = Kω(x̄) =
ω(x̄)

(n+ 1)!
f (n+1)(ξ). ��

50 2 Interpolation

A different error term can be derived from Newton’s interpolation for-
mula (2.1.3.4):

P (x) ≡ P01...n(x) ≡ f [x0] + f [x0, x1](x− x0) + · · ·

+ f [x0, x1, . . . , xn](x− x0) . . . (x− xn−1).

Here f [x0, x1, . . . , xk] are the divided differences of the given function f . If
in addition to the n+ 1 support points

(xi, fi) : fi = f(xi), i = 0, 1, . . . , n ,

we introduce an (n+ 2)nd support point

(xn+1, fn+1) : xn+1 := x̄, fn+1 := f(x̄),

where
x̄ �= xi, i = 0, . . . , n ,

then by Newton’s formula

f(x̄) = P0...n+1(x̄) = P0...n(x̄) + f [x0, . . . , xn, x̄]ω(x̄) ,

or

(2.1.4.2) f(x̄) − P0...n(x̄) = ω(x̄)f [x0, . . . , xn, x̄] .

The difference on the left-hand side appears in Theorem (2.1.4.1), and since
ω(x̃) �= 0, we must have

f [x0, . . . , xn, x̄] =
f (n+1)(ξ)
(n+ 1)!

for some ξ ∈ I[x0, . . . , xn, x̄] .

This also yields

(2.1.4.3) f [x0, . . . , xn] =
f (n)(ξ)
n!

for some ξ ∈ I[x0, . . . , xn] ,

which relates derivatives and divided differences.

Example. f(x) = sinx:

xi =
π

10
· i, i = 0, 1, 2, 3, 4, 5, n = 5,

sinx− P (x) = (x− x0)(x− x1) . . . (x− x5)
− sin ξ

720
, ξ = ξ(x),∣∣sinx− P (x)

∣∣ ≤ 1
720

∣∣(x− x0)(x− x1) . . . (x− x5)
∣∣ =

|ω(x)|
720

.

2.1 Interpolation by Polynomials 51

We end this section with two brief warnings, one against trusting the
interpolating polynomial outside of I[x0, . . . , xn], and one against expecting
too much of polynomial interpolation inside I[x0, . . . , xn].

In the exterior of the interval I[x0, . . . , xn], the value of
∣∣ω(x)

∣∣ in The-
orem (2.1.4.1) grows very fast. The use of the interpolation polynomial P
for approximating f at some location outsinde the interval I[x0, . . . , xn] —
called extrapolation — should be avoided if possible.

Within I[x0, . . . , xn] on the other hand, it should not be assumed that
finer and finer samplings of the function f will lead to better and better
approximations through interpolation.

Consider a real function f which is infinitely often differentiable in a
given interval [a, b]. To every interval partition ∆ = { a = x0 < x1 <
· · · < xn = b } there exists an interpolating polynomial P∆ ∈ Πn with
P∆(xi) = fi for xi ∈ ∆. A sequence of interval partitions

∆m =
{
a = x

(m)
0 < x

(m)
1 < . . . < x(m)

nm
= b

}
gives rise to a sequence of interpolating polynomials P∆m . One might expect
the polynomials P∆m

to converge toward f if the fineness

‖∆m‖ := max
i

∣∣x(m)
i+1 − x(m)

i

∣∣
of the partitions tends to 0 as m → ∞. In general this is not true. For
example, it has been shown for the functions

f(x) :=
1

1 + x2 , [a, b] = [−5, 5],

and
f(x) :=

√
x, [a, b] = [0, 1],

that the polynomials P∆m do not converge pointwise to f for arbitrarily
fine uniform partitions ∆m, x(m)

i = a+ i(b− a)/m, i = 0, . . . , m.

2.1.5 Hermite-Interpolation

Consider the real numbers xi, f
(k)
i , i = 0, 1, . . . , m, k = 0, 1, . . . , ni − 1,

with
x0 < x1 < · · · < xm.

The Hermite interpolation problem for these data consists of determining
a polynomial P whose degree does not exceed n, P ∈ Πn, where

n+ 1 :=
m∑
i=0

ni ,

and which satisfies the following interpolation conditions:

52 2 Interpolation

(2.1.5.1) P (k)(xi) = f
(k)
i , i = 0, 1, . . . , m k = 0, 1, . . . , ni − 1.

This problem differs from the usual interpolation problem for polynomials
in that it prescribes at each support abscissa xi not only the value but
also the first ni − 1 derivatives of the desired polynomial. The polynomial
interpolation of Section 2.1.1 is the special case ni = 1, i = 0, 1, . . . ,m.

There are exactly
∑
ni = n + 1 conditions (2.1.5.1) for the n + 1

coefficients of the interpolating polynomial, leading us to expect that the
Hermite interpolation problem can be solved uniquely:

(2.1.5.2) Theorem. For arbitrary numbers x0 < x1 < . . . < xm and f (k)
i ,

i = 0, 1, . . . , m, k = 0, 1, . . . , ni− 1, there exists precisely one polynomial

P ∈ Πn, n+ 1 :=
m∑
i=0

ni ,

which satisfies (2.1.5.1).

Proof. We first show uniqueness. Consider the difference polynomial
Q(x) := P1(x) − P2(x) of two polynomials P1, P2 ∈ Πn for which (2.1.5.1)
holds. Since

Q(k)(xi) = 0, k = 0, 1, . . . , ni − 1, i = 0, 1, . . . ,m ,

xi is at least an ni-fold root ofQ, so thatQ has altogether
∑
ni = n+1 roots

each counted according to its multiplicity. Thus Q must vanish identically,
since its degree is less than n+ 1.

Existence is a consequence of uniqueness: For (2.1.5.1) is a system of
linear equations for n unknown coefficients cj of P (x) = c0+c1x+· · ·+cnxn.
The matrix of this system is not singular, because of the uniqueness of
its solutions. Hence the linear system (2.1.5.1) has a unique solution for
arbitrary right-hand sides f (k)

i . ��
Hermite interpolating polynomials can be given explicitly in a form

analogous to the interpolation formula of Lagrange (2.1.1.4). The polyno-
mial P ∈ Πn given by

(2.1.5.3) P (x) =
m∑
i=0

ni−1∑
k=0

f
(k)
i Lik(x).

satisfies (2.1.5.1). The polynomials Lik ∈ Πn are generalized Lagrange poly-
nomials.They are defined as follows: Starting with the auxiliary polynomi-
als

lik(x) :=
(x− xi)k

k!

m∏
j=0
j �=i

(
x− xj
xi − xj

)nj

, 0 ≤ i ≤ m, 0 ≤ k ≤ ni ,

2.1 Interpolation by Polynomials 53

[compare (2.1.1.3)], put

Li,ni−1(x) := li,ni−1(x), i = 0, 1, . . . ,m,

and recursively for k = ni − 2, ni − 3, . . . , 0,

Lik(x) := lik(x) −
ni−1∑
ν=k+1

l
(ν)
ik (xi)Liν(x) .

By induction

L
(σ)
ik (xj) =

{
1, if i = j and k = σ,
0, otherwise.

Thus P in (2.1.5.3) is indeed the desired Hermite interpolating polynomial.
An alternative way to describe Hermite interpolation is important for

Newton- and Neville-type algorithms to construct the Hermite interpo-
lating polynomial, and, in particular, for developing the theory of B-
splines [Section 2.4.4]. The approach is to generalize divided differences
f [x0, x1, . . . , xk] [see Section 2.1.3] so as to accommodate repeated abscis-
sae. To this end, we expand the sequence of abscissae x0 < x1 < · · · < xm
occuring in (2.1.5.1) by replacing each xi by ni copies of itself:

x0 = · · · = x0︸ ︷︷ ︸
n0

< x1 = · · · = x1︸ ︷︷ ︸
n1

< · · · < xm = · · · = xm︸ ︷︷ ︸
nm

.

The n+ 1 =
∑m
i=0 ni elements in this sequence are then renamed

t0 = x0 ≤ t1 ≤ · · · ≤ tn = xm,

and will be referred to as virtual abscissae.
We now wish to reformulate the Hermite interpolation problem (2.1.5.1)

in terms of the virtual abscissae, without reference to the numbers xi and
ni, i = 0, . . . , m. Clearly, this is possible since the virtual abscissae deter-
mine the “true” abscissae xi and the integers ni, i = 0, 1, . . . , m. In order
to stress the dependence of the Hermite interpolant P (.) on t0, t1, . . . , tn
we write P01...n(.) for P (.). Also it will be convenient to write f (r)(xi) in-
stead of f (r)

i in (2.1.5.1). The interpolant P01...n is uniquely defined by the
n + 1 =

∑m
i=0 ni interpolation conditions (2.1.5.1), which are as many as

there are index pairs (i, k) with i = 0, 1, . . . , m, k = 0, 1, . . . , ni − 1, and
are as many as there are virtual abscissae. An essential observation is that
the interpolation conditions in (2.1.5.1) belonging to the following linear
ordering of the index pairs (i, k),

(0, 0), (0, 1), . . . , (0, n0 − 1), (1, 0), . . . , (1, n1 − 1), . . . , (m,nm − 1),

have the form

54 2 Interpolation

(2.1.5.4) P
(sj−1)
01...n (tj) = f (sj−1)(tj), j = 0, 1, . . . , n,

if we define sj , j = 0, 1, . . . , n, as the number of times the value of tj
occurs in the subsequence

t0 ≤ t1 ≤ · · · ≤ tj .

The equivalence of (2.1.5.1) and (2.1.5.4) follows directly from

x0 = t0 = t1 = · · · = tn0−1 < x1 = tn0 = · · · = tn0+n1−1 < · · · ,

and the definition of the sj ,

s0 = 1, s1 = 2, . . . , sn0−1 = n0; sn0 = 1, . . . , sn0+n1−1 = n1;

We now use this new formulation in order to express the existence
and uniqueness result of Theorem (2.1.5.2) algebraically. Note that any
polynomial P (t) ∈ Πn can be written in the form

P (t) =
n∑
j=0

bj
tj

j!
= Π(t) b, b := [b0, b1, . . . , bn]T ,

where Π(t) is the row vector

Π(t) :=
[

1, t, . . . ,
tn

n!

]
.

Therefore by Theorem (2.1.5.2) and (2.1.5.4), the following system of linear
equations

Π(sj−1)(tj) b = f (sj−1)(tj), j = 0, 1, . . . , n,

has a unique solution b. This proves the following corollary, which is equiv-
alent to Theorem (2.1.5.2):

(2.1.5.5) Corollary. For any nondecreasing finite sequence

t0 ≤ t1 ≤ · · · ≤ tn

of n+ 1 real numbers, the (n+ 1) × (n+ 1) matrix

Vn(t0, t1, . . . , tn) :=

Π(s0−1)(t0)
Π(s1−1)(t1)

. . .
Π(sn−1)(tn)

is nonsingular.

The matrix Vn(t0, t1, . . . , tn) is related to the well-known Vandermonde
matrix if the numbers tj are distinct (then sj = 1 for all j):

2.1 Interpolation by Polynomials 55

Vn(t0, t1, . . . , tn) =

 1 t0 . . . tn0
...

...
...

1 tn . . . tnn

1!
2!

. . .
n!

−1

.

Example 1. For t0 = t1 < t2, one finds

V2(t0, t1, t2) =

1 t0

t20
2

0 1 t1

1 t2
t22
2

 .

In preparation for a Neville type algorithm for Hermite interpolation,
we associate with each segment

ti ≤ ti+1 ≤ · · · ≤ ti+k, 0 ≤ i ≤ i+ k ≤ n,

of virtual abscissae the solution Pi,i+1,...,i+k ∈ Πk of the partial Hermite
interpolation problem belonging to this subsequence, that is the solution
of [see (2.1.5.4)]

P
(sj−1)
i,i+1,...i+k(tj) = f (sj−1)(tj), j = i, i+ 1, . . . , i+ k.

Here of course, the integers sj , i ≤ j ≤ i + k, are defined with respect to
the subsequence, that is sj is the number of times the value of tj occurs
within the sequence ti, ti+1, . . . , tj .

Example 2. Suppose n0 = 2, n1 = 3 and

x0 = 0, f
(0)
0 = −1, f

(1)
0 = −2,

x1 = 1, f
(0)
1 = 0, f

(1)
1 = 10, f

(2)
1 = 40.

This leads to virtual abscissae tj , j = 0, 1, . . . , 4, with

t0 = t1 := x0 = 0, t2 = t3 = t4 := x1 = 1.

For the subsequence t1 ≤ t2 ≤ t3, that is i = 1 and k = 2, one has

t1 = x0 < t2 = t3 = x1, s1 = s2 = 1, s3 = 2.

It is associated with the interpolating polynomial P123(x) ∈ Π2, satisfying

P
(s1−1)
123 (t1) = P123(0) = f (s1−1)(t1) = f (0)(0) = −1,

P
(s2−1)
123 (t2) = P123(1) = f (s2−1)(t2) = f (0)(1) = 0,

P
(s3−1)
123 (t3) = P ′

123(1) = f (s3−1)(t3) = f (1)(1) = 10.

This illustrates (2.1.5.4).

56 2 Interpolation

Using this notation the following analogs to Neville’s formulae (2.1.2.1)
hold: If ti = ti+1 = · · · = ti+k = xl then

(2.1.5.6a) Pi,i+1,...,i+k(x) =
k∑
r=0

f
(r)
l

r!
(x− xl)r,

and if ti < ti+k
(2.1.5.6b)

Pi,i+1,...,i+k(x) =
(x− ti)Pi+1,...,i+k(x) − (x− ti+k)Pi,i+1,...,i+k−1(x)

ti+k − ti
.

The first of these formulae follows directly from definition (2.1.5.4); the sec-
ond is proved in the same way as its counterpart (2.1.2.1b): One verifies first
that the right hand side of (2.1.5.6b) satisfies the same uniquely solvable
(Theorem (2.1.5.2)) interpolation conditions (2.1.5.4) as Pi,i+1,...,i+k(x).
The details of the proof are left to the reader. ��

In analogy to (2.1.3.2), we now define the generalized divided difference

f [ti, ti+1, . . . , ti+k]

as the coefficient of xk in the polynomial Pi,i+1,...,i+k(x) ∈ Πk. By com-
paring the coefficients of xk in (2.1.5.6) [cf. (2.1.3.5)] we find, if ti = · · · =
ti+k = xl,

(2.1.5.7a) f [ti, ti+1, . . . , ti+k] =
1
k!
f

(k)
l ,

and if ti < ti+k

(2.1.5.7b) f [ti, ti+1, . . . , ti+k] =
f [ti+1, . . . , ti+k] − f [ti, ti+1, . . . , ti+k−1]

ti+k − ti
.

By means of the generalized divided differences

ak := f [t0, t1, . . . , tk], k = 0, 1, . . . , n,

the solution P (x) = P01···n(x) ∈ Πn of the Hermite interpolation problem
(2.1.5.1) can be represented explicitly in its Newton form [cf. (2.1.3.1)]

(2.1.5.8)
P01···n(x) = a0 + a1(x− t0) + a2(x− t0)(x− t1) + · · ·

+ an(x− t0)(x− t1) · · · (x− tn−1).

This follows from the observation that the difference polynomial

Q(x) := P01···n(x) − P01···(n−1)(x) = f [t0, t1, . . . , tn]xn + · · ·

is of degree at most n and has, because of (2.1.5.1) and (2.1.5.4), for i ≤ m−
1, the abscissa xi as zero of multiplicity ni, and xm as zero of multiplicity
(nm − 1). The polynomial of degree n

2.1 Interpolation by Polynomials 57

(x− t0)(x− t1) · · · (x− tn−1),

has the same zeros with the same multiplicities. Hence

Q(x) = f [t0, t1, . . . , tn](x− t0)(x− t1) · · · (x− tn−1),

which proves (2.1.5.8). ��
Example 3. We illustrate the calculation of the generalized divided differences
with the data of Example 2 (m = 1, n0 = 2, n1 = 3). The following difference
scheme results:

t0 = 0 −1∗ = f [t0]
−2∗ = f [t0, t1]

t1 = 0 −1∗ = f [t1] 3 = f [t0, t1, t2]
1 = f [t1, t2] 6 = f [t0, . . . , t3]

t2 = 1 0∗ = f [t2] 9 = f [t1, t2, t3] 5 = f [t0, . . . , t4]
10∗ = f [t2, t3] 11 = f [t1, . . . , t4]

t3 = 1 0∗ = f [t3] 20∗ = f [t2, t3, t4]
10∗ = f [t3, t4]

t4 = 1 0∗ = f [t4]

The entries marked ∗ have been calculated using (2.1.5.7a) rather than (2.1.5.7b).
The coefficients of the Hermite interpolating polynomial can be found in the
upper diagonal of the difference scheme:

P (x) = −1 − 2(x− 0) + 3(x− 0)(x− 0) + 6(x− 0)(x− 0)(x− 1)

+ 5(x− 0)(x− 0)(x− 1)(x− 1)

= −1 − 2x+ 3x2 + 6x2(x− 1) + 5x2(x− 1)2 .

The interpolation error incurred by Hermite interpolation can be esti-
mated in the same fashion as for the usual interpolation by polynomials.
In particular, the proof of the following theorem is entirely analogous to
the proof of Theorem (2.1.4.1):

(2.1.5.9) Theorem. Let the real function f be n + 1 times differentiable
on the interval [a, b], and consider m+ 1 support abscissae xi ∈ [a, b],

x0 < x1 < · · · < xm.

If the polynomial P (x) is of degree at most n,

m∑
i=0

ni = n+ 1,

and satisfies the interpolation conditions

P (k)(xi) = f (k)(xi), i = 0, 1, . . . , m, k = 0, 1, . . . , ni − 1,

58 2 Interpolation

then for every x̄ ∈ [a, b] exists ξ̄ ∈ I[x0, . . . , xm, x̄] such that

f(x̄) − P (x̄) =
ω(x̄)f (n+1)(ξ̄)

(n+ 1)!
,

where
ω(x) := (x− x0)n0(x− x1)n1 . . . (x− xm)nm .

Hermite interpolation is frequently used to approximate a given real
function f by a piecewise polynomial function ϕ. Given a partition

∆ : a = x0 < x1 < · · · < xm = b

of an interval [a, b], the corresponding Hermite function space H(ν)
∆ is de-

fined as consisting of all functions ϕ : [a, b] → IR with the following prop-
erties:

(2.1.5.10) (a) ϕ ∈ Cν−1[a, b]: The (ν−1)st derivative of ϕ exists and
is continuous on [a, b].

(b) ϕ|Ii ∈ Π2ν−1: On each subinterval Ii := [xi, xi+1],
i = 0, 1, . . . , m − 1, ϕ agrees with a polynomial of
degree at most 2ν − 1.

Thus the function ϕ consists of polynomial pieces of degree 2ν − 1 or less
which are ν − 1 times differentiable at the “knots” xi. In order to approxi-
mate a given real function f ∈ Cν−1[a, b] by a function ϕ ∈ H(ν)

∆ , we choose
the component polynomials Pi = ϕ|Ii of ϕ so that Pi ∈ Π2ν−1 and so that
the Hermite interpolation conditions

P
(k)
i (xi) = f (k)(xi), P

(k)
i (xi+1) = f (k)(xi+1), k = 0, 1, . . . , ν − 1 ,

are satisfied.
Under the more stringent condition f ∈ C2ν [a, b], Theorem (2.1.5.9)

provides a bound to the interpolation error for x ∈ Ii, which arises if the
component polynomial Pi replaces f :

(2.1.5.11)

∣∣f(x) − Pi(x)
∣∣ ≤ ∣∣(x− xi)(x− xi+1)

∣∣ν
(2ν)!

max
ξ∈Ii

∣∣f (2ν)(ξ)
∣∣

≤
∣∣xi+1 − xi

∣∣2ν
22ν(2ν!)

max
ξ∈Ii

∣∣f (2ν)(ξ)
∣∣.

Combining these results for i = 0, 1, . . . , m gives for the function ϕ ∈ H(ν)
∆ ,

which was defined earlier,

2.2 Interpolation by Rational Functions 59

(2.1.5.12)
∥∥f − ϕ

∥∥
∞ := max

x∈[a,b]

∣∣f(x) − ϕ(x)
∣∣ ≤ 1

22ν(2ν)!

∥∥f (2ν)
∥∥

∞ ‖∆‖2ν

where
‖∆‖ = max

0≤i≤m−1
|xi+1 − xi|

is the “fineness” of the partition ∆.
The approximation error goes to zero with the 2ν th power of the

fineness ‖∆j‖ if we consider a sequence of partitions ∆j of the interval
[a, b] with ‖∆j‖ → 0. Contrast this with the case of ordinary polynomial
interpolation, where the approximation error does not necessarily go to
zero as ‖∆j‖ → 0 [see Section 2.1.4].

Ciarlet, Schultz, and Varga (1967) were able to show also that the first ν
derivatives of ϕ are a good approximation to the corresponding derivatives
of f :
(2.1.5.13)∣∣f (k)(x) − P (k)

i (x)
∣∣ ≤ |(x− xi)(x− xi+1)|ν−k

k!(2ν − 2k)!
(xi+1 − xi)k max

ξ∈Ii

∣∣f (2ν)(ξ)
∣∣

for all x ∈ Ii, i = 0, 1, . . . , m− 1, k = 0, 1, . . . , ν, and therefore

(2.1.5.14)
∥∥f (k) − ϕ(k)

∥∥
∞ ≤ ‖∆‖2ν−k

22ν−2kk! (2ν − 2k)!

∥∥f (2ν)
∥∥

∞

for k = 0, 1, . . . , ν.

2.2 Interpolation by Rational Functions

2.2.1 General Properties of Rational Interpolation

Consider again a given set of support points (xi, fi), i = 0, 1, We will
now examine the use of rational functions

Φµ,ν(x) ≡ Pµ,ν(x)
Qµ,ν(x)

≡ a0 + a1x+ · · · + aµxµ
b0 + b1x+ · · · + bνxν

for interpolating these support points. Here the integers µ and ν denote the
maximum degrees of the polynomials in the numerator and denominator,
respectively. We call the pair of integers (µ, ν) the degree type of the rational
interpolation problem.

The rational function Φµ,ν is determined by its µ+ ν + 2 coefficients

a0, a1, . . . , aµ, b0, b1, . . . , bν .

On the other hand, Φµ,ν determines these coefficients only up to a common
factor ρ �= 0.This suggests that Φµ,ν is fully determined by the µ + ν + 1
interpolation conditions

60 2 Interpolation

(2.2.1.1) Φµ,ν(xi) = fi, i = 0, 1, . . . , µ+ ν .

We denote by Aµ,ν the problem of calculating the rational function Φµ,ν

from (2.2.1.1).
It is clearly necessary that the coefficients ar, bs, of Φµ,ν solve the

homogeneous system of linear equations

(2.2.1.2) Pµ,ν(xi) − fiQµ,ν(xi) = 0, i = 0, 1, . . . , µ+ ν,

or written out in full,

a0 + a1xi+ · · ·+ aµxµi − fi(b0 + b1xi+ · · ·+ bνxνi) = 0, i = 0, 1, . . . , µ+ ν.

We denote this linear system by Sµ,ν .
At first glace, substituting Sµ,ν for Aµ,ν does not seem to present a

problem. The next example will show, however, that this is not the case, and
that rational interpolation is inherently more complicated than polynomial
interpolation.

Example. For support points

xi : 0 1 2
fi : 1 2 2

and µ = ν = 1:
a0 − 1 · b0 = 0,
a0 + a1 − 2(b0 + b1) = 0,
a0 + 2a1 − 2(b0 + 2b1) = 0 .

Up to a common nonzero factor, solving the above system S1,1 yields the coeffi-
cients

a0 = 0, b0 = 0, a1 = 2, b1 = 1,

and therefore the rational expression

Φ1,1(x) ≡ 2x
x
,

which for x = 0 leads to the indeterminate expression 0/0. After cancelling the
factor x, we arrive at the rational expression

Φ̃1,1(x) ≡ 2.

Both expressions Φ1,1 and Φ̃1,1 represent the same rational function, namely
the constant function of value 2. This function misses the first support point
(x0, f0) = (0, 1). Therefore it does not solve A1,1. Since solving S1,1 is necessary
for any solution of A1,1, we conclude that no such solution exists.

The above example shows that the rational interpolation problem Aµ,ν

need not be solvable. Indeed, if Sµ,ν has a solution which leads to a rational
function that does not solve Aµ,ν — as was the case in the example — then

2.2 Interpolation by Rational Functions 61

the rational interpolation problem is not solvable. In order to examine this
situation more closely, we have to distinguish between different represen-
tations of the same rational function Φµ,ν , which arise from each other by
canceling or by introducing a common polynomial factor in numerator and
denominator. We say that two rational expressions (that is pairs of two
polynomials, the numerator and denominator polynomials)

Φ1(x) ..≡
P1(x)
Q1(x)

, Φ2(x) ..≡
P2(x)
Q2(x)

, Q1(x) �≡ 0, Q2(x) �≡ 0,

are equivalent , and write
Φ1 ∼ Φ2 ,

if
P1(x)Q2(x) ≡ P2(x)Q1(x) .

This is precisely when the two rational expressions represent the same
rational function.

A rational expression is called relatively prime if its numerator and
denominator are relatively prime, i.e., not both divisible by the same poly-
nomial of positive degree. If a rational expression is not relatively prime,
then canceling all common polynomial factors leads to an equivalent ratio-
nal which is.

Finally we say that a rational expression Φµ,ν is a solution of Sµ,ν if its
coefficients solve Sµ,ν . As noted before, Φµ,ν solves Sµ,ν if it solves Aµ,ν .
Rational interpolation is complicated by the fact that the converse need
not hold.

(2.2.1.3) Theorem. The homogeneous linear system of equations Sµ,ν

always has nontrivial solutions. For each such solution

Φµ,ν ≡ Pµ,ν(x)
Qµ,ν(x)

,

Qµ,ν(x) �≡ 0 holds, i.e., all nontrivial solutions define rational functions.

Proof. The homogeneous linear system Sµ,ν has µ + ν + 1 equations for
µ+ν+2 unknowns. As a homogeneous linear system with more unknowns
than equations, Sµ,ν has nontrivial solutions

(a0, a1, . . . , aµ, b0, . . . , bν) �= (0, . . . , 0, 0, . . . , 0) .

For any such solution, Qµ,ν(x) �≡ 0, since

Qµ,ν(x) ≡ b0 + b1x+ · · · + bνxν ≡ 0

would imply that the polynomial Pµ,ν(x) ≡ a0 + a1 + · · · + aµxµ has the
zeros

Pµ,ν(xi) = 0, i = 0, 1, . . . , µ+ ν .

62 2 Interpolation

It would follow that Pµ,ν(x) ≡ 0, since the polynomial Pµ,ν has at most
degree µ, and vanishes at µ+ν+1 ≥ µ+1 different locations, contradicting

(a0, a1, . . . , aµ, b0, . . . , bν) �= (0, . . . , 0) . ��

The following theorem shows that the rational interpolation problem
has a unique solution if it has a solution at all.

(2.2.1.4) Theorem. If Φ1 and Φ2 are both (nontrivial) solutions of the
homogeneous linear system Sµ,ν , then they are equivalent (Φ1 ∼ Φ2), that
is, they determine the same rational function.

Proof. If both Φ1(x) ≡ P1(x)/Q1(x) and Φ2(x) ≡ P2(x)/Q2(x) solve Sµ,ν ,
then the polynomial

P (x) :≡ P1(x)Q2(x) − P2(x)Q1(x)

has µ+ ν + 1 different zeros

P (xi) = P1(xi)Q2(xi) − P2(xi)Q1(xi)
= fiQ1(xi)Q2(xi) − fiQ2(xi)Q1(xi)
= 0, i = 0, . . . , µ+ ν.

Since the degree of polynomial P does not exceed µ + ν, it must vanish
identically, and it follows that Φ1(x) ∼ Φ2(x). ��

Note that the converse of the above theorem does not hold: a rational ex-
pression Φ1 may well solve Sµ,ν whereas some equivalent rational expression
Φ2 does not. The previously considered example furnishes a case in point.

Combining Theorems (2.2.1.3) and (2.2.1.4), we find that there exists
for each rational interpolation problem Aµ,ν a unique rational function,
which is represented by any rational expression Φµ,ν that solves the corre-
sponding linear system Sµ,ν . Either this rational function satisfies (2.2.1.1),
thereby solving Aµ,ν , or Aµ,ν is not solvable at all. In the latter case, there
must be some support point (xi, fi) which is “missed” by the rational func-
tion. Such a support point is called inaccessible. Thus Aµ,ν is solvable if
there are no inaccessible points.

Suppose Φµ,ν(x) ≡ Pµ,ν(x)/Qµ,ν(x) is a solution to Sµ,ν . For any i ∈
{ 0, 1, . . . , µ+ ν } we distinguish the two cases:

1) Qµ,ν(xi) �= 0,
2) Qµ,ν(xi) = 0.

In the first case, clearly Φµ,ν(xi) = fi. In the second case, however, the
support point (xi, fi) may be inaccessible. Here

Pµ,ν(xi) = 0

2.2 Interpolation by Rational Functions 63

must hold by (2.2.1.2). Therefore, both Pµ,ν and Qµ,ν contain the factor
x− xi and are consequently not relatively prime. Thus:

(2.2.1.5). If Sµ,ν has a solution Φµ,ν which is relatively prime, then there
are no inaccessible points: Aµ,ν is solvable.

Given Φµ,ν , let Φ̃µ,ν be an equivalent rational expression which is relatively
prime. We then have the general result:

(2.2.1.6) Theorem. Suppose Φµ,ν solves Sµ,ν . Then Aµ,ν is solvable —
and Φµ,ν represents the solution — if and only if Φ̃µ,ν solves Sµ,ν .

Proof. If Φ̃µ,ν solves Sµ,ν , then Aµ,ν is solvable by (2.2.1.5). If Φ̃µ,ν does
not solve Sµ,ν , its corresponding rational function does not solve Aµ,ν . ��
Even if the linear system Sµ,ν has full rank µ + ν + 1, the rational inter-
polation problem Aµ,ν may not solvable. However, since the solutions of
Sµ,ν are, in this case, uniquely determined up to a common constant factor
ρ �= 0, we have:

(2.2.1.7) Corollary to (2.2.1.6). If Sµ,ν has full rank, then Aµ,ν is solv-
able if and only if the solution Φµ,ν of Sµ,ν is relatively prime.

We say that the support points (xi, fi), i = 0, 1, . . . , σ are in special po-
sition if they are interpolated by a rational expression of degree type (κ, λ)
with κ + λ < σ. In other words, the interpolation problem is solvable for
a smaller combined degree of numerator and denominator than suggested
by the number of support points. We observe that

(2.2.1.8) Theorem. The accessible support points of a nonsolvable inter-
polation problem Aµ,ν are in special position.

Proof. Let i1, . . . , iα be the subscripts of the inaccessible points, and let
Φµ,ν be a solution of Sµ,ν . The numerator and the denominator of Φµ,ν

were seen above to have the common factors x − xi1 , . . . , x − xiα , whose
cancellation leads to an equivalent rational expression Φκ,λ with κ = µ−α,
λ = ν − α. Φκ,λ solves the interpolation problem Aκ,λ which just consists
of the µ+ ν + 1 − α accessible points. As

κ+ λ+ 1 = µ+ ν + 1 − 2α < µ+ ν + 1 − α,

the accessible points of Aµ,ν are clearly in special position. ��
The observation (2.2.1.8) makes it clear that nonsolvability of the ra-

tional interpolation problem is a degeneracy phenomenon: solvability can
be restored by arbitrarily small perturbations of the support points. In
what follows, we will therefore restrict our attention to fully nondegenerate
problems, that is, problems for which no subset of the support points is in
special position. Not only is Aµ,ν solvable in this case, but so are all prob-
lems Aκ,λ of κ+ λ+ 1 of the original support points where κ+ λ ≤ µ+ ν.
For further details see Milne (1950) and Maehly and Witzgall (1960).

64 2 Interpolation

Most of the following discussion will be of recursive procedures for solv-
ing rational interpolation problems Aµ,ν . With each step of such recursions
there will be associated a rational expression Πµ,ν , of degree type (µ, ν)
with µ ≤ m and ν ≤ n, and either the numerator or the denominator of
Φµ,ν will be increased by 1. Because of the availability of this choice, the
recursion methods for rational interpolation are more varied than those for
polynomial interpolation. It will be helpful to plot the sequence of degree
types (µ, ν) which are encountered in a particular recursion as paths in a
diagram:

µ = 0 1 2 3 . . .

ν = 0 • • •

1 • •

2 • •

3 •

...

We will distinguish two kinds of algorithms. The first kind is analogous
to Newton’s method of interpolation: A tableau of quantities analogous
to divided differences is generated from which coefficients are gathered for
an interpolating rational expression. The second kind corresponds to the
Neville-Aitken approach of generating a tableau of values of intermediate
rational functions Φµ,ν . These values relate to each other directly.

2.2.2 Inverse and Reciprocal Differences. Thiele’s Continued
Fraction

The algorithms to be described in this section calculate rational expressions
along the main diagonal of the (µ, ν)-plane:

(2.2.2.1)

µ = 0 1 2 3 . . .

ν = 0 • •

1 • •

2 • •

3 • •

... •

Starting from the support points (xi, fi), i = 0, 1, . . . , we build the following
tableau of inverse differences:

2.2 Interpolation by Rational Functions 65

i xi fi

0 x0 f0
1 x1 f1 ϕ(x0, x1)
2 x2 f2 ϕ(x0, x2) ϕ(x0, x1, x2)
3 x3 f3 ϕ(x0, x3) ϕ(x0, x1, x3) ϕ(x0, x1, x2, x3)
...

...
...

...
...

...

The inverse differences are defined recursively as follows:

(2.2.2.2)

ϕ(xi, xj) =
xi − xj
fi − fj

,

ϕ(xi, xj , xk) =
xj − xk

ϕ(xi, xj) − ϕ(xi, xk)
,

ϕ(xi, . . . , xl, xm, xn) =
xm − xn

ϕ(xi, . . . , xl, xm) − ϕ(xi, . . . , xl, xn)
.

On occasion, certain inverse differences become ∞ because the denomina-
tors in (2.2.2.2) vanish.

Note that the inverse differences are, in general, not symmetric func-
tions of their arguments.

Let Pµ, Qν be polynomials whose degree is bounded by µ and ν, re-
spectively. We will now try to use inverse differences in order to find a
rational expression

Φn,n(x) =
Pn(x)
Qn(x)

with

Φn,n(xi) = fi for i = 0, 1, . . . , 2n .

We must therefore have

Pn(x)
Qn(x)

= f0 +
Pn(x)
Qn(x)

− Pn(x0)
Qn(x0)

= f0 + (x− x0)
Pn−1(x)
Qn(x)

= f0 +
(x− x0)

Qn(x)/Pn−1(x)
.

The rational expression Qn(x)/Pn−1(x) satisfies

Qn(xi)
Pn−1(xi)

=
xi − x0

fi − f0
= ϕ(x0, xi)

for i = 1, 2, . . . , 2n. It follows that

66 2 Interpolation

Qn(x)
Pn−1(x)

= ϕ(x0, x1) +
Qn(x)
Pn−1(x)

− Qn(x1)
Pn−1(x1)

= ϕ(x0, x1) + (x− x1)
Qn−1(x)
Pn−1(x)

= ϕ(x0, x1) +
x− x1

Pn−1(x)/Qn−1(x)

and therefore

Pn−1(xi)
Qn−1(xi)

=
xi − x1

ϕ(x0, xi) − ϕ(x0, x1)
= ϕ(x0, x1, xi) , i = 2, 3, . . . , 2n .

Continuing in this fashion, we arrive at the following expression for Φn,n(x):

Φn,n(x) =
Pn(x)
Qn(x)

= f0 +
x− x0

Qn(x)/Pn−1(x)

= f0 +
x− x0

ϕ(x0, x1) +
x− x1

Pn−1(x)/Qn−1(x)

= · · ·

= f0 +
x− x0

ϕ(x0, x1) +
x− x1

ϕ(x0, x1, x2) + . . . x− x2n−1

ϕ(x0, . . . , x2n)
.

Φn,n(x) is thus srepresented by a continued fraction:

(2.2.2.3)
Φn,n(x) =f0 + x− x0

/
ϕ(x0, x1) + x− x1

/
ϕ(x0, x1, x2) + · · ·

+ x− x2n−1
/
ϕ(x0, x1, . . . , x2n).

It is readily seen that the partial fractions of this continued fraction are
nothing but the rational expressions Φµ,µ(x) and Φµ+1,µ(x), µ = 0, 1,
. . . , n − 1, which satisfy (2.2.1.1) and which are indicated in the diagram
(2.2.2.1).

Φ0,0(x) = f0,

Φ1,0(x) = f0 + x− x0
/
ϕ(x0, x1) ,

Φ1,1(x) = f0 + x− x0
/
ϕ(x0, x1) + x− x1

/
ϕ(x0, x1, x2) ,

Example

2.2 Interpolation by Rational Functions 67

i xi fi ϕ(x0, xi) ϕ(x0, x1, xi) ϕ(x0, x1, x2, xi)
0 0 0
1 1 −1 −1
2 2 − 2

3 −3 − 1
2

3 3 9 1
3

3
2

1
2

Φ2,1(x) = 0 + x
/
−1 + x− 1

/
−1/2 + x− 2

/
1/2 = (4x2 − 9x)/(−2x+ 7).

Because the inverse differences lack symmetry, the so-called reciprocal
differences

ρ(xi, xi+1, . . . , xi+k)

are often preferred. They are defined by the recursions

ρ(xi) := fi ,

ρ(xi, xi+1) :=
xi − xi+1

fi − fi+1
,(2.2.2.4)

. . .

ρ(xi, xi+1, . . . , xi+k) :=
xi − xi+k

ρ(xi, . . . , xi+k−1) − ρ(xi+1, . . . , xi+k)
+

+ ρ(xi+1, . . . , xi+k−1) .

For a proof that the reciprocal differences are indeed symmetrical, see
Milne-Thompson (1951).

The reciprocal differences are closely related to the inverse differences.

(2.2.2.5) Theorem. For p = 1, 2, . . . [letting ρ(x0, . . . , xp−2) = 0 for
p = 1],

ϕ(x0, x1, . . . , xp) = ρ(x0, . . . , xp) − ρ(x0, . . . , xp−2) .

Proof. The proposition is correct for p = 1. Assuming it true for p, we
conclude from

ϕ(x0, x1, . . . , xp+1) =
xp − xp+1

ϕ(x0, . . . , xp) − ϕ(x0, . . . , xp−1, xp+1)

that

ϕ(x0, x1, . . . , xp+1) =
xp − xp+1

ρ(x0, . . . , xp) − ρ(x0, . . . , xp−1, xp+1)
.

By (2.2.2.4),

68 2 Interpolation

xp − xp+1

ρ(xp, x0, . . . , xp−1) − ρ(x0, . . . , xp−1, xp+1)

= ρ(xp, x0, . . . , xp−1, xp+1) − ρ(x0, . . . , xp−1).

Since the ρ(. . .) are symmetric,

ϕ(x0, x1, . . . , xp+1) = ρ(x0, . . . , xp+1) − ρ(x0, . . . , xp−1) ,

whence (2.2.2.5) has been established for p+ 1. ��
The reciprocal differences can be arranged in the tableau

(2.2.2.6)

x0 f0
ρ(x0, x1)

x1 f1 ρ(x0, x1, x2)
ρ(x1, x2) ρ(x0, x1, x2, x3)

x2 f2 ρ(x1, x2, x3)
...

ρ(x2, x3)
...

x3 f3
......

...

Using (2.2.2.5) to substitute reciprocal differences for inverse differences
in (2.2.2.3) yields Thiele’s continued fraction:
(2.2.2.7)

Φn,n(x) =f0 + x− x0
/
ρ(x0, x1) + x− x1

/
ρ(x0, x1, x2) − ρ(x0) + · · ·

+ x− x2n−1
/
ρ(x0, . . . , x2n) − ρ(x0, . . . , x2n−2).

2.2.3 Algorithms of the Neville Type

We proceed to derive an algorithm for rational interpolation which is anal-
ogous to Neville’s algorithm for polynomial interpolation.

A quick reminder that, after discussing possible degeneracy effects in
rational interpolation problems [Section 2.2.1], we have assumed that such
effects are absent in the problems whose solution we are discussing. Indeed,
such degeneracies are not likely to occur in numerical problems.

We use

Φµ,νs (x) ≡ Pµ,νs (x)
Qµ,νs (x)

to denote the rational expression with

Φµ,νs (xi) = fi for i = s, s+ 1, . . . , s+ µ+ ν .

Pµ,νs , Qµ,νs being polynomials of degrees not exceeding µ and ν, respec-
tively. Let pµ,νs and qµ,νs be the leading coefficients of these polynomials:

2.2 Interpolation by Rational Functions 69

Pµ,νs (x) = pµ,νs xµ + · · · , Qµ,νs (x) = qµ,νs xν + · · · .

For brevity we put

αi := x− xi and Tµ,νs (x, y) := Pµ,νs (x) − y ·Qµ,νs (x) ,

noting that

Tµ,νs (xi, fi) = 0, i = s, s+ 1, . . . , s+ µ+ ν .

(2.2.3.1) Theorem. Starting with

P 0,0
s (x) = fs, Q0,0

s (x) = 1,

the following recursions hold:

(a) Transition (µ− 1, ν) → (µ, ν):

Pµ,νs (x) = αsq
µ−1,ν
s Pµ−1,ν

s+1 (x) − αs+µ+ν q
µ−1,ν
s+1 Pµ−1,ν

s (x),

Qµ,νs (x) = αsq
µ−1,ν
s Qµ−1,ν

s+1 (x) − αs+µ+ν q
µ−1,ν
s+1 Qµ−1,ν

s (x).

(b) Transition (µ, ν − 1) → (µ, ν):

Pµ,νs (x) = αsp
µ,ν−1
s Pµ,ν−1

s+1 (x) − αs+µ+ν p
µ,ν−1
s+1 Pµ,ν−1

s (x),

Qµ,νs (x) = αsp
µ,ν−1
s Qµ,ν−1

s+1 (x) − αs+µ+ν p
µ,ν−1
s+1 Qµ,ν−1

s (x).

Proof. We show only (a), the proof of (b) being analogous. Suppose the
rational expressions Φµ−1,ν

s and Φµ−1,ν
s+1 meet the interpolation requirements

(2.2.3.2)
Tµ−1,ν
s (xi, fi) = 0 for i = s, . . . , s+ µ+ ν − 1 ,

Tµ−1,ν
s+1 (xi, fi) = 0 for i = s+ 1, . . . , s+ µ+ ν .

If we define Pµ,νs (x), Qµ,νs (x) by (a), then the degree of Pµ,νs clearly does
not exceed µ. The polynomial expression for Qµ,νs contains formally a term
with xν+1, whose coefficient, however, vanishes. The polynomial Qµ,νs is
therefore of degree at most ν. Finally,

Tµ,νs (x, y) = αsq
µ−1,ν
s Tµ−1,ν

s+1 (x, y) − αs+µ+ν q
µ−1,ν
s+1 Tµ−1,ν

s (x, y) .

From this and (2.2.3.2),

Tµ,νs (xi, fi) = 0 for i = s, . . . , s+ µ+ ν.

Under the general hypothesis that no combination (µ, ν, s) has inacces-
sible points, the above result shows that (a) indeed defines the numerator
and denominator of Φµ,νs . ��

70 2 Interpolation

Unfortunately, the recursions (2.2.3.1) still contain the coefficients
pµ,ν−1
s , qµ−1,ν

s . The formulas are therefore not yet suitable for the cal-
culation of Φm,ns (x) for a prescribed value of x. However, we can eliminate
these coefficients on the basis of the following theorem.

(2.2.3.3) Theorem.

(a) Φµ−1,ν
s (x) − Φµ−1,ν−1

s+1 (x) = k1
(x− xs+1) · · · (x− xs+µ+ν−1)
Qµ−1,ν
s (x)Qµ−1,ν−1

s+1 (x)

with k1 = −pµ−1,ν−1
s+1 qµ−1,ν

s ,

(b) Φµ−1,ν
s+1 (x) − Φµ−1,ν−1

s+1 (x) = k2
(x− xs+1) · · · (x− xs+µ+ν−1)
Qµ−1,ν
s+1 (x)Qµ−1,ν−1

s+1 (x)

with k2 = −pµ−1,ν−1
s+1 qµ−1,ν

s+1 .

Proof. The numerator polynomial of the rational expression

Φµ−1,ν
s (x) − Φµ−1,ν−1

s+1 (x) =

=
Pµ−1,ν
s (x)Qµ−1,ν−1

s+1 (x) − Pµ−1,ν−1
s+1 (x)Qµ−1,ν

s (x)

Qµ−1,ν
s (x)Qµ−1,ν−1

s+1 (x)

is at most of degree µ− 1 + ν and has µ+ ν − 1 different zeros

xi, i = s+ 1, s+ 2, . . . , s+ µ+ ν − 1

by definition of Φµ−1,ν
s and Φµ−1,ν−1

s+1 . It must therefore be of the form

k1(x− xs+1) · · · (x− xs+µ+ν−1) with k1 = −pµ−1,ν−1
s+1 qµ−1,ν

s .

This proves (a). (b) is shown analogously. ��

(2.2.3.4) Theorem. For µ ≥ 1, ν ≥ 1,

Φµ,νs (x) = Φµ−1,ν
s+1 (x) +

Φµ−1,ν
s+1 (x) − Φµ−1,ν

s (x)

αs
αs+µ+ν

[
1 −

Φµ−1,ν
s+1 (x) − Φµ−1,ν

s (x)

Φµ−1,ν
s+1 (x) − Φµ−1,ν−1

s+1 (x)︸ ︷︷ ︸
∗

]
− 1

,(a)

Φµ,νs (x) = Φµ,ν−1
s+1 (x) +

Φµ,ν−1
s+1 (x) − Φµ,ν−1

s (x)

αs
αs+µ+ν

[
1 −

Φµ,ν−1
s+1 (x) − Φµ,ν−1

s (x)

Φµ,ν−1
s+1 (x) − Φµ−1,ν−1

s+1 (x)

]
− 1

.(b)

2.2 Interpolation by Rational Functions 71

Proof. By Theorem (2.2.3.1),

Φµ,νs (x) =
αsq

µ−1,ν
s Pµ−1,ν

s+1 (x) − αs+µ+ν q
µ−1,ν
s+1 Pµ−1,ν

s (x)

αsq
µ−1,ν
s Qµ−1,ν

s+1 (x) − αs+µ+ν q
µ−1,ν
s+1 Qµ−1,ν

s (x)
.

We now assume that pµ−1,ν−1
s+1 �= 0 and multiply numerator and denomina-

tor of the above fraction by

−pµ−1,ν−1
s+1 (x− xs+1)(x− xs+2) · · · (x− xs+µ+ν−1)

Qµ−1,ν
s+1 (x)Qµ−1,ν

s (x)Qµ−1,ν−1
s+1 (x)

.

Taking Theorem (2.2.3.3) in account, we arrive at

(2.2.3.5) Φµ,νs (x) =
αsΦ

µ−1,ν
s+1 (x) []1 − αs+µ+νΦ

µ−1,ν
s (x) []2

αs []1 − αs+µ+ν []2
,

where
[]1 = Φµ−1,ν

s (x) − Φµ−1,ν−1
s+1 (x) ,

[]2 = Φµ−1,ν
s+1 (x) − Φµ−1,ν−1

s+1 (x) .

(a) follows by a straightforward transformation. (b) is derived analogously.
��

The formulas in Theorem (2.2.3.4) can now be used to calculate the
values of rational expressions for prescribed x successively, alternately in-
creasing the degrees of numerators and denominators. This corresponds to
a zigzag path in the (µ, ν)-diagram:

(2.2.3.6)

µ = 0 1 2 3 . . .

ν = 0

1
....

2

..... . . .

·
..... . . .

·
..... . . .

·
.....

Special recursive rules are still needed for initial straight portions—vertical-
ly and horizontally—of such paths.

As long as ν = 0 and only µ is being increased, one has a case of pure
polynomial interpolation. One uses Neville’s formulas [see (2.1.2.1)]

Φ0,0
s (x) := fs,

Φµ,0s (x) :=
αsΦ

µ−1,0
s+1 − αs+µΦµ−1,0

s (x)
αs − αs+µ

, µ = 1, 2,

72 2 Interpolation

Actually these are specializations of Theorem (2.2.3.4a) for ν = 0, provided
the convention Φµ−1,−1

s+1 := ∞ is adopted, which causes the quotient marked
∗ in (2.2.3.4) to vanish.

If µ = 0 and only ν is being increased, then this case relates to polyno-
mial interpolation with the support points (xi, 1/fi), and one can use the
formulas

(2.2.3.7)

Φ0,0
s (x) := fs,

Φ0,ν
s (x) :=

αs − αs+ν
αs

Φ0,ν−1
s+1 (x)

− αs+ν

Φ0,ν−1
s (x)

, ν = 1, 2, . . . ,

which arise from Theorem (2.2.3.4) if one defines Φ−1,ν−1
s+1 (x) := 0.

Experience has shown that the (µ, ν)-sequence

(0, 0) → (0, 1) → (1, 1) → (1, 2) → (2, 2) → . . .

— indicated by the dotted line in the diagram (2.2.3.6) — holds particular
advantages, especially in the important application area of extrapolation
methods [Sections 3.4 and 3.5], where interest focuses on the values Φµ,νs (x)
for x = 0. If we refer to this particular sequence, then it suffices to indicate
µ+ ν, instead of both µ and ν, and this permits the shorter notation

Ti,k := Φµ,νs (x) with i = s+ µ+ ν, k = µ+ ν.

The formulas (2.2.3.4) combine with (2.2.3.7) to yield the algorithm

(2.2.3.8)

Ti,0 := fi, Ti,−1 := 0,

Ti,k := Ti,k−1 +
Ti,k−1 − Ti−1,k−1

x− xi−k
x− xi

[
1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]
− 1

for 1 ≤ k ≤ i, i = 0, 1, Note that this recursion formula differs from
the corresponding polynomial formula (2.1.2.5) only by the expression in
brackets [. . .], which assumes the value 1 in the polynomial case.

If we display the values Tik in the tableau below, letting i count the
ascending diagonals and k the columns, then each instance of the recursion
formula (2.2.3.8) interrelates the four corners of a rhombus:

2.2 Interpolation by Rational Functions 73

(2.2.3.9)

(µ, ν) = (0, 0) (0, 1) (1, 1) (1,2) . . .

f0 = T0,0

0 = T0,−1 T1,1

f1 = T1,0 T2,2 ↘
0 = T1,−1 T2,1 −→ T3,3↗

f2 = T2,0 T3,2
...

. . .
0 = T2,−1 T3,1

...
f3 = T3,0

...
...

...

If one is interested in the rational function itself, i.e. its coefficients, then
the methods of Section 2.2.2, involving inverse or reciprocal differences, are
suitable. However, if one desires the value of the interpolating function for
just one single argument, then algorithms of the Neville type based on the
formulas of Theorem (2.2.3.4) and (2.2.3.8) are to be preferred. The formula
(2.2.3.8) is particularly useful in the context of extrapolation methods [see
Sections 3.4, 3.5, 7.2.3, 7.2.14].

2.2.4 Comparing Rational and Polynomial Interpolation

Interpolation, as mentioned before, is frequently used for the purpose of
approximating a given function f(x). In many such instances, interpola-
tion by polynomials is entirely satisfactory. The situation is different if the
location x for which one desires an approximate value of f(x) lies in the
proximitiy of a pole or some other singularity of f(x) — like the value
of tanx for x close to π/2. In such cases, polynomial interpolation does
not give satisfactory results, whereas rational interpolation does, because
rational functions themselves may have poles.

Example [taken from Bulirsch and Rutishauser (1968)]. For the function f(x) =
cotx the values cot 1◦, cot 2◦, . . . have been tabulated. The problem is to deter-
mine an approximate value for cot 2◦30′.

Polynomial interpolation of order 4, using the formulas (2.1.2.4), yields the
tableau

74 2 Interpolation

xi fi = ctg(xi)

1◦ 57.28996163

14.30939911

2◦ 28.63625328 21.47137102

23.85869499 22.36661762

3◦ 19.08113669 23.26186421 22.63519158

21.47137190 23.08281486

4◦ 14.30066626 22.18756808

18.60658719

5◦ 11.43005230

Rational interpolation with (µ, ν) = (2, 2) using the formulas (2.2.3.8) in contrast
gives

1◦ 57.28996163

22.90760673

2◦ 28.63625328 22.90341624

22.90201805 22.90369573

3◦ 19.08113669 22.90411487 22.90376552

22.91041916 22.90384141

4◦ 14.30066626 22.90201975

22.94418151

5◦ 11.43005230

The exact value is cot 2◦30′ = 22.903 765 5484 . . .; incorrect digits are underlined.

A similar situation is encountered in extrapolation methods [see Sec-
tions 3.4, 3.5, 7.2.3, 7.2.14]. Here a function T (h) of the step length h is
interpolated at small positive values of h.

2.3 Trigonometric Interpolation

2.3.1 Basic Facts

Trigonometric interpolation uses combinations of the trigonometric func-
tions coshx and sinhx for integer h. We will confine ourselves to linear
interpolation, that is, interpolation by one of the trigonometric expressions

(2.3.1.1a) Ψ(x):=
A0

2
+

M∑
h=1

(Ah cos hx+Bh sin hx),

2.3 Trigonometric Interpolation 75

(2.3.1.1b) Ψ(x):=
A0

2
+
M−1∑
h=1

(Ah cos hx+Bh sin hx) +
AM
2

cos Mx

of, respectively, N = 2M + 1 or N = 2M support points (xk, fk), k = 0,
1, . . . , N − 1. Interpolation by such expressions is suitable for data which
are periodic of known period. Indeed, the expressions Ψ(x) in (2.3.1.1)
represent periodic functions of x with the period 2π.2

Considerable conceptual and algebraic simplifications are achieved by
using complex numbers and invoking De Moivre’s formula

eikx = cos kx+ i sin kx .

Here and in what follows, i denotes the imaginary unit. If c = a+ i b, a, b
real, then c̄ = a− i b is its complex conjugate, a is the real part of c, b its
imaginary part, and |c| := (cc̄)1/2 = (a2 + b2)1/2 its absolute value.

Particularly important are uniform partitions of the interval [0, 2π]

xk := 2πk/N, k = 0, 1, . . . , N − 1,

to which we now restrict our attention. For such partitions, the trigonomet-
ric interpolation problem can be transformed into the problem of finding a
phase polynomial of order N (i.e. with N coefficients)

(2.3.1.2) p(x) := β0 + β1e
ix + β2e

2ix + · · · + βN−1e
(N−1)ix ,

with complex coefficients βj such that

p(xk) = fk, k = 0, 1, . . . , N − 1 .

Indeed
e−hixk = e−2πihk/N = e2πi(N−h)k/N = e(N−h)ixk ,

and therefore

(2.3.1.3) cos hxk =
ehixk + e(N−h)ixk

2
, sin hxk =

ehixk − e(N−h)ixk

2i
.

Making these substitutions in expressions (2.3.1.1) for Ψ(x) and then col-
lecting the powers of eixk produces a phase polynomial p(x), (2.3.1.2), with
coefficients βj , j = 0, . . . , N − 1, which are related to the coefficients Ah,
Bh of Ψ(s) as follows:

2 If sinu and cosu have to be both evaluated for the same argument u, then it
may be advantageous to evaluate t = tan(u/2) and express sinu and cosu in
terms of t :

sinu =
2t

1 + t2
, cosu =

1 − t2

1 + t2
.

This procedure is numerically stable for 0 ≤ u ≤ π/4, and the problem can
always be transformed so that the argument falls into that range.

76 2 Interpolation

(2.3.1.4) (a) If N is odd, then N = 2M + 1 and

β0 =
A0

2
, βj = 1

2 (Aj − iBj), βN−j = 1
2 (Aj + iBj), j = 1, . . . ,M,

A0 = 2β0, Ah = βh + βN−h, Bh = i(βh − βN−h), h = 1, . . . ,M.

(b) If N is even, then N = 2M and

β0 =
A0

2
, βj = 1

2 (Aj − iBj), βN−j = 1
2 (Aj + iBj), j = 1, . . . ,M − 1,

βM =
AM
2
,

A0 = 2β0, Ah = βh + βN−h, Bh = i(βh − βN−h), h = 1, . . . ,M − 1,
AM = 2βM .

The trigononometric expression Ψ(x) and its corresponding phase poly-
nomial p(x) agree for all support arguments xk = 2π/N of an equidistant
partition of the interval [0, 2π]:

fk = Ψ(xk) = p(xk), k = 0, 1, . . . , N − 1.

However Ψ(x) = p(x) need not hold at intermediate points x �= xk. The
two interpolation problems are equivalent only insofar as a solution to one
problem will produce a solution to the other via the coefficient relations
(2.3.1.4).

The phase polynomials p(x) in (2.3.1.2) are structurally simpler than
the trigonometric expressions Ψ(x) in (2.3.1.1). Upon abbreviating

ω := eix, ωk := eixk = e2kπi/N ,

P (ω) := β0 + β1ω + · · · + βN−1ω
N−1,

and since ωj �= ωk for j �= k, 0 ≤ j, k ≤ N − 1, it becomes clear that we are
faced with just a standard polynomial interpolation problem in disguise:
find the (complex) algebraic polynomial P of degree less than N with

P (ωk) = fk, k = 0, 1, . . . , N − 1 .

The uniqueness of polynomial interpolation immediately gives the following

(2.3.1.5) Theorem. For any support points (xk, fk), k = 0, . . . , N − 1,
with fk complex and xk = 2πk/N , there exists a unique phase polynomial

p(x) = β0 + β1e
ix + · · · + βN−1e

(N−1)ix

with
p(xk) = fk

for k = 0, 1, . . . , N − 1.

2.3 Trigonometric Interpolation 77

The coefficients βj of the interpolating phase polynomial can be ex-
pressed in closed form. To this end, we note that, for 0 ≤ j, h ≤ N − 1

(2.3.1.6) ωjh = ωhj , ω−j
h = ωjh .

More importantly, however, we have for 0 ≤ j, h ≤ N − 1

(2.3.1.7)
N−1∑
k=0

ωjkω
−h
k =

{
N for j = h,
0 for j �= h.

Proof. ωj−h is a root of the polynomial

ωN − 1 = (ω − 1)(ωN−1 + ωN−2 + · · · + 1),

from which either ωj−h = 1, and therefore j = h, or

N−1∑
k=0

ωjkω
−h
k =

N−1∑
k=0

ωj−hk =
N−1∑
k=0

ωkj−h = 0. ��

Introducing in the N -dimensional complex vector space CN of all N -
tuples (u0, u1, . . . , uN−1) of complex numbers uk the usual scalar product

[u, v] :=
N−1∑
j=0

uj v̄j ,

then (2.3.1.7) says that the special N -vectors

w(h) =
(
1, ωh1 , . . . , ω

h
N−1

)
, h = 0, . . . , N − 1,

form an orthogonal basis of CN ,

(2.3.1.8) [w(j), w(h)] =
{
N for j = h,
0 for j �= h.

Note that the vectors are of length [w(h), w(h)]1/2 =
√
N instead of length

1, however. From the orthogonality of the vectors w(h) follows:

(2.3.1.9) Theorem. The phase polynomial p(x) =
∑N−1
j=0 βje

jix satisfies

p(xk) = fk, k = 0, 1, . . . , N − 1,

for fk complex and xk = 2π/N , if and only if

βj =
1
N

N−1∑
k=0

fkω
−j
k =

1
N

N−1∑
k=0

fke
−2πijk/N , j = 0, . . . , N − 1 .

78 2 Interpolation

Proof. Because of fk = p(xk) the N -vector f := (f0, f1, . . . , fN−1) satis-
fies

f =
N−1∑
j=0

βjw
(j)

so that

N−1∑
k=0

fkω
−j
k =

[
f, w(j)] =

[
β0w

(0) + · · · + βN−1w
(N−1), w(j)] = Nβj . ��

The mapping F : CN → CN ,

f = (f0, f1, . . . , fN−1) �→ β := (β0, β1, . . . , βN−1) =: F(f),

defined by (2.3.1.9) is called discrete Fouriertransformation (DFT). Its
inverse β �→ f = F−1(β) corresponds to Fourier synthesis, namely the
evaluation of the phase polynomial p(x) (2.3.1.2) at the equidistant abscis-
sas xk = 2πk/N , k = 0, 1, . . . , N − 1,

fk =
N−1∑
j=0

βje
2πijk/N =

N−1∑
j=0

βjω
j
k.

Because of f̄k =
∑N−1
j=0 β̄jω

−j
k the mapping F−1 can be expressed by F ,

(2.3.1.10) f = F−1(β) = NF(β̄).

Therefore the algorithms to compute F [e.g. the fast Fourier transform
methods of the next section 2.3.2] can also be used for Fourier synthesis.

For phase polynomials q(x) of order at most s, s ≤ N − 1 given, it is
in general not possible to make all residuals

fk − q(xk), k = 0, . . . , N − 1,

vanish, as they would for the interpolating phase polynomial of order N .
In this context, the s-segments

ps(x) = β0 + β1e
ix + · · · + βsesix

of the interpolating polynomial p(x) have an interesting best-approxima-
tion property:

(2.3.1.11) Theorem. The s-segment ps(x), 0 ≤ s < N , of the interpolat-
ing phase polynomial p(x) minimizes the sum

S(q) :=
N−1∑
k=0

∣∣fk − q(xk)
∣∣2

2.3 Trigonometric Interpolation 79

[note that S(p) = 0] of the squared absolute values of the residuals over all
phase polynomials

q(x) = γ0 + γ1eix + · · · + γsesix .

The phase polynomial ps(x) is uniquely determined by this minimum prop-
erty.

Proof. We introduce the N -vectors

ps :=
(
ps(x0), . . . , ps(xN−1)

)
, q :=

(
q(x0), . . . , q(xN−1)

)
.

Then S(q) can be written as the scalar product

S(q) = [f − q, f − q].

By Theorem (2.3.1.9), Nβj = [f, w(j)] for j = 0, . . . , N − 1. So for j ≤ s,

[
f − ps, w(j)] = [f −

s∑
h=0

βhw
(h), w(j)] = Nβj −Nβj = 0,

and [
f − ps, ps − q

]
=

s∑
j=0

[
f − ps, (βj − γj)w(j)] = 0 .

But then we have

S(q) = [f − q, f − q]
= [(f − ps) + (ps − q), (f − ps) + (ps − q)]
= [f − ps, f − ps] + [ps − q, ps − q]
≥ [f − ps, f − ps]
= S(ps).

Equality holds only if [ps − q, ps − q] = 0, i.e., if the vectors ps and q
are equal. Then the phase polynomials ps(x) and q(x) are identical by the
uniqueness theorem (2.3.1.5). ��

Returning to the original trigonometric expressions (2.3.1.1), we note
that Theorems (2.3.1.5) and (2.3.1.9) translate into the following:

(2.3.1.12) Theorem. The trigonometric expressions

Ψ(x) :=
A0

2
+

M∑
h=1

(Ah cos hx+Bh sin hx),

Ψ(x) :=
A0

2
+
M−1∑
h=1

(Ah cos hx+Bh sin hx) +
AM
2

cos Mx ,

80 2 Interpolation

where N = 2M + 1 and N = 2M , respectively, satisfy

Ψ(xk) = fk, k = 0, 1, . . . N − 1 ,

for xk = 2πk/N if and only if the coefficients of Ψ(x) are given by

Ah =
2
N

N−1∑
k=0

fk cos hxk =
2
N

N−1∑
k=0

fk cos
2πhk
N

,

Bh =
2
N

N−1∑
k=0

fk sin hxk =
2
N

N−1∑
k=0

fk sin
2πhk
N

.

Proof. Only the expressions for Ah, Bh remain to be verified. For by
(2.3.1.4)

Ah = βh + βN−h =
1
N

N−1∑
k=0

fk(e−hixk + e−(N−h)ixk) ,

Bh = i(βh − βN−h) =
i

N

N−1∑
k=0

fk(e−hixk − e−(N−h)ixk) ,

and the substitutions (2.3.1.3) yield the desired expressions. ��
Note that if the support ordinates fk are real, then so are the coefficients

Ah, Bh in (2.3.1.12).

2.3.2 Fast Fourier Transforms

The interpolation of support points
(xk, fk), k = 0, 1, . . . , N −1, with equidistant xk = 2πk/N , by a phase

polynomial p(x) =
∑N−1
j=0 βje

jix leads to expressions of the form [Theorem
(2.3.1.9)]

(2.3.2.1) βj =
1
N

N−1∑
k=0

fke
−2πijk/N , j = 0, 1, . . . , N − 1.

The evaluation of such expressions is of prime importance in Fourier analy-
sis. The expressions occur also as discrete approximations — for N equidis-
tant arguments s — to the Fourier transform

H(s) =
∫ ∞

−∞
f(t)e−2πist dt,

which pervades many areas of applied mathematics. However, the numerical
evaluation of expressions (2.3.2.1) had long appeared to require on the order

2.3 Trigonometric Interpolation 81

of N2 multiplications, putting it out of reach for even high-speed electronic
computers for those large values of N necessary for a sufficiently accurate
discrete representation of the above integrals. The discovery [Cooley and
Tukey (1965); it is remarkable that similar techniques were already used
by Gauss] of a method for rapidly evaluating (on the order of N logN
multiplications) all expressions (2.3.2.1) for large special values of N has
therefore opened up vast new areas of applications. This method and its
variations are called fast Fourier transforms. For a detailed treatment see
Brigham (1974) and Bloomfield (1976).

There are two main approaches, the original Cooley-Tukey method and
one described by Gentleman and Sande (1966), commonly called the Sande-
Tukey method.

Both approaches rely on an integer factorization of N and decompose
the problem accordingly into subproblems of lower degree. These decom-
positions are then carried out recursively. This works best when

N = 2n, n > 0 integer.

We restrict our presentation to this most important and most straightfor-
ward case, although analogous techniques will clearly work for the more
genereal case N = N1N2 · · ·Nn, Nm integer.

The Cooley-Tukey approach is best understood in terms of the inter-
polation problem described in the previous section 2.3.1. Suppose N = 2M
and consider the two interpolating phase polynomials q(x) and r(x) of order
M = N/2 with

q(x2h) = f2h, r(x2h) = f2h+1, h = 0, . . . ,M − 1.

The phase polynomial q(x) interpolates all support points of even index,
whereas the phase polynomial r̂(x) = r(x− 2π/N) = r(x− π/M) interpo-
lates all those of odd index. Since

eMixk = e2πiMk/N = eπik =
{

+1, k even,
−1, k odd,

the complete interpolating phase polynomial p(x) is now readily expressed
in terms of the two lower-order phase polynomials q(x) and r(x):

(2.3.2.2) p(x) = q(x)
(

1 + eMix

2

)
+ r(x− π/M)

(
1 − eMix

2

)
.

This suggests the following n step recursive scheme. For m ≤ n, let

M = 2m−1 and R = 2n−m.

Step m then consists of determining R phase polynomials

p(m)
r = β

(m)
r,0 + β(m)

r,1 e
ix + · · · + β(m)

r,2M−1e
(2M−1)ix, r = 0, . . . , R− 1,

82 2 Interpolation

from 2R phase polynomials p(m−1)
r (x), r = 0, . . . , 2R−1, using the recursion

(2.3.2.2):

2p(m)
r (x) = p(m−1)

r (x)(1 + eMix) + p(m−1)
R+r (x− π/M)(1 − eMix).

This relation gives rise to the following recursion between the coefficients
of the above phase polynomials:

(2.3.2.3)
2β(m)

r,j = β
(m−1)
r,j + β(m−1)

R+r,j ε
j
m

2β(m)
r,M+j = β

(m−1)
r,j + β(m−1)

R+r,j ε
j
m

r = 0, . . . , R− 1,

j = 0, . . . ,M − 1,

where
εm := e−2πi/2m

, m = 0, . . . , n.

The recursion is initiated by putting

β
(0)
k,0 := fk, k = 0, . . . , N − 1,

and terminates with

βj := β
(n)
0,j , j = 0, . . . , N − 1.

This recursion typifies the Cooley-Tukey method.
The Sande-Tukey approach chooses a clever sequence of additions

in the sums
∑N−1
k=0 fke

−jixk . Again with M = N/2, we assign to each
term fke

−jixk an opposite termfk+Me−jixk+M . Summing respective oppo-
site terms in (2.3.2.1) produces N sums of M = N/2 terms each. Splitting
those N sums into two sets, one for even indices j = 2h and one for odd
indices j = 2h + 1, will lead to two problems of evaluating expressions of
the form (2.3.2.1), each problem being of reduced degree M = N/2.

Using the abbreviation

εm = e−2πi/2m

again, we can write the expressions (2.3.2.1) in the form

Nβj =
N−1∑
k=0

fkε
jk
n , j = 0, 1, . . . , N − 1 .

Here n is such that N = 2n. Distinguishing between even and odd values
of j and combining opposite terms gives

Nβ2h =
N−1∑
k=0

fkε
2hk
n =

M−1∑
k=0

(fk + fk+M)εhkn−1 =:
M−1∑
k=0

f ′
kε
hk
n−1

Nβ2h+1 =
N−1∑
k=0

fkε
(2h+1)k
n =

M−1∑
k=0

((fk − fk+M)εkn)ε
hk
n−1 =:

M−1∑
k=0

f ′′
k ε

hk
n−1

2.3 Trigonometric Interpolation 83

for h = 0, . . . , M − 1 and M := N/2, since ε2n = εn−1, εMn = −1. Here

f ′
k = fk + fk+M

f ′′
k =

(
fk − fk+M

)
εkn

}
k = 0, . . . ,M − 1 .

In order to iterate this process for m = n, n − 1, . . . , 0, we let M :=
2m−1, R := 2n−m and introduce the notation

f
(m)
r,k , r = 0, . . . , R− 1, k = 0, . . . , 2M − 1,

with f (n)
0,k = fk, k = 0, . . . , N−1. f (n−1)

0,k and f (n−1)
1,k represent the quantities

f ′
k and f ′′

k , respectively, which were introduced above. In general we have,
with M = 2m−1 and R = 2n−m,
(2.3.2.4)

NβjR+r =
2M−1∑
k=0

f
(m)
r,k ε

jk
m , r = 0, 1, . . . , R− 1, j = 0, 1, . . . 2M − 1,

with the quantities f (m)
r,k satisfying the recursions:

(2.3.2.5)
f

(m−1)
r,k = f

(m)
r,k + f (m)

r,k+M

f
(m−1)
r+R,k = (f (m)

r,k − f (m)
r,k+M)εkm

m = n, n− 1, . . . , 1,
r = 0, 1, . . . , R− 1,
k = 0, 1, . . . ,M − 1.

Proof. Suppose (2.3.2.4) is correct for some m ≤ n, and let M ′ := M/2 =
2m−2, R′ := 2R = 2n−m+1. For j = 2h and j = 2h + 1, respectively, we
find by combining opposite terms

NβhR′+r = NβjR+r =
M−1∑
k=0

(f (m)
r,k + f (m)

r,k+M)εjkm =
2M ′−1∑
k=0

f
(m−1)
r,k εhkm−1,

NβhR′+r+R = NβjR+r =
M−1∑
k=0

(f (m)
r,k − f (m)

r,k+M)εjkm

=
M−1∑
k=0

(f (m)
r,k − f (m)

r,k+M)εkmε
hk
m−1 =

2M ′−1∑
k=0

f
(m−1)
r+R,k ε

hk
m−1,

where r = 0, . . . , R− 1, j = 0, . . . , 2M − 1. ��

The recursion (2.3.2.5) typifies the Sande-Tukey method. It is initiated
by

f
(n)
0,k := fk, k = 0, . . . , N − 1,

and terminates with

84 2 Interpolation

βr :=
1
N
f

(0)
r,0 , r = 0, 1, . . . , N − 1.

Returning to the Cooley-Tukey method for a more detailed algorithmic
formulation, we are faced with the problem of arranging the quantities β(m)

r,j

in a one-dimensional array:

β̃[κ(m, r, j)] := β
(m)
r,j , κ = 0, . . . , N − 1.

Among suitable maps (m, r, j) → κ(m, r, j), the following is the most
straightforward:

κ = 2mr + j; m = 0, . . . , n, r = 0, . . . , 2n−m − 1, j = 0, . . . , 2m − 1.

It has the advantage, that the final results are automatically in the correct
order. However, two arrays β̃′[], β̃[] are necessary to accommodate the
left- and right-hand sides of the recusion (2.3.2.3). We can make do with
only one array β̃[] if we execute the transformations “in place”, that is,
if we let each pair of quantities β(m)

r,j , β(m)
r,M+j occupy the same positions in

β̃[] as the pair of quantities β(m−1)
r,j , β(m−1)

R+r,j , from which the former are
computed. In this case, however, the entries in the array β̃[] are being
permuted, and the maps which assign the positions in β̃[] as a function of
integers m, r, j become more complicated. Let

τ = τ(m, r, j)

be a map with the above mentioned replacement properties, namely

β̃[τ(m, r, j)] = β
(m)
r,j

with
(2.3.2.6)

τ(m, r, j) = τ(m− 1, r, j)

τ(m, r, j + 2m−1) = τ(m− 1, r + 2n−m, j)

}
m = 1, . . . , n,
r = 0, . . . , 2n−m − 1,

j = 0, . . . , 2m−1 − 1,

and

(2.3.2.7) τ(n, 0, j) = j, j = 0, . . . , N − 1.

The last condition means that the final result βj will be found in position
j in the array β̃: βj = β̃[j].

The conditions (2.3.2.6) and (2.3.2.7) define the map τ recursively. It
remains to determine it explicitly. To this end, let

t = α0 + α1 · 2 + · · · + αn−1 · 2n−1, αj ∈ { 0, 1 },

2.3 Trigonometric Interpolation 85

be the binary representation of an integer t, 0 ≤ t < 2n. Then putting

(2.3.2.8) ρ(t) := αn−1 + αn−2 · 2 + · · · + α0 · 2n−1

defines a permutation of the integers t = 0, . . . , 2n−1 called bit reversal.The
bit-reversal permutation is symmetric, i.e. ρ(ρ(t)) = t.

In terms of the bit-reversal permutation ρ, we can express τ(m, r, j)
explicitly:

(2.3.2.9) τ(m, r, j) = ρ(r) + j,

for all m = 0, 1, . . . , n, r = 0, 1, . . . , 2n−m − 1, j = 0, 1, . . . , 2m − 1.

Proof. If again

t = α0 + α1 · 2 + · · · + αn−1 · 2n−1, αj ∈ { 0, 1 },

then by (2.3.2.6) and (2.3.2.7)

t = τ(n, 0, t) =
{
τ(n− 1, 0, t) if αn−1 = 0,
τ(n− 1, 0, t− 2n−1) if αn−1 = 1.

Thus
t = τ(n, 0, t) = τ(n− 1, αn−1, α0 + · · · + αn−2 · 2n−2),

and, more generally,

t = τ(n, 0, t) = τ(m,αn−1 + · · · + αm · 2n−m−1, α0 + · · · + αm−1 · 2m−1)

for all m = n− 1, n− 2, . . . , 0. For r = αn−1 + · · · + αm · 2n−m−1, we find

ρ(r) = αm · 2m + · · · + αn−1 · 2n−1

and t = ρ(r) + j, where j = α0 + · · · + αm−1 · 2m−1. ��
By the symmetry of bit reversal,

τ(m, ρ(r̄), j) = r̄ + j,

where r̄ is a multiple of 2m, 0 ≤ r̄ < 2n, and 0 ≤ j < 2m. Observe that if
0 ≤ j < 2m−1, then

t = τ(m, ρ(r̄), j) = τ(m− 1, ρ(r̄), j) = r̄ + j,

t̄ = τ(m, ρ(r̄), j + 2m−1) = τ(m− 1, ρ(r̄) + 2n−m, j) = r̄ + j + 2m−1

mark a pair of positions in β̃[] which contain quantities connected by the
Cooley-Tukey recursions (2.3.2.3).

In the following pseudo-algol formulation of the classical Cooley-
Tukey method, we assume that the array β̃[] is initialized by putting

β̃[ρ(k)] := fk, k = 0, . . . , N − 1,

86 2 Interpolation

where ρ is the bit-reversal permutation (2.3.2.8). This “scrambling” of the
initial values can also be carried out “in place”, because the bit-reversal
permutation is symmetric and consists, therefore, of a sequence of pairwise
interchanges or “transpositions”. In addition, we have deleted the factor 2
which is carried along in the formulas (2.3.2.3), so that finally

βj :=
1
N
β̃[j], j = 0, . . . , N − 1.

The algorithm then takes the form

for m := 1 step 1 until n do
begin for j := 0 step 1 until 2m−1 − 1 do

begin e := εjm;
for r̄ := 0 step 2m until 2n − 1 do
begin u := β̃[r̄ + j]; v := β̃[r̄ + j + 2m−1] × e;

β̃[r̄ + j] := u+ v; β̃[r̄ + j + 2m−1] := u− v
end

end
end ;

If the Sande-Tukey recursions (2.3.2.5) are used, there is again no prob-
lem if two arrays of length N are available for new and old values, respec-
tively. However, if the recursions are to be carried out “in place” in a single
array f̃ [], then we must again map index triples m, r, j into single indices
τ . This index map has to satisfy the relations

τ(m− 1, r, k) = τ(m, r, k),

τ(m− 1, r + 2n−m, k) = τ(m, r, k + 2m−1)

for m = n, n − 1, . . . , 1, r = 0, 1, . . . , 2n−m − 1, k = 0, 1, . . . , 2m−1 − 1.
If we assume

τ(n, 0, k) = k for k = 0, . . . , N − 1,

that is, if we start out with the natural order, then these conditions are
precisely the conditions (2.3.2.6) and (2.3.2.7) written in reverse. Thus
τ = τ(m, r, k) is identical to the index map τ considered for the Cooley-
Tukey method.

In the following pseudo-algol formulation of the Sande-Tukey method,
we assume that the array f̃ [] has been initialized directly with the values
fk:

f̃ [k] := fk, k = 0, 1, . . . , N − 1.

However, the final results have to be “unscrambled” using bit reversal,

βj :=
1
N
f̃ [ρ(j)], j = 0, . . . , N − 1 :

2.3 Trigonometric Interpolation 87

for m := n step −1 until 1 do
begin for k := 0 step 1 until 2m−1 − 1 do

begin e := εkm;
for r̄ := 0 step 2m until 2n − 1 do
begin
u := f̃ [r̄ + k]; v := f̃ [r̄ + k + 2m−1];
f̃ [r̄ + k] := u+ v; f̃ [r̄ + k + 2m−1] := (u− v) × e

end
end

end ;

If all values fk, k = 0, . . . , N − 1, are real and N = 2M is even, then
the problem of evaluating the expressions (2.3.2.1) can be reduced in size
by putting

gh := f2h + i f2h+1 , h = 0, 1, . . . ,M − 1,

and evaluating the expressions

γj :=
1
M

M−1∑
h=0

ghe
−2πijh/M , j = 0, 1, . . . ,M − 1.

The desired values βj , j = 0, . . . , N − 1, can be expressed in terms of the
values γj , j = 0, . . . , M − 1. Indeed, one has with γM := γ0
(2.3.2.10)

βj =
1
4
(γj + γ̄M−j) +

1
4i

(γj − γ̄M−j)e−2πij/N , j = 0, 1, . . . ,M

βN−j = β̄j , j = 1, 2, . . . ,M − 1.

Proof. It is readily verified that

1
4
(γj + γ̄M−j) =

1
N

M−1∑
h=0

f2he
−2πij 2h/N ,

1
4i

(γj − γ̄M−j) =
1
N

M−1∑
h=0

f2h+1e
−2πij(2h+1)/N+2πij/N . ��

In many cases, particularly if all values fk are real, one is actually
interested in the expressions

Aj :=
2
N

N−1∑
k=0

fk cos
2πjk
N

, Bj :=
2
N

N−1∑
k=0

fk sin
2πjk
N

88 2 Interpolation

for j = 0, 1, . . . , M , which occur, for instance, in Theorem (2.3.1.12). The
values Aj , Bj are connected with the corresponding values for βj via the
relations (2.3.1.4).

2.3.3 The Algorithms of Goertzel and Reinsch

The problem of evaluating phase polynomials p(x) from (2.3.1.2) or trigono-
metric expressions Ψ(x) from (2.3.1.1) for some arbitrary argument x = ξ
is called Fourier synthesis. For phase polynomials, there are Horner-type
evaluation schemes, as there are for expressions (2.3.1.1a) when written in
the form Ψ(x) =

∑M
j=−M βje

jix. The numerical behavior of such evaluation
schemes, however, should be examined carefully.

For example, Goertzel (1958) proposed an algorithm for a problem
closely related to Fourier synthesis, namely, for simultaneously evaluating
the two sums

N−1∑
k=0

yk cos kξ ,
N−1∑
k=1

yk sin kξ

for a given argument ξ and given values yk, k = 0, . . . ,N−1. This algorithm
is not numerically stable unless it is suitably modified. The algoithm is
based on the following:

(2.3.3.1) Theorem. For ξ �= rπ, r = 0, ±1, ±2, . . . , define the quantities

Uj :=
1

sin ξ

N−1∑
k=j

yk sin(k − j + 1)ξ, j = 0, 1, . . . , N − 1,

UN := UN+1 := 0.

These quantities satisfy the recursions

(2.3.3.1a) Uj = yj + 2Uj+1 cos ξ − Uj+2, j = N − 1, N − 2, . . . , 0.

In particular

(2.3.3.1b)
N−1∑
k=1

yk sin kξ = U1 sin ξ,

(2.3.3.1c)
N−1∑
k=0

yk cos kξ = y0 + U1 cos ξ − U2.

Proof. For 0 ≤ j ≤ N − 1, let

A := yj + 2Uj+1 cos ξ − Uj+2.

By the definition of Uj+1, Uj+2,

2.3 Trigonometric Interpolation 89

A = yj +
1

sin ξ

{
2 cos ξ

N−1∑
k=j+1

yk sin(k − j)ξ −
N−1∑
k=j+2

yk sin(k − j − 1)ξ
}

= yj +
1

sin ξ

N−1∑
k=j+1

yk[2 cos ξ sin(k − j)ξ − sin(k − j − 1)ξ] .

Now
2 cos ξ sin(k − j)ξ = sin(k − j + 1)ξ + sin(k − j − 1)ξ.

Hence

A =
1

sin ξ

[
yj sin ξ +

N−1∑
k=j+1

yk sin(k − j + 1)ξ
]

= Uj .

This proves (2.3.3.1a). (2.3.3.1b) restates the definition of U1. To verify
(2.3.3.1c), note that

U2 =
1

sin ξ

N−1∑
k=2

yk sin(k − 1)ξ =
1

sin ξ

N−1∑
k=1

yk sin(k − 1)ξ,

and
sin(k − 1)ξ = cos ξ sin kξ − sin ξ cos kξ. ��

Goertzel’s algorithm applies the recursions (2.3.3.1) directly:

UN := UN+1 := 0; c := cos ξ; cc := 2 · c;
for j := N − 1, N − 2, . . . , 1 :
Uj := yj + cc · Uj+1 − Uj+2;

s1 := y0 + U1 · c− U2;
s2 := U1 · sin ξ;

to find the desired results s1 =
∑N−1
k=0 yk cos kξ, s2 =

∑N−1
k=1 yk sin kξ.

This algorithm is unfortunately not numerically stable for small abso-
lute values of ξ, |ξ| � 1. Indeed, having calculated c = cos kξ, the quantity
s1 =

∑N−1
k=0 yk cos kξ will depend solely on c and the values yk. We can

write s1 = ϕ(c, y0, . . . , yN−1), where

ϕ(c, y0, . . . , yN−1) =
N−1∑
k=0

yk cos(k arccos c).

As in Section 1.2, we denote by eps the machine precision. The roundoff
error ∆c = εcc, |εc| ≤ eps, which occurs during the calculation of c, causes
an absolute error ∆cs1 in s1, which in first-order approximation amounts
to

90 2 Interpolation

∆cs1
.=
∂ϕ

∂c
∆c =

εc cos ξ
sin ξ

N−1∑
k=0

k yk sin kξ

= εc(cot ξ)
N−1∑
k=0

k yk sin kξ.

An error ∆ξ = εξξ, |εξ| ≤ eps in ξ, on the other hand, causes only the error

∆ξs1
.=
∂

∂ξ

(N−1∑
k=0

yk cos kξ
)

·∆ξ

= −εξξ
N−1∑
k=0

k yk sin kξ

in s1. Now cot ξ ≈ 1/ξ for small |ξ|. The influence of the roundoff error
in c is consequently an order of magnitude more serious than that of a
corresponding error in ξ. In other words, the algorithm is not numerically
stable.

In order to overcome these numerical difficulties, Reinsch has modified
Goertzel’s algorithm [see Bulirsch and Stoer (1968)]. He distinguishes the
two cases cos ξ > 0 and cos ξ ≤ 0.

Case (a): cos ξ > 0. The recursion (2.3.3.1a) yields for the difference

δUj := Uj − Uj+1

the relation

δUj = Uj − Uj+1 = yj + (2 cos ξ − 2)Uj+1 + Uj+1 − Uj+2

= yj + λUj+1 + δUj+1,

where
λ := 2(cos ξ − 1) = −4 sin2(ξ/2).

This suggests the algorithm

λ := −4 sin2(ξ/2);
UN+1 := δUN := 0;
for j := N − 1, N − 2, . . . , 0:
Uj+1 := δUj+1 + Uj+2;
δUj := λ · Uj+1 + δUj+1 + yj ;

s1 := δU0 − λ · U1/2;
s2 := U1 · sin ξ;

This algorithm is well behaved as far as the propagation of the error ∆λ =
ελλ, |ελ| ≤ eps, in λ is concerned. The latter causes only the following error
∆λs1 in s1:

2.3 Trigonometric Interpolation 91

∆λs1
.=
∂s1
∂λ
∆λ = ελλ

∂s1
∂ξ

/∂λ
∂ξ

= −ελ
sin2(ξ/2)

sin(ξ/2) · cos(ξ/2)
·
N−1∑
k=0

k yk sin kξ

= −ελ
(

tan
ξ

2

)N−1∑
k=0

k yk sin kξ.

| tan(ξ/2)| is small for small |ξ|. Besides, | tan(ξ/2)| < 1 for cos ξ > 0.

Case (b): cos ξ ≤ 0. Here we put

δUj := Uj + Uj+1

and find

δUj = Uj + Uj+1 = yj + (2 cos ξ + 2)Uj+1 − Uj+1 − Uj+2

= yj + λUj+1 − δUj+1,

where now

λ := 2(cos ξ + 1) = 4 cos2(ξ/2).

This leads to the following algorithm:

λ := 4 cos2(ξ/2);
UN+1 := δUN := 0;
for j := N − 1, N − 2, . . . , 0:
Uj+1 := δUj+1 − Uj+2;
δUj := λ · Uj+1 − δUj+1 + yj ;

s1 := δU0 − U1 · λ/2;
s2 := U1 · sin ξ;

It is readily confirmed that a roundoff error ∆λ = ελλ, |ελ| ≤ eps, in λ
causes an error of at most

∆λs1
.= ελ

(
cot

ξ

2

)N−1∑
k=0

k yk sin kξ

in s1, and | cot(ξ/2)| ≤ 1 for cos ξ ≤ 0. The algorithm is therefore well
behaved as far as the propagation of the error ∆λ is concerned.

92 2 Interpolation

2.3.4 The Calculation of Fourier Coefficients. Attenuation
Factors

Let K be the set of all absolutely continuous 3 real functions f : IR → IR
which are periodic with period 2π. It is well known [see for instance Achieser
(1956)] that every function f ∈ K can be expanded into a Fourier series

(2.3.4.1) f(x) =
∞∑

j=−∞
cje

jix

which converges towards f(x) for every x ∈ IR. The coefficients cj = cj(f)
of this series are given by

(2.3.4.2) cj = cj(f) :=
1
2π

∫ 2π

0
f(x)e−jixdx, j = 0,±1,±2,

In practice, frequently all one knows of a function f are its values fk :=
f(xk) at equidistant arguments xk := 2πk/N , where N is a given fixed
positive integer. The problem then is to find, under these circumstances,
reasonable approximate values for the Fourier coefficients cj(f). We will
show how the methods of trigonometric interpolation can be applied to
this problem.

By Theorem (2.3.1.9), the coefficients βj of the interpolating phase
polynomial

p(x) = β0 + β1e
ix + · · · + βN−1e

(N−1)ix,

with
p(xk) = fk

for k = 0, ±1, ±2, . . . , are given by

βj =
1
N

N−1∑
k=0

fke
−jixk , j = 0, 1, . . . , N − 1.

Since f0 = fN , the quantities βj can be thought of as a “trapezoidal sum”
[compare (3.1.7)]

3 A real function f : [a, b] → IR is absolutely continuous on the interval [a, b] if for
every ε > 0 there exists δ < 0 such that

∑
i
|f(bi)−f(ai)| < ε for every finite set

of intervals [ai, bi] with a ≤ a1 < b1 < · · · < an < bn ≤ b and
∑

i
|bi −ai| < δ. If

the function f is differentiable everywhere on the closed interval [a, b] or, more
generally, if it satisfies a “Lipschitz condition” |f(xi) − f(x2)| ≤ θ|x1 − x2| on
[a, b], then f is absolutely continuous, but not conversely: there are absolutely
continuous functions with unbounded derivatives. If the function is absolutely
continuous, then it is continuous and its derivative f ′ exists almost everywhere.
Moreover, f(x) = f(a) +

∫ x

a
f ′(t) dt for x ∈ [a, b]. The absolute continuity of

the functions f , g also ensures that integration by parts can be carried out
safely,

∫ b

a
f(x)g′(x) dx = f(x)g(x) |ba −

∫ b

a
f ′(x)g(x) dx .

2.3 Trigonometric Interpolation 93

βj =
1
N

[
f0
2

+ f1e−jix1 + · · · + fN−1e
−jixN−1 +

fN
2
e−jixN

]
approximating the integral (2.3.4.2), so that one might think of using the
sums

(2.3.4.3) βj(f) = βj :=
1
N

N−1∑
k=0

fke
−jixk

for all integers j = 0, ±1, ±2, . . . as approximate values to the desired
Fourier coefficients cj(f). This approach appears attractive, since fast
Fourier transforms can be utilized to calculate the quantities βj(f) effi-
ciently. However, for large indices j the value βj(f) is a very poor approx-
imation to cj(f). Indeed, βj+kN = βj holds for all integers k, j, while on
the other hand lim|j|→∞ cj = 0. [This follows immediately from the con-
vergence of the Fourier series (2.3.4.1) for the argument x = 0.] A closer
look also reveals that the asymptotic behavior of the Fourier coefficients
cj(f) depends on the degree of differentiability of f :

(2.3.4.4) Theorem. If the 2π-periodic function f has an absolutely con-
tinuous r th derivative f (r), then

|cj | = O

(
1

|j|r+1

)
.

Proof. Successive integration by parts yields

cj =
1
2π

∫ 2π

0
f(x)e−jixdx

=
1

2πji

∫ 2π

0
f ′(x)e−jixdx

= . . .

=
1

2π(ji)r

∫ 2π

0
f (r)(x)e−jixdx

=
1

2π(ji)r+1

∫ 2π

0
e−jixdf (r)(x)

in view of the periodicity of f . This proves the proposition. ��
To approximate the Fourier coefficients cj(f) by values which display

the right asymptotic behavior, the following approach suggests itself: De-
termine for given values fk, k = 0, ±1, ±2, . . . , as simple a function g ∈ K
as possible which approximates f in some sense (e.g., interpolates f for xk)
and share with f some degree of differentiability. The Fourier coefficients

94 2 Interpolation

cj(g) of g are then chosen to approximate the Fourier coefficients cj(f) of
the given function f . In pursuing this idea, it comes as a pleasant surprise
that even for quite general methods of approximating the function f by
a suitable function g, the Fourier coefficients cj(g) of g can be calculated
in a straightforward manner from the coefficients βj(f) in (2.3.4.3). More
precisely, there are so-called attenuation factorsτj , j integer, which depend
only on the choice of the approximation method and not on the particular
function values fk, k = 0, ±1, . . . , and for which

cj(ϕ) = τjβj(f), j = 0,±1,

To clarify what we mean by an “approximation method”, we consider
— besides the set K of all absolutely continuous 2π-periodic functions f :
IR → IR — the set

IF = { (fk)k∈ZZ | fk ∈ IR, fk+N = fk for k ∈ ZZ }, ZZ := { k | k integer },

of all N -periodic sequences of real numbers

f = (. . . , f−1, f0, f1, . . .).

For convenience, we denote by f both the function f ∈ K and its corre-
sponding sequence (fk)k∈ZZ with fk = f(xk). The meaning of f will follow
from the context.

Any method of approximation assigns to each sequence f ∈ IF a func-
tion g = P (f) in K; it can therefore be described by a map

P : IF → K.

K and IF are real vector spaces with the addition of elements and the
multiplication by scalars defined in the usual straightforward fashion. It
therefore makes sense to distinguish linear approximation methods P . The
vector space IF is of finite dimension N , a basis being formed by the se-
quences

(2.3.4.5) e(k) =
(
e
(k)
j

)
j∈ZZ, k = 0, 1, . . . , N − 1,

where
e
(k)
j :=

{ 1 if k ≡ j mod N ,
0 otherwise.

In both IF and K we now introduce translation operators E: IF → IF
and E: K → K, respectively, by

(Ef)k := fk−1 for all k ∈ ZZ, if f ∈ IF,
(Eg)(x) := g(x− h) for all x ∈ IR, if g ∈ K, h := 2π/N = x1.

(For convenience, we use the same symbol for both kinds of translation op-
erators.) We call an approximation method P : IF → K translation invariant
if

2.3 Trigonometric Interpolation 95

P (E(f)) = E(P (f))

for all f ∈ IF, that is, a “shifted” sequence is approximated by a “shifted”
function. P (E(f)) = E(P (f)) yields P (Ek(f)) = Ek(P (f)), where E2 =
E ◦ E, E3 = E ◦ E ◦ E, etc. We can now prove the following theorem by
Gautschi and Reinsch [for further details see Gautschi (1972)]:

(2.3.4.6) Theorem. For each approximation method P : IF → K there
exist attenuation factors τj, j∈ZZ, for which

(2.3.4.7) cj(Pf) = τjβj(f) for all j ∈ ZZ and arbitrary f ∈ IF

if and only if the approximation method P is linear and translation invari-
ant.

Proof. Suppose that P is linear and translation invariant. Every f ∈ IF
can be expressed in terms of the basis (2.3.4.5):

f =
N−1∑
k=0

fke
(k) =

N−1∑
k=0

fkE
ke(0).

Therefore

g := Pf =
N−1∑
k=0

fkE
kPe(0),

by the linearity and the translation invariance of P . Equivalently,

g(x) =
N−1∑
k=0

fkη0(x− xk),

where η0 := Pe(0) is the function which approximates the sequence e(0).
The periodicity of g yields

cj(Pf) = cj(g) =
N−1∑
k=0

fk
2π

∫ 2π

0
η0(x− xk)e−jixdx

=
N−1∑
k=0

fk
2π
e−jixk

∫ 2π

0
η0(x)e−jixdx

= τjβj(f),

where

(2.3.4.8) τj := Ncj(η0).

We have thus found expressions for the attenuation factors τj which depend
only on the approximation method P and the number N of given function

96 2 Interpolation

values fk for arguments xk, 0 ≤ xk < 2π. This proves the “if” direction of
the theorem.

Suppose now that (2.3.4.7) holds for arbitrary f ∈ IF. Since all functions
in K can be represented by their Fourier series, and in particular Pf ∈ K,
(2.3.4.7) implies

(2.3.4.9) (Pf)(x) =
∞∑

j=−∞
cj(Pf)ejix =

∞∑
j=−∞

τjβj(f)ejix.

By the definition (2.3.4.3) of βj(f), βj is a linear operator on IF and, in
addition,

βj(Ef) =
1
N

N−1∑
k=0

fk−1e
−jixk =

1
N
e−jih

N−1∑
k=0

fke
−jixk = e−jih · βj(f).

Thus (2.3.4.9) yields the linearity and the translation invariance of P :

(P (E(f)))(x) =
∞∑

j=−∞
τjβj(f)eji(x−h) = (Pf)(x− h) = (E(P (f)))(x). ��

As a by-product of the above proof, we obtained an explicit formula
(2.3.4.8) for the attenuation factors. An alternative way of determining the
attenuation factors τj for a given approximation method P is to evaluate
the formula

(2.3.4.10) τj =
cj(Pf)
βj(f)

for a suitable f ∈ IF.

Example 1. For a given sequence f ∈ IF, let g := Pf be the piecewise linear in-
terpolation of f , that is, g is continuous and linear on each subinterval [xk, xk+1],
and satisfies g(xk) = fk for k = 0, ±1, This function g = Pf is clearly
absolutely continuous and has period 2π. It is also clear that the approximation
method P is linear and translation invariant. Hence Theorem (2.3.4.6) ensures
the existence of attenuation factors. In order to calculate them, we note that for
the special sequence f = e(0) of (2.3.4.5)

βj(f) =
1
N
,

Pf(x) =

{
1 − 1

h
|x− xkN | if |x− xkN | ≤ h, k = 0, ±1, . . . ,

0 otherwise,

cj(Pf) =
1

2π

∫ 2π

0

Pf(x)e−jixdx =
1

2π

∫ h

−h

(
1 − |x|

h

)
e−jixdx.

Utilizing the symmetry properties of the above integrand, we find

2.4 Interpolation by Spline Functions 97

cj(Pf) =
1
π

∫ h

0

(
1 − x

h

)
cos jx dx =

2
j2πh

sin2
(
jh

2

)
.

With h = 2π/N the formula (2.3.4.10) gives

τj =
(sin z

z

)2
with z :=

πj

N
, j = 0,±1,

Example 2. Let g := Pf be the periodic cubic spline function [see Section 2.4]
with g(xk) = fk, k = 0, ±1, Again, P is linear and translation invari-
ant. Using the same technique as in the previous example, we find the following
attenuation factors:

τj =
(sin z

z

)4 3
1 + 2 cos2 z

, where z :=
πj

N
.

2.4 Interpolation by Spline Functions

Spline functions yield smooth interpolating curves which are less likely
to exhibit the large oscillations characteristic of high-degree polynomials.
They are finding applications in graphics and, increasingly, in numerical
methods. For instance, spline functions may be used as trial functions in
connection with the Rayleigh-Ritz-Galerkin method for solving boundary-
value problems of ordinary and partial differential equations. More recently,
they are also used in signal processing.

Spline functions (splines) are connected with a partition

∆ : a = x0 < x1 < · · · < xn = b

of an interval [a, b] by knots xi, i = 0, 1, . . . , n: They are piecewise polyno-
mial functions S: [a, b] → IR, with certain smoothness properties that are
composed of polynomials, the restrictions S|Ii of S to Ii := (xi−1, xi), i = 1,
2, . . . , n, are polynomials. In Sections 2.4.1 – 2.4.3 we describe only the
simple but already representative case of cubic splines functions (splines of
degree 3) that are composed of cubic polynomials, S|Ii ∈ Π3. The general
case of splines of degree k and of arbitrary piecewise polynomial functions
are treated in Sections 2.4.4 and 2.4.5. The final Section 2.4.6 deals with
the basic ideas behind the application of splines in signal processing.

A detailed description of splines can be found in many monographs, for
instance in Greville (1969), Schultz (1973), Böhmer (1974), de Boor (1978),
Schumaker (1981), Korneichuk (1984), andNürnberger (1989).

2.4.1 Theoretical Foundations

Let ∆ := { a = x0 < x1 < · · · < xn = b } be a partition of the interval
[a, b].

98 2 Interpolation

(2.4.1.1) Definition. A cubic spline (function) S∆ on ∆ is a real function
S∆: [a, b] → IR with the properties:
(a) S∆ ∈ C2[a, b], that is, S∆ is twice continuously differentiable on [a, b].
(b) S∆ coincides on every subinterval [xi, xi+1], i = 0, 1, . . . , n− 1, with

a polynomial of degree (at most) three.

Thus a cubic spline consists of cubic polynomials pieced together in such
a fashion that their values and those of their first two derivatives coincide
at the interior knots xi, i = 1, . . . , n− 1.

Consider a finite sequence Y := (y0, y1, . . . , yn) of n+ 1 real numbers.
We denote by

S∆(Y ; .)

an interpolating spline function S∆ with S∆(Y ;xi) = yi for i = 0, 1, . . . ,
n.

Such an interpolating cubic spline function S∆(Y ; .) is not uniquely de-
termined by the sequence Y of support ordinates. Roughly speaking, there
are still two degrees of freedom left, calling for suitable additional require-
ments. The following three additional requirements are most commonly
considered:

(2.4.1.2)

a) S′′
∆(Y ; a) = S′′

∆(Y ; b) = 0,

b) S
(k)
∆ (Y ; a) = S

(k)
∆ (Y ; b) for k = 0, 1, 2: S∆(Y ; .) is periodic,

c) S′
∆(Y ; a) = y′

0, S
′
∆(Y ; b) = y′

n for given numbers y′
0, y

′
n.

We will confirm that each of these three sets of conditions by itself ensures
uniqueness of the interpolating spline function S∆(Y ; .). A prerequisite of
the condition (2.4.1.2b) is, of course, that yn = y0.

For this purpose, and to establish a characteristic minimum property
of spline functions, we consider the sets

(2.4.1.3) Km[a, b],

m > 0 integer, of real functions f : [a, b] → IR for which f (m−1) is absolutely
continuous4 on [a, b] and f (m) ∈ L2[a, b].5 By

Km
p [a, b]

we denote the set of all functions in Km[a, b] with f (k)(a) = f (k)(b) for
k = 0, 1, . . . , m− 1. We call such functions periodic, because they arise as
restrictions to [a, b] of functions which are periodic with period b− a.

4 See footnote 2 in Section 2.3.4.
5 The set L2[a, b] denotes the set of all real functions whose squares are integrable

on the interval [a, b], i.e.,
∫ b

a
|f(t)|2 dt exists and is finite.

2.4 Interpolation by Spline Functions 99

Note that S∆ ∈ K3[a, b], and that S∆(Y ; .) ∈ K3
p[a, b] if (2.4.1.2b) holds.

If f ∈ K2[a, b], then we can define

‖f‖2 :=
∫ b

a

|f ′′(x)|2 dx.

Note that ‖f‖ ≥ 0. However, ‖.‖ is not a norm [see (4.4.1)] but only a
seminorm, because ‖f‖ = 0 may hold for functions which are not identically
zero, for instance, for all linear functions f(x) ≡ cx+ d.

We proceed to show a fundamental identity due to Holladay [see for
instance Ahlberg, Nilson, and Walsh (1967)].

(2.4.1.4) Theorem. If f ∈ K2(a, b), ∆ = { a = x0 < x1 < · · · < xn = b }
is a partition of the interval [a, b], and if S∆ is a spline function with knots
xi ∈ ∆, then

‖f − S∆‖2 = ‖f‖2 − ‖S∆‖2 −

− 2
[
(f ′(x) − S′

∆(x))S′′
∆(x)

∣∣b
a
−

n∑
i=1

(f(x) − S∆(x))S′′′
∆

∣∣x−
i

x+
i−1

]
.

Here g(x)|uv stands for g(u) − g(v), as it is commonly understood in the
calculus of integrals. It should be realized, however, that S′′′

∆ (x) is piecewise
constant with possible discontinuities at the knots x1, . . . , xn−1. Hence we
have to use the left and right limits of S′′′

∆ (x) at the locations xi and xi−1,
respectively, in the above formula. This is indicated by the notation x−

i ,
x+
i−1.

Proof. By the definition of ‖ · ‖,

‖f − S∆‖2 =
∫ b

a

|f ′′(x) − S′′
∆(x)|2 dx

= ‖f‖2 − 2
∫ b

a

f ′′(x)S′′
∆(x) dx+ ‖S∆‖2

= ‖f‖2 − 2
∫ b

a

(f ′′(x) − S′′
∆(x))S′′

∆(x) dx− ‖S∆‖2.

Integration by parts gives for i = 1, 2, . . . , n∫ xi

xi−1

(f ′′(x) − S′′
∆(x))S′′

∆(x) dx = (f ′(x) − S′
∆(x))S′′

∆(x)
∣∣xi

xi−1

−
∫ xi

xi−1

(f ′(x) − S′
∆(x))S′′′

∆ (x) dx

= (f ′(x) − S′
∆(x))S′′

∆(x)
∣∣xi

xi−1
− (f(x) − S∆(x))S′′′

∆ (x)
∣∣x−

i

x+
i−1

100 2 Interpolation

+
∫ xi

xi−1

(f(x) − S∆(x))S(4)
∆ (x) dx.

Now S(4)(x) ≡ 0 on the subintervals (xi−1, xi), and f ′, S′
∆, S′′

∆ are
continuous on [a, b]. Adding these formulas for i = 1, 2, . . . , n yields the
propositon of the theorem, since

n∑
i=1

(f ′(x) − S′
∆(x))S′′

∆(x)
∣∣xi

xi−1
= (f ′(x) − S′

∆(x))S′′
∆(x)

∣∣b
a
. ��

With the help of this theorem we will prove the important minimum-
norm property of spline functions.

(2.4.1.5) Theorem. Given a partition ∆ := { a = x0 < x1 < · · · <
xn = b } of the interval [a, b], values Y := (y0, · · · , yn) and a function
f ∈ K2(a, b) with f(xi) = yi for i = 0, 1, . . . , n, then ‖f‖ ≥ ‖S∆(Y ; .)‖,
and more precisely

‖f − S∆(Y ; .)‖2 = ‖f‖2 − ‖S∆(Y ; .)‖2 ≥ 0

holds for every spline function S∆(Y ; .), provided one of the conditions
[compare (2.4.1.2)]
(a) S′′

∆(Y ; a) = S′′
∆(Y ; b) = 0,

(b) f ∈ K2
p[a, b], S∆(Y ; .) periodic,

(c) S′
∆(Y ; a) = f ′(a), S′

∆(Y ; b) = f ′(b),
is met. In each of these cases, the spline function S∆(Y ; .) is uniquely
determined.

The existence of such spline functions will be shown in Section 2.4.2.

Proof. In each of the above three cases (2.4.1.5a, b, c), the expression

(f ′(x) − S′
∆(x))S′′

∆(x)
∣∣b
a
−

n∑
i=1

(f(x) − S∆(x))S′′′
∆ (x)

∣∣x−
i

x+
i−1

= 0,

vanishes in the Holladay identity (2.4.1.4) if S∆ ≡ S∆(Y ; .). This proves
the minimum property of the spline function S∆(Y ; .). Its uniqueness can
be seen as follows: suppose S̄∆(Y ; .) is another spline function having the
same properties as S∆(Y ; ·). Letting S̄∆(Y ; .) play the role of the function
f ∈ K2[a, b] in the theorem, the minimum property of S∆(Y ; ·) requires
that

‖S̄∆(Y ; .) − S∆(Y ; .)‖2 = ‖S̄∆(Y ; .)‖2 − ‖S∆(Y ; .)‖2 ≥ 0 ,

and since S∆(Y ; ·) and S̄∆(Y ; ·) may switch roles,

‖S̄∆(Y ; .) − S∆(Y ; .)‖2 =
∫ b

a

|S̄′′
∆(Y ;x) − S′′

∆(Y ;x)|2 dx = 0 .

2.4 Interpolation by Spline Functions 101

Since S′′
∆(Y ; ·) and S̄′′

∆(Y ; ·) are both continuous,

S̄′′
∆(Y ;x) ≡ S′′

∆(Y ;x),

from which
S̄∆(Y ;x) ≡ S∆(Y ;x) + cx+ d

follows by integration. But S̄∆(Y ;x) = S∆(Y ;x) holds for x = a, b, and
this implies c = d = 0. ��

The minimum-norm property of the spline function expressed in The-
orem (2.4.1.5) implies in case (2.4.1.2a) that, among all functions f in
K2[a, b] with f(xi) = yi, i = 0, 1, . . . , n, it is precisely the spline function
S∆(Y ; ·) with S′′

∆(Y ;x) = 0 for x = a, b that minimizes the integral

‖f‖2 =
∫ b

a

|f ′′(x)|2dx.

The spline function of case (2.4.1.2a) is therefore often referred to as the
natural spline function In cases (2.4.1.2b) and (2.4.1.2c), the corresponding
spline functions S∆(Y ; ·) minimize ‖f‖ over the more restricted sets K2

p[a, b]
and { f ∈ K2[a, b] | f ′(a) = y′

0, f
′(b) = y′

n } ∩ { f | f(xi) = yi for i = 0, 1,
. . . , n }, respectively.

The expression f ′′(x)(1 + f ′(x)2)−3/2 indicates the curvature of the
function f(x) at x ∈ [a, b]. If |f ′(x)| is small compared to 1, then the
curvature is approximately equal to f ′′(x). The value ‖f‖ provides us there-
fore with an approximate measure of the total curvature of the function
f in the interval [a, b]. In this sense, the natural spline function is the
“smoothest” function to interpolate given support points (xi, yi), i = 0, 1,
. . . , n.

2.4.2 Determining Interpolating Cubic Spline Functions

In this section, we will describe computational methods for determining
cubic spline functions which assume prescribed values at their knots and
satisfy one of the side conditions (2.4.1.2). In the course of this, we will
have also proved the existence of such spline functions; their uniqueness
has already been established by Theorem (2.4.1.5).

In what follows, ∆ = {xi | i = 0, 1, . . . , n } will be a fixed partition
of the interval [a, b] by knots a = x0 < x1 < · · · < xn = b and Y =
(yi)i=0,1,...,n will be a sequence of n+1 prescribed real numbers. In addition
let Ij be the subinterval Ij := [xj−1, xj], j = 0, 1, . . . , n− 1, and hj+1 :=
xj+1 − xj its length.

We refer to the values of the second derivatives at knots xj ∈ ∆,

(2.4.2.1) Mj := S′′
∆(Y ;xj), j = 0, 1, . . . , n,

102 2 Interpolation

of the desired spline function S∆(Y ; ·) as the moments Mj of S∆(Y ; ·). We
will show that spline functions are readily characterized by their moments,
and that the moments of the interpolating spline function can be calculated
as the solution of a system of linear equations.

Note that the second derivative S′′
∆(Y ; ·) of the spline function coincides

with a linear function in each interval [xj , xj+1], j = 0, . . . , n−1, and that
these linear functions can be described in terms of the moments Mi of
S∆(Y ; ·):

S′′
∆(Y ;x) = Mj

xj+1 − x
hj+1

+Mj+1
x− xj
hj+1

for x ∈ [xj , xj+1].

By integration,
(2.4.2.2)

S′
∆(Y ;x) = −Mj

(xj+1 − x)2
2hj+1

+Mj+1
(x− xj)2

2hj+1
+Aj ,

S∆(Y ;x) = Mj
(xj+1 − x)3

6hj+1
+Mj+1

(x− xj)3
6hj+1

+Aj(x− xj) +Bj ,

for x ∈ [xj , xj+1], j = 0, 1, . . . , n− 1, where Aj , Bj are constants of inte-
gration. From S∆(Y ;xj) = yj , S∆(Y ;xj+1) = yj+1 we obtain the following
equations for these constants Aj and Bj :

Mj

h2
j+1

6
+Bj = yj ,

Mj+1
h2
j+1

6
+Ajhj+1+Bj = yj+1.

Consequently,

(2.4.2.3)
Bj = yj −Mj

h2
j+1

6
,

Aj =
yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj).

This yields the following representation of the spline function in terms
of its moments:
(2.4.2.4)
S∆(Y ;x) = αj + βj(x− xj) + γj(x− xj)2 + δj(x− xj)3 for x ∈ [xj , xj+1],

where

2.4 Interpolation by Spline Functions 103

αj :=yj , γj :=
Mj

2
,

βj :=S′
∆(Y ;xj) = −Mjhj+1

2
+Aj

=
yj+1 − yj
hj+1

− 2Mj +Mj+1

6
hj+1,

δj :=
S′′′
∆ (Y ;x+

j)
6

=
Mj+1 −Mj

6hj+1
.

Thus S∆(Y ; ·) has been characterized by its moments Mj . The task of
calculating these moments will now be addressed.

The continuity of S′
∆(Y ; ·) at the interior knots x = xj , j = 1, 2, . . . ,

n−1 [namely, the relations S′
∆(Y ;x−

j) = S′
∆(Y ;x+

j)] yields n−1 equations
for the moments Mj . Substituting the values (2.4.2.3) for Aj and Bj in
(2.4.2.2) gives for x ∈ [xj , xj+1]

S′
∆(Y ;x) = −Mj

(xj+1 − x)2
2hj+1

+Mj+1
(x− xj)2

2hj+1

+
yj+1 − yj
hj+1

− hj+1

6
(Mj+1 −Mj).

For j = 1, 2, . . . , n− 1, we have therefore

S′
∆(Y ;x−

j) =
yj − yj−1

hj
+
hj
3
Mj +

hj
6
Mj−1,

S′
∆(Y ;x+

j) =
yj+1 − yj
hj+1

− hj+1

3
Mj − hj+1

6
Mj+1,

and since S′
∆(Y ;x+

j) = S′
∆(Y ;x−

j),

(2.4.2.5)
hj
6
Mj−1 +

hj + hj+1

3
Mj +

hj+1

6
Mj+1 =

yj+1 − yj
hj+1

− yj − yj−1

hj

for j = 1, 2, . . . , n − 1. These are n − 1 equations for the n + 1 unknown
moments. Two further equations can be gained separately from each of the
side conditions (a), (b) and (c) listed in (2.4.1.2).

Case (a) : S′′
∆(Y ; a) = M0 = 0 = Mn = S′′

∆(Y ; b),

Case (b) : S′′
∆(Y ; a) = S′′

∆(Y ; b) ⇒M0 = Mn,

S′
∆(Y ; a) = S′

∆(Y ; b) ⇒ hn
6
Mn−1 +

hn + h1

3
Mn +

h1

6
M1

=
y1 − yn
h1

− yn − yn−1

hn
.

104 2 Interpolation

The latter condition is identical with (2.4.2.5) for j = n if we put

hn+1 := h1, Mn+1 := M1, yn+1 := y1.

Recall that (2.4.1.2b) requires yn = y0.

Case (c) : S′
∆(Y ; a) = y′

0 ⇒ h1

3
M0 +

h1

6
M1 =

y1 − y0
h1

− y′
0,

S′
∆(Y ; b) = y′

n ⇒ hn
6
Mn−1 +

hn
3
Mn = y′

n − yn − yn−1

hn
.

The last two equations, as well as those in (2.4.2.5), can be written in
a common format:

µjMj−1 + 2Mj + λjMj+1 = dj , j = 1, 2, . . . , n− 1,

upon introducing the abbreviations (j = 1, 2, . . . , n− 1)

(2.4.2.6)

λj :=
hj+1

hj + hj+1
, µj := 1 − λj =

hj
hj + hj+1

,

dj :=
6

hj + hj+1

{
yj+1 − yj
hj+1

− yj − yj−1

hj

}
.

In case (a), we define in addition

(2.4.2.7) λ0 := 0, d0 := 0, µn := 0, dn := 0,

and in case (c)

(2.4.2.8)

λ0 := 1, d0 :=
6
h1

(
y1 − y0
h1

− y′
0

)
,

µn := 1, dn :=
6
hn

(
y′
n − yn − yn−1

hn

)
.

This leads in cases (a) and (c) to a system of linear equations for the
moments Mi that reads in matrix notation:

(2.4.2.9)

2 λ0 0
µ1 2 λ1

µ2 · ·
· · ·

· 2 λn−1
0 µn 2

M0
M1
·
·
·
Mn

 =

d0
d1
·
·
·
dn

 .

The periodic case (b) also requires further definitions,

2.4 Interpolation by Spline Functions 105

(2.4.2.10)

λn :=
h1

hn + h1
, µn := 1 − λn =

hn
hn + h1

,

dn :=
6

hn + h1

{
y1 − yn
h1

− yn − yn−1

hn

}
,

which then lead to the following linear system of equations for the moments
M1, M2, . . . , Mn(= M0):

(2.4.2.11)

2 λ1 µ1
µ2 2 λ2

µ3 · ·
· · ·

· 2 λn−1
λn µn 2

M1
M2
·
·
·
Mn

 =

d1
d2
·
·
·
dn

 .

The coefficients λi, µi, di in (2.4.2.9) and (2.4.2.11) are well defined by
(2.4.2.6) and the additional definitions (2.4.2.7), (2.4.2.8), and (2.4.2.10),
respectively. Note in particular that in (2.4.2.9) and (2.4.2.11)

(2.4.2.12) λi ≥ 0, µi ≥ 0, λi + µi = 1,

for all coefficients λi, µi, and that these coefficients depend only on the
location of the knots xj ∈ ∆ and not on the prescribed values yi ∈ Y or on
y′
0, y

′
n in case (c). We will use this observation when proving the following:

(2.4.2.13) Theorem. The systems (2.4.2.9) and (2.4.2.11) of linear equa-
tions are nonsingular for any partition ∆ of a, b.

This means that the above systems of linear equations have unique solu-
tions for arbitrary right-hand sides, and that consequently the problem of
interpolation by cubic splines has a unique solution in each of the three
cases (a), (b), (c) of (2.4.1.2).

Proof. Consider the (n+ 1) × (n+ 1) matrix

A =

2 λ0 0
µ1 2 λ1

µ2 · ·
· · ·

· 2 λn−1
0 µn 2

of the linear system (2.4.2.9). This matrix has the following property:

(2.4.2.14) Az = w ⇒ max
i

|zi| ≤ max
i

|wi|.

for every pair of vectors z = (z0, . . . , zn)T , w = (w0, . . . , wn)T , z, w ∈
IRn+1. Indeed, let r be such that |zr| = maxi |zi|. From Az = w,

106 2 Interpolation

µrzr−1 + 2zr + λrzr+1 = wr (µ0 := λn := 0).

By the definiton of r and because µr + λr = 1,

max
i

|wi| ≥ |wr| ≥ 2|zr| − µr|zr−1| − λr|zr+1|

≥ 2|zr| − µr|zr| − λr|zr|
= (2 − µr − λr)|zr|
= |zr| = max

i
|zi|.

Suppose the matrix A were singular. Then there would exist a solution
z �= 0 of Az = 0, and (2.4.2.14) would lead to the contradiction

0 < max
i

|zi| ≤ 0.

The nonsingularity of the matrix in (2.4.2.11) is shown similarly. ��

To solve the equations (2.4.2.9), we may proceed as follows: subtract
µ1/2 times the first equation from the second, thereby annihilating µ1, and
then a suitable multiple of the second equation from the third to annihilate
µ2, and so on. This leads to a “triangular” system of equations which can be
solved in a straightforward fashion [note that this method is the Gaussian
elimination algorithm applied to (2.4.2.9); compare Section 4.1]:

(2.4.2.15)

q0 := −λ0/2; u0 := d0/2; λn := 0;
for k := 1 , 2, . . . , n:
pk := µkqk−1 + 2;
qk := −λk/pk;
uk := (dk − µkuk−1)/pk;

Mn := un;
for k := n− 1, n− 2, . . . , 0:
Mk := qkMk+1 + uk;

[It can be shown that pk > 0, so that (2.4.2.15) is well defined; see Exercise
25.] The linear system (2.4.2.11) can be solved in a similar, but not as
straightforward, fashion. An algol program by C. Reinsch can be found
in Bulirsch and Rutishauser (1968).

The reader can find more details in Greville (1969) and de Boor (1972),
algol programs in Herriot and Reinsch (1971), and fortran programs in
de Boor (1978). These references also contain information and algorithms
for the spline functions of degree k ≥ 3 and B-splines, which are treated
here in Sections 2.4.4 and 2.4.5.

2.4 Interpolation by Spline Functions 107

2.4.3 Convergence Properties of Cubic Spline Functions

Interpolating polynomials may not converge to a function f whose values
they interpolate, even if the partitions ∆ are chosen arbitrarily fine [see
Section 2.1.4]. In contrast, we will show in this section that, under mild
conditions on the function f and the partitions ∆, the interpolating spline
functions do converge towards f as the fineness of the underlying partitions
approaches zero.

We will show first that the moments (2.4.2.1) of the interpolating spline
function converge to the second derivatives of the given function. More
precisely, consider a fixed partition ∆ = { a = x0 < x1 < · · · < xn = b } of
[a, b], and let

M =

M0
...
Mn

be the vector of momentsMj of the spline function S∆(Y ; ·) with f(xj) = yi
for j = 0, . . . , n as well as

S′
∆(Y ; a) = f ′(a), S′

∆(Y ; b) = f ′(b).

We are thus dealing with case (c) of (2.4.1.2). The vector M of moments
satisfies the equation

AM = d,

which expresses the linear system of equations (2.4.2.9) in matrix form.
The components dj of d are given by (2.4.2.6) and (2.4.2.8). Let F and r
be the vectors

F :=

f ′′(x0)
f ′′(x1)

...
f ′′(xn)

 , r := d−AF = A(M − F).

Writing ‖z‖ := maxi |zi| for vectors z, and ‖∆‖ for the fineness

(2.4.3.1) ‖∆‖ := max
j

|xj+1 − xj |

of the partion ∆, we have:

(2.4.3.2) If f ∈ C4[a, b] and |f (4)(x)| ≤ L for x ∈ [a, b], then

‖M − F‖ ≤ ‖r‖ ≤ 3
4L‖∆‖2.

Proof. By definition, r0 = d0 − 2f ′′(x0) − f ′′(x1) and by (2.4.2.8),

r0 =
6
h1

(
y1 − y0
h1

− y′
0

)
−2f ′′(x0) − f ′′(x1).

108 2 Interpolation

Using Taylor’s theorem to express y1 = f(x1) and f ′′(x1) in terms of the
value and the derivatives of the function f at x0 yields

r0 =
6
h1

[
f ′(x0) +

h1

2
f ′′(x0) +

h2
1

6
f ′′′(x0) +

h3
1

24
f (4)(τ1) − f ′(x0)

]
− 2f ′′(x0) −

[
f ′′(x0) + h1f

′′′(x0) +
h2

1

2
f (4)(τ2)

]
=
h2

1

4
f (4)(τ1) − h2

1

2
f (4)(τ2)

with τ1, τ2 ∈ (x0, x1). Therefore

|r0| ≤ 3
4L‖∆‖2.

Analogously, we find for

rn = dn − f ′′(xn−1) − 2f ′′(xn)

that
|rn| ≤ 3

4L‖∆‖2.

For the remaining components of r = d−AF , we find similarly

rj =dj − µjf ′′(xj−1) − 2f ′′(xj) − λjf ′′(xj+1)

=
6

hj + hj+1

[
yj+1 − yj
hj+1

− yj − yj−1

hj

]
− hj
hj + hj+1

f ′′(xj−1) − 2f ′′(xj) − hj+1

hj + hj+1
f ′′(xj+1).

Taylors’s formula at xj then gives

rj =
6

hj + hj+1

[
f ′(xj) +

hj+1

2
f ′′(xj) +

h2
j+1

6
f ′′′(xj) +

h3
j+1

24
f (4)(τ1)

− f ′(xj) +
hj
2
f ′′(xj) −

h2
j

6
f ′′′(xj) +

h3
j

24
f (4)(τ2)

]
− hj
hj + hj+1

[
f ′′(xj) − hjf ′′′(xj) +

h2
j

2
f (4)(τ3)

]
− 2f ′′(xj)

− hj
hj + hj+1

[
f ′′(xj) + hj+1f

′′′(xj) +
h2
j+1

2
f (4)(τ4)

]
=

1
hj + hj+1

[
h3
j+1

4
f (4)(τ1) +

h3
j

4
f (4)(τ2) −

h3
j

2
f (4)(τ3)

−
h3
j+1

2
f (4)(τ4)

]
.

2.4 Interpolation by Spline Functions 109

Here τi ∈ [xj−1, xj+1]. Therefore

|rj | ≤ 3
4L

1
hj + hj+1

[h3
j+1 + h3

j] ≤ 3
4L‖∆‖2

for j = 1, 2, . . . , n− 1. In sum,

‖r‖ ≤ 3
4L‖∆‖2

and since r = A(M − F), (2.4.2.14) implies

‖M − F‖ ≤ ‖r‖ ≤ 3
4L‖∆‖2. ��

(2.4.3.3) Theorem.6 Suppose f ∈ C4[a, b] and |f (4)(x)| ≤ L for x ∈ [a, b].
Let ∆ be a partition ∆ = { a = x0 < x1 < · · · < xn = b } of the interval
[a, b], and K a constant such that

‖∆‖
|xj+1 − xj |

≤ K for j = 0, 1, . . . , n− 1.

If S∆ is the spline function which interpolates the values of the function f
at the knots x0, · · · , xn ∈ ∆ and satisfies S′

∆(x) = f ′(x) for x = a, b, then
there exist constants ck ≤ 2, which do not depend on the partition ∆, such
that for x ∈ [a, b],

|f (k)(x) − S(k)
∆ (x)| ≤

{
ckL‖∆‖4−k for k = 0, 1, 2,
c3LK‖∆‖ for k = 3.

Note that the constant K ≥ 1 bounds the deviation of the partition ∆
from uniformity.

Proof. We prove the proposition first for k = 3. For x ∈ [xj−1, xj],

S′′′
∆ (x) − f ′′′(x) =

Mj −Mj−1

hj
− f ′′′(x)

=
Mj − f ′′(xj)

hj
− Mj−1 − f ′′(xj−1)

hj

+
f ′′(xj) − f ′′(x) − [f ′′(xj−1) − f ′′(x)]

hj
− f ′′′(x).

Using (2.4.3.2) and Taylor’s theorem at x, we conclude that

6 The estimates of Theorem (2.4.3.3) have been improved by Hall and Meyer
(1976): |f (k)(x) − S

(k)
∆ (x)| ≤ ckL‖∆‖4−k, k = 0, 1, 2, 3, with c0 := 5/384,

c1 := 1/24, c2 := 3/8, c3 := (K +K−1)/2. Here c0 and c1 are optimal.

110 2 Interpolation

|S′′′
∆ (x) − f ′′′(x)| ≤3

2L
‖∆‖2

hj
+

1
hj

∣∣∣(xj − x)f ′′′(x) +
(xj − x)2

2
f (4)(η1)

− (xj−1 − x)f ′′′(x) − (xj−1 − x)2
2

f (4)(η2) − hjf ′′′(x)
∣∣∣

≤3
2L

‖∆‖2

hj
+
L

2
‖∆‖2

hj

=2L
‖∆‖2

hj
≤ 2LK‖∆‖,

where η1, η2 ∈ [xj−1, xj]. Thus |f ′′′(x) − S′′′
∆ (x)| ≤ 2LK‖∆‖.

To prove the proposition for k = 2, we observe: for each x ∈ (a, b)
there exists a closest knot xj = xj(x). Assume without loss generality
x ≤ xj(x) = xj so that x ∈ [xj−1, xj] and |xj(x) − x| ≤ hj/2 ≤ ‖∆‖/2.
From

f ′′(x) − S′′
∆(x) = f ′′(xj(x)) − S′′

∆(xj(x)) +
∫ x

xj(x)
(f ′′′(t) − S′′′

∆ (t))dt,

(2.4.3.2) and the estimate just proved we find

|f ′′(x) − S′′
∆(x)| ≤ 3

4L‖∆‖2 + 1
2hj · 2L‖∆‖2

hj

≤ 7
4L‖∆‖2, x ∈ [a, b].

We consider k = 1 next. In addition to the boundary points ξ0 := a,
ξn+1 := b, there exist, by Rolle’s theorem, n further points ξj ∈ (xj−1, xj),
j = 1, 2, . . . , n with

f ′(ξj) = S′
∆(ξj), j = 0, 1, . . . , n+ 1.

For any x ∈ [a, b] there exists a closest one of the above points ξj = ξj(x),
for which consequently

|ξj(x) − x| < ‖∆‖.

Thus

f ′(x) − S′
∆(x) =

∫ x

ξj(x)
(f ′′(t) − S′′

∆(t)]dt,

and

|f ′(x) − S′
∆(x)| ≤ 7

4L‖∆‖2 · ‖∆‖ = 7
4L‖∆‖3, x ∈ [a, b].

The case k = 0 remains. Since

f(x) − S∆(x) =
∫ x

xj(x)
(f ′(t) − S′

∆(t))dt,

2.4 Interpolation by Spline Functions 111

it follows from the above result for k = 1 that

|f(x) − S∆(x)| ≤ 7
4L‖∆‖3 · 1

2‖∆‖ = 7
8L‖∆‖4. x ∈ [a, b]. ��

Clearly, (2.4.3.3) implies that for sequences

∆m = { a = x
(m)
0 < x

(m)
1 < · · · < x(m)

nm
= b }

of partitions with ∆m → 0 the corresponding cubic spline functions S∆m

and their first two derivatives converge to f and its corresponding deriva-
tives uniformly on [a, b]. If in addition

sup
m,j

‖∆m‖
|x(m)
j+1 − x(m)

j |
≤ K < +∞,

even the third derivative f ′′′ is uniformly approximated by S′′′
∆m

, a usually
discontinuous sequence of step functions.

2.4.4 B-Splines

Spline functions are instances of piecewise polynomial functions associated
with a partition

∆ = {a = x0 < x1 < · · · < xn = b}

of an interval [a, b] by abscissae or knots xi. In general, a real function
f : [a, b] → IR is called a piecewise polynomial function of order r or degree
r − 1 if, for each i = 0, . . . , n − 1, the restriction of f to the subinterval
(xi, xi+1) agrees with a polynomial pi(x) of degree ≤ r − 1, pi ∈ Πr−1.
In order to achieve a 1-1 correspondence between f and the sequence
(p0(x), p1(x), . . . , pn−1(x)), we define f at the knots xi, i = 0, . . . , n−1, so
that it becomes continuous from the right, f(xi): = f(xi+0), 0 ≤ i ≤ n−1,
and f(xn) = f(b): = f(xn − 0).

Then, generalizing cubic splines, we define spline functions S∆ of de-
gree k as piecewise polynomial functions of degree k that are k − 1 times
differentiable at the interior knots xi, 1 ≤ i ≤ n − 1, of ∆. By S∆,k we
denote the set of all spline functions S∆ of degree k, which is easily seen to
be a real vector space of dimension n+k. In fact, the polynomial S∆|[x0, x1]
is uniquely determined by its k + 1 coefficients, and this in turn already
fixes the first k − 1 derivatives (= k conditions) of the next polynomial
S∆|[x1, x2] at x1, so that only one degree of freedom is left for choosing
S∆|[x1, x2]. As the same holds for all subsequent polynomials S∆|[xi, xi+1],
i = 2, . . . , n− 1, one finds dimS∆,k = k + 1 + (n− 1) · 1 = k + n.

B-splines are special piecewise polynomial functions with remarkable
properties: they are nonnegative and vanish everywhere except on a few
contiguous intervals [xi, xi+1]. Moreover, the function space S∆,k has a basis

112 2 Interpolation

consisting of B-splines. As a consequence, B-splines provide the framework
for an efficient and numerically stable calculation of splines.

In order to define B-splines, we introduce the function fx: IR → IR

fx(t) := (t− x)+ := max(t− x, 0) =
{
t− x for t > x,
0 for t ≤ x,

and its powers frx , r ≥ 0, in particular for r = 0,

f0
x(t) :=

{
1 for t > x,
0 for t ≤ x.

The function frx(.) is composed of two polynomials of degree ≤ r: the 0-
polynomial P0(t) := 0 for t ≤ x and the polynomial P1(t) := (t − x)r for
t > x. Note that frx depends on a real parameter x, and the definition of
frx(t) is such that it is a function of x which is continuous from the right
for each fixed t. Clearly, for r ≥ 1, frx(t) is (r − 1) times continuously
differentiable both with respect to t and with respect to x.

Recall further that under certain conditions the generalized divided
difference f [ti, ti+1, . . . , ti+r] of a real function f(t), f : IR → IR is well
defined for any segment ti ≤ ti+1 ≤ · · · ≤ ti+r of real numbers, even if
the tj are not mutually distinct [see Section 2.1.5, in particular (2.1.5.4)].
The only requirement is that f be (sj − 1)-times differentiable at t = tj ,
j = i, i+ 1, . . . , i+ r, if the value of tj occurs sj times in the subsegment
ti ≤ ti+1 ≤ · · · ≤ tj terminating with tj . In this case, by (2.1.5.7)
(2.4.4.1)

f [ti, . . . , ti+r] :=
f (r)(ti)
r!

, if ti = ti+r,

f [ti, . . . , ti+r] :=
f [ti+1, . . . , ti+r] − f [ti, . . . , ti+r−1]

ti+r − ti
, otherwise.

It follows by induction over r that the divided differences of the function f
are linear combinations of its derivatives at the points tj :

(2.4.4.2) f [ti, ti+1, . . . , ti+r] =
i+r∑
j=i

αjf
(sj−1)(tj),

where, in particular, αi+r �= 0.
Now let r ≥ 1 be an integer and t = {ti}i∈ZZ any infinite nondecreasing

unbounded sequence of reals ti with

inf ti = −∞, sup ti = +∞ and ti < ti+r for all i ∈ ZZ.

Then the i-th B-spline of order r associated with t is defined as the following
function in x:

(2.4.4.3) Bi,r,t(x) := (ti+r − ti)fr−1
x [ti, ti+1, . . . , ti+r],

2.4 Interpolation by Spline Functions 113

for which we also write sometimes more briefly Bi or Bi,r [see Figure 2 for
simple examples].

Clearly, Bi,r,t(x) is well defined for all x �= ti, ti+1, . . . , ti+r and, by
(2.4.4.2), (2.4.4.3) is a linear combination of the functions

(2.4.4.4a) (tj − x)r−sj

+

∣∣∣
t=tj

, i ≤ j ≤ i+ r,

if the value of tj occurs sj times within the subsegment ti ≤ ti+1 ≤ · · · ≤
tj . If in addition, the value of tj occurs nj times within the full segment
ti ≤ ti+1 ≤ · · · ≤ ti+r, then the definition of sj shows that for each index
σ with 1 ≤ σ ≤ nj there exists exactly one integer l = l(σ) satisfying

tl = tj , sl = σ, i ≤ l ≤ i+ r.

Thus Bi,r,t is also a linear combination of

(2.4.4.4b) (tj − x)s+, where r − nj ≤ s ≤ r − 1, i ≤ j ≤ i+ r.

Hence the function Bi,r,t coincides with a polynomial of degree at most
r − 1 on each of the open intervals in the following set

(−∞, ti) ∪ {(tj , tj+1), i ≤ j < i+ r & tj < tj+1} ∪ (ti+r,+∞).

That is, Bi,r,t(x) is a piecewise polynomial function in x of order r with
respect to the partition of the real axis given by the tk with k ∈ Ti,r, where

Ti,r := {j | i ≤ j < i+ r & tj < tj+1} ∪ {i+ r}.

Only at the knots x = tk, k ∈ Ti,r, the function Bi,r,t(x) may have jump
discontinuities, but it is continuous from the right, because the functions
(tj − x)s+ occuring in (2.4.4.4) are functions of x that are continuous from
the right everywhere, even when s = 0. Also by (2.4.4.4) for given t = (tj),
the B-spline Bi,r(x) ≡ Bi,r,t(x) is (r−nj−1) times differentiable at x = tj ,
if tj occurs nj times within ti, ti+1, . . . , ti+r (if nj = r then Bi,r(x) has
a jump discontinuity at x = tj). Hence the order of differentiability of
Bi,r,t(x) at x = tj is governed by the number of repetitions of the value of
tj .

We note several important properties of B-Splines:

(2.4.4.5) Theorem. (a) Bi,r,t(x) = 0 for x �∈ [ti, ti+r].
(b) Bi,r,t(x) > 0 for ti < x < ti+r.
(c) For all x ∈ IR ∑

i

Bi,r,t(x) = 1,

and the sum contains only finitely many nonzero terms.

114 2 Interpolation

By that theorem, the functions Bi,r ≡ Bi,r,t are nonnegative weight
functions with sum 1 and support [ti, ti+r],

suppBi,r := {x | Bi,r(x) �= 0} = [ti, ti+r],

they form a “partition of unity.”

Example. For r = 5 and a sequence t with · · · ≤ t0 < t1 = t2 = t3 < t4 = t5 <
t6 ≤ · · ·, the B-Spline B1,5 = B1,5,t of order 5 is a piecewiese polynomial function
of degree 4 with respect to the partition t3 < t5 < t6 of IR. For x = t3, t5, t6 it
has continuous derivatives up to the orders 1, 2, and 3, respectively, as n3 = 3,
n5 = 2, and n6 = 1.

t0 t1 t2 t3 t4 t5

1 ..

.. ...
...........
...........
...........
...........
...........
...........
...........
...........
..

B0,1,t B2,2,t

..

........

........

........

........

....................

................

Fig. 2. Some simple B-Splines.

Proof. (a) For x < ti ≤ t ≤ ti+r, fr−1
x (t) = (t− x)r−1 is a polynomial of

degree (r − 1) in t, which has a vanishing rth divided difference

fr−1
x [ti, ti+1, . . . , ti+r] = 0 =⇒ Bi,r(x) = 0

by Theorem (2.1.3.10). On the other hand, if ti ≤ t ≤ ti+r < x then
fr−1
x (t) := (t− x)r−1

+ = 0, is trivially true, so that again Bi,r(x) = 0.
(b) For r = 1 and ti < x < ti+1, the assertion follows from the definition

Bi,1(x) =
[
(ti+1 − x)0+ − (ti − x)0+

]
= 1 − 0 = 1,

and for r > 1, from recursion (2.4.5.2) for the functions Ni,r := Bi,r/(ti+r−
ti), which will be derived later on.

(c) Assume first tj < x < tj+1. Then by (a), Bi,r(x) = 0 for all i, r
with i+ r ≤ j and all i ≥ j + 1, so that

∑
i

Bi,r(x) =
j∑

i=j−r+1

Bi,r(x).

Now, (2.4.4.1) implies

2.4 Interpolation by Spline Functions 115

Bi,r(x) = fr−1
x [ti+1, ti+2, . . . , ti+r] − fr−1

x [ti, ti+r, . . . , ti+r−1].

Therefore,∑
i

Bi,r(x) = fr−1
x [tj+1, . . . , tj+r] − fr−1

x [tj−r+1, . . . , tj] = 1 − 0.

The last equality holds because the function fr−1
x (t) = (t − x)r−1 is a

polynomial of degree (r − 1) in t for tj < x < tj+1 ≤ t ≤ tj+r, for which
fr−1
x [tj+1, . . . , tj+r] = 1 by (2.1.4.3), and the function f (r−1)

x (t) = (t −
x)r−1

+ = 0 vanishes for tj−r+1 ≤ t ≤ tj < x < tj+1. For x = tj , the
assertion follows because of the continuity of Bi,r from the right,

Bi,r(tj) = lim
y↓tj

Bi,r(y). ��

We now return to the space S∆,k of splines of degree k ≥ 0 and construct
a sequence t = (tj) so that the B-splines Bi,k+1,t(x) of order k + 1 form a
basis of S∆,k. For this purpose, we associate the partition

∆ = {a = x0 < x1 < · · · < xn = b}

with any infinite unbounded nondecreasing sequence t = (tj)j∈ZZ satisfying

tj < tj+k+1 for all j,
t−k ≤ · · · ≤ t0 := x0 < t1 := x1 < · · · < tn := xn.

In the following only its finite subsequence

t−k, t−k+1, . . . , tn+k

will matter. Then a (special case of a) famous result of Curry and Schoen-
berg (1966) is

(2.4.4.6) Theorem. The restrictions Bi,k+1,t|[a, b] of the n+ k B-splines
Bi ≡ Bi,k+1,t, i = −k, −k + 1, . . . , n− 1, to [a, b] form a basis of S∆,k.

Proof. Each Bi, −k ≤ i ≤ n− 1, agrees with a polynomial of degree ≤ k
on the subintervals [xj , xj+1] of [a, b], and has derivatives up to the order
k − nj = k − 1 in the interior knots tj = xj , j = 1, 2, . . . , n − 1, of ∆
since these tj occur only once in t, nj = 1. This shows Bi|[a, b] ∈ S∆,k for
all i = −k, . . . , n− 1. On the other hand we have seen dim S∆,k = n+ k.
Hence it remains to show only that the functions Bi, −k ≤ i ≤ n− 1, are
linearly independent on [a, b].

Assume
∑n−1
i=−k aiBi(x) = 0 for all x ∈ [a, b]. Consider the first subin-

terval [x0, x1]. Then

116 2 Interpolation

0∑
i=−k

aiBi(x) = 0 for x ∈ [x0, x1]

because Bi|[x0, x1] = 0 for i ≥ 1 by Theorem (2.4.4.5)(a). We now prove
that B−k, . . . , B0 are linearly independent on [x0, x1], which implies a−k =
a−k+1 = · · · = a0 = 0.

We claim that for x ∈ [x0, x1]

span {B−k(x), . . . , B0(x)} = span {(t1 −x)k+1−s1 , . . . , (tk+1 −x)k+1−sk+1},

if the number tj occurs exactly sj times in the sequence t−k ≤ t−k+1 ≤
· · · ≤ tj . This is easily seen by induction since by (2.4.4.2), (2.4.4.4a) each
Bi(x), −k ≤ i ≤ 0, has the form

Bi(x) = α1(t1 − x)k+1−s1 + · · · + αi+k+1(ti+k+1 − x)k+1−si+k+1 ,

where αi+k+1 �= 0.
Therefore it suffices to establish the linear independence of the functions

(t1 − x)k−(s1−1), . . . , (tk+1 − x)k−(sk+1−1)

on [x0, x1], or equivalently, of the normalized functions

(2.4.4.7) p(sj−1)(tj − x), j = 1, 2, . . . , k + 1,

defined by

p(t) :=
1
k!
tk.

To prove this, assume for some constants c1, c2, . . . , ck+1

k+1∑
j=1

cjp
(sj−1)(tj − x) = 0 for all x ∈ [x0, x1].

Then by Taylor expansion the polynomial

k+1∑
j=1

cj

k∑
l=0

p(l+sj−1)(tj)
(−x)l
l!

= 0 on [x0, x1]

vanishes on [x0, x1] and therefore must be the zero polynomial, so that for
all l = 0, 1, . . . k

k+1∑
j=1

cjp
(l+sj−1)(tj) = 0.

But this means that
k+1∑
j=1

cjΠ
(sj−1)(tj) = 0,

2.4 Interpolation by Spline Functions 117

where Π(t) is the row vector

Π(t) : =
[
p(k)(t), p(k−1)(t), . . . , p(t)

]
=
[
1, t, . . . ,

tk

k!

]
.

However the vectors Π(sj−1)(tj), j = 1, 2, . . . , k + 1, are linearly
independent [see Corollary (2.1.5.5)] because of the unique solvability of
the Hermite interpolation problem with respect to the sequence t1 ≤ t2 ≤
· · · ≤ tk+1. Hence c1 = · · · = ck+1 = 0 and therefore also ai = 0 for i = −k,
−k + 1, . . . , 0.

Repeating the same reasoning for each subinterval [xj , xj+1], j = 1, 2,
. . . , n − 1, of [a, b] we find ai = 0 for all i = −k, −k + 1, . . . , n − 1, so
that all Bi, −k ≤ i ≤ n − 1, are linearly independent on [a, b] and their
restrictions to [a, b] form a basis of S∆,k. ��

2.4.5 The Computation of B-Splines

B-splines can be computed recursively. The recursions are based on a re-
markable generalization of the Leibniz formula for the derivatives of the
product of two functions. Indeed, in terms of divided differences, we find
the following.

(2.4.5.1) Product Rule for Divided Differences. Suppose ti ≤ ti+1 ≤
· · · ≤ ti+k. Assume further that the function f(t) = g(t)h(t) is a product
of two functions that are sufficiently often differentiable at t = tj, j = i,
. . . , i+ k, so that g[ti, ti+1, . . . , ti+k] and h[ti, ti+1, . . . , ti+k] are defined by
(2.4.4.1). Then

f [ti, ti+1, . . . , ti+k] =
i+k∑
r=i

g[ti, ti+1, . . . , tr]h[tr, tr+1, . . . , ti+k].

Proof. From (2.1.5.8) the polynomials

i+k∑
r=i

g[ti, . . . , tr](t− ti) · · · (t− tr−1)

and
i+k∑
s=i

h[ts, . . . , ti+k](t− ts+1) · · · (t− ti+k)

interpolate the functions g and h, respectively, at the points t = ti, ti+1,
. . . , ti+k (in the sense of Hermite interpolation, see Section 2.1.5, if the tj
are not mutually distinct). Therefore, the product polynomial

118 2 Interpolation

F (t) :=
i+k∑
r=i

g[ti, . . . , tr](t− ti) · · · (t− tr−1)

·
i+k∑
s=i

h[ts, . . . , ti+k](t− ts+1) · · · (t− ti+k)

also interpolates the function f(t) at t = ti, . . . , ti+k. This product can be
written as the sum of two polynomials

F (t) =
i+k∑
r,s=i

· · · =
∑
r≤s

· · · +
∑
r>s

· · · = P1(t) + P2(t).

Since each term of the second sum
∑
r>s is a multiple of the polynomial∏i+k

j=i (t−tj), the polynomial P2(t) interpolates the 0-function at t = ti, . . . ,
ti+k. Therefore, the polynomial P1(t), which is of degree ≤ k, interpolates
f(t) at t = ti, . . . , ti+k. Hence, P1(t) is the unique (Hermite-) interpolant
of f(t) of degree ≤ k.

By (2.1.5.8) the highest coefficient of P1(t) is f [ti, . . . , ti+k]. A com-
parison of the coefficients of tk on both sides of the sum representation
P1(t) =

∑
r≤s . . . of P1 proves the desired formula

f [ti, . . . , ti+k] =
i+k∑
r=i

g[ti, . . . , tr]h[tr, . . . , ti+k]. ��

Now we use (2.4.5.1) to derive a recursion for the B-splines Bi,r(x) ≡
Bi,r,t(x) (2.4.4.3). To do this, it will be convenient to renormalize the func-
tions Bi,r(x), letting

Ni,r(x) :=
Bi,r(x)
ti+r − ti

≡ fr−1
x [ti, ti+1, . . . , ti+r],

for which the following simple recursion holds:
For r ≥ 2 and ti < ti+r:

(2.4.5.2) Ni,r(x) =
x− ti
ti+r − ti

Ni,r−1(x) +
ti+r − x
ti+r − ti

Ni+1,r−1(x).

Proof. Suppose first x �= tj for all j. We apply rule (2.4.5.1) to the product

fr−1
x (t) = (t− x)r−1

+ = (t− x)(t− x)r−2
+ = g(t)fr−2

x (t).

Noting that g(t) is a linear polynomial in t for which by (2.1.4.3)

g[ti] = ti − x, g[ti, ti+1] = 1, g[ti, . . . , tj] = 0 for j > i+ 1,

we obtain

2.4 Interpolation by Spline Functions 119

fr−1
x [ti, . . . , ti+r] = (ti − x)fr−2

x [ti, . . . , ti+r] + 1 · fr−2
x [ti+1, . . . , ti+r]

=
(ti − x)
ti+r − ti

(fr−2
x [ti+1, . . . , ti+r] − fr−2

x [ti, . . . , ti+r−1])

+ 1 · fr−2
x [ti+1, . . . , ti+r]

=
x− ti
ti+r − ti

fr−2
x [ti, . . . , ti+r−1] +

ti+r − x
ti+r − ti

fr−2
x [ti+1, . . . , ti+r],

and this proves (2.4.5.2) for x �= ti, . . . , ti+r. The result is furthermore true
for all x since all Bi,r(x) are continuous from the right and ti < ti+r ��

The proof of (2.4.4.5), (b) can now be completed: By (2.4.5.2), the
value Ni,r(x) is a convex linear combination of Ni,r−1(x) and Ni+1,r−1(x)
for ti < x < ti+r with positive weights λi(x) = (x − ti)/(ti+r − ti) > 0,
1−λi(x) > 0. Also Ni,r(x) and Bi,r(x) have the same sign, and we already
know that Bi,1(x) = 0 for x /∈ [ti, ti+1] and Bi,1(x) > 0 for ti < x < ti+1.
Induction over r using (2.4.5.2) shows that Bi,r(x) > 0 for ti < x < ti+r.

The formula

(2.4.5.3) Bi,r(x) =
x− ti

ti+r−1 − ti
Bi,r−1(x) +

ti+r − x
ti+r − ti+1

Bi+1,r−1(x)

is equivalent to (2.4.5.2), and represents Bi,r(x) directly as a positive linear
combination of Bi,r−1(x) and Bi+1,r−1(x). It can be used to compute the
values of all B-splines Bi,r(x) = Bi,r,t(x) for a given fixed value of x.

To show this, let x be given. Then there is a tj ∈ t with tj ≤ x < tj+1.
By (2.4.4.5)a) we know Bi,r(x) = 0 for all i, r with x �∈ [ti, ti+r], i.e.,
for i ≤ j − r and for i ≥ j + 1. Therefore, in the following tableau of
Bi,r := Bi,r(x), the Bi,r vanish at the positions denoted by 0:

(2.4.5.4)

0 0 0 0 . . .
0 0 0 Bj−3,4 . . .
0 0 Bj−2,3 Bj−2,4 . . .
0 Bj−1,2 Bj−1,3 Bj−1,4 . . .
Bj,1 Bj,2 Bj,3 Bj,4 . . .
0 0 0 0 . . .
...

...
...

...

By definition Bj,1 = Bj,1(x) = 1 for tj ≤ x < tj+1, which determines
the first column of (2.4.5.4). The remaining columns can be computed
consecutively using recursion (2.4.5.3): Each element Bi,r can be derived
from its two left neighbors, Bi,r−1 and Bi+1,r−1

Bi,r−1 → Bi,r
↗

Bi+1,r−1

120 2 Interpolation

This method is numerically very stable because only nonnegative multiples
of nonnegative numbers are added together.

Example. For ti = i, i = 0, 1, . . . and x = 3.5 ∈ [t3, t4] the following tableau of
values Bi,r = Bi,r(x) is obtained.

r = 1 2 3 4
i = 0 0 0 0 1/48
i = 1 0 0 1/8 23/48
i = 2 0 1/2 6/8 23/48
i = 3 1 1/2 1/8 1/48
i = 4 0 0 0 0

For instance, B2,4 is obtained from

B2,4 = B2,4(3.5) =
3.5 − 2
5 − 2

· 6
8

+
6 − 3.5
6 − 3

· 1
8

=
23
48
.

We now consider the interpolation problem for spline functions, namely
the problem of finding a spline S that assumes prescribed values at given
locations. We may proceed as follows. Assume that r ≥ 1 is an integer and
t = (ti)1≤i≤N+r a finite sequence of real numbers satisfying

t1 ≤ t2 ≤ · · · ≤ tN+r

and ti < ti+r for i = 1, 2, . . . , N . Denote by Bi(x) ≡ Bi,r,t(x), i = 1, . . . ,
N , the associated B-splines, and by

Sr,t =
{ N∑
i=1

αiBi(x) | αi ∈ IR
}
,

the vector space spanned by the Bi, i = 1, . . . , N . Further, assume that
we are given N pairs (ξj , fj), j = 1, . . . , N , of interpolation points with

ξ1 < ξ2 < · · · < ξN .

These are the data for the interpolation problem of finding a function S ∈
Sr,t satisfying

(2.4.5.5) S(ξj) = fj , j = 1, . . . , N.

Since any S ∈ Sr,t can be written as a linear combination of the Bi, i = 1,
. . . , N , this is equivalent to the problem of solving the linear equations

(2.4.5.6)
N∑
i=1

αiBi(ξj) = fj , j = 1, . . . , N.

The matrix of this system

2.4 Interpolation by Spline Functions 121

A =

 B1(ξ1) . . . BN (ξ1)
...

...
B1(ξN) . . . BN (ξN)

has a special structure: A is a band matrix, because by (2.4.4.5) the func-
tions Bi(x) = Bi,r,t(x) have support [ti, ti+r], so that within the jth row of
A all elements Bi(ξj) with ti+r < ξj or ti > ξj are zero. Therefore, each row
of A contains at most r elements different from 0, and these elements are
in consecutive positions. The components Bi(ξj) of A can be computed by
the recursion described previously. The system (2.4.5.6), and thereby the
interpolation problem, is uniquely solvable if A is nonsingular. The non-
singularity of A can be checked by means of the following simple criterion
due to Schoenberg and Whitney (1953), which is quoted without proof.

(2.4.5.7) Theorem. The matrix A = (Bi(ξj)) of (2.4.5.6) is nonsingular
if and only if all its diagonal elements Bi(ξi) �= 0 are nonzero.

It is possible to show [see Karlin (1968)] that the matrix A is totally
positive in the following sense: all r × r submatrices B of A of the form

B = (aip,jq)
r
p,q=1 with r ≥ 1, i1 < i2 < · · · < ir, j1 < j2 < · · · < jr,

have a nonnegative determinant, det(B) ≥ 0. As a consequence, solving
(2.4.5.6) for nonsingular A by Gaussian elimination without pivoting is
numerically stable [see de Boor and Pinkus (1977)]. Also the band structure
of A can be exploited for additional savings.

For further properties of B-Splines, their applications, and algorithms
the reader is referred to the literature, in particular to de Boor (1978),
where one can also find numerous fortran programs.

2.4.6 Multi-Resolution Methods and B-Splines

B-Splines play also an important role in multi-resolution methods in signal
processing. These methods deal with the approximation of real or complex
functions f : IR → C. In what follows, we consider only square integrable
functions f ,

∫∞
−∞ |f(x)|2dx < ∞. It is well known that the set of these

functions, L2(IR), is a Euclidean vector space (even a Hilbert space) with
respect to the scalar product

〈f, g〉 :=
∫ ∞

−∞
f(x)g(x) dx

and the associated Euclidean norm ‖f‖ := 〈f, f〉1/2. By �2 we denote the
set of all sequences (ck)k∈ZZ of complex numbers ck with

∑
k∈ZZ |ck|2 <∞.

In the multi-resolution analysis (MRA) of functions f ∈ L2(IR), closed
linear subspaces Vj , j ∈ ZZ, of L2(IR) with the following properties play a
central role:

122 2 Interpolation

(S1) Vj ⊂ Vj+1, j ∈ ZZ,

(S2) f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1, j ∈ ZZ,

(S3) f(x) ∈ Vj ⇔ f(x+ 2−j) ∈ Vj , j ∈ ZZ,

(S4)
⋃
j∈ZZ

Vj = L2(IR),

(S5)
⋂
j∈ZZ

Vj = { 0 }.

Usually, such subspaces are generated by a function Φ(x) ∈ L2(IR)
as follows: By translation and dilatation of Φ, we first define additional
functions (we call them “derivates” of Φ)

Φj,k(x) := 2j/2Φ(2jx− k), j, k ∈ ZZ.

The space Vj is then defined as the closed linear subspace of L2(IR) that is
generated by the functions Φj,k, k ∈ ZZ,

Vj := span{Φj,k | k ∈ ZZ } =
{ ∑

|k|≤n
ckΦj,k | ck ∈ C, n ≥ 0

}
.

Then (S2) and (S3) are clearly satisfied.

(2.4.6.1) Definition. The function Φ ∈ L2(IR) is called scaling function,
if the associated spaces Vj satisfy conditions (S1) – (S5) and if, in addition,
the functions Φ0,k, k ∈ ZZ, form a Riesz-basis of V0, that is, if there are
positive constants 0 < A ≤ B with

A
∑
k∈ZZ

|ck|2 ≤ ‖
∑
k∈ZZ

ckΦ0,k‖2 ≤ B
∑
k∈ZZ

|ck|2

for all sequences (ck)k∈ZZ ∈ �2 (then also for each j ∈ ZZ, the functions Φj,k,
k ∈ ZZ, will form a Riesz-basis of Vj).

If Φ is a scaling function then, for all j ∈ ZZ, each function f ∈ Vj can
be written as a convergent (in L2(IR)) series

(2.4.6.2) f =
∑
k∈ZZ

cj,kΦj,k

with uniquely determined coefficients cj,k, k ∈ ZZ, with (cj,k)k∈ZZ ∈ �2.
Also for a scaling function Φ, condition (S1) is equivalent to the con-

dition that Φ satisfies a so-called two-scale-relation

2.4 Interpolation by Spline Functions 123

(2.4.6.3) Φ(x) =
∑
k∈ZZ

hkΦ1,k(x) =
√

2
∑
k∈ZZ

hkΦ(2x− k)

with coefficients (hk) ∈ �2. For, (2.4.6.3) is equivalent to Φ ∈ V0 ⊂ V1. But
then also Vj ⊂ Vj+1 for all j ∈ ZZ because of

Φj,l(x) =2j/2Φ(2jx− l) = 2j/2
√

2
∑
k∈ZZ

hkΦ(2j+1x− 2l − k)

=
∑
k∈ZZ

hkΦj+1,k+2l(x).

Example. A particularly simple scaling function is the Haar-function

(2.4.6.4) Φ(x) :=
{

1, for 0 ≤ x < 1,
0, otherwise.

The associated two-scale-relation is

Φ(x) = Φ(2x) + Φ(2x− 1).

See Figure 3 for an illustration of some of its derivates Φj,k.

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

.................

................
Φj,k(x)

x
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

...
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
..

√
2

1

−3/2 −1 0 1/2 1 4/2 2.5

Φ1,−3 Φ1,0

Φ0,0 = Φ

Φ1,4

Fig. 3. Some derivates Φj,k of the Haar-function

Scaling functions, and the associated spaces Vj they generate, play a
central role in modern signal- and image processing methods. For example,
any function f ∈ Vj =

∑
k cj,kΦj,k can be considered as a function with

a finite resolution (e.g. a signal or, in two dimensions, a picture obtained
by scanning) where only details of size 2−j are resolved (this is illustrated

124 2 Interpolation

most clearly by the space Vj belonging to the Haar-function). A common
application is to approximate a high resolution function f , that is a function
f ∈ Vj with j large, by a coarser function f̂ (say a f̂ ∈ Vk with k < j)
without losing to much information. This is the purpose of multi-resolution
methods, whose concepts we wish to explain in this section.

We first describe additional scaling functions based on splines. The
Haar-function Φ is the simplest B-spline of order r = 1 with respect to
the special sequence t := (k)k∈ZZ of all integers: Definition (2.4.4.3) shows
immediately

B0,1,t(x) = f0
x [0, 1] = (1 − x)0+ − (0 − x)0+ = Φ(x).

Moreover, for all k ∈ ZZ, their translates are

Bk,1,t(x) = f0
x [k, k + 1] = B0,1,t(x− k) = Φ(x− k) = Φ0,k.

This suggests to consider general B-splines

(2.4.6.5) Mr(x) := B0,r,t(x) = rfr−1
x [0, 1, . . . , r]

of arbitrary order r ≥ 1 as candidates for scaling functions, because they
also generate all B-splines

Bk,r,t(x) = rfr−1
x [k, k + 1, . . . , k + r], k ∈ ZZ,

by translation, Bk,r,t(x) = B0,r,t(x− k) = Mr(x− k). Advantages are that
their smoothness increases with r since, by definition, Mr(x) = B0,r,t(x) is
r−2 times continuously differentiable, and that they have compact support
[see Theorem (2.4.4.5)]. It can be shown that all Mr, r ≥ 1, are in fact
scaling functions in the sense of Definition (2.4.6.1); for example, their
two-scale-relation reads

Mr(x) = 2−r+1
r∑
l=0

(
r

l

)
Mr(2x− l), x ∈ IR.

For proofs we refer the reader to the literature [see Chui (1992)]. In the
interest of simplicity, we only consider low order instances of these functions
and their properties.

Examples. For low order r one finds the following B-splines Mr := B0,r,t: M1(x)
is the Haar-function (2.4.6.4), and for r = 2, 3 one obtains:

M2(x) =

{
x for 0 ≤ x ≤ 1,
2 − x for 1 ≤ x ≤ 2,
0 otherwise.

M3(x) =
1
2

x2 for 0 ≤ x ≤ 1,
−2x2 + 6x− 3 for 1 ≤ x ≤ 2,
(3 − x)2 for 2 ≤ x ≤ 3,
0 otherwise.

2.4 Interpolation by Spline Functions 125

The translate H(x) := M2(x+ 1) of M2(x),

(2.4.6.6) H(x) =
{

1 − |x| for −1 ≤ x ≤ 1
0 otherwise,

is known as hat-function.
These formulas are special cases of the following representation of Mr(x) for

general r ≥ 1:

(2.4.6.7) Mr(x) =
1

(r − 1)!

r∑
l=0

(−1)l

(
r

l

)
(x− l)r−1

+ .

This is readily verified by induction over r, taking the recursion (k = 1, 2, . . . ,
r) (2.1.3.5) for divided differences

fr−1
x [i, i+ 1, . . . , i+ k] =

1
k

(
fr−1

x [i+ 1, . . . , i+ k] − fr−1
x [i, . . . , i+ k − 1]

)
,

and fr−1
x (t) = (t− x)r−1

+ into account.

We now describe multi-resolution methods in more detail. As already
stated, their aim is to approximate, as well as possible, a given “high res-
olution” function vj+1 ∈ Vj+1 by a function of lower resolution, say by a
function vj ∈ Vj with

‖vj+1 − vj‖ = min
v∈Vj

‖vj+1 − v‖.

Since vj+1−vj is then orthogonal to Vj , and vj ∈ Vj ⊂ Vj+1, the orthogonal
subspace Wj of Vj in Vj+1 comes into play,

Wj := {w ∈ Vj+1 | 〈w, v〉 = 0 for all v ∈ Vj }, j ∈ ZZ.

We write Vj+1 = Vj ⊕Wj to indicate that every vj+1 ∈ Vj+1 has a unique
representation as a sum vj+1 = vj+wj of two orthogonal functions vj ∈ Vj
and wj ∈Wj .

The spaces Wj are mutually orthogonal, Wj ⊥ Wk for j �= k (i.e.
〈v, w〉 = 0 for v ∈ Wj , w ∈ Wk). If, say j < k, this follows from Wj ⊂
Vj+1 ⊂ Vk and Wk ⊥ Vk. More generally, (S4) and (S5) then imply

L2(IR) =
⊕
j∈ZZ

Wj = · · · ⊕W−1 ⊕W0 ⊕W1 ⊕ · · · .

For a given vj+1 ∈ Vj+1, multi-resolution methods compute for m ≤ j
the orthogonal decompositions vm+1 = vm + wm, vm ∈ Vm, wm ∈ Wm,
according to the following scheme:

(2.4.6.8)
vj+1 → vj → vj−1 → · · ·

↘ ↘ ↘
wj wj−1 · · ·

126 2 Interpolation

Then for m ≤ j, vm ∈ Vm is also the best approximation of vj+1 by an
element of Vm, that is,

‖vj+1 − vm‖ = min
v∈Vm

‖vj+1 − v‖.

This is because the vectors wk are mutually orthogonal and wk ⊥ Vm for
k ≥ m. Hence for arbitrary v ∈ Vm, vm − v ∈ Vm and

vj+1 − v = wj + wj−1 + · · · + wm + (vm − v),

so that

‖vj+1 − v‖2 = ‖wj‖2 + · · · + ‖wm‖2 + ‖vm − v‖2 ≥ ‖vj+1 − vm‖2.

In order to compute the orthogonal decomposition vj+1 = vj+wj of an
arbitrary vj+1 ∈ Vj+1, we need the dual function Φ̃ of the scaling function
Φ. As will be shown later, Φ̃ is uniquely determined by the property

(2.4.6.9) 〈Φ0,k, Φ̃〉 =
∫ ∞

−∞
Φ(x− k)Φ̃(x) dx = δk,0, k ∈ ZZ.

With the help of this dual function Φ̃, we are able to compute the coeffi-
cients ck of the representation (2.4.6.2) of function f ∈ V0, f =

∑
l∈ZZ clΦ0,l,

as scalar products:

〈f(x), Φ̃(x− k)〉 =
∑
l

cl

∫ ∞

−∞
Φ(x− l)Φ̃(x− k) dx

=
∑
l

cl

∫ ∞

−∞
Φ(x− l + k)Φ̃(x) dx = ck.

Also, for any j ∈ ZZ, the functions Φ̃j,k(x) := 2j/2Φ̃(2jx − k), k ∈ ZZ,
satisfy

(2.4.6.10)

〈Φj,k, Φ̃j,l〉 = 2j
∫ ∞

−∞
Φ(2jx− k)Φ̃(2jx− l) dx

=
∫ ∞

−∞
Φ(x− k + l)Φ̃(x) dx

= δk−l,0, k, l ∈ ZZ.

The dual function Φ̃ may thus be used to compute also the coefficients cj,l
of the series f =

∑
k∈ZZ cj,kΦj,k representing a function f ∈ Vj :

(2.4.6.11) 〈f, Φ̃j,l〉 =
∑
k

cj,k〈Φj,k, Φ̃j,l〉 = cj,l.

The following theorem ensures the existence of dual functions:

2.4 Interpolation by Spline Functions 127

(2.4.6.12) Theorem. To each scaling function Φ there exists exactly one
dual function Φ̃ ∈ V0.

Proof. Since the Φ0,k, k ∈ ZZ, form a Riesz-basis of V0, the function
Φ0,0 = Φ is not contained in the subspace

V := span{Φ0,k | |k| ≥ 1 }

of V0. Therefore, there exists exactly one element g = Φ−u �= 0 with u ∈ V ,
so that

‖g‖ = min{ ‖Φ− v‖ | v ∈ V }.

u is the (unique!) orthogonal projection of Φ to V , hence g ⊥ V , i.e. 〈v, g〉 =
0 for all v ∈ V , and in particular,

〈Φ0,k, g〉 = 0 for all |k| ≥ 1,

and 0 < ‖g‖2 = 〈Φ − u, Φ − u〉 = 〈Φ − u, g〉 = 〈Φ, g〉. The function Φ̃ :=
g/〈Φ, g〉 has therefore the properties of a dual function. ��

Example. The Haar-function (2.4.6.4) is selfdual, Φ̃ = Φ. This follows from the
orthonormality property 〈Φ,Φ0,k〉 = δk,0, k ∈ ZZ.

It is, furthermore, possible to compute the best approximation vj ∈
Vj of a given vj+1 ∈ Vj+1 using the dual function Φ̃. We assume that
vj+1 ∈ Vj+1 is given by its series representation vj+1 =

∑
k∈ZZ cj+1,kΦj+1,k.

Because of vj ∈ Vj , the function vj we are looking for has the form vj =∑
k∈ZZ cj,kΦj,k. Its coefficients cj,k have to be determined so that vj+1−vj ⊥

Vj ,
〈vj , v〉 = 〈vj+1, v〉 for all v ∈ Vj .

Now, since Φ̃ ∈ V0, all functions Φ̃j,k, k ∈ ZZ, belong to Vj so that by
(2.4.6.10)

cj,l = 〈vj , Φ̃j,l〉 = 〈vj+1, Φ̃j,l〉

=
∑
k∈ZZ

cj+1,k〈Φj+1,k, Φ̃j,l〉

=
∑
k∈ZZ

cj+1,k2j+1/2
∫ ∞

−∞
Φ(2j+1x− k)Φ̃(2jx− l) dx

=
∑
k∈ZZ

cj+1,k
√

2
∫ ∞

−∞
Φ(2x+ 2l − k)Φ̃(x) dx.

This leads to the following method for computing the coefficients cj,k
from the coefficients cj+1,k: First, we compute the numbers (they do not
depend on j)

128 2 Interpolation

(2.4.6.13) γi :=
√

2
∫ ∞

−∞
Φ(2x+ i)Φ̃(x)dx, i ∈ ZZ.

The coefficients cj,l are then obtained by means of the formula

(2.4.6.14) cj,l =
∑
k∈ZZ

cj+1,kγ2l−k, l ∈ ZZ.

Example. Because of Φ̃ = Φ for the Haar-function, the numbers γi are given by

γi :=
{

1/2 for i = 0, −1,
0 otherwise.

Since Φ has compact support, only finitely many γi are nonzero, so that also the
sums (2.4.6.14) are finite in this case:

cj,l =
1√
2

(cj+1,2l + cj+1,2l+1), l ∈ ZZ.

In general, the sums in (2.4.6.14) are infinite and thus have to be ap-
proximated by finite sums (truncation after finitely many terms). The ef-
ficiency of the method thus depends on how fast the numbers γi converge
to 0 as |i| → ∞.

It is possible to iterate the method following the scheme (2.4.6.8). Note
that the numbers γi have to be computed only once since they are indepen-
dent of j. In this way we obtain the following multi-resolution algorithm for
computing the coefficients cm,k, k ∈ ZZ, of the series vm =

∑
k∈ZZ cm,kΦm,k

for all m ≤ j:
(2.4.6.15) Given: cj+1,k, k ∈ ZZ, and γi, i ∈ ZZ, s. (2.4.6.13).

For m = j, j − 1, . . .
for l ∈ ZZ
cm,l :=

∑
k∈ZZ cm+1,kγ2l−k.

We have seen that this algorithm is particularly simple for the Haar-
function as scaling function.

We now consider scaling functions that are given by higher order B-
splines, Φ(x) = Φr(x) := Mr(x), r > 1. For reasons of simplicity we treat
only case r = 2, which is already typical. Since the scaling functions M2(x)
and the hat-functionH(x) = M2(x+1) generate the same spaces Vj , j ∈ ZZ,
the investigation of Φ(x) := H(x) is sufficient.

First we show the property (S1), Vj ⊂ Vj+1, for the linear spaces gen-
erated by Φ(x) = H(x) and its derivates Φj,k(x) = 2j/2Φ(2jx−k), j, k ∈ ZZ.
This follows from the two-scale-relation of H(x),

H(x) =
1
2
(
H(2x+ 1) + 2H(2x) +H(2x− 1)

)
,

2.4 Interpolation by Spline Functions 129

that is immediately verified using the definition H(x) (2.4.6.6). We leave it
to the reader to prove that H(x) has also the remaining properties required
for a scaling function [see Exercise 32].

The functions f ∈ Vj have a simple structure: they are continuous and
piecewise linear functions on IR with respect to the partition ∆j of fineness
2−j given by the knots

(2.4.6.16) ∆j := { k · 2−j | k ∈ ZZ }.

Up to a common factor, the coefficients cj,k of the series representation
f =

∑
k∈ZZ cj,kΦj,k are given by the values of f on ∆j :

(2.4.6.17) cj,k = 2−j/2f(k · 2−j), k ∈ ZZ.

Unfortunately, the functions Φ0,k(x) = H(x − k), k ∈ ZZ, do not form
an orthogonal system of functions: A short direct calculation shows

(2.4.6.18)
∫ ∞

−∞
H(x− j)H(x) dx =

 2/3 for j = 0,
1/6 for |j| = 1,
0 otherwise,

so that

〈Φ0,k, Φ0,l〉 =
∫ ∞

−∞
H(x− k + l)H(x) dx =

{
2/3 for k = l,
1/6 for |k − l| = 1,
0 otherwise.

As a consequence, the dual function H̃ will be different from H, but it
can be calculated explicitly. According to the proof of Theorem (2.4.6.12),
H̃ is a scalar multiple of the function

g(x) = H(x) −
∑

|k|≥1

akH(x− k),

where the sequence (ak)|k|≥1 is the unique solution of the following equa-
tions:

〈g, Φ0,k〉 = 〈H(x) −
∑
|l|≥1

alH(x− l), H(x− k)〉 = 0 for all |k| ≥ 1

that satisfies
∑
k |ak|2 < ∞. By (2.4.6.18), this leads for k ≥ 1 to the

equations

(2.4.6.19)
4a1 + a2 = 1, (k = 1),
ak−1 + 4ak + ak+1 = 0, (k ≥ 2),

and for k ≤ −1 to

130 2 Interpolation

4a−1 + a−2 = 1, (k = −1),
ak−1 + 4ak + ak+1 = 0, (k ≤ −2).

It is easily seen that with (ak) also (a−k) is a solution of these equations,
so that by the uniqueness of solutions ak = a−k for all |k| ≥ 1. Therefore
it is sufficient to find the solutions ak, k ≥ 1, of (2.4.6.19).

According to these equations, the sequence (ak)k≥1 is a solution of the
homogeneous linear difference equation

ck−1 + 4ck + ck+1 = 0, k = 2, 3,

The sequence ck := θk, k ≥ 1, is clearly a solution of this difference equa-
tion, if θ is a zero of the polynomial x2 + 4x + 1 = 0. This polynomial,
however, has the two different zeros

λ := −2 +
√

3 =
−1

2 +
√

3
, µ := −2 −

√
3 = 1/λ,

with |λ| < 1 < |µ|. The general solution of the difference equation is an
arbitrary linear combination of these special special solutions (λk)k≥1 and
(µk)k≥1, that is, the desired solution ak has the form ak = Cλk+Dµk, k ≥
1, with appropriately chosen constants C, D. The condition

∑
k |ak|2 <∞

implies D = 0 because of |µ| > 1. The constant C has to be chosen such
that also the first equation (2.4.6.19), 4a1 + a2 = 1, is satisfied, that is,

1 = Cλ(4 + λ) = Cλ(2 +
√

3) = −C.

This implies ak = a−k = −λk = −(−1)k(2 +
√

3)−k for k ≥ 1 so that

g(x) = H(x) +
∑
k≥1

(−1)k(2 +
√

3)−k(H(x+ k) +H(x− k)).

The dual function H̃(x) = γg(x) we are looking for is a scalar multiple of
g, where γ is determined by the condition 〈H, H̃〉 = 1. Using (2.4.6.18) this
leads to

1
γ

= 〈H,H〉 − (2 +
√

3)−1(〈H(x), H(x− 1)〉 + 〈H(x), H(x+ 1)〉)

=
2
3

− 1
3(2 +

√
3)

=
1√
3
.

Therefore, the dual function H̃(x) is given by the infinite series

H̃(x) =
∑
k∈ZZ

bkH(x− k)

with coefficients

2.4 Interpolation by Spline Functions 131

bk :=
(−1)k

√
3

(2 +
√

3)|k|
, k ∈ ZZ.

The computation of the numbers γi (2.4.6.13) for the multi-resolution
method (2.4.6.15) leads to simple finite sums with known terms,

(2.4.6.20)

γi =
√

2〈H(2x+ i), H̃(x)〉

=
√

2
∑
k∈ZZ

bk〈H(2x+ i), H(x− k)〉

=
√

2
∑
k∈ZZ

bk〈H(2x+ i+ 2k), H(x)〉

=
√

2
∑

k: |2k+i|≤2

bk〈H(2x+ i+ 2k), H(x)〉,

because an elementary calculation shows

〈H(2x+ j), H(x)〉 =

5/12 for j = 0,
1/4 for |j| = 1,
1/24 for |j| = 2,
0 otherwise.

Since 2 +
√

3 = 3.73 . . ., the numbers bk = O((2 +
√

3)−|k|) and, conse-
quently, the numbers γk converge rapidly enough to zero as |k| → ∞, so
that the sums (2.4.6.14) of the multi-resolution method are well approxi-
mated by relatively short finite sums.

Example. For small i, one finds the following values of γi:

i γi

0 0.96592 58262
1 0.44828 77361
2 −0.16408 46996
3 −0.12011 83369
4 0.04396 63628
5 0.03218 56114
6 −0.01178 07514
7 −0.00862 41086
8 0.00315 66428
9 0.00231 08229

10 −0.00084 58199

Incidentally, the symmetry relation γ−i = γi holds for all i ∈ ZZ [see Exercise 33].

There is a simple interpretation of this multi-resolution method: A func-
tion f =

∑
k∈ZZ cj+1,kΦj+1,k ∈ Vj+1 is a continuous function which is piece-

wise linear with respect to the partition ∆j+1 = { k · 2−(j+1) | k ∈ ZZ } of
IR with [see (2.4.6.17)]

cj+1,k = 2−(j+1)/2f(k · 2−(j+1)), k ∈ ZZ.

132 2 Interpolation

It is approximated optimally by a continuous function f̂ =
∑
kZZ cj,kΦj,k

which is piecewise linear with respect to the coarser partition∆j = { l·2−j |
l ∈ ZZ } if we set for l ∈ ZZ

f̂(l · 2−j) :=2j/2cj,l = 2j/2
∑
k∈ZZ

cj+1,kγ2l−k

=
1√
2

∑
k∈ZZ

γ2l−kf(k · 2−(j+1)).

The numbers γi thus have the following nice interpretation: The continuous
piecewise linear (with respect to ∆0 = { l | l ∈ ZZ }) function f̂(x) with f̂(l) :=
γ2l/

√
2, l ∈ ZZ, is the best approximation in V0 of the compressed hat-function

f(x) := H(2x) ∈ V1. The translated function f1(x) := H(2x − 1) ∈ V1 is best
approximated by f̂1 ∈ V0 where f̂1(l) := γ2l−1/

√
2, l ∈ ZZ, [see Figure 4].

..

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

........

......................

................f, f̂

x

....

....

1

.......

−3 −2 −1

�

321

..
...

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
...

...........................
...........................

...........................
..

f̂

f

..
................
................
................
................
................
................
................
................
................
................
................
................
..

Fig. 4. The functions f and f̂

We now return to general scaling functions. Within the framework of
multi-resolution methods it is essential that the functions Φj,k, k ∈ ZZ,
form a Riesz-basis of the spaces Vj . It is of equal importance that also
the orthogonal complements Wj of Vj in Vj+1 have similarly simple Riesz-
bases: One can show [proofs can be found in e.g. Daubechies (1992), Louis
et al. (1994)], that to any scaling function Φ generating the linear spaces
Vj there is a function Ψ ∈W0 with the following properties:

2.4 Interpolation by Spline Functions 133

a) The functions Ψ0,k(x) := Ψ(x − k), k ∈ ZZ, form a Riesz-basis [(see
(2.4.6.1))] ofW0, and for each j ∈ ZZ its derivates Ψj,k(x) := 2j/2Ψ(2jx−k),
k ∈ ZZ, form a Riesz-basis of Wj.

b) The functions Ψj,k, j, k ∈ ZZ, form a Riesz-basis of L2(IR).

Each function Ψ with these properties is called a wavelet belonging
to the scaling function Φ (wavelets are not uniquely determined by Φ). Ψ
is called an orthonormal wavelet,if in addition the Ψ0,k, k ∈ ZZ, form an
orthonormal basis of W0, 〈Ψ0,k, Ψ0,l〉 = δk,l. In this case an orthonormal
basis of L2(IR) is given by the derivates Ψj,k, j, k ∈ ZZ, of Ψ ,

〈Ψj,k, Ψl,m〉 = δj,lδk,m.

Example. To the Haar-function Φ (2.4.6.4) belongs the Haar-wavelet defined by

Ψ(x) :=

{
1, for 0 ≤ x < 1/2,
−1, for 1/2 ≤ x < 1,
0, otherwise.

Indeed, the relation Ψ(x) = Φ(2x)−Φ(2x−1) first implies Ψ0,k ∈ V1 for all k ∈ ZZ;
then the orthogonality

〈Ψ0,k, Φ0,l〉 = 0 for all k, l ∈ ZZ

gives Ψ0,k ∈ W0 for all k ∈ ZZ, and finally

Φ1,k(x) =
1√
2

(Ψ0,k(x) + Φ0,k(x)), k ∈ ZZ,

proves V1 = V0⊕W0. Also, since 〈Ψ, Ψ0,k〉 = δk,0, the Haar-wavelet is orthonormal.

One can show that every orthonormal scaling function Φ has also an
orthonormal wavelet, which even can be given explicitly by means of the
two-scale-relation of Φ [see e.g. the literature cited above]. It is very difficult
however, to determine for a non-orthonormal Φ an associated wavelet. The
situation is better for the scaling functions Φ = Φr := Mr given by B-
splines. Here, explicit formulas for the special wavelets Ψr are known that
have a minimal compact support (namely the interval [0, 2r − 1]) among
all wavelets belonging Mr: they are given by finite sums of the form

Ψr(x) =
3r−2∑
k=0

qkMr(2x− k).

However, these wavelets are not orthonormal for r > 1, but one still knows
explicitly their associated dual functions Ψ̃r ∈W0 with their usual proper-
ties 〈Ψr(x−k), Ψ̃r(x)〉 = δk,0 for k ∈ ZZ [see Chui (1992) for a comprehensive
account].

The example of the Haar-function shows, how simple the situation be-
comes if both the scaling function Φ and the wavelet Ψ are orthonormal and

134 2 Interpolation

if both functions have compact support. A drawback of the Haar-function
is that it is not even continuous, whereas already M2 is continuous and
the smoothness of the B-Splines Mr with r ≥ 3 and its wavelets Ψr even
increases with r. Also for all r ≥ 1, Φr = Mr has compact support, and
has a wavelet Ψr with compact support. But unfortunately neither Φr nor
Ψr are orthonormal for r > 1.

Therefore the following deep result of Daubechies is very remarkable:
She was the first to give explicit examples of scaling functions and associ-
ated wavelets that have an arbitrarily high order of differentiability, have
compact support, and are orthonormal. For a detailed exposition of these
important results and their applications, we refer the reader to the rele-
vant special literature [see e.g. Louis et al. (1994), Mallat (1998), and, in
particular, Daubechies (1992)].

Exercises for Chapter 2

1. Let Li(x) be the Lagrange polynomials (2.1.1.3) for pairwise different support
abscissas x0, . . . , xn, and let ci := Li(0). Show that

n∑
i=0

cix
j
i =

{
1 for j = 0,
0 for j = 1, 2, . . . , n,
(−1)nx0x1 . . . xn for j = n+ 1,

(a)

n∑
i=0

Li(x) ≡ 1.(b)

2. Interpolate the function lnx by a quadratic polynomial at x = 10, 11, 12.
(a) Estimate the error committed for x = 11.1 when approximating lnx by

the interpolating polynomial.
(b) How does the sign of the error depend on x?

3. Consider a function f which is twice continuously differentiable on the inter-
val I = [−1, 1]. Interpolate the function by a linear polynomial through the
support points (xi, f(xi)), i = 0, 1, x0, x1 ∈ I. Verify that

α = 1
2 max

ξ∈I
|f ′′(ξ)| max

x∈I
|(x− x0)(x− x1)|

is an upper bound for the maximal absolute interpolation error on the interval
I. Which values x0, x1 minimize α? What is the connection between (x −
x0)(x− x1) and cos(2 arccosx)?

4. Suppose a function f(x) is interpolated on the interval [a, b] by a polynomial
Pn(x) whose degree does not exceed n. Suppose further that f is arbitrarily
often differentiable on [a, b] and that there exists M such that |f (i)(x)| ≤ M
for i = 0, 1, . . . and any x ∈ [a, b]. Can it be shown, without additional
hypotheses about the location of the support abscissas xi ∈ [a, b], that Pn(x)
converges uniformly on [a, b] to f(x) as n → ∞?

Exercises for Chapter 2 135

5. (a) The Bessel function of order zero,

J0(x) =
1
π

∫ π

0

cos (x sin t) dt,

is to be tabulated at equidistant arguments xi = x0 + ih, i = 0, 1, 2,. . .
. How small must the increment h be chosen so that the interpolation
error remains below 10−6 if linear interpolation is used?

(b) What is the behavior of the maximal interpolation error

max
0≤x≤1

|Pn(x) − J0(x)|

as n → ∞, if Pn(x) interpolates J0(x) at x = x
(n)
i := i/n, i = 0, 1, . . . ,

n?
Hint: It suffices to show that |J(k)

0 (x)| ≤ 1 for k = 0, 1,
(c) Compare the above result with the behavior of the error

max
0≤x≤1

|S∆n(x) − J0(x)|

as n → ∞, where S∆n is the interpolating spline function with knot set
∆n = {x(n)

i } and S′
∆n

(x) = J ′
0(x) for x = 0, 1.

6. Interpolation on product spaces: Suppose every linear interpolation problem
stated in terms of functions ϕ0, ϕ1, . . . , ϕn has a unique solution

Φ(x) =
n∑

i=0

αiϕi(x)

with Φ(xk) = fk, k = 0, . . . , n, for prescribed support arguments x0, . . . ,
xn with xi �= xj , i �= j. Show the following: If ψ0, . . . , ψm is also a set of
functions for which every linear interpolation problem has a unique solution,
then for every choice of abscissas

x0, x1, . . . , xn, xi �= xj for i �= j,

y0, y1, . . . , ym, yi �= yj for i �= j,

and support ordinates

fik, i = 0, . . . , n, k = 0, . . . ,m,

there exists a unique function of the form

Φ(x, y) =
n∑

ν=0

m∑
µ=0

ανµϕν(x)ψµ(y)

with Φ(xi, yk) = fik, i = 0, . . . , n, k = 0, . . . , m.

7. Specialize the general result of Exercise 6 to interpolation by polynomials.
Give the explicit form of the function Φ(x, y) in this case.

8. Given the abscissas

y0, y1, . . . , ym, yi �= yj for i �= j,

136 2 Interpolation

and, for each k = 0, . . . , m, the values

x
(k)
0 , x

(k)
1 , . . . , x(k)

nk
, x

(k)
i �= x

(k)
j for i �= j,

and support ordinates

fik, i = 0, . . . , nk, k = 0, . . . ,m,

suppose without loss of generality that the yk are numbered in such a fashion
that

n0 ≥ n1 ≥ · · · ≥ nm .

Prove by induction over m that exactly one polynomial

P (x, y) ≡
m∑

µ=0

nµ∑
ν=0

ανµx
νyµ

exists with

P (x(k)
i , yk) = fik, i = 0, . . . , nk, k = 0, . . . ,m .

9. Is it possible to solve the interpolation problem of Exercise 8 by other poly-
nomials

P (x, y) =
M∑

µ=0

Nµ∑
ν=0

ανµx
νyµ,

requiring only that the number of parameters ανµ agree with the number of
support points, that is,

m∑
µ=0

(nµ + 1) =
M∑

µ=0

(Nµ + 1) ?

Hint: Study a few simple examples.

10. Calculate the inverse and reciprocal differences for the support points

xi : 0 1 −1 2 −2

fi : 1 3 3/5 3 3/5

and use them to determine the rational espression Φ2,2(x) whose numerator
and denominator are quadratic polynomials and for which Φ2,2(xi) = fi, first
in continued-fraction form and then as the ratio of polynomials.

11. Let Φm,n be the rational function which solves the system Sm,n for given
support points (xk, fk), k = 0, 1, . . . , m+ n:

(a0 + a1xk + · · · + amx
m
k) − fk(b0 + b1xk + · · · + bnx

n
k) = 0,

k = 0, 1, . . . ,m+ n.

Show that Φm,n(x) can be represented as follows by determinants:

Φm,n(x) =
|fk, xk − x, . . . , (xk − x)m, (xk − x)fk, . . . , (xk − x)nfk|m+n

k=0

|1, xk − x, . . . , (xk − x)m, (xk − x)fk, . . . , (xk − x)nfk|m+n
k=0

Exercises for Chapter 2 137

Here the following abbreviation has been used:

∣∣αk, . . . , ζk

∣∣m+n

k=0
= det

α0 · · · ζ0
α1 · · · ζ1
· ·
· ·

αm+n · · · ζm+n

 .
12. Generalize Theorem (2.3.1.12):

(a) For 2n+ 1 support abscissas xk with

a ≤ x0 < x1 < · · · < x2n < a+ 2π

and support ordinates y0, . . . , y2n, there exists a unique trigonometric
polynomial

T (x) = 1
2a0 +

n∑
j=1

(aj cos jx+ bj sin jx)

with
T (xk) = yk for k = 0, 1, . . . , 2n.

(b) If y0, . . . , y2n are real numbers, then so are the coefficients aj , bj .
Hint: Reduce the interpolation by trigonometric polynomials in (a) to
(complex) interpolation by polynomials using the transformation T (x) =∑n

j=−n
cje

ijx. Then show c−j = cj to establish (b).

13. (a) Show that, for real x1, . . . , x2n, the function

t(x) =
2n∏

k=1

sin
x− xk

2

is a trigonometric polynomial

1
2a0 +

n∑
j=1

(aj cos jx+ bj sin jx)

with real coefficients aj , bj .
Hint: Substitute sinϕ = (1/2i)(eiϕ − e−iϕ).

(b) Prove, using (a) that the interpolating trigonometric polynomial with
support abscissas xk,

a ≤ x0 < x1 · · · < x2n < a+ 2π,

and support ordinates y0, . . . , y2n is identical with

T (x) =
2n∑

j=0

yjtj(x),

where

138 2 Interpolation

tj(x) :=
2n∏

k=0
k �=j

sin
x− xk

2

/ 2n∏
k=0
k �=j

sin
xj − xk

2
.

14. Show that for n+ 1 support abscissas xk with

a ≤ x0 < x1 < · · · < xn < a+ π

and support ordinates y0, . . . , yn, a unique “cosine polynomial”

C(x) =
n∑

j=0

aj cos jx

exists with C(xk) = yk, k = 0, 1, . . . , n.
Hint: See Exercise 12.

15. (a) Show that for any integer j

2m∑
k=0

cos jxk = (2m+ 1) h(j),
2m∑
k=0

sin jxk = 0,

with
xk :=

2πk
2m+ 1

, k = 0, 1, . . . , 2m,

and
h(j) :=

{ 1 for j = 0 mod 2m+ 1,
0 otherwise.

(b) Use (a) to derive for integers j, k the following orthogonality relations:

2m∑
i=0

sin jxi sin kxi =
2m+ 1

2
[h(j − k) − h(j + k)],

2m∑
i=0

cos jxi cos kxi =
2m+ 1

2
[h(j − k) + h(j + k)],

2m∑
i=0

cos jxi sin kxi = 0.

16. Suppose the 2π-periodic function f : IR → IR has an absolutely convergent
Fourier series

f(x) = 1
2a0 +

∞∑
j=1

(aj cos jx+ bj sin jx).

Let

Ψ(x) = 1
2A0 +

m∑
j=1

(Aj cos jx+Bj sin jx)

Exercises for Chapter 2 139

be trigonometric polynomials with

Ψ(xk) = f(xk), xk :=
2πk

2m+ 1
,

for k = 0, 1, . . . , 2m.
Show that

Ak = ak +
∞∑

p=1

[ap(2m+1)+k + ap(2m+1)−k], 0 ≤ k ≤ m,

Bk = bk +
∞∑

p=1

[bp(2m+1)+k − bp(2m+1)−k], 1 ≤ k ≤ m.

17. Formulate a Cooley-Tukey method in which the array β̃[] is initialized di-
rectly

(
β̃[j] = fj

)
rather than in bit-reversed fashion.

Hint: Define and determine explicitly a map σ = σ(m, r, j) with the same
replacement properties as (2.3.2.6) but σ(0, r, 0) = r instead of (2.3.2.7).

18. Let N = 2n: Consider the N -vectors

f := [f0, . . . , fN−1]T , β = [β0, . . . , βN−1]T .

(2.3.2.1) expresses a linear transformation between these two vectors, β =
(1/N)Tf , where T = [tjk], tjk := e−2πijk/N .
(a) Show that T can be factored as follows:

T = QSP (Dn−1SP) · · · (D1SP),

where S is the N ×N matrix

S =

1 1
1 −1

. . .
1 1
1 −1

 .
The matrices Dl = diag(1, δ(l)1 , 1, δ(l)3 , · · · , 1, δ(l)N−1), l = 1, . . . , n− 1, are
diagonal matrices with

δl
r = exp(−2πir̃/2n−l−1), r̃ =

[
r

2l

]
, r odd.

Q is the matrix of the bit-reversal permutation (2.3.2.8), and P is the
matrix of the following bit-cycling permutation ζ:

ζ(α0 +α1 ·2 + · · ·+αn−12n−1) := αn−1 +α0 ·2 +α1 ·4 + · · ·+αn−22n−1.

(b) Show that the Sande-Tukey method for fast Fourier transforms corre-
sponds to multiplying the vector f from the left by the (sparse) matrices
in the above factorization.

140 2 Interpolation

(c) Which factorization of T corresponds to the Cooley-Tukey method?
Hint: TH differs from T by a permutation.

19. Investigate the numerical stability of the methods for fast Fourier transforms
described in Section 2.3.2.
Hint: The matrices in the factorization of Exercise 18 are almost orthogonal.

20. Given a set of knots ∆ = {x0 < x1 < · · · < xn } and values Y := (y0, . . . , yn),
prove independently of Theorem (2.4.1.5) that the spline function S∆(Y ; .)
with S′′

∆(Y ;x0) = S′′
∆(Y ;xn) = 0 is unique.

Hint: Examine the number of zeros of the difference S′′
∆ − S̃′′

∆ of two such
spline functions. This number will be incompatible with S∆ − S̃∆ �≡ 0.

21. The existence of a spline function S∆(Y ; .) in cases (a), (b), and (c) of
(2.4.1.2) can be established without explicitly calculating it, as was done
in Section 2.4.2.
(a) The representation of S∆(Y ; .) requires 4n parameters αj , βj , γj , δj .

Show that in each of the cases (a), (b), (c) a linear system of 4n equations
results (n+ 1 = number of knots).

(b) Use the uniqeness of S∆(Y ; .) (Exercise 20) to show that the system of
linear equations is not singular, which ensures the existence of a solution.

22. Show that the quantities dj of (2.4.2.6) and (2.4.2.8) satisfy

dj = 3f ′′(xj) +O(‖∆‖), j = 0, 1, . . . , n,

and even
dj = 3f ′′(xj) +O(‖∆‖2), j = 1, 2, . . . , n− 1,

in the case of n+ 1 equidistant knots xj ∈ ∆.

23. Show that Theorem (2.4.1.5) implies: If the set of knots ∆′ ⊂ [a, b] contains
the set of knots ∆, ∆′ ⊃ ∆, then in each of the cases (a), (b), and (c),

‖f‖ ≥ ‖S∆′(Y ′; .)‖ ≥ ‖S∆(Y ; .)‖.

24. Suppose S∆(x) is a spline function with the set of knots

∆ = { a = x0 < x1 < · · · < xn = b }

interpolating f ∈ K4(a, b). Show that

‖f − S∆‖2 =
∫ b

a

(f(x) − S∆(x))f (4)(x) dx,

if any one of the following additional conditions is met:
(a) f ′(x) = S′

∆(x) for x = a, b.
(b) f ′′(x) = S′′

∆(x) for x = a, b.
(c) S∆ is periodic andf ∈ K4

p(a, b).

25. Prove that pk > 1 holds for the quantities pk, k = 1, . . . , n, encountered in
solution method (2.4.2.15) of the system of linear equations (2.4.2.9). All the
divisions required by this method can therefore be carried out.

26. Define the spline functions Sj for equidistant knots xi = a+ ih, h > 0, i = 0,
. . . , n, by

Exercises for Chapter 2 141

Sj(xk) = δjk, j, k = 0, . . . , n, and S′′
j (x0) = S′′

j (xn) = 0.

Verify that the moments M1, . . . , Mn−1 von Sj are as follows:

Mi = − 1
ρi
Mi+1, i = 1, . . . , j − 2,

Mi = − 1
ρn−i

Mi−1, i = j + 2, . . . , n− 1,

Mj =
−6
h2 · 2 + 1/ρj−1 + 1/ρn−j−1

4 − 1/ρj−1 − 1/ρn−j−1

Mj−1 =
1

ρj−1
(6h−2 −Mj)

Mj+1 =
1

ρn−j−1
(6h−2 −Mj)

for j �= 0, 1, n− 1, n,

where the numbers ρi are recursively defined by ρ1 := 4 and

ρi := 4 − 1/ρi−1 i = 2, 3,

It is readily seen that they satisfy the inequalities

4 = ρ1 > ρ2 > · · · > ρi > ρi+1 > 2 +
√

3 > 3.7, 0.25 < 1/ρi < 0.3.

27. Show for the functions Sj defined in Exercise 26 that for j = 2, 3, . . . , n− 2
and either x ∈ [xi, xi+1], j + 1 ≤ i ≤ n− 1 or x ∈ [xi−1, xi], 1 ≤ i ≤ j − 1,

|Sj(x)| ≤ h2

8
|Mi|.

28. Let S∆,f denote the spline function which interpolates the function f at
prescribed knots x ∈ ∆ and for which

S′′
∆;f (x0) = S′′

∆;f (xn) = 0.

The map f → S∆;f is linear, that is,

S∆;f+g = S∆;f + S∆;g, S∆;αf = αS∆;f .

The effect on S∆;f of changing a single function value f(xj) is therefore that
of adding a corresponding multiple of the function Sj which was defined in
Exercise 26. Show, for equidistant knots and using the results of Exercise
27, that a perturbation of a function value subsides quickly as one moves
away from the location of the perturbation. Consider the analogously de-
fined Lagrange polynomials (2.1.1.2) in order to compare the behavior of
interpolating polynomials.

29. Let ∆ = {x0 < x1 < · · · < xn }.
(a) Show that a spline function S∆ with the boundary conditions

(∗) S
(k)
∆ (x0) = S

(k)
∆ (xn) = 0, k = 0, 1, 2,

142 2 Interpolation

vanishes identically for n < 4.
(b) For n = 4, the spline function with (∗) is uniquely determined for any

value c and the normative condition

S∆(x2) = c .

(S∆ is a multiple of the B-spline with support [x0, x4].)
Hint: Prove the uniqueness of S∆ for c = 0 by determining the number of
zeros of S′′

∆ in the open interval (x0, x4). Deduce from this the existence
of S∆ by the reasoning employed in exercise 21.

(c) Calculate S∆ explicitly in the following special case of (b):

xi := −2,−1, 0, 1, 2, c := 1.

30. Let S be the linear space of all spline functions S∆ with knot set ∆ = {x0 <
x1 < · · · < xn } and S′′

∆(x0) = S′′
∆(xn) = 0. The spline functions S0, . . . , Sn

are the ones defined in Exercise 26. Show that for Y := (y0, . . . , yn),

S∆(Y ;x) ≡
n∑

j=0

yjSj (x) .

What is the dimension of S?

..

........

........

........

........

........

........

........

........

........................

................

Exponentialspline

kubischer Spline

................

................

................

................

................

................

................

................

................

................

................

................

................

................

...............
..

..

..

..............

..............

....
....
.....
.....
.....
.....
...

........
.......
............

..

...

Fig. 5. Comparison of spline functions.

31. Let E∆,f (x) denote the spline-like function which, for given λi, minimizes
the functional

E[y] =
N−1∑
i=0

∫ xi+1

xi

[(
y′′(x)

)2
+ λ2

i

(
y′(x)

)2]
dx

Exercises for Chapter 2 143

over K2(a, b). [Compare Theorem (2.4.1.5).]
(a) Show that E∆,f is between knots of the form

E∆,f (x) = αi + βi(x− xi) + γiψ(x− xi) + δiεi(x− xi),

xi ≤ x ≤ xi+1, i = 0, . . . , N − 1,

ψi(x) =
2
λ2

i

[cosh(λix) − 1], ϕi(x) =
6
λ3

i

[sinh(λix) − λix],

with constants αi, βi, γi, δi. E∆,f is called exponential spline function.
(b) Examine the limit as λi → 0.
(c) Figure 5 illustrates the qualitative behavior of cubic and exponential

spline functions interpolating the same set of support points.

32. Show that the hat-function H(x) (2.4.6.6) has all properties (Definition.
(2.4.6.1)) of a scaling function.

33. Show for the numbers γk defined by (2.4.6.20) the properties
(a) γk = γ−k for all k ∈ ZZ,
(b)

∑
k∈ZZ γk =

√
2,

(c) γ2k−1 + 2γ2k + γ2k+1 = 0 for all k ∈ ZZ, k �= 0.
Hint: The multi-resolution method (2.4.6.8) approximates every function
v1 ∈ V1 with v1 ∈ V0 by itself, v0 = v1 ∈ V0.

References for Chapter 2

Achieser, N. I. (1953): Vorlesungen über Approximationstheorie. Berlin: Aka-
demie-Verlag.

Ahlberg, J., Nilson, E., Walsh, J. (1967): The Theory of Splines and Their Ap-
plications. New York: Academic Press.

Bloomfield, P. (1976): Fourier Analysis of Time Series. New York: Wiley.
Böhmer, E. O. (1974): Spline-Funktionen. Stuttgart: Teubner.
Brigham, E. O. (1974): The Fast Fourier Transform. Englewood Cliffs, N.J.:

Prentice-Hall.
Bulirsch, R., Rutishauser, H. (1968): Interpolation und genäherte Quadratur. In:

Sauer, Szabó (1968).
, Stoer, J. (1968): Darstellung von Funktionen in Rechenautomaten. In:

Sauer, Szabó (1968).
Chui, C. K. (1992): An Introduction to Wavelets. San Diego, CA: Academic Press.
Ciarlet, P. G., Schultz, M. H., Varga, R. S. (1967): Numerical methods of high-

order accuracy for nonlinear boundary value problems I. One dimensional prob-
lems. Numer. Math. 9, 294–430.

Cooley, J. W., Tukey, J. W. (1965): An algorithm for the machine calculation of
complex Fourier series. Math. Comput. 19, 297–301.

Curry, H. B., Schoenberg, I. J. (1966): On Polya frequency functions, IV: The
fundamental spline functions and their limits. J. d’Analyse Math. 17, 73–82.

Daubechies, I. (1992): Ten Lectures on Wavelets. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. Philadelphia: SIAM.

Davis, P. J. (1963): Interpolation and Approximation. New York: Blaisdell, 2d
printing (1965).

144 2 Interpolation

de Boor, C. (1972): On calculating with B-splines. J. Approximation Theory 6,
50–62.

(1978): A Practical Guide to Splines. Berlin, Heidelberg, New York:
Springer-Verlag.

, Pinkus, A. (1977): Backward error analysis for totally positive linear
systems. Numer. Math. 27, 485–490.

Gautschi, W. (1972): Attenuation factors in practical Fourier analysis. Numer.
Math. 18, 373–400.

Gentleman, W. M., Sande, G. (1966): Fast Fourier transforms — For fun and
profit. In: Proc. AFIPS 1966 Fall Joint Computer Conference, 29, 503–578.
Washington, D.C.: Spartan Books.

Goertzel, G. (1958): An algorithm for the evaluation of finite trigonometric series.
Amer. Math. Monthly 65, 34–35.

Greville, T. N. E. (1969): Introduction to spline functions. In: Theory and Appli-
cations of Spline Functions. Edited by T. N. E. Greville. New York: Academic
Press.

Hall, C. A., Meyer, W. W. (1976): Optimal error bounds for cubic spine interpo-
lation. J. Approximation Theory 16, 105–122.

Herriot, J. G., Reinsch, C. (1971): algol 60 procedures for the calculation of in-
terpolating natural spline functions. Technical Report STAN-CS-71-200, Com-
puter Science Department, Stanford University, CA.

Karlin, S. (1968): Total Positivity, Vol. 1. Stanford: Stanford University Press.
Korneichuk, N. P. (1984): Splines in Approximation Theory. Moscow: Nauka (in

Russian).
Kuntzmann, J. (1959): Méthodes Numériques, Interpolation — Dérivées. Paris:

Dunod.
Louis, A., Maaß, P., Rieder, A. (1994): Wavelets. Stuttgart: Teubner.
Maehly, H., Witzgall, Ch. (1960): Tschebyscheff-Approximationen in kleinen In-

tervallen II. Numer. Math. 2, 293–307.
Mallat, St. (1997): A Wavelet Tour of Signal Processing. San Diego, CA.: Aca-

demic Press.
Milne, E. W. (1949): Numerical Calculus. Princeton, N.J.: Princeton University

Press, 2d printing (1951).
Milne-Thomson, L. M. (1933): The Calculus of Finite Differences. London:

Macmillan, reprinted (1951).
Nürnberger, G. (1989): Approximation by Spline Functions. Berlin: Springer-

Verlag.
Reinsch, C.: Unpublished manuscript.
Sauer, R., Szabó, I. (Eds.) (1968): Mathematische Hilfsmittel des Ingenieurs, Part

III. Berlin, Heidelberg, New York: Springer-Verlag.
Schoenberg, I. J., Whitney, A. (1953): On Polya frequency functions, III: The

positivity of translation determinants with an application to the interpolation
problem by spline curves. Trans. Amer. Math. Soc. 74, 246-259.

Schultz, M. H. (1973): Spline Analysis. Englewood Cliffs, N.J.: Prentice-Hall.
Schumaker, L.L. (1981): Spline Functions. Basic Theory. New York, Chichester,

Brisbane, Toronto: Wiley.
Singleton, R. C. (1967): On computing the fast Fourier transform. Comm. ACM

10, 647–654.
(1968): Algorithm 338: algol procedures for the fast Fourier transform.

Algorithm 339: An algol procedure for the fast Fourier transform with arbi-
trary factors. Comm. ACM 11, 773–779.

3 Topics in Integration

Calculating the definite integral of a given real function f(x),∫ b

a

f(x)dx,

is a classic problem. For some simple integrands f(x), the indefinite integral∫ t

f(x) dx = F (t), F ′(x) = f(x),

can be obtained in closed form as an algebraic expression in t and well-
known transcendental functions of t. Then∫ b

a

f(x) dx = F (b) − F (a).

See Gröbner and Hofreiter (1961) for a comprehensive collection of formulas
describing such indefinite integrals and many important definite integrals.

As a rule, however, definite integrals are computed using discretization
methods which approximate the integral by finite sums corresponding to
some partition of the interval of integration [a, b] (“numerical quadrature”).
A typical representative of this class of methods is Simpson’s rule, which
is still the best-known and most widely used integration method. It is
described in Section 3.1, together with some other elementary integration
methods. Peano’s elegant and systematic representation of the error terms
of integration rules is described in Section 3.2.

A closer investigation of the trapezoidal sum in Section 3.3 reveals that
its deviation from the true value of the integral admits an asymptotic ex-
pansion in terms of powers of the discretization step h. This expansion is
the classical summation formula of Euler and Maclaurin. Asymptotic ex-
pansions of this form are exploited in so-called “extrapolation methods”,
which increase the accuracy of a large class of discretization methods. An
application of extrapolation methods to integration (“Romberg integra-
tion”) is studied in Section 3.4. The general scheme is described in Section
3.5.

146 3 Topics in Integration

A description of Gaussian integration rules follows in Section 3.6. The
chapter closes with remarks on the integration of functions with singular-
ities. For a comprehensive treatment of integration, the reader is referred
to Davis and Rabinowitz (1975).

3.1 The Integration Formulas of Newton and Cotes

The integration formulas of Newton and Cotes are obtained if the inte-
grand is replaced by a suitable interpolating polynomial P (x) and if then∫ b
a
P (x)dx is taken as an approximate value for

∫ b
a
f(x)dx. Consider a uni-

form partition of the closed interval [a, b] given by

xi = a+ i h, i = 0, 1, . . . , n,

of step length h := (b−a)/n, n > 0 integer, and let Pn be the interpolating
polynomial of degree n or less with

Pn(xi) = fi := f(xi) for i = 0, 1, . . . , n.

By Lagrange’s interpolation formula (2.1.1.4),

Pn(x) ≡
n∑
i=0

fiLi(x), Li(x) =
n∏

k=0
k �=i

x− xk
xi − xk

,

or, introducing the new variable t such that x = a+ ht

Li(x) = ϕi(t) :=
n∏

k=0
k �=i

t− k
i− k .

Integration gives ∫ b

a

Pn(x)dx =
n∑
i=0

fi

∫ b

a

Li(x)dx

= h
n∑
i=0

fi

∫ n

0
ϕi(t)dt

= h
n∑
i=0

fiαi.

Note that the coefficients or weights

αi :=
∫ n

0
ϕi(t)dt

3.1 The Integration Formulas of Newton and Cotes 147

depend solely on n; in particular, they do not depend on the function f to
be integrated, or on the boundaries a, b of the integral.

If n = 2 for instance, then

α0 =
∫ 2

0

t− 1
0 − 1

t− 2
0 − 2

dt =
1
2

∫ 2

0
(t2 − 3t+ 2)dt =

1
2

(
8
3

− 12
2

+ 4
)

=
1
3
,

α1 =
∫ 2

0

t− 0
1 − 0

t− 2
1 − 2

dt = −
∫ 2

0
(t2 − 2t)dt = −

(
8
3

− 4
)

=
4
3
,

α2 =
∫ 2

0

t− 0
2 − 0

t− 1
2 − 1

dt =
1
2

∫ 2

0
(t2 − t)dt =

1
2

(
8
3

− 4
2

)
=

1
3
,

and we obtain the following approximate value:∫ b

a

P2(x)dx =
h

3
(f0 + 4f1 + f2)

for the integral
∫ b
a
f(x)dx. This is Simpson’s rule.

For any natural number n, the Newton-Cotes formulas

(3.1.1)
∫ b

a

Pn(x)dx = h

n∑
i=0

fiαi, fi := f(a+ ih), h :=
b− a
n
,

provide approximate values for
∫ b
a
f(x)dx. The weights αi, i = 0, 1, . . . , n,

have been tabulated. They are rational numbers with the property

(3.1.2)
n∑
i=0

αi = n.

This follows from (3.1.1) when applied to f(x) :≡ 1 for which Pn(x) ≡ 1.
If s is a common denominator for the fractional weights αi so that the

numbers
σi := s αi, i = 0, 1, . . . , n,

are integers, then (3.1.1) becomes

(3.1.3)
∫ b

a

Pn(x)dx = h

n∑
i=0

fiαi =
b− a
ns

n∑
i=0

σifi.

For sufficiently smooth functions f(x) on the closed interval [a, b] it can
be shown [see Steffensen (1950)] that the approximation error may be ex-
pressed as follows:

(3.1.4)
∫ b

a

Pn(x)dx−
∫ b

a

f(x)dx = hp+1 ·K · f (p)(ξ), ξ ∈ (a, b).

148 3 Topics in Integration

Here (a, b) denotes the open interval from a to b. The values of p and K
depend only on n but not on the integrand f .

For n = 1, 2, . . . , 6 we find the Newton-Cotes formulas given in the fol-
lowing table. For larger n, some of the values σi become negative and the
corresponding formulas are unsuitable for numerical purposes, as cancella-
tions tend to occur in computing the sum (3.1.3).

n σi ns Error Name

1 1 1 2 h3 1
12f

(2)(ξ) Trapezoidal rule

2 1 4 1 6 h5 1
90f

(4)(ξ) Simpson’s rule

3 1 3 3 1 8 h5 3
80f

(4)(ξ) 3/8-rule

4 7 32 12 32 7 90 h7 8
945f

(6)(ξ) Milne’s rule

5 19 75 50 50 75 19 288 h7 275
12096f

(6)(ξ) —

6 41 216 27 272 27 216 41 840 h9 9
1400f

(8)(ξ) Weddle’s rule

Additional integration rules may be found by Hermite interpolation
[see Section 2.1.5] of the integrand f by a polynomial P ∈ Πn of degree n
or less. In the simplest case, a polynomial P ∈ Π3 with

P (a) = f(a),
P (b) = f(b),

P ′(a) = f ′(a),
P ′(b) = f ′(b)

is substituted for the integrand f . The generalized Lagrange formula
(2.1.5.3) yields for P in the special case a = 0, b = 1,

P (t) = f(0)[(t− 1)2 + 2t(t− 1)2] + f(1)[t2 − 2t2(t− 1)]

+f ′(0)t(t− 1)2 + f ′(1)t2(t− 1),

integration of which gives∫ 1

0
P (t)dt = 1

2 (f(0) + f(1)) + 1
12 (f ′(0) − f ′(1)).

From this, we obtain by a simple variable transformation the following
integration rule for general a < b (h := b− a):

(3.1.5)
∫ b

a

f(x)dx ≈M(h) :=
h

2
(f(a) + f(b)) +

h2

12
(f ′(a) − f ′(b)).

If f ∈ C4[a, b] then — using methods to be described in Section 3.2 — the
approximation error of the above rule can be expressed as follows:

3.1 The Integration Formulas of Newton and Cotes 149

(3.1.6) M(h) −
∫ b

a

f(x)dx =
−h5

720
f (4)(ξ), ξ ∈ (a, b), h := (b− a).

If the support abscissas xi, i = 0, . . . , n, x0 = a, xn = b, are not equally
spaced, then interpolating the integrand f(x) will lead to different integra-
tion rules, among them the ones given by Gauss. These will be described
in Section 3.6.

The Newton-Cotes and related formulas are usually not applied to the
entire interval of integration [a, b], but are instead used in each one of a
collection of subintervals into which the interval [a, b] has been divided. The
full integral is then approximated by the sum of the approximations to the
subintegrals. The locally used integration rule is said to have been extended,
giving rise to a corresponding composite rule. We proceed to examine some
composite rules of this kind.

The trapezoidal rule (n = 1) provides the approximate value

Ii :=
h

2
[f(xi) + f(xi+1)]

in the subinterval [xi, xi+1] of the partition xi = a + ih, i = 0, 1, . . . , N ,
h := (b− a)/N . For the entire interval [a, b], we obtain the approximation
(3.1.7)

T (h) :=
N−1∑
i=0

Ii

= h

[
f(a)

2
+ f(a+ h) + f(a+ 2h) + · · · + f(b− h) +

f(b)
2

]
,

which is the trapezoidal sum for step length h. In each subinterval [xi, xi+1]
the error

Ii −
∫ xi+1

xi

f(x)dx =
h3

12
f (2)(ξi), ξi ∈ (xi, xi+1),

is incurred, assuming f ∈ C2[a, b]. Summing these individual error terms
gives

T (h) −
∫ b

a

f(x)dx =
h3

12

N−1∑
i=0

f (2)(ξi) =
h2

12
(b− a) 1

N

N−1∑
i=0

f (2)(ξi).

Since

min
i
f (2)(ξi) ≤ 1

N

N−1∑
i=0

f (2)(ξi) ≤ max
i
f (2)(ξi)

and f (2)(x) is continuous, there exists ξ ∈ [min
i
ξi,max

i
ξi] ⊂ (a, b) with

150 3 Topics in Integration

f (2)(ξ) =
1
N

N−1∑
i=0

f (2)(ξi).

Thus

T (h) −
∫ b

a

f(x)dx =
b− a
12

h2f (2)(ξ), ξ ∈ (a, b).

Upon reduction of the step length h (increase of n) the approximation error
approaches zero as fast as h2, so we have a method of order 2.

If N is even, then Simpson’s rule may be applied to each subinterval
[x2i, x2i+2], i = 0, 1, . . . , (N/2)−1, individually yielding the approximation
(h/3)(f(x2i) + 4f(x2i+1) + f(x2i+2)). Summing these N/2 approximations
results in the composite version of Simpson’s rule

S(h) :=
h

3
[f(a) + 4f(a+ h) + 2f(a+ 2h) + 4f(a+ 3h) + · · ·

+ 2f(b− 2h) + 4f(b− h) + f(b)],

for the entire interval. The error of S(h) is the sum of all N/2 individual
errors

S(h) −
∫ b

a

f(x)dx =
h5

90

(N/2)−1∑
i=0

f (4)(ξi) =
h4

90
b− a

2
2
N

(N/2)−1∑
i=0

f (4)(ξi),

and we conclude, just as we did for the trapezoidal sum, that

S(h) −
∫ b

a

f(x)dx =
b− a
180

h4f (4)(ξ), ξ ∈ (a, b),

provided f ∈ C4[a, b]. The method is therefore of order 4.
Extending the rule of integration M(h) in (3.1.5) has a remarkable

effect: when the approximation to the individual subintegrals∫ xi+1

xi

f(x)dx for i = 0, 1, . . . , N − 1

are added up, all the “interior” derivatives f ′(xi), 0 < i < N , cancel. The
following approximation to the entire integral is obtained:

U(h) : = h

[
f(a)

2
+ f(a+ h) + · · · + f(b− h) +

f(b)
2

]
+
h2

12
[f ′(a) − f ′(b)]

= T (h) +
h2

12
[f ′(a) − f ′(b)].

This formula can be considered as a correction to the trapezoidal sum T (h).
It relates closely to the Euler-Maclaurin summation formula, which will be
discussed in Section 3.3 [see also Schoenberg (1969)]. The error formula

3.2 Peano’s Error Representation 151

(3.1.6) for M(h) can be extended to an error formula for the composite
rule U(h) in the same fashion as before. Thus

(3.1.8) U(h) −
∫ b

a

f(x)dx = −b− a
720

h4f (4)(ξ), ξ ∈ (a, b),

provided f ∈ C4[a, b]. Comparing this error with that of the trapezoidal
sum, we note that the order of the method has been improved by 2 with a
minimum of additional effort, namely the computation of f ′(a) and f ′(b).
If these two boundary derivatives are known to agree, e.g. for periodic
functions, then the trapezoidal sum itself provides a method of order at
least 4.

Replacing f ′(a), f ′(b) by difference quotients with an approximation
error of sufficiently high order, we obtain simple modifications [“end cor-
rections”: see Henrici (1964)] of the trapezoidal sum which do not involve
drivatives but still lead to methods of orders higher than 2. The following
variant of the trapezoidal sum is already a method of order 3:

T̂ (h) :=h
[5

12f(a) + 13
12f(a+ h) + f(a+ 2h) + · · · + f(b− 2h)

+ 13
12f(b− h) + 5

12f(b)
]
.

For many additional integration methods and their systematic examination
see, for instance Davis and Rabinowitz (1975).

3.2 Peano’s Error Representation

All integration rules considered so far are of the form

(3.2.1) Ĩ(f) :=
m0∑
k=0

ak0f(xk0) +
m1∑
k=0

ak1f
′(xk1) + · · · +

mn∑
k=0

aknf
(n)(xkn).

The integration error

(3.2.2) R(f) := Ĩ(f) −
∫ b

a

f(x)dx

is a linear operator

R(αf + βg) = αR(f) + βR(g) for f, g ∈ V, α, β ∈ IR

on some suitable linear function space V . Examples are V = Cn[a, b], the
space of functions with continuous nth derivatives on the interval [a, b], or
V = Πn, the space of all polynomials of degree no greater than n. The
following elegant integral representation of the error R(f) is a classical
result due to Peano:

152 3 Topics in Integration

(3.2.3) Theorem. Suppose R(P) = 0 holds for all polynomials P ∈ Πn,
that is, every polynomial whose degree does not exceed n is integrated ex-
actly. Then for all functions f ∈ Cn+1[a, b],

R(f) =
∫ b

a

f (n+1)(t)K(t)dt,

where

K(t) :=
1
n!
Rx[(x− t)n+], (x− t)n+ :=

{
(x− t)n for x ≥ t,
0 for x < t,

and
Rx[(x− t)n+]

denotes the error of (x− t)n+ when the latter is considered as a function in
x.

The function K(t) is called the Peano kernelof the operator R.
Before proving the theorem, we will discuss its application in the case

of Simpson’s rule

R(f) = 1
3f(−1) + 4

3f(0) + 1
3f(1) −

∫ 1

−1
f(x)dx.

We note that any polynomial P ∈ Π3 is integrated exactly. Indeed, let
Q ∈ Π2 be the polynomial with P (−1) = Q(−1), P (0) = Q(0), P (+1) =
Q(+1). Putting S(x) := P (x) − Q(x), we have R(P) = R(S). Since the
degree of S(x) is no greater then 3, and since S(x) has the three roots −1,
0, +1, it must be of the form S(x) = a(x2 − 1)x, and

R(P) = R(S) = −a
∫ 1

−1
x(x2 − 1)dx = 0.

Thus Theorem (3.2.3) can be applied with n = 3. The Peano kernel becomes

K(t) = 1
6Rx[(x− t)3+]

= 1
6

[
1
3 (−1 − t)3+ + 4

3 (0 − t)3+ + 1
3 (1 − t)3+ −

∫ 1

−1
(x− t)3+dx

]
.

By definition of (x− t)n+, we find that for t ∈ [−1, 1]∫ 1

−1
(x− t)3+dx =

∫ 1

t

(x− t)3dx =
(1 − t)4

4
,

(−1 − t)3+ = 0, (1 − t)3+ = (1 − t)3,

(−t)3+ =
{ 0 if t ≥ 0,

−t3 if t < 0.

3.2 Peano’s Error Representation 153

The Peano kernel for Simpson’s rule in the interval [−1, 1] is then

(3.2.4) K(t) =
{ 1

72 (1 − t)3(1 + 3t) if 0 ≤ t ≤ 1,
K(−t) if −1 ≤ t ≤ 0.

Proof of Theorem (3.2.3). Consider the Taylor expansion of f(x) at
x = a:

(3.2.5) f(x) = f(a) + f ′(a)(x− a) + · · · + f (n)(a)
n!

(x− a)n + rn(x).

Its remainder term can be expressed in the form

rn(x) =
1
n!

∫ x

a

f (n+1)(t)(x− t)ndt =
1
n!

∫ b

a

f (n+1)(t)(x− t)n+dt.

Applying the linear operator R to (3.2.5) gives

(3.2.6) R(f) = R(rn) =
1
n!
Rx

(∫ b

a

f (n+1)(t)(x− t)n+dt
)
,

since R(P) = 0 for P ∈ Πn.
In order to transform this representation of R(f) into the desired one,

we have to interchange the Rx operator with the integration. To prove that
this interchange is legal, we show first that

(3.2.7)
dk

dxk

[∫ b

a

f (n+1)(t)(x− t)n+dt
]

=
∫ b

a

f (n+1)(t)
[
dk

dxk
[(x− t)n+]

]
dt

for 1 ≤ k ≤ n. For k < n this follows immediately from the fact that
(x− t)n+ is n− 1 times continuously differentiable. For k = n− 1 we have
in particular

dn−1

dxn−1

[∫ b

a

f (n+1)(t)(x− t)n+dt
]

=
∫ b

a

f (n+1)(t)
dn−1

dxn−1 [(x− t)n+]dt

and therefore

dn−1

dxn−1

[∫ b

a

f (n+1)(t)(x− t)n+dt
]

= n!
∫ b

a

f (n+1)(t)(x− t)+dt

= n!
∫ x

a

f (n+1)(t)(x− t)dt.

The latter integral is differentiable as a function of x, since the integrand
is jointly continuous in x and t; hence

154 3 Topics in Integration

dn

dxn

[∫ b

a

f (n+1)(t)(x− t)n+dt
]

=
d

dx

[
dn−1

dxn−1

∫ b

a

f (n+1)(t)(x− t)n+dt
]

=
d

dx
n!
∫ x

a

f (n+1)(t)(x− t)dt

= n!f (n+1)(x)(x− x) + n!
∫ x

a

f (n+1)(t)dt

=
∫ b

a

f (n+1)(t)
[
dn

dxn
(x− t)n+

]
dt.

Thus (3.2.7) holds also for k = n.
By (3.2.7), the differential operators

dk

dxk
, k = 1, . . . , n,

commute with integration. Because I(f) = Ix(f) is a linear combination of
differential operators, it also commutes with integration.

Finally the continuity properties of the integrand f (n+1)(t)(x− t)n+ are
such that the following two integrations can be interchanged:∫ b

a

[∫ b

a

f (n+1)(t)(x− t)n+dt
]
dx =

∫ b

a

f (n+1)(t)

[∫ b

a

(x− t)n+dx
]
dt.

This then shows the entire operator Rx commutes with integration, and we
obtain the desired result

R(f) =
1
n!

∫ b

a

f (n+1)(t)Rx((x− t)n+)dt.

Note that Peano’s integral representation of the error is not restricted to
operators of the form (3.2.1). It holds for all operators R for which Rx
commutes with integration.

For a surprisingly large class of integration rules, the Peano kernel K(t)
has constant sign on [a, b]. In this case, the mean-value theorem of integral
calculus gives

(3.2.8) R(f) = f (n+1)(ξ)
∫ b

a

K(t)dt for some ξ ∈ (a, b).

The above integral of K(t) does not depend on f , and can therefore be
determined by applying R, for instance, to the polynomial f(x) := xn+1.
This gives

(3.2.9) R(f) =
R(xn+1)
(n+ 1)!

f (n+1)(ξ) for some ξ ∈ (a, b).

3.2 Peano’s Error Representation 155

In the case of Simpson’s rule, K(t) ≥ 0 for −1 ≤ t ≤ 1 by (3.2.4). In
addition

R(x4)
4!

=
1
24

(
1
3 · 1 + 4

3 · 0 + 1
3 · 1 −

∫ 1

−1
x4dx

)
=

1
90
,

so that we obtain for the error of Simpson’s formula

1
3f(−1) + 4

3f(0) + 1
3f(1) −

∫ 1

−1
f(t)dt = 1

90f
(4)(ξ), ξ ∈ (a, b).

In general, the Newton-Cotes formulas of degree n integrate without er-
ror polynomials P ∈ Πn if n is odd, and P ∈ Πn+1 if n is even [see Exercise
2]. The Peano kernels for the Newton-Cotes formulas are of constant sign
[see for instance Steffensen (1950)], and (3.2.9) confirms the error estimates
in Section 3.1:

Rn(f) =

Rn(xn+1)
(n+ 1)!

f (n+1)(ξ), if n is odd,

Rn(xn+2)
(n+ 2)!

f (n+2)(ξ), if n is even.
ξ ∈ (a, b),

Finally, we use (3.2.9) to prove the representation (3.1.6) of the error
of integration rule (3.1.5), which was based on cubic Hermite interpolation.
Here

R(f) =
h

2
(f(a) + f(b)) +

h2

12
(f ′(a) − f ′(b)) −

∫ b

b

f(x)dx, h := b− a,

which vanishes for all polynomials P ∈ Π3. For n = 3, we obtain the
following Peano kernel:

K(t) =
1
6
Rx((x− t)3+)

=
1
6

[
h

2
((a− t)3++(b− t)3+) +

h2

4
((a− t)2+ − (b− t)2+) −

∫ b

a

(x− t)3+dx
]

=
1
6

[
h

2
(b− t)3 − h2

4
(b− t)2 − 1

4
(b− t)4

]
= − 1

24 (b− t)2(a− t)2.

Since K(t) ≤ 0 in the interval of integration [a, b], (3.2.9) is applicable.
We find for a = 0, b = 1 that

R(x4)
4!

= 1
24 (1

2 · 1 + 1
12 · (−4) − 1

5) = − 1
720 .

Thus

156 3 Topics in Integration

R(f) = − 1
24

∫ b

a

f (4)(t)(b− t)2(a− t)2dt = − (b− a)5
720

f (4)(ξ), ξ ∈ (a, b),

for f ∈ C4[a, b], which was to be shown.

3.3 The Euler–Maclaurin Summation Formula

The error formulas (3.1.6), (3.1.8) are low-order instances of the famous
Euler–Maclaurin summation formula, which in its simplest form reads (for
g ∈ C2m+2[0, 1])

(3.3.1)

∫ 1

0
g(t)dt =

g(0)
2

+
g(1)
2

+
m∑
l=1

B2l

(2l)!
(g(2l−1)(0) − g(2l−1)(1))

− B2m+2

(2m+ 2)!
g(2m+2)(ξ), 0 < ξ < 1.

Here Bk are the classical Bernoulli numbers

(3.3.2) B2 = 1
6 , B4 = − 1

30 , B6 = 1
42 , B8 = − 1

30 , . . . ,

whose general definition will be given below. Extending (3.3.1) to its com-
posite form in the same way as (3.1.6) was extended to (3.1.8), we obtain
for g ∈ C2m+2[0, N]∫ N

0
g(t)dt =

g(0)
2

+ g(1) + · · · + g(N − 1) +
g(N)

2

+
m∑
l=1

B2l

(2l)!
(g(2l−1)(0) − g(2l−1)(N))

− B2m+2

(2m+ 2)!
Ng(2m+2)(ξ), 0 < ξ < N.

Rearranging the terms of the above formula leads to the most frequently
presented form of the Euler-Maclaurin summation formula:

(3.3.3)

g(0)
2

+ g(1) + · · · + g(N − 1) +
g(N)

2

=
∫ N

0
g(t)dt+

m∑
l=1

B2l

(2l)!
(g(2l−1)(N) − g(2l−1)(0))

+
B2m+2

(2m+ 2)!
Ng(2m+2)(ξ), 0 < ξ < N.

For a general uniform partition xi = a + ih, i = 0, . . ., N , xN = b, of the
interval [a, b], (3.3.3) becomes

3.3 The Euler–Maclaurin Summation Formula 157

(3.3.4)

T (h) =
∫ b

a

f(t)dt+
m∑
l=1

h2l B2l

(2l)!
(f (2l−1)(b) − f (2l−1)(a))

+ h2m+2 B2m+2

(2m+ 2)!
(b− a)f (2m+2)(ξ), a < ξ < b,

where T (h) denotes the trapezoidal sum (3.1.7)

T (h) = h

[
f(a)

2
+ f(a+ h) + · · · + f(b− h) +

f(b)
2

]
.

In this form, the Euler-Maclaurin summation formula expands the trape-
zoidal sum T (h) in terms of the step length h = (b− a)/N , and herein lies
its importance for our purposes: the existence of such an expansion puts at
one’s disposal a wide arsenal of powerful general “extrapolation methods”,
which will be discussed in subsequent sections.
Proof of (3.3.1). We will use integration by parts and successively de-
termine polynomials Bk(x), starting with B1(x) ≡ x− 1

2 , such that
(3.3.5) ∫ 1

0
g(t)dt = B1(t)g(t)

∣∣∣1
0
−
∫ 1

0
B1(t)g′(t)dt,∫ 1

0
B1(t)g′(t)dt =

1
2
B2(t)g′(t)dt

∣∣∣1
0
−1

2

∫ 1

0
B2(t)g′′(t)dt,

...∫ 1

0
Bk−1(t)g(k−1)(t)dt =

1
k
Bk(t)g(k−1)(t)

∣∣∣1
0
−1
k

∫ 1

0
Bk(t)g(k)(t)dt,

where

(3.3.6) B′
k+1(x) = (k + 1)Bk(x), k = 1, 2,

It is clear from (3.3.6) that each polynomial Bk(x) is of degree k and that
its highest-order terms has coefficient 1. Given Bk(x), the relation (3.3.6)
determines Bk+1(x) up to an arbitrary additive constant. We now select
these constants so as to satisfy the additional conditions

(3.3.7) B2l+1(0) = B2l+1(1) = 0 for l > 0,

which determine the polynomials Bk(x) uniquely. Indeed, if

B2l−1(x) = x2l−1 + c2l−2x
2l−2 + · · · + c1x+ c0,

then with integration constants c and d,

B2l+1(x) = x2l+1 +
(2l + 1)2l
2l(2l − 1)

c2l−2x
2l + · · · + (2l + 1)c x+ d.

158 3 Topics in Integration

B2l+1(0) = 0 requires d = 0, and B2l+1(1) = 0 determines c.
The polynomials

B0(x) ≡ 1, B1(x) ≡ x− 1
2 , B2(x) ≡ x2 − x+ 1

6 ,

B3(x) ≡ x3 − 3
2x

2 + 1
2x, B4(x) ≡ x4 − 2x3 + x2 − 1

30 , . . .

are known as Bernoulli polynomials. Their constant terms Bk = Bk(0) are
the Bernoulli numbers (3.3.2). All Bernoulli numbers of odd index k > 1
vanish because of (3.3.7).

The Bernoulli polynomials satisfy

(3.3.8) (−1)kBk(1 − x) = Bk(x).

This folows from the fact that the polynomials (−1)kBk(1 − x) satisfy the
same recursion, namely (3.3.6) and (3.3.7), as the Bernoulli polynomials
Bk(x). Since they also start out the same, they must coincide.

The following relation — true for odd indices k > 1 by (3.3.7) — can
now be made general, since (3.3.8) establishes it for even k:

(3.3.9) Bk(0) = Bk(1) = Bk for k > 1.

This gives

(3.3.10)
∫ 1

0
Bk(t)dt =

1
k + 1

(Bk+1(1) −Bk+1(0)) = 0 for k ≥ 1.

We are now able to complete the expansion of∫ 1

0
g(t)dt.

Combining the first 2m+ 1 relations (3.3.5), observing

1
k
Bk(t)g(k−1)(t)

∣∣∣1
0
= −Bk

k
(gk−1(0) − gk−1(1))

for k > 1 by (3.3.9), and accounting for B2l+1 = 0, we get∫ 1

0
g(t)dt =

g(0)
2

+
g(1))

2
+

m∑
l=1

B2l

(2l)!
(g(2l−1)(0) − g(2l−1)(1)) + rm+1,

where the error term rm+1 is given by the integral

rm+1 :=
−1

(2m+ 1)!

∫ 1

0
B2m+1(t)g(2m+1)(t)dt.

We use integration by parts once more to transform the error term:

3.3 The Euler–Maclaurin Summation Formula 159∫ 1

0
B2m+1(t)g(2m+1)(t)dt =

1
2m+ 2

(B2m+2(t) −B2m+2)g(2m+1)(t)
∣∣∣1
0

− 1
2m+ 2

∫ 1

0
(B2m+2(t) −B2m+2)g(2m+2)(t)dt.

The first term on the right-hand side vanishes again by (3.3.9). Thus

(3.3.11) rm+1 =
1

(2m+ 2)!

∫ 1

0
(B2m+2(t) −B2m+2)g(2m+2)(t)dt.

In order to complete the proof of (3.3.1), we need to show that B2m+2(t)−
B2m+2 does not change its sign between 0 and 1. We will show by induction
that

(3.3.12a) (−1)mB2m−1(x)> 0 for 0 < x < 1
2 ,

(3.3.12b) (−1)m(B2m(x) −B2m)> 0 for 0 < x < 1,
(3.3.12c) (−1)m+1B2m> 0.

Indeed, (3.3.12a) holds for m = 1. Suppose it holds for some m ≥ 1. Then
for 0 < x ≤ 1

2 ,

(−1)m

2m
(B2m(x) −B2m) = (−1)m

∫ x

0
B2m−1(t)dt > 0.

By (3.3.8), this extends to the other half of the interval, 1
2 ≤ x < 1, proving

(3.3.12b) for this value of m. In view of (3.3.10), we have

(−1)m+1B2m = (−1)m
∫ 1

0
(B2m(t) −B2m)dt > 0,

which takes care of (3.3.12c). We must now prove (3.3.12a) for m+1. Since
B2m+1(x) vanishes for x = 0 by (3.3.7), and for x = 1

2 by (3.3.8), it cannot
change its sign without having an inflection point x̄ between 0 and 1

2 . But
then B2m−1(x̄) = 0, in violation of the induction hypothesis. The sign of
B2m+1(x) in 0 < x < 1

2 is equal to the sign of its first derivative at zero,
whose value is (2m + 1)B2m(0) = (2m + 1)B2m. The sign of the latter is
(−1)m+1 by (3.3.12c).

Now for the final simplification of the error term (3.3.11). Since the
function B2m+2(x) − B2m+2 does not change its sign in the interval of
integration, there exists ξ, 0 < ξ < 1, such that

rm+1 =
g(2m+2)(ξ)
(2m+ 2)!

∫ 1

0
(B2m+2(t) −B2m+2)dt.

From (3.3.10),

rm+1 = − B2m+2

2m+ 2)!
g(2m+2)(ξ),

160 3 Topics in Integration

which completes the proof of (3.3.1).

3.4 Integration by Extrapolation

Let f ∈ C2m+2[a, b] be a real function to be integrated over the interval
[a, b]. Consider the expansion (3.3.4) of the trapezoidal sum T (h) of f in
terms of the step length h = (b− a)/n. It is of the form

(3.4.1) T (h) = τ0 + τ1h2 + τ2h4 + · · · + τmh2m + αm+1(h)h2m+2.

Here

τ0 =
∫ b

a

f(x)dt

is the integral to be calculated,

τk :=
B2k

(2k)!
(f (2k−1)(b) − f (2k−1)(a)), k = 1, 2, . . . , m,

and

αm+1(h) =
B2m+2

(2m+ 2)!
(b− a)f (2m+2)(ξ(h)), a < ξ(h) < b,

is the error coefficient. Since f (2m+2) is continuous by hypothesis in the
closed finite interval [a, b], there exists a bound L such that |f2m+2(x)| ≤ L
for all x ∈ [a, b]. Therefore:

(3.4.2) There exists a constant Mm+1 such that

|αm+1(h)| ≤Mm+1

for all h = (b− a)/n, n = 1, 2,
Expansions of the form (3.4.1) are called asymptotic expansions in h

if the coefficients τk, k ≤ m do not depend on h and αm+1(h) satisfies
(3.4.2). The summation formula of Euler and Maclaurin is an example of
an asymptotic expansion. If all derivatives of f exist in [a, b], then by letting
m = ∞, the right-hand side of (3.4.1) becomes an infinite series:

τ0 + τ1h2 + τ2h4 + · · · .

This power series may diverge for any h �= 0. Nevertheless, because of
(3.4.2), asymptotic expansions are capable of yielding for small h results
which are often sufficiently accurate for practical purposes [see, for instance,
Erdélyi (1956), Olver (1974)].

The above result (3.4.2) shows that the error term of the asymptotic
expansion (3.4.1) becomes small relative to the other terms of (3.4.1) as h

3.4 Integration by Extrapolation 161

decreases. The expansion then behaves like a polynomial in h2 which yields
the value τ0 of the integral for h = 0. This suggests the following method
for finding τ0: For each step length hi in a sequence

h0 =
b− a
n0

, h1 =
h0

n1
, . . . , hm =

h0

nm
,

where n1, n2, . . . , nm are strictly increasing positive integers, determine
the corresponding trapezoidal sums

Ti0 := T (hi), i = 0, 1, . . . , m.

Let

T̃mm(h) := a0 + a1h2 + · · · + amh2m

be the interpolating polynomial in h2 with

T̃mm(hi) = T (hi), i = 0, 1, . . . , m,

and take the “extrapolated” value T̃mm(0) as the approximation to the
desired integral τ0. This method of integration is known as Romberg inte-
gration, having been introduced by Romberg (1955) for the special sequence
hi = (b − a)/2i. It has been closely examined by Bauer, Rutishauser, and
Stiefel (1963).

Neville’s interpolation algorithm is particularly well suited for calcu-
lating T̃mm(0). For indices i, k with 1 ≤ k ≤ i ≤ m let T̃ik(h) be the
polynomial of degree at most k in h2 for which

T̃ik(hj) = T (hj), j = i− k, i− k + 1, . . . , i,

and let

Tik := T̃ik(0).

The recursion formula (2.1.2.7) becomes for xi = h2
i :

(3.4.3) Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1[

hi−k
hi

]2

− 1

, 1 ≤ k ≤ i ≤ m.

It will be advantageous to arrange the intermediate values Tik in the trian-
gular tableau (2.1.2.4), where each element derives from its two left neigh-
bors:

162 3 Topics in Integration

(3.4.4)

h2
0 T (h0) = T00

T11

h2
1 T (h1) = T10 T22

↘
T21 T33

↘ ↗
h2

2 T (h2) = T20 T32
...↘ ↗

T31
...↗

h2
3 T (h3) = T30

...
...

...

Example. Calculating the integral ∫ 1

0

t5dt

by extrapolation over the step lengths h0 = 1, h1 = 1/2, h2 = 1/4, we arrive
at the following tableau using (3.4.3) and 6-digit arithmetic (the fractions in
parentheses indicate the true values)

h2
0 = 1 T00 = 0.500 000(= 1

2)
T11 = 0.187 500(= 3

16)
h2

1 = 1
4 T10 = 0.265 625(= 17

64) T22 = 0.166 667(= 1
6)

T21 = 0.167 969(= 43
256)

h2
2 = 1

16 T20 = 0.192 383(= 197
1024)

Each entry Tik of the polynomial extrapolation tableau (3.4.4) repre-
sents in fact a linear integration rule for a step length h̃i = (b − a)/mi,
mi > 0 integer:

Tik = α0f(a) + α1f(a+ h̃i) + · · · + αmi−1f(b− h̃i) + αmif(b).

Some of the rules, but not all, turn out to be of the Newton-Cotes type [see
Section 3.1]. For instance, if h1 = h0/2 = (b− a)/2, then T11 is Simpson’s
rule. Indeed,

T00 = (b− a)
(1

2f(a) + 1
2f(b)

)
,

T10 = 1
2 (b− a)

(
1
2f(a) + f

(
a+ b

2

)
+ 1

2f(b)
)
.

By (3.4.3),

T11 = T10 +
T10 − T00

3
= 4

3T10 − 1
3T00,

and therefore

3.4 Integration by Extrapolation 163

T11 = 1
2 (b− a)

(
1
3f(a) + 4

3f

(
a+ b

2

)
+ 1

3f(b)
)
.

If we go one step further and put h2 = h1/2, then T22 becomes Milne’s rule.
However this pattern breaks down for h3 = h2/2 since T33 is no longer a
Newton-Cotes formula [see Exercise 10].

In the above cases, T21 and T31 are composite Simpson rules:

T21 =
b− a

4
(1
3f(a) + 4

3f(a+ h2) + 2
3f(a+ 2h2) + 4

3f(a+ 3h2) + 1
3f(b))

T31 =
b− a

8
(1
3f(a) + 4

3f(a+ h3) + 2
3f(a+ 2h3) + · · · + 1

3f(b)).

Very roughly speaking, proceeding downward in tableau (3.4.4) corresponds
to extending integration rules, whereas proceeding to the right increases
their order.

The following sequences of step lengths are usually chosen for extrap-
olation methods:

(3.4.5a) h0 = b− a, h1 = h0
2 , . . . , hi = hi−1

2 , i = 2, 3, . . . ,

(3.4.5b) h0 = b− a, h1 = h0
2 , h2 = h0

3 , . . . , hi = hi−2
2 , i = 3, 4,

The first sequence is characteristic of Romberg’s method [Romberg (1955)].
The second has been proposed by Bulirsch (1964). It has the advantage that
the effort for computing T (hi) does not increase quite as rapidly as for the
Romberg sequence.

For the sequence (3.4.5a), half of the function values needed for cal-
culating the trapezoidal sum T (hi+1) have been previously encountered in
the calculation of T (hi), and their recalculation can be avoided. Clearly

T (hi+1) = T (1
2hi)

= 1
2T (hi) + hi+1[f(a+ hi+1) + f(a+ 3hi+1) + · · · + f(b− hi+1)].

Similar savings can be realized for the sequence (3.4.5b).
An algol prozedure which calculates the tableau (3.4.4) for given m

and the interval [a, b] using the Romberg sequence (3.4.5a) is given below.
To save memory space, the tableau is built up by adding upward diagonals
to the bottom of the tableau. Only the lowest elements in each column need
to be stored for this purpose in the linear array t[0 : m].

164 3 Topics in Integration

procedure romberg (a, b, f,m);
value a, b,m;
integer m;
real a, b;
real procedure f ;
begin real h, s;

integer i, k, n, q;
array t[0 : m];
h := b− a; n := 1;
t[0] := 0.5 × h× (f(a) + f(b));
for k := 1 step 1 until m do
begin s := 0; h := 0.5 × h; n := 2 × n; q := 1;

for i := 1 step 2 until n− 1 do
s := s+ f(a+ i× h);

t[k] := 0.5 × t[k − 1] + s× h;
print (t[k]);
for i := k − 1 step −1 until 0 do
begin q := q × 4;

t[i] := t[i+ 1] + (t[i+ 1] − t[i])/(q − 1);
print t([i])

end
end

end;

We emphasize that the above algorithm serves mainly as an illustration
of integration by extrapolation methods. As it stands, it is not well suited
for practical calculations. For one thing, one does not usually know ahead
of time how big the parameter m should be chosen in order to obtain the
desired accuracy. In practice, one calculates only a few (say seven) columns
of (3.4.4), and stops the calculation as soon as |Ti,6 − Ti+1,6| ≤ ε s, where
ε is a specified tolerance and s is a rough approximation to the integral

∫ b

a

|f(t)|dt.

Such an approximation s can be obtained concurrently with calculating
one of the trapezoidal sums T (hi). A more general stopping rule will be
described, together with a numerical example, in Section 3.5. Furthermore,
the sequence (3.4.5b) of step lengths is to be preferred over (3.4.5a). Fi-
nally, rational interpolation has been found to yield in most applications
considerably better results than polynomial interpolation. A program with
all these improvements can be found in Bulirsch and Stoer (1967).

When we apply rational interpolation [see Section 2.2], then the recur-
sion (2.2.3.8) replaces (2.1.2.7):

3.5 About Extrapolation Methods 165

(3.4.6)

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1[

hi−k

hi

]2[
1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]
− 1

, 1 ≤ k ≤ i ≤ m.

The same triangular tableau arrangement is used as for polynomial ex-
trapolation: k is the column index, and the recursion (3.4.6) relates each
tableau element to its left-hand neighbors. The meaning of Tik, however,
is now as follows: The functions T̃ik(h) are rational functions in h2,

T̃ik(h) :=
p0 + p1h2 + · · · + pµh2µ

q0 + q1h2 + · · · + qνh2ν ,

µ+ ν = k, µ = ν or µ = ν − 1,

with the interpolation property

T̃ik(hj) = T (hj), j = i− k, i− k + 1, . . . , i.

We then define
Tik := T̃ik(0),

and initiate the recursion (3.4.6) by putting Ti0 := T (hi) for i = 0, 1,
. . ., m, and Ti,−1 := 0 for i = 0, 1, . . . , m − 1. The observed superiority
of rational extrapolation methods reflects the more flexible approximation
properties of rational functions [see Section 2.2.4].

In Section 3.5, we will illustrate how error estimates for extrapolation
methods can be obtained from asymptotic expansions like (3.4.1). Under
mild restrictions on the sequence of step lengths, it will follow that, for
polynomial extrapolation methods based on even asymptotic expansions,
the errors of Ti1 behave like h2

i , those of Ti1 like h2
i−1h

2
i and, in general,

those of Tik like h2
i−kh

2
i−k+1 · · ·h2

i as i→ ∞. For fixed k, consequently, the
sequence Tik i = k, k + 1, . . ., approximates the integral like a method of
order 2k + 2. For the sequence (3.4.5a) a stronger result has been found:

(3.4.7) Tik−
∫ b

a

f(x)dx = (b−a)h2
i−kh

2
i−k+1 . . . h

2
i

(−1)kB2k+2

(2k + 2)!
f (2k+2)(ξ),

for a suitable ξ ∈ (a, b) and f ∈ C2k+2[a, b] [see Bauer, Rutishauser and
Stiefel (1963), Bulirsch (1964)].

3.5 About Extrapolation Methods

Some of the numerical integration methods discussed in this chapter (as,
for instance, the methods based on the formulas of Newton and Cotes) had
a common feature: they utilized function information only on a discrete set

166 3 Topics in Integration

of points whose distance — and consequently the coarseness of the sample
— was governed by a “step length”. To each such step h �= 0 corresponded
an approximate result T (h), which furthermore admitted an asymptotic
expansion in powers of h. Analogous discretization methods are available
for many other problems, of which the numerical integration of functions is
but one instance. In all these cases, the asymptotic expansion of the result
T (h) is of the form

(3.5.1) T (h) = τ0 + τ1hγ1 + τ2hγ2 + · · · + τmhγm + αm+1(h)hγm+1 ,

0 < γ1 < γ2 < · · · < γm+1,

where the exponents γi need not to be integers. The coefficients τi are
independent of h, the function αm+1(h) is bounded for h → 0, and τ0 =
limh→0 T (h) is the exact solution of the problem at hand.

Consider, for example, numerical differentiation. For h �= 0, the central
difference quotient

T (h) =
f(x+ h) − f(x− h)

2h
is an approximation to f ′(x). For functions f ∈ C2m+3[x − a, x + a] and
|h| ≤ |a|, Taylors’s theorem gives

T (h) =
1
2h
{
f(x) + hf ′(x) +

h2

2!
f ′′(x) + · · · + h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

−f(x) + hf ′(x) − h2

2!
f ′′(x) + · · · + h2m+3

(2m+ 3)!
[f (2m+3)(x) + o(1)]

}
=τ0 + τ1h2 + · · · + τmh2m + h2m+2αm+1(h)

where τ0 = f ′(x), τk = f (2k+1)(x)/(2k + 1)!, k = 1, 2, . . . , m + 1, and
αm+1(h) = τm+1 + o(1).

Using the one-sided difference quotient

T (h) :=
f(x+ h) − f(x)

h
, h �= 0,

leads to the asymptotic expansion

T (h) = τ0 + τ1h+ τ2h2 + · · · + τmhm + hm+1(τm+1 + o(1))

with

τk =
f (k+1)(x)
(k + 1)!

, k = 0, 1, 2, . . . , m+ 1.

We will see later that the central difference quotient is a better ap-
proximation to base an extrapolation method on, as far as convergence
is concerned, because its asymptotic expansion contains only even powers
of the step length h. Other important examples of discretization methods

3.5 About Extrapolation Methods 167

which lead to such asymptotic expansions are those for the solution of or-
dinary differential equations [see Sections 7.2.3 and 7.2.12]. A systematic
treatment of extrapolation methods is found in Brezinski and Zaglia (1991).

In order to derive an extrapolation method for a given discretization
method with (3.5.1), we select a sequence of step lengths

F = {h0, h1, h2, . . . }, h0 > h1 > h2 > · · · > 0,

and calculate the corresponding approximate solutions T (hi), i = 0, 1, 2,
. . . . For i ≥ k, we introduce the “polynomials”

T̃ik(h) = b0 + b1hγ1 + · · · + bkhγk ,

for which
T̃ik(hj) = T (hj), j = i− k, i− k + 1, . . . , i,

and we consider the values

Tik := T̃ik(0)

as approximations to the desired value τ0. Rational functions Tik(h) are
frequently preferred over polynomials. Also the exponents γk need not be
integer [see Bulirsch and Stoer (1964)].

For the following discussion of the discretization errors, we will assume
that T̃ik(h) are polynomials with exponents of the form γk = γ k. Romberg
integration [see Section 3.4] is a special case with γ = 2.

First, we consider the case i = k. In the sequel, we will use the abbre-
viations

z := hγ , zj := hγj , j = 0, 1, . . . , m.

Applying Lagrange’s interpolation formula (2.1.1.4) to the polynomial

T̃kk(h) =: Pk(z) = b0 + b1z + b2z2 + · · · + bkzk

yields for z = 0

Tkk = Pk(0) =
k∑
j=0

cjPk(zj) =
k∑
j=0

cjT (hj)

with

cj :=
k∏

σ �=j
σ=0

zσ
zσ − zj

.

Then

(3.5.2)
k∑
j=0

cjz
τ
j =

1 if τ = 0,
0 if τ = 1, 2, . . . , k,
(−1)kz0z1 · · · zk if τ = k + 1.

168 3 Topics in Integration

Proof. By Lagrange’s interpolation formula (2.1.1.4) and the uniqueness
of polynomial interpolation,

p(0) =
k∑
j=0

cjp(zj)

holds for all polynomials p(z) of degree ≤ k. One obtains (3.5.2) by choosing
p(z) as the polynomials

zτ , τ = 0, 1, . . . , k,

and
zk+1 − (z − z0)(z − z1) · · · (z − zk). ��

(3.5.2) can be sharpened for sequences hj for which there exists a con-
stant b > 0 such that

(3.5.3)
hj+1

hj
≤ b < 1 for all j.

In this case, there exists a constant Ck which depends only on b and for
which

(3.5.4)
k∑
j=0

|cj |zk+1
j ≤ Ckz0z1 · · · zk.

We prove (3.5.4) only for the special case of geometric sequences {hj } with

hj = h0b
j , 0 < b < 1, j = 0, 1,

For the general case see Bulirsch and Stoer (1964). With the abbreviation
θ := bγ we have

zτj = (h0b
j)γτ = zτ0 θ

jτ .

In view of (3.5.2), the polynomial

Pk(z) :=
k∑
j=0

cjz
j

satisfies

Pk(θτ) =
k∑
j=0

cjθ
jτ = z−τ

0

k∑
j=0

cjz
τ
j =

{
1 for τ = 0,
0 for τ = 1, 2, . . . , k,

so that Pk(z) has the k different roots θτ , τ = 1, . . . , k. Since Pk(1) = 1
the polynomial Pk must have the form

3.5 About Extrapolation Methods 169

Pk(z) =
k∏
l=1

z − θl
1 − θl .

The coefficients of Pk alternate in sign, so that

k∑
j=0

|cj |zk+1
j = zk+1

0

k∑
j=0

|cj |(θ(k+1))j = zk+1
0 |Pk(−θk+1)|

= zk+1
0

k∏
l=1

θk+1 + θl

1 − θl

= zk+1
0 θ1+2+···+k

k∏
l=1

1 + θl

1 − θl

= Ck(θ)z0z1 · · · zk

with

(3.5.5) Ck = Ck(θ) :=
k∏
l=1

1 + θl

1 − θl .

This proves (3.5.4) for the special case of geometrically decreasing step
lengths hj .

We are now able to make use of the asymptotic expansion (3.5.1) which
gives for k ≤ m

Tkk =
k∑
j=0

cjT (hj)

=
k∑
j=0

cj [τ0 + τ1zj + τ2z2j + · · · + τkzkj + αk+1(hj)zk+1
j],

where of course, for k < m

αk+1(hj)zk+1
j = τk+1h

γk+1
j + · · · + τmhγm

j + αm+1(hj)h
γm+1
j .

By (3.5.2)

(3.5.6) Tkk = τ0 +
k∑
j=0

cjαk+1(hj)zk+1
j .

Using (3.5.4) and |αm+1(hj)| ≤Mm+1 for all j ≥ 0 [see (3.4.2)] we find for
k = m

(3.5.7) |Tmm − τ0| ≤Mm+1Cmz0z1 · · · zm,

170 3 Topics in Integration

and for k < m,

(3.5.8) Tkk − τ0 = (−1)kz0z1 · · · zk(τk+1 + 0(hγ0)),

because of αk+1(hj) = τk+1 +O(hγj), (3.5.2), and (3.5.6).
The corresponding estimates for the error of Tik for the general case

i ≥ k are obtained by just replacing in (3.5.7) and (3.5.8) z0, z1, . . . , zk by
zi−k, zi−k+1, . . . , zi, and h0 by hi−k respectively, because Tik is obtained
by extrapolating from T (hj), j = i− k, i− k+ 1, . . . , i. Since zj = hγj this
leads to

(3.5.9) |Tim − τ0| ≤Mm+1Cmzi−mzi−m+1 · · · zi for i ≥ m,

and for k < m, i ≥ k to

(3.5.10) Tik − τ0 = (−1)khγi−kh
γ
i−k+1 · · ·hγi (τk+1 +O(hγi−k)).

Consequently, for fixed k and i→ ∞,

Tik − τ0 = O(h(k+1)γ
i−k).

In other words, the elements Tik of the (k + 1)st column of the tableau
(3.4.4) converge to τ0 like a method of order (k + 1)γ. Note that the in-
crease of the order of convergence from column to column which can be
achieved by extrapolation methods is equal to γ : γ = 2 is twice as good
as γ = 1. This explains the preference for discretization methods whose
corresponding asymptotic expansions contain only even powers of h, e.g.,
the asymptotic expansion of the trapezoidal sum (3.4.1) or the central dif-
ference quotient discussed in this section.

The formula (3.5.10) shows furthermore that the sign of the error re-
mains constant for fixed k < m and sufficiently large i provided τk+1 �= 0.
Then

(3.5.11) 0 <
Ti+1,k − τ0
Tik − τ0

≈
hγi+1

hγi−k
≤ bγ(k+1)

Now in many cases bγ(k+1) < 1
2 . Then the error of the quantity

Uik := 2Ti+1,k − Tik

satisfies
Uik − τ0 = 2(Ti+1,k − τ0) − (Tik − τ0).

For s := sign (Ti+1,k − τ0) = sign (Ti,k − τ0) we have

s(Uik − τ0) = 2|Ti,k+1 − τ0| − |Tik − τ0| ≈ −|Tik − τ0| < 0.

Thus Uik converges monotonically to τ0, for i → ∞ at roughly the same
rate as Tik but from the opposite direction, so that eventually Tik and Uik

3.6 Gaussian Integration Methods 171

will include the limit τ0 between them. This observation yields a convenient
stopping criterion.

Example. The exact value of the integral∫ π/2

0

5(eπ − 2)−1e2x cosx dx

is 1. Using the polynomial extrapolation method of Romberg, and carrying 12
digits, we obtain for Tik, Uik, 0 ≤ i ≤ 6, 0 ≤ k ≤ 3 the values given in the
following table.

i Ti0 Ti1 Ti2 Ti3

0 0.185 755 068 924
1 0.724 727 335 089 0.904 384 757 145
2 0.925 565 035 158 0.992 510 935 182 0.998 386 013 717
3 0.981 021 630 069 0.999 507 161 706 0.999 973 576 808 0.999 998 776 222
4 0.995 232 017 388 0.999 968 813 161 0.999 999 589 925 1.000 000 002 83
5 0.998 806 537 974 0.999 998 044 836 0.999 999 993 614 1.000 000 000 02
6 0.999 701 542 775 0.999 999 877 709 0.999 999 999 901 1.000 000 000 00

i Ui0 Ui1 Ui2 Ui3

0 1.263 699 601 26
1 1.126 402 735 23 1.080 637 113 22
2 1.036 478 224 98 1.006 503 388 23 1.001 561 139 90
3 1.009 442 404 71 1.000 430 464 62 1.000 025 603 04 1.000 001 229 44
4 1.002 381 058 56 1.000 027 276 51 1.000 000 397 30 0.999 999 997 211
5 1.000 596 547 58 1.000 001 710 58 1.000 000 006 19 0.999 999 999 978
6 1.000 149 217 14 1.000 000 107 00 1.000 000 000 09 1.000 000 000 00

3.6 Gaussian Integration Methods

In this section, we broaden the scope of our examination by considering
integrals of the form

I(f) :=
∫ b

a

ω(x)f(x)dx,

where ω(x) is a given nonnegative weight function on the interval [a, b].
Also, the interval [a, b] may be infinite, e.g., [0, +∞] or [−∞, +∞]. The
weight function must meet the following requirements:

(3.6.1)
a) ω(x) ≥ 0 is measurable on the finite or infinite interval [a, b].
b) All moments µk :=

∫ b
a
xkω(x)dx, k = 0, 1, . . . , exist and are finite.

c) For polynomials s(x) which are nonnegative on [a, b],
∫ b
a
ω(x)s(x)dx =

0 implies s(x) ≡ 0.

172 3 Topics in Integration

The conditions (3.6.1) are met, for instance, if ω(x) is positive and con-
tinuous on a finite interval [a, b]. Condition (3.6.1c) is equivalent to∫ b
a
ω(x)dx > 0 [see Exercise 14].
We will again examine integration rules of the type

(3.6.2) Ĩ(f) :=
n∑
i=1

wif(xi).

The Newton-Cotes formulas [see Section 3.1] are of this form, but the ab-
scissas xi were required to form a uniform partition of the interval [a, b].
In this section, we relax this restriction and try to choose the xi as well
as the wi so as to maximize the order of the integration method, that is,
to maximize the degree for which all polynomials are exactly integrated by
(3.6.2). We will see that this is possible and leads to a class of well-defined
so-called Gaussian integration rules or Gaussian quadrature formulas [see
for instance Stroud und Secrest (1966)]. These Gaussian integration rules
will be shown to be unique and of order 2n−1. Also wi > 0 and a < xi < b
for i = 1, . . . , n. In order to establish these results and to determine the ex-
act form of the Gaussian integration rules, we need some basic facts about
orthogonal polynomials. We introduce the notation

Π̄j := { p | p(x) = xj + a1xj−1 + · · · + aj }

for the set of normed real polynomials of degree j, and, as before, we denote
by

Πj := { p | degree (p) ≤ j }
the linear space of all real polynomials whose degree does not exceed j. In
addition, we define the scalar product

(f, g) :=
∫ b

a

ω(x)f(x)g(x)dx

on the linear space L2[a, b] of all functions for which the integral

(f, f) =
∫ b

a

ω(x)f(x)2dx

is well defined and finite. The functions f , g ∈ L2[a, b] are called orthogonal
if (f, g) = 0. The following theorem establishes the existence of a sequence
of mutually orthogonal polynomials, the system of orthogonal polynomials
associated with the weight function ω(x).

(3.6.3) Theorem. There exist polynomials pj ∈ Π̄j, j = 0, 1, 2, . . . , such
that

(3.6.4) (pi, pk) = 0 for i �= k.

3.6 Gaussian Integration Methods 173

These polynomials are uniquely defined by the recursions

(3.6.5a) p0(x)≡ 1,
(3.6.5b) pi+1(x)≡ (x− δi+1)pi(x) − γ2

i+1pi−1(x) for i ≥ 0,

where p−1(x) :≡ 0 and7

(3.6.6a) δi+1:= (x pi, pi)/(pi, pi) for i ≥ 0,

(3.6.6b) γ2
i+1:=

{
1 for i = 0,
(pi, pi)/(pi−1, pi−1) for i ≥ 1.

Proof. The polynomials can be constructed recursively by a technique
known as Gram-Schmidt orthogonalization. Clearly p0(x) ≡ 1. Suppose
then, as an induction hypothesis, that all orthogonal polynomials with the
above properties have been constructed for j ≤ i and have been shown
to be unique. We proceed to show that there exists a unique polynomial
pi+1 ∈ Π̄i+1 with

(3.6.7) (pi+1, pj) = 0 for j ≤ i,

and that this polynomial satisfies (3.6.5b). Any polynomial pi+1 ∈ Π̄i+1
can be written uniquely in the form

pi+1(x) ≡ (x− δi+1)pi(x) + ci−1pi−1(x) + ci−2pi−2(x) + · · · + c0p0(x),

because its leading coefficient and those of the polynomials pj , j ≤ i, have
value 1. Since (pj , pk) = 0 for all j, k ≤ i with j �= k, (3.6.7) holds if and
only if

(3.6.8a) (pi+1, pi)= (xpi, pi) − δi+1(pi, pi) = 0,
(3.6.8b) (pi+1, pj−1)= (xpj−1, pi) + cj−1(pj−1, pj−1) = 0 for j ≤ i.

The condition (3.6.1c) — with p2i and p2j−1, respectively, in the role of the
nonnegative polynomial s — rules out (pi, pi) = 0 and (pj−1, pj−1) = 0 for
1 ≤ j ≤ i. Therefore, the equations (3.6.8) can be solved uniquely. (3.6.8a)
gives (3.6.6a). By the induction hypothesis,

pj(x) ≡ (x− δj)pj−1(x) − γ2
j pj−2(x)

for j ≤ i. From this, by solving for x pj−1(x), we have (xpj−1, pi) = (pj , pi)
for j ≤ i, so that

cj−1 = − (pj , pi)
(pj−1, pj−1)

=
{

−γ2
i+1 for j = i,

0 for j < i.

in view of (3.6.8). Thus (3.6.5b) has been established for i+ 1. ��

7 x pi denotes the polynomial with values xpi(x) for all x.

174 3 Topics in Integration

Every polynomial p ∈ Πk is clearly representable as a linear combina-
tion of the orthogonal polynomials pi, i ≤ k. We thus have:

(3.6.9) Corollary. (p, pn) = 0 for all p ∈ Πn−1.

(3.6.10) Theorem. The roots xi, i = 1, . . . , n, of pn are real and simple.
They all lie in the open interval (a, b).

Proof. Consider those roots of pn which lie in (a, b) and which are of odd
multiplicity, that is, at which pn changes sign:

a < x1 < · · · < xl < b.

The polynomial

q(x) :=
l∏

j=1

(x− xj) ∈ Π̄l

is such that the polynomial pn(x)q(x) does not change sign in [a, b], so that

(pn, q) =
∫ b

a

ω(x)pn(x)q(x)dx �= 0

by (3.6.1c). Thus degree (q) = l = n must hold, as otherwise (pn, q) = 0 by
Corollary (3.6.9). ��

Next we have the

(3.6.11) Theorem. The n× n-matrix

A :=

 p0(t1) . . . p0(tn)
...

...
pn−1(t1) . . . pn−1(tn)

is nonsingular for mutually distinct arguments ti, i = 1, . . . , n.

Proof. Assume A is singular. Then there is a vector cT = (c0, . . . , cn−1),
c �= 0 with cTA = 0. The polynomial

q(x) :=
n−1∑
i=0

cipi(x),

with degree (p) < n, has the n distinct roots t1, . . . , tn and must vanish
identically. Since the polynomials pi(.) are linearly independent, q(x) ≡ 0
implies the contradiction c = 0. ��

Theorem (3.6.11) shows that the interpolation problem of finding a
function of the form

3.6 Gaussian Integration Methods 175

p(x) ≡
n−1∑
i=0

cipi(x)

with p(ti) = fi, i = 1, 2, . . . , n is always solvable. The condition of the
theorem is known as the Haar condition.Any sequence of functions p0,
p1, . . .which satisfy the Haar condition is said to form a Chebyshev sys-
tem.Theorem (3.6.11) states that sequences of orthogonal polynomials are
Chebyshev systems.

Now we arrive at the main result of this section.

(3.6.12) Theorem.
(a) Let x1, . . . , xn be the roots of the nth orthogonal polynomial pn(x), and

let w1, . . . , wn be the solution of the (nonsingular) system of equations

(3.6.13)
n∑
i=1

pk(xi)wi =
{

(p0, p0) if k = 0,
0 if k = 1, 2, . . . , n− 1.

Then wi > 0 for i = 1, 2, . . . , n, and

(3.6.14)
∫ b

a

ω(x)p(x)dx =
n∑
i=1

wip(xi)

holds for all polynomials p ∈ Π2n−1. The positive numbers wi are called
“weights”.

(b) Conversely, if the numbers wi, xi, i = 1, . . . , n, are such that (3.6.14)
holds for all p ∈ Π2n−1, then the xi are the roots of pn and the weights
wi satisfy (3.6.13).

(c) It is not possible to find numbers xi, wi, i = 1, . . . , n, such that (3.6.14)
holds for all polynomials p ∈ Π2n.

Proof. By Theorem (3.6.10), the roots xi, i = 1, . . . , n, of pn are real and
mutually distinct numbers in the open interval (a, b). The matrix

(3.6.15) A :=

 p0(x1) . . . p0(xn)
...

...
pn−1(x1) . . . pn−1(xn)

is nonsingular by Theorem (3.6.11), so that the system of equations (3.6.13)
has a unique solution.

Consider an arbitrary polynomial p ∈ Π2n−1. It can be written in the
form

(3.6.16) p(x) ≡ pn(x)q(x) + r(x),

176 3 Topics in Integration

where q, r are polynomials in Πn−1, which we can express as linear com-
binations of orthogonal polynomials

q(x) ≡
n−1∑
k=0

αkpk(x), r(x) ≡
n−1∑
k=0

βkpk(x).

Since p0(x) ≡ 1, it follows from (3.6.16) and Corollary (3.6.9) that∫ b

a

ω(x)p(x)dx = (pn, q) + (r, p0) = β0(p0, p0).

On the other hand, by (3.6.16) [since pn(xi) = 0] and by (3.6.13),

n∑
i=1

wip(xi) =
n∑
i=1

wir(xi) =
n−1∑
k=0

βk

(n∑
i=1

wipk(xi)
)

= β0(p0, p0),

Thus (3.6.14) is satisfied.
We observe that

(3.6.17). If wi, xi, i = 1, . . . , n, are such that (3.6.14) holds for all
polynomials p ∈ Π2n−1, then wi > 0 for i = 1, . . . , n.

This is readily verified by applying (3.6.14) to the polynomials

p̄j(x) :=
n∏

h=1
h�=j

(x− xh)2 ∈ Π2n−2, j = 1, . . . , n,

and noting that

0 <
∫ b

a

ω(x)p̄j(x)dx =
n∑
i=1

wip̄j(xi) = wj

n∏
h=1
h�=j

(xj − xh)2

by (3.6.1c). This completes the proof of (3.6.12a).
We prove (3.6.12c) next. Assume that wi, xi, i = 1, . . . , n, are such

that (3.6.14) even holds for all polynomials p ∈ Π2n. Then

p̄(x) :≡
n∏
j=1

(x− xj)2 ∈ Π2n

contradicts this claim, since by (3.6.1c)

0 <
∫ b

a

ω(x)p̄(x)dx =
n∑
i=1

wip̄(xi) = 0.

This proves (3.6.12c).

3.6 Gaussian Integration Methods 177

To prove (3.6.12b), suppose that wi, xi, i = 1, . . . , n, are such that
(3.6.14) holds for all p ∈

∏
2n−1. Note that the abscissas xi must be mutu-

ally distinct, since otherwise we could formulate the same integration rule
using only n− 1 of the abscissas xi, contradicting (3.6.12c).

Applying (3.6.14) to the orthogonal polynomials p = pk, k = 0, . . . ,
n− 1, themselves, we find

n∑
i=1

wipk(xi) =
∫ b

a

ω(x)pk(x)dx = (pk, p0) =
{

(p0, p0), if k = 0,
0, if 1 ≤ k ≤ n− 1.

In other words, the weights wi must satisfy (3.6.13).
Applying (3.6.14) to p(x) :≡ pk(x)pn(x), k = 0, . . . , n − 1, gives by

(3.6.9)

0 = (pk, pn) =
n∑
i=1

wipn(xi)pk(xi), k = 0, . . . , n− 1.

In other words, the vector c := (w1pn(x1), . . . , wnpn(xn))T solves the
homogeneous system of equations Ac = 0 with A the matrix (3.6.15).
Since the abscissas xi, i = 1, . . . , n, are mutually distinct, the matrix A
is nonsingular by Theorem (3.6.11). Therefore c = 0 and wipn(xi) = 0 for
i = 1, . . . , n. Since wi > 0 by (3.6.17), we have pn(xi) = 0, i = 1, . . . , n.
This completes the proof of (3.6.12b). ��

For the most common weight function ω(x) :≡ 1 and the interval [−1, 1],
the results of Theorem (3.6.12) are due to Gauss. The corresponding or-
thogonal polynomials are [see Exercise 16]

(3.6.18) pk(x) :=
k!

(2k)!
dk

dxk
(x2 − 1)k, k = 0, 1,

Indeed, pk ∈ Π̄k and integration by parts establishes (pi, pk) = 0 for i �= k.
Up to a factor, the polynomials (3.6.18) are the Legendre polynomials. In
the following table we give some values for wi, xi in this important special
case. For further values see the National Bureau of Standards Handbook of
Mathematical Functions [Abramowitz and Stegun (1964)].

178 3 Topics in Integration

n wi xi

1 w1 = 2 x1 = 0

2 w1 = w2 = 1 x2 = −x1 = 0.577 350 2692 . . .

3 w1 = w3 = 5
9 x3 = −x1 = 0.774 596 6692 . . .

w2 = 8
9 x2 = 0

4 w1 = w4 = 0.347 854 8451 . . . x4 = −x1 = 0.861 136 3116 . . .
w2 = w3 = 0.652 145 1549 . . . x3 = −x2 = 0.339 981 0436 . . .

5 w1 = w5 = 0.236 926 8851 . . . x5 = −x1 = 0.906 179 8459 . . .
w2 = w4 = 0.478 628 6705 . . . x4 = −x2 = 0.538 469 3101 . . .
w3 = 128

225 = 0.568 888 8889 . . . x3 = 0

Other important cases which lead to Gaussian integration rules are listed
in the following table:

[a, b] ω(x) Orthogonal polynomials

[−1, 1] (1 − x2)−1/2 Tn(x), Chebyschev polynomials
[0,∞] e−x Ln(x), Laguerre polynomials
[−∞,∞] e−x

2
Hn(x), Hermite polynomials

We have characterized the quantities wi, xi which enter the Gaussian
integration rules for given weight functions, but we have yet to discuss
methods for their actual calculation. We will examine this problem un-
der the assumption that the coefficients δi, γi of the recursion (3.6.5) are
given. Golub and Welsch (1969) and Gautschi (1968, 1970) discuss the
much harder problem of finding the coefficients δi, γi.

The theory of orthogonal polynomials ties in with the theory of real
tridiagonal matrices

(3.6.19) Jn =

δ1 γ2
γ2 δ2 ·

· · ·
· · γn
γn δn

and their principal submatrices

Jj :=

δ1 γ2
γ2 δ2 ·

· · ·
· · γj
γj δj

3.6 Gaussian Integration Methods 179

Such matrices will be studied in Sections 5.5, 5.6, and 6.6.1. In Section 5.5
it will be seen that the characteristic polynomials pj(x) = det(Jj − xI) of
the Jj satisfy the recursions (3.6.5) with the matrix elements δj , γj as the
coefficients. Therefore, pn is the characteristic polynomial of the tridiagonal
matrix Jn. Consequently we have

(3.6.20) Theorem. The roots xi, i = 1, . . . , n, of the nth orthogonal
polynomial pn are the eigenvalues of the tridiagonal matrix Jn in (3.6.19).

The bisection method of Section 5.6, the QR method of Section 6.6.6, and
others are available to calculate the eigenvalues of these tridiagonal systems.
With respect to the weights wi, we have [Szegö (1959), Golub and Welsch
(1969)]:

(3.6.21) Theorem. Let v(i) := (v(i)1 , . . . , v
(i)
n)T be an eigenvector of Jn

(3.6.19) for the eigenvalue xi, Jnv(i) = xiv
(i). Suppose v(i) is scaled in

such a way that

v(i)T v(i) = (p0, p0) =
∫ b

a

ω(x)dx.

Then the weights are given by

wi = (v(i)1)2, i = 1, . . . , n.

Proof. We verify that the vector

ṽ(i) = (ρ0p0(xi), ρ1p1(xi), . . . , ρn−1pn−1(xi))T

where
ρj := 1/(γ1γ2 · · · γj+1) for j = 0, 1, . . . , n− 1

is an eigenvector of Jn for the eigenvalue xi: Jnṽ(i) = xiṽ
(i). By (3.6.5) for

any x,

δ1ρ0p0(x) + γ2ρ1p1(x) = δ1p0(x) + p1(x) = xp0(x) = xρ0p0(x).

For j = 2, . . . , n− 1, similarly

γjρj−2pj−2(x) + δjρj−1pj−1(x) + γj+1ρjpj(x)

= ρj−1[γ2
j pj−2(x) + δjpj−1(x) + pj(x)]

= xρj−1pj−1(x),

and finally

ρn−1[γ2
npn−2(x) + δnpn−1(x)] = xρn−1pn−1(x) − ρn−1pn(x),

so that
γnρn−2pn−2(xi) + δnpn−1(xi)] = xiρn−1pn−1(xi)

180 3 Topics in Integration

holds, provided pn(xi) = 0.
Since ρj �= 0, j = 0, 1, . . . , n − 1, the system of equations (3.6.13) for

wi is equivalent to

(3.6.22) (ṽ(1), . . . , ṽ(n))w = (p0, p0)e1

with w = (w1, . . . , wn)T , e1 = (1, 0, . . . , 0)T .
Eigenvectors of symmetric matrices for distinct eigenvalues are orthog-

onal. Therefore, multiplying (3.6.22) by v(i)T from the left yields

(ṽ(i)T ṽ(i))wi = (p0, p0)ṽ
(i)
1 .

Since ρ0 = 1 and p0(x) ≡ 1, we have ṽ(i)1 = 1. Thus

(3.6.23) (ṽ(i)T ṽ(i))wi = (p0, p0).

Using again the fact that ṽ(i)1 = 1, we find v(i)1 ṽ
(i) = v(i), and multiplying

(3.6.23) by (v(i)1)2 gives

(v(i)T v(i))wi = (v(i)1)2(p0, p0).

Since v(i)T v(i) = (p0, p0) by hypothesis, we obtain wi = (v(i)1)2. ��
If the QR-method is employed for determining the eigenvalues of Jn,

then the calculation of the first components v(i)1 of the eigenvectors v(i)

is readily included in that algorithm: calculating the abscissas xi and the
weights wi can be done concurrently [Golub and Welsch (1969)].

Finally, we will estimate the error of Gaussian integration:

(3.6.24) Theorem. If f ∈ C2n[a, b], then∫ b

a

ω(x)f(x)dx−
n∑
i=1

wif(xi) =
f (2n)(ξ)
(2n)!

(pn, pn)

for some ξ ∈ (a, b).

Proof. Consider the solution h ∈ Π2n−1 of the Hermite interpolation
problem [see Section 2.1.5]

h(xi) = f(xi), h′(xi) = f ′(xi), i = 1, 2, . . . , n.

Since degree h < 2n,∫ b

a

ω(x)h(x)dx =
n∑
i=1

wih(xi) =
n∑
i=1

wif(xi)

by Theorem (3.6.12). Therefore, the error term has the integral represen-
tation

3.7 Integrals with Singularities 181∫ b

a

ω(x)f(x)dx−
n∑
i=1

wif(xi) =
∫ b

a

ω(x)(f(x) − h(x))dx.

By Theorem (2.1.5.9), and since the xi are the roots of pn(x)) ∈ Π̄n,

f(x) − h(x) =
f (2n)(ζ)
(2n)!

(x− x1)2 · · · (x− xn)2 =
f (2n)(ζ)
(2n)!

p2n(x)

for some ζ = ζ(x) in the interval I[x, x1, . . . , xn] spanned by x and x1, . . . ,
xn. Next,

f (2n)(ζ(x))
(2n)!

=
f(x) − h(x)
p2n(x)

is continuous on [a, b] so that the mean-value theorem of integral calculus
applies:∫ b

a

ω(x)(f(x) − h(x))dx =
1

(2n)!

∫ b

a

ω(x)f (2n)(ζ(x))p2n(x)dx

=
f (2n)(ξ)
(2n)!

(pn, pn)

for some ξ ∈ (a, b). ��

Comparing the various integration rules (Newton-Cotes formulas, ex-
trapolation methods, Gaussian integration), we find that, computational
efforts being equal, Gaussian integration yields the most accurate results.
If only one knew ahead of time how to chose n so as to achieve specified
accuracy for any given integral, then Gaussian integration would be clearly
superior to other methods. Unfortunately, it is frequently not possible to
use the error formula (3.6.24) for this purpose, because the 2nth derivative
is difficult to estimate. For these reasons, one will usually apply Gaussian
integration for increasing values of n until successive approximate values
agree within the specified accuracy. Since the function values which had
been calculated for n cannot be used for n+ 1 (at least not in the classical
case ω(x) ≡ 1), the apparent advantages of Gauss integration as compared
with extrapolation methods are soon lost. There have been attempts to
remedy this situation [e.g. Kronrod (1965)]. A collection of fortran pro-
grams is given in Piessens et al. (1983).

3.7 Integrals with Singularities

Examining some frequently used integration methods in this chapter, we
found that their application to a given integral

182 3 Topics in Integration∫ b

a

f(x)dx, a, b finite,

was justified provided the integrand f(x) was sufficiently often differen-
tiable in [a, b]. For many practical problems, however, the function f(x)
turns out to be not differentiable at the end points of [a, b], or at some
isolated point in its interior. In what follows, we suggest several ways of
dealing with this and related situations.

1) f(x) is sufficiently often differentiable on the closed subintervals of a
partition a = a1 < a2 < · · · < am+1 = b. Putting fi(x) :≡ f(x) on [ai, ai+1]
and defining the derivatives of fi(x) at ai as the one-sided right derivative
and at ai+1 as the one-sided left derivative, we find that standard methods
can be applied to integrate the functions fi(x) separately. Finally∫ b

a

f(x)dx =
m∑
i=1

∫ ai+1

ai

fi(x)dx.

2) Suppose there is a point x̃ ∈ [a, b] for which not even one-sided derivatives
of f(x) exist. For instance, the function f(x) =

√
x sinx is such that f ′(x)

will not be continuous for any choice of the value f ′(0). Nevertheless, the
variable transformation t :=

√
x yields

∫ b

0

√
x sinx dx =

∫ √
b

0
2t2 sin t2dt

and leads to an integral with an integrand which is now arbitrarily often
differentiable in [0,

√
b].

3) Another way to deal with the previously discussed difficulty is to
split the integral:∫ b

0

√
x sinx dx =

∫ ε

0

√
x sinx dx+

∫ b

ε

√
x sinx dx, ε > 0.

The second integrand is arbitrarily often differentiable in [ε, b]. The first
integrand can be developed into an uniformly convergent series on [0, ε] so
that integration and summation can be interchanged:∫ ε

0

√
x sinx dx =

∫ ε

0

√
x

(
x− x

3

3!
±· · ·

)
dx =

∞∑
ν=0

(−1)ν
ε2ν+5/2

(2ν + 1)!(2ν + 5/2)
.

For sufficiently small ε, only few terms of the series need be considered.
The difficulty lies in the choice of ε: if ε is selected too small, then the
proximity of the singularity at x = 0 causes the speed of convergence to
deteriorate when we calculate the remaining integral.

3.7 Integrals with Singularities 183

4) Sometimes it is possible to subtract from the integrand f(x) a func-
tion whose indefinite integral is known, and which has the same singularities
as f(x). For the above example, x

√
x is such a function:∫ b

0

√
x sinx dx =

∫ b

0
(
√
x sinx− x

√
x) dx+

∫ b

0
x
√
x dx

=
∫ b

0

√
x (sinx− x) dx+ 2

5b
5/2.

The new integrand has a continuous third derivative and is therefore better
amenable to standard integration methods. In order to avoid cancellation
when calculating the difference sinx− x for small x, it is recommended to
evaluate the power series

sinx− x = −x3
[

1
3!

− 1
5!
x2 ± · · ·

]
= −x3

∞∑
ν=0

(−1)ν

(2ν + 3)!
x2ν .

5) For certain types of singularities, as in the case of

I =
∫ b

0
xαf(x)dx, 0 < α < 1,

with f(x) sufficiently often differentiable on [0, b], the trapezoidal sum T (h)
does not have an asymptotic expansion of the form (3.4.1), but rather of
the more general form (3.5.1):

T (h) ∼ τ0 + τ1hγ1 + τ2hγ2 + · · · ,

where
{ γi } = { 1 + α, 2, 2 + α, 4, 4 + α, 6, 6 + α, . . . }

[see Bulirsch (1964)]. Suitable step-length sequences for extrapolation
methods in this case are discussed in Bulirsch and Stoer (1964).

6) Often the following scheme works surprisingly well: if the integrand
of

I =
∫ b

a

f(x) dx

is not, or not sufficiently often, differentiable for x = a, put

aj := a+
b− a
j
, j = 1, 2, . . . ,

in effect partitioning the half-open interval (a, b] into infinitely many subin-
tervals over which to integrate separately:

Ij :=
∫ aj

aj+1

f(x) dx,

184 3 Topics in Integration

using standard methods. Then

I = I1 + I2 + I3 + · · · .

The convergence of this sequence can often be accelerated using for in-
stance, Aitken’s ∆2 method [see Section 5.10]. Obviously, this scheme can
be adapted to calculating improper integrals∫ ∞

a

f(x) dx.

7) The range of improper integrals can be made finite by suitable trans-
formations. For x = 1/t we have, for instance,∫ ∞

1
f(x) dx =

∫ 1

0

1
t2
f

(
1
t

)
dt.

If the new integrand is singular at 0, then one of the above approaches may
be tried. Note that the Gaussian integration rules based on Laguerre and
Hermite polynomials [see Section 3.6] apply directly to improper integrals
of the forms ∫ ∞

0
f(x) dx,

∫ +∞

−∞
f(x) dx,

respectively.

Exercises for Chapter 3

1. Let a ≤ x0 < x1 < x2 < · · · < xn ≤ b be an arbitrary fixed partition of the
interval [a, b]. Show that there exist unique γ0, γ1, . . . , γn with

n∑
i=0

γiP (xi) =
∫ b

a

P (x)dx

for all polynomials P with degree (P) ≤ n.
Hint : P (x) = 1, x, . . . , xn. Compare the resulting system of linear equations
with that representing the polynomial interpolation problem with support
abscissas xi, i = 0, . . . , n.

2. By construction, the nth Newton-Cotes formula yields the exact value of the
integral for integrands which are polynomials of degree at most n. Show that
for even values of n, polynomials of degree n+ 1 are also integrated exactly.
Hint : Consider the integrand xn+1 in the interval [−k,+k], n = 2k + 1.

3. If f ∈ C2[a, b] then there exists an x̃ ∈ (a, b) such that the error of the
trapezoidal rule is expressed as follows:

1
2 (b− a)(f(a) + f(b)) −

∫ b

a

f(x) dx = 1
12 (b− a)3f ′′(x̃).

Exercises for Chapter 3 185

Derive this result from the error formula in (2.1.4.1) by showing that f ′′(ξ(x))
is continuous in x.

4. Derive the error formula (3.1.6) using Theorem (2.1.5.9). Hint : See Exercise
3.

5. Let f ∈ C6[−1,+1], and let P ∈ Π5 be the Hermite interpolation polynomial
with P (xi) = f(xi), P ′(xi) = f ′(xi), xi = −1, 0, +1.
(a) Show that∫ +1

−1

P (t)dt = 7
15f(−1) + 16

15f(0) + 7
15f(+1) + 1

15f
′(−1) − 1

15f
′(+1).

(b) By construction, the above formula represents an integration rule which
is exact for all polynomials of degree 5 or less. Show that it need not be
exact for polynomials of degree 6.

(c) Use Theorem (2.1.5.9) to derive an error formula for the integration rule
in (a).

(d) Given a uniform partition xi = a+ ih, i = 0, . . . , 2n, h = (b− a)/2n, of
the interval [a, b], what composite integration rule can be based on the
integration rule in (a) ?

6. Consider an arbitrary partition ∆ := { a = x0 < · · · < xn = b } of a given
interval [a, b]. In order to approximate∫ b

a

f(t)dt

using the function values f(xi), i = 0, . . . , n, spline interpolation [see Section
2.4] may be considered. Derive an integration rule in terms of f(xi) and the
moments (2.4.2.1) of the “natural” spline (2.4.1.2a).

7. Determine the Peano kernel for Simpson’s rule and n = 2 instead of n = 3
in [−1,+1]. Does it change sign in the interval of integration?

8. Consider the integration rule of Exercise 5.
(a) Show that its Peano kernel does not change its sign in [−1,+1].
(b) Use (3.2.8) to derive an error term.

9. Prove
n∑

k=0

k3 =

(
n(n+ 1)

2

)2

using the Euler-Macluarin summation formula.
10. Integration over the interval [0, 1] by Romberg’s method using Neville’s al-

gorithm leads to the tableau

h2
0 = 1 T00 = T (h0)

T11

h2
1 = 1

4 T10 = T (h1) T22
↘

T21 T33↘ ↗
h2

2 = 1
16 T20 = T (h2) T32

...↘ ↗
T31

...↗
h2

3 = 1
64 T30 = T (h3) ...

...
...

186 3 Topics in Integration

In Section 3.4, it is shown that T11 is Simpson’s rule.
(a) Show that T22 is Milne’s rule.
(b) Show that T33 is not the Newton-Cotes formula for n = 8.

11. Let h0 := b−a, h1 := h0/3. Show that extrapolating T (h0) and T (h1) linearly
to h = 0 gives the 3/8-rule.

12. One wishes to approximate the number e by an extrapolation method.
(a) Show that T (h) := (1 + h)1/h, h �= 0, |h| < 1, has an expansion of the

form

T (h) = e+
∞∑

i=1

τih
i

which converges if |h| < 1.
(b) Modify T (h) in such a way that extrapolation to h = 0 yields, for a fixed

value x, an approximation to ex.
13. Consider integration by a polynomial extrapolation method based on a ge-

ometric step-size sequence hj = h0b
j , j = 0, 1, . . . , 0 < b < 1. Show that

small errors ∆Tj in the computation of the trapezoidal sums T (hj), j = 0, 1,
. . . , m, will cause an error ∆Tmm in the extrapolated value Tmm satisfying

|∆Tmm| ≤ Cm(b2) max
0≤j≤m

|∆Tj |,

where Cm(θ) is the constant given in (3.5.5). Note that Cm(θ) → ∞ as θ → 1,
so that the stability of the extrapolation method deteriorates sharply as b
approaches 1.

14. Consider a weight function ω(x) ≥ 0 which satisfies (3.6.1a) and (3.6.1b).
Show that (3.6.1c) is equivalent to∫ a

b

ω(x)dx > 0.

Hint : The mean-value theorem of integral calculus applied to suitable subin-
tervals of [a, b].

15. The integral

(f, g) :=
∫ +1

−1

f(x)g(x)dx

defines a scalar product for functions f , g ∈ C[−1,+1]. Show that if f and g
are polynomials of degree less than n, if xi, i = 1, 2, . . . , n, are the roots of
the nth Legendre polynomial (3.6.18), and if

γi :=
∫ +1

−1

Li(x)dx

with

Li(x) :=
n∏

k �=i
k=1

x− xk

xi − xk
, i = 1, 2, . . . , n,

then

(f, g) =
n∑

i=1

γif(xi)g(xi).

Exercises for Chapter 3 187

16. Consider the Legendre polynomials pj(x) in (3.6.18).
(a) Show that the leading coefficient of pj(x) has value 1.
(b) Verify the orthogonality of these polynomials: (pi, pj) = 0 if i < j.

Hint : Integration by parts, noting that

d2i+1

dx2i+1 (x2 − 1)i ≡ 0

and that the polynomial
dl

dxl
(x2 − 1)k

is divisible by x2 − 1 if l < k.
17. Consider Gaussian integration, [a, b] = [−1, 1], ω(x) ≡ 1.

(a) Show that δi = 0 for i > 0 in the recursion (3.6.5) for the corresponding
orthogonal polynomials pj(x) (3.6.18). Hint : pj(x) ≡ (−1)j+1pj(−x).

(b) Verify ∫ +1

−1

(x2 − 1)jdx =
(−1)j22j+1(
2j
j

)
(2j + 1)

.

Hint : Repeated integration by parts of the integrand (x2 − 1)j ≡ (x +
1)j(x− 1)j .

(c) Calculate (pj , pj) using integration by parts [see Exercise 16] and the
result (b) of this exercise. Show that

γ2
j =

j2

(2j + 1)(2j − 1)

for j > 0 in the recursion (3.6.5).
18. Consider Gaussian integration in the interval [−1,+1] with the weight func-

tion
ω(x) ≡ 1√

1 − x2
.

In this case, the orthogonal polynomials pj(x) are the classical Chebyshev
polynomials T0(x) ≡ 1, T1(x) ≡ x, T2(x) ≡ 2x2 − 1, T3(x) ≡ 4x3 − 3x, . . . ,
Tj+1(x) ≡ 2xTj(x) − Tj−1(x), up to scalar factors.
(a) Prove that pj(x) ≡ (1/2j−1)Tj(x) for j ≥ 1. What is the form of the

tridiagonal matrix (3.6.19) in this case ?
(b) For n = 3, determine the equation system (3.6.13). Verify that w1 =

w2 = w3 = π/3. (In the Chebyshev case, the weights wi are equal for
general n).

19. Denote by T (f ;h) the trapezoidal sum of step length h for the integral∫ 1

0

f(x) dx.

For α > 1, T (xα;h) has the asymptotic expansion

T (xα;h) ∼
∫ 1

0

xαdx+ a1h
1+α + a2h

2 + a4h
4 + a6h

6 + · · · .

188 3 Topics in Integration

Show that, as a consequence, every function f(x) which is analytic on a disk
|z| ≤ r in the complex plane with r > 1 admits an asymptotic expansion of
the form

T (xαf(x);h) ∼
∫ 1

0

xαf(x)dx+ b1h
1+α + b2h

2+α + b3h
3+α + · · ·

+ c2h
2 + c4h

4 + c6h
6 + · · · .

Hint : Expand f(x) into a power series and apply T (ϕ + ψ;h) = T (ϕ;h) +
T (ψ;h).

References for Chapter 3

Abramowitz, M., Stegun, I. A. (1964): Handbook of Mathematical Functions. Na-
tional Bureau of Standards, Applied Mathematics Series 55, Washington, D.C.:
US Government Printing Office, 6th printing 1967.

Bauer, F. L., Rutishauser, H., Stiefel, E. (1963): New aspects in numerical quadra-
ture. Proc. of Symposia in Applied Mathematics 15, 199–218, Amer. Math. Soc.

Brezinski, C., Zaglia, R. M. (1991): Extrapolation Methods, Theory and Practice.
Amsterdam: North Holland.

Bulirsch, R. (1964): Bemerkungen zur Romberg-Integration. Numer. Math. 6,
6–16.

, Stoer, J. (1964): Fehlerabschätzungen und Extrapolation mit rationalen
Funktionen bei Verfahren vom Richardson- Typus. Numer. Math. 6, 413–427.

, (1967): Numerical quadrature by extrapolation. Numer. Math.
9, 271–278.

Davis, Ph. J. (1963): Interpolation and Approximation. New York: Blaisdell, 2d
printing (1965).

, Rabinowitz, P. (1975): Methods of Numerical Integrations. New York:
Academic Press.

Erdelyi, A. (1956): Asymptotic Expansions. New York: Dover.
Gautschi, W. (1968): Construction of Gauss-Christoffel quadrature formulas.

Math. Comp. 22, 251–270.
(1970): On the Construction of Gaussian quadrature rules from modified

moments. Math. Comp. 24, 245–260.
Golub, G. H., Welsch, J. H. (1969): Calculation of Gauss quadrature rules. Math.

Comp. 23, 221–230.
Gradshteyn, I. S., Ryzhik, I. M. (1980): Table of Integrals, Series and Products.

New York: Academic Press.
Gröbner, W., Hofreiter, N. (1961): Integraltafel, 2 vols. Berlin, Heidelberg, New

York: Springer-Verlag.
Henrici, P. (1964): Elements of Numerical Analysis. New York: Wiley.
Kronrod, A. S. (1965): Nodes and Weights of Quadrature Formulas. Authorized

translation from the Russian. New York: Consultants Bureau.
Olver, F. W. J. (1974): Asymptotics and Special Functions. New York: Academic

Press.
Piessens, R., de Doncker, E., Überhuber, C. W., Kahaner, D. K. (1983): Quad-

pack. A Subroutine Package for Automatic Integration. Berlin, Heidelberg, New
York: Springer-Verlag.

References for Chapter 3 189

Romberg, W. (1955): Vereinfachte numerische Integration. Det. Kong. Norske
Videnskabers Selskab Forhandlinger 28, Nr. 7, Trondheim.

Schoenberg, I. J. (1969): Monosplines and quadrature formulae. In: Theory and
applications of spline functions. Ed. by T. N. E. Greville. 157–207. New York:
Academic Press.

Steffensen, J. F. (1927): Interpolation. New York: Chelsea, 2d edition (1950).
Stroud, A. H., Secrest, D. (1966): Gaussian Quadrature Formulas. Englewood

Cliffs, NJ: Prentice Hall.
Szegö, G. (1959): Orthogonal Polynomials. New York: Amer. Math. Soc.

4 Systems of Linear Equations

In this chapter direct methods for solving systems of linear equations

Ax = b, A =

a11 · · · a1n
· ·
· ·
· ·
an1 · · · ann

 , b =

b1
·
·
·
bn

will be presented. Here A is a given n× n matrix, and b is a given vector.
We assume in addition that A and b are real, although this restriction is
inessential in most of the methods. In contrast to the iterative methods
(Chapter 8), the direct methods discussed here produce the solution in
finitely many steps, assuming computations without roundoff errors.

This problem is closely related to that of computing the inverse A−1 of
the matrix A provided this inverse exists. For if A−1 is known, the solution
x of Ax = b can be obtained by matrix vector multiplication, x = A−1b.
Conversely, the ith column āi of A−1 = [ā1, . . . , ān] is the solution of the
linear system Ax = ei, where ei = (0, . . . , 0, 1, 0, . . . 0)T is the ith unit
vector.

A general introduction to numerical linear algebra is given in Golub
and van Loan (1983) and Stewart (1973). algol programs are found in
Wilkinson and Reinsch (1971), fortran programs in Dongarra, Bunch,
Moler, and Stewart (1979) (linpack), and in Andersen et al. (1992) (la-

pack).

4.1 Gaussian Elimination. The Triangular
Decomposition of a Matrix

In the method of Gaussian elimination for solving a system of linear equa-
tions

(4.1.1) Ax = b ,

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 191

where A is an n× n matrix and b ∈ IRn, the given system (4.1.1) is trans-
formed in steps by appropriate rearrangements and linear combinations of
equations into a system of the form

Rx = c, R =

 r11 . . . r1n
. . .

...
0 rnn

which has the same solution as (4.1.1). R is an upper triangular matrix, so
that Rx = c can easily be solved by “back substitution” (so lang as rii �= 0,
i = 1, . . . , n):

xi :=
(
ci −

n∑
k=i+1

rikxk

)/
rii for i = n, n− 1, . . . , 1 .

In the first step of the algorithm an appropriate multiple of the first
equation is subtracted from all of the other equations in such a way that
the coefficients of x1 vanish in these equations; hence, x1 remains only in
the first equation. This is possible only if a11 �= 0, of course, which can be
achieved by rearranging the equations if necessary, as long as at least one
ai1 �= 0. Instead of working with the equations themselves, the operations
are carried out on the matrix

(A, b) =

 a11 . . . a1n b1
...

...
...

an1 . . . ann bn

which corresponds to the full system given in (4.1.1). The first step of the
Gaussian elimination process leads to a matrix (A′, b′) of the form

(4.1.2) (A′, b′) =

a′
11 a′

12 . . . a′
1n b′1

0 a′
22 . . . a′

2n b′2
...

...
...

...
0 a′

n2 . . . a′
nn b′n

 ,
and this step can be described formally as follows:

(4.1.3)

(a) Determine an element ar1 �= 0 and proceed with (b); if no such r exists,
A is singular; set (A′, b′) := (A, b); stop.

(b) Interchange rows r and 1 of (A, b). The result is the matrix (Ā, b̄).

(c) For i = 2, 3, . . . , n, subtract the multiple

li1 := āi1/ā11

192 4 Systems of Linear Equations

of row 1 from row i of the matrix (Ā, b̄). The desired matrix (A′, b′) is
obtained as the result.
The transition (A, b) → (Ā, b̄) → (A′, b′) can be described by using

matrix multiplications:

(4.1.4) (Ā, b̄) = P1(A, b), (A′, b′) = G1(Ā, b̄) = G1P1(A, b),

where P1 is a permutation matrix, and G1 is a lower triangular matrix:
(4.1.5)

P1 :=

0 1 0
1

. . .
1

1 0
1

. . .
0 1

← r,

G1 :=

1 0

−l21 1
...

. . .
−ln1 0 · · · 1

 .

Matrices such as G1, which differ in at most one column from an iden-
tity matrix, are called Frobenius matrices. Both matrices P1 and G1 are
nonsingular; in fact

P−1
1 = P1, G−1

1 =

1 0
l21 1
...

. . .
ln1 0 · · · 1

 .
For this reason, the equation systems Ax = b and A′x = b′ have the

same solution: Ax = b implies A′x = G1P1Ax = G1P1b = b′, and A′x = b′

implies Ax = P−1
1 G−1

1 A′x = P−1
1 G−1

1 b′ = b.
The element ar1 = ā11 which is determined in (a) is called the pivot

element (or simply the pivot), and step (a) itself is called pivot selection
(or pivoting). In the pivot selection one can, in theory, choose any ar1 �= 0
as the pivot element. For reasons of numerical stability [see Section 4.5]
it is not recommended that an arbitrary ar1 �= 0 be chosen. Usually the
choice ∣∣ar1∣∣ = max

i

∣∣ai1∣∣
is made; that is, among all candidate elements the one of largest absolute
value is selected. (It is assumed in making this choice however — see Sec-
tion 4.5 — that the matrix A is “equilibrated”, that is, that the orders of
magnitudes of the elements of A are “roughly equal”.) This sort of pivot
selection is called partial pivot selection (or partial pivoting), in contrast
to complete pivot selection (or complete pivoting), in which the search for

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 193

a pivot is not restricted to the first column; that is, (a) and (b) in (4.1.3)
are replaced by (a′) and (b′):
(a′) Determine r and s so that ∣∣ars∣∣ = max

i,j

∣∣aij∣∣
and continue with (b′) if ars �= 0. Otherwise A is singular; set
(A′, b′) := (A, b); stop.

(b′) Interchange rows 1 and r of (A, b), as well as columns 1 and s. Let the
resulting matrix be (Ā, b̄).

After the first elimination step, the resulting matrix has the form (4.1.2):

(A′, b′) =

 a′
11 a′T b′1

0 Ã b̃

with an (n − 1)-row matrix Ã. The next elimination step consists simply
of applying the process described in (4.1.3) for (A, b) to the smaller matrix
(Ã, b̃). Carrying on in this fashion, a sequence of matrices

(A, b) := (A(0), b(0)) → (A(1), b(1)) → · · · → (A(n−1), b(n−1)) =: (R, c),

is obtained which begins with the given matrix (A, b) (4.1.1) and ends with
the desired matrix (R, c). In this sequence the jth intermediate matrix
(A(j), b(j)) has the form
(4.1.6)

(A(j), b(j)) =

∗ · · · ∗ ∗ · · · ∗ ∗
. . .

...
...

...
...

0 ∗ ∗ · · · ∗ ∗

0 · · · 0 ∗ · · · ∗ ∗
...

...
...

...
...

0 · · · 0 ∗ · · · ∗ ∗

=

 A
(j)
11 A

(j)
12 b

(j)
1

0 A
(j)
22 b

(j)
2

with a j-row upper triangular matrix A(j)
11 . (A(j), b(j)) is obtained from

(A(j−1), b(j−1)) by applying (4.1.3) on the (n− j + 1) × (n− j + 2) matrix
(A(j−1)

22 , b
(j−1)
2). The elements of A(j)

11 , A(j)
12 , b(j)1 do not change from this

step on; hence they agree with the corresponding elements of (R, c). As in
the first step, (4.1.4) and (4.1.5), the ensuing steps can be described using
matrix multiplication. As can be readily seen

(4.1.7)
(A(j), b(j)) = GjPj(A(j−1), b(j−1)),

(R, c) = Gn−1Pn−1Gn−2Pn−2 · · ·G1P1(A, b) ,

194 4 Systems of Linear Equations

with permutation matrices Pj and nonsingular Frobenius matrices Gj of
the form

(4.1.8) Gj =

1 0
. . .

1
−lj+1,j 1

...
...

. . .
0 −ln,j 0 1

.

In the jth elimination step (A(j−1), b(j−1)) → (A(j), b(j)) the elements below
the diagonal in the jth column are annihilated. In the implementation of
this algorithm on a computer, the locations which were occupied by these
elements can now be used for the storage of the important quantities lij ,
i ≥ j + 1, of Gj ; that is, we work with a matrix of the form

T (j) =

r11 r12 · · · r1j r1,j+1 · · · r1n c1

λ21 r22 · · · r2j
...

...
...

λ31 λ32
...

...
...

...
...

... rjj rj,j+1 · · · rj,n cj

...
... λj+1,j a

(j)
j+1,j+1 · · · a

(j)
j+1,n b

(j)
j+1

...
...

...
...

...
...

λn1 λn2 · · · λn1 a
(j)
n,j+1 · · · a

(j)
n,n b

(j)
n

Here the subdiagonal elements λk+1,k, λk+2,k, . . ., λnk of the kth column
are a certain permutation of the elements lk+1,k, . . ., ln,k in Gk (4.1.8).

Based on this arrangement, the jth step T (j−1) → T (j), j = 1, 2, . . . ,
n− 1, can be described as follows (for simplicity the elements of T (j−1) are
denoted by tik, and those of T (j) by t′ik, 1 ≤ i ≤ n, 1 ≤ k ≤ n+ 1):

(a) Partial pivot selection: Determine r so that∣∣trj∣∣ = max
i≥j

∣∣tij∣∣.
If trj = 0, set T (j) := T (j−1); A is singular: stop. Otherwise carry on
with (b).

(b) Interchange rows r and j of T (j−1), and denote the result by T̄ = (t̄ik).

(c) Replace

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 195

t′ij := lij := t̄ij/t̄jj for i = j + 1, j + 2, . . . , n,

t′ik := t̄ik − lij t̄jk for i = j + 1, . . . , n and k = j + 1, . . . , n+ 1,

t′ik = t̄ik otherwise.

We note that in (c) the important elements lj+1,j , . . ., lnj of Gj are
stored in their natural order as t′j+1,j,...,t

′
nj . This order may, however, be

changed in the subsequent elimination steps T (k) → T (k+1), k ≥ j, because
in (b) the rows of the entire matrix T (k) are rearranged. This has the
following effect: The lower triangular matrix L and the upper triangular
matrix R,

L :=

1 0
t21 1
...

.
tn1 · · · tn,n−1 1

 , R :=

t11 · · · · · · t1n

. . .
...

. . .
...

0 tnn

 ,
which are contained in the final matrix T (n−1) = (tik), provide a triangular
decomposition of the matrix PA:

(4.1.9) LR = PA.

In this decomposition P is the product of all of the permutations appearing
in (4.1.7):

P = Pn−1Pn−2 · · ·P1.

We will only show here that a triangular decomposition is produced
if no row interchanges are necessary during the course of the elimination
process, i.e., if P1 = · · · = Pn−1 = P = I. In this case,

L =

1 0
l21 1
...

.
ln1 · · · ln,n−1 1

 ,
since in all of the minor steps (b) nothing is interchanged. Now, because of
(4.1.7),

R = Gn−1 · · ·G1A,

therefore

(4.1.10) G−1
1 · · ·G−1

n−1R = A.

Since

196 4 Systems of Linear Equations

G−1
j =

1 0
. . .

1
lj+1,j 1

...
. . .

0 ln,j 1

it is easily verified that

G−1
1 G−1

2 · · ·G−1
n−1 =

1 0
l21 1
...

.
ln1 · · · ln,n−1 1

 = L.

Then the assertion follows from (4.1.10).

Example. [
3 1 6
2 1 3
1 1 1

][
x1
x2
x3

]
=

[
2
7
4

]
,

3∗ 1 6 2

2 1 3 7

1 1 1 4

 →

3 1 6 2

2
3

1
3 −1 17

3

1
3

2
3

∗ −1 10
3

 →

3 1 6 2

1
3

2
3 −1 10

3

2
3

1
2 − 1

2
∗ 4

 .
The pivot elements are marked. The triangular equation system is 3 1 6

0 2
3 −1

0 0 − 1
2

x1

x2

x3

 =

 2
10
3

4

 .
Its solution is

x3 = −8,

x2 = 3
2 (10

3 + x3) = −7,

x1 = 1
3 (2 − x2 − 6x3) = 19.

Further

P =

[
1 0 0
0 0 1
0 1 0

]
, PA =

[
3 1 6
1 1 1
2 1 3

]
,

and the matrix PA has the triangular decomposition PA = LR with

L =

 1 0 0
1
3 1 0
2
3

1
2 1

 , R =

 3 1 6
0 2

3 −1
0 0 − 1

2

 .

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 197

Triangular decompositions (4.1.9) are of great practical importance in
solving systems of linear equations. If the decomposition (4.1.9) is known
for a matrix A (that is, the matrices L, R, P are known), then the equation
system Ax = b can be solved immediately with any right-hand side b ; for
it follows that

PAx = LRx = Pb,

from which x can be found by solving both of the triangular systems

Lu = Pb, Rx = u

(provided all rii �= 0).
Thus, with the help of the Gaussian elimination algorithm, it can be

shown constructively that each square nonsingular matrix A has a trian-
gular decomposition of the form (4.1.9). However, not every such matrix A
has a triangular decomposition in the more narrow sense A = LR, as the
example

A =
[

0 1
1 0

]
shows. In general, the rows of A must be permuted appropriately at the
outset.

The triangular decomposition (4.1.9) can be obtained directly without
forming the intermediate matrices T (j). For simplicity, we will show this
under the assumption that the rows of A do not have to be permuted in
order for a triangular decomposition A = LR to exist. The equations A =
LR are regarded as n2 defining equations for the n2 unknown quantities

rik, i ≤ k,
lik, i ≥ k (lii = 1);

that is, for all i, k = 1, 2, . . . , n

(4.1.11) aik =
min(i,k)∑
j=1

lijrjk (lii = 1).

The order in which the lij , rjk are to be computed remains open. The
following versions are common:

In the Crout method the n × n matrix A = LR is partiotioned as
follows:

1
3
5
7

2 4 6 8 9

198 4 Systems of Linear Equations

and the equations A = LR are solved for L and R in an order indicated by

this partitioning:

1. a1i =
1∑
j=1

l1jrji, r1i := a1i, i = 1, 2, . . . , n,

2. ai1 =
1∑
j=1

lijrj1, li1 := ai1/r11, i = 2, 3, . . . , n,

3. a2i =
2∑
j=1

l2jrji, r2i := a2i − l21r1i, i = 2, 3, . . . , n, etc.

And in general, for i = 1, 2, . . . , n,

(4.1.12)

rik := aik −
i−1∑
j=1

lijrjk, k = i, i+ 1, . . . , n,

lki :=
(
aki −

i−1∑
j=1

lkjrji

)/
rii, k = i+ 1, i+ 2, . . . , n.

In all of the steps above lii = 1 for i = 1, 2. . . . , n.

In the Banachiewicz method, the partitioning

1

2 3

4 5

6 7

8 9

is used; that is, L and R are computed by rows.
The formulas above are valid only if no pivot selections is carried out.

Triangular decomposition by the methods of Crout or Banachiewicz with
pivot selection leads to more complicated algorithms; see Wilkinson (1965).

Gaussian elimination and direct triangular decomposition differ only in
the ordering of operations. Both algorithms are, theoretically and numeri-
cally, entirely equivalent. Indeed, the jth partial sums

(4.1.13) a
(j)
ik := aik −

j∑
s=1

lisrsk

of (4.1.12) produce precisely the elements of the matrix A(j) in (4.1.6), as
can easily be verified. In Gaussian elimination, therefore, the scalar prod-
ucts (4.1.12) are formed only in pieces, with temporary storing of the inter-
mediate results; direct triangular decomposition, on the other hand, forms

4.1 Gaussian Elimination. The Triangular Decomposition of a Matrix 199

each scalar product as a whole. For these organizational reasons, direct tri-
angular decomposition must be preferred if one chooses to accumulate the
scalar products in double-precision arithmetic in order to reduce round-
off errors (without storing double-precision intermediate results). Further,
these methods of triangular decomposition require about n3/3 operations
(1 operation = 1 multiplication + 1 addition). Thus, they also offer a simple
way of evaluating the determinant of a matrix A: From (4.1.9) it follows,
since det(P) = ±1, det(L) = 1, that

det(PA) = ±det(A) = det(R) = r11r22 · · · rnn.

Up to its sign, det(A) is exactly the product of the pivot elements. (It
should be noted that the direct evaluation of the formula

det(A) =
n∑

µ1,...,µn=1
µi �=µk für i�=k

sign(µ1, . . . , µn)a1µ1a2µ2 · · · anµn

requires n! � n3/3 operations.)
In the case that P = I, the pivot elements rii are representable as

quotients of the determinants of the principal submatrices of A. If, in the
representation LR = A, the matrices are partitioned as follows:[

L11 0
L21 L22

] [
R11 R12
0 R22

]
=
[
A11 A21
A12 A22

]
,

it is found that L11R11 = A11; hence det(R11) = det(A11), or

r11 · · · rii = det(A11),

if A11 is an i× i matrix. In general, if Ai denotes the ith leading principal
submatrix of A, then

rii = det(Ai)/ det(Ai−1), i ≥ 2,
r11 = det(A1).

A further practical and important property of the method of triangular
decomposition is that, for band matrices with bandwidth m,

A =

∗ · · · ∗ 0
...

.

∗
. ∗

.
...

0 ∗ · · · ∗

,}
m

aij = 0 for |i− j| ≥ m,

200 4 Systems of Linear Equations︸ ︷︷ ︸
m

the matrices L and R of the decomposition LR = PA of A are not full: R
is a band matric with bandwidth 2m− 1,

R =

∗ · · · ∗ 0 · · · 0
.

...
. 0

. . . ∗
. . .

...
0 ∗

, 2m−1

and in each column of L there are at mostm elements different from zero. In
contrast, the inverses A−1 of band matrices are usually filled with nonzero
entries.

Thus, if m � n, using the triangular decomposition of A to solve
Ax = b results in a considerable saving in computation and storage over
using A−1. Additional savings are possible by making use of the symmetry
of A if A is a positive definite matrix (see Sections 4.3 and 4.A).

4.2 The Gauss-Jordan Algorithm

In practice, the inverse A−1 of a nonsingular n×nmatrix A is not frequently
needed. Should a particular situation call for an inverse, however, it may be
readily calculated using the triangular decomposition described in Section
4.1 or using the Gauss-Jordan algorithm, which will be described below.
Both methods require the same amount of work.

If the triangular decomposition PA = LR of (4.1.9) is available, then
the ith column āi of A−1 is obtained as the solution of the system

(4.2.1) LRāi = Pei ,

where ei is the ith coordinate vector. If the simple structure of the right-
hand side of (4.2.1), Pei, is taken into account, then the n equation systems
(4.2.1) (i = 1, . . . , n) can be solved in about 2

3n
3 operations. Adding

the cost of producing the decomposition gives a total of n3 operations
to determaine A−1. The Gauss-Jordan method requires this amount of
work, too, and offers advantages only of an organizational nature. The
Gauss-Jordan method is obtained if one attempts to invert the mapping
x �→ Ax = y, x ∈ IRn, y ∈ IRn, determined by A in a systematic manner.
Consider the system Ax = y:

4.2 The Gauss-Jordan Algorithm 201

(4.2.2)

a11x1 + · · · + a1nxn = y1,

...
an1x1 + · · · + annxn = yn .

In the first step of the Gauss-Jordan method, the variable x1 is exchanged
for one of the variables yr. To do this, an ar1 �= 0 is found, for example by
partial pivot selection

|ar1| = max
i

|ai1|,

and equations r and 1 of (4.2.2) are interchanged. In this way, a system

(4.2.3)

ā11x1 + · · · + ā1nxn = ȳ1,

...
ān1x1 + · · · + ānnxn = ȳn

is obtained in which the variables ȳ1, . . . , ȳn are a permutation of y1, . . . ,
yn and ā11 = ar1, ȳ1 = yr holds. Now, ā11 �= 0, for otherwise we would have
ai1 = 0 for all i, making A singular, contrary to assumption. By solving the
first equation of (4.2.3) for x1 and substituting the result into the remaining
equations, the system

(4.2.4)

a′
11ȳ1 + a′

12x2 + · · · + a′
1nxn = x1

a′
21ȳ1 + a′

22x2 + · · · + a′
2nxn = ȳ2

...
a′
n1ȳ1 + a′

n2x2 + · · · + a′
nnxn = ȳn

is obtained with

(4.2.5)
a′
11 :=

1
ā11
, a′

1k := − ā1k
ā11
, a′

i1 :=
āi1
ā11
,

a′
ik := āik − āi1ā1k

ā11
for i, k = 2, 3, . . . , n.

In the next step, the vaiable x2 is exchanged for one of the variables
ȳ2, . . . , ȳn; then x3 is exchanged for one of the remaining y variables, and
so on. If the successive equation systems are represented by their matrices,
then starting from A(0) := A, a sequence

A(0) → A(1) → · · · → A(n).

is obtained. The matrix A(j) = (a(j)ik) stands for the matrix of a “mixed
equation system” of the form

202 4 Systems of Linear Equations

(4.2.6)

a
(j)
11 ỹ1 + · · ·+ a

(j)
1j ỹj+ a

(j)
1,j+1xj+1 + · · · + a

(j)
1nxn = x1,

...
a
(j)
j1 ỹ1 + · · ·+ a

(j)
jj ỹj+ a

(j)
j,j+1xj+1 + · · · + a

(j)
jn xn = xj ,

a
(j)
j+1,1ỹ1 + · · · + a(j)j+1,j ỹj + a(j)j+1,j+1xj+1 + · · · + a(j)j+1,nxn = ỹj+1,

...
a
(j)
n1 ỹ1 + · · ·+ a

(j)
nj ỹj+ a

(j)
n,j+1xj+1 + · · · + a

(j)
nnxn = ỹn.

In this system (ỹ1, . . . , ỹj , ỹj+1, . . . , ỹn) is a certain permutation of the
original variables (y1, . . . , yn). In the transition A(j−1) → A(j) the variable
xj is exchanged for ỹj . Thus, A(j) is obtained from A(j−1) according to the
rules given below. For simplicity, the elements of A(j−1) are denoted by aik,
and those of A(j) are denoted by a′

ik.

(4.2.7)

(a) Partial pivot selection: Determine r so that

|arj | = max
i≥j

|aij |.

If arj = 0, the matrix is singular. Stop.

(b) Interchange rows r and j of A(j−1), and call the result Ā = (āik).

(c) Compute A(j) = (a′
ik) according to the formulas [compare with (4.2.5)]

a′
jj := 1/ājj ,

a′
jk = − ājk

ājj
, a′

ij =
āij
ājj

for i, k �= j,

a′
ik = āik − āij ājk

ājj
.

(4.2.6) implies that

(4.2.8) A(n)ŷ = x, ŷ = (ŷ1, . . . , ŷn)T ,

where ŷ1, . . . , ŷn is a certain permutation of the original variables y1, . . . ,
yn, ŷ = Py which, since it corresponds to the interchange step (4.2.7b),
can easily be determined. From (4.2.8) it follows that

(A(n)P)y = x,

and therefore, since Ax = y,

A−1 = A(n)P.

4.2 The Gauss-Jordan Algorithm 203

Example.

A = A(0) :=

[
1∗ 1 1
1 2 3
1 3 6

]
→ A(1) =

[
1 −1 −1
1 1∗ 2
1 2 5

]

→ A(2) =

[
2 −1 1

−1 1 −2
−1 2 1∗

]
→ A(3) =

[
3 −3 1

−3 5 −2
1 −2 1

]
= A−1.

The pivot elements are marked.

The following algol program is a formulation of the Gauss-Jordan
method with partial pivoting. The inverse of the n× n matrix A is stored
back into A. The array p[i] serves to store the information about the row
permutations which take place.

for j := 1 step 1 until n do p[j] := j;
for j := 1 step 1 until n do
begin

pivotsearch:
max := abs (a[j, j]); r := j;
for i := j + 1 step 1 until n do

if abs (a[i, j]) greater max then
begin max := abs (a[i, j]);

r := i;
end;

if max = 0 then goto singular;
rowinterchange:
if r > j then
begin for k := 1 step 1 until n do

begin
hr := a[j, k]; a[j, k] := a[r, k];
a[r, k] := hr;

end;
hi := p[j]; p[j] := p[r]; p[r] := hi;

end;
transformation:
hr := 1/a[j, j];
for i := 1 step 1 until n do a[i, j] := hr × a[i, j];
a[j, j] := hr;
for k := 1 step 1 until j − 1, j + 1 step 1 until n do
begin

for i := 1 step 1 until j − 1, j + 1 step 1 until n do

204 4 Systems of Linear Equations

a[i, k] := a[i, k] − a[i, j] × a[j, k];
a[j, k] := −hr × a[j, k];

end k;
end j;
columninterchange:
for i := 1 step 1 until n do
begin

for k := 1 step 1 until n do hv[p[k]] := a[i, k];
for k := 1 step 1 until n do a[i, k] := hv[k];

end;

4.3 The Choleski Decomposition

The methods discussed so far for solving equations can fail if no pivot
selection is carried out, i.e. if we restrict ourselves to taking the diagonal
elements in order as pivots. Even if no failure occurs, as we will show in the
next sections, pivot selection is advisable in the interest of numerical sta-
bility. However, there is an important class of matrices for which no pivot
selection is necessary in computing triangular factors: the choice of each
diagonal element in order always yields a nonzero pivot element. Futher-
more, it is numerically stable to use these pivots. We refer to the class of
positive definite matrices.

(4.3.1) Definition. A (complex) n×n matrix is said to be positive definite
if it satisfies:
(a) A = AH , i.e. A is a Hermitian matrix.
(b) xHAx > 0 for all x ∈ Cn, x �= 0.
A = AH is called positive semidefinite if xHAx ≥ 0 holds for all x ∈ Cn.

(4.3.2) Theorem. For any positive definite matrix A the matrix A−1 ex-
ists and is also positive definite. All principal submatrices of a positive def-
inite matrix are also positive definite, and all principal minors of a positive
definite matrix are positive.

Proof. The inverse of a positive definite matrix A exists: If this were
not the case, an x �= 0 would exist with Ax = 0 and xHAx = 0, in
contradiction to the definiteness of A. A−1 is positive definite: We have
(A−1)H = (AH)−1 = A−1, and if y �= 0 it follows that x = A−1y �= 0.
Hence yHA−1y = xHAHA−1Ax = xHAx > 0. Every principal submatrix

Ã =

 ai1i1 · · · ai1ik
...

...
aiki1 · · · aikik

4.3 The Choleski Decomposition 205

of a positive definite matrix A is also positive definite: Obviously ÃH = Ã.
Moreover, every

x̃ =

 x̃1
...
x̃k

 ∈ Ck, x̃ �= 0,

can be expanded to

x =

 x1
...
xn

 ∈ Cn, x �= 0, xµ :=
{
x̃j for µ = ij , j = 1, . . . , k,
0 otherwise,

and it follows that
x̃HÃx̃ = xHAx > 0.

In order to complete the proof of (4.3.2) then, it suffices to show that
det(A) > 0 for positive definite A. This is shown by using induction on n.

For n = 1 this is true from (4.3.1b). Now assume that the theorem is
true for positive definite matrices of order n − 1, and let A be a positive
definite matrix of order n. According to the preceding parts of the proof,

A−1 =:

 α11 · · · α1n
...

...
αn1 · · · αnn

is positive definite, and consequently α11 > 0. As is well known,

α11 = det

 a22 · · · a2n
...

...
an2 · · · ann

/
det(A).

By the induction assumption, however,

det

 a22 · · · a2n
...

...
an2 · · · ann

 > 0,

and hence det(A) > 0 follows from α11 > 0. ��
(4.3.3) Theorem. For each n × n positive definite matrix A there is a
unique n × n lower triangular matrix L, lik = 0 for k > i, with lii > 0,
i = 1, 2, . . . , n, satisfying A = LLH . If A is real, so is L.

Note that lii = 1 is not required. The matrix L is called the Choleski
factor of A, and A = LLH its Choleski decomposition.

Proof. The theorem is established by induction on n. For n = 1 the
theorem is trivial: A positive definite 1 × 1 matrix A = (α) is a positive
numer α > 0, which can be written uniqely in the form

206 4 Systems of Linear Equations

α = l11l11, l11 = +
√
α.

Assume that the theorem is true for positive matrices of order n − 1 ≥ 1.
An n× n positive definite matrix A can be partitioned into

A =
[
An−1 b

bH ann

]
,

where b ∈ Cn−1 and An−1 is a positive definite matrix of order n − 1 by
(4.3.2). By the induction hypothesis, there is a unique matrix Ln−1 of order
n− 1 satisfying

An−1 = Ln−1L
H
n−1, lik = 0 for k > i, lii > 0.

We consider a matrix L of the form

L =
[
Ln−1 0
cH α

]
and try to determine c ∈ Cn−1, α > 0 so that

(4.3.4)
[
Ln−1 0
cH α

] [
LHn−1 c

0 α

]
=
[
An−1 b

bH ann

]
= A.

This means that we must have

Ln−1c = b,

cHc+ α2 = ann, α > 0.

The first equation must have a unique solution c = L−1
n−1b, since Ln−1,

as a a triangular matrix with positive diagonal entries, has det(Ln−1) > 0.
As for the second equation, if cHc ≥ ann (that is, α2 ≤ 0), then from (4.3.1)
we would have a contradiction with α2 > 0, which follows from

det(A) = |det(Ln−1)|2α2,

det(A) > 0 (4.3.2), and det(Ln−1) > 0. Therefore, from (4.3.4), there exists
exactly one α > 0 giving LLH = A, namely

α = +
√
ann − cHc . ��

The decomposition A = LLH can be determined in a manner similar
to the methods given in Section 4.1. If it is assumed that all lij are known
for j ≤ k − 1, the as defining equation for lkk and lik, i ≥ k + 1, we have

(4.3.5)
akk = |lk1|2 + |lk2|2 + · · · + |lkk|2, lkk > 0,

aik = li1 l̄k1 + li2 l̄k2 + · · · + lik l̄kk.

For a real A, the following algorithm results:

4.4 Error Bounds 207

for i := 1 step 1 until n do
for k := i step 1 until n do
begin x := a[i, k];

for j := i− 1 step −1 until 1 do
x := x− a[k, j] × a[i, j];

if i = k then
begin if x ≤ 0 then goto fail;

p[i] := 1/sqrt(x);
end else
a[k, i] := x× p[i];

end i, k;

Note that only the upper triangular portion of A is used. The lower
triangular matrix L is stored in the lower triangular portion of A, with the
exception of the diagonal elements of L, whose reciprocals are stored in p.

This method is due to Choleski. During the course of computation, n
square roots must be taken. Theorem (4.3.3) assures us that the arguments
of these square roots will be positive. About n3/6 operations (multiplica-
tions and additions) are needed beyond the n square roots. Further sub-
stantial savings are possible for sparse matrices, see Section 4.A. Finally,
note as an important implication of (4.3.5) that

(4.3.6) |lkj | ≤
√
akk, j = 1, . . . , k, k = 1, 2, . . . , n.

That is, the elements of L cannot grow too large.

4.4 Error Bounds

If any one of the methods described in the previous sections is used to
determine the solution of a linear equation system Ax = b, then in general
only an approximation x̃ to the true solution x is obtained, and there arises
the question of how the accuracy of x̃ is judged. In order to measure the
error

x̃− x
we have to have the means of measuring the “size” of a vector. To do this
a

(4.4.1) norm: ‖x‖

is introduced on Cn; that is, a function

‖.‖ : Cn → IR,

which assigns to each vector x ∈ Cn a real value ‖x‖ serving as a measure
for the “size” of x. The function must have the following properties:

208 4 Systems of Linear Equations

(4.4.2)
(a) ‖x‖ > 0 for all x ∈ Cn, x �= 0 (positivity),
(b) ‖αx‖ = |α|‖x‖ for all α ∈ C, x ∈ Cn (homogeneity),
(c) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x, y ∈ Cn (triangle inequality).

In the following we use only the norms

(4.4.3)
‖x‖2 :=

√
xHx =

(n∑
i=1

|xi|2
)1/2

(Euclidean norm),

‖x‖∞ := max
i

|xi| (maximum norm).

The norm properties (a), (b), (c) are easily verified.

For each norm ‖ · ‖ the inequality

(4.4.4) ‖x− y‖ ≥
∣∣ ‖x‖ − ‖y‖

∣∣ for all x, y ∈ Cn

holds. From (4.4.2c) it follows that

‖x‖ = ‖(x− y) + y‖ ≤ ‖x− y‖ + ‖y‖,

and consequently ‖x− y‖ ≥ ‖x‖−‖y‖. By interchanging the roles of x and
y and using (4.4.2b), it follows that

‖x− y‖ = ‖y − x‖ ≥ ‖y‖ − ‖x‖,

and hence (4.4.4).
It is easy to establish the following:

(4.4.5) Theorem. Each norm ‖.‖ in IRn (or Cn) is a uniformly continuous
function with respect to the metric �(x, y) := maxi |xi − yi| on IRn(Cn).

Proof. From (4.4.4) it follows that∣∣ ‖x+ h‖ − ‖x‖
∣∣ ≤ ‖h‖.

Now h =
∑n
i=1 hiei, where h = (h1, . . . , hn)T and ei are the usual cordinate

(unit) vectors of IRn(Cn). Therefore

‖h‖ ≤
n∑
i=1

|hi| ‖ei‖ ≤ max
i

|hi|
n∑
j=1

‖ej‖ = M max
i

|hi|

with M :=
∑n
j=1 ‖ej‖. Hence, for each ε > 0 and all h satisfying

maxi |hi| ≤ ε/M , the inequality∣∣ ‖x+ h‖ − ‖x‖
∣∣ ≤ ε

holds. That is, ‖ · ‖ is uniformly continuous. ��

4.4 Error Bounds 209

This result is used to show:

(4.4.6) Theorem. All norms on IRn(Cn) are equivalent in the following
sense: For each pair of norms p1(x), p2(x) there are positive constants m
and M satisfying

mp2(x) ≤ p1(x) ≤Mp2(x) for all x.

Proof. We will prove this only in the case that p2(x) := ‖x‖ := maxi |xi|.
The general case follows easily from this special result. The set

S =
{
x ∈ Cn

∣∣ max
i

|xi| = 1
}

is a compact set in Cn. Since p1(x) is continuous by (4.4.5),

M := max
x∈S

p1(x) > 0, m := min
x∈S

p1(x) > 0

exist. Thus for all y �= 0, y/‖y‖ ∈ S, it follows that

m ≤ p1
(
y

‖y‖

)
=

1
‖y‖p1(y) ≤M,

and therefore m‖y‖ ≤ p1(y) ≤M‖y‖. ��

For matrices as well, A ∈M(m,n) of fixed dimensions, norms ‖A‖ can
be introduced. In analogy to (4.4.2), the properties

‖A‖ > 0 for all A �= 0, A ∈M(m,n),

‖αA‖ = |α| ‖A‖,

‖A+B‖ ≤ ‖A‖ + ‖B‖

are required. The matrix norm ‖ · ‖ is said to be consistent with the vector
norms ‖ · ‖a on Cn and ‖ · ‖b on Cm if

‖Ax‖b ≤ ‖A‖ ‖x‖a for all x ∈ Cn, A ∈M(m,n).

A matrix norm ‖.‖ for square matrices A ∈M(n, n) is called submulti-
plicative if

‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈M(n, n).

Choosing B := I then shows ‖I‖ ≥ 1 for such norms. Frequently used
matrix norms are

(4.4.7a) ‖A‖ = max
i

n∑
k=1

|aik| (row-sum norm),

210 4 Systems of Linear Equations

(4.4.7b) ‖A‖ =

 n∑
i,k=1

|aik|2
1/2

(Schur-Norm),

(4.4.7c) ‖A‖ = max
i,k

|aik|.

(a) and (b) are submultiplicative; (c) is not; (b) is consistent with the
Euclidean vector norm. Given a vector norm ‖x‖, a corresponding matrix
norm for square matrices, the subordinate matrix norm or least upper bound
norm, can be defined by

(4.4.8) lub (A) := max
x
=0

‖Ax‖
‖x‖ .

Such a matrix norm is consistent with the vector norm ‖.‖ used to define
it:

(4.4.9) ‖Ax‖ ≤ lub (A) ‖x‖.

Obviously lub (A) is the smallest of all of the matrix norms ‖A‖ which are
consistent with the vector norm ‖x‖:

‖Ax‖ ≤ ‖A‖ ‖x‖ for all x ⇒ lub (A) ≤ ‖A‖.

Each subordinate norm lub(·) is submultiplicative:

lub (AB) = max
x
=0

‖ABx‖
‖x‖ ≤ max

x
=0
lub (A)

‖Bx‖
‖x‖

= lub (A) lub (B),

and furthermore lub(I) = maxx=0 ‖Ix|/‖x‖ = 1.
(4.4.9) shows that lub(A) is the greatest magnification which a vector

may attain under the mapping determined by A: It shows how much ‖Ax‖,
the norm of an image point, can exceed ‖x‖, the norm of a source point.

Example.

(a) For the maximum norm ‖x‖∞ = maxν |x|ν the subordinate matrix norm
is the row-sum norm

lub∞(A) = max
x�=0

‖Ax‖∞
‖x‖∞

= max
x�=0

{
maxi |

∑n

k=1 aikxk|
maxk |xk|

}
= max

i

n∑
k=1

|aik|.

(b) Associated with the Euclidean norm ‖x‖2 =
√
xHx we have the subordi-

nate matrix norm

lub2(A) = max
x�=0

√
xHAHAx

xHx
=
√
λmax(AHA) ,

4.4 Error Bounds 211

which is expressed in terms of the largest eigenvalue λmax(AHA) of the matrix
AHA [see (6.4.7)]. With regard to this matrix norm, we note that

(4.4.10) lub2(U) = 1

for unitary matrices U , that is, for matrices defined by UHU = I.

In the following we assume that ‖x‖ is an arbitrary vector norm and ‖A‖
is a consistent submultiplicative matrix norm with ‖I‖ = 1. Specifically,
we can always take the subordinate norm lub(A) as ‖A‖ if we want to
obtain particularly good estimates in the results below. We shall show how
norms can be used to bound the influence due to changes in A and b on
the solution x to a linear equation system

Ax = b.

If the solution x+∆x corresponds to the right-hand side b+∆b,

A(x+∆x) = b+∆b,

then the relation
∆x = A−1∆b

follows from A∆x = ∆b, as does the bound

(4.4.11) ‖∆x‖ ≤ ‖A−1‖ ‖∆b‖.

For the relative change ‖∆x‖/‖x‖, the bound

(4.4.12)
‖∆x‖
‖x‖ ≤ ‖A‖ ‖A−1‖ ‖∆b‖

‖b‖ = cond(A)
‖∆b‖
‖b‖

follows from ‖b‖ = ‖Ax‖ ≤ ‖A‖ ‖x‖. In this estimate, cond(A) :=
‖A‖ ‖A−1‖. For the special case that cond(A) := lub(A) lub(A−1), this
so-called condition of A is a measure of the sensitivity of the relative error
in the solution to relative changes in the right-hand side b. Since AA−1 = I,
cond(A) satisfies

lub(I) = 1 ≤ lub(A) lub(A−1) ≤ ‖A‖ ‖A−1‖ = cond(A).

The relation (4.4.11) can be interpreted as follows: If x̃ is an approxi-
mate solution to Ax = b with residual

r(x̃) := b−Ax̃ = A(x− x̃),

then x̃ is the exact solution of

Ax̃ = b− r(x̃),

and the estimate

212 4 Systems of Linear Equations

(4.4.13) ‖∆x‖ ≤ ‖A−1‖ ‖r(x̃)‖.

must hold for the error ∆x = x̃− x.
Next, in order to investigate the influence of changes in the matrix A

upon the solution x of Ax = b, we establish the following:

(4.4.14) Lemma. If F is an n× n matrix with ‖F‖ < 1, then (I + F)−1

exists and satisfies ∥∥(I + F)−1
∥∥ ≤ 1

1 − ‖F‖ .

Proof. From (4.4.4) the inequality

‖(I + F)x‖ = ‖x+ Fx‖ ≥ ‖x‖ − ‖Fx‖ ≥ (1 − ‖F‖) ‖x‖

follows for all x. From 1 − ‖F‖ > 0 it follows that ‖(I + F)x‖ > 0 for
x �= 0; that is, (I + F)x = 0 has only the trivial solution x = 0, and I + F
is nonsingular.

Using the abbreviation C := (I + F)−1, it follows that

1 = ‖I‖ = ‖(I + F)C‖ = ‖C + FC‖

≥ ‖C‖ − ‖C‖ ‖F‖

= ‖C‖ (1 − ‖F‖) > 0 ,

from which we have the desired result∥∥(I + F)−1
∥∥ ≤ 1

1 − ‖F‖ . ��

We can show:

(4.4.15) Theorem. Let A be a nonsingular n× n matrix, B = A(I + F),
‖F‖ < 1, and x and ∆x be defined by Ax = b, B(x +∆x) = b. It follows
that

‖∆x‖
‖x‖ ≤ ‖F‖

1 − ‖F‖ ,

as well as
‖∆x‖
‖x‖ ≤ cond(A)

1 − cond(A)
‖B−A‖

‖A‖

‖B −A‖
‖A‖

if cond(A) · ‖B −A‖/‖A‖ < 1.

Proof. B−1 exists from (4.4.14), and

∆x = B−1b−A−1b = B−1(A−B)A−1b, x = A−1b,

4.4 Error Bounds 213

‖∆x‖
‖x‖ ≤ ‖B−1(A−B)‖ = ‖ − (I + F)−1A−1AF‖

≤ ‖(I + F)−1‖ ‖F‖ ≤ ‖F‖
1 − ‖F‖ .

Since F = A−1(B − A) and ‖F‖ ≤ ‖A−1‖ ‖A‖ ‖B − A‖/‖A‖, the rest of
the theorem follows. ��

According to theorem (4.4.15), cond(A) also measures the sensitivity
of the solution x of Ax = b to changes in the matrix A.

If the relations

C = (I + F)−1 = B−1A, F = A−1B − I

are taken into account, it follows from (4.4.14) that∥∥B−1A
∥∥ ≤ 1

1 − ‖I −A−1B‖ .

By interchanging A and B, it follows immediately from A−1 = A−1BB−1

that

(4.4.16) ‖A−1‖ ≤ ‖A−1B‖ ‖B−1‖ ≤ ‖B−1‖
1 − ‖I −B−1A‖ .

In particular, the residual estimate (4.4.13) leads to the bound of Collatz

(4.4.17) ‖x̃− x‖ ≤ ‖B−1‖
1 − ‖I −B−1A‖ ‖r(x̃)‖, r(x̃) = b−Ax̃,

where B−1 is an approximate inverse to A with ‖I −B−1A‖ < 1.
The estimates obtained up to this point show the significance of the

quantity cond(A) for determining the influence on the solution of changes
in the given data. These estimates give bounds on the error x̃ − x, but
the evaluation of the bounds requires at least an approximate knowledge
of the inverse A−1 to A. The estimates to be discussed next, due to Prager
and Oettli (1964), are based upon another principle and do not require any
knowledge of A−1.

The results are obtained through the following considerations:
Usually the given data A0, b0 of an equation system A0x = b0 are

inexact, being tainted, for example, by measurement errors ∆A, ∆b. Hence,
it is reasonable to accept an approximate solution x̃ to the system A0x = b0
as “correct” if x̃ is the exact solution to a “neighboring” equation system

Ax̃ = b

with

214 4 Systems of Linear Equations

(4.4.18)
A ∈ A :=

{
A
∣∣ |A−A0| ≤ ∆A

}
b ∈ B :=

{
b
∣∣ |b− b0| ≤ ∆b}

The notation used her is

|A| = (|αik|), where A = (αik),

|b| = (|β1|, . . . |βn|)T , where b = (β1, . . . βn)T ,

and the relation ≤ between vectors and matrices is to be understood as
holding componentwise. Prager and Oettli prove:

(4.4.19) Theorem. Let ∆A ≥ 0, ∆b ≥ 0, and let A, B be defined by
(4.4.18). Associated with any approximate solution x̃ of the system A0x =
b0 there is a matrix A ∈ A and a vector b ∈ B satisfying

Ax̃ = b,

if and only if
|r(x̃)| ≤ ∆A |x̃| +∆b ,

where r(x̃) := b0 −A0x̃ is the residual of x̃.

Proof.

(1) We assume first that
Ax̃ = b

holds for some A ∈ A, b ∈ B. Then it follows from

A = A0 + δA, where |δA| ≤ ∆A,
b = b0 + δb, where |δb| ≤ ∆b,

that
|r(x̃)| = |b0 −A0x̃| = |b− δb− (A− δA)x̃|

= | − δb+ (δA)x̃| ≤ |δb| + |δA| |x̃|
≤ ∆b+∆A|x̃|.

(2) On the other hand, if

(4.4.20) |r(x̃)| ≤ ∆b+∆A|x̃|,

and if we use the notation

x̃ =: (ξ1, . . . , ξn)T , b0 =: (β1, . . . , βn)T ,

r := r(x̃) = (ρ1, . . . , ρn)T ,

s := ∆b+∆A|x̃| ≥ 0, s =: (σ1, . . . , σn)T ,

then set

4.5 Roundoff-Error Analysis for Gaussian Elimination 215

δA := (δαij), δb :=

 δβ1
...
δβn

 ,
δαij := ρi∆αij sign(ξj)/σi,

δβi := −ρi∆βi/σi, where ρi/σi := 0, if σi = 0.

From (4.4.20) it follows that |ρi/σi| ≤ 1, and consequently

A = A0 + δA ∈ A, b = b0 + δb ∈ B,

as well as the following for i = 1, 2, . . . , n:

ρi = βi −
n∑
j=1

αijξj =
(
∆βi +

n∑
j=1

∆αij |ξj |
)
ρi
σi

= −δβi +
n∑
j=1

δαijξj

or
n∑
j=1

(αij + δαij)ξj = βi + δβi,

that is,
Ax̃ = b,

which was to be shown. ��

The criterion expressed in Theorem (4.4.19) permits us to draw conclu-
sions about the fitness of a solution from the smallness of its residual. For
example, if all components of A0 and b0 have the same relative accuracy ε,

∆A = ε|A0|, ∆b = ε|b0|,

then (4.4.19) is satisfied if

|A0x̃− b0| ≤ ε(|b0| + |A0| |x̃|).

From this inequality, the smallest ε can be computed for which a given x̃
can still be accepted as a usable solution.

4.5 Roundoff-Error Analysis for Gaussian Elimination

In the discussion of methods for solving linear equations, the pivot selection
played only the following role: it guaranteed for any nonsingular matrix A
that the algorithm would not terminate prematurely if some pivot element

216 4 Systems of Linear Equations

happened to vanish. We will now show that the numerical behavior of the
equation-solving methods which have been covered depends upon the choice
of pivots. To illustrate this, we consider the following simple example:

Solve the system

(4.5.1)
[

0.005 1
1 1

] [
x
y

]
=
[

0.5
1

]
with the use of Gaussian elimination. The exact solution is x = 5000/9950 =
0.503 . . ., y = 4950/9950 = 0.497 If the element a11 = 0.005 is taken as the
pivot in the first step, then we obtain[

0.005 1
0 −200

] [
x̃
ỹ

]
=
[

0.5
−99

]
, ỹ = 0.5, x̃ = 0,

using 2-place floating-point arithmetic. If the element a21 = 1 is taken as the
pivot, then 2-place floating-point arithmetic yields[

1 1
0 1

] [
x̃
ỹ

]
=
[

1
0.5

]
, ỹ = 0.50, x̃ = 0.50 .

In the second case, the accuracy of the result is considerably higher. This
could lead to the impression that the largest element in magnitude should
be chosen as a pivot from among the candidates in a column to get the best
numerical results. However, a moment’s thought shows that this cannot
be unconditionally true. If the first row of the equation system (4.5.1) is
multiplied by 200, for example, the result is the system

(4.5.2)
[

1 200
1 1

] [
x
y

]
=
[

100
1

]
,

which has the same sulution as (4.5.1). The element ã11 = 1 is now just as
large as the element ã21 = 1. However, the choice of ã11 as pivot element
leads to the same inexact result as before. We have replaced the matrix A
of (4.5.1) by Ã = DA, where D is the diagonal matrix

D =
[

200 0
0 1

]
.

Obviously, we can also adjust the column norms of A—i.e., replace A by
Ã = AD (where D is a diagonal matrix) — without changing the solution
x to Ax = b in any essential way. If x is the solution to Ax = b, then
y = D−1x is the solution of Ã = (AD)(D−1x) = b. In general, we refer
to a scaling of a matrix A if A is replaced by D1AD2, where D1, D2 are
diagonal matrices. The example shows that it is not reasonable to propose a
particular choice of pivots unless assumptions about the scaling of a matrix
are made. Unfortunately, no one has yet determined satisfactorily how to
carry out scaling so that partial pivot selection is numerically stable for

4.5 Roundoff-Error Analysis for Gaussian Elimination 217

any matrix A. Practical experience, however, suggests the following scaling
for partial pivoting: Choose D1 and D2 so that

n∑
k=1

|ãik| ≈
n∑
j=1

|ãjl|

holds approximately for all i, l = 1, 2, . . . , n in the matrix Ã = D1AD2. The
sum of the absolute values of the elements in the rows (and the columns)
of Ã should all have about the same magnitude. Such matrices are said to
be equilibrated. In general, it is quite difficult to determine D1 and D2 so
that D1AD2 is equilibrated. Usually we must get by with the following:
Let D2 = I, D1 = diag(s1, . . . , sn), where

si :=
1∑n

k=1 |aik|
,

then for Ã = D1AD2, it is true at least that

n∑
k=1

|ãik| = 1 for i = 1, 2, . . . , n.

Now, instead of replacing A by Ã, i.e., instead of actually carrying out the
transformation, we replace the rule for pivot selection in order to avoid
the explicit scaling of A. The pivot selection for the jth elimination step
A(j−1) → A(j) is given by the following:

(4.5.3). Determine r ≥ j so that∣∣a(j−1)
rj

∣∣ sr = max
i≥j

∣∣a(j−1)
ij

∣∣ si �= 0,

and take a(j−1)
rj as the pivot.

The example above shows that it is not sufficient, in general, to scale A
prior to carrying out partial pivot selection by making the largest element
in absolute value within each row and each column have roughly the same
magnitude:

(4.5.4) max
k

|aik| ≈ max
j

|ajl| for all i, l = 1, 2, , . . . , n.

For, if the scaling matrices

D1 =
[

200 0
0 1

]
, D2 =

[
1 0
0 0.005

]
are chosen, then the matrix A of our example (4.5.1) becomes

218 4 Systems of Linear Equations

Ã = D1AD2 =
[

1 1
1 0.005

]
.

The condition (4.5.4) is satisfied, but inexact answers will be produced, as
before, if ã11 = 1 is used as pivot.

We would like to make a detailed study of the effect of the rounding
errors which occur in Gaussian elimination or direct triangular decompo-
sition [see Section 4.1]. We assume that the rows of the n × n matrix A
are already so arranged that A has a triangular decomposition of the form
A = LR. Hence, L and R can be determined using the formulas of (4.1.12).
In fact, we only have to evaluate expressions of the form

bn := fl
(
c− a1b1 − · · · − an−1bn−1

an

)
,

which were analyzed in (1.4.4)–(1.4.11). Instead of the exact triangular
decomposition LR = A, (4.1.12) shows that the use of floating-point arith-
metic will result in matrices L̄ = (l̄ik), R̄ = (r̄ik) for which the residual
F := (fik) = A − L̄R̄ is not zero in general. Since, according to (4.1.13),
the jth partial sums

ā
(j)
ik = fl

(
aik −

j∑
s=1

l̄isr̄sk

)

are exactly the elements of the matrix Ā(j), which is produced instead
of A(j) of (4.1.6) from the jth step of Gaussian elimination in floating-
point arithmetic, the estimates (1.4.7) applied to (4.1.12) yield (we use the
abbreviation eps′ = eps /(1 − eps)

(4.5.5)

|fik| =
∣∣∣aik −

i∑
j=1

l̄ij r̄jk

∣∣∣ ≤ eps′
i−1∑
j=1

(|ā(j)ik | + |l̄ij ||r̄jk|), k ≥ i,

|fki| =
∣∣∣aki − i∑

j=1

l̄kj r̄ji

∣∣∣ ≤ eps′
[
|ā(i−1)
ki | +

i−1∑
j=1

(|ā(j)ki | + |l̄kj ||r̄ji|)
]
, k > i.

Further,

(4.5.6) r̄ik = ā
(i−1)
ik for i ≤ k,

since the first j + 1 rows of Ā(j) [or A(j) of (4.1.6)] do not change in the
subsequent elimination steps, and so they already agree with the corre-
sponding rows of R̄. We sassume, in addition, that |l̄ik| ≤ 1 for all i, k
(which is satisfied, for example, when partial or complete pivoting is used).
Setting

4.5 Roundoff-Error Analysis for Gaussian Elimination 219

aj := max
i,k

|ā(j)ik |, a := max
0≤i≤n−1

ai,

it follows immediately from (4.5.5) and (4.5.6) that

(4.5.7)

|fik| ≤
eps

1 − eps
(a0 + 2a1 + 2a2 + · · · + 2ai−2 + ai−1)

≤ 2(i− 1)a
eps

1 − eps
for k ≥ i,

|fik| ≤
eps

1 − eps
(a0 + 2a1 + · · · + 2ak−2 + 2ak−1)

≤ 2ka
eps

1 − eps
for k < i.

For the matrix F , then, the inequality

(4.5.8) |F | ≤ 2a
eps

1 − eps

0 0 0 . . . 0 0
1 1 1 . . . 1 1
1 2 2 . . . 2 2
1 2 3 . . . 3 3
...

...
...

...
1 2 3 . . . n− 1 n− 1

holds, where |F | := (|fjk|). If a has the same order of magnitudes as a0,
that is, if the matrices Ā(j) do not grow too much, then the computed
matrices L̄R̄ form the exact triangular decomposition of the matrix A−F ,
which differs little from A. Gaussian elimination is stable in this case.

The value a can be estimated with the help of a0 = maxr,s |ars|. For
partial pivot selection it can easily be shown that

ak−1 ≤ 2ka0,

and hence that a ≤ 2n−1a0. This bound is much too pessimistic in most
cases; however, it can be attained, for example, in forming the triangular
decomposition of the matrix

A =

1 0 · · · 0 1

−1
.

...
...

...
. 0

...
...

. . . 1 1
−1 · · · · · · −1 1

 .

Better estimates hold for special types of matrices. For example in the
case of upper Hessenberg matrices, that is, matrices of the form

220 4 Systems of Linear Equations

A =

x x

x
. . .

...
.

...
0 x x

 ,
the bound a ≤ (n − 1)a0 can be shown. (Hessenberg matrices arise in
eigenvalue problems.)

For tridiagonal matrices

A =

α1 β2 0

γ2
.

...
.

...
. βn

0 γn αn

it can even be shown that

a = max
k

|ak| ≤ 2a0.

holds for partial pivot selection. Hence, Gaussian elimination is quite nu-
merically stable in this case.

For complete pivot selection Wilkinson (1965) has shown that

ak−1 ≤ f(k)a0

with the function

f(k) := k1/2
[
21 31/2 41/3 . . . k1/(k−1)

]1/2
.

This function grows relatively slowly with k:

k 10 20 50 100
f(k) 19 67 530 3300

.

Even this estimate is too pessimistic in practice. Up until now, no real
matrix has been found which fails to satisfy

ak ≤ (k + 1)a0, k = 1, 2, . . . , n− 1,

when complete pivot selection is used. This indicates that Gaussian elim-
ination with complete pivot selection is usually a stable process. Despite
this, partial pivot selection is preferred in practice, for the most part, be-
cause:

(1) Complete pivot selection is more costly than partial pivot selection.
(To compute A(i), the maximum from among (n − i + 1)2 elements

4.6 Roundoff Errors in Solving Triangular Systems 221

must be determined instead of n − i + 1 elements as in partial pivot
selection.)

(2) Special structures in a matrix, e.g. the band structure of a tridiagonal
matrix, are destroyed in complete pivot selection.

If the weaker estimates (1.4.11) are used instead of (1.4.7), then the
following bounds replace those of (4.5.5) for the fik:

|fik| ≤
eps

1 − n · eps

[
i∑

j=1

j |l̄ij | |r̄jk| − |r̄ik|
]

for k ≥ i,

|fki| ≤
eps

1 − n · eps

[
i∑

j=1

j |l̄kj | |r̄ji|
]

for k ≥ i+ 1,

or

(4.5.9) |F | ≤ eps
1 − n · eps

[
|L̄|D |R̄| − |R̄|

]
,

where D :=

1 0

2
. . .

0 n

 .

4.6 Roundoff Errors in Solving Triangular Systems

As a result of applying Gaussian elimination in floating-point arithmetic to
the matrix A, a lower triangular matrix L̄ and an upper triangular matrix
R̄ are obtained whose product L̄R̄ approximately equals A. Solving the
system Ax = b is thereby reduced to solving the triangular system

L̄y = b, R̄x = y.

In this section we investigate the influence of roundoff errors on the solution
of such equation systems. If we use ȳ to denote the solution obtained using
t-digit floating-point arithmetic, then the definition of ȳ gives

(4.6.1) ȳr = fl
(
(−l̄r1ȳ1 − l̄r2ȳ2 − · · · − l̄r,r−1ȳr−1 + br)/l̄rr

)
.

From (1.4.10), (1.4.11) it follows immediately that∣∣∣∣∣ br −
r∑
j=1

l̄rj ȳj

∣∣∣∣∣ ≤ eps
1 − n eps

[
r∑
j=1

j|l̄rj | |ȳj | − |ȳr|
]
,

222 4 Systems of Linear Equations

or

(4.6.2)
∣∣b− L̄ȳ∣∣ ≤ eps

1 − n eps
(∣∣L̄∣∣D − I

)∣∣ȳ∣∣, D :=

1 0

2
. . .

0 n

.
In other words, there exists a matrix ∆L̄ satisfying

(4.6.3)
(
L̄+∆L̄

)
ȳ = b,

∣∣∆L̄∣∣ ≤ eps
1 − n eps

(∣∣L̄∣∣D − I
)
.

Thus, the computed solution can be interpreted as the exact solution of a
slightly changed problem, showing that the process of solving a triangular
system is stable. Similarly, the computed solution x̄ of R̄x = ȳ is found to
satisfy the bound

(4.6.4)

∣∣ȳ − R̄x̄
∣∣ ≤ eps

1 − n eps

∣∣R̄∣∣E ∣∣x̄∣∣, E :=

n 0

. . .
2

0 1

 ,
(
R̄+∆R̄

)
x̄ = ȳ,

∣∣∆R̄∣∣ ≤ eps
1 − n eps

∣∣R̄∣∣E.
By combining the estimates (4.5.9), (4.6.3), and (4.6.4), we obtain the
following result [due to Sautter (1971)] for the approximate solution x̄
produced by floating-point arithmetic to the linear system Ax = b:

(4.6.5) |b−Ax̄| ≤ 2(n+ 1) eps
1 − n eps

|L̄| |R̄| |x̄|, if n eps ≤ 1
2 .

Proof. Using the abbreviation ε := eps /(1−n eps), it follows from (4.5.9),
(4.6.3) and (4.6.4) that

|b−Ax̄| = |b− (L̄R̄+ F)x̄| = | − Fx̄+ b− L̄(ȳ −∆R̄ x̄)|

= |(−F +∆L̄(R̄+∆R̄) + L̄∆R̄)x̄|

≤ ε
[
2(|L̄|D − I)|R̄| + |L̄| |R̄|E + ε(|L̄|D − I)|R̄|E

]
|x̄|.

The (i, k) component of the matrix [. . .] appearing in the last line above
has the form

min(i,k)∑
j=1

|l̄ij |
(
2j − 2δij + n+ 1 − k + ε(j − δij + n+ 1 − k)

)
|r̄jk|,

δij :=
{

1 for i = j,
0 for i �= j.

4.7 Orthogonalization Techniques of Householder and Gram-Schmidt 223

It is easily verified for all j ≤ min(i, k), 1 ≤ i, k ≤ n, that

2j − 2δij + n+ 1 − k+ε(j − δij + n+ 1 − k)

≤
{

2n− 1 + ε · n, if j ≤ i ≤ k,
2n+ ε(n+ 1), if j ≤ k < i,

≤ 2n+ 2,

since ε · n ≤ 2n eps ≤ 1. This completes the proof of (4.6.5). ��
A comparison of (4.6.5) with the result (4.4.19) due to Prager and Oettli

(1964) shows, finally, that the computed solution x̄ can be interpreted as
the exact solution of a slightly changed equation system, provided that
the matrix n|L̄||R̄| has the same order of magnitude as |A|. In that case,
computing the solution via Gaussian elimination is a numerically stable
algorithm.

4.7 Orthogonalization Techniques of Householder and
Gram-Schmidt

The methods discussed up to this point for solving a system of equations

(4.7.1) Ax = b

consisted of multiplying (4.7.1) on the left by appropriate matrices Pj ,
j = 1, . . . , n, so that the system obtained as the final outcome,

A(n)x = b(n),

could be solved directly. The sensitivity of the result x to changes in the
arrays A(j), b(j) of the intermediate systems

A(j)x = b(j), [A(j), b(j)] = Pj [A(j−1), b(j−1)],

is given by [see (4.4.12) and Theorem (4.4.15)]

cond (A(j)) = lub (A(j)) lub ((A(j))−1).

If we denote the roundoff error incurred in the transition from [A(j−1),
b(j−1)] to [A(j), b(j)] by ε(j), then these roundoff errors are amplified by the
factors cond (A(j)) in their effect on the final result x, and we have

‖∆x‖
‖x‖ ≤̇

n−1∑
j=0

ε(j) cond (A(j)).

In the right-hand expression above, ε(0) stands for the error in the initial
data A, b. If there is an A(j) with

224 4 Systems of Linear Equations

cond (A(j)) � cond (A(0)),

then the sequence of computations is not numerically stable: The roundoff
error ε(j) has a stronger influence on the final result than the initial error
ε(0).

For this reason, it is important to choose the Pj so that the condition
numbers cond (A(j)) do not grow. For condition numbers derived from an
arbitrary norm ‖x‖, that is difficult to do. For the Euclidean norm

‖x‖ =
√
xHx

and its subordinate matrix norm

lub (A) = max
x
=0

√
xHAHAx

xHx
,

however, the choice of transformations is more easily made. For this reason,
only the above norms will be used in the present section. If U is a unitary
matrix, UHU = I, then the above matrix norm satisfies

lub (A) = lub (UHUA) ≤ lub (UH) lub (UA) = lub (UA)

≤ lub (U) lub (A) = lub (A);

hence
lub (UA) = lub (A),

and similarly lub (AU) = lub (A).
In particular, it follows that

cond (A) = lub (A) lub (A−1) = cond (UA)

for unitary U . If the transformation matrices Pj are chosen to be unitary,
then the condition numbers associated with the systems A(j)x = b(j) do
not change (so they certainly don’t get worse). Furthermore, the matrices
Pj should be chosen so that the matrices A(j) become simpler. As was sug-
gested by Householder, this can be accomplished in the following manner:

The unitary matrix P is chosen to be

P := I − 2wwH with wHw = 1, w ∈ Cn.

Matrices of this form are called Householder matrices. These matrices are
Hermitian:

PH = IH − (2wwH)H = I − 2wwH = P,

unitary:

4.7 Orthogonalization Techniques of Householder and Gram-Schmidt 225

PHP = PP = P 2 = (I − 2wwH)(I − 2wwH)

= I − 2wwH − 2wwH + 4wwHwwH

= I,

and therefore involutory:
P 2 = I.

Geometrically, the mapping x �→ y := Px = x − 2(wHx)w describes a
reflection of x with respect to the plane { z | wHz = 0 }, and x and y then
satisfy

yHy = xHPHPx = xHx,(4.7.2)

xHy = xHPx = (xHPx)H(4.7.3)

and xHy is real. We wish to determine a vector w, and thereby P , so that
a given

x = (x1, . . . , xn)T

is transformed into a multiple of the first coordinate vector e1:

k e1 = Px.

From (4.7.2) it follows immediately that k satisfies

|k|2 = ‖x‖2 = xHx

and, since k xHe1 must be real according to (4.7.3),

k = ∓eiασ, σ :=
√
xHx,

if x1 = eiα|x1|. Hence, it follows from

Px = x− 2(wHx)w = ke1

and the requirement wHw = 1 that

w =
x− ke1

‖x− ke1‖
.

Now, since x1 = eiα|x1|,

‖x− ke1‖ = ‖x± σeiαe1‖ =
√

|x1 ± σeiα|2 + |x2|2 + · · · + |xn|2

=
√

(|x1| ± σ)2 + |x2|2 + · · · + |xn|2 .

In order that no cancellation may occur in the computation of |x1| ±σ, we
choose the sign in the definition of k to be

k = −σeiα,

226 4 Systems of Linear Equations

which gives

(4.7.4)
∣∣x1 − k

∣∣2 =
∣∣x1 + σeiα

∣∣2 =
∣∣σ + |x1|

∣∣2 = σ2 + 2σ
∣∣x1

∣∣+ ∣∣x1
∣∣2.

It follows that

‖x− ke1‖2 = 2σ2 + 2σ|x1|, 2wwH = 2
(x− ke1)(x− ke1)H

‖x− ke1‖2 .

The matrix P = I − 2wwH can be written in the form

P = I − βuuH

with

(4.7.5)

σ =

√√√√ n∑
i=1

|xi|2, x1 = eiα|x1|, k = −σeiα,

u = x− ke1 =

eiα(|x1| + σ)

x2
...
xn

 , β = (σ(σ + |x1|))−1.

A n× n matrix A ≡ A(0) can be reduced step by step using these unitary
Householder matrices Pj ,

A(j) = PjA
(j−1),

into an upper triangular matrix

A(n−1) = R =

 r11 · · · r1n
. . .

...
0 rnn

 .
To do this, the n× n unitary matrix P1 is determined according to (4.7.5)
so that

P1a
(0)
1 = k e1,

where a(0)1 stands for the first column of A(0).
If the matrix A(j−1) obtained after j − 1 steps has the form

(4.7.6)

A(j−1) =

x . . . x x . . . x

...
...

...
...

0 x x . . . x

a
(j−1)
jj . . . a

(j−1)
jn

0
...

...
a
(j−1)
nj . . . a

(j−1)
nn

 j−1

 n−j+1

=
[
D B
0 Ã(j−1)

]
,

4.7 Orthogonalization Techniques of Householder and Gram-Schmidt 227

then we determine the (n− j+1)× (n− j+1) unitary matrix P̃j according
to (4.7.5) so that

P̃j

a
(j−1)
jj

...

a
(j−1)
nj

 = k

1
0
...
0

 ∈ Cn−j+1.

Using P̃j the desired n× n unitary matrix is constructed as

Pj =

[
Ij−1 0

0 P̃j

]
} j−1

} n−j+1
.

After forming A(j) = PjA
(j−1), the elements a(j)

ij for i > j are annihilated,
and the rows in (4.7.6) above the horizontal dashed line remain unchanged.
In this way an upper triangular matrix

R := A(n−1)

is obtained after n− 1 steps.
It should be noticed, when applying Householder transformation in

practice, that the locations which are set to zero beneath the diagonal of
A(j) can be used to store u, which contains the important information
about the transformation P . However, since the vector u which belongs to
P̃j contains n− j+1 components, while only n− j locations are set free in
A(j), it is usual to store the diagonal elements of A(j) in a separate array
d in order to obtain enough space for u.

The transformation of a matrix by

P̃j = I − βjujuHj

is carried out as follows:

P̃jÃ
(j−1) = Ã(j−1) − ujyHj with yHj := βju

H
j Ã

(j−1);

that is, the vector yj is computed first, and then Ã(j−1) is modified as
indicated.

The following algol program contains the essentials of the reduction
of a real matrix, stored in the array a, to triangular form using Householder
transformations:

228 4 Systems of Linear Equations

for j := 1 step 1 until n do
begin
sigma := 0;
for i := j step 1 until n do sigma := sigma+ a[i, j] ↑ 2;
if sigma = 0 then goto singular;
s := d[j] = if a[j, j] < 0 then sqrt(sigma) else −sqrt(sigma);
beta := 1/(s× a[j, j] − sigma); a[j, j] := a[j, j] − s;
for k := j + 1 step 1 until n do
begin

sum := 0;
for i := j step 1 until n do

sum := sum+ a[i, j] × a[i, k];
sum := beta× sum;
for i := j step 1 until n do

a[i, k] := a[i, k] + a[i, j] × sum;
end;

end;

The Householder reduction of a n × n matrix to triangular form re-
quires about 2n3/3 operations. In this process an n × n unitary matrix
P = Pn−1 · · ·P1 consisting of Householder matrices Pi and an n× n upper
triangular matrix R are determined so that

PA = R

or

(4.7.7) A = P−1R = QR, Q := P−1 = PH ,

holds: that is we have found a so-called QR-decomposition of the matrix A
into a product of a unitary matrix Q and an upper triangular matrix R,
A = QR.

An upper triangular matrix R, with the property (4.7.7) that AR−1 =
Q = (q1, q2, . . . , qn) is a matrix with orthonormal columns qi, can also be
produced directly by the application of Gram-Schmidt orthogonalization
to the columns ai of A = (a1, . . . , an). The equation A = QR shows that
the kth column ak of A

ak =
k∑
i=1

rikqi, k = 1, . . . , n,

is a linear combination of the vectors q1, q2, . . . , qk, so that, conversely, qk
is a linear combination of the first k columns a1, . . . , ak of A. The Gram-
Schmidt process determines the columns of Q and R recursively as follows:
Begin with

r11 := ‖a1‖, q1 := a1/r11.

4.7 Orthogonalization Techniques of Householder and Gram-Schmidt 229

If the orthonormal vectors q1, . . . , qk−1 and the elements rij with j ≤ k−1
of R are known, then the numbers r1k, . . . , rk−1,k are determined so that
the vector

(4.7.8) bk := ak − r1kq1 − · · · − rk−1,kqk−1

is orthogonal to all qi, i = 1, . . . , k − 1.
Because

qHi qj =
{ 1 for i = j

0 otherwise
for 1 ≤ i, j ≤ k − 1,

the conditions qHi bk = 0 lead immediately to

(4.7.9) rik := qHi ak, i = 1, . . . , k − 1.

After rik, i ≤ k − 1, and thereby bk have been determined, the quantities

(4.7.10) rkk := ‖bk‖, qk := bk/rkk,

are computed, so that (4.7.8) is equivalent to

ak =
k∑
i=1

rikqi

and moreover
qHi qj =

{ 1 for i = j,
0 otherwise

for all 1 ≤ i, j ≤ k.
As given above, the algorithm has a serious disadvantage: it is not

numerically stable if the columns of the matrix A are nearly linearly de-
pendent. In this case the vector b̄k, which is obtained from the formulas
(4.7.8), (4.7.9) instead of the vector bk (due to the influence of roundoff
errors), is no longer orthogonal to the vectors q1, . . . , qk−1. The slightest
roundoff error incurred in the determination of the rki in (4.7.9) destroys
orthogonality to a greater or lesser extent.

We will discuss this effect in the special case corresponding to k = 1
in (4.7.8). Let two real vectors a and q be given, which we regard, for
simplicity, as normalized: ‖a‖ = ‖q‖ = 1. This means that their scalar
product ρ0 := qTa satisfies |ρ0| ≤ 1. We assume that |ρ0| < 1 holds, that
is, a and q are linearly independent. The vector

b = b(ρ) := a− ρq

is orthogonal to q for ρ = ρ0. In general, the angle α(ρ) between b(ρ) and
q satisfies

230 4 Systems of Linear Equations

f(ρ) := cosα(ρ) =
qT b(ρ)
‖b(ρ)‖ =

qTa− ρ
‖a− ρq‖ ,

α(ρ0) = π/2, f(ρ0) = 0.

Differentiating with respect to ρ, we find

f ′(ρ0) =
−1

‖a− ρ0q‖
=

−1√
1 − ρ20

,

α′(ρ0) =
1√

1 − ρ20
,

since
‖a− ρ0q‖2 = aTa− 2ρ0aT q + ρ20q

T q = 1 − ρ20.
Therefore, to a first approximation, we have

α(ρ0 +∆ρ0)
.=
π

2
+

∆ρ0√
1 − ρ20

for ∆ρ0 small. The closer |ρ0| lies to 1, i.e., the more linearly dependent a
und q are, the more the orthogonality beween q and b(ρ) is destroyed by
even tiny errors ∆ρ0, in particular by the roundoff errors which occur in
computing ρ0 = qTa.

Since it is precisely the orthogonality of the vectors qi that is essential
to the process, the following trick is used in practice. The vectors b̄k which
are obtained instead of the exact bk from the evaluation of (4.7.8), (4.7.9)
are subjected to a “reorthogonalization”. That is, scalars ∆rik and a vector
b̃k are computed from

b̃k = b̄k −∆r1kq1 − · · · −∆rk−1,kqk−1,

where
∆rik := qTi b̄k, i = 1, . . . , k − 1,

so that in exact arithmetic b̃Tk qi = 0, i = 1, . . . , k− 1. Since b̄k was at least
approximately orthogonal to the qi, the∆rik are small, and according to the
theory just given, the roundoff errors which are made in the computation
of the ∆rik have only a minor influence on the orthogonality of b̃k and qi.
This means that the vector

qk := b̃k/r̃kk, r̃kk := ‖b̃k‖,

will be orthogonal within machine precision to the already known vectors
q1, . . . , qk−1. The values r̄ik which have been found by evaluating (4.7.9)
are corrected appropriately:

rik := r̄ik +∆rik.

4.8 Data Fitting 231

Clearly, reorthogonalization requires twice as much computing effort as the
straightforward Gram-Schmidt process.

4.8 Data Fitting

In many scientific observations, one is concerned with determining the
values of certain constants

x1, x2, . . . , xn.

Often, however, it is exceedingly difficult or impossible to measure the
quantities xi directly. In such cases, the following indirect method is used:
instead of observing the xi, another, more easily measurable quantity y is
sampled, which depends in a known way on the xi and on further control-
lable “experimental conditions”, which we symbolize by z:

y = f(z;x1, . . . , xn).

In order to determine the xi, experiments are carried out under m different
conditions z1, . . . , zm, and the corresponding results

(4.8.0.1) yk = f(zk;x1, . . . , xn), k = 1, 2, . . . ,m,

are measured. Values for x1, . . . , xn are sought so that the equations
(4.8.0.1) are satisfied. In general, of course, at least m experiments, m ≥ n,
must be carried out in order that the xi may be uniquely determined. If
m > n, however, the equations (4.8.0.1) form an overdetermined system
for the unknown parameters x1, . . . , xn, which does not usually have a
solution because the observed quantities yi are perturbed by measurement
errors. Consequently, instead of finding an exact solution to (4.8.0.1), the
problem becomes one of finding a “best possible solution”. Such a solution
to (4.8.0.1) is taken to mean a set of values for the unknown parameters
for which the expression

(4.8.0.2)
m∑
k=1

(yk − fk(x1, . . . , xn))2,

or the expression

(4.8.0.3) max
1≤k≤m

|yk − fk(x1, . . . , xn)|

is minimized. Here we have denoted f(zk;x1, . . . , xn) by fk(x1, . . . , xn).
In the first case, the Euclidean norm of the residuals is minimized,

and we are presented with a fitting problem of the special type studied by
Gauss (in his “method of least squares”). In mathematical statistics [e.g.

232 4 Systems of Linear Equations

see Guest (1961), Seber (1977), or Grossmann (1969)] it is shown that the
“least-squares solution” has particularly simple statistical properties. It is
the most reasonable point to determine if the errors in the measurements
are independent and normally distributed. More recently, however, points
x which minimize the norm (4.8.0.3) of the residuals have been considered
in cases where the measurement errors are subject to occasional anomalies.
Since the computation of the best solution x is more difficult in this case
than in the method of least squares, we will not pursue this matter.

If the functions fk(x1, . . . , xn) have continuous partial derivatives in
all of the variables xi, then we can readily give a necessary condition for
x = (x1, . . . , xn)T to minimize (4.8.0.2):

(4.8.0.4)
∂

∂xi

m∑
k=1

(yk − fk(x1, . . . , xn))2 = 0, i = 1, . . . , n.

These are the normal equations for x.
An important special case, the linear least-squares problem, is obtained

if the functions fk(x1, . . . , xn) are linear in the xi. In this case there is an
m× n matrix A with f1(x1, . . . , xn)

...
fm(x1, . . . , xn)

 = Ax

and the normal equations reduce to a linear system

gradx((y −Ax)T (y −Ax)) = 2ATAx− 2AT y = 0

or

(4.8.0.5) ATAx = AT y.

We will concern ourselves in the following sections (4.8.1–4.8.3), with meth-
ods for solving the linear least-squares problem, and in particular, we will
show that more numerically stable methods exist for finding the solution
than by means of the normal equations.

Least-squares problems are studied in more detail in Björck (1990) and
the book by Lawson and Hanson (1974), which also contains fortran

programs; algol programs are found in Wilkinson and Reinsch (1971).

4.8.1 Linear Least Squares. The Normal Equations

In the following sections ‖x‖ will always denote the Euclidean norm ‖x‖ :=√
xTx. Let a real m× n matrix A and a vector y ∈ IRm be given, and let

(4.8.1.1) ‖y −Ax‖2 = (y −Ax)T (y −Ax)

4.8 Data Fitting 233

be minimized as a function of x. We want to show that x ∈ IRn is a solution
of the normal equations

(4.8.1.2) ATAx = AT y

if and only if x is also a minimum point for (4.8.1.1). We have the following:

(4.8.1.3) Theorem. The linear least-squares problem

min
x∈IRn

‖y −Ax‖

has at least one minimum point x0. If x1 is another minimum point, then
Ax0 = Ax1. The residual r := y−Ax0 is uniquely determined and satisfies
the equation AT r = 0. Every minimum point x0 is also a solution of the
normal equations (4.8.1.2) and conversely.

Proof. Let L ⊆ IRm be the linear subspace

L = {Ax | x ∈ IRn}

which is spanned by the columns of A, and let L⊥ be the orthogonal com-
plement

L⊥ := {r | rT z = 0 for all z ∈ L} = {r | rTA = 0}.

Because IRm = L⊕L⊥, the vector y ∈ IRm can be written uniquely in the
form

(4.8.1.4) y = s+ r, s ∈ L, r ∈ L⊥,

and there is at least one x0 with Ax0 = s. Because AT r = 0, x0 satisfies

AT y = AT s = ATAx0,

that is, x0 is a solution of the normal equations. Conversely, each solution
x1 of the normal equations corresponds to a representation (4.8.1.4):

y = s+ r, s := Ax1, r := y −Ax1, s ∈ L, r ∈ L⊥.

Because this representation is unique, it follows that Ax0 = Ax1 for all
solutions x0, x1 of the normal equations. Further, each solution x0 of the
normal equations is a minimum point for the problem

min
x∈IRn

‖y −Ax‖.

To see this, let x be arbitrary, and set

z = Ax−Ax0, r := y −Ax0.

Then, since rT z = 0,

234 4 Systems of Linear Equations

‖y −Ax‖2 = ‖r − z‖2 = ‖r‖2 + ‖z‖2 ≥ ‖r‖2 = ‖y −Ax0‖2,

that is, x0 is a minimum point. This establishes Theorem (4.8.1.3). ��
If the columns of A are linearly independent, that is, if x �= 0 implies

Ax �= 0, then the matrix ATA is nonsingular (and positive definite). If this
were not the case, there would exist an x �= 0 satisfying ATAx = 0, from
which

0 = xTATAx = ‖Ax‖2

would yield a contradiction, since Ax �= 0. Therefore the normal equations

ATAx = AT y

have a unique solution x = (ATA)−1AT y, which can be computed using the
methods of Section 4.3 (that is, using the Choleski factorization of ATA).

However, we will see in the following sections that there are more nu-
merically stable ways of solving the linear least squares problem.

We digress here to go briefly into the statistical meaning of the matrix
(ATA)−1. To do this, we assume that the components yi, i = 1, . . . , m, are
independent, normally distributed random variables having µi as means
and all having the same variance σ2:

E[yi] = µi,

E[(yi − µi)(yk − µk)] =
{
σ2 for i = k,
0 otherwise.

If we set µ := (µ1, . . . , µm)T , then the above can be expressed as

(4.8.1.5) E[y] = µ, E[(y − µ)(y − µ)T] = σ2I.

The covariance matrix of the random vector y is σ2I. The optimum x =
(ATA)−1AT y of the least-squares problem is also a random vector, having
mean

E[x] = E[(ATA)−1AT y]

= (ATA)−1ATE[y]

= (ATA)−1ATµ,

and covariance matrix

E[(x−E(x))(x− E(x))T]

= E[(ATA)−1AT (y − µ)(y − µ)TA(ATA)−1]

= (ATA)−1ATE[(y − µ)(y − µ)T]A(ATA)−1 = σ2(ATA)−1.

4.8 Data Fitting 235

4.8.2 The Use of Orthogonalization in Solving Linear Least-
Squares Problems

The problem of determing an x ∈ IRn which minimizes

‖y −Ax‖, (A ∈M(m,n), m ≥ n)

can be solved using the orthogonalization techniques discussed in Section
4.7. Let the matrix A ≡: A(0) and the vector y ≡: y(0) be transformed
by a sequence of Householder transformations Pi, A(i) = PiA

(i−1), y(i) =
Piy

(i−1). The final matrix A(n) has the form

(4.8.2.1) A(n) =
[
R
0

]
}n
}m−n with R =

 r11 · · · r1n
. . .

...
0 rnn

 ,
since m ≥ n. Let the vector h := y(n) be partitioned correspondingly:

(4.8.2.2) h =
[
h1
h2

]
, h1 ∈ IRn, h2 ∈ IRm−n.

The matrix P = Pn · · ·P1, being the product of unitary matrices, is unitary
itself:

PHP = PH1 · · ·PHn Pn · · ·P1 = I,

and satisfies
A(n) = PA, h = Py.

Unitary transformations leave the Euclidean norm ‖u‖ of a vector u invari-
ant (‖Pu‖2 = uHPHPu = uHu = ‖u‖2), so

‖y −Ax‖ = ‖P (y −Ax)‖ = ‖y(n) −A(n)x‖.

However, from (4.8.2.1) and (4.8.2.2), the vector y(n)−A(n)x has the struc-
ture

y(n) −A(n)x =
[
h1 −Rx
h2

]
.

Hence ‖y −Ax‖ is minimized if x is chosen so that

(4.8.2.3) h1 = Rx.

The matrix R has an inverse R−1 if and only if the columns a1, . . . , an of
A are linearly independent. Az = 0 for z �= 0 is equivalent to

PAz = 0

and therefore to
Rz = 0.

236 4 Systems of Linear Equations

If we assume that the columns of A are linearly independent, then

h1 = Rx,

which is a triangular system, can be solved uniquely for x. This x is, more-
over, the unique minimum point for the given least-squares problem. [If
the columns of A, and with them the columns of R, are linearly dependent,
then, although the value of minz ‖y − Az‖ is uniquely determined, there
are many minimum points x.]

The size ‖y −Ax‖ of the residual of the minimum point is seen to be

(4.8.2.4) ‖y −Ax‖ = ‖h2‖.

We conclude by mentioning that instead of using unitary transforma-
tions, the Gram-Schmidt technique with reorthogonalization can be used
to obtain the solution, as should be evident.

4.8.3 The Condition of the Linear Least-Squares Problem

We begin this section by investigating how a minimum point x for the linear
least-squares problem

(4.8.3.1) min
x

‖y −Ax‖

changes if the matrix A and the vector y are perturbed. We assume that
the columns of A are linearly independent. If the matrix A is replaced by
(A+∆A), and y is replaced by y+∆y, then the solution x = (ATA)−1AT y
of (4.8.3.1) changes to

x+∆x = ((A+∆A)T (A+∆A))−1(A+∆A)T (y +∆y).

If ∆A is small relative to A, then ((A + ∆A)T (A + ∆A))−1 exists and
satisfies, to a first approximation,

((A+∆A)T (A+∆A))−1 .=
.= (ATA(I + (ATA)−1[AT∆A+∆ATA]))−1

.= (I − (ATA)−1[AT∆A+∆ATA])(ATA)−1.

[To a first approximation, (I + F)−1 .= I − F if the matrix F is “small”
relative to I.] Thus it follows that
(4.8.3.2)

x+∆x .=(ATA)−1AT y − (ATA)−1[AT∆A+∆ATA](ATA)−1AT y

+ (ATA)−1∆AT y + (ATA)−1AT∆y.

4.8 Data Fitting 237

Noting that
x = (ATA)−1AT y

and introducing the residual

r := y −Ax,

it follows immediately from (4.8.3.2) that

∆x
.= −(ATA)−1AT∆Ax+ (ATA)−1∆AT r + (ATA)−1AT∆y.

Therefore, for the Euclidean norm ‖·‖ and the associated matrix norm lub,

(4.8.3.3)

‖∆x‖ ≤̇ lub((ATA)−1AT) lub(A)
lub(∆A)
lub(A)

‖x‖

+ lub((ATA)−1) lub(AT) lub(A)
lub(∆AT)
lub(AT)

‖r‖
‖Ax‖‖x‖

+ lub((ATA)−1AT) lub(A)
‖y‖

‖Ax‖
‖∆y‖
‖y‖ ‖x‖.

[Observe that the definition given in (4.4.8) for lub makes sense even for
nonsquare matrices.] This approximate bound can be simplified. According
to the results of Section 4.8.2, a unitary matrix P and an upper triangular
matrix R can be found such that

PA =
[
R
0

]
, A = PT

[
R
0

]
,

and it follows that

(4.8.3.4)

ATA = RTR,

(ATA)−1 = R−1(RT)−1,

(ATA)−1AT = [R−1, 0]P.

If it is observed that

lub(CT) = lub(C)

lub(PC) = lub(CP) = lub(C),

holds for the Euclidean norm, where P is unitary, then (4.8.3.3) and
(4.8.3.4) imply

‖∆x‖
‖x‖ ≤̇ cond(R)

lub(∆A)
lub(A)

+ cond(R)2
‖r‖

‖Ax‖
lub(∆A)
lub(A)

+ cond(R)
‖y‖

‖Ax‖
‖∆y‖
‖y‖ .

238 4 Systems of Linear Equations

If we define the angle ϕ by

tanϕ =
‖r‖

‖Ax‖ , 0 ≤ ϕ < π

2
,

then ‖y‖/‖Ax‖ = (1+tan2 ϕ)1/2 because of y = Ax+r, r ⊥ Ax. Therefore

(4.8.3.5)

‖∆x‖
‖x‖ ≤̇ cond(R)

lub(∆A)
lub(A)

+ cond(R)2 tanϕ
lub(∆A)
lub(A)

+ cond(R)
√

1 + tan2 ϕ
‖∆y‖
‖y‖ .

In summary, the condition of the least-squares problem depends on
cond(R) and the angle ϕ: If ϕ is small, say if cond(R) tanϕ ≤ 1, then the
condition is measured by cond(R). With increasing ϕ ↑ π/2 the condition
gets worse: it is then measured by cond(R)2 tanϕ.

If the minimum point x for the linear least-squares problem is found
using the orthogonalization method described in Section 4.8.2, then in exact
arithmetic, a unitary matrix P (consisting of a product of Householder
matrices), an upper triangular matrix R, a vector hT = (hT1 , h

T
2), and the

solution x all satisfying

(4.8.3.6) PA =
[
R
0

]
, h = Py, Rx = h1.

are produced. Using floating-point arithmetic with relative machine preci-
sion eps, an exactly unitary matrix will not be obtained, nor will R, h, x
exactly satisfy (4.8.3.6). Wilkinson (1965) has shown, however, that there
exist a unitary matrix P ′, matrices ∆A and ∆R, and a vector ∆y such that

lub(P ′ − P) ≤ f(m) eps,

P ′(A+∆A) =
[
R
0

]
, lub(∆A) ≤ f(m) eps lub(A),

P ′(y +∆y) = h, ‖∆y‖ ≤ f(m) eps ‖y‖,

(R+∆R)x = h1, lub(∆R) ≤ f(m) eps lub(R).

In these relations f(m) is a slowly growing function of m, roughly f(m) ≈
O(m).

Up to terms of higher order

lub(R) .= lub(A),

and therefore, since

F := ∆A+ P ′H
[
∆R
0

]
,

4.8 Data Fitting 239

it also follows that

P ′(A+ F) =
[
R+∆R

0

]
, lub(F) ≤ 2f(m) eps lub(A).

In other words, the computed solution x can be interpreted as an exact
minimum point of the following linear least-squares problem:

(4.8.3.7) min
z

∥∥(y +∆y) − (A+ F)z
∥∥,

wherein the matrix A+F and the right-hand-side vector y+∆y differ only
slightly from A and y respectively. The technique of orthogonalization is,
therefore, numerically stable.

If, on the other hand, one computes the solution x by way of the normal
equations

ATAx = AT y,

then the situation is quite different. It is known form Wilkinson’s (1965)
estimates [see also Section 4.5] that a solution vector x̃ is obtained which
satisfies

(4.8.3.8) (ATA+G)x̃ = AT y, lub(G) ≤ f(n) eps lub(ATA),

when floating point computation with the relative machine precision eps
is used (even under the assumption that AT y and ATA are computed
exactly). If x = (ATA)−1AT y is the exact solution, then (4.4.15) shows
that

(4.8.3.9)

‖x̃− x‖
‖x‖ ≤ cond(ATA)

lub(G)
lub(ATA)

= cond(R)2
lub(G)

lub(ATA)

≤ f(n) eps cond(R)2

to a first approximation. The roundoff errors, represented here as the matrix
G, are amplified by the factor cond(R)2.

This shows that the use of the normal equations is not numerically
stable if the first term dominates in (4.8.3.5). Another situation holds if the
second term dominates. If tanϕ = ‖r‖/‖Ax‖ ≥ 1, for example, then the
use of the normal equations will be numerically stable and will yield results
which are comparable to those obtained through the use of orthogonal
transformations.

Example 1 (Läuchli). For the 6 × 5 matrix

A =

1 1 1 1 1
ε 0

ε
ε

ε
0 ε

240 4 Systems of Linear Equations

if follows that

ATA =

1 + ε2 1 1 1 1

1 1 + ε2 1 1 1

1 1 1 + ε2 1 1

1 1 1 1 + ε2 1

1 1 1 1 1 + ε2

 .

If ε = 0.5 · 10−5, then 10-place decimal arithmetic yields

fl(ATA) =

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 ,
since ε2 = 0.25 × 10−10. This matrix has rank 1 and has no inverse. The nor-
mal equations cannot be solved, whereas the orthogonalization technique can
be applied without difficulty. [Note for ATA that cond(ATA) = cond(R)2 =
(5 + ε2)/ε2.]

Example 2. The following example is intended to offer a computational com-
parison between the two methods which have been discussed for the linear least-
squares problem.

(4.8.3.7) shows that, for the solution of a least-squares problem obtained using
orthogonal transformations, the approximate bound given by (4.8.3.5) holds with
∆A = F and

lub(∆A) ≤ 2f(m) eps lub(A).

(4.8.3.9) shows that the solution obtained directly from the normal equations
satisfies a somewhat different bound:

(ATA+G)(x+∆x) = AT y +∆b

where ‖∆b‖ ≤ eps lub(A)‖y‖, that is,

(4.8.3.10)
‖∆x‖normal

‖x‖ ≤ cond(R)2
(

lub(G)
lub(ATA)

+
‖∆b‖

‖AT y‖

)
,

which holds because of (4.4.12) and (4.4.15).
Let the fundamental relationship

(4.8.3.11) y(s) := x1
1
s

+ x2
1
s2

+ x3
1
s3

with x1 = x2 = x3 = 1

be given. A series of observed values [computed from (4.8.3.11)]

{si, y(si)}i=1,...,10

were produced on a machine having eps = 10−11.

(a) Determine x1, x2, x3 from the data {si, yi}. If exact function values
yi = y(si) are used, then the residual will satisfy

r(x) = 0, tanϕ = 0.

4.8 Data Fitting 241

The following table presents some computational results for this example. The size
of the errors ‖∆x‖orth from the orthogonalization method and ‖∆x‖normal from
the normal equations are shown together with a lower bound for the condition
number of R. The example was solved using si = s0 + i, i = 1, . . . , 10, for a
number of values of s0:

s0 cond(R) ‖∆x‖orth ‖∆x‖normal

10 6.6 · 103 8.0 · 10−10 8.8 · 10−7

50 1.3 · 106 6.4 · 10−7 8.2 · 10−5

100 1.7 · 107 3.3 · 10−6 4.2 · 10−2

150 8.0 · 107 1.8 · 10−5 6.9 · 10−1

200 2.5 · 108 1.8 · 10−3 2.7 · 100

(b) We introduce a perturbation into the yi replacing y by y+λv, where v is
chosen so that AT v = 0. this means that, in theory, the solution should remain
unchanged:

(ATA)x = AT (y + λv) = AT y.

Now the residual satisfies

r(x) = y + λv −Ax = λv, tanϕ = λ‖v‖/‖y‖, λ ∈ IR.

The following table presents the errors ∆x, as before, and the norm of the
residual ‖r(x)‖ together with the corresponding values of λ:

s0 = 10,

v = (0.1331, −0.5184, 0.6591, −0.2744, 0, 0, 0, 0, 0, 0)T ,

lub(A) ≈ 0.22, eps = 10−11.

λ ‖r(x)‖ ‖∆x‖orth ‖∆x‖normal

0 0 8 · 10−10 8.8 · 10−7

10−6 9 · 10−7 9.5 · 10−9 8.8 · 10−7

10−4 9 · 10−5 6.2 · 10−10 4.6 · 10−7

10−2 9 · 10−3 9.1 · 10−9 1.3 · 10−6

100 9 · 10−1 6.1 · 10−7 8.8 · 10−7

10+2 9 · 101 5.7 · 10−5 9.1 · 10−6

4.8.4 Nonlinear Least-Squares Problems

Nonlinear data-fitting problems can generally be solved only by iteration,
as for instance the problem given in (4.8.0.2) of determining a point x∗ =
(x∗

1, . . . , x
∗
n)
T for given functions fk(x) ≡ fk(x1, . . . , xn) and numbers yk,

k = 1, . . . , m,

242 4 Systems of Linear Equations

y =

 y1...
ym

 , f(x) =

 f1(x1, . . . , xn)
...

fm(x1, . . . , xn)

 ,
which minimizes

‖y − f(x)‖2 =
m∑
k=1

(yk − fk(x1, . . . , xn))2.

For example, linearization techniques [see Section 5.1] can be used to reduce
this problem to a sequence of linear least squares problems. If each fk is
continuously differentiable, and if

Df(ξ) =

∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fm
∂x1

· · · ∂fm
∂xn

x=ξ

represents the Jacobian matrix at the point x = ξ, then

f(x̄) = f(x) +Df(x)(x̄− x) + h, ‖h‖ = o(‖x̄− x‖),

holds. If x is close to the minimum point of the nonlinear least-squares
problem, then the solution x̄ of the linear least-squares problem

(4.8.4.1)
min
z∈IRn

‖y − f(x) −Df(x)(z − x)‖2 = ‖r(x) −Df(x)(x̄− x)‖2,

r(x) := y − f(x),

will often be still closer than x; that is,

‖y − f(x̄)‖2 < ‖y − f(x)‖.

This relation is not always true in the form given. However, it can be shown
that the direction

s = s(x) := x̄− x
satisfies the following:

There is a λ > 0 such that the function

ϕ(τ) :=
∥∥y − f(x+ τs)

∥∥2

is strictly monotone decreasing for all 0 ≤ τ ≤ λ. In particular

ϕ(λ) = ‖y − f(x+ λs)‖2 < ϕ(0) = ‖y − f(x)‖2.

4.8 Data Fitting 243

Proof. ϕ is a continuously differentiable function of τ and satisfies

ϕ′(0) =
d

dτ
[(y − f(x+ τs))T (y − f(x+ τs))]τ=0

= −2(Df(x)s)T (y − f(x)) = −2(Df(x)s)T r(x).

Now, by the definition of x̄, s = (x̄−x) is a solution to the normal equations

(4.8.4.2) Df(x)TDf(x)s = Df(x)T r(x),

of the linear least-squares problem (4.8.4.1). It follows immediately from
(4.8.4.2) that

‖Df(x)s‖2 = sTDf(x)TDf(x)s = (Df(x)s)T r(x)

and therefore
ϕ′(0) = −2‖Df(x)s‖2 < 0,

so long as rank Df(x) = n and s �= 0. The existence of a λ > 0 satisfying
ϕ′(τ) < 0 for 0 ≤ τ ≤ λ is a result of continuity, from which observation
the assertion follows. ��

This result suggests the following algorithm, called the Gauss-Newton
algorithm, for the iterative solution of nonlinear least-squares problems.
Beginning with an initial point x(0), determine successive approximations
x(i), i = 1, 2, . . . , as follows:

(1) For x(i) compute a minimum point s(i) for the linear least-squares
problem

min
s∈IRn

∥∥r(x(i)) −Df(x(i))s
∥∥2
.

(2) Let ϕ(τ) := ‖y − f(x(i) + τs(i))‖2, and further, let k be the smallest
integer k ≥ 0 with

ϕ(2−k) < ϕ(0) =
∥∥r(x(i))

∥∥2
.

(3) Define x(i+1) := x(i) + 2−ks(i).

In Section 5.4 we will study the convergence of algorithms which are
closely related to the process described here.

4.8.5 The Pseudoinverse of a Matrix

For any arbitrary (complex) m×n matrix A there is an n×m matrix A+,
the so-called pseudoinverse (or Moore-Penrose inverse). It is associated
with A in a natural fashion and agrees with the inverse A−1 of A in case
m = n and A is nonsingular.

Consider the range space R(A) and the null space N(A) of A,

244 4 Systems of Linear Equations

R(A) := {Ax ∈ Cm | x ∈ Cn },
N(A) := {x ∈ Cn | Ax = 0 },

together with their orthogonal complement spaces R(A)⊥ ⊂ Cm, N(A)⊥ ⊂
Cn. Further, let P be the n × n matrix which projects Cn onto N(A)⊥,
and let P̄ be the m×m matrix which projects Cm onto R(A):

Px = 0 ⇐⇒ x ∈ N(A), P = PH = P 2,

P̄ y = y ⇐⇒ y ∈ R(A), P̄ = P̄H = P̄ 2.

For each y ∈ R(A) there is a uniquely determined x1 ∈ N(A)⊥ satisfying
Ax1 = y; i.e., there is a well-defined mapping f :R(A) → Cn with

Af(y) = y, f(y) ∈ N(A)⊥ for all y ∈ R(A).

For, given y ∈ R(A), there is an x which satisfies y = Ax; hence y =
A(Px + (I − P)x)) = APx = Ax1, where x1 := Px ∈ N(A)⊥, since
(I − P)x ∈ N(A). Further, if x1, x2 ∈ N(A)⊥, Ax1 = Ax2 = y, it follows
that

x1 − x2 ∈ N(A) ∩N(A)⊥ = { 0 },
which implies that x1 = x2. f is obviously linear.

The composite mapping f ◦ P̄ : y ∈ Cm → f(P̄ (y)) ∈ Cn is well defined
and linear, since P̄ y ∈ R(A); hence it is respresented by an n×m matrix,
which is precisely A+, the pseudoinverse of A: A+y = f(P̄ (y)) for all
y ∈ Cm. A+ has the following properties:

(4.8.5.1) Theorem. Let A be an m× n matris. The pseudoinverse A+ is
an n×m matrix satisfying:
(1) A+A = P is the orthogonal projector P : Cn → N(A)⊥ and AA+ = P̄

is the orthogonal projector P̄ : Cm → R(A).
(2) The following formulas hold:

(a) A+A = (A+A)H ,
(b) AA+ = (AA+)H ,
(c) AA+A = A,
(d) A+AA+ = A+.

Proof. According to the definition of A+,

A+Ax = f(P̄ (Ax)) = f(Ax) = Px for all x,

so that A+A = P . Since PH = P , (4.8.5.1.2a) is satisfied. Further, from
the definition of f ,

AA+ = A(f(P̄ y)) = P̄ y

for all y ∈ Cm; hence AA+ = P̄ = P̄H . Since P̄H = P̄ , (4.8.5.1.2b) follows
too. Finally, for all x ∈ Cn

4.8 Data Fitting 245

(AA+)Ax = P̄Ax = Ax

according to the definition of P̄ , and for all y ∈ Cm

A+(AA+)y = A+P̄ y = f(P̄ 2y) = f(P̄ y) = A+y;

hence, (4.8.5.1.2c, 2d) hold. ��

The properties (2a-d) of (4.8.5.1) uniquely characterize A+:

(4.8.5.2) Theorem. If Z is a matrix satisfying

a’) ZA = (ZA)H ,

b’) AZ = (AZ)H ,

c’) AZA = A,

d’) ZAZ = Z,

then Z = A+.

Proof. From (a)–(d) and (a’)–(d’) we have the following chain of equali-
ties:

Z = ZAZ = Z(AA+A)A+(AA+A)Z from d’), c)

= (AHZHAHA+H)A+(A+HAHZHAH) from a), a’), b), b’)

= (AHA+H)A+(A+HAH) from c’)

= (A+A)A+(AA+) from a), b)

= A+AA+ = A+ from d). ��

We note the following

(4.8.5.3) Corollary. For all matrices A,

A++ = A, (A+)H = (AH)+.

This holds because Z := A [respectively Z := (A+)H] has the properties
of (A+)+ [respectively (AH)+] in (4.8.5.2).

An elegant representation of the solution to the least-squares problem

min
x

‖Ax− y‖2

can be given with the aid of the pseudoinverse A+:

(4.8.5.4) Theorem. The vector x̄ := A+y satisfies:

(a) ‖Ax− y‖2 ≥ ‖Ax̄− y‖2 for all x ∈ Cn.

(b) ‖Ax− y‖2 = ‖Ax̄− y‖2, and x �= x̄ imply ‖x‖2 > ‖x̄‖2.

246 4 Systems of Linear Equations

In other words, x̄ = A+y is that minimum point of the least squares prob-
lem which has the smallest Euclidean norm, in the event that the problem
does not have a unique minimum point.

Proof. From (4.8.5.1), AA+ is the orthogonal projector on R(A); hence,
for all x ∈ Cn it follows that

Ax− y = u− v

u := A(x−A+y) ∈ R(A), v := (I −AA+)y = y −Ax̄ ∈ R(A)⊥.

Consequently, for all x ∈ Cn

‖Ax− y‖2
2 = ‖u‖2

2 + ‖v‖2
2 ≥ ‖v‖2

2 = ‖Ax̄− y‖2
2,

and ‖Ax− y‖2 = ‖Ax̄− y‖2 holds precisely if

Ax = AA+y.

Now, A+A is the projector on N(A)⊥. Therefore, for all x such that Ax =
AA+y,

x = u1 + v1, u1 := A+Ax = A+AA+y = A+y = x̄ ∈ N(A)⊥,

v1 := x− u1 = x− x̄ ∈ N(A),

from which it follows that ‖x‖2
2 > ‖x̄‖2

2 for all x ∈ Cn satisfying x− x̄ �= 0
and ‖Ax− y‖2 = ‖Ax̄− y‖2. ��

If the m×n matrix A with m ≥ n has maximal rank, rank A = n, then
there is an explicit formula for A+: It is easily verified that the matrix Z :=
(AHA)−1AH has all properties given in Theorem (4.8.5.2) characterizing
the pseudoinverse A+ so that

A+ = (AHA)−1AH .

By means of the QR decomposition (4.7.7) of A, A = QR, this formula for
A+ is equivalent to

A+ = (RHQHQR)−1RHQH = R−1QH .

This allows a numerically more stable computation of the pseudoinverse,
A+ = R−1QH .

If m < n and rank A = m then because of (A+)H = (AH)+ the
pseudoinverse A+ is given by

A+ = Q(RH)−1,

if the matrix AH has the QR decompositon AH = QR (4.7.7).

4.9 Modification Techniques for Matrix Decompositions 247

For general m × n matrices A of arbitrary rank the pseudoinverse A+

can be computed by means of the singular value decomposition of A [see
(6.4.11), (6.4.13)].

4.9 Modification Techniques for Matrix
Decompositions

Given any n×n matrix A, Gaussian elimination [see Section 4.1] produces
an n × n upper triangular matrix R and a nonsingular n × n matrix F =
Gn−1Pn−1 · · ·G1P1, a product of Frobenius matrices Gj and permutation
matrices Pj , which satisfy

FA = R.

Alternatively, the orthogonalization algorithms of Section 4.7 produce n×n
unitary matrices P , Q and an upper triangular matrix R (different from
the one above) for which

PA = R or A = QR.

[compare with (4.7.7)]. These algorithms can also be applied to rectangular
m×n matrices A, m ≥ n. Then they produce nonsingular m×m matrices
F (alternatively m × m unitary matrices P or m × n matrices Q with
orthonormal columns) and n× n upper triangular matrices R satisfying

(4.9.1) FA =
[
R
0

]
}n
}m−n ,

or

(4.9.2a) PA =
[
R
0

]
, PHP = PPH = Im ,

(4.9.2b) A = QR, QHQ = In.

Form = n, these decompositions were seen to be useful in that they reduced
the problem of solving the equation systems

(4.9.3) Ax = y or ATx = y

to a process of solving triangular systems and carrying out matrix multipli-
cations. When m ≥ n, the orthogonal decompositions mentioned in (4.9.2)
permit the solutions x̄ of linear least-squares problems to be obtained in a
similar manner:

(4.9.4) min
x

‖Ax− y‖ = min
x

∥∥∥∥[R0
]
x− Py

∥∥∥∥, Rx̄ = QHy.

248 4 Systems of Linear Equations

Further, these techniques offer an efficient way of obtaining the solutions
to linear-equation problems (4.9.3) or to least-squares problems (4.9.4) in
which a single matrix A is given with a number of right-hand sides y.

Frequently, a problem involving a matrix A is given and solved, follow-
ing which a “simple” change A→ Ā is made. Clearly it would be desirable
to determine a decomposition (4.9.1) or (4.9.2) of Ā, starting with the cor-
responding decomposition of A, in some less expensive way than by using
the algorithms in Sections 4.1 of 4.7. For certain simple changes this is
possible.
We will consider:

(1) the change of a row or column of A,
(2) the deletion of a column of A,
(3) th addition of a column to A,
(4) the addition of a row to A,
(5) the deletion of a row of A,

where A is anm×n matrix,m ≥ n. [See Gill, Golub, Murray, and Saunders
(1974) and Daniel, Gragg, Kaufman, and Stewart (1976) for a more detailed
description of modification techniques for matrix decompositions.]

Our principal tool for devising modification techniques will be certain
simple elimination matrices Eij . These are nonsingular matrices of order
m which differ from the identity matrix only in columns i and j and have
the following form:

Eij =

1 0
. . .

1
a b

1
. . .

1
c d

1
. . .

0 1

← i

← j

A matrix multiplication y = Eijx changes only components xi and xj of
the vector x = (x1, . . . , xm)T ∈ IRm:

yi = axi + bxj ,

yj = cxi + dxj ,

yk = xk for k �= i, j.

Given a vector x and indices i �= j, the 2 × 2 matrix

4.9 Modification Techniques for Matrix Decompositions 249

Ê :=
[
a b
c d

]
,

and thereby Eij , can be chosen in several ways so that the jth component
yj of the result y = Eijx vanishes and so that Eij is nonsingular:[

yi
yj

]
!=
[
yi
0

]
= Ê

[
xi
xj

]
.

For numerical reasons Ê should also be chosen so that the condition number
cond (Eij) is not too large. The simplest possibility, which finds application
in decompositions of the type (4.9.1), is to construct Ê as a Gaussian
elimination of a certain type [see (4.1.8)]:

(4.9.5) Ê =

[
1 0
0 1

]
if xj = 0,[

1 0
−xj/xi 1

]
if |xi| ≥ |xj | > 0,[

0 1
1 −xi/xj

]
if |xi| < |xj |.

In the case of orthogonal decompositions (4.9.2) we choose Ê, and thereby
Eij , to be the unitary matrices know as Givens matrices. One possible form
such a matrix may take is given by the following:

(4.9.6) Ê =
[
c s
s −c

]
, c := cosϕ, s := sinϕ.

Ê and Eij are Hermitian and unitary, and satisfy det(Ê) = −1. Since Ê is
unitary, it follows immediately from the condition[

c s
s −c

] [
xi
xj

]
!=
[
yi
0

]
that yi = k = ±

√
x2
i + x2

j , which can be satisfied by

c := 1, s := 0 if xi = xj = 0

or alternatively, if µ := max{|xi|, |xj |} > 0, by

c := xi/k, s := xj/k.

|k| is to be computed as

|k| = µ
√

(xi/µ)2 + (xj/µ)2,

250 4 Systems of Linear Equations

and the sign of k is, for the moment, arbitrary. The computation of |k|
in this form avoids problems which would arise from exponent overflow or
underflow given extreme values for the components xi and xj . On numerical
grounds the sign of k will be chosen according to

k = |k| sign(xi), sign(xi) :=
{

1, if xi ≥ 0,
−1, if xi < 0,

so that the computation of the auxiliary value

ν := s/(1 + c)

can take place without cancellation. Using ν, the significant components zi,
zj of the transformation z := Eiju of the vector u ∈ IRm can be computed
somewhat more efficiently (in which a multiplication is replaced by an
addition) as follows:

zi := cui + suj ,

zj := ν(ui + zi) − uj .

The type of matrix Ê shown in (4.9.6), together with its associated Eij ,
is known as Givens reflection. We can just as easily use a matrix Ê of the
form

Ê =
[
c s

−s c

]
, c = cosϕ, s = sinϕ,

which, together with its associated Eij , is known as a Givens rotation. In
this case Ê and Eij are orthogonal matrices which describe a rotation of
IRm about the origin through the angle ϕ in the (i, j) plane; det(Ê) = 1.
We will present the following material, however, only in terms of Givens
reflections.

Since modification techniques for the decomposition (4.9.1) differ from
those for (4.9.2a) only in that, in place of Givens matrices (4.9.6), cor-
responding elimination matrices Ê of type (4.9.5) are used, we will only
study the orthogonal factorization (4.9.2). The techniques for (4.9.2b) are
similar to, but more complicated than, those for (4.9.2a). Consequently, for
simplicity’s sake, we will restrict out attention to (4.9.2a). The correspond-
ing discussion for (4.9.2b) can be found in Daniel, Gragg, Kaufman, and
Stewart (1976).

In the following let A be a real m× n matrix with m ≥ n, and let

PA =
[
R
0

]
be a factorization of type (4.9.2a).

(1) Change of a row or column, or more generally, the change of A to
Ā := A + vuT (rank-one modification of A), where v ∈ IRm, u ∈ IRn are
given vectors. From (4.9.2a) we have

4.9 Modification Techniques for Matrix Decompositions 251

(4.9.7) PĀ =
[
R
0

]
+ wuT , w := Pv ∈ IRm.

In the first step of the modification we annihilate the successive components
m,m−1, . . . , 2 of the vector w using appropriate Givens matrices Gm−1,m,
Gm−2,m−1, . . . , G12, so that

w̃ = ke1 = G12G23 . . . Gm−1,mw = (k, 0, . . . , 0)T ∈ IRm,

k = ±‖w‖ = ±‖v‖.

The sketch below in the case m = 4 should clarify the effect of carrying out
the successive transformations Gi,i+1. We denote by * here, and in the further
sketches of this section, those elements which are changed by a transformation,
other than the one set to zero:

w =

xx
x
x

 G34−→

xx
∗
0

 G23−→

x∗
0
0

 G12−→

 ∗
0
0
0

 = w̃.

If (4.9.7) is multiplied on the left as well by Gm−1,m, . . . , G12 in order,
we obtain

(4.9.8) P̃ Ā = R′ + ke1uT =: R̃,

where

P̃ := GP, R′ := G

[
R
0

]
, G := G12G23 · · ·Gm−1,m.

Here P̃ is unitary, as are G and P ; the upper triangular matrix
[
R
0

]
is

changed step by step into an upper Hessenberg matrix

R′ = G

[
R

0

]
,

that is a matrix with (R′)ik = 0 for i > k + 1:

m = 4, n = 3:

[
R
0

]
=

x x x
0 x x
0 0 x
0 0 0

G34−→

x x x
0 x x
0 0 ∗
0 0 ∗

G23−→

x x x
0 ∗ ∗
0 ∗ ∗
0 0 x

G12−→

 ∗ ∗ ∗
∗ ∗ ∗
0 x x
0 0 x

= G

[
R
0

]
= R′.

R̃ = R′ + ke1uT in (4.9.8) is also an upper Hessenberg matrix, since
the addition changes only the first row of R′. In the second step of the

252 4 Systems of Linear Equations

modification we annihilate the subdiagonal elements (R̃)i+1,i, i = 1, 2, . . . ,
µ := min(m−1, n−1) of R̃ by means of further Givens matrices H12, H23,
. . . , Hµ,µ+1, so that [see (4.9.8)]

HP̃Ā = HR̃ =:
[
R̄
0

]
, H := Hµ,µ+1 . . . H23H12,

where R̄ is, again, an n × n upper triangular matrix and P̄ := HP̃ is an
m×m unitary matrix. A decomposition of Ā of the type (4.9.2a) is provided
once again:

P̄ Ā =
[
R̄
0

]
.

The sequence of transformations R̃ → H12R̃ → H23(H12R̃) → · · · → HR̃
will be sketched for m = 4, n = 3:

R̃ =

x x x
x x x
0 x x
0 0 x

 H12−→

∗ ∗ ∗
0 ∗ ∗
0 x x
0 0 x

 H23−→

x x x
0 ∗ ∗
0 0 ∗
0 0 x

 H34−→

x x x
0 x x
0 0 ∗
0 0 0

=
[
R̄
0

]
.

(2) Deletion of a column. If Ā is obained from A by the deletion of the
kth column, then from (4.9.2a) the matrix R̃ := PĀ is an upper Hessenberg
matrix of the following form (sketched for m = 4, n = 4, k = 2):

R̃ := PĀ =

x x x

x x
x x

x

 .
The subdiagonal elements of R̃ are to be annihilated as described before,
using Givens matrices

Hk,k+1, Hk+1,k+2, . . . , Hn−1,n.

The decomposition of Ā is

P̄ Ā =
[
R̄
0

]
, P̄ := HP,[

R̄
0

]
:= H

[
R̃
0

]
, H := Hn−1,nHn−2,n−1 · · ·Hk,k+1.

(3) Addition of a column. If Ā = [A, a], a ∈ IRm, and A is an m × n
matrix with m > n, then (4.9.2a) implies

4.9 Modification Techniques for Matrix Decompositions 253

PĀ =
[
R

0

∣∣∣∣ Pa] =: R̃ =

x . . . x x
. . .

...
...

x x
x
...

0 x

.

The subdiagonal elements of R̃, which appear as an “spike” in the last col-
umn, can be annihilated by means of a single Householder transformation
H from (4.7.5):

HR̃ =

x . . . x x
. . .

...
...

x x
∗
0
...

0 0

=
[
R̄
0

]
.

P̄ := HP and R̄ are components of the decomposition (4.9.2a) of Ā:

P̄ Ā =
[
R̄
0

]
.

(4) Addition of a row. If

Ā =
[
A
aT

]
, a ∈ IRn,

then there is a permutation matrix Π of order m+ 1 which satisfies

ΠĀ =
[
aT

A

]
.

The unitary matrix of order m+ 1,

P̃ :=
[

1 0
0 P

]
Π

satisfies, according to (4.9.2a),

P̃ Ā =
[

1 0
0 P

] [
aT

A

]
=
[
aT

PA

]
=

 aTR
0

 =: R̃ =

x . . . x
x . . . x

. . .
...

0 x

0

.

254 4 Systems of Linear Equations

R̃ is an upper Hessenberg matrix whose subdiagonal elements can be an-
nihilated using Givens matrices H12, . . . , Hn,n+1:

P̄ = HP̃ ,

[
R̄
0

]
= HR̃, H = Hn,n+1 · · ·H23H12,

as described before, to produce the decompositon

P̄ Ā =
[
R̄
0

]
.

(5) Deletion of a row: Let A be an m × n matrix with m > n. We
assume without loss of generality (see the use of the permutation above)
that the last row aT of A is to be dropped:

A =
[
Ā
aT

]
.

We partition the matrix

P = [P̃ , p], p ∈ IRm,

accordingly and obtain, from (4.9.2a),

(4.9.9) [P̃ , p]
[
Ā
aT

]
=
[
R
0

]
.

We choose Givens matrices Hm,m−1, Hm,m−2, . . . , Hm1 to annihilate suc-
cessive components m − 1, m − 2, . . . , 1 of p: Hm1Hm2 · · ·Hm,m−1p =
(0, . . . , 0, π)T . A sketch for m = 4 is

(4.9.10) p =

x
x
x
x

 H43−→

x
x
0
∗

 H42−→

x
0
0
∗

 H41−→

0
0
0
∗

 =

0
0
0
π

 .
Now, P is unitary, so ‖p‖ = |π| = 1. Therefore, the transformed matrix
HP , H := Hm1Hm2 · · ·Hm,m−1, has the form

(4.9.11) HP =
[
P̄ 0
q π

]
=
[
P̄ 0
0 π

]
, π = ±1,

since |π| = 1 implies q = 0 because of the unitarity of HP . Consequently P̄
is a unitary matrix of order m− 1. On the other hand, the Hmi transform
the upper triangular matrix

[
R
0

]
, with the exception of its last row, into

an upper triangular matrix

H

[
R
0

]
= Hm1Hm2 · · ·Hm,m−1

[
R
0

]
=

 R̄0
zT

}n
}m−n−1

}1
.

4.9 Modification Techniques for Matrix Decompositions 255

Sketching this for m = 4, n = 3, we have

[
R
0

]
=

x x x
0 x x
0 0 x
0 0 0

 H43−→

x x x
0 x x
0 0 ∗
0 0 ∗

 H42−→

x x x
0 ∗ ∗
0 0 x
0 ∗ ∗

 H41−→

 ∗ ∗ ∗
0 x x
0 0 x
∗ ∗ ∗

=
[
R̄
zT

]
.

From (4.9.9), (4.9.11) it follows that

HP

[
Ā
aT

]
=
[
P̄ 0
0 π

] [
Ā
aT

]
=

 R̄0
zT

 ,
and therefore

P̄ Ā =
[
R̄
0

]
for the (m− 1)-order unitary matrix P̄ and the upper triangular matrix R̄
of order n. This has produced a decomposition for Ā of the form (4.9.2a).

It can be shown that the techniques of this section are numerically
stable in the following sense. Let P and R be given matrices with the
following property: There exists an exact unitary matrix P ′ and a matrix
A′ such that

P ′A′ =
[
R
0

]
is a decomposition of A′ in the sense of (4.9.2a) and the differences ‖P−P ′‖,
‖A − A′‖ are “small”. Then the methods of this section, applied to P , R
in floating-point arithmetic with relative machine precision eps, produce
matrices P̄ , R̄ to which are associated an exact unitary matrix P̄ ′ and a
matrix Ā′ satisfying:
(a) ‖P̄ − P̄ ′‖, ‖Ā− Ā′‖ are “small”, and

(b) P̄ ′Ā′ =
[
R̄
0

]
is a decomposition of Ā′ in the sense of (4.9.2a).

By “small” we mean that the differences above satisfy

‖∆P‖ = O(mα eps) or ‖∆A‖ = O(mα eps ‖A‖),

where α is small (for example α = 3
2).

256 4 Systems of Linear Equations

4.10 The Simplex Method

Linear algebraic techniques can be applied advantageously, in the context of
the simplex method, to solve linear programming problems. These problems
arise frequently in practice, particularly in the areas of economic planning
and management science. Linear programming is also the means by which a
number of important discrete approximation problems (e.g. data fitting in
the L1 and L∞ norms) can be solved. At this introductory level of treatment
we can cover only the most basic aspects of linear programming; for a more
thorough treatment, the reader is referred to the special literature on this
subject [e.g. Dantzig (1963), Gass (1969), Hadley (1962), Murty (1976), or
Schrijver (1986)].

A general linear programming problem (or linear program) has the
following form:

(4.10.1) minimize c1x1 + c2x2 + · · · + cnxn ≡ cTx

with respect to all x ∈ IRn which satisfy finitely many constraints of the
form

(4.10.2)
ai1x1 + ai2x2 + · · · + ainxn ≤ bi, i = 1, 2, . . . ,m1,

ai1x1 + ai2x2 + · · · + ainxn = bi, i = m1 + 1,m1 + 2, . . . ,m.

The numbers ck, aik, bi are given real numbers. The function cTx to be
minimized is called the objective function. Each x ∈ IRn which satisfies all
of the conditions (4.10.2) is said to be a feasible point for the problem.
By introducing additional variables and equations, the linear programming
problem (4.10.1), (4.10.2) can be put in a form in which the only constraints
which appear are equalities or elementary inequalities (inequalities, for ex-
ample, of the form xi ≥ 0). It is useful, for various reasons, to require that
the objective function cTx have the form cTx ≡ −xp. In order to bring a
linear programming problem to this form, we replace each nonelementary
inequality (4.10.2)

ai1x1 + · · · + ainxn ≤ bi
by an equality and an elementary inequality using a slack variable xn+i,

ai1x1 + · · · + ainxn + xn+i = bi, xn+i ≥ 0.

If the objective function c1x1 + · · · + cnxn is not elementary, we introduce
an additional variable xn+m1+1 and include an additional equation

c1x1 + · · · + cnxn + xn+m1+1 = 0

among the constraints (4.10.2). The minimization of cTx is equivalent to
the maximization of xn+m1+1 under this extended saystem of constraints.

4.10 The Simplex Method 257

Hence we can assume, without loss of generality, that the linear progam-
ming problem is already given in the following standard form:

(4.10.3)
LP(I, p) : maximize xp

x ∈ IRn : Ax = b,

xi ≥ 0 for i ∈ I.

In this formulation, I �⊆ N := {1, 2, . . . , n} is a (possibly empty) index set,
p is a fixed index satisfying p ∈ N\I, A = (a1, a2, . . . , an) is a real m × n
matrix having columns ai, and b ∈ IRm is a given vector. The variables xi
for which i ∈ I are restricted variables, while those for which i �∈ I are the
free variables. By

P := {x ∈ IRn | Ax = b & xi ≥ 0 for all i ∈ I}

we denote the set of all feasible points of LP (I, p), x∗ ∈ P is an optimum
point of LP (I, p), if x∗

p = max{xp | x ∈ P}.

As an illustration:

minimize −x1−2x2

x: −x1 +x2 ≤ 2
x1 +x2 ≤ 4
x1 ≥ 0, x2 ≥ 0.

After the introduction of x3, x4 as slack variables and x5 as an objective function
variable, the following standard form is obtained, p = 5, I = {1, 2, 3, 4}:

maximize x5

x : −x1+x2+x3 = 2
x1+x2 +x4 = 4

−x1−x2 +x5= 0
xi ≥ 0 for i ≤ 4.

This can be shown graphically in IR2. The set P (shaded in Figure 6) is a polygon.
(In higher dimensions P would be a polyhedron.)

We begin by considering the linear equation system Ax = b of LP (I, p).
For any index vector J = (j1, . . . , jr), ji ∈ N , we let AJ := (aj1 , . . . , ajr)
denote the submatrix of A having columns aji ; xJ denotes the vector
(xj1 , . . . , xjr)

T . For simplicity we will denote the set

{ji | i = 1, 2, . . . , r}

of the components of J by J also, and we will write p ∈ J if there exists
an i with p = ji.

258 4 Systems of Linear Equations

1

1

...............................

........

.......................

................

x1

x2

P

A

B

C

DE

F

x1 = 0

x2 = 0

x3 = 0

x4 = 0

x5 = 0

.........
...
....

.........
...
....

.........
...
....

.........
...
...................................

........

.............................

.........
...
....

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
.....

..

.........
.........
.........
.........
.........
.........
.........
.........................
................

...
..
...
...
...
...
.. ...
.. ...
..
...
...

..
..

...

...............

Fig. 6. Feasible region and objective function.

(4.10.4) Definition. An index vector J = (j1, . . . , jm) of m distinct in-
dices ji ∈ N is called a basis of Ax = b [and of LP(I,p)] if AJ is non-
singular. AJ is also referred to as a basis; the variables xi for i ∈ J are
referred to as basic variables, while the remaining variables xk, k �∈ J , are
the nonbasic variables. If K = (k1, . . . , kn−m) is an index vector containing
the nonbasic indices, we will use the notation J ⊕K = N .

In the above example JA := (3, 4, 5), JB := (4, 5, 2) are bases.

Associated with any basis J , J ⊕ K = N , there is a unique solution
x̄ = x̄(J) of Ax = b, called the basic solution, with x̄K = 0. Since

Ax̄ = AJ x̄J +AK x̄K = AJ x̄J = b,

x̄ is given by

(4.10.5) x̄J := b̄, x̄K := 0 with b̄ := A−1
J b.

Moreover, given a basis J , each solution x of Ax = b is uniquely determined
by its nonbasic segment xK and the basic solution x̄. This follows from the
multiplication Ax = AJxJ +AKxK = b by A−1

J and from (4.10.5):

4.10 The Simplex Method 259

(4.10.6)
xJ = b̄−A−1

J AKxK

= x̄J −A−1
J AKxK .

If xK ∈ IRn−m is chosen arbitrarily, and if xJ (and thereby x) is defined
by (4.10.6), then x is a solution of Ax = b. Therefore, (4.10.6) provides a
parametrization of the solution set {x | Ax = b} through the components
of xK ∈ IRn−m.

If the basic solution x̄ of Ax = b associated with the basis J is a feasible
point of LP(I, p), x̄ ∈ P , that is, if

(4.10.7) x̄i ≥ 0 for all i ∈ I ∩ J ,

then J is a feasible basis of LP(I, p) and x̄ is a basic feasible solution.
Finally, a feasible basis is said to be nondegenerate if

(4.10.8) x̄i > 0 for all i ∈ I ∩ J .

The linear programming problem as a whole is nondegenerate if all of its
feasible bases are nondegenerate.

Geometrically, the basic feasible solutions given by the various bases of
LP(I, p) correspond to the vertices of the polyhedron P of feasible points, as-
suming that P does have vertices. In the above example (see Figure 6) the ver-
tex A ∈ P belongs to the feasible basis JA = (3, 4, 5), since A is determined
by x1 = x2 = 0 and {1, 2} is in the complementary set corresponding to JA

in N = {1, 2, 3, 4, 5}; B is associated with JB = (4, 5, 2), C is associated with
JC = (1, 2, 5), etc. The basis JE = (1, 4, 5) is not feasible, since the associated
basic solution E is not a feasible point (E �∈ P).

The simplex method for solving linear programming problems, due to
G. B. Dantzig, is a process which begins with a feasible basis J0 of LP(I, p)
satisfying p ∈ J0 and recursively generates a sequence {Ji} of feasible bases
Ji of LP(I, p) with p ∈ Ji for each i by means of simplex steps

Ji → Ji+1.

These steps are designed to ensure that the objective function values x̄(Ji)p
corresponding to the bases Ji are nondecreasing:

x̄(Ji)p ≤ x̄(Ji+1)p for all i ≥ 0.

In fact, if all of the bases encountered are nondegenerate, this sequence
is strictly increasing, and if LP(I, p) does have an optimum, then the
sequence {Ji} terminates after finitely many steps in a basis JM whose
basic solution x̄(JM) is an optimum point for LP(I, p) and is such that
x̄(Ji)p < x̄(Ji+1)p for all 0 ≤ i ≤M − 1. Furthermore, each two successive
bases J = (j1, . . . , jm) and J̃ = (j̃1, . . . , j̃m) are neighboring, that is, J and
J̃ have exactly m− 1 components in common. This means that J̃ may be

260 4 Systems of Linear Equations

obtained from J through an index exchange: there are precisely two indices
q, s ∈ N satisfying q ∈ J , s �∈ J and q �∈ J̃ , s ∈ J̃ , thus J̃ = (J ∪ {s})\{q}.

For nondegenerate problems, neighboring feasible bases correspond geometri-
cally to neighboring vertices of P . In the example above (Figure 6), JA = (3, 4, 5)
and JB = (4, 5, 2) are neighboring bases, and A and B are neighboring vertices.

The simplex method, or more precisely, “phase two” of the simplex
method, assumes that a feasible basis J of LP(I, p) satisfying p ∈ J is
already available. Given that LP(I, p) does have feasible bases, one such
basis can be found using a variant known as “phase one” of the simplex
method. We will begin by describing a typical step of phase two of the sim-
plex method, which leads from a feasible basis J to a neighboring feasible
basis J̃ of LP(I, p):

(4.10.9) Simplex Step. Requirements: J = (j1, . . . , jm) is assumed to be
a feasible basis of LP(I, p) having p = jt ∈ J , J ⊕K = N .
(1) Compute the vector

b̄ := A−1
J b

which gives the basic feasible solution x̄ corresponding to J , where

x̄J := b̄, x̄K := 0.

(2) Compute the row vector
π := eTt A

−1
J ,

where et = (0, . . . , 1, . . . , 0)T ∈ IRm is the t th coordinate vector for
IRm. Determine the values

ck := πak, k ∈ K,

using π.
(3) Determine whether

(4.10.10)
ck ≥ 0 for all k ∈ K ∩ I

and ck = 0 for all k ∈ K\I.

(a) If so, then stop. The basic feasible solution x̄ is optimal for LP(I, p).
(b) If not, determine an s ∈ K such that

cs < 0, s ∈ K ∩ I or |cs| �= 0, s ∈ K\I,

and set σ := − sign cs.
(4) Calculate the vector

ā := (ᾱ1, ᾱ2, . . . , ᾱm)T := A−1
J as.

4.10 The Simplex Method 261

(5) If

(4.10.11) σᾱi ≤ 0 for all i with ji ∈ I,

stop: LP(I, p) has no finite optimum. Otherwise,
(6) Determine an index r with jr ∈ I, σᾱr > 0, and

b̄r
σᾱr

= min
{
b̄i
σᾱi

∣∣∣ i : ji ∈ I & σᾱi > 0
}
.

(7) Take as J̃ any suitable index vector with

J̃ := (J ∪ {s})\{jr},

for example
J̃ := (j1, . . . , jr−1, s, jr+1, . . . , jm)

or
J̃ := (j1, . . . , jr−1, jr+1, . . . , jm, s).

We wish to justify these rules. Let us assume that J = (j1, . . . , jm) is a
feasible basis for LP(I, p) with p = jt ∈ J , J ⊕K = N . Rule (1) of (4.10.9)
produces the associated basic feasible solution x̄ = x̄(J), as is implied by
(4.10.5). Since all solutions of Ax = b can be represented in the form given
by (4.10.6), the objective function can be written as

(4.10.12)

xp = eTt xJ = x̄p − eTt A−1
J AKxK

= x̄p − πAKxK
= x̄p − cKxK ,

This uses the fact that p = jt, and it uses the definitions of the vector π
and of the components cK , cTK ∈ IRn−m, as given in rule (2). cK is known
as the vector of reduced costs. As a result of (4.10.12), k ∈ K, gives the
amount by which the objective function xp changes as xk is changed by
one unit. If the condition (4.10.10) is satisfied [see rule (3)], it follows from
(4.10.12) for each feasible point x of LP(I, p), since xi ≥ 0 for i ∈ I, that

xp = x̄p −
∑

k∈K∩I
ckxk ≤ x̄p;

that is, the basic feasible solution x̄ is an optimum point for LP(I, p). This
motivates the test (4.10.10) and statement (a) of rule (3). If (4.10.10) is
not satisfied, there is an index s ∈ K for which either

(4.10.13) cs < 0, s ∈ K ∩ I,

or else

262 4 Systems of Linear Equations

(4.10.14) |cs| �= 0, s ∈ K\I,

holds. Let s be such an index. We set σ := − sign cs. Because (4.10.12)
implies that an increase of σxs leads to an increase of the objective function
xp, we consider the following family of vectors x(θ) ∈ IRn, θ ∈ IR:

(4.10.15)

x(θ)J := b̄− θσA−1
J as = b̄− θσā,

x(θ)s := θσ,

x(θ)k := 0 for k ∈ K, k �= s.

Here ā := A−1
J as is defined as in rule (4) of (4.10.9).

In our example I = {1, 2, 3, 4} and J0 = JA = (3, 4, 5) is a feasible basis;
K0 = (1, 2), p = 5 ∈ J0, t0 = 3. (4.10.9) produces, starting form J0,

AJ0 =

[
1

1
1

]
, b̄ =

[
2
4
0

]
,

x̄(J0) = (0, 0, 2, 4, 0)T (which is point A in Figure 6), and πAJ0 = eT
t0 ⇒ π =

(0, 0, 1). The reduced costs are c1 = πa1 = −1, c2 = πa2 = −2. This implies that
J0 is not optimal. If we choose the index s = 2 for (4.10.9), rule (3)(b), then

ā = A−1
J0
a2 =

[
1
1

−2

]
.

The family of vectors x(θ) is given by

x(θ) = (0, θ, 2 − θ, 4 − θ, 2θ)T .

Geometrically x(θ), θ ≥ 0 describes a semi-infinite ray in Figure 6 which extends
along the edge of the polyhedron P from vertex A (θ = 0) in the direction of the
neighboring vertex B (θ = 2).

From (4.10.6) it follows that Ax(θ) = b for all θ ∈ IR. In particular
(4.10.12) implies, from the fact that x̄ = x(0) and as a result of the choice
of σ, that

(4.10.16) x(θ)p = x̄p − csx(θ)s = x̄p + θ|cs|,

so that the objective function is a strictly increasing function of θ on the
family x(θ). It is reasonable to select the best feasible solution of Ax = b
from among the x(θ): that is, we wish to find the largest θ ≥ 0 satisfying

x(θ)l ≥ 0 for all l ∈ I.

From (4.10.15), this is equivalent to finding the largest θ ≥ 0 such that

(4.10.17) x(θ)ji ≡ b̄i − θσᾱi ≥ 0 for all i with ji ∈ I,

4.10 The Simplex Method 263

because x(θ)k ≥ 0 is automatically satisfied, for all k ∈ K ∩ I and θ ≥ 0,
because of (4.10.15). If σᾱi ≤ 0 for all ji ∈ J [see rule (5) of (4.10.9)], then
x(θ) is a feasible point for all θ ≥ 0, and because of (4.10.17) sup{x(θ)p |
θ ≥ 0} = +∞: LP (I,p) does not have a finite optimum. This justifies rule
(5) of (4.10.9). Otherwise there is a largest θ =: θ̄ for which (4.10.17) holds:

θ̄ =
b̄r
σᾱr

= min
{
b̄i
σᾱi

∣∣∣ i : ji ∈ I & σᾱi > 0
}
.

This determines an index r with jr ∈ I, σᾱr > 0 and

(4.10.18) x(θ̄)jr = b̄r − θ̄σᾱr = 0, x(θ̄) feasible.

In the example

θ̄ = 2 =
b̄1
ᾱ1

= min

{
b̄1
ᾱ1
,
b̄2
ᾱ2

}
, r = 1.

x(θ̄) = (0, 2, 0, 2, 4)T corresponds to vertex B of Figure 6.

From the feasibility of J , θ̄ ≥ 0, and it follows from (4.10.16) that

x(θ̄)p ≥ x̄p.

If J is nondegenerate, as defined in (4.10.8), then θ̄ > 0 holds and further,

x(θ̄)p > x̄p.

From (4.10.6), (4.10.15), and (4.10.18), x = x(θ) is the uniquely determined
solution of Ax = b having the additional property

xk = 0 for k ∈ K, k �= s,
xjr = 0,

that is, xK̃ = 0, K̃ := (K ∪ {jr})\{s}. From the uniqueness of x it follows
that AJ̃ , J̃ := (J ∪ {s})\{jr}, is nonsingular; x(θ) = x̄(J̃) is, therefore,
the basic solution associated with the neighboring feasible basis J̃ , and we
have

(4.10.19)
x̄(J̃)p > x̄(J)p, if J is nondegenerate,

x̄(J̃)p ≥ x̄(J)p, otherwise.

In our example we obtain the new basis J1 = (2, 4, 5) = JB , K1 = (1, 3),
which corresponds to the vertex B of Figure 6. With respect to the objective
function x5, B is better than A : x̄(JB)5 = 4 > x̄(JA)5 = 0.

264 4 Systems of Linear Equations

Since the definition of r implies that jr ∈ I always holds, it follows that

J\I ⊆ J̃\I;
that is, in the transition J → J̃ only a nonnegatively constrained variable
xjr , jr ∈ I, leaves the basis; as soon as a free variable xs, s �∈ I, becomes
a basis variable, it remains in the basis throughout all subsequent simplex
steps. In particular, p ∈ J̃ , because p ∈ J and p �∈ I. Hence, the new
basis J̃ also satisfies the requirements of (4.10.9), so that rules (1)–(7) can
be applied to J̃ in turn. Thus, beginning with a first feasible basis J0 of
LP(I, p) with p ∈ J0, we obtain a sequence

J0 → J1 → J2 → · · ·
of feasible bases Ji of LP(I, p) with p ∈ Ji, for which

x̄(J0)p < x̄(J1)p < x̄(J2)p < · · ·
in case all of the Ji are nondegenerate. Since there are only finitely many
index vectors J , and since no Ji can be repeated if the above chain of
inequalities holds, the simplex method must terminate after finitely many
steps. Thus, we have proven the following for the simplex method:

(4.10.20) Theorem. Let J0 be a feasible basis for LP(I, p) with p ∈ J0.
If LP(I, p) is nondegenerate, then the simplex method generates a finite
sequence of feasible base Ji for LP(I, p) with p ∈ Ji which begin with J0
and for which x̄(Ji)p < x̄(Ji+1)p. Either the final basic solution is optimal
for LP(I, p), or LP(I, p) has no finite optimum.

We continue with our example: as a result of the first simplex step we have
a new feasible basis J1 = (2, 4, 5) = JB , K1 = (1, 3), t1 = 3, so that

AJ1 =

[
1 0 0
1 1 0

−2 0 1

]
, b̄ =

[
2
2
4

]
, x̄(J1) = (0, 2, 0, 2, 4)T (≡ B),

πAJ1 = eT
t1 ⇒ π = (2, 0, 1).

The reduced costs are c1 = πa1 = −3, c3 = πa3 = 2, hence J1 is not optimal:

s = 1, ā = A−1
J1
a1 ⇒ ā =

[
−1

2
−3

]
⇒ r = 2.

Therefore

J2 = (2, 1, 5) = JC , K2 = (3, 4), t2 = 3,

AJ2 =

[
1 −1 0
1 1 0

−2 −1 1

]
, b̄ =

[
3
1
7

]
,

x̄(J2) = (1, 3, 0, 0, 7) (≡ C),

πAJ2 = eT
t2 ⇒ π = (1

2 ,
3
2 , 1).

4.10 The Simplex Method 265

The reduced costs are c3 = πa3 = 1
2 > 0, c4 = πa4 = 3

2 > 0.
The optimality criterion is satisfied, so x̄(J2) is optimal; i.e., x̄1 = 1, x̄2 = 3,

x̄3 = 0, x̄4 = 0, x̄5 = 7. The optimal value of the objective function x5 is x̄5 = 7.

We observe that the important quantities of each simplex step — b̄, π,
and ā — are determined by the following systems of linear equations:

(4.10.21)

AJ b̄ = b ⇒ b̄ [(4.10.9), rule (1)],

πAJ = eTt ⇒ π [(4.10.9), rule (2)],

AJ ā = as ⇒ ā [(4.10.9), rule (4)].

The computational effort required to solve these systems for successive
bases J → J̃ → · · · can be significantly reduced if it is noted that the
successive bases are neighboring: each new basis matrix AJ̃ is obtained
from its predecessor AJ by the exchange of one column of AJ for one
column of AK . Suppose, for example, a decomposition of the basis matrix
AJ of the form (4.9.1), FAJ = R, F nonsingular, R upper triangular, is
used [see Section 4.9]. On the one hand, such a decomposition can be used
to solve the equation systems (4.10.21) in an efficient manner:

Rb̄ = Fb⇒ b̄,

RT z = et ⇒ z ⇒ π = zTF,

Rā = Fas ⇒ ā.

On the other hand, the techniques of Section 4.9 can be used on the decom-
position FAJ = R of AJ in each simplex step to obtain the corresponding
decomposition F̃AJ = R̃ of the neighboring basis

J̃ = (j1, . . . , jr−1, jr+1, . . . , jm, s)

[compare (4.10.9), rule (7)]. The matrix FAJ̃ , with this choice of index
vector J̃ , is an upper Hessenberg matrix of the form depicted here for
m = 4, r = 2:

FAJ̃ =

x x x x

x x x
x x x

x x

 =: R′.

The subdiagonal elements can easily be eliminated using transformations
of the form (4.9.5), Er,r+1, Er+1,r+2, . . . , Em−1,m, which will change R′

into an upper triangular matrix R̃:

F̃AJ̃ = R̃, F̃ := EF, R̃ := ER′, E := Em−1,mEm−2,m−1 · · ·Er,r+1.

Thus it is easy to implement the simplex method in a practical fashion by
taking a quadruple M = {J ; t;F,R} with the property that

266 4 Systems of Linear Equations

jt = p, FAJ = R,

and changing it at each simplex step J → J̃ into an analogous quadru-
ple M̃ = {J̃ ; t̃; F̃ , R̃}. To begin this variant of the simplex method, it is
necessary to find a factorization F0AJ0 = R0 for AJ0 of the form given
in (4.9.1) as well as finding a feasible basis J0 of LP(I, p) with p ∈ J0.
algol programs for such an implementation of the simplex method are to
be found in Wilkinson and Reinsch (1971), and a roundoff investigation is
to be found in Bartels ((1971).

[In practice, particularly for large problems in which the solution of
any one of the systems (4.10.21) takes a significant amount of time, the
vector x̄J = A−1

J b = b̄ of one simplex step is often updated to the vector
x̄J̃ := A−1

J̃
b = x(θ̄)J̃ of the next step by using (4.10.15) with the value

θ̄ = b̄r/σᾱr as given by (4.10.9), rule (6). The chance of incurring errors,
particularly in the selection of the index r, should be borne in mind if this
is done.]

The more usual implementations of the simplex method use other quan-
tities than the decomposition FAJ = R of (4.9.1) in order to solve the equa-
tion systems (4.10.21) in an efficient manner. The “basis inverse method”
uses a quintuple of the form

M̂ = {J ; t;B, b̄, π}

with
jt = p, B := A−1

J , b̄ = A−1
J b, π := eTt A

−1
J .

Another variant uses the quintuple

M̄ = {J ; t; Ā, b̄, π}

with

jt = p, Ā := A−1
J AK , b̄ := A−1

J b, π := eTt A
−1
J , J ⊕K = N.

In the simplex step J → J̃ efficiency can be gained by observing that
the inverse A−1

J̃
is obtainable from A−1

J through multiplication by an ap-
propriate Frobenius matrix G (see Exercise 4 of Chapter 4): A−1

J̃
= GA−1

J .
In this manner somewhat more computational effort can be saved than
when the decomposition FAJ = R is used. The disadvantage of updating
the inverse of the basis matrix using Frobenius transformations, however,
lies in its possible numerical instability: it may happen that a Frobenius
matrix which is used in this inverse updating process is ill conditioned,
particularly if the basis matrix itself is ill conditioned. In this case, er-
rors can appear in A−1

Ji
, A−1

Ji
AKi

for M̂i, M̄i, and they will be propagated
throughout all quintuples M̂i, M̄i, j > i. When the factorization FAJ = R
is used, however, it is always possible to update the decomposition with

4.10 The Simplex Method 267

well-conditioned transformations, so that error propagation is not likely to
occur.

The following numerical example is typical of the gain in numerical stability
which one obtains if the triangular factorization of the basis (4.9.1) is used to
implement the simplex method rather than the basis inverse method. Consider a
linear programming problem with constraints of the form

(4.10.22)
Ax = b, A = (A1, A2),
x ≥ 0.

The 5 × 10 matrix A is composed of two 5 × 5 submatrices A1, A2:

A1 = (a1ik), a1ik := 1/(i+ k), i, k = 1, . . . , 5,

A2 : = I5 = identity matrix of order 5.

A1 is very ill conditioned, and A2 is very well conditioned. The vector

bi :=
5∑

k=1

1
i+ k

,

that is,

b := A1 · e, where e = (1, 1, 1, 1, 1)T ∈ IR5,

is chosen as a right-hand side. Hence, the bases J1 := (1, 2, 3, 4, 5) and J2 :=
(6, 7, 8, 9, 10) are both feasible for (4.10.22); the corresponding basic solutions
are

(4.10.23)
x̄(J1) :=

[
b̄1
0

]
, b̄1 := A−1

J1
b = A1−1b = e,

x̄(J2) :=
[

0
b̄2

]
, b̄2 := A−1

J2
b = A2−1b = b,

We choose J2 = (6, 7, 8, 9, 10) as a starting basis and transform it, using the basis
inverse method on the one hand and triangular decompositions on the other, via
a sequence of single column exchanges, into the basis J1. From there another
sequence of single column exchanges is used to return to J2:

J2 → · · · → J1 → · · · → J2.

The resulting basic solutions (4.10.23), produced on a machine having relative
precision eps ≈ 10−11, are shown in the following table (inaccurate digits are
underlined).

268 4 Systems of Linear Equations

Basis exact Basis Triangular
basic solution inverse decomposition

1.450000000010 0 1.450000000010 0 1.450000000010 0
1.092857142810 0 1.092857142810 0 1.092857142810 0

J2 b̄2 = 8.845238095210−1 = 8.845238095210−1 = 8.845238095210 0
7.456349206310−1 7.456349206310−1 7.456349206310−1
6.456349206310−1 6.456349206310−1 6.456349206310−1

1 1.000000018210 0 1.000000078610 0
1 9.999998407910−1 9.999991603510−1

J1 b̄1 = 1 1.000000437210 0 1.000002721210 0
1 9.999995211810−1 9.999995649110−1
1 1.000000182610 0 1.000001483710 0

1.450000000010 0 1.450001051110 0 1.450000000010 0
1.092857142810 0 1.092857997210 0 1.092857142710 0

J2 b̄2 = 8.845238095210−1 8.845245305710−1 8.845238095010−1
7.456349206310−1 7.456355447310−1 7.456349206010−1
6.456349206310−1 6.456354710310−1 6.456349205910−1

The following is to be observed: Since AJ2 = I5, both computational meth-
ods yield the exact solution at the start. For the basis J1, both methods give
equally inexact results, which reflects the ill-conditioning of AJ1 . No compu-
tational method could produce better results than these without resorting to
higher-precision arithmetic. After passing through this ill-conditioned basis AJ1 ,
however, the situation changes radically in favor of the triangular decomposition
method. This method yields, once again, the basic solution corresponding to J2
essentially to full machine accuracy. The basis inverse method, in contrast, pro-
duces a basic solution for J2 with the same inaccuracy as it did for J1. With the
basis inverse method, the effect of ill-conditioning encountered while processing
one basis matrix AJ is felt throughout all further bases; this in not the case using
triangular factorization.

4.11 Phase One of the Simplex Method

In order to start phase two of the simplex method, we require a feasible basis
J0 of LP(I, p) with p = jt0 ∈ J0; alternatively, we must find a quadruple
M0 = {J0; t0;F0, R0} in which a nonsingular matrix F0 and a nonsingular
triangular matrix R0 form a decomposition F0AJ0 = R0 as in (4.9.1) of the
basis matrix AJ0 .

In some special cases, finding J0 (M0) presents no problem, e.g. if
LP(I, p) results from a linear programming problem of the special form

4.11 Phase One of the Simplex Method 269

minimize c1x1 + · · · + cnxn
subject to ai1x1 + · · · + ainxn ≤ bi, i = 1, 2, . . . ,m,

xi ≥ 0 for i ∈ I1 ⊂ {1, 2, . . . , n},

with the additional property

bi ≥ 0 for i = 1, 2, . . . , m.

Such problems may be transformed by the introduction of slack variables
xn+1, . . . , xn+m into the form

(4.11.1)

maximize xn+m+1

subject to ai1x1 + · · · + ainxn + xn+i = bi, i = 1, 2, . . . ,m,

c1x1 + · · · + cnxn + xn+m+1 = 1,

xi ≥ 0 for i ∈ I1 ∪ {n+ 1, n+ 2, . . . , n+m},

Note that xn+m+1 = 1 − c1x1 − · · · − cnxn. The extra positive constant
(arbitrarily selected to be 1) prevents the initially chosen basis from being
degenerate. (4.11.1) has the standard form LP(I, p) with

A =

a11 . . . a1n 1
...

...
. . .

am1 . . . amn 1
c1 . . . cn 1

 , b =

b1
...
bm
1

 ,
p := n+m+ 1, I := I1 ∪ {n+ 1, n+ 2, . . . , n+m},

an initial basis J0 with p ∈ J0, and a corresponding M0 = (J0; t0;F0, R0)
given by

J0 : = (n+ 1, n+ 2, . . . , n+m+ 1), t0 = m+ 1,

F0 = R0 := Im+1 =

 1 0
. . .

0 1

 (order m+ 1).

Since bi ≥ 0 for i = 1, . . . , m, the basis J0 is feasible for (4.11.1).
“Phase one of the simplex method” is a name for a class of techniques

which are applicable in general. Essentially, all of these techniques consist
of applying phase two of the simplex method to some linear programming
problem derived from the given problem. The optimal basis obained from
the derived problem provides a starting basis for the given problem. We will
sketch one such method here in the briefest possible fashion. This sketch is
included for the sake of completeness. For full details on starting techniques
for the simplex method, the reader is referred to the extensive literature on

270 4 Systems of Linear Equations

linear programming, for example to Dantzig (1963), Gass (1969), Hadley
(1962), and Murty (1976).

Consider a general linear programming problem which has been cast
into the form

(4.11.2)

minimize c1x1 + · · · + cnxn
subject to aj1x1 + · · · + ajnxn = bj , j = 1, 2, . . . ,m,

xi ≥ 0 for i ∈ I,

where I ⊆ { 1, 2, . . . , n }. We may assume without loss of generality that
bj ≥ 0 for j = 1, . . . , m (otherwise multiply the nonconforming equations
through by −1).

We begin by extending the constraints of the problem by introducing
artificial variables xn+1, . . . , xn+m:

(4.11.3)

a11x1+ · · · +a1nxn +xn+1 = b1,
...

...
. . .

...
am1x1+ · · · +amnxn +xn+m = bm,

xi ≥ 0 for i ∈ I ∪ {n+ 1, . . . , n+m}.

Clearly there is a one-to-one correspondence between feasible points for
(4.11.2) and those feasible points for (4.11.3) which satisfy

(4.11.4) xn+1 = xn+2 = · · · = xn+m = 0.

We will set up a derived problem with constraints (4.11.3) whose maximum
should be taken on, if possible, by a point satisfying (4.11.4). Consider

LP (Î , p̂):

maximize xn+m+1

subject to a11x1+ · · · +a1nxn +xn+1 = b1,

...
...

. . .
...

am1x1+ · · · +amnxn +xn+m = bm,

xn+1 + · · · +xn+m +xn+m+1 = 2
∑m
i=1 bi,

xi ≥ 0, for i ∈ Î := I ∪ {n+ 1, . . . , n+m },
with p̂ := n+m+ 1.

We may take Ĵ0 := (n+ 1, . . . , n+m+ 1) as a starting basis with feasible
basic solution x̄ given by

x̄j = 0, x̄n+i = bi, x̄n+m+1 =
m∑
i=1

bi, for 1 ≤ j ≤ n, 1 ≤ i ≤ m.

4.11 Phase One of the Simplex Method 271

It is evident that xn+m+1 ≤ 2
∑m
j=1 bj ; hence LP(Î , p̂) is bounded. Further-

more

xn+m+1 = 2
M∑
i=1

bi

if and only if (4.11.4) holds.
Corresponding to Ĵ0 we have the quadruple M0 = { Ĵ0; t̂0; F̂0, R̂0 }

given by

t̂0 := m+ 1, F̂0 :=

1 0
...

. . .
0 . . . 1

−1 . . . −1 1

 , R̂0 :=

 1 0
. . .

0 1

 .
Phase two can be applied immediately to LP (Î , p̂), and it will terminate

with one of three possible outcomes for the optimal x̄:

(1) x̄n+m+1 < 2
∑m
i=1 bi [i.e., (4.11.4) does not hold],

(2) x̄n+m+1 = 2
∑m
i=1 bi and all artificial variables are nonbasic,

(3) x̄n+m+1 = 2
∑m
i=1 bi and some artificial variables are basic.

In case (1), (4.11.2) is not a feasible problem [since any feasible point for
(4.11.2) would correspond to a feasible point for LP (Î , p̂) with xn+m+1 =
2
∑m
i=1 bi]. In case (2), the optimal basis for LP (Î , p̂) clearly provides a

feasible basis for (4.11.2). Phase two can be applied to the problem as
originally given. In case (3), we are faced with a degenerate problem, since
the artificial variables which are basic must have the value zero. We may
assume without loss of generality (by renumbering equations and artificial
variables as necessary) that xn+1, xn+2, . . . , xn+k are the artificial variables
which are basic and have value zero. We may replace xn+m+1 by a new
variable xn+k+1 and use the optimal basis for LP(Î , p̂) to provide an initial
feasible basis for the problem
maximize xn+k+2
subject to:

a11x1 + · · · + a1nxn +xn+1 = b1,
...

...
. . .

...
ak1x1 + · · · + aknxn +xn+k = bk,

xn+1+ · · · +xn+k +xn+k+1 = 0,
ak+1,1x1 + · · · + ak+1,nxn = bk+1,

...
...

...
am1x1 + · · · + amnxn = bm,

c1x1 + · · · + cnxn +xn+k+2 = 0,

272 4 Systems of Linear Equations

xi ≥ 0 for i ∈ I ∪ {n+ 1, . . . , n+ k + 1}.

This problem is evidently equivalent to (4.11.2).

4.12 Appendix: Elimination Methods for Sparse
Matrices

Many practical applications require solving systems of linear equations
Ax = b with a matrix A that is very large but sparse, i.e., only a small
fraction of the elements aik of A are nonzero. Such applications include the
solution of partial differential equations by means of discretization methods
[see Sections 7.4, 7.5, 8.4], network problems, or structural design problems
in engineering. The corresponding linear systems can be solved only if the
sparsity of A is used in order to reduce memory requirements, and if so-
lution methods are designed accordingly. Many sparse linear systems, in
particular, those arising from partial differential equations, are solved by
iterative methods [see Chapter 8]. In this section, we consider only elimina-
tion methods, in particular, the Choleski method [see 4.3] for solving linear
systems with a positive definite matrix A, and explain in this context some
basic techniques for exploiting the sparsity of A. For further results, we refer
to the literature, e.g., Reid (1971), Rose and Willoughby (1972), Tewarson
(1973), and Barker (1974). A systematic exposition of these methods for
positive definite systems is found in George and Liu (1981), and for general
sparse linear systems in Duff, Erisman, and Reid (1986).

We first illustrate some basic storage techniques for sparse matrices. Consider,
for instance, the matrix

A =

1 0 0 0 −2
3 0 2 0 1
0 −4 0 7 0
0 −5 0 0 0
0 −6 0 0 6

One possibility is to store such a matrix by rows, for instance, in three one-
dimensional arrays, say a, ja, and ip. Here a[k], k = 1, 2, . . . , are the values of
the (potentially) nonzero elements of A, ja[k] records the column index of the
matrix component stored in a[k]. The array ip holds pointers: if ip[i] = p and
ip[i+ 1] = q then the segment of nonzero elements in row i of A begins with a[p]
and ends with a[q − 1]. In particular, if ip[i] = ip[i + 1] then row i of A is zero.
So, the matrix could be stored in memory as follows

i = 1 2 3 4 5 6 7 8 9 10 11

ip[i] = 1 3 6 8 9 11
ja[i] = 5 1 1 3 5 4 2 2 2 5
a[i] = −2 1 3 2 1 7 −4 −5 −6 6

4.12 Appendix: Elimination Methods for Sparse Matrices 273

Of course, for symmetric matrices A, further savings are possible if one stores
only the nonzero elements aik with i ≤ k.

When using this kind of data structure, it is difficult to insert additional
nonzero elements into the rows of A, as might be necessary with elimination
methods. This drawback is avoided if the nonzero elements of A are stored
as a linked list. It requires only one additional array next : if a[k] contains
an element of row i of A, then the “next” nonzero element of row i is found
in a[next[k]], if next[k] �= 0. If next[k] = 0 then a[k] was the “last” nonzero
component of row i.

Using linked lists the above matrix can be stored as follows:

i = 1 2 3 4 5 6 7 8 9 10

ip[i] = 6 4 5 10 9
ja[i] = 2 3 5 1 4 1 5 5 2 2
a[i] = −4 2 −2 3 7 1 1 6 −6 −5

next[i] = 0 7 0 2 1 3 0 0 8 0

Now it is easy to insert a new element into a row of A: e.g., a new element
a31 could be incorporated by extending the vectors a, ja, and next each by one
component a[11], ja[11], and next[11]. The new element a31 is stored in a[11];
ja[11] = 1 records its column index; and the vectors next and ip are adjusted
as follows: next[11] := ip[3] (= 5), ip[3] := 11. On the other hand, with this
technique the vector ip no longer contains information on the number of nonzero
elements in the rows of A as it did before.

Refined storage techniques are also necessary for the efficient implemen-
tation of iterative methods to solve large sparse systems [see Chapter 8].
However, with elimination methods there are additional difficulties, if the
storage (data structure) used for the matrix A is also to be used for storing
the factors of the triangular decomposition generated by these methods
[see Sections 4.1 and 4.3]: These factors may contain many more nonzero
elements than A. In particular, the number of these extra nonzeros (the
“fill-in” of A) created during the elimination depends heavily on the choice
of the pivot elements. Thus a bad choice of a pivot may not only lead to
numerical instabilities [see Section 4.5], but also spoil the original sparsity
pattern of the matrix A. It is therefore desirable to find a sequence of pivots
that not only ensures numerical stability but also limits fill-in as much as
possible. In the case of Choleski’s method for positive definite matrices A,
the situation is particularly propitious because, in that case, pivot selection
is not crucial for numerical stability: Instead of choosing consecutive diag-
onal pivots, as described in Section 4.3, one may just as well select them
in any other order without losing numerical stability (see (4.3.6)). One is
therefore free to select the diagonal pivots in any order that tends to min-
imize the fill-in generated during the elimination. This amounts to finding

274 4 Systems of Linear Equations

a permutation P such that the matrix PAPT = LLT has a Choleski factor
L that is as sparse as possible.

The following example shows that the choice of P may influence the sparsity
of L drastically. Here, the diagonal elements are numbered so as to indicate their
ordering under a permutation of A, and x denotes elements �= 0: The Choleski
factor L of a positive definite matrix A having the form

A =

1 x x x x
x 2
x 3
x 4
x 5

 = LLT , L =

x
x x
x x x
x x x x
x x x x x

is in general a “full” matrix, whereas the permuted matrix PAPT obtained by
interchanging the first and last rows and columns of A has a sparse Choleski
factor

PAPT =

5 x

2 x
3 x

4 x
x x x x 1

 = LLT , L =

x

x
x

x
x x x x x

 .

Efficient elimination methods for sparse positive definite systems there-
fore consist of three parts:

1. Determine P so that the Choleski factor L of PAPT = LLT is as
sparse as possible, and determine the sparsity structure of L.

2. Compute L numerically.
3. Compute the solution x of Ax = b, i.e., of (PAP)TPx = LLTPx =
Pb by solving the triangular systems Lz = Pb, LTu = z, and letting
x := PTu.

In step 1, only the sparsity pattern of A as given by index set

Nonz(A) := {(i, j) | j < i and aij �= 0}

is used to find Nonz(L), not the numerical values of the components of
L: In this step only a “symbolic factorization” of PAPT takes place; the
“numerical factorization” is left until step 2.

It is convenient to describe the sparsity structure of a symmetric n× n
matrix A, i.e., the set Nonz(A), by means of an undirected graph GA =
(V A, EA) with a finite set of vertices (nodes) V A = {v1, v2, . . . , vn} and a
finite set

EA = {{vi, vj} | (i, j) ∈ Nonz(A)}
of “undirected” edges {vi, vj} between the nodes vi and vj �= vi (thus an
edge is a subset of V A containing two elements). The vertex vi is associated

4.12 Appendix: Elimination Methods for Sparse Matrices 275

with the diagonal element aii (i.e., also with row i and column i) of A, and
the vertices vi �= vj are connected by an edge in GA if and only if aij �= 0.

Example 1. The matrix
1 x x
x 2

3 x x
x 4 x

x x 5 x
x 6 x

x x 7

is associated with the graph GA

v2 v1 v4 v5 v3

v7 v6

We need a few concepts from graph theory. If G = (V,E) is an undi-
rected graph and S ⊂ V a subset of its vertices then AdjG(S), or briefly

Adj(S) := {v ∈ V \S | {s, v} ∈ E for some s ∈ S}

denotes the set of all vertices v ∈ V \S that are connected to (a vertex of)
S by an edge of G. For example, Adj({v}) or briefly Adj(v) is the set of
neighbors of the node v in G. The number of neighbors of the vertex v ∈ V
deg v := |Adj({v})| is called the degree of v. Finally, a subset M ⊂ V of
the vertices is called a clique in G if each vertex x ∈M of M is connected
to any other vertex y ∈M , y �= x, by an edge of G.

We return to the discussion of elimination methods. First we try to
find a permutation so that the number of nonzero elements of the Choleski
factor L of PAPT = LLT becomes minimal. Unfortunately, an efficient
method for computing an optimal P is not known, but there is a simple
heuristic method, the minimal degree algorithm of Rose (1972), to find a
P that nearly minimizes the sparsity of L. Its basic idea is to select the
next pivot element in Choleski’s method as that diagonal element that is
likely to destroy as few 0-elements as possible in the elimination step at
hand.

To make this precise, we have to analyze only the first step of the
Choleski algorithm, since this step is already typical for the procedure
in general. By partitioning the n × n matrices A and L in the equation
A = LLT

A =
[
d aT

a Ã

]
=
[
α 0
l L̄

]
·
[
α lT

0 L̄T

]
= LLT , aT = (a2, a3, . . . , an),

where d = a11 and [d, aT] is the first row of A, we find the following relations

276 4 Systems of Linear Equations

α =
√
d, l = a/

√
d, L̄L̄T = Ā := Ã− llT .

Hence, the first column L1 of L and the first row LT1 of LT are given by

L1 =
[√

d
a/

√
d

]
,

and the computation of the remaining columns of L, that is, of the columns
of L̄, is equivalent to the Choleski factorization Ā = L̄L̄T of the (n− 1) ×
(n− 1) matrix Ā = (āik)ni,k=2

(4.12.1)
Ā = Ã− llT = Ã− aaT

d

āik = aik − aiak
d

for all i, k ≥ 2.

Disregarding the exceptional case in which the numerical values of aik �= 0
and aiak = a1ia1k �= 0 are such that one obtains āik = 0 by cancellation,
we have

(4.12.2) āik �= 0 ⇐⇒ aik �= 0 or a1ia1k �= 0.

Therefore, the elimination step with the pivot d = a11 will generate a num-
ber of new nonzero elements to Ā, which is roughly proportional to the num-
ber of nonzero components of the vector aT = (a2, . . . , an) = (a12, . . . , a1n).

The elimination step A → Ā can be described in terms of the graphs
G = (V,E) := GA and Ḡ = (V̄ , Ē) := GĀ associated with A and Ā: The
vertices 1, 2, . . . , n of G = GA (resp. 2, 3, . . . , n of Ḡ = GĀ) correspond to
the diagonal elements of A (resp. Ā); in particular, the pivot vertex 1 of G
belongs to the pivot element a11. By (4.12.2), the vertices i �= k, i, k ≥ 2, of
Ḡ are connected by an edge in Ḡ if and only if they are either connected by
an edge in G (aik �= 0), or both vertices i, k are neighbors of pivot node 1
in G (a1ia1k �= 0, i, k ∈ AdjG(1)). The number of nonzero elements a1i �= 0
with i ≥ 2 in the first row of A is equal to the degree degG(1) of pivot
vertex 1 in G. Therefore, a11 is a favorable pivot, if vertex 1 is a vertex of
minimum degree in G. Moreover, the set AdjG(1) describes exactly which
nondiagonal elements of the first row of LT (first column of L) are nonzero.

Example 2. Choosing a11 as pivot in the following matrix A leads to fill-in at
the positions denoted by ⊗ in the matrix Ā:

A =

1 x x
x 2 x x x

x 3 x
x 4 x x

x x 5
x x x 6

 ⇒ Ā =

2 x x ⊗ x
x 3 x
x 4 x x
⊗ x 5
x x x 6

 .

4.12 Appendix: Elimination Methods for Sparse Matrices 277

The associated graphs are:

G :

1 2 3... ...

........

........

........

........

........

...

........

........

........

........

........

...

........

........

........

........

........

..

5 4 6... ...

⇒ Ḡ :

2 3...

........

........

........

........

........

...

........

........

........

........

........

...
...........
...........
...........
...........
......

5 4 6... ...

Generally, the choice of a diagonal pivot in A corresponds to the choice
of a vertex x ∈ V (pivot vertex) in the graph G = (V,E) = GA, and the
elimination step A → Ā with this pivot corresponds to a transformation
of the graph G(= GA) into the graph Ḡ = (V̄ , Ē) (= GĀ) (which is also
denoted byGx = Ḡ to stress its dependence on x) according to the following
rules

(1) V̄ := V \{x}.
(2) Connect the nodes y �= z, y, z ∈ V̄ by an undirected edge ({y, z} ∈ E),

if y and z are connected by an edge in G
(
{y, z} ∈ E

)
or if y and z are

neighbors of x in (y, z ∈ AdjG(x)).

For obvious reasons, we say that the graph Gx is obtained by “elimination
of the vertex x” from G.

By definition , we have in Gx for y ∈ V̄ = V \ {x }

(4.12.3) AdjGx(y) =
{
AdjG(y) if y �∈ AdgG(x),
(AdjG(x) ∪AdgG(y)) \ {x, y } otherwise.

Every pair of vertices in AdjG(x) is connected by an edge in Gx. Those
vertices thus form a clique in Gx, the so-called pivot clique, pivot clique
DF associated with the pivot vertex x chosen in G. Moreover AdjG(x)
describes the nonzero off-diagonal elements of the column of L (resp. the
row of LT) that corresponds to the pivot vertex x.

As we have seen, the fill-in newly generated during an elimination step
is probably small if the degree of the vertex selected as pivot vertex for this
step is small. This motivates the minimal degree algorithm of Rose (1972)
for finding a suitable sequence of pivots:

(4.12.4) Minimal Degree Algorithm. Let A be a positive definite n×n
matrix and G0 = (V 0, E0) := GA be the graph associated to A.

For i = 1, 2, . . . , n :

(1) Determine a vertex xi ∈ V i−1 of minimal degree in Gi−1.
(2) Set Gi := Gi−1

xi
.

Remark. A minimal degree vertex xi need not be uniquely determined.

Example 3. Consider the matrix A of example 2. Here, the nodes 1, 3, and 5
have minimal degree in G0 := G = GA. The choice of vertex 1 as pivot vertex x1

278 4 Systems of Linear Equations

leads to the graph Ḡ of Example 2, G1 := G0
1 = Ḡ. The pivot clique associated

with x1 = 1 is
AdjG0(1) = {2, 5}.

In the next step of (4.12..4) one may choose vertex 5 as pivot vertex x2, since
vertices 5 and 3 have minimal degree in G1 = Ḡ. The pivot clique associated with
x2 = 5 is AdjG1(5) = {2, 4}, and by “elimination” of x2 from G1 we obtain the
next graph G2 := G1

5. All in all, a possible sequence of pivot elements given by
(4.12.4) is (1, 5, 4, 2, 3, 6), which leads to the series of graphs (G0 := G, G1 := Ḡ
are as in Example 2, G6 is the empty graph):

2 3

4∗ 6

G2 = G1
5

...

...

...
........
........
........
........
...

........

........

........

........

........

...
2∗ 3

6

G3 = G2
4

...

...
........
........
........
........
...

6

3

........

........

........

........

........

...

G4 = G3
2

6∗

G5 = G4
3

The pivot vertices are marked. The associated pivot cliques are

Pivot 1 5 4 2 3 6

Clique {2, 5} {2, 4} {2, 6} {3, 6} {6} ∅

The matrix PAPT = LLT arising from a permutation of the rows and columns
corresponding to the sequence of pivots selected and its Choleski factor L have
the following structure, which is determined by the pivot cliques (fill-in is denoted
by ⊗):

PAPT =

1 x x
x 5 x

x 4 x x
x x 2 x x

x 3 x
x x x 6

 = LLT , LT =

1 x x

5 x ⊗
4 x x

2 x x
3 x

6

 .
For instance, the position of the nonzero off-diagonal elements of the third row
of LT , which belongs to the pivot vertex x3 = 4, is given by the pivot clique
{ 2, 6 } = AdjG2(4) of this vertex.

For large problems, any efficient implementation of algorithm (4.12.4)
hinges on the efficient determination of the degree function degGi of graphs
Gi = Gi−1

xi
, i = 1, 2, . . . , n− 1. One could use, for instance,

AdjGx(y) = AdjG(y), degGx(y) = degG(y)

for all y �= x, y �∈ AdjG(x), since by (4.12.3) the degree function does not
change in the transition G→ Gx at such vertices y. Numerous other meth-
ods for efficiently implementing (4.12.4) have been proposed [see George
and Liu (1989) for a review]. These proposals also involve an appropriate

4.12 Appendix: Elimination Methods for Sparse Matrices 279

representation of graphs. For our purposes, it proved to be useful to repre-
sent the graph G = (V,E) by a set of cliques M = {K1,K2, . . . ,Kq} such
that each edge is covered by at least one clique Ki ∈ M . Then the set E
of edges can be recovered:

E = {{x, y} | x �= y & ∃i : x, y ∈ Ki}.

Under those conditions, M is called clique representation of G. Such resp-
resentations exist for any graph G = (V,E). Indeed, M := E is a clique
representation of G since every edge {x, y} ∈ E is a clique of G.

Example 4. A clique representation of the graph G = GA of Example 2 is, for
instance,

{{1, 5}, {4, 5}, {1, 2}, {2, 3, 6}, {2, 4, 6}}.

The degree degG(x) and the sets AdjG(x), x ∈ V , can be computed
from a clique representation M by

AdjG(x) =
⋃

i: x∈Ki

Ki \ {x }, degG(x) = |AdjG(x)|.

Let x ∈ V be arbitrary. Then, because of (4.12.3), one can easily compute a
clique representation Mx for the elimination graph Gx of G = (V,E) from
such a representation M = {K1, . . . ,Kq} of G: Denote by {Ks1 , . . . ,Kst}
the set of all cliques in M that contain x, and set K :=

⋃t
i=1Ksi\{x}.

Then
Mx = {K1, . . . ,Kq,K}\{Ks1 , . . . ,Kst

}

gives a clique representation of Gx.
Assuming that cliques are represented as lists of their elements, then

Mx takes even up less memory space than M because

|K| <
t∑

j=1

|Ksj
|.

Recall now the steps leading up to this point. A suitable pivot se-
quence was determined using algorithm (4.12.4). To this pivot sequence
corresponds a permutation matrix P , and we are interested in the Choleski
factor L of the matrix PAPT = LLT and, in particular, in a suitable data
structure for storing L and associated information. Let Nonz(L) denote
the sparsity pattern, that is, the set of locations of nonzero elements of
L. The nonzero elements of L may, for instance, be stored by columns —
this corresponds to storing the nonzero elements of LT by rows — in three
arrays, ip, ja, a as described at the beginning of this section. Alternatively,
a linked list next may be employed in addition to such arrays.

280 4 Systems of Linear Equations

Because Nonz(L) ⊃ Nonz(PAPT), the data structure for L can also be
used to store the nonzero elements of A.

Next follows the numerical factorization of PAPT = LLT : Here it is
important to organize the computation of LT by rows, that is, the array a
is overwritten step by step with the corresponding data of the consecutive
rows of LT . Also the programs to solve the triangular systems

Lz = Pb, LTu = z

for z and u, respectively, can be coded based on the data structure by
accessing each row of the matrix LT only once when computing z and
again only once when computing u. Finally, the solution x of Ax = b is
given by x = PTu.

The reader can find more details on methods for solving sparse linear
systems in the literature, e.g., in Duff, Erisman, and Reid (1986) and George
and Liu (1981), where numerous fortran programs for solving positive
definite systems are also given. Large program packages exist, such as the
Harwell package MA27 [see Duff and Reid (1982)], the Yale sparse matrix
package YSMP [see Eisenstat et al. (1982)], and sparsepak [see George,
Liu, and Ng (1980)].

Exercises for Chapter 4

1. Consider the following vector norms defined on IRn (or Cn):

‖x‖∞ := max
1≤i≤n

|xi|,

‖x‖2 :=
(n∑
i=1

|xi|2
)1/2

,

‖x‖1 :=
n∑
i=1

|xi|.

Show:

(a) that the norm properties are satisfied by each;

(b) that ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1;

(c) that ‖x‖2 ≤
√
n‖x‖∞, ‖x‖1 ≤

√
n‖x‖2.

Can equality hold in (b), (c)?

(d) Determine what lub(A) is, in general, for the norm ‖ · ‖1.

(e) Starting from the definition

Exercises for Chapter 4 281

lub(A) = max
x
=0

‖Ax‖
‖x‖ ,

show that
1

lub(A−1)
= min

y
=0

‖Ay‖
‖y‖

for nonsingular A.

2. Consider the following class of vector norms defined on Cn:

‖x‖D := ‖Dx‖,

where ‖ · ‖ is a fixed vector norm, and D is any member of the class of
nonsingular matrices.

(a) Show that ‖ · ‖D is, indeed, a vector norm.
(b) Show that m‖x‖ ≤ ‖x‖D ≤M‖x‖ with

m = 1/ lub(D−1), M = lub(D),

where lub(D) is defined with respect to ‖ · ‖.
(c) Express lubD(A) in terms of the lub norm defined with respect to

‖ · ‖.
(d) For a nonsingular matrix A, cond(A) depends upon the underlying

vector norm used. To see an example of this, show that condD(A)
as defined from ‖ · ‖D can be arbitrarily large, depending on the
choice of D. Give an estimate of condD(A) using m, M .

(e) How different can cond(A) defined using ‖·‖∞ be from that defined
using ‖ · ‖2? [Use the results of Exercise 1(b, c) above].

3. Show that, for an n× n nonsingular matrix A and vectors u, v ∈ IRn,
(a)

(A+ uvT)−1 = A−1 − A−1uvTA−1

1 + vTA−1u
,

if vTA−1u �= −1.
(b) If vTA−1u = −1, then (A+ uvT) is singular.

Hint: Find a vector z �= 0 such that (A+ uvT)z = 0.

4. Let A be a nonsingular n× n matrix with columns ai,

A = [a1, . . . , an].

(a) Let Ã = [a1, . . . , ai−1, b, ai+1, . . . , an], b ∈ IRn, be the matrix ob-
tained from A by replacing the ith column ai by b. Determine, using
the formula of Exercise 3(a), under what conditions Ã−1 exists, and
show that Ã−1 = FA−1 for some Frobenius matrix F .

282 4 Systems of Linear Equations

(b) Let Aα be the matrix obtained from A by changing a single element
aik to aik + α. For what α will A−1

α exist?

5. Consider the following theorem [see Theorem (6.4.10)]: If A is a real,
nonsingular n×n matrix, then there exist two real orthogonal matrices
U , V satisfying

UTAV = D

where D = diag(µ1, . . . , µn) and

µ1 ≥ µ2 ≥ · · · ≥ µn > 0.

Using this theorem, and taking the Euclidian norm as the underlying
vector norm:

(a) Express cond(A) in terms of the quantities µi.

(b) Give an expression for the vectors b and ∆b in terms of U for which
the bounds (4.4.11), (4.4.12), and

‖b‖ ≤ lub(A)‖x‖

are satisfied with equality.

(c) Is there a vector b such that for all ∆b in (4.4.12),

‖∆x‖
‖x‖ ≤ ‖∆b‖

‖b‖

holds? Determine such vectors b with the help of U .

Hint: Look at b satisfying lub(A−1)‖b‖ = ‖x‖.

6. Let Ax = b be given with

A =
[

0.780 0.563
0.913 0.659

]
and b =

[
0.217
0.254

]
.

The exact solution is xT = (1,−1). Further, let two approximate solu-
tions

xT1 = (0.999,−1.001),

xT2 = (0.341,−0.087)

be given.

(a) Compute the residuals r(x1), r(x2). Does the more accurate solu-
tion have a smaller residual?

(b) Determine the exact inverse A−1 of A and cond(A) with respect to
the maximum norm.

Exercises for Chapter 4 283

(c) Express x̃−x = ∆x using r(x̃), the residual for x̃. Does this provide
an explanation for the discrepancy observed in (a)? (Compare with
Exercise 5.)

7. Show that:

(a) The largest elements in magnitude in a positive definite matrix
appear on the diagonal and are positive.

(b) If all leading principal minors of an n × n Hermitian matrix A =
(aik) are positive, i.e.,

det

 a11 . . . a1i
...

...
ai1 . . . aii

 > 0 for i = 1, . . . , n,

then A is positive definite.

Hint: Study the induction proof for Theorem (4.3.3).

8. Let A′ be a given, n × n, real, positive definite matrix partitioned as
follows:

A′ =
[
A B
BT C

]
,

where A is an m×m matrix. First, show:

(a) C −BTA−1B is positive definite.

[Hint: Partition x correspondingly:

x =
[
x1
x2

]
, x1 ∈ IRm, x2 ∈ IRn−m,

and determine an x1 for fixed x2 such that

xTA′x = xT2 (C −BTA−1B)x2

holds.]
According to Theorem (4.3.3), A′ has a decomposition

A′ = RTR,

where R is an upper triangular matrix, which may be partitioned con-
sistently with A′:

R =
[
R11 R12
0 R22

]
.

Now show:

(b) Each matrix M = NTN , where N is a nonsingular matrix, is pos-
itive definite.

284 4 Systems of Linear Equations

(c) RT22R22 = C −BTA−1B.

(d) The result
r2ii > 0, i = 1, . . . , n,

follows from (a), where rii is any diagonal element of R.

(e)

r2ii ≥ min
x
=0

xTA′x

xTx
=

1
lub(R−1)2

for i = 1, . . . , n, where lub(R−1) is defined using the Euclidean
vector norm.

Hint: Exercise 1(e).

(f)

lub(R)2 = max
x
=0

xTA′x

xTx
≥ r2ii, i = 1, . . . , n,

for lub(R) defined with the Euclidean norm.

(g) cond(R) satisfies

cond(R) ≥ max
1≤i,k≤n

∣∣∣∣ riirkk
∣∣∣∣ .

9. A sequence An of real or complex r× r matrices converges component-
wise to a matrix A if and only if the An form a Cauchy sequence; that
is, given any vector norm ‖ · ‖ and any ε > 0, lub(An − Am) < ε for
m and n sufficiently large. Using this, show that if lub(A) < 1, then
the sequence An and the series

∑∞
n=0A

n converge. Further, show that
I −A is nonsingular, and

(I −A)−1 =
∞∑
n=0

An.

Use this result to prove (4.4.14).

10. Suppose that we attempt to find the inverse of an n× n matrix A us-
ing the Gauss-Jordan method and partial pivot selection. Show that
the columns of A are linearly dependent if no nonzero pivot element
can be found by the partial pivot selection process at some step of the
method.
[Caution: The converse of this result is not true if floating-point arith-
metic is used. A can have linearly dependent columns, yet the Gauss-
Jordan method may never encounter all zeros among the candidate
pivots at any step, due to round-off errors. Similar statements can be
made about any of the decomposition methods we have studied. For

Exercises for Chapter 4 285

a discussion of how the determination of rank (or singularity) is best
made numerically, see Chapter 6, Section 6, of Stewart (1973).]

11. Let A be a positive definite n× n matrix. Let Gaussian elimination be
carried out on A without pivot selection. After k steps of elimination,
A will be reduced to the form

A(k) =

[
A

(k)
11 A

(k)
12

0 A
(k)
22

]
,

where A(k)
22 is an (n− k) × (n− k) matrix. Show by induction that

(a) A(k)
22 is positive definite,

(b) a(k)ii ≤ a(k−1)
ii for k ≤ i ≤ n, k = 1, 2, . . . , n− 1.

12. In the error analysis of Gaussian elimination (Section 4.5) we used
certain estimates of the growth of the maximal elements of the matrices
A(i). Let

ai := max
r,s

∣∣a(i)rs ∣∣, A(i) := (a(i)rs).

Show that for partial pivot selection:

(a) ak ≤ 2ka0, k = 1, . . . , n− 1, for arbitrary A.

(b) ak ≤ ka0, k = 1, . . . , n− 1, for Hessenberg matrices A.

(c) a = max1≤k≤n−1 ak ≤ 2a0 for tridiagonal matrices A.

13. The following decomposition of a positive definite matrix A,

A = SDSH ,

where S is a lower triangular matrix with sii = 1 and D is a diagonal
matrix D = diag(di), gives rise to a variant of the Choleski method.
Show:

(a) that such a decomposition is possible [Theorem (4.3.3)];

(b) that di = (lii)2, where A = LLH and L is a lower triangular matrix;

(c) that this decomposition does not require the n square roots which
are required by the Choleski method.

14. We have the following mathematical model:

y = x1z + x2,

which depends upon the two unknown parameters x1, x2. Moreover,
let a collection of data be given:

{yl, zl}l=1,...,m with zl = l.

286 4 Systems of Linear Equations

Try to determine the parameters x1, x2 from the data using least-square
fitting.

(a) What are the normal equations?
(b) Carry out the Choleski decomposition of the normal equation ma-

trix B = ATA = LLT .
(c) Give an estimate for cond(L) based upon the Euclidean vector

norm.

[Hint: Use the estimate for cond(L) from Exercise 8(g).]

(d) How does the condition vary as m, the number of data, is increased
[Schwarz, Rutishauser, and Stiefel (1968)]?

15. The straight line
y(x) = α+ βx

is to be fitted to the data

xi −2 −1 0 1 2
yi 0.5 0.5 2 3.5 3.5

so that ∑
i

[y(xi) − yi]2

is minimized.
Determine the parameters α and β.

16. Determine α and β as in Exercise 15 under the condition that∑
i

∣∣(xi) − yi
∣∣

is to be minimized.
[Hint: Let ρi − σi = σi = yi(xi) − yi for i = 1, . . . , 5, where ρi ≥ 0 and
σi ≥ 0. Then

∑
i |y(xi)−yi| =

∑
i(ρi+σi). Set up a linear programming

problem in the variables α, β (unrestricted) and ρi, σi (nonnegative).]

References for Chapter 4

Andersen, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J.J., DuCroz, J., Green-
baum, A., Hammarling, S., McKenney, A., Ostrouchov, A., Sorensen, D. (1992):
lapack Users Guide. Philadelphia: SIAM Publications.

Barker, V. A. (Ed.) (1977): Sparse Matrix Techniques. Lecture Notes in Mathe-
matics 572. Berlin, Heidelberg, New York: Springer-Verlag.

Bartels, R. H. (1971): A stabilization of the simplex method. Numer. Math. 16,
414–434.

Exercises for Chapter 4 287

Bauer, F. L. (1966): Genauigkeitsfragen bei der Lösung linearer Gleichungs-
systeme. ZAMM 46, 409–421.

Bixby, R. E. (1990): Implementing the simplex method: The initial basis. Techn.
Rep. TR 90-32, Department of Mathematical Sciences, Rice University, Hous-
ton, Texas.

Björck, Å. (1990): Least squares methods. In: Ciarlet, Lions, Eds. (1990), 465–
647.

Businger, P., Golub, G. H. (1965): Linear least squares solutions by Householder
transformations. Numer. Math. 7, 269–276.

Ciarlet, P. G., Lions, J. L. (Ed.) (1990): Handbook of numerical analysis, Vol. I:
Finite difference methods (Part 1), Solution of equations in IRn (Part 1).
Amsterdam: North Holland.

Collatz, L. (1966): Functional Analysis and Numerical Mathematics. New York:
Academic Press.

Daniel, J. W., Gragg, W. B., Kaufmann, L., Stewart, G. W. (1976): Reorthogonal-
ization and stable algorithms for updating the Gram-SchmidtQR factorization.
Math. Comp. 30, 772–795.

Dantzig, G. B. (1963): Linear Programming and Extensions. Princeton, N.J.:
Princeton University Press.

Dongarra, J. J., Bunch, J. R., Moler, C. B., Stewart, G. W. (1979): linpack

Users Guide. Philadelphia: SIAM Publications.
Duff, I.S., Erisman, A.M., Reid, J.K (1986): Direct Methods for Sparse Matrices.

Oxford: Oxford University Press.
, Reid, J. K. (1982): MA27: A set of fortran subroutines for solving

sparse symmetric sets of linear equations. Techn. Rep. AERE R 10533, Harwell,
U.K.

Eisenstat, S. C., Gursky, M. C., Schultz, M. H., Sherman, A. H. (1982): The Yale
sparse matrix package. I. The symmetric codes. Internat. J. Numer. Methods
Engrg. 18, 1145–1151.

Forsythe, G. E., Moler, C. B. (1967): Computer Solution of Linear Algebraic
Systems. Series in automatic computation. Englewood Cliffs, N.J.: Prentice-
Hall.

Gass, S. T. (1969): Linear Programming, 3d edition. New York: McGraw-Hill.
George, J. A., Liu, J. W. (1981): Computer Solution of Large Sparse Positive

Definite Systems. Englewood Cliffs, N.J.: Prentice-Hall.
, (1989): The evolution of the minimum degree ordering algorithm.

SIAM Review 31, 1–19.
, , Ng, E. G. (1980): Users guide for sparsepak: Waterloo sparse

linear equations package. Tech.Rep. CS-78-30, Dept. of Computer Science, Uni-
versity of Waterloo, Waterloo.

Gill, P. E., Golub, G.H ., Murray, W., Saunders, M. A. (1974): Methods for
modifying matrix factorizations. Math. Comp. 28, 505–535.

Golub, G. H., van Loan, C. F. (1983): Matrix Computations. Baltimore: The John
Hopkins University Press.

Grossmann, W. (1969): Grundzüge der Ausgleichsrechnung. 3. Aufl. Berlin, Hei-
delberg, New York: Springer-Verlag.

Guest, P.G. (1961): Numerical Methods of Curve Fitting. Cambridge: University
Press.

Hadley, G. (1962): Linear Programming. Reading, MA: Addison-Wesley.
Householder, A. S. (1964): The Theory of Matrices in Numerical Analysis. New

York: Blaisdell.

288 4 Systems of Linear Equations

Lawson, C. L., Hanson, H. J. (1974): Solving Least Squares Problems. Englewood
Cliffs, N.J.: Prentice-Hall.

Murty, K. G. (1976): Linear and Combinatorial Programming. New York: Wiley.
Prager, W., Oettli, W. (1964): Compatibility of approximate solution of linear

equations with given error bounds for coefficients and right hand sides. Num.
Math. 6, 405–409.

Reid, J. K. (Ed) (1971): Large Sparse Sets of Linear Equations. London, New
York: Academic Press.

Rose, D. J. (1972): A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations, pp. 183–217. In: Graph theory and
computing, R. C. Read, ed., New York: Academic Press.

, Willoughby, R. A. (Eds.) (1972): Sparse Matrices and Their Applica-
tions. New York: Plenum Press.

Sautter, W. (1971): Dissertation TU München.
Schrijver, A. (1986): Theory of Linear and Integer Programming. Chichester:

Wiley.
Schwarz, H. R., Rutishauser, H., Stiefel, E. (1968).: Numerik symmetrischer Ma-

trizen. Leitfäden der angewandten Mathematik, Bd. 11. Stuttgart: Teubner.
Seber, G. A. F. (1977): Linear Regression Analysis. New York: Wiley.
Stewart, G. W. (1973): Introduction to Matrix Computations. New York: Aca-

demic Press.
Tewarson, R. P. (1973): Sparse Matrices. New York: Academic Press.
Wilkinson, J. H. (1965): The Algebraic Eigenvalue Problem. Monographs on Nu-

merical Analysis, Oxford: Clarendon Press.
, Reinsch, Ch. (1971): Linear Algebra. Handbook for Automatic Com-

putation, Vol. II. Grundlehren der mathematischen Wissenschaften in Einzel-
darstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer-Verlag.

5 Finding Zeros and Minimum Points by
Iterative Methods

Finding the zeros of a given function f , that is arguments ξ for which
f(ξ) = 0, is a classical problem. In particular, determining the zeros of a
polynomial (the zeros of a polynomial are also known as its roots)

p(x) = a0x
n + a1xn−1 + · · · + an

has captured the attention of pure and applied mathematicians for cen-
turies. However, much more general problems can be formulated in terms
of finding zeros, depending upon the definition of the function f :E → F ,
its domain E, and its range F .

For example, if E = F = IRn, then a transformation f : IRn → IRn

is described by n real functions fi(x1, . . . , xn) (we will use superscripts
in this chapter to denote the components of vectors x ∈ IRn, n > 1, and
subscripts to denote elements in a set or sequence of vectors xi, i = 1, 2,
. . .);

f(x) =

 f1(x
1, . . . , xn)

...
fn(x1, . . . , xn)

 , xT = (x1, . . . , xn).

The problem of solving f(x) = 0 becomes that of solving a system of
(nonlinear) equations:

(5.0.1) fi(x1, . . . , xn) = 0, i = 1, . . . , n.

Even more general problems result if E and F are linear vector spaces of
infinite dimension, e.g. function spaces.

Problems of finding zeros are closely associated with problems of the
form

(5.0.2) minimize h(x)
x ∈ IRn

for a real function h: IRn → IR of n variables h(x) = h(x1, x2, . . . , xn). For
if h is differentiable and g(x) := (∂h/∂x1, . . . , ∂h/∂xn)T is the gradient of
h, then each minimum point x̄ of h(x) is a zero of the gradient g(x̄) = 0.

290 5 Finding Zeros and Minimum Points by Iterative Methods

Conversely, each zero of f(5.0.1) is also the minimum point of some function
h, for example h(x) := ‖f(x)‖2.

The minimization problem described above is an unconstrained minimi-
zation problem. More generally, one encounters constrained problems such
as the following:

minimize h0(x)

subject to

hi(x) ≤ 0 for i = 1, 2, . . . , m1,

hi(x) = 0 for i = m1 + 1, m1 + 2, . . . , m.

Finding minimum points for functions subject to constraints is one
of the most important problems in applied mathematics. In this chapter,
however, we will consider only unconstrained minimization. The special
case of constrained linear minimization, for which all hi: IRn → IR are linear
(or, more exactly, affine) functions has been discussed in Section 4.10 and
4.11. For a more thorough treatment of finding zeros and minimum points
the reader is referred to the extensive literature on that subject [for example
Ortega, Rheinboldt (1970), Luenberger (1973), Himmelblau (1972), Traub
(1964)].

5.1 The Development of Iterative Methods

In general it is not possible to determine a zero ξ of a function f :E → F
explicitly within a finite number of steps, so we have to resort to approxima-
tion methods. These methods are usually iterative and have the following
form: beginning with a starting value x0, successive approximates xi, i = 1,
2, . . . , to ξ are computed with the aid of an iteration function Φ : E → E:

xi+1 := Φ(xi), i = 0, 1, 2,

If ξ is a fixed point of Φ [Φ(ξ) = ξ], if all fixed points of Φ are also zeros of
f , and if Φ is continuous in a neighborhood of each of its fixed points, then
each limit point of the sequence xi, i = 1, 2, . . . , is a fixed point of Φ, and
hence a zero of f .

The following questions arise in this connection:

(1) How is a suitable iteration function Φ to be found?

(2) Under what conditions will the sequence xi converge?

(3) How quickly will the sequence xi converge?

Our discussion of these questions will be restricted to the finite-dimensional
case E = F = IRn.

5.1 The Development of Iterative Methods 291

Let us examine how iteration functions Φ might be constructed. Fre-
quently such functions are suggested by the formulation of the problem.
For example, if the equation x− cosx = 0 is to be solved, then it is natural
to try the iterative process

xi+1 = cosxi, i = 0, 1, 2, . . . ,

for which Φ(x) := cosx.
More systematically, iteration functions Φ can be obtained as follows:

If ξ is the zero of a function f : IR → IR, and if f is sufficiently differentiable
in a neighborhood U(ξ) of this point, then the Taylor series expansion of
f about x0 ∈ U(ξ) is

f(ξ) = 0 = f(x0) + (ξ − x0)f ′(x0) +
(ξ − x0)2

2!
f ′′(x0) + · · ·

+
(ξ − x0)k

k!
f (k)(x0 + ϑ(ξ − x0)), 0 < ϑ < 1.

If the higher powers (ξ−x0)ν are ignored, we arrive at equations which
must express the point ξ approximately in terms of a given, nearby point
x0, e.g.

0 = f(x0) + (ξ̄ − x0)f ′(x0),(5.1.1)
or

0 = f(x0) + (ξ − x0)f ′(x0) +
(ξ − x0)2

2!
f ′′(x0).(5.1.2)

These produce the approximations

ξ̄ = x0 − f(x0)
f ′(x0)

and

ξ = x0 − f(x0) ±
√

(f ′(x0))2 − 2f(x0)f ′′(x0)
f ′′(x0)

,

respectively. In general, ξ̄, ξ are merely close to the desired zero: they must
be corrected further, for instance by the scheme from which they were
themselves derived. In this manner we arrive at the iteration methods
(5.1.3)

xi+1 := Φ(xi), Φ(x) := x− f(x)
f ′(x)

,

xi+1 := Φ±(xi), Φ±(x) := x− f ′(x) ±
√

(f ′(x))2 − 2f(x)f ′′(x)
f ′′(x)

.

The first is the classical Newton-Raphson method. The second is an obvi-
ous extension. In general such methods can be obtained by truncating the

292 5 Finding Zeros and Minimum Points by Iterative Methods

Taylor expansion after the (ξ − x0)ν term. Geometrically these methods
amount to replacing the function f by a polynomial of degreee ν, Pν(x)
(ν = 1, 2, . . .), which has the same derivatives f (k)(x0), k = 0, 1, 2, . . . ,
ν, as f at the point x0. One of the roots of the polynomial is taken as an
approximation to the desired zero ξ of f [see Figure 7].

x0

..

P2(x)

x

P1(x)f(x)
.........................

.......................
......................
.....................
.....................
....................
....................
....................
....................
....................
...................
...................
...................
...................
..................
..................
..................
..................
........

..
......................

..................
................

..............
.............
.............
............
............
...........
...........
...........
...........
...........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
.........
.........
.........
......
..................
..................
..................
..................
.................
.................
.................
.................
................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
......

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

Fig. 7. Newton-Raphson methods (5.1.3).

The classical Newton-Raphson method is obtained by linearizing f .
Linearization is also a means of constructing iterative methods to solve
equation systems of the form

(5.1.4) f(x) =

 f1(x
1, . . . , xn)

...
fn(x1, . . . , xn)

 = 0.

If we assume that x = ξ is a zero for f , that x0 is an approximation to ξ,
and that f is differentiable for x = x0 then to a first approximation

0 = f(ξ) ≈ f(x0) +Df(x0)(ξ − x0),

where

(5.1.5) Df(x0) =

∂f1
∂x1 . . .

∂f1
∂xn

...
...

∂fn
∂x1 . . .

∂fn
∂xn

x=x0

, ξ − x0 =

 ξ
1 − x1

0
...

ξn − xn0

 .

5.2 General Convergence Theorems 293

If the Jacobian Df(x0) is nonsingular, then the equation

f(x0) +Df(x0)(x1 − x0) = 0

can be solved for x1:

x1 = x0 − (Df(x0))−1f(x0)

and x1 may be taken as a closer approximation to the zero ξ. The gen-
eralized Newton method for solving systems of equations (5.1.4) is given
by

(5.1.6) xi+1 = xi − (Df(xi))−1f(xi), i = 0, 1, 2,

In addition to Newton’s method for such equation systems there are, for
example, generalized secant methods [see (5.9.7)] for functions of many
variables, and there are generalizations to nonlinear systems of the iteration
methods given in Chapter 8 for systems of linear equations. A good survey
can be found in Ortega and Rheinboldt (1970).

5.2 General Convergence Theorems

In this section, we study the convergence behavior of a sequence {xi} which
has been generated by an iteration function Φ,

xi+1 := Φ(xi), i = 0, 1, 2, . . . ,

in the neighborhood of a fixed point ξ of Φ. We concentrate on the case
E = IRn rather than considering general normed linear vector spaces. Using
a norm ‖·‖ on IRn, we measure the size of the difference between two vectors,
x, y ∈ IRn by ‖x− y‖. A sequence of vectors xi ∈ IRn converges to a vector
x, if for each ε > 0 there is an integer N(ε) such that

‖xl − x‖ < ε for all l ≥ N(ε).

It can be shown that this definition of the convergence of vectors in IRn is
independent of the chosen norm [see Theorem (4.4.6)]. Finally, it is known
that the space IRn is complete in the sense that the Cauchy convergence
criterion is satisfied:

A sequence xi ∈ IRn is convergent if and only if for each ε > 0 there exists
N(ε) such that ‖xl − xm‖ < ε for all l, m ≥ N(ε).

In order to characterize the speed of convergence of a convergent se-
quence xi, limi xi = x, we say that the sequence converges at least with
order p ≥ 1 if there are a constant C ≥ 0 (with C < 1 if p = 1) and an
integer N such that the inequality

294 5 Finding Zeros and Minimum Points by Iterative Methods

‖xi+1 − x‖ ≤ C‖xi − x‖p

holds for all i ≥ N . If p = 1 or p = 2, one also speaks of linear convergence
and quadratic convergence , respectively.

In the case of linear convergence, the size ei := ‖xi − x‖ of the error is
reduced at each step of the iteration at least by the factor C, 0 ≤ C < 1,
and the speed of convergence increases with decreasing C. Therefore, C is
called convergence factor.

If the sequence converges linearly with, say convergence factor C = 0.1, the
error sequence may look like

e0 = 1, e1 = 10−1, e2 = 0−2, e3 = 10−3,

In the case of quadratic convergence, the error behavior is quite different. For
C = 1, a typical error sequence may look like

e0 = 10−1, e1 = 10−2, e2 = 10−4, e3 = 10−8,

We call the iteration method locally convergent with convergence do-
main V (ξ), a neigborhood of ξ, if it generates, for all starting points
x0 ∈ V (ξ), a sequence xi that converges to ξ. It is called globally con-
vergent, if in addition V (ξ) = Rn.

The following theorem is readily verified:

(5.2.1) Theorem. Let Φ: IRn → IRn be an iteration function with fixed
point ξ. Suppose that there are a neigborhood U(ξ) of ξ, a number p ≥ 1,
and a constant C ≥ 0 (with C < 1 if p = 1) so that for all x ∈ U(ξ)

‖Φ(x) − ξ‖ ≤ C‖x− ξ‖p.

Then there is a neighborhood V (ξ) ⊆ U(ξ) of ξ so that for all starting
points x0 ∈ V (ξ) the iteration method defined by Φ generates iterates xi
with xi ∈ V (ξ) for all i ≥ 0 that converge to ξ at least with order p.

In the 1-dimensional case, E = IR, the order of a method defined by Φ
can often be determined if Φ is sufficiently often differentiable in a convex
neighborhood U(ξ) of ξ. If xi ∈ U(ξ) and if Φ(k)(ξ) = 0 for k = 1, 2, . . . ,
p− 1, but Φ(p)(ξ) �= 0, it follows by Taylor expansion

xi+1 − ξ = Φ(xi) − Φ(ξ) =
(xi − ξ)p
p!

Φ(p)(ξ) + o(‖xi − ξ‖p),

lim
i→∞

xi+1 − ξ
(xi − ξ)p

=
Φ(p)(ξ)
p!

.

For p = 2, 3, . . . , the method then is of (precisely) pth order (since Φ(p)(ξ) �=
0). A method is of first order if, besides p = 1, it is true that |Φ′(ξ)| < 1.

5.2 General Convergence Theorems 295

Example 1. E = IR, Φ is differentiable in a neighborhood U(ξ). If 0 < Φ′(ξ) < 1,
then convergence will be linear (first order). In fact, the xi will converge mono-
tonically to ξ. [See Figure 8.]

xi xi+1 xi+2 ξ

..

........

........

......................

................
Φ(x)

0 x

..............
..............
..............
...............
...............
................
................
.................
..................

...................
.....................

.......................
..........................

..............................
..................................

....................................
...................................

..............................
..........................

.......................
....................

..................
.................
................
................
...............
.......

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........x

........

........

........

........

........

........

........

................
.......
........
........
........
........
............

...

........

..

..
..
..
..
..
..
..
..
..
..
.

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

...

Fig. 8. Monotone convergence.

If −1 < Φ′(ξ) < 0, then the xi will alternate about ξ during convergence [see
Figure 9].

Example 2. E = IR, Φ(x) = x − f(x)/f ′(x) (Newton’s method). Assume that
f is sufficiently often continuously differentiable in a neighborhood of the simple
zero ξ of f , that is f ′(ξ) �= 0. If follows that

Φ(ξ) = ξ, Φ′(ξ) =
f(ξ)f ′′(ξ)
(f ′(ξ))2

, Φ′′(ξ) =
f ′′(ξ)
f ′(ξ)

.

Newton’s method is locally at least quadratically (second order) convergent.

Example 3. In the more general case that ξ is a zero of multiplicity m of f , i.e.,

f (ν)(ξ) = 0 for ν = 0, 1, . . . ,m− 1, f (m)(ξ) �= 0,

then f and f ′ have a representation of the form

f(x) = (x− ξ)mg(x), g(ξ) �= 0,

f ′(x) = m(x− ξ)m−1g(x) + (x− ξ)mg′(x),

with a differentiable function g. If follows that

Φ(x) ≡ x− f(x)
f ′(x)

≡ x− (x− ξ)g(x)
mg(x) + (x− ξ)g′(x)

,

and therefore

296 5 Finding Zeros and Minimum Points by Iterative Methods

xi xi+2 ξ xi+1

..

........

........

......................

................

Φ(x)

0 x

...

...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
...........
........x

........
........
........
........
........
........

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

..

..

..

..

..

..

..

..

..

..

..

..

.

..

Fig. 9. Alternating convergence.

Φ′(ξ) = 1 − 1
m
.

Thus for m > 1 — that is, for multiple zeros of f — Newton’s method is only
linearly convergent. The modified method defined by Φ̃(x) := x − mf(x)/f ′(x)
would, in theory, still be quadratically convergent. But for m > 1 both methods
are numerically unstable, since, for x → ξ, both |f(x)| and |f ′(x)| become small,
usually by cancellation. The computed iteration functions fl(Φ(x)), fl(Φ̃(x)) are
thus heavily affected by rounding errors.

The following general convergence theorems show that a sequence xi
generated by Φ:E → E will converge to a fixed point ξ of Φ if Φ is a
contractive mapping.

As usual, ‖ · ‖ represents some norm on E = IRn.

(5.2.2) Theorem. Let the function Φ:E → E, E = IRn, have a fixed point
ξ:Φ(ξ) = ξ. Further let Sr(ξ) :=

{
z
∣∣ ‖z − ξ‖ < r

}
be a neighborhood of ξ

such that Φ is a contractive mapping in Sr(ξ), that is,∥∥Φ(x) − Φ(y)
∥∥ ≤ K‖x− y‖ 0 ≤ K < 1.

for all x, y ∈ Sr(ξ). Then for any x0 ∈ Sr(ξ) the generated sequence
xi+1 = Φ(xi), i = 0, 1, 2, . . . , has the properties

(a) xi ∈ Sr(ξ) for all i = 0, 1, . . . ,

(b) ‖xi+1 − ξ‖ ≤ K‖xi − ξ‖ ≤ Ki+1‖x0 − ξ‖,

i.e., {xi} converges at least linearly to ξ.

5.2 General Convergence Theorems 297

Proof. The proof follows immediately from the contraction property.
Properties (a) and (b) are true for i = 0. If we assume that they are
true for j = 0, 1, . . . , i, then it follows immediately that

‖xi+1 − ξ‖ = ‖Φ(xi) − Φ(ξ)‖ ≤ K‖xi − ξ‖ ≤ Ki+1‖x0 − ξ‖ < r. ��

The following theorem (known as the fixed point theorem of Banach) is
more precise. Note that the existence of a fixed point is no longer assumed
a priori.

(5.2.3) Theorem. Let Φ:E → E, E = IRn be an iteration function, x0 ∈
E be a starting point, and xi+1 = Φ(xi), i = 0, 1, Further, let a
neighborhood Sr(x0) = {x | ‖x − x0‖ < r} of x0 and a constant K, 0 <
K < 1, exist such that

(a) ‖Φ(x)−Φ(y)‖ ≤ K‖x− y‖ for all x, y ∈ Sr(x0) := {x | ‖x− x0‖ ≤ r},
(b) ‖x1 − x0‖ = ‖Φ(x0) − x0‖ ≤ (1 −K)r < r.

Then it follows that

(1) xi ∈ Sr(x0) for all i = 0, 1, . . . ,
(2) Φ has exactly one fixed point ξ, Φ(ξ) = ξ, in Sr(x0), and

lim
i→∞

xi = ξ, ‖xi+1 − ξ‖ ≤ K‖xi − ξ‖,

as well as

‖xi − ξ‖ ≤ Ki

1 −K ‖x1 − x0‖.

Proof. The proof is by induction.
(1): From (b) it follows that x1 ∈ Sr(x0). If it is true that xj ∈ Sr(x0)

for j = 0, 1, . . . , i and i ≥ 1, then (a) implies

(5.2.4) ‖xi+1 − xi‖ = ‖Φ(xi) −Φ(xi−1)‖ ≤ K‖xi − xi−1‖ ≤ Ki‖x1 − x0‖,

and therefore, from the triangle inequality and from (b),

‖xi+1 − x0‖ ≤ ‖xi+1 − xi‖ + ‖xi − xi−1‖ + · · · + ‖x1 − x0‖
≤ (Ki +Ki−1 + · · · + 1)‖x1 − x0‖
≤ (1 +K + · · · +Ki)(1 −K)r = (1 −Ki+1)r < r.

(2): First we show that {xi} is a Cauchy sequence. From (5.2.4) and
from (b) it follows for m > l that
(5.2.5)

‖xm − xl‖ ≤ ‖xm − xm−1‖ + ‖xm−1 − xm−2‖ + · · · + ‖xl+1 − xl‖
≤ Kl(1 +K + · · · +Km−l−1)‖x1 − x0‖

<
Kl

1 −K ‖x1 − x0‖ < Klr.

298 5 Finding Zeros and Minimum Points by Iterative Methods

Because 0 < K < 1, we have Klr < ε for sufficiently large l ≥ N(ε). Hence
{xi} is a Cauchy sequence. Since E = IRn is complete, there exists a limit

lim
i→∞

xi = ξ.

Because xi ∈ Sr(x0) for all i, ξ must lie in the closure Sr(x0). Furthermore
ξ is a fixed point of Φ, because for all i ≥ 0

‖Φ(ξ) − ξ‖ ≤ ‖Φ(ξ) − Φ(xi)‖ + ‖Φ(xi) − ξ‖
≤ K‖ξ − xi‖ + ‖xi+1 − ξ‖.

Since limi→∞ ‖xi − ξ‖ = 0, it follows at once that ‖Φ(ξ) − ξ‖ = 0, and
hence Φ(ξ) = ξ.

If ξ̄ ∈ Sr(x0) were another fixed point of Φ, then

‖ξ − ξ̄‖ = ‖Φ(ξ) − Φ(ξ̄)‖ ≤ K‖ξ − ξ̄‖,

0 < K < 1, which implies ‖ξ − ξ̄‖ = 0.
Finally, (5.2.5) implies

‖ξ − xl‖ = lim
m→∞

‖xm − xl‖ ≤ Kl

1 −K ‖x1 − x0‖

and
‖xi+1 − ξ‖ = ‖Φ(xi) − Φ(ξ)‖ ≤ K‖xi − ξ‖,

which concludes the proof. ��

5.3 The Convergence of Newton’s Method in Several
Variables

Consider the system f(x) = 0 given by the function f : IRn → IRn. Such a
function is said to be differentiable at the point x0 ∈ IRn if an n×n matrix
A exists for which

lim
x→x0

‖f(x) − f(x0) −A(x− x0)‖
‖x− x0‖

= 0.

In this case A agrees with the Jacobian matrix Df(x0) [see (5.1.5)].
We first note the following

(5.3.1) Lemma. If Df(x) exists for all x in a convex region C0 ⊆ IRn,
and if a constant γ exists with

‖Df(x) −Df(y)‖ ≤ γ‖x− y‖ for all x, y ∈ C0,

then for all x, y ∈ C0 the estimate

5.3 The Convergence of Newton’s Method in Several Variables 299

‖f(x) − f(y) −Df(y)(x− y)‖ ≤ γ

2
‖x− y‖2

holds.
(Recall that a set M ⊆ IRn is convex if x, y ∈ M implies that the line

segment [x, y] :=
{
z = λx+ (1 − λ)y | 0 ≤ λ ≤ 1

}
is contained within M .)

Proof. The function ϕ: [0, 1] → IRn given by

ϕ(t) := f(y + t(x− y))

is differentiable for all 0 ≤ t ≤ 1, where x, y ∈ C0 are arbitrary. This follows
from the chain rule:

ϕ′(t) = Df(y + t(x− y))(x− y).

Hence it follows for 0 ≤ t ≤ 1 that

‖ϕ′(t) − ϕ′(0)‖ = ‖(Df(y + t(x− y)) −Df(y))(x− y)‖
≤ ‖Df(y + t(x− y)) −Df(y)‖ ‖x− y‖
≤ γt‖x− y‖2.

On the other hand,

∆ := f(x) − f(y) −Df(y)(x− y) = ϕ(1) − ϕ(0) − ϕ′(0)

=
∫ 1

0
(ϕ′(t) − ϕ′(0))dt,

so the above inequality yields

‖∆‖ ≤
∫ 1

0
‖ϕ′(t) − ϕ′(0)‖dt ≤ γ‖x− y‖2

∫ 1

0
t dt =

γ

2
‖x− y‖2.

This completes the proof. ��
We can now show that Newton’s method is quadratically convergent:

(5.3.2) Theorem. Let C ⊆ IRn be a given open set. Further, let C0 be
a convex set with C̄0 ⊆ C, and let f : C → IRn be a function which is
differentiable for all x ∈ C0 and continuous for all x ∈ C.

For x0 ∈ C0 let positive constants r, α, β, γ, h be given with the
following properties:

Sr(x0) := {x | ‖x− x0‖ < r } ⊆ C0,

h := αβγ/2 < 1, r := α/(1 − h),

and let f(x) have the properties

(a) ‖Df(x) −Df(y)‖ ≤ γ‖x− y‖ for all x, y ∈ C0,
(b) Df(x)−1 exists and satisfies ‖(Df(x))−1‖ ≤ β for all x ∈ C0,

300 5 Finding Zeros and Minimum Points by Iterative Methods

(c) ‖(Df(x0))−1f(x0)‖ ≤ α.

Then

(1) beginning at x0, each point

xk+1 := xk −Df(xk)−1f(xk), k = 0, 1, . . . ,

is well defined and satisfies xk ∈ Sr(x0) for all k ≥ 0.
(2) limk→∞ xk = ξ exists and satisfies ξ ∈ Sr(x0) and f(ξ) = 0.
(3) For all k ≥ 0

‖xk − ξ‖ ≤ α h
2k−1

1 − h2k .

Since 0 < h < 1, Newton’s method is at least quadratically convergent.

Proof. (1): Since Df(x)−1 exists for x ∈ C0, xk+1 is well defined for all k
if xk ∈ Sr(x0) for all k ≥ 0. This is valid for k = 0 and k = 1 by assumption
(c). Now, if xj ∈ Sr(x0) for j = 0, 1, . . . , k, then from assumption (b)

‖xk+1 − xk‖ = ‖ −Df(xk)−1f(xk)‖ ≤ β‖f(xk)‖
= β‖f(xk) − f(xk−1) −Df(xk−1)(xk − xk−1)‖,

since the definition of xk implies

f(xk−1) +Df(xk−1)(xk − xk−1) = 0.

But, according to Lemma (5.3.1),

(5.3.3) ‖xk+1 − xk‖ ≤ βγ

2
‖xk − xk−1‖2,

and therefore

(5.3.4) ‖xk+1 − xk‖ ≤ αh2k−1.

This last inequality is correct for k = 0 because of (c). If it is correct for
k ≥ 0, then it is correct for k + 1, since (5.3.3) implies

‖xk+1 − xk‖ ≤ βγ

2
‖xk − xk−1‖2 ≤ βγ

2
α2h2k−2 = αh2k−1.

Furthermore, (5.3.4) implies

‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖ + ‖xk − xk−1‖ + · · · + ‖x1 − x0‖

≤ α(1 + h+ h3 + h7 + · · · + h2k−1) < α/(1 − h) = r,

and consequently xk+1 ∈ Sr(x0).

5.3 The Convergence of Newton’s Method in Several Variables 301

(2): From (5.3.4) it is easily determined that {xk } is a Cauchy se-
quence, since for m ≥ n we have
(5.3.5)

‖xm+1 − xn‖ ≤ ‖xm+1 − xm‖ + ‖xm − xm−1‖ + · · · + ‖xn+1 − xn‖
≤ αh2n−1(1 + h2n

+ (h2n

)2 + · · ·)

<
αh2n−1

1 − h2n < ε

for sufficiently large n ≥ N(ε), because 0 < h < 1.
Consequently, there is a limit

lim
k→∞

xk = ξ ∈ Sr(x0),

whose inclusion in the closure follows from the fact that xk ∈ Sr(x0) for
all k ≥ 0.

By passing to the limit m→ ∞ in (5.3.5) we obtain (3) as a side result:

lim
m→∞

‖xm − xn‖ = ‖ξ − xn‖ ≤ αh2n−1

1 − h2n .

We must still show that ξ is a zero of f in Sr(x0).
Because of (a), and because xk ∈ Sr(x0) for all k ≥ 0,

‖Df(xk) −Df(x0)‖ ≤ γ‖xk − x0‖ < γr,

and therefore
‖Df(xk)‖ ≤ γr + ‖Df(x0)‖ =: K.

The inequality
‖f(xk)‖ ≤ K‖xk+1 − xk‖

follows from the equation

f(xk) = −Df(xk)(xk+1 − xk).

Hence
lim
k→∞

‖f(xk)‖ = 0,

and, since f is continuous at ξ,

lim ‖f(xk‖ = ‖f(ξ)‖ = 0,

i.e., ξ is a zero of f . ��

Under somewhat stronger assumptions it can be shown that ξ is the
only zero of f in Sr(x0):

302 5 Finding Zeros and Minimum Points by Iterative Methods

(5.3.6) Theorem (Newton-Kantorovich). Given the function f :C ⊆
IRn → IRn and the convex set C0 ⊆ C, let f be continuously differentiable
on C0 and satisfy the conditions
(a) ‖Df(x) −Df(y)‖ ≤ γ‖x− y‖ for all x, y ∈ C0,
(b) ‖Df(x0)−1‖ ≤ β,
(c) ‖Df(x0)−1f(x0)‖ ≤ α,
for some x0 ∈ C0. Consider the quantities

h := αβγ, r1,2 :=
1 ∓

√
1 − 2h
h

α.

If h ≤ 1
2 and Sr1(x0) ⊂ C0, then the sequence {xk } defined by

xk+1 := xk −Df(xk)−1f(xk), k = 0, 1, . . . ,

remains in Sr1(x0) and converges to the unique zero of f(x) C0 ∩ Sr2(x0).

For the proof see Ortega and Rheinboldt (1970) or Collatz (1968).

5.4 A Modified Newton Method

Theorem (5.3.2) guarantees the convergence of Newton’s method only if
the starting point x0 of the iteration is chosen “sufficiently close” to the
desired solution ξ of

f(x) = 0, f : IRn → IRn.

The following example shows that Newton’s method may diverge otherwise.

Example. Let f : IR → IR be given by f(x) = arctanx. Then ξ = 0 is a solution
of f(x) = 0.

The Newton iteration is defined by

xk+1 := xk − (1 + x2
k) arctan(xk).

If we choose x0 so that

arctan(|x0|) ≥ 2|x0|
1 + x2

0
,

then the sequence {|xk|} diverges: limk→∞ |xk| = ∞.

We describe a modification of Newton’s method for which global con-
vergence can be proven for a large class of functions f . The modification
involves the introduction of an extra parameter λ and a search direction s
to define the sequence

(5.4.0.1) xk+1 := xk − λksk,

5.4 A Modified Newton Method 303

where typically sk := dk := [Df(xk)]−1f(xk), and the λk are chosen so that
the sequence {h(xk)}, h(x) := f(x)T f(x), is strictly monotone decreasing
and the xk converge to a minimum point of h(x). [Compare this with the
problem of nonlinear least-squares data fitting mentioned in Section 4.8.4.]

Since h(x) ≥ 0 for all x,

h(x̄) = 0 ⇐⇒ f(x̄) = 0.

Every local minimum point x̄ of h which satisfies h(x̄) = 0 is also a global
minimum point x̄ of h as well as a zero of f .

In the following section we will consider first a few general results about
the convergence of a class of minimization methods for arbitrary functions
h(x). These results will then be used in Section 5.4.2 to investigate the
convergence of the modified Newton method.

5.4.1 On the Convergence of Minimization Methods

Let ‖.‖ be the Euclidean vector norm and 0 < γ ≤ 1. We consider the set

(5.4.1.1) D(γ, x) := {s ∈ IRn | ‖s‖ = 1 with Dh(x)s ≥ γ‖Dh(x)‖}

of all directions s forming a not-too-large acute angle with the gradient
∇h(x),

∇h(x)T = Dh(x) =
(
∂h(x)
∂x1 , · · · ,

∂h(x)
∂xn

)
, where (x1, . . . , xn)T .

The following lemma shows, given x, under which conditions a scalar λ and
an s ∈ IRn exist such that h(x− µs) < h(x) for 0 < µ ≤ λ:

(5.4.1.2) Lemma. Let h: IRn → IR be a function which has a continuous
derivative Dh(x) for all x ∈ V (x̄) in a neighborhood V (x̄) of x̄. Suppose
further that Dh(x̄) �= 0, and let 1 ≥ γ > 0. Then there is a neighborhood
U(x̄) ⊆ V (x̄) of x̄ and a number λ > 0 such that

h(x− µs) ≤ h(x) − µγ

4
‖Dh(x̄)‖

for all x ∈ U(x̄), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.

Proof. The set

U1(x̄) := {x ∈ V (x̄) | ‖Dh(x) −Dh(x̄)‖ ≤ γ

4
‖Dh(x̄)‖}

is nonempty and a neighborhood of x̄, since Dh(x̄) �= 0 and Dh(x) is
continuous on V (x̄). Now, for x ∈ U1(x̄),

‖Dh(x)‖ ≥ ‖Dh(x̄)‖ − 1
4γ‖Dh(x̄)‖ ≥ 3

4‖Dh(x̄)‖,

304 5 Finding Zeros and Minimum Points by Iterative Methods

so that for s ∈ D(γ, x)

D(h(x))s ≥ γ‖Dh(x)‖ ≥ 3
4γ‖Dh(x̄)‖.

Choose λ > 0 with

B2λ := {x | ‖x− x̄‖ ≤ 2λ} ⊂ U1(x̄)

and define
U(x̄) := Bλ = {x | ‖x− x̄‖ ≤ λ}.

Then for all x ∈ U(x̄), 0 ≤ µ ≤ λ, and s ∈ D(γ, x) there is a 0 < θ < 1
with

h(x) − h(x− µs) = µDh(x− θµs)s,
= µ([Dh(x− θµs) −Dh(x)]s+Dh(x)s).

Now, x ∈ U(x̄) = Bλ implies x, x−µs, x− θµs ∈ B2λ ⊂ U1, and therefore

‖[(Dh(x− θµs) −Dh(x̄)) + (Dh(x̄) −Dh(x))]s‖ ≤ 1
2γ‖Dh(x̄)‖.

Using D(h(x))s ≥ 3
4γ‖Dh(x̄)‖, we finally obtain

h(x) − h(x− µs) ≥ −µγ
2

‖Dh(x̄)‖ +
3µγ
4

‖Dh(x̄)‖

=
µγ

4
‖Dh(x̄)‖, ��

We consider the following method for minimizing a differentiable func-
tion h: IRn → IR.

(5.4.1.3).

(a) Choose numbers γk ≤ 1, σk, k = 0, 1, . . . , with

inf
k
γk > 0, inf

k
σk > 0,

and choose a starting point x0 ∈ IRn.
(b) For all k = 0, 1, . . . , choose an sk ∈ D(γk, xk) and set

xk+1 := xk − λksk

where λk ∈ [0, σk‖Dh(xk)‖] is such that

h(xk+1) = min
µ

{h(xk − µsk) | 0 ≤ µ ≤ σk‖Dh(xk)‖}.

The convergence properties of this method are given by the following

(5.4.1.4) Theorem. Let h: IRn → IR be a function, and let x0 ∈ IRn be
chosen so that

5.4 A Modified Newton Method 305

(a) K := {x|h(x) ≤ h(x0)} is compact, and

(b) h is continuously differentiable in some open set containing K.

Then for any sequence {xk} defined by a method of the type (5.4.1.3):

(1) xk ∈ K for all k = 0, 1, . . . , {xk} has at least one accumulation point
x̄ in K.

(2) Each accumulation point x̄ of {xk} is a stationary point of h:

Dh(x̄) = 0.

Proof. (1): From the definition of the sequence {xk} it follows immediately
that the sequence {h(xk)} is monotone: h(x0) ≥ h(x1) ≥ · · ·. Hence xk ∈ K
for all k. K is compact; therefore {xk} has at least one accumulation point
x̄ ∈ K.

(2): Assume that x̄ is an accumulation point of {xk} but is not a sta-
tionary point of h:

(5.4.1.5) Dh(x̄) �= 0.

Without loss of generality, let limk→∞ xk = x̄. Let

γ := inf
k
γk > 0, σ := inf

k
σk > 0.

According to Lemma (5.4.1.2) there is a neighborhood U(x̄) of x̄ and
a number λ > 0 satisfying

(5.4.1.6) h(x− µs) ≤ h(x) − µγ
4
‖Dh(x̄)‖

for all x ∈ U(x̄), s ∈ D(γ, x), and 0 ≤ µ ≤ λ.
Since limk→∞ xk = x̄, the continuity of Dh(x) together with (5.4.1.5),

implies the existence of a k0 such that for all k ≥ k0
(a) xk ∈ U(x̄),

(b) ‖Dh(xk)‖ ≥ 1
2‖Dh(x̄)‖.

Let Λ := min{λ, 1
2σ‖Dh(x̄)‖}, ε := Λγ4 ‖Dh(x̄)‖ > 0. Since σk ≥ σ, it

follows that [0, Λ] ⊆ [0, σk‖Dh(xk)‖] for all k ≥ k0. Therefore, from the
definition of xk+1,

h(xk+1) ≤ min
µ

{h(xk − µsk)|0 ≤ µ ≤ Λ}.

Since Λ ≤ λ, xk ∈ U(x̄), sk ∈ D(γk, xk) ⊆ D(γ, xk), (5.4.1.6) implies that

h(xk+1) ≤ h(xk) − Λγ

4
‖Dh(x̄)‖ = h(xk) − ε

306 5 Finding Zeros and Minimum Points by Iterative Methods

for all k ≥ k0. This means that limk→∞ h(xk) = −∞, which contradicts
h(xk) ≥ h(xk+1) ≥ · · · ≥ h(x̄). Hence, x̄ is a stationary point of h. ��

Step (b) of (5.4.1.3) is known as the line search. Even though the
method given by (5.4.1.3) is quite general, its practical application is lim-
ited by the fact that the line search must be exact, i.e., it requires that the
exact minimum point of the function

ϕ(µ) := h(xk − µsk)

be found on the interval [0, σk‖Dh(xk)‖] in order to determine xk+1. Gen-
erally a great deal of effort is required to obtain even an approximate
minimum point. The following variant of (5.4.1.3) has the virtue that in
step (b) the exact minimization is replaced by an inexact line search, in
particular by a finite search process (“Armijo line search”): Armijo line
search DF

(5.4.1.7).

(a) Choose numbers γk ≤ 1, σk, k = 0, 1, . . . , so that

inf
k
γk > 0, inf

k
σk > 0.

Choose a starting point x0 ∈ IRn.

(b) For each k = 0, 1, . . . , obtain xk+1 from xk as follows:

(α) Select
sk ∈ D(γk, xk),

define
ρk := σk‖Dh(xk)‖, hk(µ) := h(xk − µsk),

and determine the smallest integer j ≥ 0 such that

hk(ρk2−j) ≤ hk(0) − ρk2−j γk
4

‖Dh(xk)‖.

(β) Determine ī ∈ {0, 1, . . . , j}, such that hk(ρk2−ī) is minimum and
let λk := ρ2−ī, xk+1 := xk − λksk.

[Note that h(xk+1) = min1≤i≤j hk(ρk2−i).]

It is easily seen that an integer j ≥ 0 exists with the properties
(5.4.1.7bα): If xk is a stationary point, then j = 0. If xk is not stationary,
then the existence of j follows immediately from Lemma (5.4.1.2) applied
to x̄ := xk. In any case j (and λk) can be found after a finite number of
steps.

The modified process (5.4.1.7) satisfies an analog to (5.4.1.4):

5.4 A Modified Newton Method 307

(5.4.1.8) Theorem. Under the hypotheses of Theorem (5.4.1.4) each se-
quence {xk} produced by a method of the type (5.4.1.7) satisfies the conclu-
sions of Theorem (5.4.1.4).

Proof. We assume as before that x̄ is an accumulation point of a sequence
{xk} defined by (5.4.1.7), but not a stationary point, i.e.,

Dh(x̄) �= 0.

Again, without loss of generality, let limxk = x̄. Also let σ := infk σk >
0, γ := infk γk > 0. According to Lemma (5.4.1.2) there is a neighborhood
U(x̄) and a number λ > 0 such that

(5.4.1.9) h(x− µs) ≤ h(x) − µγ
4
‖Dh(x̄)‖

for all x ∈ U(x̄), s ∈ D(γ, x), 0 ≤ µ ≤ λ. Again, the fact that limk xk = x̄,
that Dh(x) is continuous, and that Dh(x̄) �= 0 imply the existence of a k0
such that

(5.4.1.10a) xk ∈ U(x̄),
(5.4.1.10b) ‖Dh(xk)‖ ≥ 1

2‖Dh(x̄)‖.

for all k ≥ k0.
We need to show that there is an ε > 0 for which

h(xk+1) ≤ h(xk) − ε for all k ≥ k0.

Note first that (5.4.1.10) and γk ≥ γ imply

γk‖Dh(xk)‖ ≥ γ

2
‖Dh(x̄)‖ for all k ≥ k0.

Consequently, according to the definition of xk+1 and j

(5.4.1.11)
h(xk+1) ≤ hk(ρk2−j) ≤ h(xk) − ρk2−j γk

4
‖Dh(xk)‖

≤ h(xk) − ρk2−j γ

8
‖Dh(x̄)‖.

Now let j̄ ≥ 0 be the smallest integer satisfying

(5.4.1.12) hk(ρk2−j̄) ≤ h(xk) − ρk2−j̄ γ

8
‖Dh(x̄)‖.

According to (5.4.1.11), j̄ ≤ j, and the definition of xk+1 we have

(5.4.1.13) h(xk+1) ≤ hk(ρk2−j̄).

There are two cases:

308 5 Finding Zeros and Minimum Points by Iterative Methods

Case 1, j̄ = 0. Note that ρk = σk‖Dh(xk)‖ ≥ σ/2‖Dh(x̄)‖. Then (5.4.1.12)
and (5.4.1.13) imply

h(xk+1) ≤ h(xk) − ρk
γ

8
‖Dh(x̄)‖

≤ h(xk) − σγ

16
‖Dh(x̄)‖2 = h(xk) − ε1

with ε1 > 0 independent of xk.

Case 2, j̄ > 0. From the minimality of j̄ we have

hk(ρk2−(j̄−1)) > h(xk) − ρk2−(j̄−1) γ

8
‖Dh(x̄)‖

≥ h(xk) − ρk2−(j̄−1) γ

4
‖Dh(x̄)‖.

Because xk ∈ U(k̄) and sk ∈ D(γk, xk) ⊆ D(γ, xk), it follows immediately
from (5.4.1.9) that

ρk2−(j̄−1) > λ.

Combining this with (5.4.1.12) and (5.4.1.13) yields

h(xk+1) ≤ hk(ρk2−j̄) ≤ h(xk) − λγ

16
‖Dh(x̄)‖ = h(xk) − ε2

with ε2 > 0 independent of xk.
Hence, for ε = min(ε1, ε2)

h(xk+1) ≤ h(xk) − ε

for all k ≥ k0, contradicting the fact that h(xk) ≥ h(x̄) for all k. Therefore
x̄ is a stationary point of h. ��

5.4.2 Application of the Convergence Criteria to the Modified
Newton Method

In order to solve the equation f(x) = 0, we let h(x) := f(x)T f(x) and
apply one of the methods (5.4.1.3) or (5.4.1.7) to minimize h(x). We use
the Newton direction

sk =
dk

‖dk‖
, dk := Df(xk)−1f(xk),

as the search direction sk to be taken from the point xk. This direction
will be defined if Df(xk)−1 exists and f(xk) �= 0. (‖.‖ denotes the Eu-
clidean norm.) To apply the theorems of the last section requires a little
preparation. We show first that, for every x such that

d = d(x) := Df(x)−1f(x) and s = s(x) =
d

‖d‖

5.4 A Modified Newton Method 309

exist [i.e., Df(x)−1 exists and d �= 0], we have

(5.4.2.1) s ∈ D(γ, x), for all 0 < γ ≤ γ̄(x), γ̄(x) :=
1

cond(Df(x))
.

In the above,
‖Df(x)‖ := lub(Df(x))

and
cond(Df(x)) := ‖Df(x)−1‖‖Df(x)‖

are to be defined with respect to the Euclidian norm.

Proof. Since h(x) = f(x)T f(x), we have

(5.4.2.2) Dh(x) = 2fT (x)Df(x).

The inequalities

‖fT (x)Df(x)‖ ≤ ‖Df(x)‖ ‖f(x)‖,
‖Df(x)−1f(x)‖ ≤ ‖Df(x)−1‖ ‖f(x)‖

clearly hold, and consequently

Dh(x)s
‖Dh(x)‖ =

f(x)TDf(x)Df(x)−1f(x)
‖Df(x)−1f(x)‖ ‖fT (x)Df(x)‖ ≥ 1

cond(Df(x))
> 0.

Now, for all γ with 0 < γ ≤ 1/ cond(Df(x)), it follows that s ∈ D(γ, x)
according to the definition of D(γ, x) given in (5.4.1.1). ��

As a consequence of (5.4.2.2) we observe: If Df(x)−1 exists, then

(5.4.2.3) Dh(x) = 0 ⇔ f(x) = 0,

i.e., x is a stationary point of h if and only if x is a zero of f .
Consider the following modified Newton method [cf. (5.4.1.7)]:

(5.4.2.4).

(a) Select a starting point x0 ∈ IRn.
(b) For each k = 0, 1, . . . define xk+1 from xk as follows:

(α) Set

dk := Df(xk)−1f(xk), γk :=
1

cond(Df(xk))
,

and let hk(τ) := h(xk−τdk), where h(x) := f(x)T f(x). Determine
the smallest integer j ≥ 0 satisfying

hk(2−j) ≤ hk(0) − 2−j γk
4

‖dk‖ ‖Dh(xk)‖.

310 5 Finding Zeros and Minimum Points by Iterative Methods

(β) Determine λk and thereby xk+1 := xk − λkdk so that

h(xk+1) = min
0≤i≤j

hk(2−i).

As an analog to Theorem (5.4.1.8) we have

(5.4.2.5) Theorem. Let f : IRn → IRn be a given function, and let x0 ∈ IRn

be a point with the following properties:

(a) The set K := {x|h(x) ≤ h(x0)}, where h(x) := f(x)T f(x), is compact;
(b) f is continuously differentiable on some open set containing K;
(c) Df(x)−1 exists for all x ∈ K.

Then the sequence {xk} defined by (5.4.2.4) is well defined and satisfies the
following:

(1) xk ∈ K for all k = 0, 1, . . . , and {xk} has at least one accumulation
point x̄ ∈ K.

(2) Each accumulation point x̄ of {xk} is a zero of f , f(x̄) = 0.

Proof. By construction, {h(xk)} is monotone:

h(x0) ≥ h(x1) ≥ · · · .

Hence xk ∈ K, k = 0, 1, Because of assumption (c), dk and γk are
well defined if xk is defined. From (5.4.2.1)

sk ∈ D(γk, xk),

where sk := dk/‖dk‖.
As was the case for (5.4.1.7), there is a j ≥ 0 with the properties given

in (5.4.2.4). Hence xk+1 is defined for each xk.
Now (5.4.2.4) becomes formally identical to the process given by

(5.4.1.7) if σk is defined by

σk :=
‖dk‖

‖Dh(xk)‖
.

The remainder of the theorem follows from (5.4.1.8) as soon as we establish
that

inf
k
γk > 0, inf

k
σk > 0.

According to assumptions (b) and (c), Df(x)−1 is continuous on the
compact set K. Therefore cond(Df(x)) is continuous, and

γ :=
1

max
x∈K

cond(Df(x))
> 0

5.4 A Modified Newton Method 311

exists.
Without loss of generality, we may assume that xk is not a stationary

point of h; which means that it is no zero of f , because of (5.4.2.3) and
assumption (c). [If f(xk) = 0, then it follows immediately that xk = xk+1 =
xk+2 = · · ·, and there is nothing left to show.] Thus, since xk ∈ K, k = 0,
1, . . . ,

inf γk ≥ γ > 0.

On the other hand, from the fact that f(xk) �= 0, from (5.4.2.2), and
from the inequalities

‖dk‖ = ‖Df(xk)−1f(xk)‖ ≥ 1
‖Df(xk)‖

‖f(xk)‖,

‖Dh(xk)‖ ≤ 2 · ‖Df(xk)‖ ‖f(x)‖,

it follows immediately that

σk ≥ 1
2 · ‖Df(xk)‖2 ≥ σ > 0

[from the continuity of Df(x) in the set K, which is compact]. Thus, all the
results of Theorem (5.4.1.8) [or (5.4.1.4)] apply to the sequence {xk}. Since
assumption (c) and (5.4.2.3) together imply that each stationary point of
h is also a zero of f , the proof is complete. ��

The method (5.4.2.4) requires that Dh(xk) and γk := 1/ cond(Df(xk))
be computed at each iteration step. The proof of (5.4.1.8), however, shows
that it would be sufficient to replace all γk by a lower bound γ > 0, γk ≥
γ > 0. In accord with this, λk is usually determined in practice so that

hk(2−j) < hk(0).

However, since this only requires that γk > 0, the methods used for the
above proofs are not sufficiently strong to guarantee the convergence of this
variant.

A further remark about the behavior of (5.4.2.4): In a sufficiently small
neighborhood of a zero x̄ (with nonsingular Df(x̄)) the method chooses
γk = 1 automatically. This means that the method conforms to the ordinary
Newton method and converges quadratically. We can see this as follows:

Since limk→∞ xk = x̄ and f(x̄) = 0, there is a neighborhood V1(x̄) of x̄
in which every iteration step zk → zk+1 which would be carried out by the
ordinary Newton method would satisfy the condition

(5.4.2.6) ‖zk+1 − x̄‖ ≤ a‖zk − x̄‖2

and

(5.4.2.7) 32a2c2‖zk − x̄‖2 ≤ 1, c := cond(Df(x̄)).

312 5 Finding Zeros and Minimum Points by Iterative Methods

Taylor’s expansion of f about x̄ gives

f(x) = Df(x̄)(x− x̄) + o(‖x− x̄‖).

Since

‖x− x̄‖/‖Df(x̄)−1‖ ≤ ‖Df(x̄)(x− x̄)‖ ≤ ‖Df(x̄)‖ ‖x− x̄‖

and limx→x̄ o(‖x − x̄‖)/‖x − x̄‖ = 0, there is another neighborhood V2(x̄)
of x̄ such that

1
4‖Df(x̄)

−1‖−2‖x− x̄‖2 ≤ h(x) ≤ 4‖Df(x̄)‖2 ‖x− x̄‖2

for all x ∈ V2(x̄).
Choose a neighborhood

U(x̄) ⊂ V1(x̄) ∩ V2(x̄)

and let k0 be such that
xk ∈ U(x̄)

for k ≥ k0. This is possible because limk→∞ xk = x̄. Considering

xk+1 := xk −Df(xk)−1f(xk), i.e. λk = 1 in (5.4.2.4),

and using (5.4.2.6), (5.4.2.7), we are led to

h(xk+1) ≤ 4‖Df(x̄)‖2‖xk+1 − x̄‖2 ≤ 16a2c2‖xk − x̄‖2h(xk)
≤ h(xk)(1 − 1

2).

From (5.4.2.4bα),

γk‖dk‖‖Df(xk)‖ ≤ 2γk‖Df(xk)−1‖‖Df(xk)‖h(xk) = 2h(xk).

This implies

h(xk+1) ≤ h(xk)(1 − 1
2) ≤ h(xk) − γk

4
‖dk‖‖Dh(xk)‖.

That is, there exists a k0 such that for all k ≥ k0 the choice j = 0 and λk = 1
will be made in the process given by (5.4.2.4). Thus (5.4.2.4) is identical
to the ordinary Newton method in a sufficiently small neighborhood of x̄,
which means that it is locally quadratically convergent.

Assumption (a)–(c) in Theorem (5.4.2.5) characterize the class of func-
tions for which the algorithm (5.4.2.4) is applicable. In one of the assigned
problems for this chapter [Exercise 15], two examples will be given of func-
tion classes which satisfy (a)–(c).

5.4 A Modified Newton Method 313

5.4.3 Suggestions for a Practical Implementation of the
Modified Newton Method. A Rank-One Method Due to
Broyden

Newton’s method for solving the system f(x) = 0, where f : IRn → IRn,
is quite expensive even in its modified form (5.4.2.4), since the Jacobian
Df(xk) and the solution to the linear system Df(xk)d = f(xk) must be
computed at each iteration. The evaluation of explicit formulas for the
components of Df(x) for given x is usually complicated and costly even
if explicit formulas for f(.) and Df(.) are available. In many cases this
work is alleviated by some recent and surprisingly efficient methods for
computing the values of derivatives like Df(x) at a given point x exactly
(methods of automatic differentiation). These methods presuppose that the
function f(x) is built up from simple differentiable functions with known
derivatives which allows the repeated use of the chain rule to compute the
wanted derivatives recursively. For an exposition of these methods we have
to refer the reader to the relevant literature [see e.g. Griewank (2000)].

If these assumptions are not satisfied, if for instance explicit formulas
for f(x) are not available (f(x) could be the result of a measurement or of
another lenghty computation), one could resort to the following techniques:
One is to replace

Df(x) =
(
∂f(x)
∂x1 , . . . ,

∂f(x)
∂xn

)
at each x = xk by a matrix

(5.4.3.1) ∆f(x) = (∆1f, . . . ,∆nf),

where

∆if(x) : =
f(x1, . . . , xi + hi, . . . , xn) − f(x1, . . . , xi, . . . , xn)

hi

=
f(x+ hiei) − f(x)

hi
,

that is, we may replace the partial derivatives ∂f/∂xi by suitable difference
quotients ∆if . Note that the matrix ∆f(x) can be computed with only n
additional evaluations of the function f (beyond that required at the point
x = xk). However it can be difficult to choose the stepsizes hi. If any hi is
too large, then ∆f(x) can be a bad approximation to Df(x), so that the
iteration

(5.4.3.2) xk+1 = xk − λk∆f(xk)−1f(xk)

converges, if it converges at all, much more slowly than (5.4.2.4). On the
other hand, if any hi is too small, then f(x+hiei) ≈ f(x), and cancellations
can occur which materially reduce the accuracy of the difference quotients.

314 5 Finding Zeros and Minimum Points by Iterative Methods

The following compromise seems to work the best: if we assume that all
components of f(x) can be computed with a relative error of the same order
of magnitude as the machine precision eps, then choose hi so that f(x) and
f(x+ hiei) have roughly the first t/2 digits in common, given that t-digit
accuracy is being maintained inside the computer. That is,

|hi| ‖∆if(x)‖ ≈ √
eps‖f(x)‖.

In this case the influence of cancellations is usually not too bad.
If the function f is very complicated, however, even the n addiional

evaluations of f needed to produce ∆f(x) can be too expensive to bear
at each iteration. In this case we try replacing Df(xk) by some matrix
Bk which is even simpler than ∆f(xk). Suitable matrices can be obtained
using the following result due to Broyden (1965).

(5.4.3.3) Theorem. Let A and B be arbitrary n×n matrices; let b ∈ IRn,
and let F : IRn → IRn be the affine mapping F (u) := Au + b. Suppose x,
x′ ∈ IRn are distinct vectors, and define p, q by

p := x′ − x, q := F (x′) − F (x) = Ap.

Then the n× n matrix B′ given by

B′ := B +
1
pT p

(q −Bp)pT ,

satisfies
lub2(B′ −A) ≤ lub2(B −A)

with respect to the Euclidean norm, and it also satisfies the equation

B′p = Ap = q.

Proof. The equality (B′ −A)p = 0 is immediate from the definition of B′.
Each vector u ∈ IRn satisfying ‖u‖2 = 1 has an orthogonal decomposition
of the form

u = αp+ v, vT p = 0, ‖v‖2 ≤ 1, α ∈ IR.

Thus it follows from the definition of B′ that, for ‖u‖2 = 1,

‖(B′ −A)u‖2 = ‖(B′ −A)v‖2 = ‖(B −A)v‖2

≤ lub2(B −A)‖v‖2 ≤ lub2(B −A).

Hence
lub2(B′ −A) = sup

‖u‖2=1
‖(B′ −A)u‖2 ≤ lub2(B −A). ��

5.4 A Modified Newton Method 315

This result shows that the Jacobian Df(x) ≡ A of an affine function F
is approximated by B′ at least as well as it is approximated by B, and
furthermore B′ and DF (x) will both map p into the same vector. Since a
differentiable nonlinear function f : IRn → IRn can be approximated to first
order in the neighborhood of one of its zeros x̄ by an affine function, this
suggests using the above construction of B′ from B even in the nonlinear
case. Doing so yields an iteration of the form

(5.4.3.4)

dk := B−1
k f(xk),

xk+1 := xk − λkdk,
pk := xk+1 − xk, qk := f(xk+1) − f(xk),

Bk+1 := Bk +
1

pTk pk
(qk −Bkpk)pTk .

The formula for Bk+1 was suggested by Broyden. Since rank(Bk+1 −Bk) ≤
1, it is called Broyden’s rank-one update.The stepsizes λk may be deter-
mined from an approximate minimization of ‖f(x)‖2:

‖f(xk+1)‖2 ≈ min
λ≥0

‖f(xk − λdk)‖2,

using, for example, a finite search process

(5.4.3.5) λk := 2−j , j := min{i ≥ 0| ‖f(xk − 2−idk)‖ < ‖f(xk)‖}.

as in (5.4.2.4).
A suitable starting matrix B0 can be obtained using difference quo-

tients: B0 = ∆f(x0). It does not make good sense, however, to com-
pute all following matrices Bk, k ≥ 1, from the updating formula. Var-
ious suggestions have been made about which iterations of (5.4.3.4) are
to be modified by replacing Bk + (1/pTk pk)(qk − Bkpk)pTk with ∆f(xk)
(“reinitialization”). As one possibility we may obtain Bk+1 from Bk us-
ing Broyden’s update only on those iterations where the step produced by
(5.4.3.5) lies in the interval 2−1 ≤ λ ≤ 1. A justification for this is given by
observing that the bisection method (5.4.3.5) automatically picks λk = 1
when ‖f(xk+1)‖ < ‖f(xk − dk)‖. The following result due to Broyden,
Dennis, and Moré (1973) shows that this will be true for all xk sufficiently
close to x̄ (in which case making an affine approximation to f is presumably
justified):
Under the assumption that

(a) Df(x) exists and is continuous in a neighborhood U(x̄) of a zero point
x̄,

(b) ‖Df(x) −Df(x̄)‖ ≤ Λ‖x− x̄‖ for some Λ > 0 and all x ∈ U(x̄),

(c) Df(x̄)−1 exists,

316 5 Finding Zeros and Minimum Points by Iterative Methods

then the iteration (5.4.3.4) is well defined using λk = 1 for all k ≥ 0 (i.e.,
all Bk are nonsingular) provided x0 and B0 are “sufficiently close” to x̄ and
Df(x̄). Moreover, the iteration generates a sequence {xk} which converges
superlinearly to x̄,

lim
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ = 0,

if xk �= x̄ for all k ≥ 0.
The direction dk = B−1

k f(xk) appearing in (5.4.3.4) is best obtained by
solving the linear system Bkd = f(xk) using a decomposition FkBk = Rk
of the kind given in (4.9.1). Observe that the factors Fk+1, Rk+1, of Bk+1
can be found from the factors Fk, Rk, of Bk by employing the techniques
of Section 4.9, since modification of Bk by a rank-one matrix is involved.

We remark that all of the foregoing also has application to function
minimization as well as the location of zeros. Let h: IRn → IR be a given
function. The minimum points of h are among the zeros of f(x) = ∇h(x).
Moreover, the Jacobian Df(x) is the Hessian matrix ∇2h(x) of h; hence it
can be expected to be positive definite near a strong local minimum point
x̄ of h. This suggests that the matrix Bk which is taken to approximate
∇2h(xk) should be positive definite. Consequently, for function minimiza-
tion, the Broyden rank-one updating formula used in (5.4.3.4) should be
replaced by an updating formula which guarantees the positive definiteness
of Bk+1 given that Bk is positive definite. A number of such formulas have
been suggested. The most successful are of rank two and can be expressed
as two stage updates:

Bk+1/2 := Bk + αkukuTk , αk > 0,

Bk+1 := Bk+1/2 − βkvkvTk , βk > 0,

with suitable numbers αk, βk and vectors uk, vk so that Bk+1/2 is guar-
anteed to be positive definite as well as Bk+1. For such updates the
Cholesky decomposition is the most reasonable to use in solving the system
Bkd = f(xk). More details on these topics may be found in the reference by
Gill, Golub, Murray, and Saunders (1974). Rank-two updates to positive
definite approximations Hk of the inverse [∇2h(xk)]−1 of the Hessian are
described in Section 5.11.

5.5 Roots of Polynomials. Application of Newton’s
Method

Sections 5.5–5.8 deal with roots of polynomials and some typical methods
for their determination. There are a host of methods available for this
purpose which we will not be covering. See, for example, Bauer (1956),

5.5 Roots of Polynomials. Application of Newton’s Method 317

Jenkins and Traub (1970), Nickel (1966), and Henrici (1974), to mention
just a few.

The importance of general methods for determining roots of general
polynomials may sometimes be overrated. Polynomials found in practice
are frequently given in some special form, such as characteristic polynomials
of matrices. In the latter case, the roots are eigenvalues of matrices, and
methods to be described in Chapter 6 are to be preferred.

We proceed to describe how the Newton method applies to finding the
roots of a given polynomial p(x). In order to evaluate the iteration function
of Newton’s method,

xk+1 := xk − p(xk)
p′(xk)

,

we have to calculate the value of the polynomial p, as well as the value of
its first derivative, at the point x = xk. Assume the polynomial p is given
in the form

p(x) = a0x
n−1 + · · · + an.

Then p(xk) and p′(xk) can be calculated as follows: For x = ξ,

p(ξ) = (· · · (a0ξ + a1)ξ + · · ·)ξ + an.

The multipliers of ξ in this expression are recursively of the form

(5.5.1)
b0 : = a0

bi : = bi−1ξ + ai i = 1, 2, . . . , n.

The value of the polynomial p at ξ is then given by

p(ξ) = bn.

The algorithm for evaluating polynomials using the recursion (5.5.1) is
known as Horner’s scheme. The quantities bi, thus obtained, are also the
coefficients of the polynomial

p1(x) := b0x
n−1 + b1xn−2 + · · · + bn−1

which results if the polynomial p(x) is divided by x− ξ:

(5.5.2) p(x) = (x− ξ)p1(x) + bn.

This is readily verified by comparing the coefficients of the powers of x on
both sides of (5.5.2). Furthermore, differentiating the relation (5.5.2) with
respect to x and setting x = ξ yields

p′(ξ) = p1(ξ).

Therefore, the first derivative p′(ξ) can be determined by repeating the
Horner scheme, using the results bi of the first as coefficients for the second:

318 5 Finding Zeros and Minimum Points by Iterative Methods

p′(ξ) = (· · · (b0ξ + b1)ξ + · · ·)ξ + bn−1.

Frequently, however, the polynomial p(x) is given in some form other
than

p(x) = a0x
n + · · · + an.

Particularly important is the case in which p(x) is the characteristic poly-
nomial of a symmetric tridiagonal matrix

J =

α1 β2 0
β2 · ·

· · ·
· · βn

0 βn αn

 , αi, βi real.

Denoting by pi(x) the characteristic polynomial

pi(x) := det

α1 − x β2 0
β2 · ·

· · ·
· · βi

0 βi αi − x

of the principal submatrix formed by the first i rows and columns of the
matrix J , we have recursions

(5.5.3)

p0(x) := 1,
p1(x) := (α1 − x) · 1,
pi(x) := (αi − x)pi−1(x) − β2

i pi−2(x), i = 2, 3, . . . , n,
p(x) := det(J − xI) := pn(x).

These can be used to calculate p(ξ) for any x = ξ and any given matrix
elements αi, βi. A similar recursion for calculating p′(x) is obtained by
differentiating (5.5.3):
(5.5.4)

p′
0(x) := 0,
p′
1(x) := −1,

p′
i(x) := −pi−1(x) + (αi − x)p′

i−1(x) − β2
i p

′
i−2(x), i = 2, 3, . . . , n,

p′(x) := p′
n(x).

The two recursions (5.5.3) and (5.5.4) can be evaluated concurrently.
During our general discussion of the Newton method in Section 5.3 it

became clear that the convergence of a sequence xk towards a zero ξ of
a function is assured only if the starting point x0 is sufficiently close to
ξ. A bad initial choice x0 may cause the sequence xk to diverge even for
polynomials. If the real polynomial p(x) has no real roots [e.g., p(x) =

5.5 Roots of Polynomials. Application of Newton’s Method 319

x2 +1], then the Newton method must diverge for any initial value x0 ∈ IR.
There are no known fail-safe rules for selecting initial values in the case of
arbitrary polynomials. However, such a rule exists in an important special
case, namely, if all roots ξ, i = 1, 2, . . . , n, are real:

ξ1 ≥ ξ2 ≥ · · · ≥ ξn.

In Section 5.6, Theorem (5.6.5), we will show that the polynomials defined
by (5.5.3) have this property if the matrix elements αi, βi are real.

(5.5.5) Theorem. Let p(x) be a polynomial of degree n ≥ 2 with real
coefficients. If all roots ξi,

ξ1 ≥ ξ2 ≥ · · · ≥ ξn,

of p(x) are real, then Newton’s method yields a strictly decreasing sequence
xk converging to ξ1 for any initial value x0 > ξ1.

Proof. Without loss of generality, we may assume that p(x0) > 0. Since
p(x) does not change sign for x > ξ, we have

p(x) = a0x
n + · · · + an > 0

for x > ξ1 and therefore a0 > 0. The derivative p′ has n − 1 real zeros αi
with

ξ1 ≥ α1 ≥ ξ2 ≥ α2 ≥ · · · ≥ αn−1 ≥ ξn
by Rolle’s theorem. Since p′ is of degree n − 1 ≥ 1, these are all its roots,
and p′(x) > 0 for x > α1 because a0 > 0. Applying Rolle’s theorem again,
and recalling that n ≥ 2, we obtain

(5.5.6)
p′′(x) > 0 for x > α1,
p′′′(x) ≥ 0 for x ≥ α1.

Thus p and p′ are convex functions for x ≥ α1.
Now xk > ξ implies that

xk+1 = xk − p(xk)
p′(xk)

< xk,

since p′(xk) > 0, p(xk) > 0. It remains to be shown, that we do not
“overshoot”, i.e., that xk+1 > ξ1. From (5.5.6), xk > ξ1 ≥ α1, and Taylor’s
theorem we conclude that

0 = p(ξ1) = p(xk) + (ξ1 − xk)p′(xk) +
1
2
(ξ1 − xk)2p′′(δ), ξ1 < δ < xk,

> p(xk) + (ξ1 − xk)p′(xk).

p(xk) = p′(xk)(xk − xx+1) holds by the definition of xk+1. Thus

320 5 Finding Zeros and Minimum Points by Iterative Methods

0 > p′(xk)(xk − xk+1 + ξ1 − xk) = p′(xk)(ξ1 − xk+1),

and xk+1 > ξ1 follows, since p′(xk) > 0. ��

For later use we note the following consequence of (5.5.6):

(5.5.7) Lemma. p(x) = a0x
n + · · · + an, a0 > 0, be a real polynomial of

degree n ≥ 2 all roots of which are real. If α1 is the largest root of p′, then
p′′′ ≥ 0 for x ≥ α1, i.e., p′ is a convex function for x ≥ α1.

We are still faced with the problem of finding a number x0 > ξ1, without
knowing ξ1 beforehand. The following inequalities are available for this
purpose:

(5.5.8) Theorem. For all roots ξi of an arbitrary polynomial p(x) =
a0x

n + · · · + an with a0 �= 0,

|ξi| ≤ max
{ ∣∣∣∣ana0

∣∣∣∣ , 1 +
∣∣∣∣an−1

a0

∣∣∣∣ , . . . , 1 +
∣∣∣∣a1

a0

∣∣∣∣ } ,
|ξi| ≤ max

 1,
n∑
j=1

∣∣∣∣aja0
∣∣∣∣
 ,

|ξi| ≤ max
{ ∣∣∣∣ anan−1

∣∣∣∣ , 2 ∣∣∣∣an−1

an−2

∣∣∣∣ , . . . , 2 ∣∣∣∣a1a0
∣∣∣∣ } ,

|ξi| ≤
n−1∑
j=0

∣∣∣∣aj+1

aj

∣∣∣∣ ,
|ξi| ≤ 2 max

{∣∣∣∣a1

a0

∣∣∣∣ ,
√∣∣∣∣a2a0

∣∣∣∣, 3

√∣∣∣∣a3a0
∣∣∣∣, . . . , n

√∣∣∣∣ana0
∣∣∣∣
}
.

Some of these inequalities will be proved in Section 6.9. Compare also
Householder (1970). Additional inequalities can be found in Marden (1949)
.

Quadratic convergence does not necessarily mean fast convergence. If
the initial value x0 is far from a root, then the sequence xk obtained by
Newton’s method may converge very slowly in the beginning. Indeed, if xk
is large, then

xk+1 = xk − xnk + · · ·
nxn−1

k + · · ·
≈ xk

(
1 − 1

n

)
,

so that there is little change between xk and xk+1. This observation has
led to considering the following double-step method :

5.5 Roots of Polynomials. Application of Newton’s Method 321

xk+1 = xk − 2
p(xk)
p′(xk)

, k = 0, 1, 2, . . . ,

in lieu of the straightforward Newton method.
Of course, there is now the danger of “overshooting”. In particular,

in the case of polynomials with real roots only and an initial point x0 >
ξ1, some xk+1 may overshoot ξ1, negating the benefit of Theorem (5.5.5).
However, this overshooting can be detected, and, due to some remarkable
properties of polynomials, a good initial value y (ξ1 ≥ y > ξ2) with which
to start a subsequent Newton procedure for the calculation of ξ2 can be
recovered. The latter is a consequence of the following theorem:

(5.5.9) Theorem. Let p(x) be a real polynomial of degree n ≥ 2, all roots
of which are real, ξ1 ≥ ξ2 ≥ · · · ≥ ξn. Let α1 be the largest root of p′(x):

ξ1 ≥ α1 ≥ ξ2.

For n = 2, we require also that ξ1 > ξ2. Then for every z > ξ1, the numbers

z′ := z − p(z)
p′(z)

, y := z − 2
p(z)
p′(z)

, y′ := y − p(y)
p′(y)

,

(see Figure 10) are well defined and satisfy

α1 < y,(5.5.10a)
ξ1 ≤ y′ ≤ z′.(5.5.10b)

It is readily verified that n = 2 and ξ1 = ξ2 imply y = ξ1 for any z > ξ1.

Proof. Assume again that p(z) > 0 for z > ξ1. For such values z, we
consider the quantities ∆0, ∆1 (Figure 10), which are defined as follows:

∆0 := p(z′) = p(z′) − p(z) − (z′ − z)p′(z) =
∫ z′

z

[p′(t) − p′(z)]dt,

∆1 := p(z′) − p(y) − (z′ − y)p′(y) =
∫ z′

y

[p′(t) − p′(y)]dt.

∆0 and ∆1 can be interpreted as areas over and under the graph of p′(x),
respectively (Figure 11).

By Lemma (5.5.7), p′(x) is a convex function for x ≥ α1. Therefore, and
because z′ − y = z− z′ > 0 — the latter being positive by Theorem (5.5.5)
— we have

(5.5.11) ∆1 ≤ ∆0, if y ≥ α1,

322 5 Finding Zeros and Minimum Points by Iterative Methods

ξ2 α1 ξ1

y y′ z′ z

..

p(x)

x

}
∆1

}
∆0...

................................
..........................

........................
......................
.....................
....................
...................
...................
..................
..................
..................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.................
.........................
..............
...........
...

...............

...............
...............

...............
...............

...............
...............

...............
...............

...............
.

........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

.........................

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

....

..

..

Fig. 10. Geometric interpretation of the double-step method.

α1 y z′ z

..

p′(x) x.......................................
.......................................

.....................................
..................................

...............................
.............................

...........................
.........................

........................
.......................

......................
.....................
.....................
....................
....................
...................
.....................
.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

.....

...

..
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
........
...

....
...
........
........
..
........
........
......

........

........

........

.

........

........

........

.....

........

........

........

........

...

........

........

........

........

........

........

...

........

........

..

........

...

........

.......

........

...

........

........

........

.

........

........

........

........

........

.

........

........

........

........

........

........

........

........

.

........

........

........

........

........

........

........

........

........

...

..

...

......................

...

...............

..

..................

.................................

......................

......................

.........................

...........

...

....................................

.............................

....................

........

∆1

∆0

Fig. 11. The quantities ∆0 and ∆1 interpreted as areas.

with equality ∆1 = ∆0 holding if and only if p′ is a linear function, that
is, if p is a polynomial of degree 2. Now we distinguish the three cases

5.5 Roots of Polynomials. Application of Newton’s Method 323

y > ξ1, y = ξ1, y < ξ1. For y > ξ1, the proposition of the theorem follows
immediately from Theorem (5.5.5). For y = ξ1, we show first that ξ1 >
α1 > ξ2, that is, ξ1 is a simple root of p. If y = ξ1 = ξ2 = α1 were a
multiple root, then by hypothesis n ≥ 3, and consequently ∆1 < ∆0 would
hold in (5.5.11). This would lead to the contradiction

p(z′) = p(z′) − p(ξ1) − (z′ − ξ1)p′(ξ1) = ∆1 < ∆0 = p(z′).

Thus ξ1 must be a simple root; hence α1 < ξ1 = y′ = y < z′, and the
proposition is seen to be correct in the second case, too.

The case y < ξ1 remains. If α1 < y, then the validity of the proposition
can be established as follows. Since p(z) > 0 and ξ2 < α1 < y < ξ1, we
have p(y) < 0, p′(y) > 0. In particular, y′ is well defined. Furthermore,
since p(y) = (y − y′)p′(y), and ∆1 ≤ ∆0, we have

∆0 −∆1 = p(y) + (z′ − y)p′(y) = p′(y)(z′ − y′) ≥ 0.

Therefore z′ ≥ y′. By Taylor’s theorem, finally,

p(ξ1) = 0 = p(y) + (ξ1 − y)p′(y) +
1
2
(ξ1 − y)2p′′(δ), y < δ < ξ1,

and since p′′(x) ≥ 0 for x ≥ α1, p(y) = (y − y′)p′(y), and p′(y) > 0,

0 ≥ p(y) + (ξ1 − y)p′(y) = p′(y)(ξ1 − y′).

Therefore ξ1 ≤ y′.
To complete the proof, we proceed to show that

(5.5.12) y = y(z) > α1.

for any z > ξ1. Again we distinguish two cases, ξ1 > α1 > ξ2 and ξ1 =
α1 = ξ2.

If ξ1 > α1 > ξ2, then (5.5.12) holds whenever

ξ1 < z < ξ1 + (ξ1 − α1).

This is because Theorem (5.5.5) implies z > z′ ≥ ξ1, and therefore

y = z′ − (z − z′) > ξ1 − (ξ1 − α1) = α1

holds by the definition of y = y(z). Hence we can select a z0 with
y(z0) > α1. Assume that there exists a z1 > ξ1 with y(z1) ≤ α1. By
the intermediate-value theorem for continuous functions, there exists a
z̄ ∈ [z0, z1] with ȳ = y(z̄) = α1. From (5.5.11) for z = z̄,

∆1 = p(z̄′) − p(ȳ) − (z̄′ − ȳ)p′(ȳ) = p(z′) − p(ȳ) ≤ ∆0 = p(z′),

324 5 Finding Zeros and Minimum Points by Iterative Methods

and therefore p(ȳ) = p(α1) ≥ 0. On the other hand, p(α1) < 0, since ξ1 is a
simple root, in our case, causing p(x) to change sign. This is a contradiction,
and (5.5.12) must hold for all z > ξ1.

If ξ1 = α1 = ξ2, then by hypothesis n ≥ 3. Assume, without loss of
generality, that

p(x) = xn + a1xn−1 + · · · + an.
Then

z′ = z − p(z)
p′(z)

= z − z

n

1 +
a1

z
+ · · · + an

zn

1 +
n− 1
n

a1
z

+ · · · + an−1

nzn−1

= z − z

n

(
1 +O

(
1
z

))
.

Therefore

y = y(z) = z + 2(z′ − z) = z − 2z
n

(
1 +O

(
1
z

))
= z

(
1 − 2

n

)
+O(1).

Since n ≥ 3, the value of y(z) increases indefinitely as z → ∞, and we
conclude again that there exists a z0 > ξ1 with y0 = y(z0) > α1. If (5.5.12)
did not hold for all z > ξ1, then we could conclude, just as before, that
there exists z̄ > ξ1 with ȳ = a(z̄) = α1. However, the existence of such
a value ȳ = α1 = ξ1 = ξ2 has been shown to be impossible earlier in the
proof of this theorem. ��

The practical significance of this theorem is as follows. If we have started
with x0 > ξ1, then either the approximate values generated by the double-
step method

xk+1 = xk − 2
p(xk)
p′(xk)

satisfy

x0 ≥ x1 ≥ · · · ≥ xk ≥ xk+1 ≥ · · · ≥ ξ1 and limxk = ξ1,

or there exists a first xk0 := y such that

p(x0)p(xk) ≥ 0, for 0 ≤ k < k0, and p(x0)p(xk0) < 0.

In the first case, all values p(xk) are of the same sign,

p(x0)p(xk) ≥ 0, for all k,

and the xk converge monotonically (and faster than for the straightforward
Newton method) towards the root ξ1. In the second case,

5.5 Roots of Polynomials. Application of Newton’s Method 325

x0 > x1 > · · · > xk0−1 > ξ1 > y = xk0 > α1 > ξ2.

Using y0 := y as the starting point of a subsequent straightforward Newton
procedure,

yk+1 = yk − p(yk)
p′(yk)

, k = 0, 1, . . . ,

will also provide monotonic convergence:

y1 ≥ y2 ≥ · · · ≥ ξ1, lim
k→∞

yk = ξ1.

Having found the largest root ξ1 of a polynomial p, there are still the
other roots ξ2, ξ3, . . . , ξn to be found. The following idea suggests itself
immediately: “divide off” the known root ξ1, that is, form the polynomial

p1(x) :=
p(x)
x− ξ1

of degree n− 1. This process is called deflation.
The largest root of p1(x) is ξ2, and may be determined by the previously

described procedures. Here ξ1 or, even better, the value y = xk0 found by
overshooting may serve as a starting point. In this fashion, all roots will be
found eventually.

Deflation, in general, is not without hazard, because roundoff will pre-
clude an exact determination of p1(x). The polynomial actually found in
place of p1 will have roots different from ξ2, ξ3, . . . , ξn. These are then
found by means of further approximations, with the result that the last
roots may be quite inaccurate. However, deflation has been found to be
numerically stable if done with care. In dividing off a root, the coefficients
of the deflated polynomial

p1(x) = a′
0x
n−1 + a′

1x
n−2 + · · · + a′

n−1

may be computed in the order a′
0, a

′
1, . . . , a

′
n−1 (forward deflation) or in

the reverse order (backward deflation).The former is numerically stable if
the root of smallest absolute value is divided off; the latter is numerically
stable if the root of largest absolute value is divided off. A mixed process of
determining the coefficients will be stable for roots of intermediate absolute
value. See Peters and Wilkinson (1971) for details.

Deflation can be avoided altogether as suggested by Maehly (1954). He
expresses the derivative of the deflated polynomial p1(x) as follows:

p′
1(x) =

p′(x)
x− ξ1

− p(x)
(x− ξ1)2

;

and substitutes this expression into the Newton iteration function for p1:

326 5 Finding Zeros and Minimum Points by Iterative Methods

xk+1 = xk − p1(xk)
p′
1(xk)

= xk − p(xk)

p′(xk) − p(xk)
xk − ξ1

.

In general, we find for the polynomials

pj(x) :=
p(x)

(x− ξ1) · · · (x− ξj)

that

p′
j(x) =

p′(x)
(x− ξ1) · · · (x− ξj)

− p(x)
(x− ξ1) · · · (x− ξj)

·
j∑
i=1

1
x− ξi

.

The Maehly version of the (straightforward) Newton method for finding
the root ξj+1 is therefore as follows:

(5.5.13) xk+1 = Φj(xk) with Φj(x) := x− p(x)

p′(x) −
∑j
i=1

p(x)
x− ξi

.

The advantage of this formula lies in the fact that the iteration given by
Φj converges quadratically to ξj+1 even if the numbers ξ1, . . . , ξj in Φj
are not roots of p (the convergence is only local in this case). Thus the
calculation of ξj+1 is not sensitive to the errors incurred in calculating the
previous roots. This technique is an example of zero suppression as opposed
to deflation [Peters and Wilkinson (1971)].

Note that Φj(x) is not defined if x = ξk, k = 1, . . . , j, is a previous
root of p(x). Such roots cannot be selected as starting values. Instead one
may use the values found by overshooting if the double-step method is
employed.

The following pseudo-algol program for finding all roots of a poly-
nomial p having only real roots incorporates these features. Function pro-
cedures p(z) and p′(z) for the polynomial and its derivative are presumed
available.

z0 := starting point x0;
for j := 1 step 1 until n do
begin m := 2; zs := z0;
Iteration: z := zs; s := 0;

for i := 1 step 1 until j − 1 do
s := s+ 1/(z − ξi);

zs := p(z); zs := z −m× zs/(p′(z) − zs× s);
if zs < z then goto Iteration;
if m = 2 then

begin zs := z; m := 1; goto Iteration; end;
ξj := z;

end;

5.5 Roots of Polynomials. Application of Newton’s Method 327

Example. The following example illustrates the advantages of Maehly’s method.
The coefficients ai of the polynomial

p(x) :=
13∏

j=0

(x− 2−j) =
14∑

i=0

aix
14−i

are calculated in general with a relative error of magnitude ε. Considerations in
Section 5.8 will show the roots of p(x) to be well conditioned. The following table
shows that the Newton-Maehly method yields the roots of the above polynomial
up to an absolute error of 40ε (ε = 10−12 = machine precision). If forward defla-
tion is employed but the roots are divided off as shown, i.e. in order of decreasing
magnitude, then the fifth root is already completely wrong. The absolute errors
below are understood as multiples of ε.

(Absolute error) × 1012

ξj = 2−j Newton-Maehly Deflation

1.0 0 0
0.5 6.8 3.7 × 102

0.25 1.1 1.0 × 106

0.125 0.2 1.4 × 109

0.062 5 4.5
0.031 25 4.0
0.015 625 3.3
0.007 812 5 39.8 > 1012

0.003 906 25 10.0
0.001 953 125 5.3
0.000 976 562 5 0
0.000 488 281 25 0
0.000 244 140 625 0.4
0.000 122 070 3125 0

The polynomial p1(x),

p1(x) :=
p(x)
x− 1

=
13∏

j=1

(x− 2−j),

has the roots 2−j , j = 1, 2, . . . , 13. If p̃1 is produced by numerically dividing
p(x) by x− 1,

p̃1(x) := fl
(
p(x)
x− 1

)
,

then we observe that the roots of p̃1(x) are already quite different from those of
p1(x):

328 5 Finding Zeros and Minimum Points by Iterative Methods

Roots of p̃1(x) computed
j by Newton-Maehly

1 0.499 999 996 335
2 0.250 001 00 . . .
3 0.123 697 . . .
4 0.092 4 . . .
5 −0.098 4 . . .
6 −0.056 . . .
7 −0.64 . . .
8 +1.83 . . .
...

...

However, if forward deflation is employed and if the roots are divided off
in the sequence of increasing absolute values, starting with the root of smallest
absolute value, then this process will also yield the roots of p(x) up to small
multiples of machine precision [Wilkinson (1963), Peters and Wilkinson (1971)]:

Sequence of dividing off roots of p(x).

j 13 12 11 10 9 8 7 6 5 4 3 2 1 0

(Absolute error) 0.2 0.4 2 5 3 1 14 6 12 6 2 2 12 1

(× 1012)

5.6 Sturm Sequences and Bisection Methods

Let p(x) be a real polynomial of degree n,

p(x) = a0x
n + a1xn−1 + · · · + an, a0 �= 0.

It is possible [see Henrici (1974) for a thorough treatment of related results]
to determine the number of real roots of p(x) in a specified region by
examining the number of sign changes w(a) for certain points x = a of
a sequence of polynomials pi(x), i = 0, 1, . . . , m, of descending degrees.
Such a sign change happens whenever the sign of a polynomial value differs
from that of its successor. Furthermore, if pi(a) = 0, then this entry is to
be removed from the sequence of polynomial values before the sign changes
are counted. Suitable sequences of polynomials are the so-called Sturm
sequences.

(5.6.1) Definition. The sequence

p(x) = p0(x), p1(x), . . . , pm(x)

of real polynomials is a Sturm sequence for the polynomial p(x) if

5.6 Sturm Sequences and Bisection Methods 329

(a) all real roots of p0(x) are simple.

(b) sign p1(ξ) = − sign p′
0(ξ) is a real root of p0(x).

(c) For i = 1, 2, . . . , m− 1,

pi+1(ξ)pi−1(ξ) < 0

if ξ is a real root of pi(x).

(d) The last polynomial pm(x) has no real roots.

For such Sturm sequences we have the following

(5.6.2) Theorem. The number of real roots of p(x) ≡ p0(x) in the interval
a ≤ x < b equals w(b)−w(a), where w(x) is the number of sign changes of
a Sturm sequence

p0(x), . . . , pm(x)

at location x.

Before proving this theorem, we show briefly how a simple recursion can
be used to construct a Sturm sequence for the polynomial p(x), provided
all its real roots are simple. We define initially

p0(x) := p(x), p1(x) := −p′
0(x) = −p′(x),

and form the remaining polynomials pi+1(x) recursively, dividing pi−1(x)
by pi(x),

(5.6.3) pi−1(x) = qi(x)pi(x) − cipi+1(x), i = 1, 2, . . . ,

where [
degree of pi(x)

]
>
[
degree of pi+1(x)

]
and the constants ci > 0 are positive but otherwise arbitrary. This re-
cursion is the well-known Euclidean algorithm. Because the degree of the
polynomials decreases, the algorithm must terminate after m ≤ n steps:

pm−1(x) = qm(x)pm(x), pm(x) �≡ 0.

The final polynomial pm(x) is a greatest common divisor of the two initial
polynomials p(x) and p1(x) = −p′(x). (This is the purpose of the Euclidean
algorithm.) If all real roots of p(x) are simple, then p(x) and p′(x) have no
real roots in common. Thus pm(x) has no real roots and satisfies (5.6.1d). If
pi(ξ) = 0, then (5.6.3) gives pi−1(ξ) = −cipi+1(ξ). Assume that pi+1(ξ) =
0. Then (5.6.3) would imply pi+1(ξ) = · · · = pm(ξ) = 0, contradicting
pm(ξ) �= 0. Thus (5.6.1c) is satisfied. The two remaining conditions of
(5.6.1) are immediate.

330 5 Finding Zeros and Minimum Points by Iterative Methods

Proof of Theorem (5.6.2). We examine how a perturbation of the value
a ∈ IR affects the number of sign changes w(a) of the sequence

p0(a), p1(a), . . . , pm(a).

So long as a is not a root of any of the polynomials pi(x), i = 0, 1, . . . , m,
there is, of course no change. If a is a root of pi(x), we consider the two
cases i > 0 and i = 0.

In the first case, i < m by (5.6.1d) and pi+1(a) �= 0, pi−1(a) �= 0 by
(5.6.1c). Then for a sufficiently small perturbation h > 0, the signs of the
polynomials pj(a), j = i−1, i, i+1, display the behavior illustrated in one
of the following four tables:

a− h a a+ h

i− 1 − − −
i − 0 ±

i+ 1 + + +

a− h a a+ h

i− 1 + + +
i − 0 ±

i+ 1 − − −

a− h a a+ h

i− 1 − − −
i + 0 ±

i+ 1 + + +

a− h a a+ h

i− 1 + + +
i + 0 ±

i+ 1 − − −

In each instance, w(a− h) = w(a) = w(a+ h): the number of sign changes
remains the same.

In the second case, we conclude from (5.6.1b) that the following sign
patterns pertain:

i a− h a a+ h

0 − 0 +
1 − − −

i a− h a a+ h

0 + 0 −
1 + + +

In each instance, w(a− h) = w(a) = w(a+ h) − 1: exactly one sign change
is gained as we pass through a root of p0(x) ≡ p(x).

For a < b and sufficiently small h > 0,

w(b) − w(a) = w(b− h) − w(a− h)

indicates the number of roots of p(x) in the interval a − h < x < b − h.
Since h > 0 can be chosen arbitrarily small, the above difference indicates
the number of roots also in the interval a ≤ x < b. ��

5.6 Sturm Sequences and Bisection Methods 331

An important use of Sturm sequences is in bisection methods for deter-
mining the eigenvalues of real symmetric matrices which are tridiagonal:

J =

α1 β2 0
β2 · ·

· · ·
· · ·

· · βn
0 βn αn

 .

Recall the characteristic polynomials pi(x) of the principal submatrix
formed by the first i rows and columns of the matrix J , which were men-
tioned before as satisfying the recursion (5.5.3):

p0(x) := 1, p1(x) := α1 − x,
pi(x) := (αi − x)pi−1(x) − β2

i pi−2(x), i = 2, 3, . . . , n.

The key observation is that the polynomials

(5.6.4) pn(x), pn−1(x), . . . , p0(x)

are a Sturm sequence for the characteristic polynomial pn(x) = det(J−xI)
[note that the polynomials (5.6.4) are indexed differently than in (5.6.1)]
provided the off-diagonal elements βi, i = 2, . . . , n, of the tridiagonal
matrix J are all nonzero. This is readily apparent from the following

(5.6.5) Theorem. Let αi, βj be real numbers and βj �= 0 for j = 2, . . . , n.
Suppose the polynomials pi(x), i = 0, . . . , n, are defined by the recursion
(5.5.3). Then all roots x(i)

k , k = 1, . . . , i, of pi, i = 1, . . . , n, are real and
simple:

x
(i)
1 > x

(i)
2 > · · · > x(i)

i ,

and the roots of pi−1 and pi, respectively, separate each other strictly:

x
(i)
1 > x

(i−1)
1 > x

(i)
2 > x

(i−1)
2 > · · · > x(i−1)

i−1 > x
(i)
i .

Proof. We proceed by induction with respect to i. The theorem is plainly
true for i = 1. Assume that it is true for some i ≥ 1, that is, that the roots
x

(i)
k and x(i−1)

k of pi and pi−1, respectively, satisfy

(5.6.6) x
(i)
1 > x

(i−1)
1 > x

(i)
2 > x

(i−1)
2 > · · · > x(i−1)

i−1 > x
(i)
i .

By (5.5.3), pk is of the form pj(x) = (−1)jxj+ · · ·. In particular, the degree
of pk equals k. Thus pi−1(x) does not change its sign for x > x(i−1)

1 , and
since the roots x > x(i−1)

k are all simple, (5.6.6) gives immediately

332 5 Finding Zeros and Minimum Points by Iterative Methods

(5.6.7) sign pi−1(x
(i)
k) = (−1)i+k for k = 1, 2, . . . , i.

Also by (5.5.3),

pi+1(x
(i)
k) = −β2

i+1 pi−1(x
(i)
k), k = 1, 2, . . . , i.

Since β2
i+1 > 0,

sign pi+1(x
(i)
k) = (−1)i+k+1, k = 1, 2, . . . , i,

sign pi+1(+∞) = (−1)i+1, sign pi+1(−∞) = 1

holds, and pi+1(x) changes sign in each of the open intervals (x(i)
1 ,+∞),

(−∞, x(i)
i), (x(i)

k+1, x
(i)
k), k = 1, . . . , i − 1. The roots x(i+1)

k of pi+1 are

therefore real and simple, and they separate the roots x(i)
k of pi:

x
(i+1)
1 > x

(i)
1 > x

(i+1)
2 > x

(i)
2 > · · · > x(i)

i > x
(i+1)
i+1 . ��

The polynomials of the above theorem,

pn(x), pn−1(x), . . . , p0(x),

indeed form a Sturm sequence: By (5.6.5), pn(x) has simple real roots
ξ1 > ξ2 > · · · > ξn, and by (5.6.7)

sign pn−1(ξk) = (−1)n+k,

sign p′
n(ξk) = (−1)n+k+1 = − sign pn−1(ξk),

for k = 1, 2, . . . , n.
For x = −∞ the Sturm sequence (5.6.4) has the sign pattern

+, +, . . . , +.

Thus w(−∞) = 0. By Theorem (5.6.2), w(µ) indicates the number of roots
ξ of pn(x) with ξ < µ: w(µ) ≥ n+ 1 − i holds if and only if ξi < µ.

The bisection method for determining the ith root ξi of pn(x) (ξ1 >
ξ2 > · · · > ξn) now is as follows. Start with an interval

[a0, b0]

which is known to contain ξ, e.g., choose a0 < ξn, ξ1 < b0. Then divide
this interval with its midpont and check by means of the Sturm sequence
which of the two subintervals contains ξi. The subinterval which contains
ξi is again divided, and so on. More precisely, we form for j = 0, 1, 2, . . .

5.7 Bairstow’s Method 333

µj := (aj + bj)/2,

aj+1 :=
{
aj , if w(µj) ≥ n+ 1 − i,
µj , if w(µj) < n+ 1 − i,

bj+1 :=
{
µj , if w(µj) ≥ n+ 1 − i,
bj , if w(µj) < n+ 1 − i.

Then

[aj+1, bj+1] ⊂ [aj , bj],
|aj+1 − bj+1| = |aj − bj |/2,

ξi ∈ [aj+1, bj+1].

The quantities aj increase, and the quantities bj decrease, to the desired
root ξi. The convergence process is linear with convergence rate 0.5. This
method for determining the roots of a real polynomial all roots of which
are real is relatively slow but very accurate. It has the additional advantage
that each root can be determined independently of the others.

5.7 Bairstow’s Method

If a real polynomial has any complex conjugate roots, they cannot be found
using the ordinary Newton’s method if it is carried out in real arithmetic
and begun at a real starting point: complex starting points and complex
arithmetic must be used. Bairstow’s method avoids complex arithmetic.
The method follows from the observation that the roots of a real quadratic
polynomial

x2 − rx− q
are roots of a given real polynomial

p(x) = a0x
n + · · · + an, a0 �= 0,

if and only if p(x) can be divided by x2 − rx− q without remainder. Now
generally

(5.7.1) p(x) = p1(x)(x2 − rx− q) +Ax+B,

where the degree of p1 is n − 2, and the remainder has been expressed as
Ax + B. The coefficients of the remainder depend, of course, upon r and
q, that is

A = A(r, q), and B = B(r, q),

and the remainder vanishes when r, q satisfy the system

(5.7.2) A(r, q) = 0, B(r, q) = 0.

334 5 Finding Zeros and Minimum Points by Iterative Methods

Bairstow’s method is nothing more than Newton’s method (5.3) applied to
(5.7.2):

(5.7.3)
[
ri+1
qi+1

]
=
[
ri
qi

]
−

∂A

∂r

∂A

∂q

∂B

∂r

∂B

∂q

−1

r=ri
q=qi

[
A(ri, qi)
B(ri, qi)

]
.

In order to carry out (5.7.3), we must first determine the partial derivatives

Ar =
∂A

∂r
, Aq =

∂A

∂q
, Br =

∂B

∂r
, Bq =

∂B

∂q
.

Now (5.7.1) is an identity in r, q, and x. Hence, differentiating with respect
to r and q,

(5.7.4)

∂

∂r
p(x) ≡ 0 = (x2 − rx− q)∂p1(x)

∂r
− x p1(x) +Arx+Br,

∂

∂q
p(x) ≡ 0 = (x2 − rx− q)∂p1(x)

∂q
− p1(x) +Aqx+Bq.

After a further division of p1 by (x2 − rx− q) we obtain the representation

(5.7.5) p1(x) = p2(x)(x2 − rx− q) +A1x+B1.

Assuming that x2 − rx− q = 0 has two distinct roots x0, x1, it follows that

p1(xi) = A1xi +B1

for x = xi, i = 0, 1. Therefore the equations

−xi(A1xi +B1) +Arxi +Br = 0
−(A1xi +B1) +Aqxi +Bq = 0

}
, i = 0, 1,

follow from (5.7.4).
From the second of these equations we have

(5.7.6) Aq = A1, Bq = B1,

since x0 �= x1, and therefore the first equation yields

−x2
iAq + xi(Ar −Bq) +Br = 0, i = 0, 1.

Since x2
i = rxi + q it follows that

xi(Ar −Bq − r Aq) +Br − q Aq = 0, i = 0, 1,

and therefore

5.8 The Sensitivity of Polynomial Roots 335

Ar −Bq − r Aq = 0,
Br − q Aq = 0,

since x0 �= x1.
Putting this together with (5.7.6) yields

Aq = A1,

Ar = r A1 +B1,

Bq = B1,

Br = q A1.

The values A, B (or A1, B1) can be found by means of a Horner-type
scheme. Using p(x) = a0x

n + · · · + an, p1(x) = b0x
n−2 + · · · + bn−2 and

comparing coefficients, we find the follwoing recursion for A, b, bi from
(5.7.2):

b0 := a0,

b1 := b0 r + a1,
bi := bi−2 q + bi−1 r + ai, for i = 2, 3, . . . , n− 2,
A := bn−3 q + bn−2 r + an−1,

B := bn−2 q + an.

Similarly, (5.7.5) shows how the bi can be used to find A1 and B1.

5.8 The Sensitivity of Polynomial Roots

We will consider the condition of a root ξ of a given polynomial p(x). By
this we mean the influence on ξ of a small perturbation of the coefficients
of the polynomial p(x):

p(x) → pε(x) = p(x) + εg(x),

where g(x) �≡ 0 is an arbitrary polynomial.
Later on it will be shown [Theorem (6.9.8)] that if ξ is a simple root

of p, then for sufficiently small absolute values of ε there exists an ana-
lytic function ξ(ε), with ξ(0) = ξ, such that ξ(ε) is a (simple) root of the
perturbed polynomial pε(x):

p(ξ(ε)) + εg(ξ(ε)) ≡ 0.

From this, by differentiation with respect to ε, we get for k := ξ′(0) the
equation

kp′(ξ(0)) + g(ξ(0)) = 0,

so that

k =
−g(ξ)
p′(ξ)

.

336 5 Finding Zeros and Minimum Points by Iterative Methods

Thus, to a first order of approximation (i.e., disregarding terms in powers
of ε greater than 1), based on the Taylor expansion of ξ(ε) we have

(5.8.1) ξ(ε) .= ξ − ε g(ξ)
p′(ξ)

.

In the case of a multiple root ξ, of order m, it can be shown that
p(x) + εg(x) has a root of the form

ξ(ε) = ξ + h(ε1/m),

where h(t) is, for small |t|, an analytic function with h(0) = 0. Differen-
tiating m times with respect to t and noting that p(ξ) = p′(ξ) = · · · =
p(m−1)(ξ) = 0, p(m)(ξ) �= 0, we obtain from

0 ≡ pε(ξ(ε)) = p(ξ + h(t)) + tmg(ξ + h(t)), tm = ε,

for k := h′(0) the equation

p(m)(ξ)km +m!g(ξ) = 0,

so that

k =
[
−m!g(ξ)
p(m)(ξ)

]1/m

.

Again to a first order of approximation,

(5.8.2) ξ(ε) .= ξ + ε1/m
[
−m! g(ξ)
p(m)(ξ)

]1/m

.

For m = 1 this formula reduces to (5.8.1) for simple roots.
Let us assume that the polynomial p(x) is given in the usual form

p(x) = a0x
n + · · · + an,

by its coefficients ai. For
g(x) := aix

n−i

the polynomial pε(x) is the one which results if the coefficient ai of p(x) is
replaced by ai(1+ε). The formula (5.8.2) then yields the following estimate
of the effect on the root ξ of a relative error ε of ai:

(5.8.3) ξ(ε) − ξ .= ε1/m
[
−m! aiξn−i

p(m)(ξ)

]1/m

.

It thus becomes apparent that in the case of multiple roots the changes
in root values ξ(ε)−ξ are proportional to ε1/m, m > 1, whereas in the case
of simple roots they are proportional to just ε: multiple roots are always

5.8 The Sensitivity of Polynomial Roots 337

badly conditioned. But simple roots may be badly conditioned too. This
happens if the factor of ε in (5.8.3),

k(i, ξ) :=
∣∣∣∣aiξn−i

p′(ξ)

∣∣∣∣ ,
is large compared to ξ, which may be the case for seemingly “harmless”
polynomials.

Example. [Wilkinson (1959)].

(1) The roots ξk = k, k = 1, 2, . . . , 20, of the polynomial

p(x) = (x− 1)(x− 2) · · · (x− 20) =
20∑

i=0

aix
20−i

are well separated. For ξ20 = 20, we find p′(20) = 19!, and replacing the
coefficient a1 = −(1 + 2 + · · · + 20) = −210 by a1(1 + ε) causes an estimated
change of

ξ20(ε) − ξ20
.= ε

210 · 2019

19!
≈ ε · 0.9 · 1010.

The most drastic changes are caused in ξ16 by perturbations of a5. Since
ξ16 = 16 and a5 ≈ −1010,

ξ16(ε) − ξ16
.= −ε a5

1615

4! 15!
≈ ε · 3.7 · 1014.

This means that the roots of the polynomial p are so badly conditioned that
even computing with 14-digit arithmetic will not guarantee any correct digit
in ξ16.

(2) By contrast, the roots of the polynomial

p(x) =
20∑

i=0

aix
20−i :=

20∏
j=1

(x− 2−j), ξj = 2−j ,

while not well separated and “accumulating” at zero, are all well conditioned.
For instance, changing a20 to a20(1 + ε) causes a variation of ξ20 which to a
first order of approximation can be bounded as follows:∣∣∣∣ξ20(ε) − ξ20

ξ20

∣∣∣∣ .= ∣∣∣∣ε 1
(2−1 − 1)(2−2 − 1) · · · (2−19 − 1)

∣∣∣∣ ≤ 4|ε|.

More generally, it can be shown for all roots ξj and changes ai → ai(1 + ε)
that ∣∣∣∣ξj(ε) − ξj

ξ1

∣∣∣∣ .
≤ 64|ε|.

However, the roots are well conditioned only with respect to small relative
changes of the coefficients ai, and not for small absolute changes. If we
replace a20 = 2−210 by ā20 = a20 + ∆a20, ∆a20 = 2−48(≈ 10−14) — this

338 5 Finding Zeros and Minimum Points by Iterative Methods

can be considered a small absolute change — then the modified polynomial
has roots ξ̄i with

ξ̄1ξ̄2 · · · ξ̄20 = ā20 = 2−210 + 2−48 = (2162 + 1)(ξ1ξ2 · · · ξ20).

In other words, there exists at least one subscript r with |ξ̄r/ξr| ≥ (2162 +
1)1/20 > 28 = 256.

It should be emphasized that the formula (5.8.3) refers only to the
sensitivity of the roots of a polynomial

p(x) :=
n∑
i=0

aix
n−i

in its usual representation by coefficients. There are other ways of repre-
senting polynomials — for instance, as the characteristic polynomials of
tridiagonal matrices by the elements of these matrices [see (5.5.3)]. The
effect on the roots of a change in the parameters of such an alternative rep-
resentation may differ by an order of magnitude from that described by the
formula (5.8.3).The condition of roots is defined always with a particular
type of representation in mind.

Example. In Theorem (6.9.7) it will be shown that, for each real tridiagonal
matrix

J =

α1 β2
β2 · ·

· · ·
· · β20
β20 α20

whose characteristic polynomial is p(x) ≡ (x−1)(x−2) · · · (x−20), small relative
changes in αi and βi cause only small relative changes of the roots ξj = j. With
respect to this representation, all roots are well conditioned, although they are
very badly conditioned with respect to the usual representation by coefficients,
as was shown in the previous example. For detailed discussions of this topic see
Peters and Wilkinson (1969) and Wilkinson (1965).

5.9 Interpolation Methods for Determining Roots

The interpolation methods to be discussed in this section are very useful for
determining zeros of arbitrary real functions f(x). Compared to Newton’s
method, they have the advantage that the derivatives of f need not be
computed. Moreover, in a sense yet to be made precise, they converge even
faster than Newton’s method.

5.9 Interpolation Methods for Determining Roots 339

The simplest among these methods is known as the method of false
position or regula falsi. It is similar to the bisection method in that two
numbers xi and ai with

(5.9.1) f(xi)f(ai) < 0

are determined at each step. The interval [xi, ai] contains therefore at least
one zero of f , and the values xi are determined so that they converge
towards one of these zeros. In order to define xi+1, ai+1, let µi be the zero
of the interpolating linear function

p(x) := f(xi) + (x− xi)
f(xi) − f(ai)
xi − ai

where p(xi) = f(xi), p(ai) = f(ai), that is,

(5.9.2) µi = xi − f(xi)
xi − ai

f(xi) − f(ai)
=
aif(xi) − xif(ai)
f(xi) − f(ai)

.

Since f(xi)f(ai) < 0 implies f(xi) − f(ai) �= 0, µi is always well defined
and satisfies either xi < µi < ai or ai < µi < xi. Unless f(µi) = 0, put

(5.9.3)

xi+1 := µi

ai+1 := ai

}
if f(µi)f(xi) > 0,

xi+1 := µi

ai+1 := xi

}
if f(µi)f(xi) < 0.

If f(µi) = 0, then the method terminates with µi the zero. An improvement
on (5.9.3) is due to Dekker and is described in Peters and Wilkinson (1969).

In order to discuss the convergence behavior of the regula falsi, we
assume for simplicity that f ′′ exists and that for some i

(5.9.4a) xi < ai,

(5.9.4b) f(xi) < 0 < f(ai),
(5.9.4c) f ′′(x) ≥ 0 for all x ∈ [xi, ai].

Under these assumptions, either f(µi) = 0 or

f(µi)f(xi) > 0,

and consequently
xi < xi+1 = µi < ai+1 = ai.

To see this, note that (5.9.4) and the definition of µi imply immediately
that

xi < µi < ai.

340 5 Finding Zeros and Minimum Points by Iterative Methods

The remainder formula (2.1.4.1) for polynomial interpolation yields, for
x ∈ [xi, ai] and a suitable value δ ∈ [xi, ai], the representation

f(x) − p(x) = (x− xi)(x− ai)f ′′(δ)/2, δ ∈ [xi, ai].

By (5.9.4c), f(x) − p(x) ≤ 0 in the interval x ∈ [xi, ai]. Thus f(µi) ≤ 0
since p(µi) = 0, which was to be shown.

It is now easy to see that (5.9.4) holds for all i ≥ i0 provided it holds
for some i0. Therefore ai = a for i ≥ i0, the xi form a monotone increasing
sequence bounded by a, and limi→∞ xi = ξ exists. Since f is continuous,
and because of (5.9.4) and (5.9.2),

f(ξ) ≤ 0, f(a) > 0,

ξ =
af(ξ) − ξf(a)
f(ξ) − f(a) .

Thus (ξ − a)f(ξ) = 0. But ξ �= a, since f(a) > 0 and f(ξ) ≤ 0, and we
conclude f(ξ) = 0. The values xi converge to a zero of the function f .

Under the assumptions (5.9.4) the regula falsi method can be formu-
lated with the help of an iteration function:

(5.9.5) xi+1 = Φ(xi), Φ(x) :=
af(x) − xf(a)
f(x) − f(a)

Since f(ξ) = 0,

Φ′(ξ) =
−(af ′(ξ) − f(a))f(a) + ξf(a)f ′(ξ)

f(a)2
= 1 − f ′(ξ)

ξ − a
f(ξ) − f(a) .

By the mean-value theorem, there exist η1, η2 such that

(5.9.6)

f(ξ) − f(a)
ξ − a = f ′(η1), ξ < η1 < a,

f(xi) − f(ξ)
xi − ξ

= f ′(η2), xi < η2 < ξ.

Because f ′′(x) ≥ 0 holds for x ∈ [xi, a], f ′(x) increases monotonically in
this interval. Thus (5.9.6), xi < ξ, and f(xi) < 0 imply immediately that

0 < f ′(η2) ≤ f ′(ξ) ≤ f ′(η1),

and therefore
0 ≤ Φ′(ξ) < 1.

In other words, the regula falsi method converges linearly under the as-
sumptions (5.9.4).

The previous discussion shows that, under the assumption (5.9.4), reg-
ula falsi will eventually utilize only the first two of the recursions (5.9.3).

5.9 Interpolation Methods for Determining Roots 341

We will now describe an important variant of regula fasi, called the secant
method, which is based exclusively on the second pair of recursions (5.9.3):

(5.9.7) xi+1 =
xi−1f(xi) − xif(xi−1)
f(xi) − f(xi−1)

, i = 0, 1,

In this case, the linear function always interpolates the two latest points of
the interpolation. While the original method (5.9.3) is numerically stable
because it enforces (5.9.1), this may not be the case for the secant method.
Whenever f(xi) ≈ f(xi−1), digits are lost due to cancellation. Moreover,
xi+1 need not lie in the interval [xi, xi−1], and it is only in a sufficiently
small neighborhood of the zero ξ that the secant method is guaranteed to
converge. We will examine the convergence behavior of the secant method
(5.9.7) in such a neighborhood and show that the method has a superlinear
order of convergence. To this end, we subtract ξ from both sides of (5.9.7),
and obtain, using divided differences (2.1.3.5),

(5.9.8)

xi+1 − ξ = (xi − ξ) − f(xi)
xi − xi−1

f(xi) − f(xi−1)

= (xi − ξ) − f(xi)
f [xi−1, xi]

= (xi − ξ)
(

1 − f [xi, ξ]
f [xi−1, xi]

)
= (xi − ξ)(xi−1 − ξ)f [xi−1, xi, ξ]

f [xi−1, xi]
.

If f is twice differentiable, then (2.1.4.3) gives

(5.9.9)
f [xi−1, xi] = f ′(η1), η1 ∈ I[xi−1, xi],

f [xi−1, xi, ξ] = 1
2f

′′(η2), η2 ∈ I[xi−1, xi, ξ].

For a simple zero ξ of f , f ′(ξ) �= 0, and there exist a bound M and an
interval J = {x | |x− ξ| ≤ ε } such that

(5.9.10)
∣∣∣∣12 f ′′(η2)
f ′(η1)

∣∣∣∣ ≤M, for any η1, η2 ∈ J .

Let ei := M |xi − ξ| and e0, e1 < min{ 1, εM }, so that x0, x1 ∈ J . Then,
using (5.9.8) and (5.9.10), it can be easily shown by induction that

(5.9.11) ei+1 ≤ eiei−1 for i = 1, 2, . . .

and |ei| ≤ min{ 1, εM }, so that xi ∈ J for all i ≥ 0. But note that

(5.9.12) ei ≤ K(qi) for i = 0, 1, . . . ,

where q = (1 +
√

5)/2 = 1.618 . . . is the positive root of the equation
µ2 − µ− 1 = 0 and K := max{ e0, q

√
e1 } < 1. The proof is inductive: This

342 5 Finding Zeros and Minimum Points by Iterative Methods

choice of K makes (5.9.12) valid for i = 0 and i = 1. If (5.9.12) holds for
i− 1 and i, then (5.9.11) yields

ei+1 ≤ Kqi

Kqi−1
= Kqi+1

,

since q2 = q+1. Thus (5.9.12) holds also for i+1, and must therefore hold
in general.

According to (5.9.12), the secant method converges at least as well as a
method of order q = 1.618 Since one step of the secant method requires
only one additional function evaluation, two secant steps are at most as ex-
pensive as a single Newton step. Since Kqi+2

= (Kqi

)q
2

= (Kqi

)q+1, two
secant steps lead to a method of order q2 = q + 1 = 2.618 With com-
parable effort, the secant method converges locally faster than the Newton
method, which is of order 2.

The secant method suggests the following generalization. Suppose there
are r + 1 different approximations xi, xi−1, . . . , xi−r to a zero ξ of f(x).
Determine the interpolating poynomial Q(x) of degree r with

Q(xi−j) = f(xi−j), j = 0, 1, . . . , r,

and choose the root of Q(x) closest to xi as the new approximation xi+1.
For r = 1 this is the secant method. For r = 2 we obtain the method of
Muller. The methods for r ≥ 3 are rarely considered, because there are no
practical formulas for the roots of the interpolating polynomial.

Muller’s method has gained a reputation as an efficient and fairly reli-
able method for finding a zero of a function defined on the complex plane
and, in particular, for finding a simple or multiple root of a polynomial. It
will find real as well as complex roots.

The approximating values xi may be complex even if the coefficients
and the roots of the polynomial as well as the starting values x1, x2, x3
are all real. Our exposition employs divided differences [see Section 2.1.3],
following Traub (1964).

By Newton’s interpolation formula (2.1.3.8), the quadratic polynomial
which interpolates a function f (in our case the given polynomial p) at
xi−2, xi−1, xi can be written as

Qi(x) = f [xi] + f [xi−1, xi](x− xi) + f [xi−2, xi−1, xi](x− xi−1)(x− xi),

or
Qi(x) = ai(x− xi)2 + 2bi(x− xi) + ci,

where
ai := f [xi−2, xi−1, xi],

bi := 1
2

(
f [xi−1, xi] + f [xi−2, xi−1, xi](xi − xi−1)

)
,

ci := f [xi].

5.9 Interpolation Methods for Determining Roots 343

If hi is the root of smallest absolute value of the quadratic equation aih2 +
2bih+ ci = 0, then xi+1 := xi + hi is the root of Qi(x) closest to xi.

In order to express the smaller root of a quadratic equation in a nu-
merically stable fashion, the reciprocal of the standard solution formula for
quadratic equations should be used. Then Muller’s iteration takes the form

(5.9.13) xi+1 = xi −
ci

bi ±
√
b2i − aici

,

where the sign of the square root is chosen so as to maximize the absolute
value of the denominator. If ai = 0, then a linear interpolation step as in
the secant method results. If ai = bi = 0, then f(xi−2) = f(xi−1) = f(xi),
and the iteration has to be restarted with different initial values. In solving
the quadratic equation, complex arithmetic has to be used, even if the
coefficients of the polynomial are all real, since b2i − aici may be negative.

Once a new approximate value xi+1 has been found, the function f is
evaluated at xi+1 to find

f [xi+1] := f(xi+1),

f [xi, xi+1] :=
f [xi+1] − f [xi]
xi+1 − xi

,

f [xi−1, xi, xi+1] :=
f [xi, xi+1] − f [xi−1, xi]

xi+1 − xi−1
.

These quantities determine the next quadratic interpolating polynomial
Qi+1(x).

It can be shown that the errors εi := xi − ξ of Muller’s method in the
proximity of a simple zero ξ of f(x) = 0 satisfy

(5.9.14)
εi+1 = εiεi−1εi−2

(
−f

(3)(ξ)
6f ′(ξ)

+O(ε)
)
,

ε = max(|εi|, |εi−1|, |εi−2|)

[compare (5.9.8)]. By an argument analogous to the one used for the secant
method, it can be shown that Muller’s method is at least of order q =
1.84 . . ., where q is the largest root of the equation µ3 − µ2 − µ− 1 = 0.

The secant method can be generalized in a different direction. Consider
again r+ 1 approximations xi, xi−1, . . . , xi−r to the zero ξ of the function
f(x). If the inverse g of the function f exists in a neighborhood of ξ (this
is the case if ξ is a simple zero),

f(g(y)) = y, g(f(x)) = x, g(0) = ξ,

then determining ξ amounts to calculating g(0). Since

g(f(xj)) = xj , j = i, i− 1, . . . , i− r,

344 5 Finding Zeros and Minimum Points by Iterative Methods

the following suggests itself: determine the interpolating polynomial Q(y)
of degree r or less with Q(f(xj)) = xj , j = i, i− 1, . . . , i− r, and approxi-
mate g(0) by Q(0). Then select xi+1 := Q(0) as the next approximate point
to be included in the interpolation. This method is called determining zeros
by inverse interpolation. Note that it does not require solving polynomial
equations at each step even if r ≥ 3. For r = 1 the secant method results.
The interpolation formulas of Neville and Aitken [see Section 2.1.2] are par-
ticularly useful in implementing inverse interpolation methods. The meth-
ods are locally convergent of superlinear order. For details see Ostrowski
(1966) and Brent (1973).

In Section 5.5, in connection with Newton’s method, we considered two
techniques for determining additional roots: deflation and zero suppression.
Both are applicable to the root-finding methods discussed in this section.
Here zero suppression simply amounts to evaluating the original polynomial
p(x) and numerically dividing it by the value of the product (x−ξi) . . . (x−
ξk) to calculate the function whose zero is to be determined next. This
process is safe if computation is restricted away from values x which fall in
close neighborhoods of the previously determined roots ξ1, . . . , ξk. Contrary
to deflation, zero suppression works also if the methods of this section are
applied to finding the zeros of an arbitrary function f(x).

5.10 The ∆2-Method of Aitken

The ∆2-method of Aitken is one of first and simplest methods for acceler-
ating the convergence of a given convergent sequence of values xi,

lim
i→∞

xi = ξ.

These methods transform the sequence {xi } into a sequence {x′
i } which

in general converges faster toward ξ than the original sequence of values xi,
and they apply to finding zeros inasmuch as they can be used to accelerate
the convergence of sequences {xi } furnished by one of the methods pre-
viously discussed. The extrapolation methods discussed in Section 3.5 are
examples of acceleration methods. A systematic account of these methods
can be found in Brezinski (1978) and in Brezinski and Zaglia (1991).

In order to illustrate the ∆2-method, let us assume that the sequence
{xi } converges towards ξ like a geometric sequence with factor k, |k| < 1:

xi+1 − ξ = k(xi − ξ), i = 0, 1,

Then k and ξ can be determined from xi, xi+1, xi+2 using the equations

(5.10.1) xi+1 − ξ = k(xi − ξ), xi+2 − ξ = k(xi+1 − ξ).

5.10 The ∆2-Method of Aitken 345

By subtraction of these equations,

k =
xi+2 − xi+1

xi+1 − xi
,

and by substitution into the first equation, since k �= 1,

ξ =
(xixi+2 − x2

i+1)
(xi+2 − 2xi+1 + xi)

.

Using the difference operator ∆xi := xi+1 − xi and noting that ∆2xi =
∆xi+1 −∆xi = xi+2 − 2xi+1 + xi, this can be written as

(5.10.2) ξ = xi −
(∆xi)2

∆2xi
.

The method is named after this formula. It is based on the expectation
— to be confirmed below — that the value (5.10.2) provides at least an
improved approximation to the limit of the sequence of values xi even if the
hypothesis that {xi } is a geometrically convergent sequence should not be
valid.

The ∆2-method of Aitken thus consists of generating from a given
sequence {xi } the transformed sequence of values

(5.10.3) x′
i := xi −

(xi+1 − xi)2
xi+2 − 2xi+1 + xi

.

The following theorem shows that the x′
i converge faster than the xi to ξ

as i→ ∞, provided {xi } behaves asymptotically as a geometric sequence:

(5.10.4) Theorem. Suppose there exists k, |k| < 1, such that for the
sequence {xi }, xi �= ξ,

xi+1 − ξ = (k + δi)(xi − ξ), lim
i→∞

δi = 0,

holds, then the values x′
i defined by (5.10.3) all exist for sufficiently large i,

and
lim
i→∞

x′
i − ξ
xi − ξ

= 0.

Proof. By hypothesis, the errors ei := xi − ξ satisfy ei+1 = (k + δi)ei. It
follows that

(5.10.5)

xi+2 − 2xi+1 + xi = ei+2 − 2ei+1 + ei
= ei

(
(k + δi+1)(k + δi) − 2(k + δi) + 1

)
= ei((k − 1)2 + µi), where µi → 0,

xi+1 − xi = ei+1 − ei = ei((k − 1) + δi).

346 5 Finding Zeros and Minimum Points by Iterative Methods

Therefore
xi+2 − 2xi+1 + xi �= 0

for sufficiently large i, since ei �= 0, k �= 1 and µi → 0. Hence (5.10.3)
guarantees that x′

i is well defined. By (5.10.3) and (5.10.5),

x′
i − ξ = ei − ei

((k − 1) + δi)2

(k − 1)2 + µi
,

for sufficiently large i, and consequently

lim
i→∞

x′
i − ξ
xi − ξ

= lim
i→∞

{
1 − ((k − 1) + δi)2

(k − 1)2 + µi

}
= 0. ��

Consider an iteration method with iteration function Φ(x),

(5.10.6) xi+1 = Φ(xi), i = 0, 1, 2, . . . ,

for determining the zero ξ of a function f(x) = 0. The formula (5.10.3) can
then be used to determine, from triples of successive elements xi, xi+1, xi+2
of the sequence {xi } generated by the above iteration function Φ, a new
sequence {x′

i }, which hopefully converges faster. However, it appears to
be advantageous to make use of the improved approximations immediately
by putting

(5.10.7)

yi := Φ(xi), zi = Φ(yi), i = 0, 1, 2, . . .

xi+1 := xi −
(yi − xi)2
zi − 2yi + xi

.

This method is due to Steffensen. (5.10.7) leads to a new iteration function
Ψ ,

(5.10.8)
xi+1 = Ψ(xi),

Ψ(x) : =
xΦ(Φ(x)) − Φ(x)2

Φ(Φ(x)) − 2Φ(x) + x
.

Both iteration functions Φ and Ψ have, in general, the same fixed points:

(5.10.9) Theorem. Ψ(ξ) = ξ implies Φ(ξ) = ξ. Conversely, if Φ(ξ) = ξ
and Φ′(ξ) �= 1 exists, then Ψ(ξ) = ξ.

Proof. By the definition (5.10.8) of Ψ ,

(ξ − Ψ(ξ))(Φ(Φ(ξ)) − 2Φ(ξ) + ξ) = (ξ − Φ(ξ))2.

Thus Ψ(ξ) = ξ implies Φ(ξ) = ξ. Next we assume that Φ(ξ) = ξ, Φ is
differentiable for x = ξ, and Φ′(ξ) �= 1. L’Hôpital’s rule applied to the
definition (5.10.8) gives

5.10 The ∆2-Method of Aitken 347

Ψ(ξ) =
Φ(Φ(ξ)) + ξΦ′(Φ(ξ))Φ′(ξ) − 2Φ(ξ)Φ′(ξ)

Φ′(Φ(ξ))Φ′(ξ) − 2Φ′(ξ) + 1

=
ξ + ξΦ′(ξ)2 − 2ξΦ′(ξ)
1 + Φ′(ξ)2 − 2Φ′(ξ)

= ξ. ��

In order to examine the convergence behavior of Ψ in the neighborhood
of a fixed point ξ of Ψ (and Φ), we assume that Φ is p+1 times differentiable
in a neighvorhood of x = ξ and that it defines a method of order p, that is,

(5.10.10) Φ′(ξ) = · · · = Φ(p−1)(ξ) = 0, Φ(p)(ξ) =: p!A �= 0

[see Section 5.2]. For p = 1, we require that in additon

(5.10.11) A = Φ′(ξ) �= 1,

and without loss of generality we assume ξ = 0. Then for small x

Φ(x) = Axp +
xp+1

(p+ 1)!
Φ(p+1)(θx), 0 < θ < 1.

Thus

Φ(x) = Axp +O(xp+1),

Φ
(
Φ(x)

)
= A

(
Axp +O(xp+1)

)p +O
(
(Axp +O(xp+1))p+1)

=
{
O(xp

2
), if p > 1,

A2x+O(x2), if p = 1,

Φ(x)2 =
(
Axp +O(xp+1)

)2 = A2x2p +O(x2p+1).

For p > 1, because of (5.10.8),

(5.10.12) Ψ(x) =
O(xp

2+1) −A2x2p +O(x2p+1)
O(xp2) − 2Axp +O(xp+1) + x

= −A2x2p−1 +O(x2p).

For p = 1, however, since A �= 1,

Ψ(x) =
A2x2 +O(x3) −A2x2 +O(x3)
A2x+O(x2) − 2Ax+O(x2) + x

= O(x2).

This proves the following

(5.10.13) Theorem. Let Φ be an iteration function defining a method of
order p for computing its fixed point ξ. For p > 1 the corresponding iteration
function Ψ of (5.10.8) determines a method of order 2p− 1 for computing
ξ. For p = 1 this method is at least of order 2 provided Φ′(ξ) �= 1.

348 5 Finding Zeros and Minimum Points by Iterative Methods

Note that Ψ yields a second-order method, that is, a locally quadrati-
cally convergent method, even if |Φ′(ξ)| > 1 and the Φ-method diverges as
a consequence [see Section 5.2].

It is precisely in the case p = 1 that the method of Steffensen is im-
portant. For p > 1 the Ψ -method does generally not improve upon the
Φ-method. This is readily seen as follows. Let xi− ξ = ε with ε sufficiently
small. Neglecting terms of higher order, we find

Φ(xi) − ξ .= Aεp,

Φ(Φ(xi)) − ξ .= Ap+1εp
2
,

whereas for xi+1 − ξ, xi+1 := Ψ(xi),

xi+1 − ξ = −A2ε2p−1

by (5.10.12) Now
|Ap+1εp

2 | � |A2ε2p−1|
for p > 1 and sufficiently small ε, which establishes Φ(Φ(xi)) as a much
better approximation to ξ than xi+1 = Ψ(xi). For this reason, Steffensen’s
method is only recommended for p = 1.

Example. The iteration function Φ(x) = x2 has fixed points ξ1 = 0, ξ2 = 1 with

Φ′(ξ1) = 0, Φ′′(ξ1) = 2, Φ′(ξ2) = 2.

The iteration xi+1 = Φ(xi) converges quadratically to ξ1 if |x0| < 1. But for
|x0| > 1 the sequence {xi } diverges.

The transformation (5.10.8) yields

Ψ(x) =
x3

x2 + x− 1
=

x3

(x− r1)(x− r2)
with r1,2 =

−1 ±
√

5
2

.

We proceed to show that the iteration xi+1 = Ψ(xi) reaches both fixed points for
suitable choices of the starting point x0.

For |x| ≤ 0.5, Ψ(x) is a contraction mapping. If |x0| ≤ 0.5 then xi+1 = Ψ(xi)
converges towards ξ1 = 0. In sufficient proximity of ξ1 the iteration behaves as

xi+1 = Ψ(xi) ≈ x3
i ,

whereas the iteration xi+1 = Φ(Φ(xi)) has 4th-order convergence for |x0| < 1:

xi+1 = Φ(Φ(xi)) = x4
i .

For |x0| > r1, xi+1 = Ψ(xi) converges towards ξ2 = 1. It is readily verified
that

Ψ ′(1) = 0, Ψ ′′(1) �= 0

and that therefore quadratic convergence holds (in spite of the fact that Φ(x) did
not provide a convergent iteration).

5.11 Minimization Problems without Constraints 349

5.11 Minimization Problems without Constraints

We will consider the following minimization problem for a real function
h: IRn → IR of n variables:

(5.11.1) determine min {h(x) | x ∈ IRn }.

We assume that h has continuous second partial derivatives with respect
to all of its variables, h ∈ C2(IRn), and we denote the gradient of h by

g(x) := Dh(x)T =
(
∂h(x)
∂x1 , . . . ,

∂h(x)
∂xn

)T
and the matrix of second derivatives of h, the Hessian of h, by

H(x) :=
(
∂2h(x)
∂xi∂xk

)
i,k=1,...,n

.

Almost all minimization methods start with a point x0 ∈ IRn and
generate a sequence of points xk, k ≥ 0, which are supposed to approximate
the desired minimum point x̄. In each step of the iteration, xk → xk+1, for
which gk = g(xk) �= 0 [see (5.4.1.3)], a search direction sk is determined by
some computation which characterizes the method, and the next point

xk+1 = xk − λksk

is obtained by a line search; i.e., the stepsize λk is determined so that

h(xk+1) ≈ min
λ
ϕk(λ), ϕk(λ) := h(xk − λsk),

holds at least approximately for xk+1. Usually the direction sk is taken to
be a descent direction for h, i.e.,

(5.11.2) ϕ′
k(0) = −gTk sk < 0.

This ensures that only positive values for λ need to be considered in the
minimization of ϕk(λ).

In Section 5.4.1 we established general convergence theorems [(5.4.1.4)
and (5.4.1.8)] which apply to all methods of this type with only mild re-
strictions. In this section we wish to become acquainted with a few, special
methods, which means primarily that we will discuss a few specific ways of
selecting sk which have become important in practice. A (local) minimum
point x̄ of h is a zero of g(x); hence we can use any zero-finding method
on the system g(x) = 0 as an approach to finding minimum points of h.
Most important in this regard is Newton’s method (5.1.6), at each step
xk → xk+1 = xk − λksk of which the Newton direction

sk := H(xk)−1gk

350 5 Finding Zeros and Minimum Points by Iterative Methods

is taken as a search direction. This, when used with the constant step length
λk = 1, has the advantage of defining a locally quadratically convergent
method [Theorem (5.3.2)]. But it has the disadvantage of requiring that the
matrix H(xk) of all second partial derivatives of h be computed at each
step. If n is large and if h is complicated, the computation of H(xk) can
be very costly. Therefore methods have been devised wherein the matrices
H(xk)−1 are replaced by suitable matrices Hk,

sk := Hkgk,

which are easy to compute. A method is said to be a quasi-Newton method
if for each k ≥ 0 the matrix Hk+1 satisfies the so-called quasi-Newton
equation

(5.11.3) Hk+1(gk+1 − gk) = xk+1 − xk.

This equation causes Hk+1 to behave — in the direction (xk+1−xk) — like
the Newton matrix H(xk+1)−1. For quadratic functions h(x) = 1

2x
TAx +

bTx + c, for example, where A is an n × n positive definite matrix, the
Newton matrix H(xk+1)−1 ≡ A−1 satisfies (5.11.3) because g(x) ≡ Ax+ b.
Further, it seems reasonable to insist that the matrixHk be positive definite
for each k ≥ 0. This will guarantee that the direction sk = Hkgk will be a
descent direction for the function h if gk �= 0 [see (5.11.2)]:

gTk sk = gTkHkgk > 0.

The above demands can, in fact, be met: Generalizing earlier work by
Davidon (1959), Fletcher and Powell (1963), and Broyden (1965, 1967)),
Oren and Luenberger (1974) have found a two-parameter recursion for
producing Hk+1 from Hk with the desired properties. Using the notation

pk := xk+1 − xk, qk := gk+1 − gk

and the parameters γk > 0, θk ≥ 0 this recursion has the form

(5.11.4) Hk+1 := Ψ(θk, γkHk, pk, qk),

where Ψ is the one-parameter function

(5.11.5)
Ψ(θ,H, p, q) :=H +

(
1 + θ

qTHq

pT q

)
ppT

pT q
− (1 − θ)
qTHq

Hq · qTH

− θ

pT q
(pqTH +HqpT)

which is due to Broyden (1970). Oren and Luenberger introduced the ad-
ditional scaling parameter γk > 0 into (5.11.4) allowing a scaling of the
matrix Hk.

5.11 Minimization Problems without Constraints 351

Clearly, if Hk is symmetric then so is Hk+1. It is directly verified from
(5.11.5) that Hk+1 satisfies the quasi-Newton equation (5.11.3), Hk+1qk =
pk, and it will be shown later [Theorem (5.11.9)] that (5.11.4) preserves
the positive definiteness of the matrices Hk.

The “update function” Ψ is only defined if pT q �= 0, qTHq �= 0. Observe
that Hk+1 is obtained from Hk by adding a correction of rank ≤ 2 to the
matrix γkHk:

rank(Hk+1 −Hk) ≤ 2.

Hence, (5.11.4) is said to define a rank-two method.
The following special cases are contained in (5.11.4):

(a) γk ≡ 1, θk ≡ 0: the method of Davidon (1959) and Fletcher and Powell
(1963) (“DFP method”);

(b) γk ≡ 1, θk ≡ 1: the rank-two method of Broyden, Fletcher, Goldfarb,
and Shanno (“BFGS method”) [see, for example, Broyden (1979)];

(c) γk ≡ 1, θk = pTk qk/(p
T
k qk − pTkHkqk): the symmetric rank-one method

of Broyden.

The last method is only defined for pT
k qk �= qT

k Hkqk. It is possible that
θk < 0, in which case Hk+1 can be indefinite even when Hk is positive definite
[see Theorem (5.11.9)]. If we substitute the value of θk into (5.11.4) and (5.11.5),
we obtain:

Hk+1 = hk +
zkz

T
k

αk
, zk := pk −Hkqk, αk := pT

k qk − qT
k Hkqk,

which explains why this is referred to as a rank-one method.

A minimization method of the Oren-Luenberger class has the following
form:
(5.11.6).
(0) Start: Choose a starting point x0 ∈ IRn and an n× n positive definite

matrix H0 (e.g. H0 = I), and set g0 := g(x0). For k = 0, 1, . . . obtain
xk+1, Hk+1 from xk, Hk as follows:

(1) If gk = 0, stop: xk is at least a stationary point for h. Otherwise

(2) compute sk := Hkgk.

(3) Determine xk+1 = xk −λksk by means of an (approximate) minimiza-
tion

h(xk+1) ≈ min{h(xk − λsk)|λ ≥ 0 },

and set

gk+1 := g(xk+1), pk := xk+1 − xk, qk := gk+1 − gk.

352 5 Finding Zeros and Minimum Points by Iterative Methods

(4) Choose suitable parameter values γk > 0, θk ≥ 0, and compute Hk+1 =
Ψ(θk, γkHk, pk, qk) according to (5.11.4).

The method is uniquely defined through the choice of the sequences
{ γk }, { θk } and through the line-search procedure in step (3). The charac-
teristics of the line search can be described with the aid of the parameter
µk defined by

(5.11.7) gTk+1sk = µkg
T
k sk = µkg

T
kHkgk.

If sk is a descent direction, gTk sk > 0, then µk is uniquely determined by
xk+1. If the line search is exact, then µk = 0, since gTk+1sk = −ϕ′

k(λk) = 0,
ϕk(λ) := h(xk − λsk). In what follows we assume that

(5.11.8) µk < 1.

If gk �= 0 and Hk is positive definite, it follows from (5.11.8) that λk > 0;
therefore

qTk pk = −λk(gk+1 − gk)sk = λk(1 − µk)gTk sk = λk(1 − µk)gTkHkgk > 0,

and also qk �= 0, qTkHkqk > 0: the matrix Hk+1 is well defined via (5.11.4)
and (5.11.5). The condition (5.11.8) on the line search cannot be satisfied
only if

ϕ′
k(λ) = −g(xk − λsk)T sk ≤ ϕ′

k(0) = −gTk sk < 0 for all λ ≥ 0.

But then

h(xk − λsk) − h(xk) =
∫ λ

0
ϕ′
k(τ)dτ ≤ −λgTk sk < 0 for all λ ≥ 0,

so that h(xk − λsk) is not bounded below as λ → +∞. The condition
(5.11.8) does not, therefore, pose any actual restriction.

At this point we have proved the first part of the following theorem,
which states that the method (5.11.6) meets our requirements above:

(5.11.9) Theorem. If there is a k ≥ 0 in (5.11.6) for which Hk is positive
definite, gk �= 0, and for which the line search satisfies µk < 1, then for all
γk > 0, θk ≥ 0 the matrix Hk+1 = Ψ(θk, γkHk, pk, qk) is well defined and
positive definite.

Proof. It suffices to consider only the case γk = 1 and to show the follow-
ing property of the function Ψ given by (5.11.5): Assuming that

H is positive definite, pT q > 0, pTHq > 0, θ ≥ 0,

then H̄ := Ψ(θ,H, p, q) is also positive definite.
Let y ∈ IRn, y �= 0, be an arbitrary vector, and let H = LLT be the

Choleski decomposition of H [Theorem (4.3.3)]. Using the vectors

5.11 Minimization Problems without Constraints 353

u := LT y, v := LT q

and using (5.11.5), yT H̄y can be written

yT H̄y = uTu+
(

1 + θ
vT v

pT q

)
(pT y)2

pT q
− (1 − θ)

vT v
(vTu)2 − 2θ

pT q
pT y · uT v

=
(
uTu− (uT v)2

vT v

)
+

(pT y)2

pT q
+ θ

[√
vT v

pT y

pT v
− vTu√

vT v

]2

≥
(
uTu− (uT v)2

vT v

)
+

(pT y)2

pT q
.

The Cauchy-Schwarz inequality implies that uTu − (uT v)2/vT v ≥ 0, with
equality if and only if u = αv for some α �= 0 (since y �= 0). If u �= αv, then
yT H̄y > 0. If u = αv, it follows from the nonsingularity of H and L that
0 �= y = αq, so that

yT H̄y ≥ (pT y)2

pT q
= α2pT q > 0.

Because 0 �= y ∈ IRn was arbitrary, H̄ must be positive definite. ��

The following theorem establishees that the method (5.11.6) yields the
minimum point of any quadratic function h: IRn → IR after at most n steps,
provided that the line searches are performed exactly. Since each sufficiently
differentiable function h can be approximated arbitrarily closely in a small
enough neighborhood of a local minimum point by a quadratic function,
this property suggests that the method will be rapidly convergent even
when applied to nonquadratic functions.

(5.11.10) Theorem. Let h(x) = 1
2x

TAx+bTx+c be a quadratic function,
where A is an n × n positive definite matrix. Further, let x0 ∈ IRn, and
let H0 an n × n positive definite matrix. If the method (5.11.6) is used to
minimize h, starting with x0, H0 and carrying out exact line searches (µi =
0 for all i ≥ 0), then sequences xi, Hi, gi, pi := xi+1 − xi, qi := gi+1 − gi
are produced with the properties:
(a) There is a smallest index m ≤ n with xm = x̄ = −A−1b such that

xm = x̄ is the minimum of h, gm = 0.
(b) pTi qk = pTi Apk = 0 for 0 ≤ i �= k ≤ m− 1, pTi qi > 0 for 0 ≤ i ≤ m− 1.

That is, the vectors pi are A-conjugate.
(c) pTi gk = 0 for all 0 ≤ i < k ≤ m.
(d) Hkqi = γi,kpi for 0 ≤ i < k ≤ m, with

γi,k :=
{
γi+1γi+2 · · · γk−1 for i < k − 1,
1 for i = k − 1.

354 5 Finding Zeros and Minimum Points by Iterative Methods

(e) If m = n, then additionally

Hm = Hn = PDP−1A−1,

where D := diag(γ0,n, γ1,n, . . . γn−1,n), P := (p0, p1, . . . , pn−1). And if
γi ≡ 1, it follows that Hn = A−1.

Proof. Consider the following conditions for an arbitrary index l ≥ 0:

(Al)

pTi qk = pTi Apk = 0 for 0 ≤ i �= k ≤ l − 1,

pTi qi > 0 for 0 ≤ i ≤ l − 1,

Hl is positive definite;

(Bl) pTi gk = 0 for all 0 ≤ i < k ≤ l;
(Cl) Hkqi = γi,kpi for 0 ≤ i < k ≤ l.
If these conditions hold, and if in addition gl = g(xl) �= 0, then we will
show that (Al+1, Bl+1, Cl+1) hold.

Since Hl is positive definite by (Al), gTl Hlgl > 0 and sl := Hlgl �= 0
follow immediately from gl �= 0. Because the line search is exact, λl is a
zero point of

0 = gTl+1sl = (gl − λlAsl)T sl,

λl =
gTl Hlgl
sTl Asl

> 0,

hence pl = −λlsl �= 0 and

(5.11.11)
pTl gl+1 = −λlsTl gl+1 = 0,

pTl ql = −λlsTl (gl+1 − gl) = λls
T
l gl = λlg

T
l Hlgl > 0.

According to Theorem (5.11.9), Hl+1 is positive definite. Further,

pTi ql = pTi Apl = qTi pl = −λlqTi Hlgl = −λlγi,lpTi gl = 0

for i < l, because Apk = qk, (Bl) and (Cl) hold. This establishes (Al+1).
To prove (Bl+1), we have to show that pTi gl+1 = 0 for all i < l + 1.

(5.11.11) takes care of the case i = l. For i < l, we can write

pTi gl+1 = pTi

gi+1 +
l∑

j=i+1

qj

since qj = gj+1 − gj by (5.11.6). The above expression vanishes according
to (Bl) and (Al+1). Thus (Bl+1) holds.

Using (5.11.5), it is immediate that Hl+1ql = pl. Further (Al+1), (Cl)
imply pTl qi = 0, qTl Hlqi = γi,lq

T
l pi = 0 for i < l, so that

Hl+1qi = γlHlqi = γlγi,lpi = γi,l+1pi.

5.11 Minimization Problems without Constraints 355

follows for i < l from (5.11.5). Thus (Cl+1) holds, too.
We note that (A0, B0, C0) hold trivially. So long as xl satisfies (b)–(d)

and g(xl) �= 0, we can use the above results to generate, implicitly, a point
xl+1 which also satisfies (b)–(d). The sequence x0, x1, . . . must terminate:
(Al) could only hold for l ≤ n, since the l vectors p0, . . . , pl−1 are linearly
independent [if

∑
i≤l−1 αipi = 0, then multiplying by pTkA for k = 0, . . . ,

l − 1, gives αkpTkApk = 0 =⇒ αk = 0 from (Al)]. No more than n vectors
in IRn can be linearly independent. When the sequence terminates, say at
l = m, 0 ≤ m ≤ n, it must do so because

gm = 0, xm = −A−1b,

i.e. (a) holds. In case m = n, (d) implies

HnQ = PD

for the matrices P := (p0, . . . , pn−1), Q = (q0, . . . , qn−1). Since AP = Q,
the nonsingularity of P implies

Hn = PDP−1A−1,

which proves (e) and, hence, the theorem. ��
We will now discuss briefly how to choose the parameters γk, θk in

order to obtain as good a method as possible. Theorem (5.11.10e) seems to
imply that the choice γk ≡ 1 would be good, because it appears to ensure
that limiHi = A−1 (in general this is true for nonquadratic functions
only under certain additional assumptions), which suggests that the quasi-
Newton method will converge “in the same way as the Newton method”.
Practical experience indicates that the choice

γk ≡ 1, θk ≡ 1 (BFGS method)

is good [see Dixon (1971)]. Oren and Spedicato (1976) have been able to
give an upper bound Φ(γk, θk) on the quotient cond(Hk+1)/ cond(Hk) of
the condition numbers (with respect to the Euclidean norm) of Hk+1 and
Hk. Minimizing Φ with respect to γk and θk leads to the prescription

if
ε

σ
≤ 1 then choose γk :=

ε

σ
, θk := 0;

if
σ

τ
≥ 1 then choose γk :=

σ

τ
, θk := 1;

if
σ

τ
≤ 1 ≤ ε

σ
then choose γk := 1, θk :=

σ(ε− σ)
ετ − σ2 .

Here we have used

356 5 Finding Zeros and Minimum Points by Iterative Methods

ε := pTkH
−1
k pk, σ := pTk qk, τ := qTkHkqk.

Another promising suggestion has been made by Davidon (1975). He was
able to show that the choice

θk :=

σ(ε− σ)
ετ − σ2 if σ ≤ 2ετ

ε+ τ
,

σ

σ − τ otherwise,

used with γk ≡ 1 in the method (5.11.5), minimizes the quotient λmax/λmin
of the largest to the smallest eigenvalues satisfying the generalized eigen-
problem

determine λ ∈ C, y �= 0 so that Hk+1y = λHky,

that is det(H−1
k Hk+1 − λI) = 0.

Theorem (5.11.10) suggests that methods of the type (5.11.4) will con-
verge quickly even on nonquadratic functions. This has been proved for-
mally for some individual methods of the Oren-Luenberger class. These
results rest, for the most part, on the local behavior in a sufficiently small
neighborhood U(x̄) of a local minimum x̄ of h under the following assump-
tions:

(5.11.12a) H(x̄) is positive definite,
(5.11.12b) H(x) is Lipschitz continuous at x = x̄, i.e., there is a Λ with

||H(x) −H(x̄)|| ≤ Λ||x− x̄|| for all x ∈ U(x̄).

Further, certain mild restrictions have to be placed on the line search, for
example:

(5.11.13) For given constants 0 < c1 < c2 < 1, c1 ≤ 1
2 , xk+1 = xk − λksk is

chosen so that

h(xk+1) ≤ h(xk) − c1λkgTk sk,
gTk+1sk ≤ c2gTk sk,

or

(5.11.14) λk = min{λ ≥ 0 | g(xk − λsk)T sk = µkg
T
k sk }, |µk| < 1.

Under the conditions (5.11.12), (5.11.13) Powell (1975) was able to show
for the BFGS method (γk ≡ 1, θk ≡ 1): There is a neighborhood

V (x̄) ⊆ U(x̄)

such that the method is superlinearly convergent for all positive definite
initial matrices H0 and all x0 ∈ V (x̄). That is,

5.11 Minimization Problems without Constraints 357

lim
i→∞

||xi+1 − x̄||
||xi − x̄||

= 0,

as long as xi �= x̄ for all i ≥ 0. In his result the stepsize λk ≡ 1 satisfies
(5.11.13) for all k ≥ 0 sufficiently large.

Another convergence result has been established for the subclass of the
Oren-Luenberger class (5.11.4) which additionally satisfies

(5.11.15) 0 ≤ θk ≤ 1,
pTk qk
qTkHkqk

≤ γk ≤ pTkH
−1
k pk

pTk qk
.

For this subclass, using (5.11.12), (5.11.14), and the additional demand
that the line search be asymptotically exact, i.e.

|µk| ≤ c||gk|| for large enough k,

it can be shown [Stoer (1977), Baptist and Stoer (1977)] that

lim
k
xk = x̄, ||xk+n − x̄|| ≤ γ||xk − x̄||2 for all k ≥ 0.

for all positive definite initial matrices H0 and for ‖x0 − x̄‖ small enough.
The proofs of all of the above convergence results are long and difficult.

The following simple example illustrates the typical behaviors of the DFP
method, the BFGS method, and the steepest-descent method (sk := gk in each
iteration step).

We let

h(x, y) := 100(y2(3 − x) − x2(3 + x))2 +
(2 + x)2

1 + (2 + x)2
,

which has the minimum point x̄ := −2, ȳ := 0.894 271 9099 . . ., h(x̄, ȳ) = 0. For
each method we take

x0 := 0.1, y0 := 4.2

as the starting point and let

H0 :=
[

1 0
0 1

]
for the BFGS and DFP methods.

Using the same line-search procedure for each method, we obtained the fol-
lowing results on a machine with eps = 10−11:

BFGS DFP Steepest descent

N 54 47 201
F 374 568 1248

ε ≤ 10−11 ≤ 10−11 0.7

358 5 Finding Zeros and Minimum Points by Iterative Methods

N denotes the number of iteration steps (xk, yk) → (xk+1, xk+1); F denotes the
number of evaluations of h; and ε := ||g(xN , yN)|| was the accuracy attained at
termination.

The steepest descent method is clearly inferior to both the DFP and BFGS
methods. The DFP method is slightly inferior to the BFGS method. (The line
searches were not done in a particularly efficient manner. More than 6 function
evaluations were needed, on the average, for each iteration step. It is possible to
do better, but the same relative performance would have been evident among the
methods even with a better line-search procedure.)

Exercises for Chapter 5

1. Let the continuously differentiable iteration function Φ: IRn → IRn be given.
If

lub(DΦ(x)) ≤ K < 1 for all x ∈ IRn,

then the conditions for Theorem (5.2.2) are fulfilled for all x, y ∈ IRn.

2. Show that the iteration
xk+1 = cos(xk)

converges to the fixed point ξ = cos ξ for all x0 ∈ IRn.

3. Give a locally convergent method for determining the fixed point ξ = 3
√

2 of
Φ(x) := x3 + x− 2. (Do not use the Aitken transformation.)

4. The polynomial p(x) = x3 − x2 − x − 1 has its only positive root near ξ =
1.839 Without using p′(x), construct an iteration function Φ(x) having
the fixed point ξ = Φ(ξ) and having the property that the iteration converges
for any starting point x0 > 0.

5. Show that
lim

i→∞
xi = 2,

where
x0 := 0, xi+1 :=

√
2 + xi.

6. Let the function f : IR2 → IR2

f(z) =

[
exp(x2 + y2) − 3

x+ y − sin(3(x+ y))

]
, z =

[
x

y

]
,

be given. Compute the first derivative Df(z). For which z is Df(z) singular?

7. The polynomial p0(x) = x4−8x3+24x2−32x+a4 has a quadruple root x = 2
for a4 = 16. To first approximation, where are its roots if a4 = 16 ± 10−4 ?

8. Consider the sequence { zi } with zi+1 = Φ(zi), Φ: IR → IR. Any fixed point
ξ of Φ is a zero of

F (z) := z − Φ(z).

Show that if one step of regula falsi is applied to F (z) with

Exercises for Chapter 5 359

ai = zi, xi = zi+1,

then one obtains Steffensen’s (or Aitken’s) method for transforming the se-
quence { zi } into {µi }.

9. Let f : IR → IR have a single, simple zero. Show that, if Φ(x) := x− f(x) and
the recursion (5.10.7) are used, the result is the quasi-Newton method

xn+1 := xn − f(xn)2

f(xn) − f(xn − f(xn))
, n = 0, 1,

Show that this iteration converges at least quadratically to simple zeros and
linearly to multiple zeros.
Hint : (5.10.13).

10. Calculate x = 1/a for any given a �= 0 without using division. For which
starting values x0 will the method converge?

11. Give an iterative method for computing n
√
a, a > 0, which converges locally

in second order. (The method may only use the four fundamental arithmetic
operations.)

12. Let A be a nonsingular matrix and {Xk }k=0,1,... be a sequene of matrices
satisfying

Xk+1 := Xk +Xk(I −AXk)

(Schulz’s method).
(a) Show that lub(I − AX0) < 1 is sufficient to ensure the convergence of

{Xk } to A−1. Further, Ek := I −AXk satisfies

Ek+1 = EkEk.

(b) Show that Schulz’s method is locally quadratically convergent.
(c) If, in addition, AX0 = X0A then

AXk = XkA for all k ≥ 0.

13. Let the function f : IR → IR be twice continuously differentiable for all x ∈
U(ξ) := {x | |x − ξ| ≤ r } in a neighborhood of a simple zero ξ, f(ξ) = 0.
Show that the sequence {xn } generated by

y := xn − f ′(xn)−1f(xn),

xn+1 := y − f ′(xn)−1f(y),

converges locally at least cubically to ξ.

14. Let the function f : IR → IR have the zero ξ. Let f be twice continuously
differentiable and satisfy f ′(x) �= 0 for all x ∈ I := {x |x − ξ| ≤ r}. Define
the iteration

xk+1 := xk − f(xk)
q(xk)

,

where q(x) := (f(x+ f(x)) − f(x))/f(x) for x �= ξ, x ∈ I, and show:
(a) For all x

360 5 Finding Zeros and Minimum Points by Iterative Methods

f(x+ f(x)) − f(x) = f(x)
∫ 1

0

f ′(x+ t f(x)) dt.

(b) The function q(x) can be continuously differentiably extended to x = ξ
using

q(x) =
∫ 1

0

f ′(x+ t f(x)) dt.

(c) There is a constant c so that

|q(x) − f ′(x)| ≤ c|f(x)|.

Give an interpretation of this estimate.
(d) The iteration has the form xk+1 = Φ(xk) with a differentiable function

Φ. Give Φ and show Φ(ξ) = ξ, Φ′(ξ) = 0. Hence the iteration converges
with second order to ξ.

15. Let the function f : IRn → IRn satisfy the assumptions
(1) f(x) is continuously differentiable for all x ∈ IRn;
(2) for all x ∈ IRn, Df(x)−1 exists;

(3) xT f(x) ≥ γ(||x||)||x|| for all x ∈ IRn, where γ(ρ) is a continuous function
for ρ ≥ 0 and satisfies γ(ρ) → +∞ as ρ → ∞;

(4) for all x, h ∈ IRn

hTDf(x)h ≥ µ(||x||)||h||2,
with µ(ρ) monotone increasing in ρ > 0, µ(0) = 0, and∫ ∞

0

µ(ρ)dρ = +∞.

Then (1), (2), (3) or (1), (2), (4) are enough to ensure that conditions (a)–(c)
of Theorem (5.4.2.5) are satisfied. For (4), use the Taylor expansion

f(x+ h) − f(x) =
∫ 1

0

Df(x+ th)h dt.

16. Give the recursion formula for computing the values A1, B1 which appear in
the Bairstow method.

17. (Tornheim 1964). Consider the scalar, multistep iteration function of r + 1
variables ϕ(x0, x1, . . . xr) defining the iteration

yi+1 := ϕ(yi, yi−1, yi−2, . . . , yi−r), i = 0, 1, . . . ,

where y0, y−1, . . . , y−r are specified. Let ϕ have partial derivatives of at least
order r+ 1. y∗ is called a fixed point of ϕ if for all k = 1, . . . , r and arbitrary
xi, i �= k, it follows that

(∗) y∗ = ϕ(x0, . . . , xk−1, y
∗, xk+1, . . . , xr).

Show that
(a) The partial derivatives

References for Chapter 5 361

Dsϕ(x0, . . . , xr) :=
∂|s|ϕ(x0, . . . , xr)
∂xs0

0 ∂x
s1
s . . . ∂xsr

r
,

where s = (s0, . . . , sr), |s| :=
∑r

j=0 sj , satisfy Dsϕ(y∗, . . . , y∗) = 0 if for
some j, 0 ≤ j ≤ r, sj = 0. [Note that (*) holds identically in x0, . . . ,
xk−1, xk+1, . . . , xr for all k.]

(b) In a suitably small neighborhood of y∗ the recursion

(∗∗) εi+1 ≤ c εiεi−1 . . . εi−1

holds with εi := |yi − y∗| and with an approporiate constant c.
Further, give:
(c) the general solution of the recursion (**) and the local convergence order

of the sequence yi.

18. Prove (5.9.14).

References for Chapter 5

Baptist, P., Stoer, J. (1977): On the relation between quadratic termination and
convergence properties of minimization algorithms. Part II. Applications. Nu-
mer. Math. 28, 367–391.

Bauer, F.L. (1956): Beiträge zur Entwicklung numerischer Verfahren für program-
mgesteuerte Rechenalagen. II. Direkte Faktorisierung eines Polynoms. Bayer.
Akad. Wiss. Math. Natur. Kl. S.B. 163–203.

Brent, R.P. (1973): Algorithms for Minimization without Derivatives. Englewood
Cliffs, N.J.: Prentice-Hall.

Brezinski, C. (1978): Algorithmes d’Accélération de la Convergence. Étude Numé-
rique. Paris: Édition Technip.

, Zaglia, R. M. (1991): Extrapolation Methods, Theory and Practice. Am-
sterdam: North Holland.

Broyden, C.G. (1965): A class of methods for solving nonlinear simultaneous
equations. Math. Comput. 19, 577–593.

(1967): Quasi-Newton-methods and their application to function mini-
mization. Math. Comput. 21, 368–381.

(1970): The convergence of a class of double rank minimization algo-
rithms. 1. General considerations, 2. The new algorithm. J. Inst. Math. Appl.
6, 76–90, 222–231.

, C.G., Dennis, J.E., Moré, J.J. (1970): On the local and superlinear con-
vergence of quasi-Newton methods. J. Inst. Math. Appl. 12, 223–245.

Collatz, L. (1968): Funktionalanalysis und numerische Mathematik. Die Grund-
lehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 120.
Berlin, Heidelberg, New York: Springer-Verlag. English edition: Functional
Analysis and Numerical Analysis. New York: Academic Press (1966).

Collatz, L., Wetterling, W. (1971): Optimierungsaufgaben. Berlin, Heidelberg,
New York: Springer-Verlag.

Davidon, W.C. (1959): Variable metric methods for minimization. Argonne Na-
tional Laboratory Report ANL-5990.

362 5 Finding Zeros and Minimum Points by Iterative Methods

(1975): Optimally conditioned optimization algorithms without line
searches. Math. Programming 9, 1–30.

Deuflhard, P. (1974): A modified Newton method for the solution of ill-conditioned
systems of nonlinear equations with applications to multiple shooting. Numer.
Math. 22, 289–315.

Dixon, L.C.W. (1971): The choice of step length, a crucial factor in the per-
formance of variable metric algorithms. In: Numerical Methods for Nonlinear
Optimization. F.A. Lootsma, ed., 149–170. New York: Academic Press.

Fletcher, R., Powell, M.J.D. (1963): A rapidly convergent descent method for
minimization. Comput. J. 6, 163–168.

(1980): Unconstrained Optimization. New York: Wiley.
(1981): Constrained Optimization. New York: Wiley.

Gill, P.E., Golub, G.H., Murray, W., Saunders, M.A. (1974): Methods for modi-
fying matrix factorizations. Math. Comput. 28, 505–535.

Griewank, A. (2000): Evaluating Derivatives, Principles and Techniques of Algo-
rithmic Differentiation. Frontiers in Appl. Math., Vol 19. Philadelphia: SIAM.

Henrici, P. (1974): Applied and Computional Complex Analysis. Vol. 1. New York:
Wiley.

Himmelblau, D.M. (1972): Applied Nonlinear Programming. New York:
McGraw-Hill.

Householder, A.S. (1970): The Numerical Treatment of a Single Non-linear Equa-
tion. New York: McGraw-Hill.

Jenkins, M.A., Traub, J.F. (1970): A three-stage variable-shift iteration for poly-
nomial zeros and its relation to generalized Rayleigh iteration. Numer. Math.
14, 252–263.

Luenberger, D.G. (1973): Introduction to Linear and Nonlinear Programming.
Reading, Mass.: Addison-Wesley.

Maehly, H. (1954): Zur iterativen Auflösung algebraischer Gleichungen. Z. Angew.
Math. Physik 5, 260–263.

Marden, M. (1966): Geometry of Polynomials. Providence, R.I.: Amer. Math.
Soc.

Nickel, K. (1966): Die numerische Berechnung der Wurzeln eines Polynoms. Nu-
mer. Math. 9, 80–98.

Oren, S.S., Luenberger, D.G. (1974): Self-scaling variable metric (SSVM) algo-
rithms. I. Criteria and sufficient conditions for scaling a class of algorithms.
Manage. Sci. 20, 845–862.

, Spedicato, E. (1976): Optimal conditioning of self-scaling variable metric
algortihms. Math. Programming 10, 70–90.

Ortega, J.M., Rheinboldt, W.C. (1970): Iterative Solution of Non-linear Equa-
tions in Several Variables. New York: Academic Press.

Ostrowski, A.M. (1973): Solution of Equations in Euclidean and Banach Spaces.
New York: Academic Press.

Peters, G., Wilkinson, J.H. (1969): Eigenvalues of Ax = λBx with band symmet-
ric A and B. Comput. J. 12, 398–404.

, (1971): Practical problems arising in the solution of polynomial
equations. J. Inst. Math. Appl. 8, 16–35.

Powell, M.J.D. (1975): Some global convergence properties of a variable metric
algorithm for minimization without exact line searches. In: Proc. AMS Sym-
posium on Nonlinear Programming 1975. Amer. Math. Soc. 1976.

Spellucci, P. (1993): Numerische Verfahren der nichtlinearen Optimierung. Basel:
Birkhäuser.

References for Chapter 5 363

Stoer, J. (1975): On the convergence rate of imperfect minimization algorithms
in Broyden’s β-class. Math. Programming 9, 313–335.

(1977): On the relation between quadratic termination and convergence
properties of minimization algorithms. Part I. Theory. Numer. Math. 28, 343–
366.

Tornheim, L. (1964): Convergence of multipoint methods. J. Assoc. Comput.
Mach. 11, 210–220.

Traub, J.F. (1964): Iterative Methods for the Solution of Equations. Englewood
Cliffs, NJ: Prentice-Hall.

Wilkinson, J.H. (1959): The evaluation of the zeros of ill-conditioned polynomials.
Part I. Numer. Math. 1, 150–180.

(1963): Rounding Errors in Algebraic Processes. Englewood Cliffs, N.J.:
Prentice Hall.

(1965): The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.

6 Eigenvalue Problems

6.0 Introduction

Many practical problems in engineering and physics lead to eigenvalue
problems. Typically, in all these problems, an overdetermined system of
equations is given, say n + 1 equations for n unknowns ξ1, . . . , ξn of the
form

(6.0.1) F (x;λ) :≡

 f1(ξ1, . . . , ξn; λ)...
fn+1(ξ1, . . . , ξn; λ)

 = 0

in which the functions fi also depend on an additional parameter λ. Usually,
(6.0.1) has a solution x = [ξ1, . . . , ξn]T only for specific values λ = λi,
i = 1, 2, . . . , of this parameter. These values λi are called eigenvalues of
the eigenvalue problem (6.0.1) and a corresponding solution x = x(λi) of
(6.0.1), eigensolution belonging to the eigenvalue λi.

Eigenvalue problems of this general form occur, e.g., in the context of
boundary value problems for differential equations [see Section 7.3]. In this
chapter we consider only the special class of algebraic eigenvalue problems,
where all but one of the fi in (6.0.1) depend linearly on x and λ, and which
have the following form: Given real or complex n × n matrices A und B,
find a number λ ∈ C such that the system of n+ 1 equations

(A− λB)x = 0,
(6.0.2)

xHx = 1,

has a solution x ∈ Cn. Clearly, this problem is equivalent to finding numbers
λ ∈ C such that there is a nontrivial vector x ∈ Cn, x �= 0, with

(6.0.3) Ax = λBx.

For arbitrary A and B, this problem is still very general, and we treat it
only briefly in Section 6.8. The main portion of Chapter 6 is devoted to the
special case of (6.0.3) where B := I is the identity matrix: For an n × n

6.0 Introduction 365

matrix A, find numbers λ ∈ C (the eigenvalues of A) and nontrivial vectors
x ∈ Cn (the eigenvectors of A belonging to λ) such that

(6.0.4) Ax = λx, x �= 0.

Sections 6.1–6.4 provide the main theoretical results on the eigenvalue prob-
lem (6.0.4) for general matrices A. In particular, we describe various normal
forms of a matrix A connected with its eigenvalues, additional results on
the eigenvalue problem for important special classes of matrices A (such as
Hermitian and normal matrices) and the basic facts on the singular values
σi of a matrix A, i.e., the eigenvalues σ2

i of AHA and AAH , respectively.
The methods for actually computing the eigenvalues and eigenvectors

of a matrix A usually are preceded by a reduction step, in which the matrix
A is transformed to a “similar” matrix B having the same eigenvalues as
A. The matrix (B = (bik) has a simpler structure than A (B is either a
tridiagonal matrix, bik = 0 for |i− k| > 1, or a Hessenberg matrix, bik = 0
for i ≥ k+2), so that the standard methods for computing eigenvalues and
eigenvectors are computationally less expensive when applied to B than
when applied to A. Various reduction algorithms are described in Section
6.5 and its subsections.

The main algorithms for actually computing eigenvalues and eigen-
vectors are presented in Section 6.6, among others the LR algorithm of
Rutishauser (Section 6.6.4) and the powerful QR algorithm of Francis (Sec-
tions 6.6.4 and 6.6.5). Related to the QR algorithm is the method of Golub
and Reinsch for computing the singular values of matrices, which is de-
scribed in Section 6.7. After touching briefly on the more general eigenvalue
problem (6.0.3) in Section 6.8, the chapter closes (Section 6.9) with a de-
scription of several useful estimates for eigenvalues. These may serve, e.g,
to locate the eigenvalues of a matrix and to study their sensitivity with re-
spect to small perturbations. A detailed treatment of all numerical aspects
to the eigenvalue problem for matrices is given in the excellent monograph
of Wilkinson (1965), and in Golub and van Loan (1983); the eigenvalue
problem for symmetric matrices is treated in Parlett (1980). algol pro-
grams for all algorithms described in this chapter are found in Wilkinson
and Reinsch (1971), and fortran programs in the “eispack Guide” of
Smith et al. (1976) and its extension by Garbow et al. (1977). All these
methods have been incorporated in the widely used program systems like
matlab, mathematica and maple.

366 6 Eigenvalue Problems

6.1 Basic Facts on Eigenvalues

In the following we study the problem (6.0.4), i.e., given a real or complex
n × n matrix A, find a number λ ∈ C such that the linear homogeneous
system of equations

(6.1.1) (A− λI)x = 0

has a nontrivial solution x �= 0 .

(6.1.2) Definition. A number λ ∈ C is called an eigenvalue of the matrix
A if there is a vector x �= 0 such that Ax = λx. Every such vector is called
a (right) eigenvector of A associated with the eigenvalue λ. The set of all
eigenvalues is called the spectrum of A.

The set
L(λ) := {x | (A− λI)x = 0 }

forms a linear subspace of Cn of dimension

ρ(λ) = n− rank (A− λI),

and a number λ ∈ C is an eigenvalue of A precisely when L(λ) �= 0, i.e.,
when ρ(λ) > 0 and thus A− λI is singular:

det(A− λI) = 0.

It is easily seen that ϕ(µ) := det(A − µI) is an nth-degree polynomial of
the form

ϕ(µ) = (−1)n(µn + αn−1µ
n−1 + · · · + α0).

It is called the

(6.1.3) characteristic polynomial

of the matrix A. Its zeros are the eigenvalues of A. If λ1, . . . , λk are the
distinct zeros of ϕ(µ), then ϕ can be presented in the form

ϕ(µ) = (−1)n(µ− λ1)σ1(µ− λ2)σ2 · · · (µ− λk)σk .

The integer σi, which we also denote by σ(λi) = σi, is called the multiplicity
of the eigenvalue λi, more precisely, its algebraic multiplicity.

The eigenvectors associated with the eigenvalue λ are not uniquely
determined: together with the zero vector, they fill precisely the linear
subspace L(λ) of Cn. Thus,

(6.1.4). If x and y are eigenvectors belonging to the eigenvalue λ of the
matrix A, then so is every linear combination αx+ βy �= 0.

6.1 Basic Facts on Eigenvalues 367

The integer ρ(λ) = dimL(λ) specifies the maximum number of linearly
independent eigenvectors associated with the eigenvalue λ. It is therefore
also called the

geometric multiplicity of the eigenvalue λ.

One should not confuse it with the algebraic multiplicity σ(λ).

Examples. The diagonal matrix of order n,

D := λI,

has the characteristic polynomial ϕ(µ) = det(D − µI) = (λ − µ)n. λ is the only
eigenvalue, and every vector x ∈ Cn, x �= 0, is an eigenvector: L(λ) = Cn;
furthermore, σ(λ) = n = ρ(λ). The nth-order matrix

(6.1.5) Cn(λ :=

λ 1 0

λ ·
· ·

· ·
· 1

0 λ

also has the characteristic polynomial ϕ(µ) = (λ−µ)n and λ as its only eigenvalue,
with σ(λ) = n. The rank of Cn(λ) − λI, however, is now equal to n − 1; thus
ρ(λ) = n− (n− 1) = 1, and

L(λ) = {αe1|α ∈ C}, e1 = 1st coordinate vector.

Among further simple properties of eigenvalues we note:

(6.1.6). Let p(µ) = γ0 + γ1µ+ · · ·+ γmµm be an arbitrary polynomial, and
A a matrix of order n. Defining the matrix p(A) by

p(A) := γ0I + γ1A+ · · · + γmAm,

the matrix p(A) has the eigenvector x corresponding to the eigenvalue p(λ)
if λ is an eigenvalue of A and x a corresponding eigenvector. In particular,
αA has the eigenvalue αλ, and A+ τI the eigenvalue λ+ τ .

Proof. From Ax = λx one obtains immediately A2x = A(Ax) = λAx =
λ2x, and in general Aix = λix. Thus

p(A)x = (γ0I + γ1A+ · · · + γmAm)x
= (γ0 + γ1λ+ · · · + γmλm)x = p(λ)x. ��

Furthermore, from

det(A− λI) = det((A− λI)T) = det(AT − λI),
det(AH − λ̄I) = det((A− λI)H) = det ((A− λI)T) = det(A− λI),

368 6 Eigenvalue Problems

there follows:

(6.1.7). If λ is an eigenvalue of A, then λ is also an eigenvalue of AT , and
λ̄ an eigenvalue of AH .

Between the corresponding eigenvector x, y, z,

Ax = λx,

AT y = λy,

AHz = λ̄z,

merely the trivial relationship ȳ = z holds, in view of AH = ĀT . In par-
ticular, there is no simple relationship, in general, between x and y or x
and z. Because of yT = zH and zHA = λzH , one calls zH or yT , also
a left eigenvector left eigenvector DF associated with eigenvalue λ of A.
Furthermore, if x �= 0 is an eigenvector corresponding to the eigenvalue λ,

Ax = λx,

T an arbitrary nonsingular n × n matrix, and if one defines y := T−1x,
then

T−1ATy = T−1Ax = λT−1x = λy, y �= 0,

i.e., y is an eigenvector of the transformed matrix

B := T−1AT

associated with the same eigenvalue λ. Such transformations are called
similarity transformations,

and B is said to be similar to A, A ∼ B. One easily shows that similarity
of matrices is an equivalence relation, i.e.,

A ∼ A,
A ∼ B ⇒ B ∼ A,

A ∼ B, B ∼ C ⇒ A ∼ C.

Similar matrices have not only the same eigenvalues, but also the same
characteristic polynomial. Indeed,

det(T−1AT − µI) = det(T−1(A− µI)T)

= det(T−1) det(A− µI) det(T)
= det(A− µI).

Moreover, the integers ρ(λ), σ(λ) remain the same: For σ(λ), this follows
from the invariance of the characteristic polynomial; for ρ(λ), from the fact
that, T being nonsingular, the vectors x1, . . . , xρ are linearly independent

6.2 The Jordan Normal Form of a Matrix 369

if and only if the corresponding vectors yi := T−1xi, i = 1, . . . , ρ, are
linearly independent.

In the most important methods for calculating eigenvalues and eigen-
vectors of a matrix A, one first performs a sequence of similarity transfor-
mations.

A(0) := A,

A(i) := T−1
i A(i−1)Ti, i = 1, 2, . . . ,

in order to gradually transform the matrix A into a matrix of simpler form,
whose eigenvalues and eigenvectors can then be determined more easily.

6.2 The Jordan Normal Form of a Matrix

We remarked already in the previous section that for an eigenvalue λ of an
n × n matrix A, the multiplicity σ(λ) of λ as a zero of the characteristic
polynomial need not coincide with ρ(λ), the maximum number of linearly
independent eigenvectors belonging to λ. It is possible, however, to prove
the following inequality:

(6.2.1) 1 ≤ ρ(λ) ≤ σ(λ) ≤ n.

Proof. We prove only the nontrivial part ρ(λ) ≤ σ(λ). Let ρ := ρ(λ), and
let x1, . . . , xρ be linearly independent eigenvectors associated with λ:

Axi = λxi, i = 1, . . . , ρ.

We select n− ρ additional linearly independent vectors xi ∈ Cn, i = ρ+ 1,
. . . , n, such that the xi, i = 1, . . . , n, form a basis in Cn. Then the square
matrix T := [x1, . . . , xn] with columns xi is nonsingular. For i = 1, . . . , ρ,
in view of Tei = xi, ei = T−1xi, we now have

T−1ATei = T−1Axi = λT−1xi = λei.

T−1AT , therefore, has the form

T−1AT =

λ 0 ∗ · · · ∗
. . .

...
...

0 λ ∗ · · · ∗

∗ · · · ∗
0

...
...

∗ · · · ∗︸ ︷︷ ︸
ρ

=

[
λI B

0 C

]
,

and for the characteristic polynomial of A, or of T−1AT , we obtain

370 6 Eigenvalue Problems

ϕ(µ) = det(A− µI) = det(T−1AT − µI) = (λ− µ)ρ · det(C − µI).

ϕ is divisible by (λ−µ)ρ; hence λ is a zero of ϕ of multiplicity at least ρ. ��
In the example of the previous section we already introduced the ν× ν

matrices [see (6.1.5)]

Cν(λ) =

λ 1 0

· ·
· ·

· 1
0 λ

and showed that 1 = ρ(λ) < σ(λ) = ν (if ν > 1) for the (only) eigenvalue
λ of these matrices. The unique eigenvector (up to scalar multiples) is e1,
and for the coordinate vectors ei we have generally

(6.2.2)
(Cν(λ) − λI)ei = ei−1, i = ν, ν − 1, . . . , 2,
(Cν(λ) − λI)e1 = 0.

Setting formally ek := 0 for k ≤ 0, then for all i, j ≥ 1,

(Cν(λ) − λI)iej = ej−i,

and thus

(6.2.3) (Cν(λ) − λI)ν = 0, (Cν(λ) − λI)ν−1 �= 0.

The significance of the matrices Cν(λ) lies in the fact that they are used to
build the so-called Jordan normal form J of a matrix. Indeed, the following
fundamental theorem holds, which we state without proof:

(6.2.4) Theorem. Let A be an arbitrary n× n matrix and λ1, . . . , λk its
distinct eigenvalues, with geometric and algebraic multiplicities ρ(λi) and
σ(λi), respectively, i = 1, . . . , k. Then for each of the eigenvalues λi, i = 1,
. . . , k, there exists ρ(λi) natural numbers ν(i)

j , j = 1, 2, . . . , ρ(λi), with

σ(λi) = ν
(i)
1 + ν(i)

2 + · · · + ν(i)
ρ(λi)

and there exists a nonsingular n× n matrix T , such that J := T−1AT has
the following form:

(6.2.5) J =

C
ν
(1)
1

(λ1) 0
...

C
ν
(1)
ρ(λ1)

(λ1)

...
C
ν
(k)
1

(λk)

0
...

C
ν
(k)
ρ(λk)

(λk)

.

6.2 The Jordan Normal Form of a Matrix 371

The numbers ν(i)
j , j = 1, . . . , ρ(λi), (and with them, the matrix J) are

uniquely determined up to order. J is called the Jordan normal form of A.

The matrix T , in general, is not uniquely determined.
If one partitions the matrix T columnwise, in accordance with the Jor-

dan normal form J in (6.2.5),

T = [T (1)
1 , . . . , T

(1)
ρ(λ1)

, . . . , T
(k)
1 , . . . , T

(k)
ρ(λk)],

then from T−1AT = J and hence AT = TJ , there follow immediately the
relations

(6.2.6) AT
(i)
j = T

(i)
j C

ν
(i)
j

(λi), i = 1, 2, . . . , k, j = 1, 2, . . . , ρ(λi).

Denoting the columns of the n × ν(i)
j matrix T (i)

j without further indices

briefly by tm, m = 1, 2, . . . , ν(i)
j ,

T
(i)
j = [t1, t2, . . . , tν(i)

j

],

it immediately follows from (6.2.6), and the definition of C
ν
(i)
j

(λi) that

(A− λiI)[t1, . . . , tν(i)
j

] = [t1, . . . , tν(i)
j

]

0 1 0

.
. . . 1

0 0

 ,
or

(6.2.7)
(A− λiI)tm = tm−1, m = ν

(i)
j , ν

(i)
j − 1, . . . , 2,

(A− λiI)t1 = 0.

In particular, t1, the first column of T (i)
j , is an eigenvector for the eigen-

value λi. The remaining tm, m = 2, 3, . . . , ν(i)
j , are called principal vec-

torscorresponding to λi, and one sees that with each Jordan block C
ν
(i)
j

(λi)

there is associated an eigenvector and a set of principal vectors. Altogether,
for an n×n matrix A, one can thus find a basis of Cn (namely, the columns
of T) which consists entirely of eigenvectors and principal vectors of A.

The characteristic polynomials

(λi − µ)ν
(i)
j = det(C

ν
(i)
j

(λi) − µI)

of the individual Jordan blocks C
ν
(i)
j

(λi) are called the

(6.2.8) elementary divisors

372 6 Eigenvalue Problems

of A. Therefore, A has only linear elementary linear elementary divisors
precisely if ν(i)

j = 1 for all i and j, i.e., if the Jordan normal form is a
diagonal matrix. One then calls A diagonalizable or also normalizable.

This case is distinguished by the existence of a basis of Cn consisting
solely of eigenvectors of A; principal vectors do not occur. Otherwise, one
says that A has “higher”, i.e., nonlinear elementary divisors.

From Theorem (6.2.4) there follows immediately:

(6.2.9) Theorem. Every n × n matrix A with n distinct eigenvalues is
diagonalizable.

We will get to know further classes of diagonalizable matrices in Section
6.4.

Another extreme case occurs if with each of the distinct eigenvalues λi,
i = 1, . . . , k, of A there is associated only one Jordan block in the Jordan
normal form J of (6.2.5). This is the case precisely if

ρ(λi) = 1 for i = 1, 2, . . . , k.

The matrix A is then called

(6.2.10) nonderogatory,

otherwise, derogatory (an n× n matrix with n distinct eigenvalues is thus
both diagonalizable and nonderogatory). The class of nonderogatory ma-
trices will be studied more fully in the next section.

A further important concept is that of the minimal polynomial of a
matrix A. By this we mean the polynomial

ψ(µ) = γ0 + γ1µ+ · · · + γm−1µ
m−1 + µm

of smallest degree having the property

ψ(A) = 0.

The minimal polynomial can be read off at once from the Jordan normal
form:

(6.2.11) Theorem. Let A be an n × n matrix with the (distinct) eigen-
values λ1, . . . , λk and with the Jordan normal form J of (6.2.5), and let
τi := max1≤j≤ρ(λi) ν

(i)
j . Then

(6.2.12) ψ(µ) := (µ− λ1)τ1(µ− λ2)τ2 . . . (µ− λk)τk

is the minimal polynomial of A. ψ(µ) divides every polynomial χ(µ) with
χ(A) = 0.

Proof. We first show that all zeros of the minimal polynomial ψ of A, if
it exists, are eigenvalues of A. Let, say, λ be a zero of ψ. Then

6.2 The Jordan Normal Form of a Matrix 373

ψ(µ) = (µ− λ) g(µ),

where the polynomial g(µ) has smaller degree than ψ, and hence by the
definition of the minimal polynomial g(A) �= 0. There exists, therefore, a
vector z �= 0 with x := g(A)z �= 0. Because of ψ(A) = 0 it then follows that

0 = ψ(A)z = (A− λI)g(A)z = (A− λI)x,

i.e., λ is eigenvalue of A. If a minimal polynomial exists, it will thus have
the form ψ(µ) = (µ− λ1)τ1(µ− λ2)τ2 · · · (µ− λk)τk for certain τi. We wish
to show now that τi := maxj ν

(i)
j will define a polynomial with ψ(A) =

0. With the notation of Theorem (6.2.4), indeed, A = TJT−1 and thus
ψ(A) = Tψ(J)T−1. In view of the diagonal structure of J ,

J = diag
(
C
ν
(1)
1

(λ1), . . . , Cν(k)
ρ(λk)

(λk)
)
;

however, we now have

ψ(J) = diag
(
ψ
(
C
ν
(1)
1

(λ1)
)
, . . . , ψ

(
C
ν
(k)
ρ(λk)

(λk)
))
.

Since ψ(µ) = (µ− λi)τig(µ), there follows

(6.2.13) ψ
(
C
ν
(i)
j

(λi)
)

=
(
C
ν
(i)
j

(λi) − λiI
)τi
g
(
C
ν
(i)
j

(λi)
)
,

and thus, by virtue of τi ≥ ν(i)
j and (6.2.3),

ψ
(
C
ν
(i)
j

(λi)
)

= 0.

Thus, ψ(J) = 0, and therefore also ψ(A) = 0.
At the same time one sees that none of the integers τi can be chosen

smaller than maxj ν
(i)
j : If there were, say, τi < ν

(i)
j , then, by (6.2.3),(

C
ν
(i)
j

(λi) − λiI
)τi �= 0.

From g(λi) �= 0 it would follow at once that

B := g
(
C
ν
(i)
j

(λi)
)
.

is nonsingular. Hence, by (6.2.13), also ψ(C
ν
(i)
j

)) �= 0, and neither ψ(J)

nor ψ(A) would vanish. This shows that the specified polynomial is the
minimal polynomial of A.

If, finally, χ(µ) is a polynomial with χ(A) = 0, then χ, with the aid of
the minimal polynomial, can be written in the form

χ(µ) = g(µ)ψ(µ) + r(µ),

374 6 Eigenvalue Problems

where deg r < deg ψ. From χ(A) = ψ(A) = 0 we thus get also r(A) = 0.
Since ψ is the minimal polynomial of A, we must have identically r(µ) ≡ 0:
ψ is a divisor of χ. ��

By (6.2.4), one has

σ(λi) =
ρ(λi)∑
j=1

ν
(i)
j ≥ τi = max

j
ν

(i)
j ,

i.e., the characteristic polynomial ϕ(µ) = det(A − µI) of A is a multiple
of the minimal polynomial. Equality σ(λi) = τi, i = 1, . . . , k, prevails
precisely when A nonderogatory. Thus,

(6.2.14) Corollary (Cayley-Hamilton).The characteristic polynomial ϕ(µ)
of a matrix A satisfies ϕ(A) = 0.

(6.2.15) Corollary. A matrix A is nonderogatory if and only if its mini-
mal polynomial and characteric polynomial coincide (up to a multiplicative
constant).

Example. The Jordan matrix

J =

1 1 0
1 1

1

1 1
1

-1 1
-1

-1

0 -1

has the eigenvalues λ1 = 1, λ2 = 1 with multiplicities

ρ(λ1) = 2, ρ(λ2) = 3,
σ(λ1) = 5, σ(λ2) = 4.

Elementary divisors:

(1 − µ)3, (1 − µ)2, (−1,−µ)2, (−1 − µ), (−1 − µ).

Characteristic polynomial:

ϕ(µ) = (−1)9(µ− 1)5(µ+ 1)4.

Minimal polynomial:

6.3 The Frobenius Normal Form of a Matrix 375

ψ(µ) = (µ− 1)3(µ+ 1)2.

To λ1 = 1 there correspond the linearly independent (right) eigenvectors e1, e4;
to λ2 = −1 the eigenvectors e6, e8, e9.

6.3 The Frobenius Normal Form of a Matrix

In the previous section we studied the matrices Cν(λ), which turned out to
be the building blocks of the Jordan normal form of a matrix. Analogously,
one builds up the Frobenius normal form (also called the rational normal
form) of a matrix from Frobenius matrices F of the form

(6.3.1) F =

0 · · · · · · 0 −γ0
1

. . . 0 −γ1

.
...

...
. . . 0 −γm−2

0 1 −γm−1

 ,

whose properties we now wish to discuss. One encounters matrices of this
type in the study of Krylov sequences of vectors. By a Krylov sequence of
vectors for the n × n matrix A and the initial vector t0 ∈ Cn one means
a sequence of vectors ti ∈ Cn, i = 0, 1, . . . , m − 1, with the following
properties:

(6.3.2).
(a) ti = Ati−1, i ≥ 1.
(b) t0, t1, . . . , tm−1 are linearly independent,
(c) tm := Atm−1 depends linearly on t0, t1, . . . , tm−1: there are constants

γi with tm + γm−1tm−1 + · · · + γ0t0 = 0.

The length m of Krylov sequence of course depends on t0. Clearly,
m ≤ n, since more than n vectors in Cn are always linearly dependent. If
one forms the n×m matrix T := [t0, . . . , tm−1] and the matrix F of (6.3.1),
then (6.3.2) is equivalent to

(6.3.3)
Rang T = m,
AT = A[t0, . . . , tm−1] = [t1, . . . , tm] = [t0, . . . , tm−1]F = TF.

Every eigenvalue of F is also eigenvalue of A: From Fz = λz, z �= 0, we
indeed obtain for x := Tz, in view of (6.3.3),

x �= 0 and Ax = ATz = TFz = λTz = λx.

Moreover, we have:

376 6 Eigenvalue Problems

(6.3.4) Theorem. The matrix F (6.3.1) is nonderogatory: The minimal
polynomial of F is

ψ(µ) = γ0 + γ1µ+ · · · + γm−1µ
m−1 + µm

= (−1)m det (F − µI).

Proof. Expanding ϕ(µ) := det (F − µI) by the last column, the charac-
teristic polynomial F is found to be

ϕ(µ) = det

−µ 0 −γ0
1 −µ −γ1

.
...

1 −µ −γm−2
0 1 −γm−1 − µ

= (−1)m(γ0 + γ1µ+ · · · + γm−1µ

m−1 + µm) .

By the results (6.2.12), (6.2.14) of the preceding section, the minimum
polynomial ψ(µ) of T divides ϕ(µ). If we had deg ψ < m = deg ϕ, say

ψ(µ) = α0 + α1µ+ · · · + αr−1µ
r−1 + µr, r < m,

then from ψ(F) = 0 and Fei = ei+1 for 1 ≤ i ≤ m − 1, the following
contradiction would result at once:

0 = ψ(F)e1 = α0e1 + α1e2 + · · · + αr−1er + er+1

= [α0, α1, . . . , αr−1, 1, 0, . . . , 0]T �= 0.

Thus, deg ψ = m, and hence ψ(µ) = (−1)mϕ(µ). Because of (6.2.15), the
theorem is proved. ��

Assuming the characteristic polynomial of F to have the zeros λi with
multiplicities σi, i = 1, . . . , k,

ψ(µ) = γ0 + · · · + γm−1µ
m−1 + µm = (µ− λ1)σ1(µ− λ2)σ2 · · · (µ− λk)σk ,

the Jordan normal of F in (6.3.1), in view of (6.3.4), is given by
Cσ1(λ1) 0

Cσ2(λ2)
. . .

0 Cσk
(λk)

 .
The significance of the Frobenius matrices lies in the fact that they furnish
the building blocks of the so-called Frobenius or rational normal form of a
matrix. Namely:

6.3 The Frobenius Normal Form of a Matrix 377

(6.3.5) Theorem. For every n× n matrix A there is a nonsingular n× n
matrix T with

(6.3.6) T−1AT =

F1 0

F2
. . .

0 Fr

 ,
where the Fi are Frobenius matrices having the following properties:

(a) If ϕi(µ) = det (Fi − µI) is the characteristic polynomial of Fi, i = 1,
. . . , r, then ϕi(µ) is a divisor of ϕi−1(µ), i = 2, 3, . . . , r.

(b) ϕ1(µ), up to the multiplicative constant ±1, is the minimal polynomial
of A.

(c) The matrices Fi are uniquely determined by A.

One calls (6.3.6) the Frobenius normal form of A.

Proof. This easily done with the help of the Jordan normal form [see
(6.2.4)]: We assume that J in (6.2.5) is the Jordan normal form of A.
Without loss of generality, let the integers ν(j)

j be ordered,

(6.3.7) ν
(i)
1 ≥ ν(i)

2 ≥ · · · ≥ ν(i)
ρ(λi)

, i = 1, 2, . . . , k.

Define the polynomials ϕj(µ), j = 1, . . . , r, r := maxi ρ(λi), by

ϕj(µ) = (λ1 − µ)ν
(1)
j (λ2 − µ)ν

(2)
j . . . (λk − µ)ν

(k)
j

[using the convention ν(i)
j := 0 if j > ρ(λi)]. In view of (6.3.7), ϕj(µ)

divides ϕj−1(µ) and ±ϕ1(µ) is the minimal polynomial of A. Now take
as the Frobenius matrix Fj just the Frobenius matrix whose characteristic
polynomial is ϕj(µ). Let Si be the matrix that transforms Fi into its Jordan
normal form Ji,

S−1
i FiSi = Ji.

A Jordan normal form of A (the Jordan normal form is unique only up to
permutations of the Jordan blocks) then is

J ′ =

J1

J2
. . .

Jr

=

S1

S2
. . .

Sr

−1

F1
F2

. . .
Fr

S1

S2
. . .

Sr

 .

378 6 Eigenvalue Problems

According to Theorem (6.2.4) there is a matrix U with U−1AU = J ′. The
matrix T := US−1 with

S =

S1

S2
. . .

Sr

transforms A into the desired form (6.3.6).

It is easy to convince oneself of the uniqueness Fi. ��
Example. For the matrix J in the example of Section 6.2 one has

ϕ1(µ) = (1 − µ)3(−1 − µ)2 = −(µ5 − µ4 − 2µ3 + 2µ2 + µ− 1),

ϕ2(µ) = (1 − µ)2(−1 − µ) = −(µ3 − µ2 − µ+ 1),

ϕ3(µ) = −(µ+ 1),

and there follows

F1 =

0 0 0 0 1
1 0 0 0 −1
0 1 0 0 −2
0 0 1 0 2
0 0 0 1 1

 , F2 =

[
0 0 −1
1 0 1
0 1 1

]
, F3 = [−1].

The significance of the Frobenius normal form lies in its theoretical
properties (Theorem (6.3.5)). Its practical importance for computing eigen-
values is very limited. For example, if the n×n matrix A is nonderogatory,
then computing the Frobenius normal form F (6.3.1) is equivalent to the
computation of the coefficients γk of the characteristic polynomial

ϕ(µ) ≡ det(A− µI) = (−1)n(µn + γn−1µ
n−1 + · · · + γ0),

which has the desired eigenvalues of A as zeros. But it is not advisable to
first determine the γi in order to subsequently compute the eigenvalues as
zeros of ϕ: In general, the zeros λj of ϕ react much more sensitively to small
changes in the coefficients γi of ϕ than to small changes in the elements of
the original matrix A [see Sections 5.8 and 6.9].

Example. In Section 6.9, Theorem (6.9.7), it will be shown that the eigenvalue
problem for Hermitian matrices A = AH is well conditioned in the following
sense: For each eigenvalue λi(A + �A) of A + �A there is an eigenvalue λj(A)
of A such that

|λi(A+ �A) − λj(A)| ≤ lub2(�A).

If the 20 × 20 matrix A has, say, the eigenvalues λj = j, j = 1, 2, . . . , 20, then
lub2(A) = 20 because A = AH (see Exercise 8). Subjecting all elements of A to
a relative error of at most eps, i.e., replacing A by A+ �A with |�A| ≤ eps |A|,
it follows that [see Exercise 11]

6.4 The Schur Normal form of a Matrix 379

lub2(�A) ≤ lub2(|�A|) ≤ lub2(eps |A|)
≤ eps

√
20 lub2(A) < 90 eps .

On the other hand, a mere relative error |�γi| = eps of the coefficients γi of the
characteristic polynomial ϕ(µ) = (µ− 1)(µ− 2) · · · (µ− 20) produces tremendous
changes in the zeros λj = j of ϕ [see Example (1) of Section 5.8].

The situation is particularly bad for Hermitian matrices with clustered
eigenvalues: the eigenvalue problem for these matrices is still well condi-
tioned even for multiple eigenvalues, whereas multiple zeros of a polynomial
ϕ are always ill-conditioned functions of the coefficients γi.

In addition, many methods for computing the coefficients γi of the char-
acteristic polynomial are numerically unstable. As an example, we mention
the method of Frazer, Duncan, and Collar, which is based on the obser-
vation [see (6.3.2) (c)] that the vector c = [γ0, γ1, . . . , γn−1]T is the so-
lution of a linear system of equations Tc = −tn with the nonsingular
matrix T := [t0, t1, . . . , tn−1], provided that t0, . . . , tn−1 is a Krylov se-
quence of length n. Unfortunately, the matrix T is in general ill-conditioned,
cond(T) � 1, so that the computed solution c can be highly incorrect [see
Section 4.4]. Indeed, as k → ∞, the vectors tk = Akt0 will, when scaled by
suitable factors σk, converge toward a nonzero vector t = limk σktk that, in
general, does not depend on the choice of the initial vector t0. The columns
of T tend, therefore, to become “more and more linearly dependent” [see
Section 6.6.3 and Exercise 12].

6.4 The Schur Normal Form of a Matrix; Hermitian
and Normal Matrices; Singular Values of Matrices

If one does not admit arbitrary nonsingular matrices T in the similarity
transformation T−1AT , it is in general no longer possible to transform A
to Jordan normal form. However, for unitary matrices T , i.e., matrices T
with THT = I, one has the following result of Schur:

(6.4.1) Theorem. For every n×n matrix A there is a unitary n×n matrix
U with

UHAU =

λ1 ∗ · · · ∗

λ2
. . .

...
. . . ∗

0 λn

 .
Here λi, i = 1, . . . , n, are the (not necessarily distinct) eigenvalues of A.

Proof. We use complete induction on n. For n = 1 the theorem is trivial.
Suppose the theorem is true for matrices of order n − 1, and let A be an
n × n matrix. Let λ1 be an eigenvalue of A, and x1 �= 0 a corresponding

380 6 Eigenvalue Problems

eigenvector with ‖x1‖2
2 = xH1 x1 = 1, Ax1 = λ1x1. Then one can find n− 1

additional vectors x2, . . . , xn such that x1, x2, . . . , xn forms an orthonormal
basis of Cn, and the n×n matrix X := [x1, . . . , xn] with columns xi is thus
unitary, XHX = I. Since

XHAXe1 = XHAx1 = λ1X
Hx1 = λ1e1,

the matrix XHAX has the form

XHAX =

[
λ1 a

0 A1

]
,

where A1 is a matrix of order n − 1 and aH ∈ Cn−1. By the induction
hypothesis, there exists a unitary (n− 1) × (n− 1) matrix U1 such that

UH1 A1U1 =

λ2 ∗ · · ∗

· · ·
· · ·

· ∗
0 λn

 .
The matrix

U := X

[
1 0

0 U1

]
then is a unitary n× n matrix satisfying

UHAU =
[

1 0
0 UH1

]
XHAX

[
1 0
0 U1

]

=
[

1 0
0 UH1

] [
λ1 a
0 A1

] [
1 0
0 U1

]

=

λ1 ∗ · · ∗

· · ·
· · ·

· ∗
0 λn

 .
The fact that λi, i = 1, . . . , n, are zeros of det(UHAU − µI), and hence
eigenvalues of A, is trivial. ��

Now, if A = AH is a Hermitian matrix, then

(UHAU)H = UHAHUHH = UHAU

is again a Hermitian matrix. Thus, from (6.4.1), there follows immediately

6.4 The Schur Normal form of a Matrix 381

(6.4.2) Theorem. For every Hermitian n × n matrix A = AH there is a
unitary matrix U = [x1, . . . , xn] with

U−1AU = UHAU =

λ1 0
. . .

0 λn

 .
The eigenvalues λi, i = 1, . . . , n, of A are real. A is diagonalizable. The ith
column xi of U is an eigenvector belonging to the eigenvalue λi: Axi = λixi.
A thus has n linearly independent pairwise orthogonal eigenvectors.

If the eigenvalues λi of a Hermitian n×n matrix A = AH are arranged
in decreasing order,

λ1 ≥ λ2 ≥ · · · ≥ λn,
then λ1 and λn can be characterized also in the following manner [see
(6.9.14) for a generalization]:

(6.4.3) λ1 = max
0
=x∈Cn

xHAx

xHx
, λn = min

0
=x∈Cn

xHAx

xHx
.

Proof. If UHAU = Λ = diag[λ1, . . . , λn], U unitary, then for all x �= 0,

xHAx

xHx
=

(xHU)UHAU(UHx)
(xHU)(UHx)

=
yHΛy

yHy
=
∑
iλi|ηi|2∑
i|ηi|2

≤
∑
iλ1|ηi|2∑
i|ηi|2

= λ1,

where y := UHx = [η1, . . . , ηn]T �= 0. Taking for x �= 0 in particular an
eigenvector belonging to λ1, Ax = λ1x, one gets xHAx/xHx = λ1, so that
λ1 = max0
=x∈Cn xHAx/xHx. The other assertion in (6.4.3) follows from
what was just proved by replacing A with −A.

From (6.4.3) and the definition (4.3.1) of a positive definite (positive
semidefinite) matrix A, one obtains immediately

(6.4.4). A Hermitian matrix A is positive definite (positive semidefinite)
if and only if all eigenvalues of A are positive (nonnegative).

A generalization of the notion of a Hermitian matrix is that of a normal
matrix: An n× n matrix A is called normal if

AHA = AAH ,

i.e., A commutes with AH . For example, all Hermitian, diagonal, skew
Hermitian and unitary matrices are normal.

(6.4.5) Theorem. An n×n matrix A is normal if and only if there exists
a unitary matrix U such that

382 6 Eigenvalue Problems

U−1AU = UHAU =

λ1 0
. . .

0 λn

 .
Normal matrices are diagonalizable and have n linearly independent pair-
wise orthogonal eigenvectors xi, i = 1, . . . , n, Axi = λixi, namely the
columns of the matrix U = [x1, . . . , xn].

Proof. By Schur’s theorem (6.4.1), there exists a unitary matrix U with

UHAU =

λ1 ∗ · · ∗

· · ·
· · ·

· ∗
0 λn

 =: R = (rik).

From AHA = AAH there now follows

RHR = UHAHUUHAU = UHAHAU

= UHAAHU = UHAUUHAHU

= RRH .

For the (1, 1) element of RHR = RRH we thus obtain

λ̄1λ1 = |λ1|2 = |λ1|2 +
n∑
k=2

|r1k|2;

hence r1k = 0 for k = 2, . . . , n. In the same manner one shows that all
nondiagonal elements of R vanish.

Conversely, if A is unitarily diagonalizable, UHAU = D, where D :=
diag(λ1, . . . , λn), UHU = I, there follows at once

AHA = UDHUHUDUH = U |D|2UH = UDUHUDHUH = AAH . ��

Given an arbitrary m × n matrix A, the n × n matrix AHA is positive
semidefinite, since xH(AHA)x = ‖Ax‖2

2 ≥ 0 for any x ∈ Cn. Its eigenvalues
λ1 ≥ λ2 · · · ≥ λn ≥ 0 are nonnegative by (6.4.4) and can therefore be
written in the form λk = σ2

k with σk ≥ 0. The numbers σ1 ≥ · · · ≥ σn ≥ 0
are called

(6.4.6) singular values of A.

Replacing the matrix A in (6.4.3) by AHA, one obtains immediately

(6.4.7) σ1 = max
0
=x∈Cn

‖Ax‖2

‖x‖2
= lub2(A), σn = min

0
=x∈Cn

‖Ax‖2

‖x‖2
.

6.4 The Schur Normal form of a Matrix 383

In particular, if m = n and A is nonsingular, one has

(6.4.8)
1/σn = max

x
=0

‖x‖2

‖Ax‖2
= max

y
=0

‖A−1y‖2

‖y‖2
= lub2(A−1),

cond2(A) = lub2(A) lub2(A−1) = σ1/σn.

The smallest singular value σn of a square matrix A gives the distance of
A to the “nearest” singular matrix:

(6.4.9) Theorem. Let A and E be arbitrary n×n matrices and let A have
the singular values σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. Then

(a) lub2(E) ≥ σn if A+ E is singular.
(b) There is a matrix E with lub2(E) = σn such that A+ E singular.

Proof. (a): Let A + E be singular, thus (A + E)x = 0 for some x �= 0.
Then (6.4.7) gives

σn‖x‖2 ≤ ‖Ax‖2 = ‖ − Ex‖2 ≤ lub2(E)‖x‖2;

hence σn ≤ lub2(E).
(b): If σn = 0, there is nothing to prove. For, by (6.4.7), one has 0 =

‖Ax‖2 for some x �= 0, so that A already is singular. Let, therefore, σn > 0.
Because of (6.4.7), there exist vectors u, v such that

‖Au‖2 = σn, ‖u‖2 = 1,

v :=
1
σn
Au, ‖v‖2 = 1.

For the special n×n matrix E := −σnvuH , one then has (A+E)u = 0, so
that A+ E is singular, and moreover

lub2(E) = σn max
x
=0

‖v‖2
|uHx|
‖x‖2

= σn. ��

An arbitrary m × n matrix A can be transformed unitarily to a certain
normal form in which the singular values of A appear:

(6.4.10) Theorem. Let A be an arbitrary (complex) m×n matrix. Then:
(a) There exist a unitary m×m matrix U and a unitary n× n matrix V

such that UHAV = Σ is an m× n “diagonal matrix” of the following
form:

Σ =
[
D 0
0 0

]
, D := diag(σ1, . . . , σr), σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Here σ1, . . . , σr are the nonvanishing singular values of A, and r is
the rank of A.

384 6 Eigenvalue Problems

(b) The nonvanishing singular values of AH are also precisely the number
σ1, . . . , σr.

The decomposition A = UΣV H is called

(6.4.11) the singular-value decomposition of A.

Proof. We show (a) by mathematical induction on m und n. For m = 0
or n = 0 there is nothing to prove. We assume that the theorem is true for
(m − 1) × (n − 1) matrices and that A is an m × n matrix with m ≥ 1,
n ≥ 1. Let σ1 be the largest singular value of A. If σ1 = 0, then by (6.4.7)
also A = 0, and there is nothing to show. Let, therefore, σ1 > 0, and let
x1 �= 0 be an eigenvector of AHA for the eigenvalue σ2

1 , with ‖x1‖2 = 1:

(6.4.12) AHAx1 = σ2
1x1.

Then one can find n− 1 additional vectors x2, . . . , xn ∈ Cn such that the
n × n matrix X := [x1, x2, . . . , xn] with the columns xi becomes unitary,
XHX = In. By virtue of ‖Ax1‖2

2 = xH1 A
HAx1 = σ2

1x
H
1 x1 = σ2

1 > 0,
the vector y1 := 1/σ1Ax1 ∈ Cm with ‖y1‖2 = 1 is well defined, and one
can find m − 1 additional vectors y2, . . . , ym ∈ Cm such that the m ×m
matrix Y := [y1, y2, . . . , ym] is likewise unitary, Y HY = Im. Now from
(6.4.12) and the definition of y1, X and Y , there follows at once, with
e1 := [1, 0, . . . , 0]T ∈ Cn, ē1 := [1, 0, . . . , 0]T ∈ Cm, that

Y HAXe1 = Y HAx1 = σ1Y
Hy1 = σ1ē1 ∈ Cm

and

(Y HAX)H ē1 = XHAHY ē1 = XHAHy1 =
1
σ1
XHAHAx1

= σ1X
Hx1 = σ1e1 ∈ Cn,

so that the matrix Y HAX has the following form:

Y HAX =
[
σ1 0
0 Ã

]
.

Here Ã is an (m− 1) × (n− 1) matrix.
By the induction hypothesis, there exist a unitary (m − 1) × (m − 1)

matrix Ũ and a unitary (n− 1) × (n− 1) matrix Ṽ such that

ŨHÃṼ = Σ̃ =
[
D̃ 0
0 0

]
, D̃ := diag(σ2, . . . , σr), σ2 ≥ · · · ≥ σr > 0,

with Σ̃ a (m − 1) × (n − 1) “diagonal matrix” of the form indicated. The
m×m matrix

6.4 The Schur Normal form of a Matrix 385

U := Y ·
[

1 0
0 Ũ

]
is unitary, as is the n× n matrix

V := X ·
[

1 0
0 Ṽ

]
,

and one has

UHAV =
[

1 0
0 ŨH

]
Y HAX

[
1 0
0 Ṽ

]
=
[

1 0
0 ŨH

] [
σ1 0
0 Ã

] [
σ1 0
0 Ṽ

]

=
[
σ1 0
0 Σ̃

]
=
[
D 0
0 0

]
= Σ, D := diag(σ1, . . . , σr),

Σ being an m × n diagonal matrix with σ2 ≥ · · · ≥ σr > 0, σ2
1 =

λmax(AHA). Evidently, rank A = r, since rank A = rank UHAV = rank
Σ.

We must still prove that σ1 ≥ σ2 and that the σi are the singular values
of A. Now from UHAV = Σ there follows, for the n × n diagonal matrix
ΣHΣ,

ΣHΣ = diag(σ2
1 , . . . , σ

2
r , 0, . . . , 0) = V HAHUUHAV = V H(AHA)V,

so that [see Theorem (6.4.2)] σ2
1 , . . . , σ2

r are the nonvanishing eigenvalues
of AHA, and hence σ1, . . . , σr are the nonvanishing singular values of A.
Because of σ2

1 = λmax(AHA), one also has σ1 ≥ σ2. ��

The unitary matrices U , V in the decomposition UHAV = Σ have the
following meaning: The columns of U represent m orthonormal eigenvec-
tors of the Hermitian m × m matrix AAH , while those of V represent n
orthonormal eigenvectors of the Hermitian n × n matrix AHA. This fol-
lows at once from UHAAHU = ΣΣH ,V HAHAV = ΣHΣ, and Theorem
(6.4.2). Finally we remark that the pseudoinverse A+ [see Section 4.8.5] of
the m× n matrix A can be immediately obtained from the decomposition
UHAV = Σ: If

Σ =
[
D 0
0 0

]
, D = diag(σ1, . . . , σr), σ1 ≥ · · · ≥ σr > 0,

then the n×m diagonal matrix

Σ+ :=
[
D−1 0

0 0

]
,

is the pseudoinverse of Σ, and one verifies at once that the n×m matrix

(6.4.13) A+ := V Σ+UH

386 6 Eigenvalue Problems

satisfies the conditions of (4.8.5.1) for a pseudoinverse of A, so that A+,
in view of the uniqueness statement of Theorem (4.8.5.2), must be the
pseudoinverse of A.

6.5 Reduction of Matrices to simpler Form

The most common methods for determining the eigenvalues and eigenvec-
tors of a dense matrix A proceed as follows. By means of a finite number
of similarity transformations

A = A0 → A1 → · · · → Am,

Ai = T−1
i Ai−1Ti, i = 1, 2, . . . , m,

one first transforms the matrix A into a matrix B of simpler form,

B := Am = T−1AT, T := T1T2 · · ·Tm,

and then determines the eigenvalues λ and eigenvectors y of B, By = λy.
For x := Ty = T1 · · ·Tmy, since B = T−1AT , we then have

Ax = λx,

i.e., to the eigenvalue λ of A there belongs the eigenvector x. The matrix
B is chosen in such a way that

(1) the determination of the eigenvalues and eigenvectors of B is as simple
as possible (i.e., requires as few operations as possible) and

(2) the eigenvalue problem for B is not (substantially) worse conditioned
than that for A (i.e., small changes in the matrix B do not impair
the eigenvalues of B, nor therefore those of A, substantially more than
equally small changes in A).

In view of

B = T−1AT,

B + +B = T−1(A+ +A)T, +A := T +BT−1,

given any vector norm ‖·‖ and corresponding matrix norm lub (·), one gets
the following estimates:

lub(B) ≤ cond(T) lub(A),
lub(+A) ≤ cond(T) lub(+B),

and hence
lub(+A)
lub(A)

≤
(
cond(T)

)2 lub(+B)
lub(B)

.

6.5 Reduction of Matrices to simpler Form 387

For large cond(T) � 1 even a small error +B, committed when computing
B, say lub(+B)/ lub(B) ≈ eps, has the same effect on the eigenvalues of
A as the equivalent error +A, which can be as large as

lub(+A)
lub(A)

≈ cond(T)2
lub(+B)
lub(B)

= cond(T)2 · eps .

Hence for large cond(T), no method to compute the eigenvalues of A by
means of the eigenvalues of B will be numerically stable [see Section 1.3].
Since

cond(T) = cond(T1 · · ·Tm) ≤ cond(T1) · · · cond(Tm),

numerical stability can be expected only if one chooses the matrices Ti such
that cond(Ti) does not become too large. This is the case, in particular,
for the maximum norm ‖x‖∞ = maxi |xi| and elimination matrices of the
form [see Section 4.1]

(6.5.0.1)

Ti = Gj =

1 0
. . .

1

lj+1,j
. . .

...
. . .

0 lnj 0 1

with |lkj | ≤ 1,

G−1
j =

1 0
. . .

1

−lj+1,j
. . .

...
. . .

0 −lnj 0 1

,

cond∞(Ti) ≤ 4,

and also for the Euclidean norm ‖x‖2 =
√
xHx and unitary matrices Ti = U

(e.g., Householder matrices) for which cond(Ti) = 1. Reduction algorithms
using either unitary matrices Ti or elimination matrices Ti as in (6.5.0.1) are
described in the following sections. The “simple” terminal matrix B = Am
that can be achieved in this manner, for arbitrary matrices, is an upper
Hessenberg matrix, which has the following form:

B =

∗ · · · · ∗
∗ · ·
0 · · ·
· · · · ·
· · · · ·
0 · · 0 ∗ ∗

 , bik = 0 for k ≤ i− 2.

388 6 Eigenvalue Problems

For Hermitian matrices A = AH only unitary matrices Ti, T−1
i = THi , are

used for the reduction. If Ai−1 is Hermitian, then so is Ai = T−1
i Ai−1Ti:

AHi = (THi Ai−1Ti)H = THi A
H
i−1Ti = THi Ai−1Ti = Ai.

For the terminal matrix B one thus obtains a Hermitian Hessenberg matrix,
i.e., a (Hermitian) tridiagonal matrix, or Jacobi matrix:

B =

δ1 γ̄2 0

γ2 δ2
. . .

. γ̄n
0 γn δn

 , δi = δ̄i.

6.5.1 Reduction of a Hermitian Matrix to Tridiagonal Form.
The Method of Householder

In the method of Householder for the tridiagonalization of a Hermitian
n × n matrix AH = A =: A0, one uses suitable Householder matrices [see
Section 4.7]

THi = T−1
i = Ti = I − βiuiuHi

for the transformation

(6.5.1.1) Ai = T−1
i Ai−1Ti.

We assume that the matrix Ai−1 = (αjk) has already the following form:

Ai−1 =

Ji−1 c 0

cH δi aHi

0 ai Ãi−1

 = (αjk),

with

Ji−1 c

cH δi

 =

δ1 γ̄2 0 0

γ2 δ2
. . .

...
...

. γ̄i−1 0
0 · · · γi−1 δi−1 γ̄i

0 · · · 0 γi δi

, ai =

αi+1,i
...
αni

.

6.5 Reduction of Matrices to simpler Form 389

According to Section 4.7, there is a Householder matrix T̃i of order n − i
such that

(6.5.1.2) T̃iai = k · e1 ∈ Cn−i.

T̃i has the form T̃i = I − βuuH , u ∈ Cn−i, and is given by

(6.5.1.3)

σ := ‖ai‖2 =
⊕

√√√√ n∑
j=i+1

|αji|2,

β :=
{

1/(σ(σ + |αi+1,i|)) if σ �= 0,
0 otherwise,

k := −σ · eiϕ if αi+1,i = eiϕ|αi+1,i|,

u :=

eiϕ(σ + |αi+1,i|)

αi+2,i
...
αni

 .

Then, for the unitary n× n matrix Ti, partitioned like (6.5.1.1),

Ti :=

I 0 0

0 1 0

0 0 T̃i

}
i−1

one clearly has THi = T−1
i = Ti and, by (6.5.1.2),

T−1
i Ai−1Ti = TiAi−1Ti =

Ji−1 c 0

cH δi aHi T̃i

0 T̃iai T̃iÃi−1T̃i

390 6 Eigenvalue Problems

=

δ1 γ̄2 0 0

γ2 δ2
. . .

... 0
. γ̄i−1 0

0 γi−1 δi−1 γ̄i

0 · · · 0 γi δi γ̄i+1 0 . . . 0

γi+1

0

0
... T̃iÃi−1T̃i

0

=: Ai

with γi+1 := k.
Since T̃i = I − βuuH , one can compute T̃iÃi−1T̃i as follows:

T̃iÃi−1T̃i = (I − βuuH)Ãi−1(I − βuuH)

= Ãi−1 − βÃi−1uu
H − βuuHÃi−1 + β2uuHÃi−1uu

H .

Introducing for brevity the vectors p, q ∈ Cn−i,

p := βÃi−1u, q := p− β

2
(pHu)u,

it follows immediately, in view of β ≥ 0, pHu = βuHÃi−1u = (pHu)H , that

(6.5.1.4)

T̃iÃi−1T̃i = Ãi−1 − puH − upH + βupHuuH

= Ãi−1 − u
[
p− β

2
(pHu)u

]H
−
[
p− β

2
(pHu)u

]
uH

= Ãi−1 − uqH − quH .

The formulas (6.5.1.1)–(6.5.1.4) completely describe the ith transformation

Ai = T−1
i Ai−1Ti.

Evidently,

B = An−2 =

δ1 γ̄2 0

γ2 δ2
. . .

. γ̄n
0 γn δn

 , δi = δ̄i,

6.5 Reduction of Matrices to simpler Form 391

is a Hermitian tridiagonal matrix.
A formal algol-like description of the Householder transformation for

a real symmetric matrix A = AT = [ajk] with n ≥ 2 is

for i := 1 step 1until n− 2 do
begin δi := aii;

s :=
⊕

√√√√ n∑
j=i+1

|αji|2 ; if ai+1,i < 0 then s := −s;

γi+1 := −s; e := s+ ai+1,i;
if s = 0 then begin aii := 0; goto MM end;
β := aii := 1/(s× e);
ui+1 := ai+1,i := e;
for j := i+ 2 step 1 until n do uj := aji;
for j := i+ 1 step 1 until n do

pj :=
(i∑
j=i+1

ajk × uk +
n∑

k=j+1

akj × uk
)

× β;

sk :=
(n∑
j=i+1

pj × uj
)

× β/2;

for j := i+ 1 step 1 until n do
qj := pj − sk × uj ;

for j := i+ 1 step 1 until n do
for k := i+ 1 step 1 until j do

ajk := ajk − qj × uk − uj × qk;
MM :

end;
δn−1 := an−1,n−1; δn := an,n; γn := an,n−1;

This program takes advantage of the symmetry of A: Only the elements
ajk with k ≤ j need to be given. Moreover, the matrix A is overwritten with
the essential elements βi, ui of the transformation matrix T̃i = I−βiuiuHi ,
i = 1, 2, . . . , n − 2: Upon exiting from the program, the ith column of A
will be occupied by the vector

aii

ai+1,i
...
ani

 :=
[
βi
ui

]
, i = 1, 2, . . . , n− 2.

(The matrices Ti, i = 1, 2, . . . , n− 2, are needed for the “back transforma-
tion” of the eigenvectors: if y is an eigenvector of An−2 for the eigenvalue
λ,

An−2y = λy,

then x := T1T2 · · ·Tn−2y is an eigenvector of A, Ax = λx.)

392 6 Eigenvalue Problems

Tested algol programs for the Householder reduction and back trans-
formation of eigenvectors can be found in Martin, Reinsch, and Wilkinson
(1971); fortran programs, in Smith et al. (1976).

Applying the transformations described above to an arbitrary non-
Hermitian matrix A of order n, the formulas (6.5.1.1), (6.5.1.3) give rise to
a chain of matrices Ai, i = 0, 1, . . . , n− 2, of the form

A0 = A,

Ai−1 =

∗ · · · ∗ ∗ · · · ∗
∗ · · · ·

· · · · ·
· · · · ·

·
0 ∗ ∗ ∗ ∗ · · · ∗
0 ∗ ∗ ∗ · · · ∗

∗ ∗ · · · ∗
· · ·
· · ·
· · ·

0 ∗ ∗ · · · ∗

︸ ︷︷ ︸

i−1

.

The first i−1 columns of Ai−1 are already those of a Hessenberg matrix.
. An−2 is a Hessenberg matrix. During the transition from Ai−1 to Ai the
elements αjk of Ai−1 with j, k ≤ i remain unchanged.

algol programs for this algorithm can be found in Martin and Wilkin-
son (1971); fortran programs, in Smith et al. (1976).

In Section 6.5.4 a further algorithm for the reduction of a general matrix
A to Hessenberg form will be described which does not operate with unitary
similarity transformations.

The numerical stability of the Householder reduction can be shown
in the following way: Let Āi and T̄i denote the matrices obtained if the
algorithm is carried out in floating-point arithmetic with relative precision
eps; let Ui denote the Householder matrix which, according to the rules
of the algorithm, would have to be taken as transformation matrix for
the transition Āi−1 → Āi in exact arithmetic. Thus, Ui is an exact unitary
matrix, while T̄i is an approximate unitary matrix, namely the one obtained
in place of Ui by computing Ui in floating-point arithmetic. The following
relations thus hold:

T̄i = fl(Ui), Āi = fl(T̄iĀi−1T̄i).

By means of the methods described in Section 1.3 one can now show [see,
e.g., Wilkinson (1965)] that

6.5 Reduction of Matrices to simpler Form 393

(6.5.1.5)
lub2(T̄i − Ui) ≤ f(n) eps,

Āi = fl(T̄iĀi−1T̄i) = T̄iĀi−1T̄i +Gi,
lub2(Gi) ≤ f(n) eps lub2(Āi−1),

where f(n) is a certain function [for which, generally, f(n) = 0(nα), α ≈ 1].
From (6.5.1.5), since lub2(Ui) = 1, UHi = U−1

i = Ui (Ui is a Householder
matrix!), there follows at once

lub2(Ri) ≤ f(n) eps, Ri := T̄i − Ui,
Āi = U−1

i Āi−1Ui +RiĀi−1Ui + UiĀi−1Ri +RiĀi−1Ri +Gi
=: U−1

i Āi−1Ui + Fi,

where
lub2(Fi) ≤ eps f(n)[3 + eps f(n)] lub2(Āi−1),

or, since f(n) eps � 3, in first approximation:

(6.5.1.6)

lub2(Fi) ≤̇ 3 eps f(n) lub2(Āi−1),

lub2(Āi) ≤̇ (1 + 3 eps f(n)) lub2(Āi−1),

≤̇ (1 + 3 eps f(n))i lub2(A).

For the Hessenberg matrix Ān−2, finally, since A = Ā0, one obtains

(6.5.1.7) Ān−2 = U−1
n−2 · · ·U−1

1 (A+ F)U1 · · ·Un−2,

where

F :=
n−2∑
i=1

U1U2 · · ·UiFiU−1
i · · ·U−1

1 .

It thus follows from (6.5.1.6) that

lub2(F) ≤
n−2∑
i=1

lub2(Fi)

≤̇ 3 eps f(n) lub2(A)
n−2∑
i=1

(1 + 3 eps f(n))i−1,

or, in first approximation

(6.5.1.8) lub2(F) ≤̇ 3(n− 2)f(n) eps lub2(A).

Provided n f(n) is not too large, the relations (6.5.1.7) and (6.5.1.8) show
that the matrix Ān−2 is exactly similar to the matrix A+F , which is only
a slight perturbation of A, and therefore the method is numerically stable.

394 6 Eigenvalue Problems

6.5.2 Reduction of a Hermitian Matrix to Tridiagonal or
Diagonal Form: The Methods of Givens and Jacobi

In Givens’ method (1954), a precursor of the Householder method, the
chain

A =: A0 → A1 → · · · → Am, Ai = T−1
i Ai−1Ti,

for the transformation of a Hermitian matrix A to tridiagonal form B = Am
is constructed by means of unitary matrices Ti = Ωjk of the form (ϕ, ψ
real)

(6.5.2.1) Ωjk =

1 0
. . .

1

cosϕ −e−iψ sinϕ

1
. . .

1

eiψ sinϕ cosϕ

1
. . .

0 1

← j

← k

.

In order to describe the method of Givens we assume for simplicity that
A = AH is real; we can choose in this case ψ = 0, and Ωjk is orthogonal.
Note that in the left multiplication A → Ω−1

jk A = ΩHjkA only rows j and
k of A undergo changes, while in the right multiplication A → AΩjk only
columns j and k change. We describe only the first transformation step
A = A0 → T−1

1 A0 =: A′
0 → A′

0T1 = T−1
1 A0T1 =: A1. In the half step

A0 → A′
0 the matrix T1 = Ω23, T−1

1 = ΩH23 is chosen such [see Section
4.9] that the element of A′

0 = ΩH23A0 in position (3, 1) is annihilated; in
the subsequent right multiplication by Ω23, A′

0 → A1 = A′
0Ω23, the zero

position (3, 1) is preserved. Below is a sketch for a 4 × 4 matrix, where
changing elements are denoted by ∗:

A0 =

x x x x
x x x x
x x x x
x x x x

 → ΩH23A0 =

x x x x
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
x x x x

 = A′
0

→ A′
0Ω23 =

x ∗ 0 x
x ∗ ∗ x
0 ∗ ∗ x
x ∗ ∗ x

 =: A1.

6.5 Reduction of Matrices to simpler Form 395

Since with A0, also A1 is Hermitian, the transformation A′
0 → A1 also

annihilates the element in position (1, 3). After this, the element in position
(4, 1) is transformed to zero by a Givens rotation T2 = Ω24, etc. In general,
one takes for Ti successively the matrices

Ω23 , Ω24 , . . . , Ω2n ,
Ω34 , . . . , Ω3n ,

...
Ωn−1,n ,

and chooses Ωjk, j = 2, 3, . . . , n− 1, k = j+1, j+2, . . . , n, so as to anni-
hilate the element in position (k, j − 1). A comparison with Householder’s
method shows that this variant of Givens method requires about twice as
many operations. For this reason, Householder’s method is usually pre-
ferred. There are, however, modern variants (“rational Givens transforma-
tions”) which are comparable to the Householder method.

The method of Jacobi, too, employs similarity transformations with
the special unitary matrices Ωjk (6.5.2.1); however, it no longer produces
a finite sequence ending in a tridiagonal matrix, but an infinite sequence
of matrices A(i), i = 0, 1, . . . , converging to a diagonal matrix

D =

λ1 0
. . .

0 λn.

Here, the λi are just the eigenvalues of A. To explain the method, we again
assume for simplicity that A is a real symmetric matrix. In the transfor-
mation step

A(i) → A(i+1) = ΩHjkA
(i)Ωjk

the quantities c := cosϕ, s := sinϕ of the matrix Ωjk, j < k, in (6.5.2.1)
are now determined so that a′

jk = 0 (we denote the elements of A(i) by ars,
those of A(i+1) by a′

rs):

A(i+1) =

a′
11 . . . a′

1,j . . . a′
1,k . . . a′

1,n
...

...
...

...
a′
j1 . . . a′

j,j . . . 0 . . . a′
j,n

...
...

...
...

a′
k1 . . . 0 . . . a′

kk . . . a′
k,n

...
...

...
...

a′
n1 . . . a′

n,j . . . a′
n,k . . . a′

n,n

.

Only the entries in rows and columns j and k (in bold face) are changed,
according to the formulas

396 6 Eigenvalue Problems

(6.5.2.2)

a′
rj = a′

jr = carj + sark

a′
rk = a′

kr = −sarj + cark

}
for r �= j, k,

a′
jj = c2ajj + s2akk + 2csajk,

a′
jk = a′

kj = −cs(ajj − akk) + (c2 − s2)ajk
!= 0,

a′
kk = s2ajj + c2akk − 2csajk.

From this, one obtains for the angle ϕ the defining equation

tan 2ϕ =
2cs

c2 − s2 =
2ajk

ajj − akk
, |ϕ| ≤ π

4
.

By means of trigonometric identities, one can compute from this the quan-
tities c and s and, by (6.5.2.2), the a′

rs.
It is recommended, however, that the following numerically more stable

formulas be used [see Rutishauser (1971), where an algol program can also
be found]. First compute the quantity ϑ := cot 2ϕ from

ϑ :=
ajj − akk

2ajk
,

and then t := tanϕ as the root of smallest modulus of the quadratic equa-
tion

t2 + 2tϑ− 1 = 0,

that is,

t =
s(ϑ)

|ϑ| +
√

1 + ϑ2
, s(ϑ) :=

{
1 if ϑ ≥ 0,
−1 otherwise,

or t := 1/2ϑ if |ϑ| is so large that ϑ2 would overflow. Obtain the quantities
c and s from

c :=
1√

1 + t2
, s := t c.

Finally compute the number τ := tan(ϕ/2) from

τ :=
s

(1 + c)
,

and with the aid of s, t and τ rewrite the formulas (6.5.2.2) in a numerically
more stable way as

a′
rj = a′

jr := arj + s · (ark − τ arj)

a′
rk = a′

kr := ark − s · (arj + τ ark)

}
for r �= j, k,

a′
jj := ajj + t ajk,

a′
jk = a′

kj := 0,

a′
kk := akk − t ajk.

6.5 Reduction of Matrices to simpler Form 397

For the proof of convergence, one considers

S(A(i)) :=
∑
j
=k

∣∣ajk∣∣2, S(A(i+1)) =
∑
j
=k

∣∣a′
jk

∣∣2
the sums of the squares of the off-diagonal elements of A(i) and A(i+1),
respectively. For these one finds, by (6.5.2.2),

0 ≤ S
(
A(i+1)) = S

(
A(i))− 2

∣∣ajk∣∣2 < S(A(i)) if ajk �= 0.

The sequence of nonnegative numbers S(A(i)) therefore decreases mono-
tonically, and thus converges. One can show that limi→∞ S(A(i)) = 0 (i.e.,
the A(i) converge to a diagonal matrix), provided the transformations Ωjk
are executed in a suitable order, namely row-wise,

Ω12 , Ω13 , . . . , Ω1n ,
Ω23 , . . . , Ω2n ,

...
Ωn−1,n ,

and, in this order, cyclically repeated. Under these conditions one can even
prove quadratic convergence of the Jacobi method, if A has only simple
eigenvalues:

S
(
A(i+N)) ≤

S
(
A(i)

)2
δ

with N :=
n(n− 1)

2
,

δ := min
i
=j

∣∣λi(A) − λj(A)
∣∣ > 0

[for the proof, see Wilkinson (1962); further literature: Rutishauser (1971),
Schwarz, Rutishauser and Stiefel (1972), Parlett(1980)].

In spite of this rapid convergence and the additional advantage that an
orthogonal system of eigenvectors of A can easily be obtained from the Ωjk
employed, it is more advantageous in practical situations, particularly for
large n, to reduce the matrix A to a tridiagonal matrix J by means of the
Householder method [see Section 6.5.1] and to compute the eigenvalues and
eigenvectors of J by the QR method, since this method converges cubically.
This all the more so if A has already the form of a band matrix: in the QR
method this form is preserved; the Jacobi method destroys it.

We remark that Eberlein developed a method for non-Hermitian ma-
trices similar to Jacobi’s. An algol program for this method, and further
details, can be found in Eberlein (1971).

398 6 Eigenvalue Problems

6.5.3 Reduction of a Hermitian Matrix to Tridiagonal Form:
The Method of Lanczos

Krylov sequences of vectors q, Aq, A2q, . . .belonging to an n × n matrix
and a starting vector q ∈ Cn were already used for the derivation of the
Frobenius normal form of a general matrix in Section 6.3. They also play an
important role in the method of Lanczos (1950) for reducing a Hermitian
matrix to tridiagonal form. Closely related to such a sequence of vectors is
a sequence of subspaces of Cn

Ki(q, A) := span[q,Aq, . . . , Ai−1q], i ≥ 1, K0(q, A) := {0}.

called Krylov spaces: Ki(q, A) is the subspace spanned by the first i vectors
of the sequence {Ajq}j≥0. As in Section 6.3, we denote by m the largest
index i for which q, Aq, . . . , Ai−1q are still linearly independent, that is,
dimKi(q, A) = i. Then m ≤ n, Amq ∈ Km(q, A), the vectors q, Aq, . . . ,
Am−1q form a basis of Km(q, A), and therefore AKm(q, A) ⊂ Km(q, A):
the Krylov space Km(q, A) is A-invariant and the map x �→ Φ(x) := Ax
describes a linear map of Km(q, A) into itself.

In Section 6.3 we arrived at the Frobenius matrix (6.3.1) when the map
Φ was described with respect to the basis q, Aq, . . . , Am−1q of Km(q, A).
The idea of the Lanczos method is closely related: Here, the map Φ is
described with respect to a special orthonormal basis q1, q2, . . . , qm of
Km(q, A), where the qj are chosen such that for all i = 1, 2, . . . , m, the
vectors q1, q2, . . . , qi form an orthonormal basis of Ki(q, A). If A = AH is a
Hermitian n× n matrix, then such a basis is easily constructed for a given
starting vector q. We assume q �= 0 in order to exclude the trivial case and
suppose in addition that ‖q‖ = 1, where ‖ · ‖ is the Euclidean norm. Then
there is a three-term recursion formula for the vectors qi [similar recursions
are known for orthogonal polynomials, cf. Theorem (3.6.3)]

(6.5.3.1a)
q1 := q, γ1q0 := 0,

Aqi = γiqi−1 + δiqi + γi+1qi+1 for i ≥ 1,

where

(6.5.3.1b)
δi := qHi Aqi,

γi+1 := ‖ri‖ with ri := Aqi − δiqi − γiqi−1,
qi+1 := ri/γi+1, if γi+1 �= 0.

Here, all coefficients γi, δi are real. The recursion breaks off with the first
index i =: i0 with γi+1 = 0, and then the following holds

i0 = m = max
i

dimKi(q, A).

6.5 Reduction of Matrices to simpler Form 399

Proof. We show (6.5.3.1) by induction over i. Clearly, since ‖q‖ = 1, the
vector q1 := q provides an orthonormal basis for K1(q, A). Assume now
that for some j ≥ 1 vectors q1, . . . , qj are given, so that (6.5.3.1) and

span[q1, . . . , qi] = Ki(q, A)

hold for all i ≤ j, and that ri �= 0 in (6.5.3.1b) for all i < j. We show
first that these statements are also true for j + 1, if rj �= 0. In fact, then
γj+1 �= 0, δj and qj+1 are well defined by (6.5.3.1b), and ‖qj+1‖ = 1. The
vector qj+1 is orthogonal to all qi with i ≤ j: This holds for i = j, because
γj+1 �= 0, because

Aqj = γjqj−1 + δjqj + γj+1qj+1

from the definition of δj , and using the induction hypothesis

γj+1q
H
j qj+1 = qHj Aqj − δjqHj qj = 0.

For i = j − 1, the same reasoning and A = AH first give

γj+1q
H
j−1qj+1 = qHj−1Aqj − γjqHj−1qj−1 = (Aqj−1)Hqj − γj .

The orthogonality of the qi for i ≤ j and Aqj−1 = γj−1qj−2+δj−1qj−1+γjqj
then imply (Aqj−1)Hqj = γ̄j = γj , and therefore qTj−1qj+1 = 0. For i < j−1
we get the same result with the aid of Aqi = γiqi−1 + δiqi + γi+1qi+1:

γj+1q
H
i qj+1 = qHi Aqj = (Aqi)Hqj = 0.

Finally, since span[q1, . . . , qi] = Ki(q, A) ⊂ Kj(q, A) for i ≤ j, we also
have

Aqj ∈ Kj+1(q, A),

which implies by (6.5.3.1b)

qj+1 ∈ span[qj−1, qj , Aqj] ⊂ Kj+1(q, A),

and therefore span[q1, . . . , qj+1] ⊂ Kj+1(q, A). Since the orthonormal vec-
tors q1, . . . , qj+1 are linearly independent and dimKj+1(q, A) ≤ j + 1 we
obtain

Kj+1(q, A) = span[q1, . . . , qj+1].

This also shows j + 1 ≤ m = maxi dimKi(q, A), and i0 ≤ m for the break-
off index i0 of (6.5.3.1). On the other hand, by the definition i0

Aqi0 ∈ span[qi0−1, qi0] ⊂ span[q1, . . . , qi0] = Ki0(q, A),

so that, because

Aqi ∈ span[q1, . . . , qi+1] = Ki+1(q, A) ⊂ Ki0(q, A) for i < i0

400 6 Eigenvalue Problems

we get the A-invariance of Ki0(q, A), AKi0(q, A) ⊂ Ki0(q, A). There-
fore i0 ≥ m, since Km(q, A) is the first A-invariant subspace among the
Ki(q, A). This finally shows i0 = m, and the proof is complete. ��

The recursion (6.5.3.1) can be written in terms of the matrices

Qi := [q1, . . . , qi], Ji :=

δ1 γ2 0

γ2 δ2
. . .

. γi
0 γi δi

 , 1 ≤ i ≤ m,

as a matrix equation

(6.5.3.2)
AQi = QiJi + [0, . . . , 0, γi+1qi+1]

= QiJi + γi+1qi+1e
T
i , i = 1, 2, . . . , m,

where ei := [0, . . . , 0, 1]T ∈ IRi is the ith axis vector of IRi. This equation
is easily verified by comparing the jth columns, j = 1, . . . , i, on both sides.
Note that the n× i matrices Qi have orthonormal columns, QHi Qi = Ii(:=
i × i identity matrix) and the Ji are real symmetric tridiagonal matrices.
Since i = m is the first index with γm+1 = 0, the matrix Jm is irreducible,
and the preceding matrix equation reduces to [cf. (6.3.3)]

AQm = QmJm

where QHmQm = Im. Any eigenvalue of Jm is also an eigenvalue of A, since
Jmz = λz, z �= 0 implies x := Qmz �= 0 and

Ax = AQmz = QmJmz = λQmz = λx.

Ifm = n, i.e., if the method does not terminate prematurely with anm < n,
then Qn is a unitary matrix, and the tridiagonal matrix Jn = QHn AQn is
unitarily similar to A.

Given any vector q =: q1 with ‖q‖ = 1, the method of Lanczos consists
of computing the numbers γi, δi, i = 1, 2, . . . , m, (γ1 := 0), and the
tridiagonal matrix Jm by means of (6.5.3.1). Subsequently, one may apply
the methods of Section 6.6 to compute the eigenvalues and eigenvectors
of Jm (and thereby those of A). Concerning the implementation of the
method, the following remarks are in order:

1. The number of operations can be reduced by introducing an auxiliary
vector defined by

ui := Aqi − γiqi−1.

Then ri = ui − δiqi, and the number

δi = qHi Aqi = qHi ui

6.5 Reduction of Matrices to simpler Form 401

can also be computed from ui, since qHi qi−1 = 0.

2. It is not necessary to store the vectors qi if one is not interested in
the eigenvectors of A: In order to carry out (6.5.3.1) only two auxiliary
vectors v, w ∈ Cn are needed, where initially v := q is the given starting
vector with ‖q‖ = 1. Within the following program, which implements the
Lanczos algorithm for a given Hermitian n×n matrix A = AH , vk and wk,
k = 1, . . . , n, denote the components of v and w, respectively:

w := 0; γ1 := 1; i := 1;
1: if γi �= 0 then

begin if i �= 1 then

for k := 1 step 1 until n do

begin t := vk; vk := wk/γi; wk := −γit end;
w := Av + w; δi := vHw; w := w − δiv;
m := i; i := i+ 1; γi :=

√
wHw ;

goto 1;
end;

Each step i→ i+ 1 requires about 5n scalar multiplications and one mul-
tiplication of the matrix A with a vector. Therefore, the method is inex-
pensive if A is sparse, so that it is particularly valuable for solving the
eigenvalue problem for large sparse matrices A = AH .

3. In theory, the method is finite: it stops with the first index i = m ≤ n
with γi+1 = 0. However, because of the influence of roundoff, one will rarely
find a computed γi+1 = 0 in practice. Yet, it is usually not necessary to
perform many steps of the method until one finds a zero or a very small
γi+1: The reason is that, under weak assumptions, the largest and smallest
eigenvalues of Ji converge very rapidly with increasing i toward the largest
and smallest eigenvalues of A [Kaniel-Paige theory: see Kaniel (1966), Paige
(1971), and Saad (1980)]. Therefore, if one is only interested in the extreme
eigenvalues of A (which is quite frequently the case in applications), only
relatively few steps of Lanczos’ method are necessary to find a Ji, i � n,
with extreme eigenvalues that already approximate the extreme eigenvalues
of A to machine precision.

4. The method of Lanczos will generate orthogonal vectors qi only in
theory: In practice, due to roundoff, the vectors q̃i actually computed be-
come less and less orthogonal as i increases. This defect could be corrected
by reorthogonalizing a newly computed vector q̂i+1 with respect to all pre-
vious vectors q̃i, j ≤ i, that is, by replacing q̂i+1 by

q̃i+1 := q̂i+1 −
i∑

j=1

(
q̃Hj q̂i+1

)
q̃j .

402 6 Eigenvalue Problems

However, reorthogonalization is quite expensive: The vectors q̃i have to
be stored, and step i of the Lanczos method now requires O(i · n) opera-
tions instead of O(n) operations as before. But it is possible to avoid a full
reorthogonalization to some extent and still obtain very good approxima-
tions for the eigenvalues of A in spite of the difficulties mentioned. Details
can be found in the following literature, which also contains a systematic
investigation of the interesting numerical properties of the Lanczos method:
Paige (1971), Parlett and Scott (1979), and Cullum and Willoughby (1985),
where one can also find programs.

6.5.4 Reduction to Hessenberg Form

It was already observed in Section 6.5.1 that one can transform a given
n × n matrix A by means of n − 2 Householder matrices Ti similarly to
Hessenberg form B,

A := A0 → A1 → · · · → An−2 = B, Ai = T−1
i Ai−1Ti.

We now wish to describe a second algorithm of this kind, in which one uses
as transformation matrices Ti permutation matrices

Prs := [e1, . . . , er−1, es, er+1, . . . , es−1, er, es+1, . . . , en]

(here ei is the ith axis vector of IRn), and elimination matrices of the form

Gj =

1
. . .

1
lj+1,j 1

...
. . .

lnj 1

with |lij | ≤ 1.

These matrices have the property

P−1
rs = PTrs = Prs,

G−1
j =

1
. . .

1
−lj+1,j 1

...
. . .

−lnj 1

.(6.5.4.1)

A left multiplication P−1
rs A of A by P−1

rs = Prs has the effect of interchang-
ing rows r and s of A, whereas a right multiplication APrs interchanges

6.5 Reduction of Matrices to simpler Form 403

columns r and s of A. A left multiplication G−1
j A of A by G−1

j has the ef-
fect of subtracting lrj times row j from row r of the matrix A for r = j+1,
j+2, . . . , n, while a right multiplication AGj means that lrj times column
r is added to column j of A for r = j + 1, j + 2, . . . , n.

In order to successively transform A to Hessenberg form by means of
similarity transformations of the type considered, we proceed similarly as in
Gaussian elimination [see Section 4.1] and as in Householder’s method [see
Section 6.5.1]: Starting with A0 := A one generates further matrices Ai,
i = 1, 2, . . . , n−2, by similarity transformations. Here Ai is a matrix whose
first i columns have already Hessenberg form. In step i, Ai−1 → Ai :=
T−1
i Ai−1Ti, one uses as Ti a product Ti = Pi+1,sGi+1 of a permutation
Pi+1,s (where s ≥ i + 1) with an elimination matrix Gi+1. Thus step i
consists of two half steps

Ai−1 −→ A′ := Pi+1,sAi−1Pi+1,s −→ Ai := G−1
i+1A

′Gi+1.

The first corresponds to finding a pivot a′
i+1,i by partial pivoting as in

Gaussian elimination; this pivot is then used in the second half step to
annihilate the nonzero elements below the subdiagonal of column i of A′

by means of the elimination matrix Gi+1.
After n − 2 steps of this type one ends up with a Hessenberg matrix

B = An−2.

Since the method proceeds as in 6.5.1, we illustrate only the first step A =
A0 → A1 = T−1

1 AT1, T1 = P2,sG2, for n = 4 (here, ∗ denotes changing elements).
First one determines by column pivoting the element as,1 of maximal modulus

in the first column of A below the diagonal, s ≥ 2, which is then shifted to position
(2,1) by a row permutation (in the scetch s = 4, the pivot is marked by ©∗):

A = A0 =

 x x x x
x x x x
x x x x
©∗ x x x

 −→ P24A0 =

 x x x x
©∗ ∗ ∗ ∗
x x x x
∗ ∗ ∗ ∗

−→ A′ = (P24A0)P24 =

 x ∗ x ∗
©∗ ∗ x ∗
x ∗ x ∗
x ∗ x ∗

Then suitable multiples of row 2 of A′ are subtracted from rows j > 2 in order
to annihilate the elements below the pivot, A′ → A′′ := G−1

2 A′, and finally one
computes A1 := A′′G2:

A′ −→ A′′ =

 x x x x
©∗ x x x
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 −→ A1 =

 x ∗ x x
©∗ ∗ x x
0 ∗ x x
0 ∗ x x

 .
algol programs for this algorithm and for the back transformation of

the eigenvectors can be found in Martin and Wilkinson (1971); fortran

programs, in Smith et al. (1976).

404 6 Eigenvalue Problems

The numerical stability of this method can be examined as follows: Let
Āi and T̄i be the matrices actually obtained in place of the Ai, Ti during the
course of the algorithm in a floating-point computation. In view (6.5.4.1),
no further rounding errors are committed in the computation of T̄−1

i from
T̄i,

T̄−1
i = fl

(
T̄−1
i

)
,

and by definition of Āi one has

(6.5.4.3) Āi = fl
(
T̄−1
i Āi−1T̄i

)
= T̄−1

i Āi−1T̄i +Ri.

With the methods of Section 1.3 one can derive for the error matrix Ri
estimates of the following form:

(6.5.4.4) lub∞
(
Ri
)
≤ f

(
n
)
eps lub∞

(
Āi−1

)
,

where f(n) is a certain function of n with f(n) = O(nα), α ≈ 1 [cf. Exercise
13]. It finally follows from (6.5.4.3), since A = Ā0, that

(6.5.4.5) Ān−2 = T̄−1
n−2 · · · T̄−1

1 (A+ F)T̄1 · · · T̄n−2

where

(6.5.4.6) F =
n−2∑
i=1

T̄1T̄2 · · · T̄iRiT̄−1
i · · · T̄−1

2 T̄−1
1 .

This shows that Ān−2 is exactly similar to a perturbed initial matrix A+F .
The smaller F is compared to A, the more stable is the method.

For the matrices T̄i we now have, in view of (6.5.4.1) and |lij | ≤ 1,

lub∞
(
T̄i
)
≤ 2, lub∞

(
T̄−1
i

)
≤ 2,

so that, rigorously,

(6.5.4.7) lub∞
(
T̄1 · · · T̄i

)
≤ 2i.

As a consequence, taking note of Āi ≈ T̄−1
i · · · T̄−1

1 AT̄1 · · · T̄i, (6.5.4.4), and
(6.5.4.6), on can get the estimates

(6.5.4.8)

lub∞
(
Āi
)
≤̇ Ci lub∞

(
A
)
, Ci := 22i,

lub∞
(
F
)
≤ Kf

(
n
)
eps lub∞

(
A
)
, K :=

n−2∑
i=1

24i−2,

with a factorK = K(n) which grows rapidly with n. Fortunately, the bound
(6.5.4.7) in most practical cases is much too pessimistic. It is already rather
unlikely that

lub∞
(
T̄1 · · · T̄i

)
≥ 2i for i ≥ 2.

6.6 Methods for Determining the Eigenvalues and Eigenvectors 405

In all these cases the constants Ci and K in (6.5.4.8) can be replaced by
substantially smaller constants, which means that in most cases F is small
compared to A and the method is numerically stable.

For non-Hermitian matrices Housholder’s reduction method [see Sec-
tion 6.5.1] requires about twice as many operations as the method described
in this section. Since in most practical cases this method is not essentially
less stable than the Householder method, it is preferred in practice (tests
even show that the Householder method, due to the larger number of arith-
metic operations, often produces somewhat less accurate results).

6.6 Methods for Determining the Eigenvalues and
Eigenvectors

In this section we first describe how classical methods for the determination
of zeros of polynomials (see Sections 5.5, 5.6] can be used to determine the
eigenvalues of Hermitian tridiagonal and Hessenberg matrices.

We then note some iterative methods for the solution of the eigenvalue
problem. A prototype of these methods is the simple vector iteration, in
which one iteratively computes a specified eigenvalue and corresponding
eigenvector of a matrix. A refinement of this method is Wielandt’s inverse
iteration method, by means of which all eigenvalues and eigenvectors can
be determined, provided one knows sufficiently accurate approximations for
the eigenvalues. To these iterative methods, finally, belong also the LR and
the QR method for the calculation of all eigenvalues. The last two methods,
especially the QR method, are the best methods currently known for the
solution of the eigenvalue problem.

6.6.1 Computation of the Eigenvalues of a Hermitian
Tridiagonal Matrix

For determining the eigenvalues of a Hermitian tridiagonal matrix

(6.6.1.1) J =

δ1 γ̄2 0

γ2 δ2
. . .

. γ̄n
0 γn δn

 , δi = δ̄i,

there are (in addition to the most important method, the QR method,
which will be described in Section 6.6.6) two obvious methods which we
now wish to discuss. Without restricting generality, let J be an irreducible
tridiagonal matrix, i.e., γi �= 0 for all i. Otherwise, J would decompose into
irreducible tridiagonal matrices J (i), i = 1, . . . , k,

406 6 Eigenvalue Problems

J =

J (1) 0

J (2)

. . .
0 J (k)

 ;

but the eigenvalues of J are just the eigenvalues of the J (i), i = 1, . . . ,
k, so that it suffices to consider irreducible matrices J . The characteristic
polynomial ϕ(µ) of J can easily be computed by recursion: indeed, letting

pi(µ) := det(Ji − µI), Ji :=

δ1 γ̄2 0

γ2 δ2
. . .

. γ̄i
0 γi δi

 ,
and expanding det(Ji − µI) by the last column, one finds the recurrence
relations

(6.6.1.2)

p0(µ) := 1,
p1(µ) = δ1 − µ,
pi(µ) = (δi − µ)pi−1(µ) − |γi|2pi−2(µ), i = 2, 3, . . . , n,
ϕ(µ) ≡ pn(µ).

Since δi and |γi|2 are real, the polynomials pi(µ) form a Sturm sequence
[see Theorem (5.6.5)], provided that γi �= 0 for i = 2, . . . , n.

It is possible, therefore, to determine the eigenvalues of J with the
bisection method described in Section 5.6. This method is recommended
especially if one wants to compute not all, but only certain prespecified
eigenvalues of J . It can further be recommended on account of its numerical
stability when some eigenvalues of J are lying very close to each other [see
Barth, Martin and Wilkinson (1971) for an algol program].

Since the eigenvalues of J are all real and simple, they can also be deter-
mined with Newton’s method, say, in Maehly’s version [see (5.5.13)], at least
if the eigenvalues are not excessively clustered. The values pn(λ(j)), p′

n(λ
(j))

of the characteristic polynomial and its derivative required for Newton’s
method can be computed recursively: pn(λ(j)) by means of (6.6.1.2), and
p′
n(λ

(j)) by means of the following formulas which are obtained by differ-
entiating (6.6.1.2):

p′
0(µ) = 0,
p′
1(µ) = −1,

p′
i(µ) = −pi−1(µ) + (δi − µ)p′

i−1(µ) − |γi|2p′
i−2(µ), i = 2, . . . , n.

A starting value λ(0) ≥ maxi λi for Newton’s method can be obtained from

6.6 Methods for Determining the Eigenvalues and Eigenvectors 407

(6.6.1.3) Theorem. The eigenvalues λj of the matrix J in (6.6.1.1) satisfy
the inequality∣∣λj∣∣ ≤ max

1≤i≤n

{
|γi| + |δi| + |γi+1|

}
, γ1 := γn+1 := 0.

Proof. For the maximum norm ‖x‖∞ = max |xi| one has

lub∞(J) = max
1≤i≤n

{
|γi| + |δi| + γi+1|

}
,

and from Jx = λjx, x �= 0, there follows at once

|λj | ‖x‖∞ = ‖Jx‖∞ ≤ lub∞(J) · ‖x‖∞, ‖x‖∞ �= 0,

and hence |λj | ≤ lub∞(J). ��

6.6.2 Computation of the Eigenvalues of a Hessenberg Matrix.
The Method of Hyman

Besides the QR method [see Section 6.6.6], which is used most frequently
in practice, one can in principle use all methods of Chapter 5 to determine
the zeros of the polynomial p(µ) = det(B − µI) of a Hessenberg matrix
B = (bik). For this, as for example in the application of Newton’s method,
one must evaluate the values p(µ) and p′(µ) for given µ. The following
method for computing these quantities is due to Hyman:

We assume that B irreducible, i.e., that bi,i−1 �= 0 for i = 2, . . . , n.
For fixed µ on can then determine numbers α, x1, . . . , xn−1 such that
x = (x1, . . . , xn−1, xn), xn := 1, is a solution of the system of equations

(B − µI)x = αe1,

or, written out in full,

(6.6.2.1)

(b11 − µ)x1 + b12x2 + · · · + b1nxn = α,

b21x1 + (b22 − µ)x2 + · · · + b2nxn = 0,
...

bn,n−1xn−1 + (bnn − µ)xn = 0.

Starting with xn = 1, one can indeed determine xn−1 from the last equation
xn−2 from the second to last equation, . . . , x1 from the second equation,
and finally α from the first equation. The numbers xi and α of course
depend on µ. By interpreting (6.6.2.1) as an equation for x, given α, it
follows by Cramer’s rule that

1 = xn =
α(−1)n−1 b21b32 . . . bn,n−1

det(B − µI)
,

408 6 Eigenvalue Problems

or

(6.6.2.2) α = α(µ) =
(−1)n−1

b21b32 . . . bn,n−1
det(B − µI).

Apart from a constant factor, α = α(µ) is thus identical with the char-
acteristic polynomial of B. By differentiation with respect to µ, letting
x′
i := x′

i(µ) and observing xn ≡ 1, x′
n ≡ 0 one further obtains from (6.6.2.1)

the formulas

(b11 − µ)x′
1 − x1 + b12x′

2 + · · · + b1,n−1x
′
n−1 = α′,

b21x
′
1 + (b22 − µ)x′

2 − x2 + · · · + b2,n−1x
′
n−1 = 0,

...

bn,n−1x
′
n−1 − xn = 0,

which, together with (6.6.2.1) and starting with the last equation, can be
solved recursively for the xi, x′

i, α, and finally α′. In this manner one can
compute α = α(µ) and α′(µ) for every µ, and thus apply Newton’s method
to compute the zero of α(µ), i.e., by (6.6.2.2), the eigenvalues of B.

6.6.3 Simple Vector Iteration and Inverse Iteration of Wielandt

A precursor of all iterative methods for determining eigenvalues and eigen-
vectors of a matrix A is the simple vector iteration: Starting with an arbi-
trary initial vector t0 ∈ Cn, one forms the sequence of vectors {ti} with

ti = Ati−1, i = 1, 2,

Then
ti = Ait0.

In order to examine the convergence of this sequence, we first assume A to
be a diagonalizable n× n matrix having eigenvalues λi,

|λ1| ≥ |λ2| ≥ · · · ≥ |λn|.

We further assume that there is no eigenvalue λj different from λ1 with
|λj | = |λ1|, i.e., there is an integer r > 0 such that

(6.6.3.1)
λ1 = λ2 = · · · = λr

|λ1| = · · · = |λr| > |λr+1| ≥ · · · ≥ |λn|.

The matrixA, being diagonalizable, has n linearly independent eigenvectors
xi, Axi = λixi, which forms a basis of Cn. We can therefore write t0 in the
form

6.6 Methods for Determining the Eigenvalues and Eigenvectors 409

(6.6.3.2) t0 = ρ1x1 + · · · + ρnxn.

For ti there follows the representation

(6.6.3.3) ti = Aito = ρ1λ
i
1x1 + · · · + ρnλinxn.

Assuming now further that t0 satisfies

ρ1x1 + · · · + ρrxr �= 0

—this makes precise the requiremant that t0 be “sufficiently general”— it
follows from (6.6.3.3) and (6.6.3.1) that

(6.6.3.4)
1
λi1
ti = ρ1x1+ · · ·+ρrxr+ρr+1

(
λr+1

λ1

)i
xr+1+ · · ·+ρn

(
λn
λ1

)i
xn

and thus, because
∣∣λj/λ1

∣∣ < 1 for j ≥ r + 1,

(6.6.3.5) lim
i→∞

1
λi1
ti = ρ1x1 + · · · + ρrxr.

Normalizing the ti =:
(
τ

(i)
1 , . . . , τ

(i)
n

)T in any way, for example, by letting

zi :=
ti

τ
(i)
ji

,
∣∣τ (i)
ji

∣∣ = max
s

∣∣τ (i)
s

∣∣,
it follows from (6.6.3.5) that

(6.6.3.6) lim
i→∞

τ
(i+1)
ji

τ
(i)
ji

= λ1, lim
i→∞

zi = α(ρ1x1 + · · · + ρrxr),

where α �= 0 is a normalization constant. Under the stated assumptions
the method thus furnishes both the dominant eigenvalue λ1 of A and an
eigenvector belonging to λ1, namely the vector z = α(ρ1x1+· · ·+ρrxr), and
we say that “the vector iteration converges toward λ1 and a corresponding
eigenvector”.

Note that for r = 1 (λ1 a simple eigenvalue) the limit vector z is
independent of the choice to t0 (provided only that ρ1 �= 0). If λ1 is a
multiple dominant eigenvalue (r > 1), then the eigenvector z obtained
depends on the ratios ρ1 : ρ2 : . . . : ρr, and thus on the initial vector t0. In
addition, it can be seen from (6.6.3.4) that we have linear convergence with
convergence factor |λr+1/λ1|. The proof of convergence, at the same time,
shows that the method does not always converge to λ1 and an associated
eigenvector, but may converge toward an eigenvalue λk and an eigenvector
belonging to λk, if in the decomposition (6.6.3.2) of t0 one has

ρ1 = · · · = ρk−1 = 0, ρk �= 0

410 6 Eigenvalue Problems

(and there is no eigenvalue which differs from λk and has the same modulus
as λk). This statement, however, has only theoretical significance, for even
if initially one has exactly ρ1 = 0 for t0, due to the effect of rounding errors
we will get for the computed t̄1 = fl(At0), in general,

t̄1 = ελ1x1 + ρ̄2λ2x2 + · · · + ρ̄nλnxn
with a small ε �= 0 and ρ̄i ≈ ρi, i = 2, . . . , n, so that the method eventually
still converges to λ1 and a corresponding eigenvector.

Suppose now that A is a nondiagonalizable matrix with a uniquely de-
termined dominant eigenvalue λ1 (i.e., |λ1| = |λi| implies λ1 = λi). Replac-
ing (6.6.3.2) by a representation of t0 as linear combination of eigenvectors
and principal vectors of A, one can show in the same way that for “suffi-
ciently general” t0 the vector iteration converges to λ1 and an associated
eigenvector.

For practical computation the simple vector iteration is only condition-
ally useful, since it converges slowly if the moduli of the eigenvalues are
not sufficiently separated, and moreover furnishes only one eigenvalue and
associated eigenvector. These disadvantages are avoided in the inverse iter-
ation (also called fractional iteration) of Wielandt. Here one assumes that
a good approximation λ is already known for one of the eigenvalues λ1, . . . ,
λn of A, say λj :

(6.6.3.7) |λj − λ| � |λk − λ| for all λk �= λj .

Starting with a “sufficiently general” initial vector t0 ∈ Cn, one then forms
the vectors ti, i = 1, 2, . . . , according to

(6.6.3.8) (A− λI)ti = ti−1.

If λ �= λi, i = 1, . . . , n, then (A − λI)−1 exists and (6.6.3.8) is equivalent
to

ti = (A− λI)−1ti−1,

i.e., to the simple vector iteration with the matrix (A − λI)−1 and the
eigenvalues 1/(λk − λ), k = 1, 2, . . . , n. Because of (6.6.3.7) one has∣∣∣∣ 1

λj − λ

∣∣∣∣ � ∣∣∣∣ 1
λk − λ

∣∣∣∣ for λk �= λj .

Assuming A again diagonalizable, with eigenvectors xi, it follows from t0 =
ρ1x1 + · · · + ρnxn (if λj is a simple eigenvalue) that

(6.6.3.9)

ti = (A− λI)−1t0 =
n∑
k=1

ρk

(λk − λ)i
xk,

(λj − λ)iti = ρjxj +
∑
k
=j

(
λj − λ
λk − λ

)i
ρkxk,

lim
i→∞

(λj − λ)iti = ρjxj .

6.6 Methods for Determining the Eigenvalues and Eigenvectors 411

The smaller |λj−λ|/|λk−λ| for λk �= λj (i.e., the better the approximation
λ), the better will be the convergence.

The relations (6.6.3.9) may give the impression that an initial vector t0
is the more suitable for inverse iteration the more closely it agrees with the
eigenvector xj , to whose eigenvalue λj one knows a good approximation λ.
They further seem to suggest that with the choice t0 ≈ xj the “accuracy”
of the ti increases uniformly with i. This impression is misleading, and true
in general only for the well-conditioned eigenvalues λj of a matrix A [see
Section 6.9], i.e., for the eigenvalues λj which under a small perturbation
of A change only a little:

λj(A+ +A) − λj(A) = O(eps), if
lub(+A)
lub(A)

= O(eps).

According to Section 6.9 all eigenvalues of symmetric matrices A are
well conditioned. A poor condition for λj must be expected in those cases
in which λj is a multiple zero of the characteristic polynomial of A and A
has nonlinear elementary divisors, or, what often occurs in practice, when
λj belongs to a cluster of eigenvalues whose eigenvectors are almost linearly
dependent.

Before we study in an example the possible complications for the inverse
iteration caused by an ill-conditioned λj , let us clarify what we mean by a
numerically acceptable eigenvalue λ (in the context of the machine precision
eps used) and corresponding eigenvector xλ �= 0 of a matrix A.

The number λ is called a numerically acceptable eigenvalue A if there
exists a small matrix +A with

lub(+A)/ lub(A) = O(eps)

such that λ is an exact eigenvalue of A++A. Such numerically acceptable
eigenvalues λ are produced by every numerically stable method for the
determination of eigenvalues.

The vector xλ �= 0 is called a numerically acceptable eigenvector
corresponding to a given approximation λ of an eigenvalue A if there exists
a small matrix +1A with

(6.6.3.10) (A+ +1A− λI)xλ = 0,
lub(+1A)

lub(A)
= O(eps).

Example 1. For the matrix
A =

[
1 1
0 1

]
the number λ := 1 +

√
eps is a numerical acceptable eigenvalue, for λ is an exact

eigenvalue of

A+ �A with �A :=

[
0 0

eps 0

]
.

412 6 Eigenvalue Problems

Although

xλ :=
[

1
0

]
is an exact eigenvector of A, it is not, in the sense of the above definition, a
numerically acceptable eigenvector corresponding to the approximation λ = 1 +√

eps, because every matrix

�1A =
[
α β
γ δ

]
with

(A+ �1A− λI)xλ = 0

has the form

�1A =

[√
eps β

0 δ

]
, β, δ arbitrary.

For all these matrices, lub∞(�1A) ≥
√

eps � O(eps · lub(A)).

It is thus possible to have the following paradoxical situation: Let λ0
be an exact eigenvalue of a matrix, x0 a corresponding exact eigenvector,
and λ a numerically acceptable approximation of λ0. Then x0 need not be
a numerically acceptable eigenvector to the given approximation λ of λ0.

If one has such a numerically acceptable eigenvector λ of A, then with
inverse iteration one merely tries to find a corresponding numerically ac-
ceptable eigenvector xλ. A vector tj , j ≥ 1, found by means of inverse
iteration from an initial vector t0 can be accepted as such an xλ, provided

(6.6.3.11)
‖tj−1‖
‖tj‖

= O(eps) · lub(A).

For then, in view of (A− λI)tj = tj−1, one has

(A+ +A− λI)tj = 0

with

+A : = −
tj−1t

H
j

tHj tj

lub2(+A) =
‖tj−1‖2

‖tj‖2
= O(eps lub2(A)).

It is now surprising that for ill-conditioned eigenvalues we can have an
iterate tj which is numerically acceptable, while its successor tj+1 is not:

Example 2. The matrix

A =
[
η 1
η η

]
, η = O(eps), lub∞(A) = 1 + |η|,

has the eigenvalues λ1 = η +
√
η, λ2 = η − √

η with corresponding eigenvectors

6.6 Methods for Determining the Eigenvalues and Eigenvectors 413

x1 =
[

1√
η

]
, x2 =

[
1

−√
η

]
.

Since η is small, A is very ill-conditioned and λ1, λ2 form a cluster of eigenval-
ues whose eigenvectors x1, x2 are almost linearly dependent [e.g., the slightly
perturbed matrix

Ã :=
[

0 1
0 0

]
= A+ �A, lub∞(�A)

lub∞(A)
=

|2η|
1 + |η| = O(eps),

has the eigenvalue λ(Ã) = 0 with min |λ(Ã) − λi| ≥
√

|η| − |η| � O(eps)]. The
number λ = 0 is a numerically acceptable eigenvalue of A to the eigenvector

xλ =
[

1
0

]
.

Indeed

(A+ �A− 0 · I)xλ = 0 for �A :=
[−η 0

−η 0

]
,

lub∞(�A)/ lub∞(A) =
|η|

1 + |η| ≈ O(eps).

Taking this numerically acceptable eigenvector

xλ =
[

1
0

]
as the initial vector t0 for the inverse iteration, and λ = 0 as an approximate
eigenvalue of A, one obtains after the first step

t1 :=
−1

1 − η

[
1

−1

]
.

The vector t1, is no longer numerically acceptable as an eigenvector of A, every
matrix �1A with

(A+ �1A− 0 · I)t1 = 0

having the form

�1A =
[
α β
γ δ

]
with α = 1 + β − η, γ = δ.

These matrices �1A all satisfy lub∞(�1A) ≥ 1−|η|; there no small among them
with lub∞(�A) ≈ O(eps).

On the other hand, every initial vector t0 of the form

t0 =
[
τ
1

]
with |τ | not too large produces for t1 a numerically acceptable eigenvector. For
example, if

t0 =
[

1
1

]
,

the vector

414 6 Eigenvalue Problems

t1 =
1
η

[
1
0

]
is numerically acceptable, as we just showed.

Similar circumstances to those in this example prevail in general when-
ever the eigenvalue considered has nonlinear elementary divisors. Suppose
λj is an eigenvalue of A for which there are elementary divisors of degrees
at most k [k = τj ; see (6.2.11)]. Through a numerically stable method one
can in general [see (6.9.11)] obtain only an approximately value λ within
the error λ− λj = O(eps1/k) [we assume for simplicity lub(A) = 1].

Let now x0, x1, . . . , xk−1 be a chain of principal vectors [see Sections
6.2, 6.3] for the eigenvalue λj ,

(A− λjI)xi = xi−1 for i = k − 1, . . . , 0, (x−1 := 0).

It then follows immediately, for λ �= λi, i = 1, . . . , n, that

(A− λI)−1[A− λI + (λ− λj)I
]
xi = (A− λI)−1xi−1,

(A− λI)−1xi =
1

λj − λxi +
1

λ− λj
(A− λI)−1xi−1,

i = k − 1, . . . , 0,

and from this, by induction,

(A− λI)−1xk−1 =
1

λj − λ xk−1 − 1
(λj − λ)2 xk−2 + · · · ± 1

(λj − λ)k x0.

For the initial vector t0 := xk−1, we thus obtain for the corresponding t1∥∥t1∥∥ ≈ O
(
(λj − λ)−k) = O(1/ eps),

and therefore ‖t0‖/‖t1‖ = O(eps), so that t1 is acceptable as an eigenvector
of A [see (6.6.3.11)]. If, however, we had taken as initial vector t0 := x0,
the exact eigenvector of A, we would get

t1 =
1

λj − λt0

and thus
‖t0‖
‖t1‖

= O
(
eps1/k

)
.

Since eps1/k � eps, the vector t1 is not a numerically acceptable eigenvector
to the approximate value λ at hand [cf. Example 1].

For this reason, one applies inverse iteration in practice only in a rather
rudimentary form: Having computed (numerically acceptable) approxima-
tions λ for the exact eigenvalues of A by means of a numerically stable

6.6 Methods for Determining the Eigenvalues and Eigenvectors 415

method, one tentatively determines, for a few different initial vectors t0,
the corresponding t1 and accepts as eigenvector that vector t1 for which
‖t0‖/‖t1‖ best represents a quantity of O(eps lub(A)).

Since the step t0 → t1 requires the solution of a system of linear equa-
tions (6.6.3.8), one applies inverse iteration in practice only for tridiago-
nal and Hessenberg matrices A. To solve the system of equations (6.6.3.8)
(A − λI is almost singular), one decomposes the matrix A − λI into the
product of a lower and an upper triangular matrix, L and R, respectively.
To ensure numerical stability one must use partial pivoting , i.e., one deter-
mines a permutation matrix P and matrices L, R with [see Section 4.1]

P (A− λI) = LR, L =

 1 0
...

. . .
x . . . 1

 , R =

x . . . x
. . .

...
0 x

 ,
|lik ≤ 1.

The solution t1 of (6.6.3.8) is then obtained from the two triangular
systems of equations

(6.6.3.12)
Lz = Pt0,

Rt1 = z.

For tridiagonal and Hessenberg matrices A, the matrix L is very sparse: In
each column of L at most two elements are different from zero. R for Hes-
senberg matrices A is an upper triangular matrix; for tridiagonal matrices
A, a matrix of the form

R =

∗ ∗ ∗ 0

· · ·
· · ·

· · ∗
· ∗

0 ∗

 ,

so that in each case the solution of (6.6.3.12) requires only a few operation.
Besides, ‖z‖ ≈ ‖t0‖, by the first relation in (6.6.3.12). The work can there-
fore be simplified further by determining t1 only from Rt1 = z, where one
tries to choose the vector z so that ‖z‖/‖t1‖ becomes as small as possible.

An algol program for the computation of the eigenvectors of a sym-
metric tridiagonal matrix using inverse iteration can be found in Peters
and Wilkinson (1971a); fortran programs, in Smith et al. (1976).

6.6.4 The LR and QR Methods

The LR-method of Rutishauser (1958) and the QR method of Francis
(1961/62) and Kublanovskaja (1961) are also iterative methods for the

416 6 Eigenvalue Problems

computation of the eigenvalues of an n×n matrix A. We first describe the
historically earlier LR method. Here, one generates a sequence of matri-
ces Ai, beginning with A1 := A, according to the following rules: Use the
Gauss elimination method [see Section 4.1] to present Ai as the product of
a lower triangular matrix Li = (ljk) with ljj = 1 and an upper triangular
matrix Ri

(6.6.4.1) Ai =: LiRi, Li =

 1 0
...

. . .
∗ · · · 1

 , Ri =

 ∗ · · · ∗
. . .

...
0 ∗

 .
Thereafter, let

Ai+1 := RiLi =: Li+1Ri+1, i = 1, 2,

From Section 4.1 we know that an arbitrary matrix Ai does not always
have a factorization Ai = LiRi. We assume, however, for the following
discussion that Ai can be so factored. We begin by showing the following.

(6.6.4.2) Theorem. If all decompositions Ai = LiRi exist, then
(a) Ai+1 is similar to Ai:

Ai+1 = L−1
i AiLi, i = 1, 2,

(b) Ai+1 = (L1L2 · · ·Li)−1A1(L1L2 · · ·Li), i = 1, 2,
(c) For the lower triangular matrix Ti := L1 · · ·Li and the upper triangular

matrix Ui := Ri · · ·R1 one has

Ai = Ai1 = TiUi, i = 1, 2,

Proof. (a) From Ai = LiRi we get

L−1
i AiLi = RiLi =: Ai+1.

(b) follows immediately from (a).
To prove (c), note that (b) implies

L1 · · ·LiAi+1 = A1L1 · · ·Li, i = 1, 2,

It follows for i = 1, 2, . . . that

TiUi = L1 · · ·Li−1(LiRi)Ri−1 · · ·R1

= L1 · · ·Li−1AiRi−1 · · ·R1

= A1L1 · · ·Li−1Ri−1 · · ·R1

= A1Ti−1Ui−1.

With this, the theorem is proved. ��

6.6 Methods for Determining the Eigenvalues and Eigenvectors 417

It is possible to show, under certain conditions, that the matrices Ai
converge to an upper triangular matrix A∞ with the eigenvalues λj of
A as diagonal elements λj = (A∞)jj . However, we wish to analyze the
convergence only for the QR method which is closely related to the LR
method, because the LR method has a serious drawback: it breaks down if
one of the matrices Ai does not have a triangular decomposition, and even
if the decomposition Ai = LiRi exists, the problem of computing Li and
Ri may be ill conditioned.

In order to avoid these difficulties (and make the method numerically stable),
one could think of forming the LR decomposition with partial pivoting:

PiAi =: LiRi, Pi permutation matrix, P−1
i = PT

i ,

Ai+1 : = RiP
T
i Li = L−1

i (PiAiP
T
i)Li.

There are examples, however, in which the modified process fails to converge:

A1 =
[

1 3
2 0

]
, λ1 = 3, λ2 = −2,

P1 =
[

0 1
1 0

]
, P1A1 =

[
2 0
1 3

]
=
[

1 0
1/2 1

] [
2 0
0 3

]
= L1R1,

A2 = R1P
T
1 L1 =

[
1 2
3 0

]
,

P2 =
[

0 1
1 0

]
, P2A2 =

[
3 0
1 2

]
=
[

1 0
1/3 1

] [
3 0
0 2

]
= L2R2,

A3 = R2P
T
2 L2 =

[
1 3
2 0

]
≡ A1.

The LR method without pivoting, on the other hand, would converge for this
example.

These difficulties of the LR method are avoided in the QR method of
Francis (1961/62), which can be regarded as a natural modification of the
LR algorithm. Formally the QR method is obtained if one replaces the LR
decompositions in (6.6.4.1) by QR decompositions [see Section 4.7]. Thus,
again beginning with A1 := A, the QR method generates matrices Qi, Ri,
and Ai according to the following rules:

(6.6.4.3)
Ai =: QiRi, QHi Qi = I, Ri =

 ∗ · · · ∗
. . .

...
0 ∗

 ,
Ai+1 := RiQi.

Here, the matrices are factored into a product of a unitary matrix Qi and
an upper triangular matrix Ri. Note that a QR decomposition Ai always
exists and that it can be computed with the methods of Section 4.7 in a

418 6 Eigenvalue Problems

numerically stable way: There are n− 1 Householder matrices H(i)
j , j = 1,

. . . , n− 1, satisfying
H

(i)
n−1 · · ·H(i)

1 Ai = Ri,

where Ri is upper triangular. Then, since
(
H

(i)
j

)H =
(
H

(i)
j

)−1 = H
(i)
j the

matrix
Qi := H

(i)
1 · · ·H(i)

n−1

is unitary and satisfies Ai = QiRi, so that Ai+1 can be computed as

Ai+1 = RiQi = RiH
(i)
1 · · ·H(i)

n−1.

Note further that the QR decomposition of a matrix is not unique. If S is
an arbitrary unitary diagonal matrix, i.e., a phase matrix of the form

S = diag(eiφ1 , eiφ2 , . . . , eiφn),

then QiS and SHRi are unitary and upper triangular, respectively, and
(QiS)(SHRi) = QiRi. In analogy to Theorem (6.6.4.2), the following holds.

(6.6.4.4) Theorem. The matrices Ai, Qi, Ri in (6.6.4.3) and

Pi := Q1Q2 · · ·Qi, Ui := RiRi−1 · · ·R1,

satisfy :
(a) Ai+1 is unitarly similar to Ai, Ai+1 = QHi AiQi.
(b) Ai+1 = (Q1 · · ·Qi)HA1(Q1 · · ·Qi) = PHi A1Pi.
(c) Ai = PiUi.

The proof is carried out in much the same way as for Theorem (6.6.4.2)
and is left to the reader.

In order to make the convergence properties [see (6.6.4.12)] of the QR
method plausible, we show that this method can be regarded as a natural
generalization of both the simple and inverse vector iteration [see Section
6.6.3]. As in the proof of (6.6.4.2), starting with P0 := I, we obtain from
(6.6.4.4) the relation

(6.6.4.5) PiRi = APi−1, i ≥ 1.

If we partition the matrices Pi and Ri as follows

Pi =
[
P ri , P̂

(r)
i

]
, Ri =

[
R

(r)
i ∗
0 R̂

(r)
i

]
,

so that P (r)
i is an n × r matrix and R(r)

i an r × r matrix, then (6.6.4.5)
implies

(6.6.4.6) AP
(r)
i−1 = P

(r)
i R

(r)
i for i ≥ 1, 1 ≤ r ≤ n.

6.6 Methods for Determining the Eigenvalues and Eigenvectors 419

Denoting the linear subspace, which is spanned by the orthonormal columns
of P (r)

i by P(r)
i := R

(
P

(r)
i

)
=
{
P

(r)
i z | z ∈ Cr

}
, we obtain

P(r)
i ⊃ AP(r)

i−1 = R
(
P

(r)
i R

(r)
i

)
for i ≥ 1, 1 ≤ r ≤ n,

with equality holding, when A is nonsingular, implying that all Ri, R
(r)
i

will also be nonsingular, that is, the QR method can be regarded as a
subspace iteration. The special case r = 1 in (6.6.4.6) is equivalent to the
usual vector iteration [see 6.6.3] with the starting vector e1 = P

(1)
0 : If we

write pi := P
(1)
i then

(6.6.4.7) r
(i)
11 pi = Api−1, ‖pi‖ = 1, i ≥ 1,

as follows from (6.6.4.6); also, R(1)
i = r

(i)
11 , and ‖P (1)

i ‖ = 1. The convergence
of the vector pi can be investigated as in 6.6.3: We assume for simplicity
that A is diagonalizable and has the eigenvalues λi with

|λ1| > |λ2| ≥ · · · |λn|.

Further let X = [x1, . . . , xn] = (xik), Y := X−1 = [y1, . . . , yn]T = (yik) be
matrices with

(6.6.4.8a) A = XDY, D =

λ1 0
. . .

0 λn

so that xi and yTi are a right and left eigenvector belonging to λi:

(6.6.4.8b) Axi = λixi, yTi A = λiy
T
i , yTi xk =

{ 1 for i = k,
0 otherwise.

If ρ1 = γ11 �= 0 holds in the decomposition of e1

e1 = ρ1x1 + · · · ρnxn, ρi = yTi e1 = yi1,

then by the results of 6.6.3 the ordinary vector iteration, tk := Ake1 satis-
fies:

(6.6.4.9) lim
k→∞

1
λk1
tk = ρ1x1.

On the other hand (6.6.4.7) implies

Aie1 = r
(1)
11 r

(2)
11 · · · r(i)11 pi.

Since ‖pi‖ = 1, there are phase factors σk = eiφk , |σk| = 1, so that

lim
i
σipi = x̂1, lim r(i)11

σi−1

σi
= λ1, where x̂1 := x1/‖x1‖.

420 6 Eigenvalue Problems

Thus, the r(i)11 and pi “essentially converge” (i.e., up to a phase factor)
toward λ1 and x̂1 as i tends to ∞. By the results of 6.6.3 the speed of
convergence is determined by the factor |λ2/λ1| < 1,

(6.6.4.10)
∥∥σipi − x̂1

∥∥ = O

(∣∣∣∣λ2

λ1

∣∣∣∣i).
Using (6.6.4.10) and Ai+1 = PHi APi [Theorem (6.6.4.4)(b)] it is easy
to see that the first column Aie1 of Ai converges to the vector λ1e1 =
[λ1, 0, . . . , 0]T as i→ ∞, and the smaller |λ2/λ1| < 1 is, the faster the error
‖Aie1 − λ1e1‖ = O((|λ2|/|λ1)i) tends to zero. We note that the condition
ρ1 = y11 �= 0, which ensures the convergence, is satisfied if the matrix Y
has a decomposition Y = LYRY into a lower triangular matrix LY with
(LY)jj = 1 and an upper triangular matrix RY .

It will turn out to be particularly important that the QR method is
also related to the inverse iteration [see 6.6.3] if A is nonsingular. Since
PHi Pi = I, we obtain from (6.6.4.5) PHi−1A

−1 = R−1
i P

H
i or

A−HPi−1 = PiR
−H
i .

Denote the n× (n− r+ 1) matrix consisting of the last n− r+ 1 columns
of Pi by P̂ (r)

i , denote the subspace generated by the columns of P̂ (r)
i by

P̂(r)
i = R(P̂ (r)

i), and denote the upper triangular matrix consisting of the
last n− r+ 1 rows and columns of Ri by R̂(r)

i . Then the last equation can
be written as a vector space iteration with the inverse A−H = (AH)−1 of
the matrix AH :

A−H P̂
(r)
i−1 = P̂

(r)
i

(
R̂

(r)
i

)−H

A−HP̂(r)
i−1 = P̂(r)

i

for i ≥ 1, 1 ≤ r ≤ n,

In the special case r = n this iteration reduces to an ordinary inverse vector
iteration for the last column p̂i := P̂

(n)
i of the matrices Pi:

A−H p̂i−1 = p̂i · ρ̄(i)nn, ρ(i)nn := (R−1
i)nn, ‖p̂i‖2 = 1,

arising from the starting vector p̂0 = en. Convergence of the iteration can
be investigated as in Section 6.6.3 and as previously. Again, the discussion
is easy if A is diagonalizable and A−H has a unique eigenvalue of maximal
modulus, i.e., if the eigenvalues λi of A now satisfy |λ1| ≥ · · · ≥ |λn−1| >
|λn| > 0 (note that A−H has the eigenvalues λ̄−1

j , j = 1, . . . , n). Let xi and
yTj be the right and left eigenvector of A belonging to the eigenvalue λi,
and consider (6.6.4.8). If the starting vector p̂0 = en is sufficiently general,
the vector p̂i will “essentially” converge toward a normalized eigenvector
u, ‖u‖ = 1, of A−H for its largest eigenvalue λ̄−1

n , A−Hu = λ̄−1
n u, or

6.6 Methods for Determining the Eigenvalues and Eigenvectors 421

equivalently uHA = λnu
H . Therefore the last rows eTnAi of the matrices

Ai will converge to λneTn = [0, . . . , 0, λn] as i→ ∞.
Now, the quotient |λn/λn−1| < 1 determines the convergence speed,

(6.6.4.11) ‖eTnAi − [0, . . . , 0, λn]‖ = O

(∣∣∣∣ λnλn−1

∣∣∣∣i),
since A−H has the eigenvalues λ̄−1

j satisfying |λ−1
n | > |λ−1

n−1| ≥ · · · ≥ |λ−1
1 |

by hypothesis. For the formal convergence analysis we have to write the
starting vector p̂0 = en as a linear combination

en = ρ1ȳ1 + · · · + ρnȳn,

of the right eigenvectors ȳj of the matrix A−H ȳj = λ̄−1
j ȳj . Convergence

is ensured if the coefficient ρn associated with the eigenvalue λ̄−1
n of A−H

largest in modulus is �= 0. Now I = XHY H = [x1, . . . , xn]H [ȳ1, . . . , ȳn]
implies ρn = xHn en, so that ρn �= 0 if the element xnn = eTnxn = ρ̄n
of the matrix X is nonzero. We note that this is the case if the matrix
Y = LYRY has an LR decomposition: the reason is that X = R−1

Y L
−1
Y ,

since X = Y −1 and R−1
Y and L−1

Y are upper and lower triangular matrices,
which implies xnn = eTnR

−1
Y L

−1
Y en �= 0. This analysis motivates part of the

following theorem, which assures the convergence of the QR method if all
eigenvalues of A have different moduli.

(6.6.4.12) Theorem. Let A =: A1 be an n × n matrix satisfying the
following hypotheses
(1) The eigenvalues λi of A have distinct moduli :

|λ1| > |λ2| > · · · > |λn|.

(2) The matrix Y with A = XDY , X = Y −1, D = diag(λ1, . . . , λn) = the
Jordan normal form of A, has a triangular decomposition

Y = LYRY , LY =

 1 0
...

. . .
x · · · 1

 , RY =

x · · · x
. . .

...
0 x

 .
Then the matrices Ai, Qi, Ri of the QR method (6.6.4.3) have the following
convergence properties: There are phase matrices

Si = diag(σ(i)
1 , . . . , σ

(i)
n), |σ(i)

k | = 1,

such that limi S
H
i−1QiSi = I and

lim
i→∞

SHi RiSi−1 = lim
i→∞

SHi−1AiSi−1 =

λ1 x · · · x

λ2
. . .

...
. . . x

0 λn

 .

422 6 Eigenvalue Problems

In particular, limi→∞ a
(i)
jj = λj, j = 1, . . . , n, where Ai =

(
a
(i)
jk

)
.

Remark. Hypothesis (2) is used only to ensure that the diagonal
elements of Ai converge to the eigenvalues λj in their natural order,
|λ1| > |λ2| > · · · > |λn|.
Proof [following Wilkinson (1965)]. We carry out the proof under the
additional hypothesis λn �= 0 so that D−1 exists. Then from X−1 = Y

(6.6.4.13)

Ai = XDiY

= QXRXD
iLYRY

= QXRX(DiLYD
−i)DiRY ,

where QXRX = X is a QR decomposition of the nonsingular matrix X into
a unitary matrix QX and a (nonsingular) upper triangular matrix RX . Now
DiLYD

−i =:
(
l
(i)
jk

)
is lower triangular, with

l
(i)
jk =

(
λj
λk

)i
ljk, LY =: (ljk), ljk =

{
1 for j = k,
0 for j < k.

Since |λj | < |λk| for j > k it follows that limi l
(i)
jk = 0 for j > k, and thus

DiLYD
−i = I + Ei, lim

i→∞
Ei = 0.

Here the speed of convergence depends on the separation of the moduli of
the eigenvalues. Next, we obtain from (6.6.4.13)

(6.6.4.14)

Ai = QXRX(I + Ei)DiRY

= QX(I +RXEiR−1
X)RXDiRY

= QX(I + Fi)RXDiRY

with Fi := RXEiR
−1
X , limi Fi = 0. Now the positive definite matrix

(I + Fi)H(I + Fi) = I +Hi, Hi := FHi + Fi + FHi Fi

with limiHi = 0, has a uniquely determined Choleski decomposition [The-
orem (4.3.3)]

I +Hi = R̃Hi R̃i,

where R̃i is an upper triangular matrix with positive diagonal elements.
Clearly, the Choleski factor R̃i depends continuously on the matrix I+Hi,
as is shown by the formulas of the Choleski method. Therefore limiHi = 0
implies limi R̃i = I. Also the matrix

Q̃i := (I + Fi)R̃−1
i

is unitary:

6.6 Methods for Determining the Eigenvalues and Eigenvectors 423

Q̃Hi Q̃i = R̃−H
i (I + Fi)H(I + Fi)R̃−1

i = R̃−H
i (I +Hi)R̃−1

i

= R̃−H
i (R̃Hi R̃i)R̃

−1
i = I.

Therefore, the matrix I + Fi has the QR decomposition I + Fi = Q̃iR̃i,
with limi Q̃i = limi(I + Fi)R̃−1

i = I, limi R̃i = I. Thus, by (6.6.4.14)

Ai = (QXQ̃i)(R̃iRXDiRY),

where QXQ̃i is unitary, and R̃iRXDiRY is an upper triangular matrix.
On the other hand, by Theorem (6.6.4.4)(c), the matrix Ai has the QR

decomposition

Ai = PiUi, Pi := Q1 · · ·Qi, Ui := Ri · · ·R1.

Since the QR decomposition for nonsingular A is unique up to a rescaling
of the columns (rows) of Q (resp. R) by phase factors σ = eiφ, there are
phase matrices

Si = diag(σ(i)
1 , . . . , σ

(i)
n), |σ(i)

k | = 1

with
Pi = QXQ̃iS

H
i , Ui = SiR̃iRXD

iRY , i ≥ 1,

and it follows that

lim
i
PiSi = lim

i
QXQ̃i = QX ,

Qi = P−1
i−1Pi = Si−1Q̃

H
i−1Q̃iS

H
i ,

lim
i
SHi−1QiSi = I,

Ri = UiU
−1
i−1 = SiR̃iRXD

iRY ·R−1
Y D

−i+1R−1
X R̃

−1
i−1S

H
i−1

= SiR̃iRXDR
−1
X R̃

−1
i−1S

H
i−1,

SHi RiSi−1 = R̃iRXDR
−1
X R̃

−1
i−1, lim

i
SHi RiSi−1 = RXDR

−1
X ,

and finally, by Ai = QiRi,

lim
i
SHi−1AiSi−1 = lim

i
SHi−1QiSiS

H
i RiSi−1 = RXDR

−1
X .

The proof is now complete, since the matrix RXDR−1
X is upper triangular

and has diagonal D

RXDR
−1
X =

λ1 ∗ · · · ∗

λ2
. . .

...
. . . ∗

0 λn

 . ��

424 6 Eigenvalue Problems

It can be seen from the proof that the convergence of the Qi, Ri and
Ai is linear, and improves with decreasing “converging factors” |λj/λk|,
j > k, i.e., with improved separation of the eigenvalues in absolute value.
The hypotheses of the theorem can be weakend, e.g., our analysis that led
to estimates (6.6.4.10) and (6.6.4.11) already showed that the first column
and the last row of Ai converge under weaker conditions on the separation
of the eigenvalues. In particular, the strong hypotheses of the theorem are
violated in the important case of a real matrix A with a pair λr, λr+1 = λ̄r
of conjugate complex eigenvalues. Assuming, for example, that

|λ1| > · · · > |λr| = |λr+1| > · · · > |λn|

and that the remaining hypotheses of Theorem (6.6.4.12) are satisfied, the
following can still be shown for the matrices Ai =

(
a
(i)
jk

)
.

(6.6.4.15) (a) limi a
(i)
jk = 0 for all (j, k) �= (r + 1, r) with j > k.

(b) limi a
(i)
jj = λj for j �= r, r + 1.

(c) Although the 2 × 2 matrices[
a
(i)
rr a

(i)
r,r+1

a
(i)
r+1,r a

(i)
r+1,r+1

]
diverge in general as i→ ∞, their eigenvalues converge toward λr and
λr+1.

In other words, the convergence of the matrices Ai takes place in the
positions denoted by λj and 0 of the following figure, and the eigenvalues
of the 2 × 2 matrix denoted by ∗ converge

Ai −→
i→∞

λ1 x · · · x x x x · · · x

0 λ2
. . .

...
. x

...

0 λr−1 x x
...

0 ∗ ∗
...

∗ ∗ x
...

0 λr+2
. . .

...
. x

0 0 λn

.

For a detailed investigation of the convergence of the QR method, the
reader is referred to the following literature: Parlett (1967), Parlett and
Poole (1973), and Golub and Van Loan (1983).

6.6 Methods for Determining the Eigenvalues and Eigenvectors 425

6.6.5 The Practical Implementation of the QR Method

In its original form (6.6.4.3), the QR method has some serious drawbacks
that make it hardly competitive with the methods considered so far:

(a) The method is expensive: a complete step Ai → Ai+1 for a dense
n× n matrix A requires O(n3) operations.

(b) Convergence is very slow if some quotients |λj/λk|, j �= k, of the
eigenvalues of A are close to 1.
However, there are remedies for these disadvantages.

(a) Because of the amount of work, one applies the QR method only
to reduced matrices A, namely matrices of Hessenberg form, or in the case
of Hermitian matrices, to Hermitian tridiagonal matrices (i.e., Hermitian
Hessenberg matrices). A general matrix A, therefore must first be reduced
to one of these forms by means of the methods described in Section 6.5. For
this procedure to make sense, one must show that these special matrices are
invariant under the QR transformation: if Ai is a (possibly Hermitian) Hes-
senberg matrix then so is Ai+1. This invariance is easily established. From
Theorem (6.6.4.4)(a), the matrix Ai+1 = QHi AiQi is unitarily similar to Ai
so that Ai+1 is Hermitian if Ai is. If Ai is an n×n Hessenberg matrix, then
Ai+1 can be computed as follows: First, reduce the subdiagonal elements
of Ai to 0 by means of suitable Givens matrices of type Ω12, . . . , Ωn−1,n
[see Section 4.9]

Ωn−1,n · · ·Ω23Ω12Ai = Ri =

 ∗ · · · ∗
. . .

...
0 ∗

 ,
Ai = QiRi, Qi := ΩH12Ω

H
23 · · ·ΩHn−1,n,

and then compute Ai+1 by means of

Ai+1 = RiQi = RiΩ
H
12Ω

H
23 · · ·ΩHn−1,n.

Because of the special structure of the Ωj,j+1, the upper triangular matrix
Ri is transformed by the postmultiplications with the ΩHj,j+1 into a matrix
Ai+1 of Hessenberg form. Note that Ai+1 can be computed from Ai in one
sweep if the matrix multiplications are carried out in the following order

Ai+1 =
(
Ωn−1,n · · ·

(
Ω23

(
(Ω12Ai)ΩH12

))
ΩH23 · · ·

)
ΩHn−1,n.

One verifies easily that it takes only O(n2) operations to transform an n×n
Hessenberg matrix Ai into Ai+1 in this way, and only O(n) operations in
the Hermitian case, where Ai is a Hermitian tridiagonal matrix.

We therefore assume for the following discussion that A and thus all Ai
are (possibly Hermitian) Hessenberg matrices. We may also assume that

426 6 Eigenvalue Problems

the Hessenberg matrices Ai are irreducible, i.e., their subdiagonal elements
a
(i)
j,j−1, j = 2, . . . , n, are nonzero. Otherwise Ai has the form

Ai =
[
A′
i ∗

0 A′′
i

]
,

where A′
i, A

′′
i are Hessenberg matrices of order lower than n. Since the

eigenvalues of Ai are just the eigenvalues of A′
i and A′′

i , it is sufficient
to determine the eigenvalues of the matrices A′

i, A
′′
i separately. So, the

eigenvalue problem for Ai can be reduced to the eigenvalue problem for
smaller irreducible matrices.

Basically, the QR method for Hessenberg matrices runs as follows: The
Ai are computed according to (6.6.4.3) until one of the last two subdiagonal
elements a(i)n,n−1 and a(i)n−1,n−2 of the Hessenberg matrix Ai (which converge
to 0 in general, see (6.6.4.12), (6.6.4.15)) become negligible, that is,

min
{
|a(i)n,n−1|, |a(i)n−1,n−2|

}
≤ eps

(
|a(i)nn| + |a(i)n−1,n−1|

)
,

eps being, say, the relative machine precision. In case a(i)n,n−1 is negligible,

a
(i)
nn is a numerically acceptable eigenvalue [see Section 6.6.3] of A, because

it is the exact eigenvalue of a Hessenberg matrix Ãi close to Ai ‖Ãi−Ai‖ ≤
eps ‖Ai‖ : Ãi is obtained from Ai by replacing a(i)n,n−1 by 0. In case a(i)n−1,n−2
is negligible, the eigenvalues of the 2 × 2 matrix[

a
(i)
n−1,n−1 a

(i)
n−1,n

a
(i)
n,n−1 a

(i)
nn

]

are two numerically acceptable eigenvalues of Ai, since they are exact eigen-
values of a Hessenberg matrix Ãi close to Ai, which is obtained by replacing
the small element a(i)n−1,n−2 by 0. If a(i)nn is taken as an eigenvalue, one crosses
out the last row and column, and if the eigenvalues of the 2× 2 matrix are
taken, one removes the last two rows and columns of Ai, and continues the
algorithm with the remaining matrix.

By (6.6.4.4) the QR method generates matrices that are unitarily sim-
ilar to each other. We note an interesting property of “almost” irreducible
Hessenberg matrices that are unitarily similar to each other, a property
that will be important for the implicit shift techniques to be discussed
later.

(6.6.5.1) Theorem. Let Q = [q1, . . . , qn] and U = [u1, . . . , un] be unitary
matrices with columns qi and ui, and suppose that H = (hjk) := QHAQ
and K := UHAU are both Hessenberg matrices that are similar to the same
matrix A using Q und U , respectively, for unitary transformations. Assume
further that hi,i−1 �= 0 for i ≤ n − 1, and that u1 = σ1q1, |σ1| = 1. Then

6.6 Methods for Determining the Eigenvalues and Eigenvectors 427

there is a phase matrix S = diag(σ1, . . . , σn), |σk| = 1, such that U = QS
and K = SHHS.

That is, if H is “almost” irreducible and Q and U have “essentially”
the same first column, then all columns of these matrices are “essentially”
the same, and the Hessenberg matrices K and H agree up to phase factors,
K = SHHS.

Proof. In terms of the unitary matrix V = [v1, . . . , vn] := UHQ, we have
H = V HKV and therefore

KV = V H.

A comparison of the (i− 1)-th column on both sides shows

hi,i−1vi = Kvi−1 −
i−1∑
j=1

hj,i−1vj , 2 ≤ i ≤ n.

With hi,i−1 �= 0 for 2 ≤ i ≤ n − 1, this recursion permits one to compute
vi, i ≤ n − 1 from v1. Since v1 = UHq1 = σ1U

Hu1 = σ1e1 and K is
a Hessenberg matrix we find that the matrix V = [v1, . . . , vn] is upper
triangular. As V is also unitary, V V H = I, V is a phase matrix, which we
denote by SH := V . The theorem now follows from K = V HV H . ��

(b) The slow convergence of the QR method can be improved substan-
tially by means of so-called shift techniques. We know from the relationship
between the QR method and inverse vector iteration [see (6.6.4.11)] that,
for nonsingular A, the last row eTnAi of the matrices Ai converges in general
to λneTn as i→ ∞, if the eigenvalues λi of A satisfy

|λ1| ≥ |λ2| ≥ · · · ≥ |λn−1| > |λn| > 0.

In particular, the convergence speed of the error

‖eTnAi − λneTn‖ = O(|λn/λn−1|i)

is determined by the quotient |λn/λn−1|. This suggests that we may ac-
celerate the convergence by the same techniques used with inverse vector
iteration [see Section 6.6.3], namely, by applying the QR method not to A
but to a suitable shifted matrix Ã = A− kI. Here, the shift parameter k is
chosen as a close approximation to some eigenvalue of A, so that, perhaps
after a reordering of the eigenvalues,

|λ1 − k| ≥ |λ2 − k| ≥ · · · ≥ |λn−1 − k| � |λn − k| > 0.

Then the elements ã(i)n,n−1 of the matrices Ãi associated with Ã will
converge much faster to 0 as i→ ∞, namely, as∣∣∣∣ λn − k

λn−1 − k

∣∣∣∣i � 1.

428 6 Eigenvalue Problems

Note that if A is a Hessenberg matrix, so also are Ã = A− kI and all Ãi,
hence the last row of Ãi has the form

eTn Ãi = [0, . . . , 0, ã(i)n,n−1, ã
(i)
nn].

More generally, if we choose a new shift parameter in each step, the QR
method with shifts is obtained:

(6.6.5.2)
A1 : = A,

Ai − kiI =: QiRi (QR decomposition)
Ai+1 : = RiQI + kiI.

The matrices Ai are still unitarily similar to each other, since

Ai+1 = QHi (Ai − kiI)Qi + kiI = QHi AiQi.

In addition, it can be shown as in the proof of Theorem (6.6.4.4) [see
Exercise 20]

(6.6.5.3)
Ai+1 = PHi APi,

(A− k1I) · · · (A− kiI) = PiUi,

where again Pi := Q1Q2 · · ·Qi and Ui := RiRi−1 · · ·R1. Moreover,

(6.6.5.4)
Ai+1 = RiAiR

−1
i

= UiAU
−1
i

holds if all Rj are nonsingular. Also, Ai+1 will be a Hessenberg matrix, but
this assertion can be sharpened

(6.6.5.5) Theorem. Let Ai be an irreducible Hessenberg matrix of order
n. If ki is not an eigenvalue of Ai then Ai+1 will also be an irreducible
Hessenberg matrix. Otherwise, Ai+1 will have the form

Ai+1 =
[
Ãi+1 ∗

0 ki

]
,

where Ãi+1 is an irreducible Hessenberg matrix of order (n− 1).

Proof. It follows from (6.6.5.2) that

(6.6.5.6) Ri = QHi (Ai − kiI).

If ki is not an eigenvalue of Ai, then Ri is nonsingular by (6.6.5.2), and
therefore (6.6.5.4) yields

a
(i+1)
j+1,j = eTj+1Ai+1ej = eTj+1RiAiR

−1
i ej = r

(i)
j+1,j+1a

(i)
j+1,j

(
r
(i)
jj

)−1 �= 0,

so that Ai+1 is irreducible, too.

6.6 Methods for Determining the Eigenvalues and Eigenvectors 429

On the other hand, if ki is an eigenvalue of Ai, then Ri is singular.
But since Ai is irreducible, the first n− 1 columns of Ai − kiI are linearly
independent, and therefore, by (6.6.5.6) so also are the first n− 1 columns
of Ri. Hence, by the singularity of Ri, the last row of Ri must vanish

Ri =
[
R̃i ∗
0 0

]
,

with R̃i being a nonsingular upper triangular matrix of order (n − 1).
Because of the irreducibility of Ai − kiI and the fact that

Ai − kiI = QiRi = Qi

[
R̃i ∗
0 0

]
,

Qi is also an irreducible Hessenberg matrix. Therefore, since

Ai+1 =
[
R̃i ∗
0 0

]
Qi + kiI =

[
Ãi+1 ∗

0 ki

]
,

the submatrix Ãi+1 is an irreducible Hessenberg matrix of order n−1, and
Ai+1 has the structure asserted in the theorem. ��

We now turn to the problem of choosing the shift parameters ki ap-
propriately. To simplify the discussion, we consider only the case of real
matrices A, which is the most important case in practice, and we assume
that A is a Hessenberg matrix. The earlier analysis suggests choosing close
approximations to the eigenvalues of A as shifts ki, and the problem is find-
ing such approximations. But Theorem (6.6.4.12) and (6.6.4.15) are helpful
here: According to them we have limi a

(i)
nn = λn, if A has a unique eigen-

value λn of smallest absolute value. Therefore, for large i, the last diagonal
element a(i)nn of Ai will, in general, be a good approximation for λn, which
suggests the choice

(6.6.5.7a) ki := a(i)nn,

if the convergence of the a(i)n,n has stabilized, say, if∣∣∣∣∣ 1 − a
(i−1)
n,n

a
(i)
n,n

∣∣∣∣∣ ≤ η < 1

for a small η (even the choice η = 1/3 leads to acceptable results). It is
possible to show for Hessenberg matrices under weak conditions that the
choice (6.6.5.7a) ensures

|a(i+1)
n,n−1| ≤ Cε2

if |a(i)n,n−1| ≤ ε and ε is sufficiently small, so that the QR method then
converges locally at a quadratic rate. By direct calculation, this is easily
verified for real 2 × 2 matrices

430 6 Eigenvalue Problems

A =
[
a b
ε 0

]
with a �= 0 and small |ε|: Using the shift k1 := an,n = 0 one finds the
matrix

Ã =
[
ã b̃
c̃ d̃

]
, with |c̃| =

|b|ε2
a2 + ε2

,

as the QR successor of A, so that indeed |c̃| = O(ε2) for small |ε|. For
symmetric matrices, b = ε, the same example shows

|c̃| =
|ε3|

a2 + ε2
,

so that one can expect local convergence at a cubic rate in this case. In fact,
for general Hermitian tridiagonal matrices and shift strategy (6.6.5.7a),
local cubic convergence was shown by Wilkinson [for details see Wilkinson
(1965), p. 548, and Exercise 23].

A more general shift strategy, which takes account of both (6.6.4.12)
and (6.6.4.15), is the following.

(6.6.5.7b) Choose ki as the eigenvalue λ of the 2 × 2 matrix[
a
(i)
n−1,n−1 a

(i)
n−1,n

a
(i)
n,n−1 a

(i)
n,n

]
,

for which |a(i)n,n − λ| is smallest.

This strategy also allows for the possibility that Ai has several eigenval-
ues of equal absolute value. But it may happen that ki is a complex number
even for real Ai, if Ai nonsymmetric, a case that will be considered later.
For real symmetric matrices Wilkinson (1968) even showed the following
global convergence theorem.

(6.6.5.8) Theorem. If the QR method with shift strategy (6.6.5.7b) is
applied to a real, irreducible, symmetric tridiagonal n × n matrix in all
iterations, then the elements a(i)

n,n−1 of the ith iteration matrix Ai converge
to zero at least quadratically toward an eigenvalue of A. Disregarding rare
exceptions, the convergence rate is even cubic. ��

Numerical Example. The spectrum of the matrix

(6.6.5.9) A =

12 1
1 9 1

1 6 1
1 3 1

1 0

6.6 Methods for Determining the Eigenvalues and Eigenvectors 431

lies symmetrically around 6; in particular, 6 is an eigenvalue of A. For the QR
method with shift strategy (b) we display in the following the elements a(i)

n,n−1,
a
(i)
n,n as well as the shift parameters ki:

i a
(i)
54 a

(i)
55 ki

1 1 0 −.302 775 637 732100
2 −.454 544 295 10210−2 −.316 869 782 391100 −.316 875 874 226100
3 +.106 774 452 09010−9 −.316 875 952 616100 −.316 875 952 619100

4 +.918 983 519 41910−22 −.316 875 952 617100 = λ5

Processing the 4 × 4 matrix further, we find

i a
(i)
43 a

(i)
44 ki

4 +.143 723 850 633100 +.299 069 135 875101 +.298 389 967 722101
5 −.171 156 231 71210−5 +.298 386 369 683101 +.298 386 369 682101

6 −.111 277 687 66310−17 +.298 386 369 682101 = λ4

Processing the 3 × 3 matrix further, we get

i a
(i)
32 a

(i)
33 ki

6 +.780 088 052 87910−1 +.600 201 597 254101 +.600 000 324 468101
7 −.838 854 980 96110−7 +.599 999 999 996101 +.599 999 999 995101

8 +.127 181 135 62310−19 +.599 999 999 995101 = λ3

The remaining 2 × 2 matrix has the eigenvalues

+.901 613 630 314101 = λ2

+.123 168 759 526102 = λ1

This ought to be compared with the result of eleven QR steps without shifts:

k a
(12)
k,k−1 a

(12)
kk

1 +.123 165 309 125102
2 +.337 457 586 63710−1 +.901 643 819 611101
3 +.114 079 951 42110−1 +.600 004 307 566101
4 +.463 086 759 85310−3 +.298 386 376 789101
5 −.202 188 244 73310−10 −.316 875 952 617100

432 6 Eigenvalue Problems

Such convergence behavior is to be expected, since

a
(i)
54 = O

(
(λ5/λ4)i

)
, |λ5/λ4| ≈ 0.1.

Further processing the 4 × 4 matrix requires as many as 23 iterations in order to
achieve

a
(35)
43 = +.487 637 464 42510−10.

The fact that the eigenvalues in this example come out ordered in size
is accidental: With the use of shifts this is not to be expected in general.

When the QR step (6.6.5.2) with shifts for symmetric tridiagonal ma-
trices is implemented in practice, there is a danger of losing accuracy when
subtracting and adding kiI in (6.6.5.2), in particular, if |ki| is large. Using
Theorem (6.6.5.1), however, there is way to compute Ai without subtract-
ing and adding kiI explicitly. Here, we use the fact the first column q1 of
the matrix Qi := [q1, . . . , qn] can be computed from the first column of
Ai − kiI: at the beginning of this section we have seen that

Qi = ΩH12Ω
H
23 · · ·ΩHn−1,n,

where the Ωj,j+1 are Givens matrices. Note that, for j > 1, the first column
of Ωj,j+1 equals the first unit column e1, so that q1 = Qie1 = ΩH12e1 is also
the first column of ΩH12. Matrix Ω12 is by definition the Givens matrix that
annihilates the first subdiagonal element of Ai−kiI, and it is therefore fully
determined by the first column of that matrix. The matrix B = ΩH12AiΩ12,
then has the form

B =

x x x 0
x x x
x x x x

x x
. . .

. x
0 x x

,

that is, it is symmetric and, except for the potentially nonzero elements
b13 = b31, tridiagonal. In analogy to the procedure described in Section
6.5.1, one can find a sequence of Givens transformations

B → Ω̃H23BΩ̃23 → · · · → Ω̃Hn−1,n · · · Ω̃H23BΩ̃23 · · · Ω̃n−1,n = C,

which transform B into a unitarily similar matrix C that is symmetric and
tridiagonal. First, Ω̃23, is chosen so as to annihilate the elements b31 = b13 of
B. The corresponding Givens transformation will produce nonzero elements
in the positions (4, 2) and (2, 4) of Ω̃H23BΩ̃23. These in turn, are annihilated
by a proper choice of Ω̃34, and so on.

So, for n = 5 the matrices B → · · · → C have the following structure, where
again 0 and ∗ denote new zero and potentially nonzero elements, respectively.

6.6 Methods for Determining the Eigenvalues and Eigenvectors 433

B =

x x x
x x x
x x x x

x x x
x x

 Ω̃23−−−→

x x 0
x x x ∗
0 x x x

∗ x x x
x x

Ω̃34−−−→

x x
x x x 0

x x x ∗
0 x x x

∗ x x

 Ω̃45−−−→

x x
x x x

x x x 0
x x x
0 x x

 = C.

In terms of the unitary matrix U := Ω12Ω̃23 · · · Ω̃n−1,n, we have
C = UHAiU since B = ΩH12AiΩ12. The matrix U has the same first col-
umn as the unitary matrix Qi, which transforms Ai into Ai+1 = QHi AiQi
according to (6.6.5.2), namely, q1 = Ω12e1. If Ai is irreducible then by
Theorem (6.6.5.5) the elements a(i+1)

j,j−1 of Ai+1 = (a(i+1)
jk) are nonzero

for j = 2, 3, . . . , n − 1. Thus, by Theorem (6.6.5.1), the matrices C and
Ai+1 = SCSH are essentially the same, S = diag(±1, . . . ,±1), U = QS.
Since in the explicit QR step (6.6.5.2), the matrix Qi is unique only up to a
rescaling Qi → QiS by a phase matrix S, we have found an alternate algo-
rithm to determine Ai+1, namely, by computing C. This technique, which
avoids the explicit subtraction and addition of kiI, is called the implicit
shift technique for the computation of Ai+1.

Now, let A be a real nonsymmetric Hessenberg matrix. The shift strat-
egy (6.6.5.7b) then leads to a complex shift ki, even if the matrix Ai is
real, whenever the 2 × 2 matrix in (6.6.5.7b) has two conjugate complex
eigenvalues ki and k̄i. In this case, it is possible to avoid complex calcula-
tions, if one combines the two QR steps Ai → Ai+1 → Ai+2 by choosing
the shift ki in the first, and the shift ki+1 := k̄i in the second. It is easy
to verify that for real Ai the matrix Ai+2 is real again, even though Ai+1
may be complex. Following an elegant proposal by Francis (1961/62) one
can compute Ai+2 directly from Ai using only real arithmetic, provided the
real Hessenberg matrix Ai is irreducible: For such matrices Ai this method
permits the direct calculation of the subsequence

A = A1 → A3 → A5 → · · ·

of the sequence of matrices generated by the QR method with shifts. It is
in this context that implicit shift techniques were used first.

In this text, we describe only the basic ideas of Francis’ technique. Ex-
plicit formulas can be found, for instance, in Wilkinson (1965). For simplic-
ity, we omit the iteration index and write A = (ajk) for the real irreducible
Hessenberg matrix Ai, k for ki, and Ã for Ai+2. By (6.6.5.2), (6.6.5.3)
there are a unitary matrix Q and an upper triangle matrix R such that
Ã = QHAQ is a real Hessenberg matrix and (A− kI)(A− k̄I) = QR. We
try to find a unitary matrix U having essentially the same first column

434 6 Eigenvalue Problems

as Q, Qe1 = ±Ue1, so that UHAU =: K is also a Hessenberg matrix. If
k is not an eigenvalue of A, then Theorems (6.6.5.1) and (6.6.5.5) show
again that the matrices Ã and K differ only by a phase transformation:
K = SHÃS, S = diag(±1, . . . ,±1).

This can be achieved as follows: The matrix.

B := (A− kI)(A− k̄I) = A2 − (k + k̄)A+ kk̄I

is real, and its first column b = Be1, which is readily computed from A
and k, has the form the form b = [x, x, x, 0, . . . , 0]T , since A is a Hessen-
berg matrix. Choose P [see Section 4.7] as the Householder matrix that
transforms b into a multiple of e1, Pb = µ1e1. Then the first column of
P has the same structure as b, that is, Pe1 = [x, x, x, 0, . . . , 0]T , because
P 2b = b = µ1Pe1. Since B = QR, B = P 2B = P [µ1e1, ∗, . . . , ∗], the ma-
trix P has essentially the same first column Pe1 = ±Qe1 as the matrix Q.
Next, one computes the matrix PHAP = PAP , which, by the structure of
P (note that Pek = ek for k ≥ 4) is a matrix of the form

PAP =

x · · · · · x
x x ·
x x x ·
∗ ∗ x x ·

x x ·
. ·

x x

in other words, except for few additional subdiagonal elements in positions
(3, 1), (4, 1), (4, 2), it is again a Hessenberg matrix. Applying Householder’s
method [see the end of Section 6.5.4], PAP is then transformed into a
genuine Hessenberg matrix K using unitary similarity transformations

PAP → T1PAPT1 → · · · → Tn−2 · · ·T1PAPT1 · · ·Tn−2 =: K.

The Householder matrices Tk, k = 1, . . . , n − 2, according to Section
6.5.1, differ from the unit matrix only in three columns, Tkei = ei for
i �∈ {k + 1, k + 2, k + 3}.

For n = 6 one obtains a sequence of matrices of the following form (0 and ∗
again denote new zero and nonzero elements, respectively):

PAP =

x · · · · x
x x ·
x x x ·
x x x x ·

x x ·
x x

 T1−−−→

x · · · · x
x x ·
0 x x ·
0 x x x ·

∗ ∗ x x ·
x x

 T2−−−→

6.6 Methods for Determining the Eigenvalues and Eigenvectors 435

T2−−−→

x · · · · x
x x ·

x x ·
0 x x ·
0 x x x ·

∗ ∗ x x

 T3−−−→

x · · · · x
x x ·

x x ·
x x ·
0 x x ·
0 x x x

 T4−−−→

T4−−−→

x · · · · x
x x ·

x x ·
x x ·

x x ·
0 x x

 = K.

As Tke1 = e1 for all k, the unitary matrix U := PT1 . . . Tn−2 with
UHAU = K has the same first column as P , Ue1 = PT1 · · ·Tn−2e1 = Pe1.
Thus, by Theorem (6.6.5.1), the matrix K is (essentially) identical to Ã.

Note that it is not necessary for the practical implementation of QR
method to compute and store the product matrix Pi := Q1 · · ·Qi, if one
wishes to determine only the eigenvalues of A. This is no longer true in
the Hermitian case if one also wants to find a set of eigenvectors that are
orthogonal. The reason is that for Hermitian A

lim
i
PHi APi = D = diag(λ1, . . . , λn),

which follows from (6.6.5.3), (6.6.4.12), so that for large i the j-th column
p
(i)
j = Piej , of Pi will be a very good approximation to an eigenvector of A

for the eigenvalue λj and these approximations p(i)j , j = 1, . . . , n, are or-
thogonal to each other, since Pi is unitary. If A is not Hermitian, it is better
to determine the eigenvectors by the inverse iteration of Wielandt [see Sec-
tion 6.6.3], where the usually excellent approximations to the eigenvalues
that have been found by the QR method can be used.

The QRmethod converges very quickly, as is also shown by the example
given earlier. For symmetric matrices, experience suggests that the QR
method is about four times as fast as the widely used Jacobi method if
eigenvalues and eigenvectors are to be computed, and about ten times as
fast if only the eigenvalues are desired. There are many programs for theQR
method. algol programs can be found in the handbook of Wilkinson and
Reinsch (1971) [see the contributions by Bowdler, Martin, Peters, Reinsch,
and Wilkinson], fortran programs are in Smith et al. (1976).

436 6 Eigenvalue Problems

6.7 Computation of the Singular Values of a Matrix

The singular values (6.4.6) of an m×n matrix A and its singular-value de-
composition (6.4.11) can be computed rapidly, and in a numerically stable
manner, by a method due to Golub and Reinsch (1971), which is closely
related to the QR method. We assume, without loss of generality, that
m ≥ n (otherwise, replace A by AH). The decomposition (6.4.11) can then
be written in the form
(6.7.1)

A = U

[
D
0

]
V H , D := diag(σ1, . . . , σn), σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

where U is a unitary m×m matrix, V is a unitary n× n matrix, and σ1,
. . . , σn are the singular values of A, i.e., σ2

i are the eigenvalues of AHA. In
principle, therefore, one could determine the singular values by solving the
eigenvalue problem for the Hermitian matrix AHA, but this approach can
be subject to loss of accuracy: for the matrix

A :=

 1 1
ε 0
0 ε

 , |ε| < √
eps, eps = machine precision,

for example, the matrix AHA is given by

AHA =
[

1 + ε2 1
1 1 + ε2

]
,

and A has the singular values σ1(A) =
√

2 + ε2, σ2(A) = |ε|. In floating-
point arithmetic, with precision eps, instead of AHA one obtains the matrix

fl(AHA) =: B =
[

1 1
1 1

]
,

with eigenvalues λ̃1 = 2 and λ̃2 = 0; σ2(A) = |ε| does not agree to machine
precision with

√
λ̃2 = 0.

In the method of Golub and Reinsch one first reduces A, in a pre-
liminary step, unitarily to bidiagonal form. By the Householder method
[Section 4.7], one begins with determining an m ×m Householder matrix
P1 which annihilates the subdiagonal elements in the first column of A.
One thus obtains a matrix A′ = P1A of the form shown in the following
sketch for m = 5, n = 4, where changing elements are denoted by ∗:

A =

x x x x
x x x x
x x x x
x x x x
x x x x

 → P1A = A′ =

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .

6.7 Computation of the Singular Values of a Matrix 437

Then, as in Section 4.7, one determines an n× n Househoulder matrix Q1
of the form

Q1 =
[

1 0
0 Q̃1

]
,

such that the elements in the positions (1, 3), . . . , (1, n) in the first row of
A′′ := A′Q1 vanish:

A′ =

x x x x
0 x x x
0 x x x
0 x x x
0 x x x

 → A′Q1 = A′′ =

x ∗ 0 0
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 .
In general, one obtains in the first step a matrix A′′ of the form

A′′ =

[
q1 a1

0 Ã

]
, a1 := [e2, 0, . . . , 0] ∈ Cn−1,

with an (m − 1) × (n − 1) matrix Ã. One now treats the matrix Ã in the
same manner as A, etc., and in this way, after n reduction steps, obtains
an m× n bidiagonal matrix J (0) of the form

J (0) =

[
J0

0

]
, J0 =

q
(0)
1 e

(0)
2 0

q
(0)
2

. . .

. . . e
(0)
n

0 q
(0)
n

 ,

where J (0) = Pn · · ·P2P1AQ1Q2 · · ·Qn−2 and Pi, Qi are certain House-
holder matrices.

Since Q := Q1Q2 · · ·Qn−2 is unitary and J (0)HJ (0) = JH0 J0 =
QHAHAQ, the matrices J0 and A have the same singular values; likewise,
with P := P1P2 · · ·Pn, the decomposition

A =
(
P ·

[
G 0
0 In−m

])[
D
0

] (
HHQH

)
is the singular-value decomposition (6.7.1) of A if J0 = GDHH is the
singular-value decomposition of J0. It suffices therefore to consider the
problem for n× n bidiagonal matrices J .

In the first step, J is multiplied on the right by a certain Givens re-
flection of the type T12, the choice of which we want to leave open for the
moment. Thereby, J changes into matrix J (1) = JT12 of the following form
(sketch for n = 4):

438 6 Eigenvalue Problems

J =

x x

x x
x x

x

 → JT12 =

∗ ∗
©∗ ∗ x

x x
x

 = J (1).

The subdiagonal element in position (2, 1) of J (1), generated in this way, is
again annihilated through left multiplication by a suitable Givens reflection
of the type S12. One thus obtains the matrix J (2) = S12J

(1):

J (1) =

x x
x x x

x x
x

 → S12J
(1) =

∗ ∗ ©∗
0 ∗ ∗

x x
x

 = J (2).

The element in position (1, 3) of J (2) is annihilated by multiplication from
the right with a Givens reflection of the type T23,

J (2) =

x x x

x x
x x

x

 → J (2)T23 =

x ∗ 0

∗ ∗
©∗ ∗ x

x

 = J (3).

The subdiagonal element in position (3, 2) is now annihilated by left mul-
tiplication with a Givens reflection S23, which generates an element in po-
sition (2, 4), etc. In the end, for each Givens reflection T12 one can thereby
determine a sequence of further Givens reflections Si,i+1, Ti,i+1, i = 1, 2,
. . . , n− 1, in such a manner that the matrix

Ĵ := Sn−1,nSn−2,n−1 · · ·S12J T12T23 · · ·Tn−1,n

is again a bidiagonal matrix. The matrices S := S12S23 · · ·Sn−1,n, T :=
T12T23 · · ·Tn−1,n are unitary, so that, by virtue of Ĵ = SHJT , the matrix
M̂ := ĴH Ĵ = THJHSSHJT = THMT is a tridiagonal matrix which is
unitarily similar to the tridiagonal matrix M := JHJ .

Up to now, the choice of T12 was open. We show that T12 can be so
chosen that M̂ becomes precisely the matrix which is produced from the
tridiagonal matrix M by the QR method with shift k. To show this, we
may assume without loss of generality that M = JHJ is irreducible, for
otherwise the eigenvalue problem for M could be reduced to the eigenvalue
problem for irreducible tridiagonal matrices of smaller order than that of
M . We already know [see (6.6.5.2)] that the QR method, with shift k,
applied to the tridiagonal matrix M yields another tridiagonal matrix M̃
according to the following rules:

(6.7.2)
M − kI =: T̃R, R upper triangular, T̃ unitary,

M̃ := RT̃ + kI,

6.7 Computation of the Singular Values of a Matrix 439

Both tridiagonal matrices M̃ = T̃HMT̃ and M̂ = THMT are unitarily
similar to M , where the unitary matrix T̃ = T̃ (k) depends, of course, on
the shift k. Now, Theorem (6.6.5.5) shows that for all shifts k the matrix
M̃ = [m̃ij] is almost irreducible, that is, m̃j,j−1 �= 0 for j = 2, 3, . . . , n− 1
since M is irreducible. Hence we have the situation of Theorem (6.6.5.1): If
the matrices T and T̃ = T̃ (k) have the same first column, then according to
this theorem there is a phase matrix ∆ = diag(eiφ1 , eiφ2 , . . . , eiφn), φ1 = 0,
so that M̃ = ∆HM̄∆, that is, M̃ is essentially equal to M . We show next
that it is in fact possible to choose T12 in such a way that T and T̃ (k) have
the same first column.

The first column t1 of T = T12T23 · · ·Tn−1,n is precisely the first column
of T12, since (with e1 := [1, 0, . . . , 0]T ∈ Cn)

t1 = Te1 = T12 · · ·Tn−1,ne1 = T12 · · ·Tn−2,n−1e1 = · · · = T12e1,

and has the form t1 = [c, s, 0, . . . , 0]T ∈ IRn, c2 + s2 = 1. On the other
hand, the tridiagonal matrix M − kI, by virtue of M = JHJ , has the form

(6.7.3) M − kI =

δ1 γ̄2 0

γ2 δ2
. . .

. γ̄n

0 γn δn

 , δ1 = |q1|2 − k, γ2 = ē2q1,

if

J =

q1 e2 0

q2
. . .
. . . en

0 qn

 .
A unitary matrix T̃ with (6.7.2), T̃H(M − kI) = R upper triangular, can
be determined as a product of n − 1 Givens reflections of the type T̃i,i+1

[see Section 4.9], T̃ = T̃12T̃23 · · · T̃n−1,n which successively annihilate the
subdiagonal elements of M − kI. The matrix T̃12, in particular, has the
form

(6.7.4)
T̃12 =

c̃ s̃ 0
s̃ −c̃

1
. . .

0 1

 ,
[
c̃
s̃

]
:= α

[
δ1
γ2

]
= α

[
|q1|2 − k
ē2q1

]
, c̃2 + s̃2 = 1,

where s̃ �= 0 if M is irreducible.

440 6 Eigenvalue Problems

The first column t̃1 of T̃ agrees with the first column of T̃12, which is
given by c̃, s̃ in (6.7.4). Since M̃ = T̃HMT̃ is a tridiagonal matrix, it follows
from Francis’ observation that M̂ essentially agrees with M̃ (up to scaling
factors), provided one chooses as first column t1 of T12 (through which T12
is determined) precisely the first column of T̃12 (if the tridiagonal matrix
M is not reducible).

Accordingly, a typical step J → J̄ of the method of Golub and Reinsch
consists in first determining a real shift parameter k, for example by means
of one of the strategies in Section 6.6.5; then choosing T12 := T̃12 with the
aid of the formulas (6.7.4); and finally determining, as described above,
further Givens matrices Ti,i+1, Si,i+1 such that

Ĵ = Sn−1,n · · ·S23S12J T12T23 · · ·Tn−1,n

again becomes a bidiagonal matrix. Through this implicit handling of the
shifts, one avoids in particular the loss of accuracy which in (6.7.2) would
occur, say for large k, if the subtraction M → M − kI and subsequent
addition RT̃ → RT̃ + kI were executed explicitly. The convergence prop-
erties of the method are of course the same as those of the QR method: in
particular, using appropriate shift strategies [see Theorem (6.6.5.8)], one
has cubic convergence as a rule.

An algol program for this method can be found in Golub and Reinsch
(1971).

6.8 Generalized Eigenvalue Problems

In applications one frequently encounters eigenvalue problems of the fol-
lowing form: For given n × n matrices A, B, numbers λ are to be found
such that there exists a vector x �= 0 with

(6.8.1) Ax = λBx.

For nonsingular matrices B, this is equivalent to the classical eigenvalue
problem

(6.8.2) B−1Ax = λx

for the matrix B−1A (a similar statement holds if A−1 exists). Now usually,
in applications, the matrices A and B are real symmetric, and in addition
B is positive definite. Although in general B−1A is not symmetric, it is still
possible to reduce (6.8.1) to a classical eigenvalue problem for symmetric
matrices: If

B = LLT

6.9 Estimation of Eigenvalues 441

is the Choleski decomposition of the positive definite matrix B, then L is
nonsingular and B−1A similar to the matrix G := L−1A(L−1)T ,

LT (B−1A)(LT)−1 = LT (LT)−1L−1A(L−1)T = L−1A(L−1)T = G.

But now, the matrix G, like A, is symmetric. The eigenvalues λ of (6.8.1)
are thus precisely the eigenvalues of the symmetric matrix G.

The computation of G can be simplified as follows: One first computes

F := A(L−1)T

by solving FLT = A, and then obtains

G = L−1F

from the equation LG = F . In view of the symmetry of G it suffices to
determine the elements below the diagonal of G. For this, knowledge of the
lower triangle of F (fik with k ≤ i) is sufficient. It suffices, therefore, to
compute only these elements of F from the equation FLT = A.

Together with the Choleski decomposition B = LLT , which requires
about 1

6n
3 multiplications, the computation of G = L−1A(L−1)T from A,

B thus costs about 2
3n

3 multiplications.
For additional methods, see Martin and Wilkinson (1971) and Peters

and Wilkinson (1970). A more recent method for the solution of the gener-
alized eigenvalue problem (6.8.1) is the QZ method of Moler and Stewart
(1973).

6.9 Estimation of Eigenvalues

Using the concepts of vector and matrix norm developed in Section 4.4, we
now wish to give some simple estimates for the eigenvalues of a matrix. We
assume that for x ∈ Cn

‖x‖
is a given vector norm and

lub(A) = max
x
=0

‖Ax‖
‖x‖

the associated matrix norm. In particular, we employ the maximum norm

‖x‖∞ = max
i

|xi|, lub∞(A) = max
i

∑
k

|ai,k|.

We distinguish between two types of eigenvalue estimations:

(1) exclusion theorems,

442 6 Eigenvalue Problems

(2) inclusion theorems.

Exclusion theorems give domains in the complex plane which contain no
eigenvalue (or whose complement contains all eigenvalues); inclusion theo-
rems give domains in which there lies at least one eigenvalue.

An exclusion theorem of the simplest type is

(6.9.1) Theorem (Hirsch). For all eigenvalues λ of A one has

|λ| ≤ lub(A).

Proof. If x is an eigenvector to the eigenvalue λ, then from

Ax = λx, x �= 0,

there follows

‖λx‖ = |λ| · ‖x‖ ≤ lub(A) · ‖x‖,
|λ| ≤ lub(A). ��

If λi are the eigenvalues of A, then

ρ(A) := max
1≤i≤n

|λi|

is called the spectral radius of A. By (6.9.1) we have ρ(A) ≤ lub(A) for
every vector norm.

(6.9.2) Theorem.

(a) For every matrix A and every ε > 0 there exists a vector norm such
that

lub(A) ≤ ρ(A) + ε.

(b) If every eigenvalue λ of A with |λ| = ρ(A) has only linear elementary
divisors, then there exists a vector norm such that

lub(A) = ρ(A).

Proof. (a): Given A, there exists a nonsingular matrix T such that

TAT−1 = J

is the Jordan normal form of A [see (6.2.5)], i.e., J is made up of diagonal
blocks of the form

Cν(λi) =

λi 1 0

. . .
. . .
. . . 1

0 λi

 .

6.9 Estimation of Eigenvalues 443

By means of the transformation J → D−1
ε JDε, with diagonal matrix

Dε := diag(1, ε, ε2, . . . , εn−1), ε > 0,

one reduces the Cν(λi) to the form
λi ε 0

.
. . . ε

0 λi

 .
From this it follows immediately that

lub∞(D−1
ε JDε) = lub∞(D−1

ε TAT−1Dε) ≤ ρ(A) + ε.

Now the following is true in general: If S is a nonsingular matrix and ‖ · ‖
a vector norm, then p(x) := ‖Sx‖ is also a vector norm, and lubp(A) =
lub(SAS−1). For the norm p(x) := ‖D−1

ε Tx‖∞ it then follows that

lubp(A) = lub∞(D−1
ε TAT−1Dε) ≤ ρ(A) + ε.

(b): Let the eigenvalues λi of A be ordered as follows:

ρ(A) = |λ1| = · · · = |λs| > |λs+1| ≥ · · · ≥ |λn|.

Then, by assumption, for 1 ≤ i ≤ s each Jordan box Cν(λi) in J has
dimension 1, i.e., Cν(λi) = [λi]. Choosing

ε = ρ(A) − |λs+1|,

we therefore have

lub∞(D−1
ε TAT−1Dε) = ρ(A).

For the norm p(x) := ‖D−1
ε Tx‖∞ it follows, as in (a), that

lubp(A) = ρ(A). ��

A better estimate than (6.9.1) is given by the following theorem [cf.
Bauer and Fike (1960)]:

(6.9.3) Theorem. If B is an arbitrary n × n matrix, then for all eigen-
values λ of A one has

1 ≤ lub((λI −B)−1(A−B)) ≤ lub((λI −B)−1) lub(A−B)

unless λ is also an eigenvalue of B.

Proof. If x is an eigenvector of A for the eigenvalue λ, then from the
identity

444 6 Eigenvalue Problems

(A−B)x = (λI −B)x

it follows immediately, if λ is not an eigenvalue of B, that

(λI −B)−1(A−B)x = x,

and hence
lub

[
(λI −B)−1(A−B)

]
≥ 1. ��

Choosing in particular

B = AD :=

 a11 0
. . .

0 ann

 ,
the diagonal of A, and taking the maximum norm, it follows that

lub∞
[
(λI −AD)−1(A−AD)

]
= max

1≤i≤n

1

|λ− aii|

n∑
k=1
k �=i

|aik|.

From Theorem (6.9.3) we now get

(6.9.4) Theorem (Gershgorin). The union of all discs

Ki :=
{
µ ∈ C

∣∣ |µ− aii| ≤
n∑

k=1
k �=i

|aik|
}
, i = 1, 2, . . . , n,

contains all eigenvalues of the n× n matrix A = (aik).

Since the disc Ki has center at aii and radius
∑n
k=1,k
=i |aik|, this esti-

mate will be sharper as A deviates less from a diagonal matrix.

Example 1.

A =

[1 0.1 −0.1
0 2 0.4

−0.2 0 3

]
,

K1 = {µ | |µ− 1| ≤ 0.2},
K2 = {µ | |µ− 2| ≤ 0.4},
K3 = {µ | |µ− 3| ≤ 0.2},

[see Figure 12].

The preceding theorem can be sharpened as follows:

(6.9.5) Corollary. If the union M1 =
⋃k
j=1Kij of k discs Kij , j = 1, . . . ,

k, and the union M2 of the remaining discs are disjoint, then M1 contains
exactly k eigenvalues of A and M2 exactly n− k eigenvalues.

Proof. If A = AD +R, for t ∈ [0, 1] let

6.9 Estimation of Eigenvalues 445

K1
K2 K3

40 21 3

Fig. 12. Gershgorin circles

At := AD + tR.

Then
A0 = AD, A1 = A.

The eigenvalues of At are continuous functions of t. Applying the theorem
of Gershgorin to At, one finds that for t = 0 there are exactly k eigenvalues
of A0 in M1 and n − k in M2 (counting multiple eigenvalues according
to their multiplicities as zeros of the characteristic polynomial). Since for
0 ≤ t ≤ 1 all eigenvalues of At likewise must lie in these discs, it follows
for reasons of continuity that also k eigenvalues of A lie in M1 and the
remaining n− k in M2. ��

Since A and AT have the same eigenvalues, one can apply (6.9.4), (6.9.5)
to A as well as to AT and thus, in general, obtain more information about
the location of the eigenvalues.

It is often possible to improve the estimates of Gershgorin’s theorem
by first applying a similarity transformation A→ D−1AD with a diagonal
matrix D = diag(d1, . . . , dn). For the eigenvalues of D−1AD, and thus of
A, one thus obtains the discs

Ki =
{
µ
∣∣ |µ− aii| ≤

n∑
k=1
k �=i

∣∣∣∣aikdkdi
∣∣∣∣ =: ρi

}
.

By a suitable choice of D one can often substantially reduce the radius
ρi of a disc (the remaining discs, as a rule, become larger) in such a way,
indeed, that the disc Ki in question remains disjoint with the other discs
Kj , j �= i. Ki then contains exactly one eigenvalue of A.

Example 2.

A =

[1 ε ε

ε 2 ε

ε ε 2

]
, 0 < ε � 1,

K1 = {µ | |µ− 1| ≤ 2ε},
K2 = K3 = {µ | |µ− 2| ≤ 2ε},

446 6 Eigenvalue Problems

Transformation with D = diag(1, kε, kε), k > 0, yields

A′ = D−1AD =

[
1 kε2 kε2

1/k 2 ε
1/k ε 2

]
.

For A′ we have
ρ1 = 2kε2, ρ2 = ρ3 =

1
k

+ ε.

The discs K1 and K2 = K3 for A′ are disjoint if

ρ1 + ρ2 = 2kε2 +
1
k

+ ε < 1.

For this to be true we must clearly have k > 1. The optimal value k̃, for which
K1 and K2 touch one another, is obtained from ρ1 + ρ2 = 1. One finds

k̃ =
2

1 − ε+
√

(1 − ε)2 − 8ε2
= 1 + ε+O(ε2),

and thus
ρ1 = 2k̃ε2 = 2ε2 +O(ε3).

Through the transformation A → A′ the radius ρ1 of K1 can thus be reduced
from the initial 2ε to about 2ε2.

The estimate of Theorem (6.9.3) can also be interpreted as a perturba-
tion theorem, indicating how much the eigenvalues of A can deviate from
the eigenvalues of B. In order to show this, let us assume that B is nor-
malizable:

B = PΛBP
−1, ΛB = diag(λ1(B), . . . , λn(B)).

It then follows, if λ is no eigenvalue of B, that

lub
(
(λI −B)−1) = lub

(
(P (λI − ΛB)−1P−1)

≤ lub
(
(λI − ΛB)−1) lub

(
P
)
lub

(
P−1)

= max
1≤i≤n

1∣∣λ− λi(B)
∣∣ cond(P)

=
1

min
1≤i≤n

∣∣λ− λi(B)
∣∣ cond(P).

This estimate is valid for all norms ‖ · ‖ satisfying, like the maximum norm
and the Euclidean norm,

lub(D) = max
1≤i≤n

|di|

6.9 Estimation of Eigenvalues 447

for all diagonal matrices D = diag(d1, . . . , dn). Such norms are called ab-
solute; they are also characterized by the condition ‖ |x| ‖ = ‖x‖ for all
x ∈ Cn [see Bauer, Stoer, and Witzgall (1961)].

From (6.9.3) we thus obtain [cf. Bauer, Fike (1960), Householder
(1964)]:

(6.9.6) Theorem. If B is a diagonalizable n × n matrix, B = PΛBP
−1,

ΛB = diag(λ1(B), . . . , λn(B)), and A an arbitrary n × n matrix, then for
each eigenvalue λ(A) there is an eigenvalue λi(B) such that

|λ(A) − λi(B)| ≤ cond(P) lub(A−B).

Here cond and lub are to be formed with reference to an absolute norm ‖·‖.
This estimate shows that for the sensitivity of the eigenvalues of a

matrix B under perturbation, the controlling factor is the condition

cond(P)

of the matrix P , not the condition of B. But the columns of P are just
the (right) eigenvectors of B. For Hermitian, and more generally, normal
matrices normal matrix B one can choose for P a unitary matrix [Theo-
rem (6.4.5)]. With respect to the Euclidean norm ‖x‖2 one therefore has
cond2(P) = 1, and thus:

(6.9.7) Theorem. If B is a normal n×n matrix and A an arbitrary n×n
matrix, then for each eigenvalue λ(A) of A there is an eigenvalue λ(B) of
B such that

|λ(A) − λ(B)| ≤ lub2(A−B).

The eigenvalue problem for Hermitian matrices is thus always well con-
ditioned.

The estimates in (6.9.6), (6.9.7) are of global nature. We now wish to
examine in a first approximation the sensitivity of a fixed eigenvalue λ of A
under small perturbation A→ A+εC, ε→ 0. We limit ourselves to the case
in which the eigenvalue λ under study is a simple zero of the characteristic
polynomial of A. To λ then belong uniquely determined (up to a constant
factor) right and left eigenvectors x and y, respectively:

Ax = λx, yHA = λyH , x �= 0, y �= 0.

For these, one has yHx �= 0, as one easily shows with the aid of the Jordan
normal form of A, which contains only one Jordan block, of order one, for
the eigenvalue λ.

(6.9.8) Theorem. Let λ be a simple zero of the characteristic polynomial
of the n×n matrix A, and x and yH corresponding right and left eigenvec-
tors of A, respectively,

Ax = λx, yHA = λyH , x, y �= 0,

448 6 Eigenvalue Problems

and let C be an arbitrary n × n matrix. Then there exists a function λ(ε)
which is analytic for |ε| sufficiently small, |ε| ≤ ε0, ε0 > 0, such that

λ(0) = λ, λ′(0) =
yHCx

yHx
,

and λ(ε) is a simple zero of the characteristic polynomial of A+ εC. One
thus has, in first approximation,

λ(ε) .= λ+ ε
yHCx

yHx
.

Proof. The characteristic polynomial of the matrix A+ εC,

ϕε(µ) = det(A+ εC − µI),

is an analytic function of ε and µ. Let K be a disc about λ,

K =
{
µ
∣∣ |µ− λ| ≤ r

}
, r > 0,

which does not contain any eigenvalues of A other than λ, and S := {µ |
|µ− λ| = r } its boundary. Then

inf
µ∈S

|ϕ0(µ)| =: m > 0.

Since ϕε(µ) depends continuously on ε, there is an ε0 > 0 such that also

(6.9.9) inf
µ∈S

|ϕε(µ)| > 0 for all |ε| < ε0.

According to a well-known theorem in complex variables, the number of
zeros of ϕε(µ) within K is given by

ν(ε) :=
1

2πi

∮
S

ϕ′
ε(µ)
ϕε(µ)

dµ.

In view of (6.9.9), ν(ε) is continuous for |ε| ≤ ε0; hence 1 = ν(0) = ν(ε)
for |ε| ≤ ε0, ν being integer valued. The simple zero λ(ε) of ϕε(µ) in-
side of K, according to another theorem in complex variables, admits the
representation

(6.9.10) λ(ε) =
1

2πi

∮
S

µϕ′
ε(µ)

ϕε(µ)
dµ.

For |ε| ≤ ε0 the integrand of (6.9.10) is an analytic function of ε and there-
fore also λ(ε), according to a well-known theorem on the interchangeability
of differentiation and integration. For the simple eigenvalue λ(ε) of A+ εC
one can choose right and left eigenvectors x(ε) and y(ε),

6.9 Estimation of Eigenvalues 449

(A+ εC)x(ε) = λ(ε)x(ε), y(ε)H(A+ εC) = λ(ε)y(ε)H ,

in such a way that x(ε) and y(ε) are analytic functions of ε for |ε| ≤ ε0.
We may put, e.g., x(ε) = [ξ1(ε), . . . , ξn(ε)]T with

ξi(ε) = (−1)i det(B1i),

where B1i is the (n − 1) × (n − 1) matrix obtained by deleting row 1 and
column i in the matrix A+ εC − λ(ε)I. From(

A+ εC − λ(ε) I
)
x(ε) = 0,

differentiating with respect to ε at ε = 0, one obtains(
C − λ′(0) I

)
x(0) +

(
A− λ(0) I

)
x′(0) = 0,

from which, in view of y(0)H(A− λ(0) I) = 0,

y(0)H
(
C − λ′(0) I

)
x(0) = 0,

and hence, since y(0)Hx(0) �= 0,

λ′(0) =
yHCx

yHx
, y = y(0), x = x(0),

as was to be shown. ��
Denoting, for the Euclidean norm ‖ · ‖2, by

cos(x, y) :=
yHx

‖x‖2 ‖y‖2

the cosine of the angle between x and y, the preceding result implies the
estimate∣∣λ′(0)

∣∣ =
|yHCx|

‖y‖2 ‖x‖2 | cos(x, y)| ≤ ‖Cx‖2

‖x‖2| cos(x, y)| ≤ lub2(C)
| cos(x, y)| .

The sensitivity of λ will thus increase with decreasing | cos(x, y)|. For Her-
mitian matrices we always have x = y (up to constant multiples), and
hence | cos(x, y)| = 1. This is in harmony with Theorem (6.9.7), according
to which the eigenvalues of Hermitian matrices are relatively insensitive to
perturbations.

Theorem (6.9.8) asserts that an eigenvalue λ of A which is only a simple
zero of the characteristic polynomial is relatively insensitive to perturba-
tions A→ A+ εC, in the sense that for the corresponding eigenvalue λ(ε)
of A+ εC there exists a constant K and an ε0 > 0 such that∣∣λ(ε) − λ

∣∣ ≤ K |ε| for |ε| ≤ ε0.

450 6 Eigenvalue Problems

However, for ill-conditioned eigenvalues λ, i.e., if the corresponding left and
right eigenvectors are almost orthogonal, the constant K is very large.

This statement remains valid if the eigenvalue λ is a multiple zero of
the characteristic polynomial and has only linear elementary divisors. If
to λ there belong nonlinear elementary divisors, however, the statement
becomes false. The following can be shown in this case (cf. Exercise 29):
Let (µ−λ)ν1 , (µ−λ)ν2 ,. . . , (µ−λ)νρ , ν1 ≥ ν2 ≥ · · · ≥ νρ, be the elementary
divisors belonging to the eigenvalue λ of A. Then the matrix A + εC, for
sufficiently small ε, has eigenvalues λi(ε), i = 1, . . . , σ, σ := ν1 + · · · + νρ,
satisfying, with some constant K,

(6.9.11)
∣∣λi(ε) − λ

∣∣ ≤ K |ε|1/ν1 for i = 1, . . . , σ, |ε| ≤ ε0.

This has the following numerical consequence: If in the practical computa-
tion of the eigenvalues of a matrix A [with lub(A) = 1] one applies a sta-
ble method, then the rounding errors committed during the course of the
method can be interpreted as having the effect of producing exact results
not for A, but for a perturbed initial matrix A+ +A, lub(+A) = O(eps).
If to the eigenvalue λi of A there belong only linear elementary divisors,
then the computed approximation λ̃i of λi agrees with λi up to an error
of the order eps. If however λi has elementary divisors of order at most ν,
one must expect an error of order of magnitude eps1/ν for λ̃i.

For the derivation of a typical inclusion theorem, we limit ourselves to
the case of the Euclidean norm

‖x‖2 =
√
xHx =

√∑
i

|xi|2,

and begin by proving the formula

min
x
=0

‖Dx‖2

‖x‖2
= min

i
|di|

for a diagonal matrix D = diag(d1, . . . , dn). Indeed, for all x �= 0,

‖Dx‖2
2

‖x‖2
2

=
∑
i |xi|2 |di|2∑
i |xi|2

≥ min
i

|di|2.

If |dj | = mini |di|, then the lower bounds is attained for x = ej (the j-th
unit vector). Furthermore, if A is a normal matrix, i.e., a matrix which can
be transformed to diagonal form by a unitary matrix U ,

A = UHDU, D = diag(d1, . . . , dn), di = λi(A),

and if f(λ) is an arbitrary polynomial, then

f(A) = UHf(D)U,

6.9 Estimation of Eigenvalues 451

and from the unitary invariance of ‖x‖2 = ‖Ux‖2 it follows at once, for all
x �= 0, that

‖f(A)x‖2

‖x‖2
=

‖UHf(D)Ux‖2

‖x‖2
=

‖f(D)Ux‖2

‖Ux‖2

≥ min
1≤i≤n

∣∣f(di)∣∣ = min
1≤i≤n

∣∣f(λi(A)
)∣∣.

We therefore have the following [see, e.g., Householder (1964)]:

(6.9.12) Theorem. If A is a normal matrix, f(λ) an arbitrary polynomial,
and x �= 0 an arbitrary vector, then there is an eigenvalue λ(A) of A such
that ∣∣f(λ(A)

)∣∣ ≤ ‖f(A)x‖2

‖x‖2
.

In particular, choosing for f the linear polynomial

f(λ) ≡ λ− xHAx

xHx
≡ λ− µ01

µ00
,

where
µik := xH

(
AH

)i
Akx, i, k = 0, 1, 2, . . . ,

we immediately get, in view of µik = µ̄ki,

‖f(A)x‖2
2 = xH

(
AH −

µ̄01

µ00
I

)(
A−

µ01

µ00
I

)
x

= µ11 −
µ10µ01

µ00
−
µ10µ01

µ00
+
µ01µ10

µ2
00

µ00

= µ11 −
µ01µ10

µ00
.

We thus have

(6.9.13) Theorem (Weinstein): If A is normal and x �= 0 an arbitrary
vector, then the discy

∣∣∣∣ ∣∣∣λ−
µ01

µ00

∣∣∣ ≤
√
µ11 − µ10µ01/µ00

µ00

contains at least one eigenvalue of A.

The quotient µ01/µ00 = xHAx/xHx, incidentally, is called the

Rayleigh quotient

452 6 Eigenvalue Problems

of A belonging to x. The last theorem is used especially in connection
with the vector iteration: If x is approximately equal to x1, the eigenvector
corresponding to the eigenvalue λ1,

x ≈ x1, Ax1 = λ1x1,

then the Rayleigh quotient xHAx/xHx belonging to x is in general a very
good approximation to λ1. Theorem (6.9.13) then shows how much at most
this approximate value xHAx/xHx deviates from an eigenvalue of A.

The set
G[A] =

{
xHAx

xHx

∣∣∣ x �= 0
}

of all Rayleigh quotients is called the field of values of the matrix A. Choos-
ing for x an eigenvector of A, it follows at once that G[A] contains the
eigenvalues of A. Hausdorff, furthermore, has shown that G[A] is always
convex. For normal matrices

A = UHΛU, Λ =

λ1 0
. . .

0 λn

 , UHU = I,

one even has

G[A] =

{
xHUHΛUx

xHUHUx

∣∣∣∣ x �= 0

}
=

{
yHΛy

yHy

∣∣∣ y �= 0

}

=

{
µ
∣∣ µ =

n∑
i=1

τiλi, τi ≥ 0,
n∑
i=1

τi = 1

}
.

That is, for normal matrices, G[A] is the convex hull of the eigenvalues of
A [see Figure 13].

λ1

λ2

λ3

λ4

λ5
λ7

λ6

0

G[A]

Fig. 13. Field of values

6.9 Estimation of Eigenvalues 453

For a Hermitian matrix H = HH = UHΛU with eigenvalues λ1 ≥
λ2 ≥ · · · ≥ λn, we thus recover the result (6.4.3), which characterizes λ1
and λn by extremal properties. The remaining eigenvalues of H, too, can
be characterized similarly, as is shown by the following theorem:

(6.9.14) Theorem (Courant, Weyl). For the eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn of an n× n Hermitian matrix H, one has for i = 0, 1,. . . , n− 1

λi+1 = min
y1,...,yi∈Cn

max
x∈Cn: xHy1=···=xHyi=0

x
=0

xHHx

xHx
.

Proof. For arbitrary y1,. . . , yi ∈ Cn define µ(y1, . . . , yi) by

µ(y1, . . . , yi) := max
x∈Cn: xHy1=···=xHyi=0

xHx=1

xHHx

Further let x1, . . . , xn be a set of n orthonormal eigenvectors of H for the
eigenvalues λj [see Theorem (6.4.2)]: Hxj = λjxj , xHj xk = δjk for j, k = 1,
2, . . . , n. For yj := xj , j = 1, . . . , i, all x ∈ Cn with xHyj = 0, j = 1, . . . ,
i, xHx = 1, can then be represented in the form

x = ρi+1xi+1 + · · · + ρnxn,
∑
k>i

|ρk|2 = 1,

so that, since λk ≤ λi+1 for k ≥ i+ 1, one has for such x

xHHx = (ρi+1xi+1 + · · · + ρnxn)HH(ρi+1xi+1 + · · · + ρnxn)

= |ρi+1|2λi+1 + · · · + |ρn|2λn
≤ λi+1(|ρi+1|2 + · · · + |ρn|2) = λi+1,

where equality holds for x := xi+1. Hence,

µ(x1, . . . , xi) = λi+1.

On the other hand, for arbitrary y1, . . . , yi ∈ Cn, the subspaces

E := {x ∈ Cn | xHyj = 0 for j ≤ i},
F := {

∑
j≤i+1 ρjxj | ρj ∈ C},

have dimensions dimE ≥ n − i, dimF = i + 1, so that dimF ∩ E ≥ 1,
and there exists a vector x0 ∈ F ∩ E with xH0 x0 = 1. Therefore, because
x0 = ρ1x1 + · · · + ρi+1xi+1 ∈ F ,

µ(y1, . . . , yi) ≥ xH0 Hx0 = |ρ1|2λ1 + · · · + |ρi+1|2λi+1

≥ (|ρ1|2 + · · · + |ρi+1|2)λi+1 = λi+1. ��

454 6 Eigenvalue Problems

Defining, for an arbitrary matrix A,

H1 :=
1
2
(A+AH), H2 :=

1
2i

(A−AH),

then H1, H2 are Hermitian and

A = H1 + iH2.

(H1, H2 are also denoted by ReA and ImA, respectively; but it should be
noted that the elements of ReA are not real in general.)

For every eigenvalue λ of A, one has, on account of λ ∈ G[A] and
(6.4.3),

Reλ ≤ max
x
=0

Re
xHAx

xHx
= max

x
=0

1
xHx

xHAx+ xHAHx
2

= max
x
=0

xHH1x

xHx
= λmax(H1),

Imλ ≤ max
x
=0

Im
xHAx

xHx
= λmax(H2).

By estimating Reλ, Imλ analogously from below, one obtains

(6.9.15) Theorem (Bendixson). Decomposing an arbitrary matrix A into
A = H1 + iH2, where H1 and H2 are Hermitian, then for every eigenvalue
λ of A one has

λmin(H1) ≤ Reλ ≤ λmax(H1),

λmin(H2) ≤ Imλ ≤ λmax(H2).

The estimates of this section lead immediately to estimates for the zeros
of a polynomial

p(λ) = anλ
n + · · · + an, an �= 0.

We need only observe that to p there corresponds the Frobenius matrix

F =

0 −γ0
1 0 −γ1

.
...

0 1 −γn−1

 , with γi =
ai
an
,

which has the characteristic polynomial (1/an)(−1)np(λ). In particular,
from the estimate (6.9.1) of Hirsch, with lub∞(A) = maxi

∑
k |aik|, applied

to F and FT , one obtains the following estimates for all zeros λk of p(λ),
respectively:

Exercises for Chapter 6 455

(a) |λk| ≤ max
{∣∣∣∣ a0

an

∣∣∣∣, max
1≤i≤n−1

(
1 +

∣∣∣∣ aian
∣∣∣∣)},

(b) |λk| ≤ max
{

1,
n−1∑
i=0

∣∣∣∣ aian
∣∣∣∣ }.

Example 3. For p(λ) = λ3 − 2λ2 + λ− 1 one obtains

(a) |λi| ≤ max{1, 2, 3} = 3,

(b) |λi| ≤ max{1, 1 + 1 + 2} = 4.

In this case (a) gives a better estimate.

Exercises for Chapter 6

1. For the matrix

A =

2 1 0
2 1

2

2 1
2

1

0 0

find the characteristic polynomial, the minimal polynomial, a system of eigen-
vectors and principal vectors, and the Frobenius normal form.

2. How many distinct (i.e., not mutually similar) 6×6 matrices are there whose
characteristic polynomial is

p(λ) = (3 − λ)4(1 − λ)3 ?

3. What are the properties of the eigenvalues of
positive definite/semidefinite,
orthogonal/unitary,
real skew-symmetric (AT = −A)

matrices ? Determine the minimal polynomial of a projection matrix A = A2.

4. For the matrices
(a) A = uvT , u, v ∈ IRn,

(b) H = I − 2wwH , wHw = 1, w ∈ Cn,

(c) P =

 0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

456 6 Eigenvalue Problems

determine the eigenvalues λi, the multiplicities σi and ρi, the characteristic
polynomial ϕ(µ), the minimal polynomial ψ(µ), a system of eigenvectors and
principal vectors, and a Jordan normal form J .

5. For u, v, w, z ∈ IRn, n > 2, let

A := uvT + wzT .

(a) With λ1, λ2 the eigenvalues of

Ã :=

[
vTu vTw

zTu zTw

]
,

show that A has the eigenvalues λ1, λ2, 0.
(b) How many eigenvectors and principal vectors can A have ? What types

of Jordan normal form J of A are possible ? Determine J in particular
for Ã = 0.

6. (a) Show: λ is an eigenvalue of A if and only if −λ is an eigenvalue of B,
where

A :=

δ1 γ2 0

β2 δ2
. . .

. . .
. . . γn

0 βn δn

 , B :=

−δ1 γ2 0

β2 −δ2 . . .
. . .

. . . γn

0 βn −δn

 .
(b) Suppose the real symmetric tridiagonal matrix

A =

δ1 γ2 0

γ2 δ2
. . .

. . .
. . . γn

0 γn δn

satisfies

δi = −δn+1−i,

γi = γn+2−i,

i = 1, . . . , n,
i = 2, . . . , n.

Show: If λ is an eigenvalue of A, then so is −λ. What does this imply
for the eigenvalues of the matrix (6.6.5.9)?

(c) Show that eigenvalues of the matrix

A =

0 γ̄2 0

γ2 0 . . .
. . .

. . . γ̄n

0 γn 0

are symmetric with respect to the origin, and that

Exercises for Chapter 6 457

det(A) =

{
(−1)k |γ2|2 |γ4|2 . . . |γn|2 if n is even, n = 2k,
0 otherwise.

7. Let C be a real n× n matrix and

f(x) :=
xTCx

xTx
for x ∈ IRn, x �= 0.

Show: f is stationary at x̃ �= 0 precisely if x̃ is an eigenvector of 1
2 (C + CT)

with f(x̃) as corresponding eigenvalue.

8. Show:
(a) If A is normal, and has the eigenvalue λi, |λ1| ≥ · · · ≥ |λn|, and the

singular values σi, then

σi = |λi|, i = 1, . . . , n,

lub2(A) = |λ1| = ρ(A),

cond2(A) =
|λ1|
|λn| = ρ(A)ρ(A−1) (if A−1 exists).

(b) For every n× n matrix,(
lub2(A)

)2
= lub2(AHA).

9. Show: If A is a normal n× n matrix with the eigenvalues λi,

|λ1| ≥ · · · ≥ |λn|,

and if U , V are unitary, then for the eigenvalues µi of UAV one has

|λ1| ≥ |µi| ≥ |λn|.

10. Let B be an n×m matrix. Prove:

M =

[
In B

BH Im

]
positive definite ⇔ ρ(BHB) < 1

[In, Im unit matrices, ρ(BHB) = spectral radius of BHB].

11. For n× n matrices A, B show:
(a) |A| ≤ |B| ⇒ lub2(|A|) ≤ lub2(|B|),
(b) lub2(A) ≤ lub2(|A|) ≤

√
n lub2(A).

12. The content of this exercise is the assertion in Section 6.3 that a matrix is ill
conditioned if two column vectors are “almost linearly dependent”. For the
matrix A = [a1, . . . , an], ai ∈ IRn, i = 1, . . . , n, let

|aT
1 a2| ≥ ‖a1‖2 ‖a2‖2 (1 − ε), 0 < ε < 1

458 6 Eigenvalue Problems

(i.e., a1 and a2 form an angle α with 1 − ε ≤ | cos α| ≤ 1). Show: Either A is
singular or cond2(A) ≥ 1/

√
ε.

13. Estimation of the function f(n) in formula (6.5.4.4) for floating-point arith-
metic with relative precision eps: Let A be an n× n matrix in floating-point
representation and Gj an elimination matrix of the type (6.5.4.1) with the
essential elements lij . The lij are formed by division of elements of A and
are thus subject to a relative error of at most eps. With the methods of Sec-
tion 1.3, derive the following estimates (higher powers epsi, i ≥ 2, are to be
neglected):

(a) lub∞[fl(G−1
j A) −G−1

j A] ≤̇ 4 eps lub∞(A),

(b) lub∞[fl(AGj) −AGj] ≤̇ (n− j + 2) eps lub∞(A),

(c) lub∞[fl(G−1
j AGj) −G−1

j AGj] ≤̇ 2(n− j + 6) eps lub∞(A).

14. Convergence behavior of the vector iteration: Let A be a real symmetric n×n
matrix having the eigenvalues λi with

|λ1| > |λ2| ≥ · · · ≥ |λn|

and the corresponding eigenvectors x1, . . . , xn with xT
i xk = δik. Starting

with an initial vector y0 for which xT
1 y0 �= 0, suppose one computes

yk+1 :=
Ayk

‖Ayk‖ , for k = 0, 1, . . .

with an arbitrary vector norm ‖ · ‖, and concurrently the quantities

qki :=
(Ayk)i

(yk)i
, 1 ≤ i ≤ n, in case (yk)i �= 0,

and the Rayleigh quotient

rk :=
yT

k Ayk

yT
k yk

.

Prove:
(a) qki = λ1[1 +O((λ2/λ1)k)] for all i with (x1)i �= 0,

(b) rk = λ1[1 +O((λ2/λ1)2k)].

15. In the real matrix

A = AT =

−9 ∗ ∗ ∗ ∗
∗ 0 ∗ ∗ ∗
∗ ∗ 1 ∗ ∗
∗ ∗ ∗ 4 ∗
∗ ∗ ∗ ∗ 21

 ,
stars represent elements of modulus ≤ 1/4. Suppose the vector iteration is
carried out with A and the initial vector y0 = e5.
(a) Show that e5 is an “appropriate” initial vector, i.e., the sequence yk in

Exercise 14 does indeed converge toward the eigenvector belonging to
the dominant eigenvalue of A.

(b) Estimate how many correct decimal digits rk+5 gains compared to rk.

Exercises for Chapter 6 459

16. Prove: lub∞(F) < 1 =⇒ A := I + F admits a triangular factorization A =
L ·R.

17. Let the matrix A be nonsingular and admit a triangular factorization A =
L ·R (lii = 1). Show:
(a) L and R are uniquely determined.
(b) If A is an upper Hessenberg matrix, then

L =

1 0
∗ 1

. . .
. . .

0 ∗ 1

 , RL upper Hessenberg.

(c) If A is tridiagonal, then L is as in (b) and

R =

∗ ∗ 0

. . .
. . .
. . . ∗

0 ∗

 , RL tridiagonal.

18. (a) Which upper triangular matrices are at the same time unitary; which
ones real orthogonal ?

(b) In what do different QR factorizations of a nonsingular matrix differ
from one another? Is the answer valid also for singular matrices?

19. (a) Consider an upper triangular matrix

R =
[
λ1 ∗
0 λ2

]
with λ1 �= λ2

and determine a Givens rotation Ω so that

ΩTRΩ =
[
λ2 ∗
0 λ1

]
.

Hint: Ωe1 is an eigenvector of R corresponding to the eigenvalue λ2.
(b) How can one transform an upper triangular matrix R with rkk = λk,

k = 1, . . . , n, unitarily into an upper triangular matrix R̃ = UHRU ,
UHU = I, with the diagonal diag(λi, λ1, . . . , λi−1, λi+1, . . . , λn)?

20. QR method with shifts: Prove formula (6.6.5.3).

21. Let A be a normal n × n matrix with the eigenvalues λ1, . . . , λn, A = QR,
QHQ = I, R = (rik) upper triangular. Prove:

min
i

|λi| ≤ |rjj | ≤ max
i

|λi|, j = 1, . . . , n.

22. Compute a QR step with the matrix A =
[

2 ε
ε 1

]
(a) without shift

460 6 Eigenvalue Problems

(b) with shift k = 1, i.e., following strategy (a) of Section 6.6.6.

23. Effect of a QR step with shift for tridiagonal matrices:

A =

δ1 γ2 0

γ2 δ2
. . .

. . .
. . . γn

0 γn δn

 =

0

B
...
γn

0 · · · γn δn

, γi �= 0, i = 2, . . . , n.

Suppose we carry out a QR step with A, using the shift parameter k = δn,

A− δnI = QR → RQ+ δnI =: A′ =

δ′
1 γ′

2 0

γ′
2 δ′

2
. . .

. . .
. . . γ′

n

0 γ′
n δ′

n

 .
Prove: If d := mini |λi(B) − δn| > 0, then

|γ′
n| ≤ |γn|3

d2 , |δ′
n − δn| ≤ |γn|2

d
.

Hint: Q is a product of suitable Givens rotations; apply Exercise 21.
Example: What does one obtain for

A =

5 1
1 5 1

1 5 1
1 5 0.1

0.1 1

 ?

24. Is shift strategy (a) in the QR method meaningful for real tridiagonal matri-
ces of the type

δ γ2 0

γ2 δ
. . .

. . .
. . . γn

0 γn δ

 ?

Answer this question with the aid of Exercise 6 (c) and the following fact:
If A is real symmetric and tridiagonal, and if all diagonal elements are zero,
then the same is true after one QR step.

25. For the matrix

A =

[
5.2 0.6 2.2
0.6 6.4 0.5
2.2 0.5 4.7

]
compute an upper bound for cond2(A), using estimates of the eigenvalues by
the method of Gershgorin.

26. Estimate the eigenvalues of the following matrices as accurately as possible:

Exercises for Chapter 6 461

(a) The matrix A in Exercise 15.

(b)

[
1 10−3 10−4

10−3 2 10−3

10−4 10−3 3

]
.

Hint: Use the method of Gershgorin in conjunction with a transformation
A → D−1AD, D a suitable diagonal matrix.

27. (a) Let A, B be Hermitian square matrices and

H =

[
A C

CH B

]
.

Show: For every eigenvalue λ(B) of B there is an eigenvalue λ(H) of H
such that ∣∣λ(H) − λ(B)

∣∣ ≤
√

lub2(CHC).

(b) Apply (a) to the practically important case in which H is a Hermitian,
“almost reducible” tridiagonal matrix of the form

H =

∗ ∗ 0

∗ ∗
. . .

. . .
. . . ∗
∗ ∗ ε

ε ∗ ∗
∗ ∗

. . .
. . .

. . . ∗
0 ∗ ∗

, ε small.

How can the eigenvalues of H be estimated in terms of those of A and
B ?

28. Show: If A = (aik) is Hermitian, then for every diagonal element aii there
exists an eigenvalue λ(A) of A such that

∣∣λ(A) − aii

∣∣ ≤
√∑

j �=i

|aij |2.

29. (a) For the ν × ν matrix

Cν(λ) =

λ 1 0

λ
. . .
. . . 1

0 λ

 ,

462 6 Eigenvalue Problems

prove with the aid of Gershgorin’s theorem and appropriate scaling with
diagonal matrices: The eigenvalues λi(ε) of the perturbed matrix Cν(λ)+
εF satisfy, for ε sufficiently small,∣∣λi(ε) − λ

∣∣ ≤ K
∣∣ε1/ν

∣∣,
with some constant K. Through a special choice of the matrix F show
that the case λi(ε) − λ = O(ε1/ν) does indeed occur.

(b) Prove the result (6.9.11).
Hint: Transform A to Jordan normal form.

30. Obtain the field of values G[A] = {xHAx|xHx = 1} for

A :=

 1 1 0 0
1 1 0 0
0 0 −1 1
0 0 −1 −1

 .
31. Decompose these matrices into H1 + iH2 with H1, H2 Hermitian:

A :=
[

2 0
2 2

]
, B :=

[
i i

−i i

]
, C :=

[
2 5 + i 1 − 2i

5 + i 1 + 4i 3
1 + 2i 1 −i

]
.

32. For the eigenvalues of

A =

[
3. 1.1 −0.1
0.9 15.0 −2.1
0.1 −1.9 19.5

]
.

use the theorems of Gershgorin and Bendixson to determine inclusion regions
which are as small as possible.

References for Chapter 6

Barth, W., Martin, R. S., Wilkinson, J. H. (1971): Calculation of the eigenvalues
of a symmetric tridiagonal matrix by the method of bisection. Contribution
II/5 in Wilkinson and Reinsch (1971).

Bauer, F. L., Fike, C. T. (1960): Norms and exclusion theorems. Numer. Math.
2, 137–141.

, Stoer, J., Witzgall, C. (1961): Absolute and monotonic norms. Numer.
Math. 3, 257–264.

Bowdler, H., Martin, R. S., Wilkinson, J. H. (1971): The QR and QL algorithms
for symmetric matrices. Contribution II/3 in: Wilkinson and Reinsch (1971).

Bunse, W., Bunse-Gerstner, A. (1985): Numerische Lineare Algebra. Stuttgart:
Teubner.

Cullum, J., Willoughby, R. A. (1985): Lanczos Algorithms for Large Symmet-
ric Eigenvalue Computations. Vol. I : Theory, Vol. II : Programs. Progress in
Scientific Computing, Vol. 3, 4. Basel: Birkhäuser.

References for Chapter 6 463

Eberlein, P. J. (1971): Solution to the complex eigenproblem by a norm reducing
Jacobi type method. Contribution II/17 in: Wilkinson and Reinsch (1971).

Francis, J. F. G. (1961/62): The QR transformation. A unitary analogue to the
LR transformation. I. Computer J. 4, 265–271. The QR transformation. II.
ibid., 332–345.

Garbow, B. S., et al. (1977): Matrix Eigensystem Computer Routines — EIS-
PACK Guide Extension. Lecture Notes in Computer Science 51. Berlin, Hei-
delberg, New York: Springer-Verlag.

Givens, J. W. (1954): Numerical computation of the characteristic values of a
real symmetric matrix. Oak Ridge National Laboratory Report ORNL-1574.

Golub, G. H., Reinsch, C. (1971): Singular value decomposition and least squares
solution. Contribution I/10 in: Wilkinson and Reinsch (1971).

, Van Loan, C. F. (1983): Matrix Computations. Baltimore: The Johns-
Hopkins University Press.

, Wilkinson, J. H. (1976): Ill-conditioned eigensystems and the computa-
tion of the Jordan canonical form. SIAM Review 18, 578–619.

Householder, A. S. (1964): The Theory of Matrices in Numerical Analysis. New
York: Blaisdell.

Kaniel, S. (1966): Estimates for some computational techniques in linear algebra.
Math. Comp. 20, 369–378.

Kie�lbasinski, A., Schwetlick, H. (1988): Numerische Lineare Algebra. Thun,
Frankfurt/M.: Deutsch.

Kublanovskaya, V. N. (1961): On some algorithms for the solution of the complete
eigenvalue problem. Ž. Vyčisl. Mat. i Mat. Fiz. 1, 555–570.

Lanczos, C. (1950): An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral operators. J. Res. Nat. Bur. Stand. 45,
255–282.

Martin, R. S., Peters, G., Wilkinson, J. H. (1971): The QR algorithm for real
Hessenberg matrices. Contribution II/14 in: Wilkinson and Reinsch (1971).

, Reinsch, C., Wilkinson. J. H. (1971): Householder’s tridiagonalization
of a symmetric matrix. Contribution II/2 in: Wilkinson and Reinsch (1971).

, Wilkinson, J. H. (1971): Reduction of the symmetric eigenproblem Ax =
λBx and related problems to standard form. Contribution II/10 in: Wilkinson
and Reinsch (1971).

, (1971): Similarity reduction of a general matrix to Hessenberg
form. Contribution II/13 in: Wilkinson and Reinsch (1971).

Moler, C. B., Stewart, G. W. (1973): An algorithm for generalized matrix eigen-
value problems. SIAM J. Numer. Anal. 10, 241–256.

Paige, C. C. (1971): The computation of eigenvalues and eigenvectors of very
large sparse matrices. Ph.D. thesis, London University.

Parlett, B. N. (1965): Convergence of the QR algorithm. Numer. Math. 7, 187-193
(corr. in 10, 163–164 (1967)).

(1980): The Symmetric Eigenvalue Problem. Englewood Cliffs, N.J.:
Prentice-Hall.

, Poole, W. G. (1973): A geometric theory for the QR, LU and power
iterations. SIAM J. Numer. Anal. 10. 389–412.

, Scott, D. S. (1979): The Lanczos algorithm with selective orthogonal-
ization. Math Comp. 33, 217–238.

Peters, G., Wilkinson J. H. (1970): Ax = λBx and the generalized eigenproblem.
SIAM J. Numer. Anal. 7, 479–492.

, (1971): Eigenvectors of real and complex matrices by LR and
QR triangularizations. Contribution II/15 in: Wilkinson and Reinsch (1971).

464 6 Eigenvalue Problems

, (1971): The calculation of specified eigenvectors by inverse it-
eration. Contribution II/18 in: Wilkinson and Reinsch (1971).

Rutishauser, H. (1958): Solution of eigenvalue problems with the LR-trans-
formation. Nat. Bur. Standards Appl. Math. Ser. 49, 47–81.

(1971): The Jacobi method for real symmetric matrices. Contribution
II/1 in: Wilkinson and Reinsch (1971).

Saad, Y. (1980): On the rates of convergence of the Lanczos and the block Lanczos
methods. SIAM J. Num. Anal. 17, 687–706.

Schwarz, H. R., Rutishauser, H., Stiefel, E. (1972): Numerik symmetrischer Ma-
trizen. 2d ed. Stuttgart: Teubner. (English translation: Englewood Cliffs, N.J.:
Prentice-Hall (1973).)

Smith, B. T., et al. (1976): Matrix eigensystems routines — EISPACK Guide.
Lecture Notes in Computer Science 6, 2d ed. Berlin, Heidelberg, New York:
Springer-Verlag.

Stewart, G. W. (1973): Introduction to Matrix Computations. New York, London:
Academic Press.

Wilkinson, J. H. (1962): Note on the quadratic convergence of the cyclic Jacobi
process. Numer. Math. 4, 296–300.

(1965): The Algebraic Eigenvalue Problem. Oxford: Clarendon Press.
(1968): Global convergence of tridiagonal QR algorithm with origin

shifts. Linear Algebra and Appl. 1, 409–420.
, Reinsch, C. (1971): Linear Algebra, Handbook for Automatic Computa-

tion, Vol. II. Berlin, Heidelberg, New York: Springer-Verlag.

7 Ordinary Differential Equations

7.0 Introduction

Many problems in applied mathematics lead to ordinary differential equa-
tions. In the simplest case one seeks a differentiable function y = y(x) of
one real variable x, whose derivative y′(x) is to satisfy an equation of the
form y′(x) = f(x, y(x)), or more briefly,

(7.0.1) y′ = f(x, y);

one then speaks of an ordinary differential equation. In general there are
infinitely many different functions y which are solutions of (7.0.1). Through
additional requirements one can single out certain solutions from the set
of all solutions. Thus, in an initial-value problem, one seeks a solution y of
(7.0.1) which for given x0, y0 satisfies an initial condition of the form

(7.0.2) y(x0) = y0.

More generally, one also considers systems of n ordinary differential
equations

y′
1(x) = f1(x, y1(x), . . . , yn(x)),
y′
2(x) = f2(x, y1(x), . . . , yn(x)),

...
y′
n(x) = fn(x, y1(x), . . . , yn(x))

for n unknown real functions yi(x), i = 1, . . . , n, of a real variable. Such
systems can be written analogously to (7.0.1) in vector form:

(7.0.3) y′ = f(x, y), y′ :=

 y
′
1
...
y′
n

 , f(x, y) :=

 f1(x, y1, . . . , yn)...
fn(x, y1, . . . , yn)

 .
To the initial condition (7.0.2) there now corresponds a condition of the
form

466 7 Ordinary Differential Equations

(7.0.4) y(x0) = y0 =

 y10...
yn0

 .
In addition to ordinary differential equations of first order (7.0.1),

(7.0.3), in which there occur only first derivatives of the unknown function
y(x), there are ordinary differential equations of mth order of the form

(7.0.5) y(m)(x) = f(x, y(x), y(1)(x), . . . , y(m−1)(x)).

By introducing auxiliary functions

z1(x) : = y(x),

z2(x) : = y(1)(x),
...

zm(x) : = y(m−1)(x),

(7.0.5) can always be transformed into an equivalent system of first-order
differential equations,

(7.0.6) z′ =

z′
1
...

z′
m−1
z′
m

 =

z2
...
zm

f(x, z1, z2, . . . , zm)

 .
By an initial-value problem for the ordinary differential equation of mth
order (7.0.5) one means the problem of finding an m times differentiable
function y(x) which satisfies (7.0.5) and initial conditions of the form

y(i)(x0) = yi0, i = 0, 1, . . . , m− 1.

Initial-value problems will be treated in Section 7.2.
Besides initial-value problems for systems of ordinary differential equa-

tions, boundary-value problems also frequently occur in practice. Here, the
desired solution y(x) of the differential equation (7.0.3) has to satisfy a
boundary condition of the form

(7.0.7) r(y(a), y(b)) = 0,

where a �= b are two different numbers and

r(u, v) :=

 r1(u1, . . . , un, v1, . . . , vn)
...

rn(u1, . . . , un, v1, . . . , vn)

7.1 Some Theorems from the Theory of Diffferential Equations 467

is a vector of n given functions ri of 2n variables u1, . . . , un, v1, . . . , vn.
Problems of this kind will be considered in Sections 7.3, 7.4, and 7.5.

In the methods which are to be discussed in the following, one does not
construct a closed-form expression for the desired solution y(x) — this is
not even possible, in general — but in correspondence to certain discrete
abscissae xi, i = 0, 1, . . . , one determines approximate values ηi := η(xi) for
the exact values yi := y(xi). The discrete abscissae are often equidistant,
xi = x0 + ih. For the appproximate values ηi we then also write more
precisely η(xi;h), since the ηi, like the xi, depend on the stepsize h used.
An important problem, for a given method, will be to examine whether,
and how fast, η(x; (x− x0)/n) converges to y(x) as n→ ∞, i.e., h→ 0.

For a detailed treatment of numerical methods for solving initial- and
boundary-value problems we refer to the literature: In addition to the clas-
sical book by Henrici (1963), and the more recent exposition by Hairer et
al. (1987, 1991), we mention the books by Gear (1971), Grigorieff (1972,
1977), Keller (1968), Shampine and Gordon (1975), and Stetter (1973).

7.1 Some Theorems from the Theory of Ordinary
Differential Equations

For later use we list a few results — some without proof — from the theory
of ordinary differential equations. We assume throughout that [see (7.0.3)]

y′ = f(x, y)

is a system of n ordinary differential equations, ‖.‖ a norm on IRn, and
‖A‖ an associated consistent multiplicative matrix norm with ‖I‖ = 1
[see (4.4.8)]. It can then be shown [see, e.g., Henrici (1962), Theorem 3.1]
that the initial-value problem (7.0.3), (7.0.4) — and thus in particular
(7.0.1), (7.0.2) — has exactly one solution, provided f satisfies a few simple
regularity conditions:

(7.1.1) Theorem. Let f be defined and continuous on the strip S :=
{(x, y)|a ≤ x ≤ b, y ∈ IRn}, a, b finite. Further, let there be a constant L
such that

(7.1.2) ‖f(x, y1) − f(x, y2)‖ ≤ L‖y1 − y2‖

for all x ∈ [a, b] and all y1, y2 ∈ IRn (“Lipschitz condition”). Then for every
x0 ∈ [a, b] and every y0 ∈ IRn there exists exactly one function y(x) such
that

(a) y(x) is continuous and continuously differentiable for x ∈ [a, b];
(b) y′(x) = f(x, y(x)) for x ∈ [a, b];
(c) y(x0) = y0.

468 7 Ordinary Differential Equations

From the mean-value theorem it easily follows that the Lipschitz con-
dition is satisfied if the partial derivatives ∂fi/∂yj , i, j = 1, . . . , n, exist on
the strip S and are continuous and bounded there. For later use, we denote
by

(7.1.3) FN (a, b)

the set of functions f for which all partial derivatives up to and including
order N exist on the strip S = {(x, y)|a ≤ x ≤ b, y ∈ IRn}, a, b finite, and
are continuous and bounded there. The functions f ∈ F1(a, b) thus fulfill
the assumptions of (7.1.1).

In applications, f is usually continuous on S and also continuously
differentiable there, but the derivatives ∂fi/∂yj are often unbounded on S.
Then, while the initial-value problem (7.0.3), (7.0.4) is still solvable, the
solution may be defined only in a certain neighborhood U(x0) (which may
even depend on y0) of the initial point and not on all of [a, b] [see, e.g.,
Henrici (1962)].

Example. The initial-value problem

y′ = y2, y(0) = y0 > 0

has the solution y(x) = 1/(y0 − x), which is defined only for x < y0.

(7.1.1) is the fundamental existence and uniqueness theorem for the
initial-value problem given in (7.0.3), (7.0.4).

We now show that the solution of an initial-value problem depends
continuously on the initial value:

(7.1.4) Theorem. Let the function f :S → IRn be continuous on the strip
S = {(x, y)|a ≤ x ≤ b, y ∈ IRn} and satisfy the Lipschitz condition

‖f(x, y1) − f(x, y2)‖ ≤ L‖y1 − y2‖

for all (x, yi) ∈ S, i = 1, 2. Let a ≤ x0 ≤ b. Then for the solution y(x; s)
of the initial-value problem

y′ = f(x, y), y(x0; s) = s

there holds the estimate

‖y(x; s1) − y(x; s2)‖ ≤ eL|x−x0|‖s1 − s2‖

for a ≤ x ≤ b.
Proof. By definition of y(x; s) one has

y(x; s) = s+
∫ x

x0

f(t, y(t; s)) dt

7.1 Some Theorems from the Theory of Diffferential Equations 469

for a ≤ x ≤ b. It follows that

y(x; s1) − y(x; s2) = s1 − s2 +
∫ x

x0

[f(t, y(t; s1)) − f(t, y(t; s2))] dt,

and thus

(7.1.5) ‖y(x; s1) − y(x; s2)‖ ≤ ‖s1 − s2‖ + L
∣∣∣∫ x

x0

‖y(t; s1) − y(t; s2)‖ dt
∣∣∣.

For the function

Φ(x) :=
∫ x

x0

‖y(t; s1) − y(t; s2)‖ dt

one has Φ′(x) = ‖y(x; s1) − y(x; s2)‖ and thus, by (7.1.5), for x ≥ x0

α(x) ≤ ‖s1 − s2‖ with α(x) := Φ′(x) − LΦ(x).

The initial-value problem

(7.1.6) Φ′(x) = α(x) + LΦ(x), Φ(x0) = 0

has for x ≥ x0 the solution

(7.1.7) Φ(x) = eL(x−x0)
∫ x

x0

α(t)e−L(t−x0) dt.

On account of α(x) ≤ ‖s1 − s2‖, one thus obtains the estimate

0 ≤ Φ(x) ≤ eL(x−x0)‖s1 − s2‖
∫ x

x0

e−L(t−x0) dt

=
1
L

‖s1 − s2‖[eL(x−x0) − 1] for x ≥ x0.

The desired result finally follows for x ≥ x0:

‖y(x; s1) − y(x; s2)‖ = Φ′(x) = α(x) + LΦ(x) ≤ ‖s1 − s2‖eL|x−x0|.

If x < x0 one proceeds similarly. ��

The preceding theorem can be sharpened: Under additional assump-
tions the solution of the initial-value problem actually depends on the initial
value in a continuously differentiable manner. We have the following:

(7.1.8) Theorem. If in addition to the assumptions of Theorem (7.1.4)
the Jacobian matrix Dyf(x, y) = [∂fi/∂yj] exists on S and is continuous
and bounded there,

‖Dyf(x, y)‖ ≤ L for (x, y) ∈ S,

470 7 Ordinary Differential Equations

then the solution y(x; s) of y′ = f(x, y), y(x0; s) = s, is continuously dif-
ferentiable for all x ∈ [a, b] and all s ∈ IRn. The derivative

Z(x; s) := Dsy(x; s) =
[
∂y(x; s)
∂σ1

, . . . ,
∂y(x; s)
∂σn

]
, s = [σ1, . . . , σn]T ,

is the solution of the initial-value problem (Z ′ = DxZ)

(7.1.9) Z ′ = Dyf(x, y(x; s))Z, Z(x0; s) = I.

Note that Z ′, Z, and Dyf(x, y(x; s)) are n × n matrices. (7.1.9) thus
describes an initial-value problem for a system of n2 differential equations.
Formally, (7.1.9) can be obtained by differentiating with respect to s the
identities

y′(x; s) ≡ f(x, y(x; s)), y(x0; s) ≡ s.
A proof of Theorem (7.1.8) can be found, e.g., in Coddington and

Levinson (1955).
For many purposes it is important to estimate the growth of the solution

Z of (7.1.9). Suppose, then, that T (x) is an n × n matrix, and the n × n
matrix Y (x) solution of the linear initial-value problem

(7.1.10) Y ′ = T (x)Y, Y (a) = I.

One can then show:

(7.1.11) Theorem. If T (x) is continuous on [a, b], and k(x) := ‖T (x)‖,
then the solution Y (x) of (7.1.10) satisfies

‖Y (x) − I‖ ≤ exp
(∫ x

a

k(t) dt
)

− 1, x ≥ a.

Proof. By definition of Y (x) one has

Y (x) = I +
∫ x

a

T (t)Y (t) dt.

Letting
ϕ(x) := ‖Y (x) − I‖

by virtue of ‖Y (x)‖ ≤ ϕ(x) + ‖I‖ = ϕ(x) + 1 there follows for x ≥ a the
estimate

(7.1.12) ϕ(x) ≤
∫ x

a

k(t)(ϕ(t) + 1) dt.

Now let c(x) be defined by

7.2 Initial-Value Problems 471

(7.1.13)
∫ x

a

k(t)(ϕ(t) + 1) dt = c(x) exp
(∫ x

a

k(t) dt
)

− 1, c(a) = 1.

Through differentiation of (7.1.13) [c(x) is clearly differentiable] one obtains

k(x)(ϕ(x) + 1) = c′(x) exp
(∫ x

a

k(t) dt
)

+ k(x)c(x) exp
(∫ x

a

k(t) dt
)

= c′(x) exp
(∫ x

a

k(t) dt
)

+ k(x)
[
1 +

∫ x

a

k(t)(ϕ(t) + 1) dt
]
,

from which, because of k(x) ≥ 0 and (7.1.12), it follows that

c′(x) exp
(∫ x

a

k(t) dt
)

+ k(x)
∫ x

a

k(t)(ϕ(t) + 1) dt = k(x)ϕ(x)

≤ k(x)
∫ x

a

k(t)(ϕ(t) + 1) dt.

One thus obtains finally
c′(x) ≤ 0

and therefore

(7.1.14) c(x) ≤ c(a) = 1 for x ≥ a.

The assertion of the theorem now follows immediately from (7.1.12)–
(7.1.14). ��

7.2 Initial-Value Problems

7.2.1 One-Step Methods: Basic Concepts

As one can already surmise from Section 7.1, the methods and results for
initial-value problems for systems of ordinary differential equations of first
order are essentially independent of the number n of unknown functions. In
the following we therefore limit ourselves to the case of only one ordinary
differential equation of first order for only one unknown function (i.e., n =
1). The results, however, are valid, as a rule, also for systems (i.e., n > 1),
provided quantities such as y and f(x, y) are interpreted as vectors, and | · |
as norm ‖ · ‖. For the following, we assume that the initial-value problem
under consideration is always uniquely solvable.

A first numerical method for the solution of the initial-value problem

(7.2.1.1) y′ = f(x, y), y(x0) = y0

is suggested by the following simple observation: Since f(x, y(x)) is just
the slope y′(x) of the desired exact solution y(x) of (7.2.1.1), one has for
h �= 0 approximately

472 7 Ordinary Differential Equations

y(x+ h) − y(x)
h

≈ f(x, y(x)),

or

(7.2.1.2) y(x+ h) ≈ y(x) + hf(x, y(x)).

Once a steplength h �= 0 is chosen, starting with the given initial values x0,
y0 = y(x0), one thus obtains at equidistant points xi = x0 + ih, i = 1, 2,
. . . , approximations ηi to the values yi = y(xi) of the exact solution y(x)
as follows:

(7.2.1.3)

η0 := y0;
for i = 0, 1, 2, . . . :

ηi+1 := ηi + hf(xi, ηi),
xi+1 := xi + h.

One arrives at the polygon method of Euler shown in Figure 14.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
��

���

�����
�����
���������������������

����������������

�������������������������������
���������������

�
��������

��������
��������

��������

�� �� �� �� �

�

������������
������������
������������
������������
������������
�����������
������������
������������
������������
������������
���������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
������
����������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
�������

�

�

�

�

�������

�������

�������

�������

Fig. 14. Euler’s method

Evidently, the approximate values ηi of y(xi) depend on the stepsize
h. To indicate this, we also write more precisely η(xi;h) instead of ηi. The
“approximate solution” η(x;h) is thus defined only for

x ∈ Rh := {x0 + ih | i = 0, 1, 2, . . . }

or, alternatively, for

h ∈ Hx :=
{
x− x0

n

∣∣∣∣ n = 1, 2, . . .
}

;

7.2 Initial-Value Problems 473

in fact, it is defined recursively by [cf. (7.2.1.3)]

η(x0;h) := y0,

η(x+ h;h) := η(x;h) + h f(x, η(x;h)).

Euler’s method is a typical one-step method. In general, such methods are
given by a function

Φ(x, y;h; f).

Starting with the initial values x0, y0 of the initial-value problem (7.2.1.1),
one now obtains approximate values ηi for the quantities yi := y(xi) of the
exact solution y(x) by means of

(7.2.1.4)

η0 := y0,

for i = 0, 1, 2, . . . :
ηi+1 := ηi + hΦ(xi, ηi;h; f),
xi+1 := xi + h.

In the method of Euler, for example, one has Φ(x, y;h; f) := f(x, y); here,
Φ is independent of h.

For simplicity, the argument f in the function Φ will from now on be
omitted. As in Euler’s method (see above) we also write more precisely
η(xi;h) instead of ηi, in order to indicate the dependence of the approxi-
mate values of the stepsize h used.

Let now x and y be arbitrary, but fixed, and let z(t) be the exact
solution of the initial-value problem

(7.2.1.5) z′(t) = f(t, z(t)), z(x) = y,

with initial values x, y. Then the function

(7.2.1.6) ∆(x, y;h; f) :=

z(x+ h) − y

h
if h �= 0,

f(x, y) if h = 0

represents the difference quotient of the exact solution z(t) of (7.2.1.5) for
stepsize h, while Φ(x, y;h) is the difference quotient for stepsize h of the
approximate solution of (7.2.1.5) produced by Φ. As in Φ, we shall also
drop the argument f in ∆.

The magnitude of the difference

τ(x, y;h) := ∆(x, y;h) − Φ(x, y;h)

indicates how well the value z(x+ h) of the exact solution at x+ h of the
differential quation with the inital data (x, y) obeys the equation of the one-
step method: it is a measure of the quality of the approximation method.

474 7 Ordinary Differential Equations

One calls τ(x, y;h) the local discretization error at the point (x, y) of the
method in question. For a reasonable one-step method one will require that

lim
h→0

τ(x, y;h) = 0.

In as much as limh→0∆(x, y;h) = f(x, y), this is equivalent to

(7.2.1.7) lim
h→0

Φ(x, y;h) = f(x, y).

One calls Φ, and the associated one-step method, consistent if (7.2.1.7)
holds for all x ∈ [a, b], y ∈ IR and f ∈ F1(a, b) [see (7.1.3)].

Example. Euler’s method, Φ(x, y;h) := f(x, y), is obviously consistent. The
result can be sharpened: if f has sufficiently many continuous partial derivatives,
it is possible to say with what order τ(x, y;h) goes to zero as h → 0. For this,
expand the solution z(t) of (7.2.1.5) into a Taylor series about the point t = x:

z(x+ h) = z(x) + hz′(x) +
h2

2
z′′(x) + · · · +

hp

p!
z(p)(x+ θh), 0 < θ < 1.

We now have, because z(x) = y, z′(t) ≡ f(t, z(t)),

z′′(x) =
d

dt
f(t, z(t)) |t=x= fx(t, z(t)) |t=x +fy(t, z(t))z′(t) |t=x

= fx(x, y) + fy(x, y)f(x, y),

z′′′(x) = fxx(x, y) + 2fxy(x, y)f(x, y) + fyy(x, y)f(x, y)2 + fy(x, y)z′′(x),

etc., and thus

(7.2.1.8)
∆(x, y;h) = z′(x) +

h

2!
z′′(x) + · · · +

hp−1

p!
z(p)(x+ θh)

= f(x, y) +
h

2
[fx(x, y) + fy(x, y)f(x, y)] + · · · .

For Euler’s method, Φ(x, y;h) := f(x, y), it follows that

τ(x, y;h) = ∆(x, y;h) − Φ(x, y;h) =
h

2
[fx(x, y) + fy(x, y)f(x, y)] + · · ·

= O(h).

Generally, one speaks of a method of order p if

(7.2.1.9) τ(x, y;h) = O(hp)

for all x ∈ [a, b], y ∈ IR and f ∈ Fp(a, b).
Euler’s method thus is a method of order 1.

7.2 Initial-Value Problems 475

The preceding example shows how to obtain methods of order greater
than 1. Simply take for Φ(x, y;h) sections of the Taylor series (7.2.1.8) of
∆(x, y;h). For example,

7.2.1.10 Φ(x, y;h) := f(x, y) +
h

2
[fx(x, y) + fy(x, y)f(x, y)]

produces a method of order 2. The higher-order methods so obtained, how-
ever, are hardly useful, since in every step (xi, ηi) → (xi+1, ηi+1) one must
compute not only f , but also the partial derivatives fx, fy, etc.

Simpler methods of higher order can be obtained, e.g., by means of the
construction

(7.2.1.11) Φ(x, y;h) := a1f(x, y) + a2f(x+ p1h, y + p2hf(x, y)),

in which the constants a1, a2, p1, p2 are so chosen that the Taylor expansion
of∆(x, y;h)−Φ(x, y;h) in powers of h starts with the largest possible power.
For Φ(x, y;h) in (7.2.1.11), the Taylor expansion is

Φ(x, y;h) = (a1 + a2)f(x, y) + a2h[p1fx(x, y) + p2fy(x, y)f(x, y)] +O(h2).

Comparison with (7.2.1.8) yields for a second-order method the conditions

a1 + a2 = 1, a2p1 = 1
2 , a2p2 = 1

2 .

One solution of these equations is

a1 = 1
2 , a2 = 1

2 , p1 = 1, p2 = 1,

and one obtains the method of Heun (1900):

(7.2.1.12) Φ(x, y;h) = 1
2 [f(x, y) + f(x+ h, y + hf(x, y))],

which requires only two evaluations of f per step. Another solution is

a1 = 0, a2 = 1, p1 = 1
2 , p2 = 1

2 ,

leading to the modified Euler method [Collatz (1960)]

(7.2.1.13) Φ(x, y;h) := f
(
x+ 1

2h, y + 1
2hf(x, y)

)
,

which again is of second order and requires two evaluations of f per step.
The Runge-Kutta method [Runge (1895), Kutta (1901)] is obtained

from a construction which is somewhat more general than (7.2.1.11). It
has the form

(7.2.1.14) Φ(x, y;h) := 1
6 [k1 + 2k2 + 2k3 + k4],

where

476 7 Ordinary Differential Equations

k1 := f(x, y),
k2 := f(x+ 1

2h, y + 1
2hk1),

k3 := f(x+ 1
2h, y + 1

2hk2),
k4 := f(x+ h, y + hk3).

Through a simple but rather tedious Taylor expansion in h one finds, for
f ∈ F4(a, b),

Φ(x, y;h) −∆(x, y;h) = O(h4).

The Runge-Kutta method, therefore, is a method of fourth order. It requires
four evaluations of f per step.

If f(x, y) does not depend on y, then the solution of the initial-value
problem

y′ = f(x), y(x0) = y0

is just the integral y(x) = y0 +
∫ x
x0
f(t)dt. The method of Heun then cor-

responds to the approximation of y(x) by means of trapezoidal sums, the
modified Euler method to the midpoint rule, and the Runge-Kutta method
to Simpson’s rule [see Section 3.1].

All methods of this section are examples of multistage Runge-Kutta
methods:

(7.2.1.15) Definition. A s-stage Runge-Kutta method is a one-step method
given by a function Φ(x, y;h; f) which is defined by finitely real numbers c1,
c2, . . . , cs, α2, α3, . . . , αs, and βi,j with 2 ≤ i ≤ s and 1 ≤ j ≤ i − 1 as
follows:

Φ(x, y;h; f) := c1k1 + · · · + csks,
where

k1 := f(x, y),

k2 := f
(
x+ α2h, y + hβ21k1

)
,

k3 := f
(
x+ α3h, y + h(β31k1 + β32k2)

)
,

...

ks := f
(
x+ αsh, y + h(βs1k1 + · · · + βs,s−1ks−1)

)
.

Following Butcher (1964), a method of this type is designated by the
scheme

(7.2.1.16)

0
α2 β21
α3 β31 β32
...

...
. . .

αs βs1 β2s . . . βs,s−1

c1 c2 . . . cs−1 cs

7.2 Initial-Value Problems 477

Butcher (1964) has analysed these methods systematically. Concrete
examples of such methods of order higher than four were given by him,
by Fehlberg (1964, 1966, 1969), Shanks (1966) and many others. We will
describe some methods of this type in Section 7.2.5.

A general exposition of one-step methods is found in Grigorieff (1972)
and Stetter (1973), and in particular in Hairer, Nørsett and Wanner (1993).

7.2.2 Convergence of One-Step Methods

In this section we wish to examine the convergence behavior as h→ 0 of an
approximate solution η(x;h) furnished by a one-step method. We assume
that f ∈ F1(a, b) and denote by y(x) the exact solution of the initial-value
problem (7.2.1.1)

y′ = f(x, y), y(x0) = y0.

Let Φ(x, y;h) define a one-step method,

η0 := y0,

for i = 0, 1, . . . :
ηi+1 := ηi + hΦ(xi, ηi;h),
xi+1 := xi + h,

which for x ∈ Rh := {x0 + ih | i = 0, 1, 2, . . . } produces the approximate
solution η(x;h):

η(x;h) := ηi, if x = x0 + ih.

We are interested in the behavior of the global discretization error

e(x;h) := η(x;h) − y(x)

for fixed x and h → 0, h ∈ Hx := { (x − x0)/n | n = 1, 2, . . . }. Since
e(x;h), like η(x;h), is only defined for h ∈ Hx, this means a study of the
convergence of

e(x;hn), hn :=
x− x0

n
, as n→ ∞.

We say that the one-step method is convergent if

(7.2.2.1) lim
n→∞

e(x;hn) = 0

for all x ∈ [a, b] and all f ∈ F1(a, b).
We will see that for f ∈ Fp(a, b) methods of order p > 0 [cf. (7.2.1.9)]

are convergent, and even satisfy

e(x;hn) = O(hpn).

478 7 Ordinary Differential Equations

The order of the global discretization error is thus equal to the order of the
local discretization error.

We begin by showing the following:

(7.2.2.2) Lemma. If the numbers ξi satisfy estimates of the form

|ξi+1| ≤ (1 + δ)|ξi| +B, δ > 0, B ≥ 0, i = 0, 1, 2, . . . ,

then

|ξn| ≤ enδ|ξ0| +
enδ − 1
δ

B.

Proof. From the assumptions we get immediately

|ξ1| ≤ (1 + δ)|ξ0| +B,
|ξ2| ≤ (1 + δ)2|ξ0| +B(1 + δ) +B,

...

|ξn| ≤ (1 + δ)n|ξ0| +B[1 + (1 + δ) + (1 + δ)2 + · · · + (1 + δ)n−1]

= (1 + δ)n|ξ0| +B
(1 + δ)n − 1

δ

≤ enδ|ξ0| +B
enδ − 1
δ

,

since 0 < 1 + δ ≤ eδ for δ > −1. ��
With this, we can prove the following main theorem:

(7.2.2.3) Theorem. Consider, for x0 ∈ [a, b], y0 ∈ IR, the initial-value
problem

y′ = f(x, y), y(x0) = y0,

having the exact solution y(x). Let the function Φ be continuous on

G := {(x, y, h) | a ≤ x ≤ b, |y − y(x)| ≤ γ, 0 ≤ |h| ≤ h0}, h0 > 0, γ > 0,

and let there exist positive constants M and N such that

(7.2.2.4) |Φ(x, y1;h) − Φ(x, y2;h)| ≤M |y1 − y2|

for all (x, yi, h) ∈ G, i = 1, 2, and

(7.2.2.5) |τ(x, y(x);h)| = |∆(x, y(x);h) − Φ(x, y(x);h)| ≤ N |h|p, p > 0,

for all x ∈ [a, b], |h| ≤ h0. Then there exists an h̄, 0 < h̄ ≤ h0, such that
for the global discretization error e(x;h) = η(x;h) − y(x),

|e(x;hn)| ≤ |hn|pN
eM |x−x0| − 1

M

7.2 Initial-Value Problems 479

for all x ∈ [a, b] and all hn = (x − x0)/n, n = 1, 2, . . . , with |hn| ≤ h̄. If
γ = ∞, then h̄ = h0.

Proof. The function

Φ̃(x, y;h) :=

Φ(x, y;h) if (x, y, h) ∈ G,
Φ(x, y(x) + γ;h) if x ∈ [a, b], |h| ≤ h0, y ≥ y(x) + γ,
Φ(x, y(x) − γ;h) if x ∈ [a, b], |h| ≤ h0, y ≤ y(x) − γ,

is evidently continuous on G̃ := {(x, y, h)|x ∈ [a, b], y ∈ IR, |h| ≥ h0} and
satisfies the condition

(7.2.2.6) |Φ̃(x, y1;h) − Φ̃(x, y2;h)| ≤M |y1 − y2|

for all (x, yi, h) ∈ G̃, i = 1, 2, and, because Φ̃(x, y(x);h) = Φ(x, y(x);h),
also the condition

(7.2.2.7) |∆(x, y(x);h) − Φ̃(x, y(x);h)| ≤ N |h|p for x ∈ [a, b], |h| ≤ h0.

Let the one-step method generated by Φ̃ furnish the approximate values
η̃i := η̃(xi;h) for yi := y(xi), xi := x0 + ih:

η̃i+1 = η̃i + h Φ̃(xi, η̃i;h).

In view of
yi+1 = yi + h∆(xi, yi;h),

one obtains for the error ẽi := η̃i−yi, by subtraction, the recurrence formula
(7.2.2.8)
ẽi+1 = ẽi + h[Φ̃(xi, η̃i;h) − Φ̃(xi, yi;h)] + h[Φ̃(xi, yi;h) −∆(xi, yi;h)].

Now from (7.2.2.6), (7.2.2.7) it follows that

|Φ̃(xi, η̃i;h) − Φ̃(xi, yi;h)| ≤M |η̃i − yi| = M |ẽi|,
|∆(xi, yi;h) − Φ̃(xi, yi;h)| ≤ N |h|p,

and hence from (7.2.2.8) we have the recursive estimate

|ẽi+1| ≤ (1 + |h|M)|ẽi| +N |h|p+1.

Lemma (7.2.2.2), since ẽ0 = η̃0 − y0 = 0, gives

(7.2.2.9) |ẽk| ≤ N |h|p e
k|h|M − 1
M

.

Now let x ∈ [a, b], x �= x0, be fixed and h := hn = (x − x0)/n, n > 0
an integer. Then xn = x0 + nh = x and from (7.2.2.9) with k = n, since
ẽ(x;hn) = ẽn it follows at once that

480 7 Ordinary Differential Equations

(7.2.2.10) |ẽ(x;hn)| ≤ N |hn|p
eM |x−x0| − 1

M

for all x ∈ [a, b] and hn with |hn| ≤ h0. Since |x− x0| ≤ |b− a| and γ > 0,
there exists an h̄, 0 < h̄ ≤ h0, such that |ẽ(x;hn)| ≤ γ for all x ∈ [a, b],
|hn| ≤ h̄, i.e., for the one-step method generated by Φ,

η0 = y0,

ηi+1 = ηi + Φ(xi, ηi;h),

we have for |h| ≤ h̄, according to the definition of Φ̃,

η̃i = ηi, ẽi = ei, and Φ̃(xi, η̃i;h) = Φ(xi, ηi;h).

The assertion of the theorem,

|e(x;hn)| ≤ N |hn|p
eM |x−x0| − 1

M
,

thus follows for all x ∈ [a, b] and all hn = (x − x0)/n, n = 1, 2, . . . , with
|hn| ≤ h̄. ��

From the preceding theorem it follows in particular that methods of or-
der p > 0 which in the neighborhood of the exact solution satisfy a Lipschitz
condition of the form (7.2.2.4) are convergent in the sense (7.2.2.1). Ob-
serve that the condition (7.2.2.4) is fulfilled, e.g., if (∂/∂y)Φ(x, y;h) exists
and is continuous in a domain G of the form stated in the theorem.

Theorem (7.2.2.3) also provides an upper bound for the discretization
error, which in principle can be evaluated if one knowsM and N . One could
use it, e.g., to determine the steplength h which is required to compute
y(x) within an error ε, given x and ε > 0. Unfortunately, in practice this is
doomed by the fact that the constants M and N are not easily accessible,
since an estimation of M and N is only possible via estimates of higher
derivatives of f . Already in the simple Euler’s method, Φ(x, y;h) := f(x, y),
e.g., one has [see (7.2.1.8) f.]

N ≈ 1
2 |fx(x, y(x)) + fy(x, y(x))f(x, y(x))|,

M ≈ |∂Φ/∂y| = |fy(x, y)|.

For the Runge-Kutta method, one would already have to estimate deriva-
tives of f of the fourth order.

7.2.3 Asymptotic Expansions for the Global Discretization
Error of One-Step Methods

It may be conjectured from Theorem (7.2.2.3) that the approximate so-
lution η(x;h), furnished by a method of order p, possesses an asymptotic
expansion in powers of h of the form

7.2 Initial-Value Problems 481

(7.2.3.1) η(x;h) = y(x) + ep(x)hp + ep+1(x)hp+1 + · · ·

for all h = hn = (x−x0)/n, n = 1, 2, . . . , with certain coefficient functions
ek(x), k = p, p+ 1, . . . , that are independent of h. This is indeed true for
general one-step methods of order p, provided only that Φ(x, y;h) and f
satisfy certain additional regularity conditions. One has [see Gragg (1963)]

(7.2.3.2) Theorem. Let f(x, y) ∈ FN+1(a, b) [cf. (7.1.3)] and let η(x;h) be
the approximate solution obtained by a one-step method of order p, p ≤ N ,
to the solution y(x) of the initial value problem

y′ = f(x, y), y(x0) = y0, x0 ∈ [a, b].

Then η(x;h) has an asymptotic expansion of the form

(7.2.3.3)
η(x;h) =y(x) + ep(x)hp + ep+1(x)hp+1 + · · · + eN (x)hN

+ EN+1(x;h)hN+1 with ek(x0) = 0 for k ≥ p,

which is valid for all x ∈ [a, b] and all h = hn = (x− x0)/n, n = 1, 2,
The functions ei(x) therein are differentiable and independent of h, and
the remainder term EN+1(x;h) is bounded for fixed x and all h = hn =
(x− x0)/n, n = 1, 2, . . . , supn |EN+1(x;hn)| <∞.

Proof. The following elegant proof is due to Hairer and Lubich (1984).
Suppose that the one-step method is given by Φ(x, y;h). Since the method
has order p, and f ∈ FN+1, there follows [see Section 7.2.1]

y(x+ h) − y(x) − hΦ(x, y;h)

= dp+1(x)hp+1 + · · · + dN+1(x)hN+1 +O(hN+2).

First, we use only

y(x+ h) − y(x) − hΦ(x, y;h) = dp+1(x)hp+1 +O(hp+2)

and show that there is a differentiable function ep(x) such that

η(x;h) − y(x) = ep(x)hp +O(hp+1), ep(x0) = 0.

To this end, we consider the function

η̂(x;h) := η(x;h) − ep(x)hp,

where the choice of ep is still left open. It is easy to see that η̂ can be
considered as the result of another one-step method,

η̂(x+ h;h) = η̂(x;h) + hΦ̂(x, η̂(x;h);h),

if Φ̂ is defined by

Φ̂(x, y;h) := Φ(x, y + ep(x)hp;h) − (ep(x+ h) − ep(x))hp−1.

482 7 Ordinary Differential Equations

By Taylor expansion with respect to h, we find

y(x+ h) − y(x) − hΦ̂(x, y;h)

= [dp+1(x) − fy(x, y(x))ep(x) − e′p(x)]hp+1 +O(hp+2).

Hence, the one-step method belonging to Φ̂ has order p + 1 if ep is taken
as the solution of the initial value problem

e′p(x) = dp+1(x) − fy(x, y(x))ep(x), ep(x0) = 0.

With this choice of ep, Theorem (7.2.2.3) applied to Φ̂ then shows that

η̂(x;h) − y(x) = η(x;h) − y(x) − ep(x)hp = O(hp+1).

A repetition of these arguments with Φ̂ in place of Φ completes the proof
of the theorem. ��

Asymptotic laws of the type (7.2.3.1) or (7.2.3.3) are significant in
practice for two reasons. In the first place, one can use them to estimate
the global discretization error e(x;h). Suppose the method of order p has
an asymptotic expansion of the form (7.2.3.1), so that

e(x;h) = η(x;h) − y(x) = ep(x)hp +O(hp+1).

Having found the approximate value η(x;h) with stepsize h, one computes
for the same x, but with another stepsize (say h/2), the approximation
η(x;h/2). For sufficiently small h [and ep(x) �= 0] one then has in first
approximation

(7.2.3.4) η(x;h) − y(x) .= ep(x)hp,

(7.2.3.5) η
(
x;
h

2

)
− y(x) .= ep(x)

(h
2

)p
.

Subtracting the second equation from the first gives

η(x;h) − η
(
x;
h

2

)
.= ep(x)

(h
2

)p
(2p − 1),

ep(x)
(h

2

)p .= η(x;h) − η(x;h/2)
2p − 1

,

and one obtains, by sustitution in (7.2.3.5),

(7.2.3.6) η
(
x;
h

2

)
− y(x) .= η(x;h) − η(x;h/2)

2p − 1
.

For the Runge-Kutta method one has p = 4 and obtains the frequently
used formula

7.2 Initial-Value Problems 483

η
(
x;
h

2

)
− y(x) .= η(x;h) − η(x;h/2)

15
.

The other, more important, significance of asymptotic expansions lies in
the fact that they justify the application of extrapolation methods [see
Sections 3.4 and 3.5]. Since a little later [see (7.2.12.7) f.] we will get to
know a discretization method for which the asymptotic expansion of η(x;h)
contains only even powers of h and which, therefore, is more suitable for
extrapolation algorithms [see Section 3.5] than Euler’s method, we defer
the description of extrapolation algorithms to Section 7.2.14.

7.2.4 The Influence of Rounding Errors in One-Step Methods

If a one-step method

(7.2.4.1)

η0 := y0;
for i = 0, 1, . . . :
ηi+1 := ηi + hΦ(xi, ηi;h),
xi+1 := xi + h

is executed in floating-point arithmetic (t decimal digits) with relative pre-
cision eps = 5 × 10−t, then instead of the ηi one obtains other numbers η̃i,
which satisfy a recurrence formula of the form

(7.2.4.2)

η̃0 := y0;
for i = 0, 1, . . . :
ci := fl(Φ(xi, η̃i;h)),
di := fl(h ci),
η̃i+1 := fl(η̃i + di) = η̃i + hΦ(xi, η̃i;h) + εi+1,

where the total absolute rounding error εi+1, in first approximation, is made
up of threee components:

εi+1
.= hΦ(xi, η̃i;h)(αi+1 + µi+1) + η̃i+1σi+1.

Here
αi+1 =

fl(Φ(xi, η̃i;h)) − Φ(xi, η̃i;h)
Φ(xi, η̃i;h)

is the relative rounding error committed in the floating-point computa-
tion of Φ, µi+1 the relative rounding error committed in the computation
of the product hci, and σi+1 the relative rounding error which occurs in
the addition η̃i + di. Normally, in practice, the stepsize h is so small that
|hΦ(xi, η̃i;h) � |η̃i|, and if |αi+1| ≤ eps and |µi+1| ≤ eps, one thus has
εi+1

.= η̃i+1σi+1, i.e., the influence of rounding errors is determined pri-
marily by the addition error σi+1.

484 7 Ordinary Differential Equations

Remark. It is natural, therefore, to reduce the influence of rounding errors by
carrying out the addition in double precision (2t decimal places). Denoting by
fl(a+b) a double-precision addition, by η̃i a double-precision number (2t decimal
places), and by η̄i := rd1(η̃i) the number η̃i rounded to single precision, then the
algorithm, instead of (7.2.4.2), now runs as follows,

(7.2.4.3)

η̃0 := y0;
for i = 0, 1, . . . :

η̄i := rd1(η̃i),
ci := fl(Φ(xi, η̄i;h)),
di := fl(h ci),
η̃i+1 := fl2 (η̃i + di).

Let us now briefly estimate the total influence of all rounding errors εi.
For this, let yi = y(xi) be the values of the exact solution of the initial-
value problem, ηi = η(xi;h) the discrete solutions produced by the one-step
method (7.2.4.1) in exact arithmetic, and finally η̃i the approximate values
of ηi actually obtained in t-digit floating-point arithmetic. The latter satisfy
relations of the form

(7.2.4.4)
η̃0 := y0;

for i = 0, 1, . . . :
η̃i+1 := η̃i + hΦ(xi, η̃i;h) + εi+1.

For simplicity, we also assume

|εi+1| ≤ ε for all i ≥ 0.

We assume further that Φ satisfies a Lipschitz condition of the form
(7.2.2.4),

|Φ(x, y1;h) − Φ(x, y2;h)| ≤M |y1 − y2|.
Then, for the error r(xi;h) := ri := η̃i − ηi, there follows by subtraction of
(7.2.4.1) from (7.2.4.4)

ri+1 = ri + h(Φ(xi, η̃i;h) − Φ(xi, ηi;h)) + εi+1,

and thus

(7.2.4.5) |ri+1| ≤ (1 + |h|M)|ri| + ε.

Since r0 = 0, Lemma (7.2.2.2) gives

|r(x;h)| ≤ ε

|h|
eM |x−x0| − 1

M

for all x ∈ [a, b] and h = hn = (x − x0)/n, n = 1, 2, It follows,
therefore, that for a method of order p the total error

7.2 Initial-Value Problems 485

v(xi;h) := vi := η̃i − yi = (η̃i − ηi) + (ηi − yi) = r(xi;h) + e(xi;h),

under the assumptions of Theorem (7.2.2.3), obeys the estimate

(7.2.4.6) |v(x;h)| ≤
[
N |h|p +

ε

|h|

]
eM |x−x0| − 1

M

for all x ∈ [a, b] and for all sufficiently small h := hn = (x− x0)/n.

This formula reveals that, on account of the influence of rounding errors,
the total error v(x;h) begins to increase again, once h is reduced beyond a cer-
tain critical value. The following table shows this behavior. For the initial-value
problem

y′ = −200x y2, y(−1) =
1

101
,

with exact solution y(x) = 1/(1+100x2), an approximate value η(0;h) for y(0) =
1 has been computed by the Runge-Kutta method in 12-digit arithmetic:

h 10−2 0.5 · 10−2 10−3 0.5 · 10−3

v(0;h) −0.276 · 10−4 −0.178 · 10−5 −0.229 · 10−7 −0.192 · 10−7

h 10−4 0.5 · 10−4 10−5

v(0;h) −0.478 · 10−6 −0.711 · 10−6 −0.227 · 10−5

The appearance of the term ε/|h| in (7.2.4.6) becomes plausible if one
considers that the number of steps to get from x0 to x, using steplength
h, is just (x − x0)/h and that all essentially independent rounding errors
were assumed equal to ε. Nevertheless, the estimate is much too coarse to
be practically significant.

7.2.5 Practical Implementation of One-Step Methods

In practice, initial-value problems present themselves mostly in the follow-
ing form: What is desired is the value which the exact solution y(x) assumes
for a certain x �= x0. It is tempting to compute this solution approximately
by means of a one-step method in a single step, i.e., choosing stepsize
h̄ = x − x0. For large x − x0 this of course leads to a large discretization
error e(x; h̄); the choice made for h̄ would be entirely inadequate. Nor-
mally, therefore, one will introduce suitable intermediate points xi, i = 1,
. . . , k − 1, x0 < x1 < · · · < xk = x, and, beginning with x0, y0 = y(x0),
compute successive approximate values of y(xi): Having determined an ap-
proximation ȳ(xi) of y(xi), one computes ȳ(xi+1) by applying a step of the
method with stepsize hi := xi+1 − xi,

ȳ(xi+1) = ȳ(xi) + hi Φ(xi, ȳ(xi);hi), xi+1 = xi + hi.

486 7 Ordinary Differential Equations

There again arises, however, the problem of how the stepsizes hi are to
be chosen. Since the amount of work involved in the method is proportional
to the number of individual steps, one will attempt to choose the stepsizes
hi as large as possible. On the other hand, they must not be chosen too
large if one wants to keep the discretization error small. In principle, one
has the following problem: For given x0, y0, determine a stepsize h as large
as possible, but such that the discretization error e(x0 +h;h) after one step
with this stepsize still remains below a certain tolerance ε. This tolerance
ε should not be selected smaller than K eps, i.e., ε ≥ K eps, where eps is
the relative machine precision and K a bound for the solution y(x) in the
region under consideration,

K ≈ max{ |y(x)| | x ∈ [x0, x0 + h] }.

A choice of h corresponding to ε = K eps then guarantees that the approx-
imate solution η(x0+h;h) obtained agrees with the exact solution y(x0+h)
to machine precision. Such a stepsize h = h(ε), with

|e(x0 + h;h)| ≈ ε, ε ≥ K eps,

can be found approximately with the methods of Section 7.2.3: For a
method of order p one has in first approximation

(7.2.5.1) e(x;h) .= ep(x)hp.

Now, by (7.2.3.3), ep(x0) = 0 ; thus in first approximation,

(7.2.5.2) ep(x)
.= (x− x0)e′p(x0).

Therefore |e(x0 + h;h)| .= ε will hold if

(7.2.5.3) ε
.= |ep(x0 + h)hp| .= |hp+1e′p(x0)|.

If we know e′p(x0), we can compute from this the appropriate value of h.
An approximate value for e′p(x0), however, can be obtained from (7.2.3.6).
Using first the stepsize H to compute η(x0 +H;H) and η(x0 +H;H/2),
one then has by (7.2.3.6)

(7.2.5.4) e(x0 +H;
H

2
) .=

η(x0 +H;H) − η(x0 +H;H/2)
2p − 1

.

By (7.2.5.1), (7.2.5.2), on the other hand,

e(x0 +H;
H

2
) .= ep(x0 +H)

(
H

2

)p
.= e′p(x0)H

(
H

2

)p
.

From (7.2.5.4) thus follows the estimate

7.2 Initial-Value Problems 487

e′p(x0)
.=

1
Hp+1

2p

2p − 1

[
η(x0 +H;H) − η

(
x0 +H;

H

2

)]
.

Equation (7.2.5.3) therefore yields for h the formula

(7.2.5.5)
H

h

.=
(

2p

2p − 1
|η(x0 +H;H) − η(x0 +H;H/2)|

ε

)1/(p+1)

,

which can be used in the following way: Choose a stepsize H; compute
η(x0 + H;H), η(x0 + H;H/2), and h from (7.2.5.5). If H/h � 2, then
by (7.2.5.4) the error e(x0 + H;H/2) is much larger than the prescribed
ε. It is expedient, therefore, to reduce H. Replace H by 2h; with the new
H compute again η(x0 + H;H), η(x0 + H;H/2), and from (7.2.5.5) the
corresponding h, until finally |H/h| ≤ 2. Once this is the case, one accepts
η(x0 + H;H/2) as an approximation for y(x0 + H) and proceeds to the
next integration step, replacing x0, y0, and H by the new starting values
x0 +H, η(x0 +H;H/2) and 2h [see Fig. 15 for an illustration].

Example. We consider the initial-value problem

y′ = −200xy2, y(−3) =
1

901
,

with the exact solution y(x) = 1/(1+100x2). An approximate value η for y(0) = 1
was computed using the Runge-Kutta method and the “step control” procedure
just discussed. The criterion H/h � 2 in Fig. 15 was replaced by the test H/h ≥
3. Computation in 12 digits yields:

Number of required Smallest stepsize H
η − y(0) Runge-Kutta steps observed

−0.13585 × 10−6 1476 0.1226 · · · × 10−2

For fixed stepsize h the Runge-Kutta method yields:

Number of
h η(0;h) − y(0) Runge-Kutta steps

3
1476 = 0.2032 · · · × 10−2 −0.5594 × 10−6 1476

0.1226 · · · × 10−2 −0.4052 × 10−6 3
0.1226···×10−2 = 2446

A fixed choice of stepsize thus yields worse results with the same, or even greater,
computational effort. In the first case, the stepsize h = 0.2032 · · · × 10−2 is prob-
ably too large in the “critical” region near 0; the discretization error becomes too
large. The stepsize h = 0.1226 · · · × 10−2, on the other hand, will be too small in
the “harmless” region from −3 to close to 0; one takes unnecessarily many steps
and thereby commits more rounding errors.

Our discussion shows that in order to be able to make statements about
the size of an approximately optimal steplength h, there must be available

488 7 Ordinary Differential Equations

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
��
�
�
�
�
�
�
�
�
��
�
��
�
��
�
�
�
�
�
��
�
��
�
��
�
��
�
�
��
�
�

��
�
�
��
�
��
�
��
�
��
�
�
��
�
��
�
��
�
��
�
�
��
�
��
�
��
�
�
��
�

�
�
��
�
�
��
�
��
�
��
�

���
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
�
�
�
��
��
�
��
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
�
�
�
�
��
�
�

�
�
�
�
��
�
�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
��
�
��
�
��
�
�
��
�
��
��
�
��
��
�
��
��
�
��

�
��
�
��
��
�
��
��
�
��

�
�
��
�
��
�
��
�
�
��
��
��
��
��
��
��
�
��
�
�

�
��
��
��
��
��
�
��
�
�

�
�
��
�
��
�
�
��
�
��
��
��
��
��
��
��
�
��
�
�

�
��
��
��
��
��
�
��
�
�

�
��
�
��
�
�
�
�
�
�
�
�
��
�
�
�
��
�
�
��
�
��
�
��

�
�
�
�
��
�
�
��
�
��
�
��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
��
��
�
��
�
��
��
��
�
��
��
��
��
��
��
��
��
��
��
���
���
���
����
�����
����������

���
�
��
�
��
��
�
��
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�

�
��
�
��
��
��
��
��
��
�����
��

�����
����
���
���
���
���
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
�
��
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
��
�
��
�
��
��
�
�
�
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�

�� � �

�� � �

� � �

������	

�
�� �� ��

�
�� �� ����

�

�

�
� �

�� �� �� ��

�� �� �
�� �� ����

� �� ��

� �� ��

��

��

���

�	�

Fig. 15. A stepsize control method

two approximate values η(x0 + H;H) and η(x0 + H;H/2) — obtained
from the same discretization method — for the exact solution y(x0 +H).
Efficient methods for controlling the stepsize, however, can be obtained
in still another manner. Instead of comparing two approximations (with
different H) from the same discretization method, one takes, following an
idea of Fehlberg’s, two approximations (with the same H) which originate
from a pair ΦI, ΦII of different discretization methods of Runge-Kutta type
of orders p and p + 1. This gives rise to so-called Runge-Kutta-Fehlberg
methods, which have the form

(7.2.5.6)
ŷi+1 = ȳi + hΦI(xi, ȳi;h),
ȳi+1 = ȳi + hΦII(xi, ȳi;h),

7.2 Initial-Value Problems 489

where [cf. (7.2.1.15)]

(7.2.5.7)

ΦI(x, y;h) =
p∑
k=0

ckfk(x, y;h),

ΦII(x, y;h) =
p+1∑
k=0

ĉkfk(x, y;h)

and
(7.2.5.8)

fk := fk(x, y;h) = f
(
x+ αkh, y + h

k−1∑
l=0

βklfl

)
, k = 0, 1, . . . , p+ 1.

Note that in the computation of ΦII the function values f0, f1, . . . , fp
used in ΦI are again utilized, so that only one additional evaluation, fp+1,
is required. The methods ΦI, ΦII are therefore called embedded methods.
The constants αk, βkl, ck and ĉk are determined so that the methods have
orders p and p+ 1,

(7.2.5.9a)
∆(x, y(x);h) − ΦI(x, y(x);h) = O(hp),

∆(x, y(x);h) − ΦII(x, y(x);h) = O(hp+1),

and the additional relations

(7.2.5.9.b) αk =
k−1∑
j=0

βkj , k = 0, 1, . . . , p+ 1,

are satisfied

In principle, suitable coefficients can be determined as in (7.2.1.11). This
leads, in general, to complicated system of nonlinear equations. For this reason
we discuss only the special case p = 2 that leads to embedded methods of orders
2 and 3. For p = 2, conditions (7.2.5.9) yield the equations

2∑
k=0

ck − 1 = 0,
2∑

k=1

αkck − 1
2

= 0,

3∑
k=0

ĉk − 1 = 0,
3∑

k=1

αk ĉk − 1
2

= 0,

3∑
k=1

α2
k ĉk − 1

3
= 0,

3∑
k=2

Pk1ĉk − 1
6

= 0,

P21 := α1β21, P31 := α1β31 + α2β32.

This system of equations admits infinitely many solutions. One can therefore
impose additional requirements to enhance economy: for example, make the value
f3 from the ith step reusable as f0 in the (i+ 1)st step. Since

490 7 Ordinary Differential Equations

f3 = f(x+ α3h, y + h(β30f0 + β31f1 + β32f2))

and
“new” f0 = f(x+ h, y + hΦI(x, y;h)),

this implies
α3 = 1, β30 = c0, β31 = c1, β32 = c2.

Further requirements can be made concerning the magnitudes of the coefficients
in the error terms ∆−ΦI, ∆−ΦII. However, we will not pursue this any further
and refer, instead, to the papers of Fehlberg (1964, 1966, 1969).

For the set of coefficients, one then finds

k αk βk0 βk1 βk2 ck ĉk

0 0 — — — 214
891

533
2106

1 1
4

1
4 — — 1

33 0

2 27
40 − 189

800
729
800 — 650

891
800
1053

3 1 214
891

1
33

650
891 — − 1

78

In applications, however, methods of higher order are more interesting.
Dormand and Prince (1980) found the following coefficients for a pair of em-
bedded methods of orders p = 4 and 5 (DOPRI 5(4)):

k αk βk0 βk1 βk2 βk3 βk4 βk5 ck ĉk

0 0 35
384

5179
57600

1 1
5

1
5 0 0

2 3
10

3
40

9
40

500
1113

7571
16695

3 4
5

44
45 − 56

15
32
9

125
192

393
640

4 8
9

19372
6561 − 25360

2187
64448
6561 − 212

729 − 2187
6784 − 92097

339200

5 1 9017
3168 − 355

33
46732
5247

49
176 − 5103

18656
11
84

187
2100

6 1 35
384 0 500

1113
125
192 − 2187

6784
11
84 0 1

40

The coefficients are such that the error term of the higher order method ΦII
is minimal.

Step control is now accomplished as follows: Consider the difference
ȳi+1 − ŷi+1. From (7.2.5.6) it follows that

(7.2.5.10), ȳi+1 − ŷi+1 = h[ΦI(xi, ȳi;h) − ΦII(xi, ȳi;h)],

and from (7.2.5.9a), up to higher order terms,

(7.2.5.11)
ΦI(xi, ȳi;h) −∆(xi, ȳi;h)

.= hpCI(x),

ΦII(xi, ȳi;h) −∆(xi, ȳi;h)
.= hp+1CII(x).

Hence for small |h|

(7.2.5.12) ȳi+1 − ŷi+1
.= hp+1CI(xi).

7.2 Initial-Value Problems 491

Suppose the integration from xi to xi+1 was successful, i.e., for given error
tolerance ε > 0, it achieved

|ȳi+1 − ŷi+1| ≤ ε.

Neglecting the terms of higher order, one then has also∣∣CI(xi)hp+1
∣∣ ≤ ε.

If we wish the “new” stepsize hnew = xi+2 −xi+1 to be successful, we must
have ∣∣CI(xi+1)hp+1

new

∣∣ ≤ ε.
Now, up to errors of the first order, we have

CI(xi)
.= CI(xi+1).

For CI(xi), however, one has from (7.2.5.12) the approximation

|CI(xi)|
.=

|ȳi+1 − ŷi+1|
|h|p+1 .

This yields the approximate relation

|ȳi+1 − ŷi+1|
∣∣∣∣hnew

h

∣∣∣∣p+1

≤ ε,

which can be used to estimate the new stepsize,

(7.2.5.13) hnew
.= h

∣∣∣∣ ε

ȳi+1 − ŷi+1

∣∣∣∣1/(p+1)

.

Step-size control according to this formula is relatively cheap: The com-
putation of ȳi+1 and ŷi+1 in (7.2.5.13) requires only p+1 evaluations of the
right-hand side of f(x, y) of the differential equation. Compare this with the
analogous relation (7.2.5.5): Since the computation of η(x0+H;H/2) neces-
sitates further evaluation of f (three times as many, altogether), step-size
control according to (7.2.5.13) is more efficient than according to (7.2.5.5).

We remark that many authors, based on extensive numerical experi-
mentation, recommend a modification of (7.2.5.13), viz.,

(7.2.5.14) hnew
.= αh

∣∣∣∣ εh

ȳi+1 − ŷi+1

∣∣∣∣1/p ,
where α is a suitable adjustment factor: α ≈ 0.9.

In the context of the graphical representation and the assessment of
the solution of an initial value problem the following difficulty arises: A
Runge-Kutta method generates approximations yi for the solution only
at discrete points xi, i = 0, 1, . . . , that are determined by the stepsize

492 7 Ordinary Differential Equations

control mechanism. These data are usually too coarse for a good graphical
representation or for detecting irregularities in the solution. On the other
hand, an artificial restriction of the stepsize |h| ≤ hmax within the stepsize
control decreases the efficiency. A solution to this dilemma is to construct
from the data xi, yi, i ≥ 0, a continuous approximation for the solution
at all intermediate points x̂(ϑ) := xi + ϑh, 0 ≤ ϑ ≤ 1, between xi and
xi+1. Here, of course, h := xi+1 −xi. This leads to continuous Runge-Kutta
methods.

For the DOPRI 5(4)-method introduced above this is achieved by the repre-
sentation (here x and y stand for xi and yi, respectively):

y(x+ ϑh) := y + h

5∑
k=0

ck(ϑ)fk,

where the fk are determined as in DOPRI 5(4). The following weights ck(ϑ)
depending on ϑ guarantee a method of order four:

c0(ϑ) := ϑ(1 + ϑ(−1337/480 + ϑ(1039/360 + ϑ(−1163/1152)))),
c1(ϑ) := 0,

c2(ϑ) := 100ϑ2(1054/9275 + ϑ(−4682/27825 + ϑ(379/5565)))/3,

c3(ϑ) := −5ϑ2(27/40 + ϑ(−9/5 + ϑ(83/96)))/2,

c4(ϑ) := 18225ϑ2(−3/250 + ϑ(22/375 + ϑ(−37/600)))/848,

c5(ϑ) := −22ϑ2(−3/10 + ϑ(29/30 + ϑ(−17/24)))/7.

Clearly the constants ck(ϑ) agree for ϑ = 1 with the constants ck of DOPRI 5(4).

7.2.6 Multistep Methods: Examples

In a multistep method for the solution of the initial-value problem

y′ = f(x, y), y(x0) = y0,

one computes an approximate value ηj+r of y(xj+r) from r ≥ 2 given
approximate values ηk of y(xk), k = j, j + 1, . . . , j + r − 1, at equidistant
points xk = x0 + k h:

(7.2.6.1)
for j = 0, 1, 2, . . . :
ηj , ηj+r, . . . , ηj+r−1 =⇒ ηj+r.

To initiate such methods, it is of course necessary that r starting values η0,
η1, . . . , ηr−1 be at our disposal; these must be obtained by other means,
e.g., with the aid of a one-step method.

We begin by introducing some examples of multistep methods. A class
of such methods can be derived from the formula

7.2 Initial-Value Problems 493

(7.2.6.2) y(xp+k) − y(xp−j) =
∫ xp+k

xp−j

f(t, y(t)) dt,

which is obtained by integrating the identity y′(x) = f(x, y(x)). As in the
derivation of the Newton-Cotes formulas [see Section 3.1], one now replaces
the integrand in (7.2.6.2) by an interpolating polynomial Pq(x) with

(1) deg Pq(x) ≤ q,
(2) Pq(xk) = f(xk, y(xk)), k = p, p− 1, . . . , p− q.

We assume here that the xi are equidistant and h := xi+1 − xi. With
the abbreviation yi := y(xi), and using the Lagrange interpolation formula
(2.1.1.4),

Pq(x) =
q∑
i=0

f(xp−i, yp−i)Li(x), Li(x) :=
q∏
l=0
l
=i

x− xp−l
xp−i − xp−l

,

one obtains the approximate formula

(7.2.6.3)

yp+k − yp−j ≈
q∑
i=0

f(xp−i, yp−i)
∫ xp+k

xp−j

Li(x) dx

= h

q∑
i=0

βqif(xp−i, yp−i)

with

(7.2.6.4) βqi :=
1
h

∫ xp+k

xp−j

Li(x)dx =
∫ k

−j

q∏
l=0
l
=i

s+ l
−i+ l ds, i = 0, 1, . . . , q.

Replacing in (7.2.6.3) the yi by approximate values ηi and ≈ by the
equality sign, one obtains the formula

ηp+k = ηp−j + h
q∑
i=0

βqifp−i, fl := f(xl, ηl).

For different choices of k, j, and q, one obtains different multistep methods.
For k = 1, j = 0, and q = 0, 1, 2, . . . , one obtains the Adams-Bashforth
methods:

(7.2.6.5)

ηp+1 = ηp + h[βq0fp + βq1fp−1 + · · · + βqqfp−q]

with βqi :=
∫ 1

0

q∏
l=0
l
=i

s+ l
−i+ l ds, i = 0, 1, . . . , q.

494 7 Ordinary Differential Equations

Comparison with (7.2.6.1) shows that here r = q + 1. A few numerical
values:

βqi i = 0 1 2 3 4

β0i 1
2β1i 3 −1

12β2i 23 −16 5
24β3i 55 −59 37 −9

720β4i 1901 −2774 2616 −1274 251

For k = 0, j = 1 and q = 0, 1, 2, . . . , one obtains the Adams-Moulton
formulas:

ηp = ηp−1 + h[βq0fp + βq1fp−1 + · · · + βqqfp−q],

Replacing p by p+ 1 gives

(7.2.6.6)

ηp+1 = ηp + h[βq0f(xp+1, ηp+1) + βq1fp + · · · + βqqfp+1−q]

with βqi :=
∫ 0

−1

q∏
l=0
l
=i

s+ l
−i+ l ds, i = 0, 1, . . . , q.

At first sight it appears that (7.2.6.6) no longer has the form (7.2.6.1), since
ηp+1 occurs on both the left-hand and the right-hand side of the equation in
(7.2.6.6). Thus for given ηp, ηp−1, . . . , ηp+1−q, equation (7.2.6.6) represents,
in general, a nonlinear equation for ηp+1, and the Adams-Moulton method
is an implicit method. The following iterative method for determining ηp+1
suggests itself naturally:

(7.2.6.7)
η
(i+1)
p+1 = ηp + h[βq0f(xp+1, η

(i)
p+1) + βq1fp + · · · + βqqfp+1−q],

i = 0, 1, 2,

This iteration has the form η
(i+1)
p+1 = Ψ(η(i)

p+1), and with the methods of
Section 5.2 it can easily be shown that for sufficiently small |h| the mapping
z → Ψ(z) is contractive [see Exercise 10] and thus has a fixed point ηp+1 =
Ψ(ηp+1), which solves (7.2.6.6). This solution of course depends on xp, ηp,
ηp−1, . . . ηp+1−q and h, and the Adams-Moulton method therefore is indeed
a multistep method of the type (7.2.6.1). Here r = q.

For given ηp, ηp−1, . . . , ηp+1−q a good initial value η(0)
p+1 for the iter-

ation (7.2.6.7) can be found, e.g., with the aid of the Adams-Bashforth
method (7.2.6.5). For this reason, one also calls explicit methods like the
Adams-Bashforth method predictor methods, and implicit methods like the
Adams-Moulton method corrector methods [through the iteration (7.2.6.7)
one “corrects” η(i)

p+1].
A few numerical values for the coefficients occurring in (7.2.6.6):

7.2 Initial-Value Problems 495

βqi i = 0 1 2 3 4

β0i 1
2β1i 1 1

12β2i 5 8 −1
24β3i 9 19 −5 1

720β4i 251 646 −264 106 −19

In the method of Nyström one chooses k = 1, j = 1 in (7.2.6.2) and
thus obtains

(7.2.6.8)

ηp+1 = ηp−1 + h[βq0fp + βq1fp−1 + · · · + βqqfp−q]

with βqi :=
∫ 1

−1

q∏
l=0
l�=i

s+ l
−i+ l ds, i = 0, 1, . . . , q.

This is a predictor method, which has obviously the form (7.2.6.1) with
r = q + 1.

Worthy of note is the special case q = 0. Here β00 =
∫ 1

−1 1 ds = 2, and
(7.2.6.8) becomes

(7.2.6.9) ηp+1 = ηp−1 + 2hfp.

This is the so-called midpoint rule, which corresponds in the approximation
of an integral to “rectangular sums”.

The methods of Milne are corrector methods. They are obtained from
(7.2.6.2) by taking k = 0, j = 2, and by replacing p with p+ 1:

(7.2.6.10)

ηp+1 = ηp−1 + h[βq0f(xp+1, ηp+1) + βq1fp + · · · + βqqfp+1−q]

with βqi :=
∫ 0

−2

q∏
l=0
l�=i

s+ l
−i+ l ds, i = 0, 1, . . . , q.

Analogously to (7.2.6.7), one solves (7.2.6.10) also by iteration.

7.2.7 General Multistep Methods

All multistep methods discussed in Section 7.2.6, as well as the one-step
methods of Section 7.2.1, can be written in the following form:
(7.2.7.1)

ηj+r + ar−1ηj+r−1 + · · · + a0ηj = hF (xj ; ηj+r, ηj+r−1, . . . , ηj ;h; f).

Generally, a multistep method given by (7.2.7.1) is called an r-step method.
In the examples considered in Section 7.2.6 the function F , in addition,
depends linearly on f as follows:

F (xj ; ηj+r, ηj+r−1, . . . , ηj ;h; f) ≡ brf(xj+r, ηj+r) + · · · + b0f(xj , ηj).

496 7 Ordinary Differential Equations

The bi, i = 0, . . . , r, are certain constants. One then speaks of a linear
r-step method ; such methods will be further discussed in Section 7.2.11.

For the Adams-Bashforth method (7.2.6.5), for example, r = q + 1,

aq = −1, aq−1 = · · · = a0 = 0, bq+1 = 0,

and

bq−i = βqi =
∫ 1

0

q∏
l=0
l�=i

s+ l

−i+ l
ds, i = 0, 1, . . . , q.

Any r initial values η0, . . . , ηr−1 define, through (7.2.7.1), a unique
sequence ηj , j ≥ 0. For the initial values ηj one chooses, as well as possible,
certain approximations for the exact solution yi = y(xi) of (7.2.1.1) at
xi = x0 + ih, i = 0, 1, . . . , r− 1. These can be obtained, e.g., by means of
appropriate one-step methods. We denote the errors in the starting values
by

εi := ηi − y(xi), i = 0, 1, . . . , r − 1.

Further errors, e.g. rounding errors in the evaluation of F , occur during the
execution of (7.2.7.1). We want to include the influence of these errors in
our study also, and therefore consider, more generally than (7.2.7.1), the
following recurrence formulas:

(7.2.7.2)

η0 := y0 + ε0,
...

ηr−1 := yr−1 + εr−1;
for j = 0, 1, 2, . . . :

ηj+r + ar−1ηj+r−1 + · · · + a0ηj :=
hF (xj ; ηj+r, ηj+r−1, . . . , ηj ;h; f) + hεj+r.

The solution ηi of (7.2.7.2) depends on h and the εj , and represents a
function

η(x; ε;h),

which, like the error function ε = ε(x;h), is defined only for x ∈ Rh =
{x0 + ih | i = 0, 1, . . . }, or h ∈ Hx = { (x−x0)/n | n = 1, 2, . . . }, through

η(xi; ε;h) := ηi, ε(xi;h) := εi, xi := x0 + ih.

As in one-step methods, one can define the local discretization error
τ(x, y;h) of a multistep method (7.2.7.1) at the point x, y. Indeed, let
f ∈ F1(a, b), x ∈ [a, b], y ∈ IR, and let z(t) be the solution of the initial-
value problem

z′(t) = f(t, z(t)), z(x) = y.

7.2 Initial-Value Problems 497

Then the local discretization error τ(x, y;h) is defined to be the quantity
(7.2.7.3)

τ(x, y;h) :=
1
h

[
z(x+ rh) +

r−1∑
i=0

aiz(x+ ih)

− hF (x; z(x+ rh), z(x+ (r − 1)h), . . . , z(x);h; f)
]
.

The local discretization error τ(x, y;h) thus indicates how well the exact
solution of a differential equation satisfies the recurrence formula (7.2.7.1).
From a reasonable method one expects that this error will become small
for small |h|. Generalizing (7.2.1.7), one thus defines the consistency of
multistep methods by:

(7.2.7.4) Definition. The multistep metod is called consistent if for each
f ∈ F1(a, b) there exists a function σ(h) with limh→0 σ(h) = 0 such that

(7.2.7.5) |τ(x, y;h)| ≤ σ(h) for all x ∈ [a, b], y ∈ IR.

One speaks of a method of order p if, for f ∈ Fp(a, b),

σ(h) = O(hp).

Example. For the midpoint rule (7.2.6.9) one has, in view of z′(t) = f(t, z(t)),
z(x) = y,

τ(x, y;h) : =
1
h

[
z(x+ 2h) − z(x) − 2hf(x+ h, z(x+ h))

]
=

1
h

[z(x+ 2h) − z(x) − 2hz′(x+ h)].

Through Taylor expansion in h one finds

τ(x, y;h) =
1
h

[
z(x) + 2hz′(x) + 2h2z′′(x) +

8h3

6
z′′′(x)

− z(x) − 2h
(
z′(x) + hz′′(x) +

h2

2
z′′′(x)

)]
+O(h3)

=
h2

3
z′′′(x) +O(h3).

The method is thus consistent and of second order.

The order of the methods in Section 7.2.6 can be determined more
conveniently by means of the error estimates for interpolating polynomials
[e.g., (2.1.4.1)] and Newton-Cotes formulas (3.1.1).

For f(x, y) :≡ 0, and z(x) :≡ y, a consistent method gives

τ(x, y;h) =
1
h

[y(1 + ar−1 + · · · + a0) − hF (x; y, y, . . . , y;h; 0)],

498 7 Ordinary Differential Equations

|τ(x, y;h)| ≤ σ(h), lim
h→0

σ(h) = 0.

For continuous F (x; y, y, . . . , y; .; 0), since y is arbitrary, it follows that

(7.2.7.6) 1 + ar−1 + · · · + a0 = 0.

We will often, in the following, impose on F the condition

(7.2.7.7) F (x;ur, ur−1, . . . , u0;h; 0) ≡ 0

for all x ∈ [a, b], all h, and all ui. For linear multistep methods, (7.2.7.7)
is certainly always fulfilled. (7.2.7.7), together with (7.2.7.6), guarantees
that the exact solution y(x) ≡ y0 of the trivial differential equation y′ = 0,
y(x0) = y0, is also exact solution of (7.2.7.2) if εi = 0 for all i.

Since the approximate solution η(x; ε;h) furnished by a multistep
method (7.2.7.2) also depends on the errors εi, the definition of conver-
gence is more complicated than for one-step methods. One cannot expect
of course, that the global discretization error

e(x; ε;h) := η(x; ε, h) − y(x)

for fixed x and for h = hn = (x−x0)/n, n = 1, 2, . . . , will converge toward
0, unless the errors ε(x;h) also become arbitrarily small as h→ 0. One
therefore defines:

(7.2.7.8) Definition. The multistep method given by (7.2.7.2) is called
convergent if

lim
n→∞

η(x; ε;hn) = y(x), hn :=
x− x0

n
, n = 1, 2, . . . ,

for all x ∈ [a, b], all f ∈ F1(a, b), and all functions ε(z;h) for which there
is a ρ(h) such that

(7.2.7.9)
|ε(z;h)| ≤ ρ(h) for all z ∈ Rh,

limh→0 ρ(h) = 0.

7.2.8 An Example of Divergence

The results of 7.2.2, in particular Theorem (7.2.2.3), may suggest that
multistep methods, too, converge faster with increasing order p of the local
discretization error [see (7.2.7.4)]. The point of the following example is to
show that this conjecture is false. At the same time the example furnishes
a method for constructing multistep methods of maximum order.

Suppose we construct a linear multistep method of the type (7.2.7.1)
with r = 2, having the form

7.2 Initial-Value Problems 499

ηj+2 + a1ηj+1 + a0ηj = h[b1f(xj+1, ηj+1) + b0f(xj , ηj)].

The constants a0, a1, b0, b1, are to be determined so as to yield a method of
maximum order. If z′(t) = f(t, z(t)), then for the local discretization error
τ(x, y;h) of (7.2.7.3) we have

hτ(x, y;h) = z(x+ 2h) + a1z(x+ h) + a0z(x) − h[b1z′(x+ h) + b0z′(x)].

Now expand the right-hand side in a Taylor series in h,

hτ(x, y;h) = z(x)[1 + a1 + a0] + hz′(x)[2 + a1 − b1 − b0]
+ h2z′′(x)[2 + 1

2a1 − b1] + h3z′′′(x)[43 + 1
6a1 − 1

2b1] +O(h4).

The coefficients a0, a1, b0, b1 are to be determined in such a way as to
annihilate as many h-powers as possible, thus producing a method which
has the largest possible order.

This leads to the equations

1+ a1 +a0 = 0,
2+ a1 −b1 −b0 = 0,
2+ 1

2a1 −b1 = 0,
4
3+ 1

6a1 − 1
2b1 = 0,

with the solution a1 = 4, a0 = −5, b1 = 4, b0 = 2, and hence to the method

ηj+2 + 4ηj+1 − 5ηj = h[4f(xj+1, ηj+1) + 2f(xj , ηj)]

of order 3 [since hτ(x, y;h) = O(h4), i.e., τ(x, y;h) = O(h3)].
If one tries to use this method to solve the initial-value problem

y′ = −y, y(0) = 1,

with the exact solution y(x) = e−x, computation in 10-digit arithmetic
for h = 10−2, even taking as starting values the exact (within machine
precision) values η0 := 1, η1 := e−h, produces the results given in the
following table.

j ηj − yj − x4
j

216
(−5)j

j4 e3xj/5 [cf. (7.2.8.3)]

2 −0.164 × 10−8 −0.753 × 10−9

3 +0.501 × 10−8 +0.378 × 10−8

4 −0.300 × 10−7 −0.190 × 10−7

5 +0.144 × 10−6 +0.958 × 10−7

...
...

...
96 −0.101 × 1058 −0.668 × 1057

97 +0.512 × 1058 +0.336 × 1058

98 −0.257 × 1059 −0.169 × 1059

99 +0.129 × 1060 +0.850 × 1059

100 −0.652 × 1060 −0.427 × 1060

500 7 Ordinary Differential Equations

How does one account for this wildly oscillating behavior of the ηj? If
we assume that the exact values η0 := 1, η1 := e−h are used as starting
values and no rounding errors are committed during the execution of the
method (εj = 0 for all j), we obtain a sequence of numbers ηj with

η0 = 1,

η1 = e−h,

ηj+2 + 4ηj+1 − 5ηj = h[−4ηj+1 − 2ηj] for j = 0, 1, . . . ,

or

(7.2.8.1) ηj+2 + 4(1 + h)ηj+1 + (−5 + 2h)ηj = 0 for j = 0, 1,

Such difference equations have special solutions of the form ηj = λj . Upon
substituting this expression in (7.2.8.1), one finds for λ the equation

λj [λ2 + 4(1 + h)λ+ (−5 + 2h)] = 0,

which, aside from the trivial solution λ = 0, has the solutions

λ1 = −2 − 2h+ 3
√

1 + 2
3h+ 4

9h
2,

λ2 = −2 − 2h− 3
√

1 + 2
3h+ 4

9h
2.

For small h one has√
1 + 2

3h+ 4
9h

2 = 1 + 1
3h+ 1

6h
2 − 1

18h
3 + 1

216h
4 +O(h5);

hence

(7.2.8.2)
λ1 = 1 − h+ 1

2h
2 − 1

6h
3 + 1

72h
4 +O(h5),

λ2 = −5 − 3h+O(h2).

One can now show that every solution ηj of (7.2.8.1) can be written as a
linear combination

ηj = αλj1 + βλj2

of the two particular solutions λj1, λ
j
2 just found [see (7.2.9.9)]. The con-

stants α and β, in our case, are determined by the initial conditions η0 = 1,
η1 = e−h, which lead to the following system of equations for α, β:

η0 = α+ β = 1,

η1 = αλ1 + βλ2 = e−h.

The solution is given by

α =
λ2 − e−h
λ2 − λ1

, β =
e−h − λ1

λ2 − λ1
.

7.2 Initial-Value Problems 501

From (7.2.8.2) one easily verifies

α = 1 +O(h2), β = − 1
216h

4 +O(h5).

For fixed x �= 0, h = hn = x/n, n = 1, 2, . . . , one therefore obtains for the
approximate solution ηn = η(x;hn)

η(x;hn) = αλn1 + βλn2

=
[
1 +O

(x
n

)2
] [

1 − x

n
+O

(x
n

)2
]n

− 1
216

x4

n4

[
1 +O

(x
n

)] [
−5 − 3

x

n
+O

(x
n

)2
]n
.

The first term tends to y(x) = e−x as n→ ∞; the second term for n→ ∞
behaves like

(7.2.8.3) − x4

216
(−5)n

n4 e3x/5.

Since limn→∞ 5n/n4 = ∞, this term oscillates more and more violently
as n → ∞. This explains the oscillatory behavior and divergence of the
method. As is easily seen, the reason for this behavior lies in the fact
that −5 is a root of the quadratic equation µ2 + 4µ − 5 = 0. It is to be
expected that also in the general case (7.2.7.2) the zeros of the polynomial
Ψ(µ) = µr + ar−1µ

r−1 + · · ·+ a0 play a significant role for the convergence
of the method.

7.2.9 Linear Difference Equations

In the following section we need a few simple results on linear difference
equations. By a linear homogeneous difference equation of order r one
means an equation of the form

(7.2.9.1) uj+r+ar−1uj+r−1+ar−2uj+r−2+· · ·+a0uj = 0, j = 0, 1,

For every set of starting values u0, u1, . . . , ur−1 one can evidently determine
exactly one sequence of numbers un, n = 0, 1, . . . , which solves (7.2.9.1).

In applications to multistep methods a point of interest is the growth
behavior of the un as n→ ∞, in dependence of the starting values u0, u1,
. . . , ur−1. In particular, one would like to know conditions guaranteeing
that

(7.2.9.2a) lim
n→∞

un
n

= 0 for all real starting values u0, u1, . . . , ur−1.

Since the solutions un = un(U0), U0 := [uo, u1, . . . , ur−1]T , obviously
depend linearly on the starting vector,

502 7 Ordinary Differential Equations

un(αU0 + βV0) = αun(U0) + βun(V0),

the restriction to real starting vectors U0 ∈ IRr is unnecessary, and
(7.2.9.2a) is equivalent to
(7.2.9.2b)

lim
n→∞

un
n

= 0 for all (complex) starting values u0, u1, . . . , ur−1.

With the difference equation (7.2.9.1) one associates the polynomial

(7.2.9.3) ψ(µ) := µr + ar−1µ
r−1 + · · · + a0.

One now says that (7.2.9.1) satisfies the

(7.2.9.4) stability condition

if for every zero λ of Ψ(µ) one has |λ| ≤ 1, and further ψ(λ) = 0 and |λ| = 1
together imply that λ is a simple zero of Ψ .

(7.2.9.5) Theorem. The stability condition (7.2.9.4) is necessary and suf-
ficient for (7.2.9.2).

Proof. (1) Assume (7.2.9.2), and let λ be a zero of Ψ in (7.2.9.3). Then
the sequence uj := λj , j = 0, 1, . . . , is a solution of (7.2.9.1). For |λ| > 1
the sequence un/n = λn/n, diverges, so that from (7.2.9.2) it follows at
once that |λ| ≤ 1. Let now λ be a multiple zero of Ψ with |λ| = 1. Then

ψ′(λ) = rλr−1 + (r − 1)ar−1λ
r−2 + · · · + 1 · a1 = 0.

The sequence uj := j λj , j ≥ 0, is thus a solution of (7.2.9.1):

uj+r+ar−1uj+r−1 + · · · + a0uj
=jλj(λr + ar−1λ

r−1 + · · · + a0)
+ λj+1(rλr−1 + (r − 1)ar−1λ

r−2 + · · · + a1)
=0.

Since un/n = λn does not converge to zero as n→ ∞, λ must be a simple
zero.

(2) Conversely, let the stability condition (7.2.9.4) be satisfied. We first
use the fact that, with the abbreviations

Uj :=

uj
uj+1

...
uj+r−1

 ∈ Cr, A :=

0 1 0

· ·
· ·

0 0 1
−a0 · · · −ar−1

 ,
the difference equation (7.2.9.1) is equivalent to the recurrence formula

7.2 Initial-Value Problems 503

(7.2.9.6) Uj+1 = AUj .

A is a Frobenius matrix with the characteristic polynomial ψ(µ) in (7.2.9.3)
[Theorem (6.3.4)]. Therefore, if the stability condition (7.2.9.4) is satisfied,
one can choose, by Theorem (6.9.2), a norm ‖ · ‖ on Cr such that for the
corresponding matrix norm lub(A) ≤ 1. It thus follows, for all U0 ∈ Cr,
that

(7.2.9.7) ‖Un‖ = ‖AnU0‖ ≤ ‖U0‖ for n = 0, 1,

Since on Cr all norms are equivalent [Theorem (4.4.6)], there exists a k > 0
with (1/k)‖U‖ ≤ ‖U‖∞ ≤ k‖U‖, and one obtains from (7.2.9.7) in partic-
ular

||Un||∞ ≤ k2||U0||∞, n = 0, 1, . . . ,

i.e., one has limn→∞ (1/n)||Un||∞ = 0, and hence(7.2.9.2). ��
In the proof of the preceding theorem we exploited the fact hat the

zeros λi of Ψ furnish particular solutions of (7.2.9.1) of the form uj := λji ,
j = 0, 1, The following theorem shows that one can similarly represent
all solutions of (7.2.9.1) in terms of the zeros of Ψ :

(7.2.9.8) Theorem. Let the polynomial

ψ(µ) := µr + ar−1µ
r−1 + · · · + a0

have the k distinct zeros λi, i = 1, 2, . . . , k, with multiplicities σi, i = 1,
2, . . . , k, and let a0 �= 0. Then for arbitrary polynomials pi(t) with deg
pi < σi, i = 1, 2, . . . , k, the sequence

(7.2.9.9) uj := p1(j)λ
j
1 + p2(j)λ

j
2 + · · · + pk(j)λjk, j = 0, 1, . . . ,

is a solution of the difference equation (7.2.9.1). Conversely, every solution
of (7.2.9.1) can be uniquely represented in the form (7.2.9.9).

Proof. We only show the first part of the theorem. Since with {uj}, {vj},
also {uj + vj} is a solution of (7.2.9.1), it suffices to show that for a σ-fold
zero λ of Ψ the sequence

uj := p(j)λj , j = 0, 1, . . . ,

is a solution of (7.2.9.1) if p(t) is an arbitrary polynomial with deg p <
σ. For fixed j ≥ 0, let us represent p(j + t) with the aid of Newton’s
interpolation formula (2.1.3.1) in the following form:

p(j + t) = α0 + α1t+ α2t(t− 1) + · · · + αrt(t− 1) · · · (t− r + 1),

where ασ = ασ+1 = · · · = αr = 0, because deg p < σ. With the notation
ar := 1, we thus have

504 7 Ordinary Differential Equations

uj+r + ar−1uj+r−1 + · · · + a0uj = λj
r∑
ρ=0

aρλ
ρp(j + ρ)

= λj
r∑
ρ=0

aρλ
ρ
[
α0 +

σ−1∑
τ=1

ατρ(ρ− 1) · · · (ρ− τ + 1)
]

= λj [α0ψ(λ) + α1λψ
′(λ) + · · · + ασ−1λ

σ−1ψ(σ−1)(λ)]
= 0,

since λ is a σ-fold zero of Ψ and thus ψ(τ)(λ) = 0 for 0 ≤ τ ≤ σ − 1. This
proves the first part of the theorem.

Now a polynomial p(t) = c0 + c1t + · · · + cσ−1t
σ−1 of degree < σ is

precisely determined by its σ coefficients cm, m = 0, 1, . . . , σ − 1, so that
by σ1 + σ2 + · · · + σk = r the representation (7.2.9.9) contains a total of r
free parameters, namely the coefficients of the pi(t). The second part of the
theorem therefore asserts that by suitably choosing these r parameters one
can obtain every solution of (7.2.9.1), i.e., that for every choice of initial
values u0, u1, . . . , ur−1 there is a unique solution to the following system
of r linear equations for the r unknown coefficients of the pi(t), i = 1, . . . ,
k:

p1(j)λ
j
1 + p2(j)λ

j
2 + · · · + pk(j)λjk = uj j = 0, 1, . . . , r − 1.

The proof of this, although elementary, is tedious. We therefore omit it. ��

7.2.10 Convergence of Multistep Methods

We now want to use the results of the previous section in order to study
the convergence behavior of the multistep method (7.2.7.2). It turns out
that for a consistent method [see (7.2.7.4)] the stability condition (7.2.9.4)
is necessary and sufficient for the convergence of the method, provided F
satisfies certain additional regularity conditions [see (7.2.10.3)].

In connection with the stability condition (7.2.9.4), note from (7.2.7.6)
that for a consistent method ψ(µ) = µr + ar−1µ

r−1 + · · ·+ a0 has λ = 1 as
a zero.

We begin by showing that the stability condition is necessary for con-
vergence:

(7.2.10.1) Theorem. If the multistep method (7.2.7.2) is convergent [Def-
inition (7.2.7.8)] and F obeys the condition (7.2.7.7),

F (x;ur, ur−1, . . . , u0;h; 0) ≡ 0,

then the stability condition (7.2.9.4) holds.

Proof. Since the method (7.2.7.2) is supposed to be convergent, in the
sense of (7.2.7.8), for the integration of the differential equation y′ ≡ 0,

7.2 Initial-Value Problems 505

y(x0) = 0, with the exact solution y(x) ≡ 0, it must produce an approxi-
mate solution η(x; ε;h) satisfying

lim
h→0

η(x; ε;h) = 0

for all x ∈ [a, b] and all ε with |ε(z;h)| ≤ ρ(h), ρ(h) → 0 for h→ 0.
Let x �= x0, x ∈ [a, b], be given. For h = hn = (x− x0)/n, n = 1,

2, . . . , it follows that xn = x and η(x; ε;hn) = ηn, where ηn in view of
F (x;ur, ur−1, . . . , u0;h; 0) ≡ 0, is determined by the recurrence formula

ηi = εi,

ηj+r + ar−1ηj+r−1 + · · · + a0ηj = hnεj+r,

i = 0, 1, . . . , r − 1,
j = 0, 1, . . . , n− r,

with εj := ε(x0 + jhn;hn). We choose εj+r := 0, j = 0, 1, . . . , n − r,
εi := hnui, i = 0, 1, . . . , r − 1, with arbitrary constants u0, u1, . . . , ur−1.
With

ρ(h) := |h| max
0≤i≤r−1

|ui|

one then has
|εi| ≤ ρ(hn), i = 0, 1, . . . , n,

and
lim
h→0

ρ(h) = 0.

Now, ηn = hnun, where un is obtained recursively from u0, u1, . . . , ur−1
via the difference equation

uj+r + ar−1uj+r−1 + · · · + a0uj = 0, j = 0, 1, . . . , n− r.

Since, by assumption, the method is convergent, we have

lim
n→∞

ηn = (x− x0) lim
n→∞

un
n

= 0,

i.e., (7.2.9.2) follows, the u0, u1, . . . , ur−1 having been chosen arbitrarily.
The assertion now follows from Theorem (7.2.9.5). ��

We now impose on F the additional condition of being “Lipschitz con-
tinuous” in the following sense: For every function f ∈ F1(a, b) there exist
constants h0 > 0 and M (which may depend on f) such that
(7.2.10.2)

|F (x;ur, ur−1, . . . , u0;h; f) − F (x; vr, vr−1, . . . , v0;h; f)| ≤M
r∑
i=0

|ui − vi|

for all x ∈ [a, b], |h| ≤ h0, uj , vj ∈ IR [cf. the analogous condition (7.2.2.4)].
We then show that for consistent methods the stability condition is also

sufficient for convergence:

506 7 Ordinary Differential Equations

(7.2.10.3) Theorem. Let the multistep method (7.2.7.2) be consistent in
the sense of (7.2.7.4), and F satisfy the conditions (7.2.7.7) and (7.2.10.2).
Then the method is convergent in the sense of (7.2.7.8) for all f ∈ F1(a, b)
if and only if the stability condition (7.2.9.4) holds.

Proof. The fact that the stability condition is necessary for convergence
follows from (7.2.10.1). In order to show that it is also sufficient under
the stated assumptions, one proceeds, analogously to the proof of Theorem
(7.2.2.3), in the following way: Let y(x) be the exact solution of y′ = f(x, y),
y(x0) = y0, yj := y(xj), xj = x0 + jh, and ηj the solution of (7.2.7.2):

ηi = yi + εi, i = 0, 1, . . . , r − 1,
ηj+r + ar−1ηj+r−1 + · · · + a0ηj = hF (xj ; ηj+r, . . . , ηj ;h; f) + hεj+r,

for j = 0, 1, . . . , with |εj | ≤ ρ(h), limh→0 ρ(h) = 0.
For the error ej := ηj − yj one has

(7.2.10.4)
ei = εi, i = 0, . . . , r − 1,

ej+r + ar−1ej+r−1 + · · · + a0ej = cj+r, j = 0, 1, . . . ,

where

cj+r := h[F (xj ; ηj+r, . . . , ηj ;h; f) − F (xj ; yj+r, . . . , yj ;h; f)]
+ h(εj+r − τj+r),

τj+r := τ(xj , yj ;h).

By virtue of the consistency (7.2.7.4), one has for a suitable function σ(h),

|τj+r| = |τ(xj , yj ;h)| ≤ σ(h), lim
h→0

σ(h) = 0,

and by(7.2.10.2),

(7.2.10.5) |cj+r| ≤ |h|M
r∑
i=0

|ej+i| + |h| [ρ(h) + σ(h)].

With the help of the vectors

Ej :=

ej
ej+1

...
ej+r−1

 , B :=

0
...
0
1

 ∈ IRr

and the matrix

A :=

0 1 0

· ·
· ·

0 0 1
−a0 · · · −ar−1

 ,

7.2 Initial-Value Problems 507

(7.2.10.4) can be written equivalently in the form

(7.2.10.6) Ej+1 = AEj + cj+rB, E0 :=

 ε0
...

εr−1

 .
Since by assumption the stability condition (7.2.9.4) is valid, one can
choose, by Theorem (6.9.2), a norm ‖ · ‖ on Cr with lub(A) ≤ 1. Now
all norms on Cr are equivalent [see (4.4.6)], i.e., there is a constant k > 0
such that

1
k
‖Ej‖ ≤

r−1∑
i=0

|ej+i| ≤ k‖Ej‖.

Since
r−1∑
i=0

|ej+i| ≤ k‖Ej‖,
r∑
i=1

|ej+i| ≤ k‖Ej+1‖,

one thus obtains from (7.2.10.5)

|cj+r| ≤ |h|Mk(‖Ej‖ + ‖Ej+1‖) + |h| [ρ(h) + σ(h)].

Using(7.2.10.6) and ‖B‖ ≤ k, it follows for j = 0, 1, . . .

(7.2.10.7) (1 − |h|Mk2)‖Ej+1‖ ≤ (1 + |h|Mk2)‖Ej‖ + k|h| [ρ(h) + σ(h)],

and ‖E0‖ ≤ krρ(h). For |h| ≤ 1/(2Mk2), we now have (1 − |h|Mk2) ≥ 1
2

and
1 + |h|Mk2

1 − |h|Mk2 ≤ 1 + 4|h|Mk2.

(7.2.10.7), therefore, yields for |h| ≤ 1/(2Mk2)

‖Ej+1‖ ≤ (1 + 4|h|Mk2)‖Ej‖ + 2k|h|[ρ(h) + σ(h)], j = 0, 1,

Because of ‖E0‖ ≤ krρ(h), Lemma (7.2.2.2) shows that

‖En‖ ≤ e4n|h|Mk2
krρ(h) + [ρ(h) + σ(h)]

e4n|h|Mk2 − 1
2Mk

,

i.e., for x �= x0, h = hn = (x− x0)/n, |hn| ≤ 1/(2Mk2), one has

‖En‖ ≤ e4Mk2|x−x0|krρ(hn) + [ρ(hn) + σ(hn)]
e4Mk2|x−x0| − 1

2Mk
.

There exist, therefore, constants C1 and C2 independent of h such that

(7.2.10.8) |en| = |η(x; ε;hn) − y(x)| ≤ C1ρ(hn) + C2σ(hn)

for all sufficiently large n. Convergence of the method now follows in view
of limh→0 ρ(h) = limh→0 σ(h) = 0. ��

508 7 Ordinary Differential Equations

From (7.2.10.8) one immediately obtains the following:

(7.2.10.9) Corollary. If in addition to the assumptions of Theorem
(7.2.10.3) the multistep method is a method of order p [see (7.2.7.4)],
σ(h) = O(hp), and f ∈ Fp(a, b), then the global discretization error also
satisfies

|η(x; ε;hn) − y(x)| = O(hpn)

for all hn = (x− x0)/n, n sufficiently large, provided the errors

εi = ε(x0 + ihn;hn), i = 0, 1, . . . , n,

obey an estimate
|εi| ≤ ρ(hn), i = 0, 1, . . . , n,

with
ρ(hn) = O(hpn) as n→ ∞.

7.2.11 Linear Multistep Methods

In the following sections we assume that in (7.2.7.2), aside from the starting
errors εi, 0 ≤ i ≤ r − 1, there are no further errors: εj = 0 for j ≥ r. Since
it will always be clear from the context what starting values are being used
and hence what the starting errors are, we will simplify further by writing
η(x;h) in place of η(x; ε;h) for the approximate solution produced by the
multistep method (7.2.7.2).

The most commonly used multistep methods are linear ones. For these,
the function F (x;u;h; f), u := [ur, ur−1, . . . , u0] in (7.2.7.1) has the follow-
ing form:

(7.2.11.1)
F (x;ur, ur−1, . . . , u0;h; f)

≡ brf(x+ rh, ur) + br−1f(x+ (r − 1)h, ur−1) + · · · + b0f(x, u0).

A linear multistep method therefore is determined by listing the coefficients
a0, . . . , ar−1, b0, . . . , br. By means of the recurrence formula

ηj+r + ar−1ηj+r−1 + · · · + a0ηj = h[brf(xj+r, ηj+r) + · · · + b0f(xj , ηj)],
xi := x0 + ih,

for each set of starting values η0, η1, . . . , ηr−1 and for each (sufficiently
small) stepsize h �= 0, the method produces approximate values ηj for the
values y(xj) of the exact solution y(x) of an initial-value problem y′ =
f(x, y), y(x0) = y0.

7.2 Initial-Value Problems 509

If br �= 0, one deals with a corrector method; if br = 0, with a predictor
method.

For f ∈ F1(a, b) every linear multistep method evidently satisfies the
conditions (7.2.10.2) and (7.2.7.7). According to Theorem (7.2.10.1), there-
fore, the stability condition (7.2.9.4) for the polynomial

ψ(µ) := µr + ar−1µ
r−1 + · · · + a0

is necessary for convergence [see (7.2.7.8)] of these methods. By Theorem
(7.2.10.3), the stability condition for Ψ together with consistency, (7.2.7.4),
is also sufficient for convergence.

To check consistency, by Definition (7.2.7.4) one has to examine the
behavior of the expression (here ar := 1)

(7.2.11.2)

L[z(x);h] : =
r∑
i=0

aiz(x+ ih) − h
r∑
i=0

bif(x+ ih, z(x+ ih))

≡
r∑
i=0

aiz(x+ ih) − h
r∑
i=0

biz
′(x+ ih)

≡ h · τ(x, y;h)

for the solution z(t) with z′(t) = f(t, z(t)), z(x) = y, x ∈ [a, b], y ∈ IR.
Assuming that z(t) is sufficiently often differentiable (this is the case if f
has sufficiently many continuous partial derivatives), one finds by Taylor
expansion of L[z(x);h] in powers of h for f ∈ Fq−1(a, b),

L[z(x);h] = C0z(x) + C1h z
′(x) + · · · + Cqhqz(q)(x) + o(|h|q)

= hτ(x, y;h).

Here, the Ci are independent of z(.), x and h, and one has in particular

C0 = a0 + a1 + · · · + ar−1 + 1,
C1 = a1 + 2a2 + · · · + (r − 1)ar−1 + r · 1 − (b0 + b1 + · · · + br).

In terms of the polynomial Ψ(µ) and the additional polynomial

(7.2.11.3) χ(µ) := b0 + b1µ+ · · · + brµr, µ ∈ C,

one can write C0 and C1 in the form

C0 = ψ(1), C1 = ψ′(1) − χ(1).

Now, for f ∈ F1(a, b),

τ(x, y;h) =
1
h
L[z(x);h] =

C0

h
z(x) + C1z

′(x) +O(h),

510 7 Ordinary Differential Equations

and, according to Definition (7.2.7.4), a consistent multistep method re-
quires

C0 = C1 = 0,

i.e., a consistent linear multistep method has at least order 1.
In general, it has order p [see Definition (7.2.7.4)] if, for f ∈ Fp(a, b),

C0 = C1 = · · · = Cp = 0.

In addition to Theorems (7.2.10.1) and (7.2.10.3), we now have for linear
multistep methods the following:

(7.2.11.4) Theorem. A linear multistep method which is convergent is
also consistent.

Proof. Consider the initial-value problem

y′ = 0, y(0) = 1,

with the exact solution y(x) ≡ 1. For starting values ηi := 1, i = 0, 1, . . . ,
r − 1, the method produces values ηj+r, j = 0, 1, . . . , with

(7.2.11.5) ηj+r + ar−1ηj+r−1 + · · · + a0ηj = 0.

Letting hn := x/n, one gets η(x;hn) = ηn, and in view of the convergence
of the method,

lim
n→∞

η(x;hn) = lim
n→∞

ηn = y(x) = 1.

For j → ∞ it thus follows at once from (7.2.11.5) that

C0 = 1 + ar−1 + · · · + a0 = 0.

In order to show C1 = 0, we utilize the fact that the method must
converge also for the initial-value problem

y′ = 1, y(0) = 0

with the exact solution y(x) ≡ x. We already know that C0 = ψ(1) = 0.
By Theorem (7.2.10.1) the stability condition (7.2.9.4) holds, hence λ = 1
is only a simple zero of ψ, i.e., ψ′(1) �= 0; the constant

K :=
χ(1)
ψ′(1)

is thus well defined. With the starting values

ηj := jhK, j = 0, 1, . . . , r − 1,

we have for the initial-value problem y′ = 1, y(0) = 0, in view of y(xj) =
xj = jh,

7.2 Initial-Value Problems 511

ηj = y(xj) + εj with εj := jh(K − 1), j = 0, 1, . . . , r − 1,

whereby
lim
h→0

εj = 0 for j = 0, 1, . . . , r − 1.

The method, with these starting values, yields a sequence ηj for which

(7.2.11.6) ηj+r + ar−1ηj+r−1 + · · ·+ a0ηj = h(b0 + b1 + · · ·+ br) = hχ(1).

Through substitution in (7.2.11.6), and observing C0 = 0, one easily sees
that

ηj = j hK for all j.

Now, ηn = η(x;hn), hn := x/n. By virtue of the convergence of the method,
therefore,

x = y(x) = lim
n→∞

η(x;hn) = lim
n→∞

ηn = lim
n→∞

nhnK = xK.

Consequently K = 1, and thus,

C1 = ψ′(1) − χ(1) = 0. ��

Together with Theorems (7.2.10.1), (7.2.10.3) this yields the following:

(7.2.11.7) Theorem. A linear multistep method is convergent for all f ∈
F1(a, b) if and only if it satisfies the stability condition (7.2.9.4) for ψ and
is consistent [i.e., ψ(1) = 0, ψ′(1) − χ(1) = 0].

The following theorem gives a convenient means of determining the
order of a linear multistep method:

(7.2.11.8) Theorem. A linear multistep method is a method of order p if
and only if the function ϕ(µ) := ψ(µ)/ ln(µ) − χ(µ) has µ = 1 as a p-fold
zero.

Proof. Put z(x) := ex in L[z(x);h] of (7.2.11.2). Then for a method of
order p,

L[ex;h] = Cp+1h
p+1ex(1 +O(h)).

On the other hand,

L[ex;h] = ex[ψ(eh) − hχ(eh)].

We thus have a method of order p precisely if

ϕ(eh) =
1
h

[ψ(eh) − hχ(eh)] = Cp+1h
p(1 +O(h)),

i.e., if h = 0 is a p-fold zero of ϕ(eh), or, in other words, if ϕ(µ) has the
p-fold zero µ = 1. ��

512 7 Ordinary Differential Equations

This theorem suggests the following procedure: For given constants
a0, a1, . . . , ar−1, suppose additional constants b0, b1, . . . , br, are to be
determined so that the resulting multistep method has the largest possible
order. To this end, the function ψ(µ)/ ln(µ), which for consistent methods
is holomorphic in a neighorhood of µ = 1, is expanded in a Taylor series
about µ = 1:

(7.2.11.9)
ψ(µ)
ln(µ)

= c0 + c1(µ−1)+ · · ·+ cr−1(µ−1)r−1 + cr(µ−1)r+ · · · .

Choosing

(7.2.11.10)
χ(µ) : = c0 + c1(µ− 1) + · · · + cr(µ− 1)r

=: b0 + b1µ+ · · · + brµr

then gives rise to a corrector method of order at least r + 1. Taking

χ(µ) : = c0 + c1(µ− 1) + · · · + cr−1(µ− 1)r−1

= b0 + b1µ+ · · · + br−1 + 0 · µr

one obtains a predictor method of order at least r.
In order to achieve methods of still higher order, one could think of fur-

ther determining the constants a0, . . . , ar−1 in such a way that in (7.2.11.9)

(7.2.11.11)
ψ(1) = 1 + ar−1 + · · · + a0 = 0,
cr+1 = cr+2 = · · · = c2r−1 = 0.

The choice (7.2.11.10) for χ(µ) would then lead to a corrector method of
order 2r. Unfortunately, the methods so obtained are no longer convergent,
since the polynomials ψ for which (7.2.11.11) holds no longer satisfy the
stability condition (7.2.9.4). Dahlquist (1956, 1959) was able to show that
an r-step method which satisfies the stability condition (7.2.9.4) has order

p ≤
{
r + 1, if r is odd,
r + 2, if r is even

[cf. Section 7.2.8].

Example. The consistent method of maximum order, for r = 2, is obtained by
setting

ψ(µ) = µ2 − (1 + a)µ+ a = (µ− 1)(µ− a).

Taylor expansion of ψ(µ)/ ln(µ) about µ = 1 yields

ψ(µ)
ln(µ)

= 1 − a+
3 − a

2
(µ− 1) +

a+ 5
12

(µ− 1)2 − 1 + a

24
(µ− 1)3 + · · · .

Putting

χ(µ) := 1 − a+
3 − a

2
(µ− 1) +

a+ 5
12

(µ− 1)2,

7.2 Initial-Value Problems 513

the resulting linear multistep method has order 3 for a �= −1, and order 4 for
a = −1. Since ψ(µ) = (µ− 1)(µ− a), the stability condition (7.2.9.4) is satisfied
only for −1 ≤ a < 1. In particular, for a = 0, one obtains

ψ(µ) = µ2 − µ, χ(µ) = 1
12 (5µ2 + 8µ− 1).

This is just the Adams-Moulton method (7.2.6.6) for q = 2, which therefore has
order 3. For a = −1 one obtains

ψ(µ) = µ2 − 1, χ(µ) = 1
3µ

2 + 4
3µ+ 1

3 ,

which corresponds to Milne’s method (7.2.6.10) for q = 2 and has order 4 [see
also Exercise 11].

One should not overlook that for multistep methods of order p the
integration error is of order O(hp) only if the solution y(x) of the differential
equation is at least p+ 1 times differentiable [f ∈ Fp(a, b)].

7.2.12 Asymptotic Expansions of the Global Discretization
Errror for Linear Multistep Methods

In analogy to Section 7.2.3, one can also try to find asymptotic expansions
in the stepsize h for approximate solutions generated by multistep methods.
There arise, however, a number of difficulties.

To begin with, the approximate solution η(x;h), and thus certainly also
its asymptotic expansion (if it exists), will depend on the starting values
used. Furthermore, it is not necessarily true that an asymptotic expansion
of the form [cf. (7.2.3.3)]

(7.2.12.1)
η(x;h) =y(x) + hpep(x) + hp+1ep+1(x) + · · ·

+ hNeN (x) + hN+1EN+1(x;h)

exists for all h = hn := (x − x0)/n, with functions ei(x) independent of h
and a remainder term EN+1(x;h) which is bounded in h for each x.

We show this for a simple linear multistep method, the midpoint rule
[see (7.2.6.9)], i.e.,

(7.2.12.2) ηj+1 = ηj−1 + 2hf(xj , ηj), xj = x0 + jh, j = 1, 2,

We will use this method to treat the initial-value problem

y′ = −y, x0 = 0, y0 = y(0) = 1,

whose exact solution is y(x) = e−x. We take the starting values

η0 := 1, η1 := 1 − h

[η1 is the approximate value for y(x1) = e−h obtained by Euler’s polygon
method (7.2.1.3)]. Beginning with these starting values, the sequence {ηj}

514 7 Ordinary Differential Equations

— and hence the function η(x;h) for all x ∈ Rh = {xj = jh | j = 0, 1, . . . }
— is then defined by (7.2.12.2) through

η(x;h) := ηj = ηx/h if x = xj = jh.

According to (7.2.12.2), since f(xj , ηj) = −ηj , the ηj satisfy the following
difference equation:

ηj+1 + 2hηj − ηj−1 = 0, j = 1, 2,

With the help of Theorem (7.2.9.8), the ηj can be obtained explicitly: The
polynomial

µ2 + 2hµ− 1

has the zeros

λ1 = λ1(h) = −h+
√

1 + h2 =
√

1 + h2

(
1 − h√

1 + h2

)
,

λ2 = λ2(h) = −h−
√

1 + h2 = −
√

1 + h2

(
1 +

h√
1 + h2

)
.

Therefore, by (7.2.9.8),

(7.2.12.3) ηj = c1λ
j
1 + c2λ

j
2, j = 0, 1, . . . ,

where the constants c1, c2 can be determined by means of the starting
values η0 = 1, η1 = 1 − h. One finds

η0 = 1 = c1 + c2,
η1 = 1 − h = c1λ1 + c2λ2,

and thus

c1 = c1(h) =
λ2 − (1 − h)
λ2 − λ1

=
1 +

√
1 + h2

2
√

1 + h2
,

c2 = c2(h) =
1 − h− λ1

λ2 − λ1
=
h2

2
1√

1 + h2 + 1 + h2
.

Consequently, for x ∈ Rh, h �= 0,

(7.2.12.4) η(x;h) := ηx/h = c1(h)[λ1(h)]x/h + c2(h)[λ2(h)]x/h.

One easily verifies that

ϕ1(h) := c1(h)[λ1(h)]x/h

is an analytic function of h in |h| < 1. Furthermore,

ϕ1(h) = ϕ1(−h),

7.2 Initial-Value Problems 515

since, evidently, c1(−h) = c1(h) and λ1(−h) = 1/λ1(h). The second term
in (7.2.12.4) exhibits more complicated behavior. We have

c2(h)[λ2(h)]x/h = (−1)x/hϕ2(h),

with
ϕ2(h) = c2(h)[λ1(−h)]x/h = c2(h)[λ1(h)]−x/h

an analytic function in |h| < 1. As above, one sees that ϕ2(−h) = ϕ2(h). It
follows that ϕ1 and ϕ2, for |h| < 1, have convergent power-series expansions
of the form

ϕ1(h) = u0(x) + u1(x)h2 + u2(x)h4 + · · · ,
ϕ2(h) = v0(x) + v1(x)h2 + v2(x)h4 + · · · ,

with certain analytic functions uj(x), vj(x). The first terms in these series
can easily be found from the explicit formulas for ci(h), λi(h):

u0(x) = e−x, u1(x) =
e−x

4
[−1 + 2x],

v0(x) = 0, v1(x) =
ex

4
.

Therefore, η(x;h) has an expansion of the form
(7.2.12.5)

η(x;h) = y(x) +
∞∑
k=1

h2k[uk(x) + (−1)x/hvk(x)
]

for h =
x

n
, n = 1, 2,

Because of the oscillating term (−1)x/h, which depends on h, this is not an
asymptotic expansion of the form (7.2.12.1).

Restricting the choice of h in such a way that x/h is always even, or
always odd, one obtains true asymptotic expansions
(7.2.12.6)

η(x;h) = y(x) +
∞∑
k=1

h2k[uk(x) + vk(x)] for h =
x

2n
, n = 1, 2, . . . ,

η(x;h) = y(x) +
∞∑
k=1

h2k[uk(x) − vk(x)] for h =
x

2n− 1
, n = 1, 2,

Computing η1 with the Runge-Kutta method (7.2.1.14) instead of Eu-
ler’s method, one obtains the starting values

η0 := 1,

η1 := 1 − h+
h2

2
− h3

6
+
h4

24
.

For c1 and c2 one finds in the same way as before

516 7 Ordinary Differential Equations

c1 = c1(h) =
1

2
√

1 + h2

[
1 +

√
1 + h2 +

h2

2
− h3

6
+
h4

24

]
,

c2 = c2(h) =

√
1 + h2 − 1 − h2

2 + h3

6 − h4

24

2
√

1 + h2
.

Since c1(h) and c2(h), and thus η(x;h), are no longer even functions of h,
there will be no expansion of the form (7.2.12.5) for η(x;h), but merely an
expansion of the type

η(x;h) = y(x) +
∞∑
k=2

hk[ũk(x) + (−1)x/hṽk(x)] for h =
x

n
, n = 1, 2,

The form of the asymptotic expansion thus depends critically on the start-
ing values used.

In general, we have the following theorem due to Gragg (1965) [see
Hairer and Lubich (1984) for a short proof]:

(7.2.12.7) Theorem. Let f ∈ F2N+2(a, b), and y(x) be the exact solution
of the initial-value problem

y′ = f(x, y), y(x0) = y0, x0 ∈ [a, b].

For x ∈ Rh = {x0 + ih | i = 0, 1, . . . } let η(x;h) be defined by

(7.2.12.8)
η(x0;h) := y0,

η(x0 + h;h) := y0 + hf(x0, y0),
η(x+ h;h) := η(x− h;h) + 2hf(x, η(x;h)).

Then η(x;h) has an expansion of the form
(7.2.12.9)

η(x;h) = y(x) +
N∑
k=1

h2k[uk(x) + (−1)(x−x0)/hvk(x)
]
+ h2N+2E2N+2(x;h),

valid for x ∈ [a, b] and all h = (x − x0)/n, n = 1, 2, The functions
uk(x), vk(x) are independent of h. The remainder term E2N+2(x;h) for
fixed x remains bounded for all h = (x− x0)/n, n = 1, 2,

We note here explicitly that Theorem (7.2.12.7) holds also for systems
of differential equation (7.0.3): f , y0, η, y, uk, vk, etc. are then to be un-
derstood as vectors.

Under the assumptions of Theorem (7.2.12.7) the error e(x;h) :=
η(x;h) − y(x) in first approximation is equal to

h2[u1(x) + (−1)(x−x0)/hv1(x)].

In view of the term (−1)(x−x0)/h, it shows an oscillating behavior:

7.2 Initial-Value Problems 517

e(x± h;h) .= h2[u1(x) − (−1)(x−x0)/hv1(x)].

One says, for this reason, that the midpoint rule is “weakly unstable”. The
principal oscillating term (−1)(x−x0)/hv1(x) can be removed by a trick. Set
[Gragg (1965)]

(7.2.12.10) S(x;h) := 1
2 [η(x;h) + η(x− h;h) + hf(x, η(x;h))],

where η(x;h) is defined by (7.2.12.9). On account of (7.2.12.8), one now
has

η(x+ h;h) = η(x− h;h) + 2hf(x, η(x;h)),

and hence also

(7.2.12.11) S(x;h) = 1
2 [η(x;h) + η(x+ h;h) − hf(x, η(x;h))].

Addition of (7.2.12.10) and (7.2.12.11) yields

(7.2.12.12) S(x;h) = 1
2

[
η(x;h) + 1

2η(x− h;h) + 1
2η(x+ h;h)

]
.

By (7.2.12.9), one thus obtains for S an expansion of the form

S(x;h) =1
2

{
y(x) + 1

2

[
y(x+ h) + y(x− h)

]
+

N∑
k=1

h2k[uk(x) + 1
2 (uk(x+ h) + uk(x− h))

+ (−1)(x−x0)/h(vk(x) − 1
2 (vk(x+ h) + vk(x− h)))

]}
+O(h2N+2).

Expanding y(x ± h) and the coefficient functions uk(x ± h), vk(x ± h) in
Taylor series in h, one finally obtains for S(x;h) an expansion of the form
(7.2.12.13)

S(x;h) =y(x) + h2[u1(x) + 1
4y

′′(x)
]

+
N∑
k=2

h2k[ũk(x) + (−1)(x−x0)/hṽk(x)
]
+O(h2N+2),

in which the leading error term no longer contains an oscillating factor.

7.2.13 Practical Implementation of Multistep Methods

The unpredictable behavior of solutions of differential equations forces the
numerical integration to proceed with stepsizes which, in general, must vary
from point to point if a prescribed error bound is to be maintained. Multi-
step methods which use equidistant nodes xi and a fixed order, therefore,
are not very suitable in practice. Every change of the steplength requires

518 7 Ordinary Differential Equations

a recomputation of starting data [cf. Section 7.2.6] or entails a compli-
cated interpolation process, which severely reduces the efficiency of these
integration methods.

In order to construct efficient multistep methods, the equal spacing of
the nodes xi must be given up. We briefly sketch the construction of such
methods. Our point of departure is again Equation (7.2.6.2), which was
obtained by formal integration of y′ = f(x, y):

y(xp+k) − y(xp−j) =
∫ xp+k

xp−j

f(t, y(t))dt.

As in (7.2.6.3) we replace the integrand by an interpolating polynomial Qq
of degree q, but use here Newton’s interpolation formula (2.1.3.4), which, for
the purpose of step control, offers some advantages. With the interpolating
polynomial one first obtains an approximation formula

ηp+k − ηp−j =
∫ xp+k

xp−j

Qq(x)dx,

and from this the recurrence formula

ηp+k − ηp−j =
q∑
i=0

f [xp, . . . , xp−i]
∫ xp+k

xp−j

Q̄i(x)dx,

with
Q̄i(x) = (x− xp) · · · (x− xp−i+1), Q̄0(x) ≡ 1.

In the case k = 1, j = 0, q = 0, 1, 2, . . . , one obtains an “explicit” formula
(predictor)

(7.2.13.1) ηp+1 = ηp +
q∑
i=0

gif [xp, . . . , xp−i],

where
gi :=

∫ xp+1

xp

Q̄i(x)dx.

For k = 0, j = 1, q = 0, 1, 2, . . . , and replacing p by p+ 1, there results an
“implicit” formula (corrector)

(7.2.13.2) ηp+1 = ηp +
q∑
i=0

g∗
i f [xp+1, . . . , xp−i+1],

with
g∗
i :=

∫ xp+1

xp

(x− xp+1) · · · (x− xp+2−i)dx, i > 0,

g∗
0 :=

∫ xp+1

xp

dx.

7.2 Initial-Value Problems 519

The approximation ηp+1 =: η(0)
p+1 from the predictor formula can be used,

as in Section 7.2.6, as “starting value” for the iteration on the corrector
formula. However, we carry out only one iteration step, and denote the
resulting approximation by η(1)

p+1. From the difference of the two approxi-
mate values we can again derive statements about the error and stepsize.
Subtracting the predictor formula from the corrector formula gives

η
(1)
p+1 − η(0)

p+1 =
∫ xp+1

xp

(Q(1)
q (x) −Q(0)

q (x))dx.

Q
(1)
q (x) is the interpolation polynomial of the corrector formula (7.2.13.2),

involving the points

(xp+1, f
(1)
p+1), (xp, fp), . . . , (xp−q+1, fp−q+1)

with
f

(1)
p+1 = f(xp+1, η

(0)
p+1).

Q
(0)
q (x) is the interpolation polynomial of the predictor formula, with points

(xp, fp), . . . , (xp−q, fp−q). Defining f (0)
p+1 := Q

(0)
q (xp+1), then Q(0)

q (x) is also
determined uniquely by the points

(xp+1, f
(0)
p+1), (xp, fp), . . . , (xp−q+1, fp−q+1)

The difference Q(1)
q (x) − Q(0)

q (x) therefore vanishes at the nodes xp−q+1,
. . . , xp, and at xp+1 has the value

f
(1)
p+1 − f (0)

p+1.

Therefore,

(7.2.13.3) η
(1)
p+1 − η(0)

p+1 = Cq · (f (1)
p+1 − f (0)

p+1).

Now let y(x) denote the exact solution of the differential equation y′ =
f(x, y) with initial value y(xp) = ηp. We assume that the “past” approx-
imate values ηp−i = y(xp−i), i = 0, 1, . . . , q are “exact”, and we make
the additional assumption that f(x, y(x)) is exactly represented by the
polynomial Q(1)

q+1(x) with interpolation points

(xp+1, f
(1)
p+1), (xp, fp), . . . , (xp−q, fp−q).

Then
y(xp+1) = ηp +

∫ xp+1

xp

f(y, y(x)) dx

= ηp +
∫ xp+1

xp

Q
(1)
q+1(x) dx.

520 7 Ordinary Differential Equations

For the error
Eq := y(xp+1) − η(1)

p+1,

one obtains

Eq = ηp +
∫ xp+1

xp

Q
(1)
q+1(x)dx− ηp −

∫ xp+1

xp

Q(1)
q dx

=
∫ xp+1

xp

(Q(1)
q+1(x) −Q(0)

q (x))dx−
∫ xp+1

xp

(Q(1)
q (x) −Q(0)

q (x))dx.

In the first term, Q(0)
q (x) may be replaced by Q(0)

q+1(x) if one takes as
interpolation points

(xp+1, f
(0)
p+1), (xp, fp), . . . , (xp−q, fp−q).

In analogy to (7.2.13.3) one then obtains

Eq = Cq+1(f
(1)
p+1 − f (0)

p+1) − Cq(f (1)
p+1 − f (0)

p+1)

= (Cq+1 − Cq)(f (1)
p+1 − f (0)

p+1).

If now the nodes xp+1, xp, . . . , xp−q are equidistant and h := xj+1 − xj ,
one has for the error

Eq = y(xp+1) − η(1)
p+1 = O(hq+2) .= C hq+2.

The further development now follows the previous pattern [cf. Section
7.2.5]. Let ε be a prescribed error bound. The “old” step hold is accepted
as “successful” if

|Eq| = |Cq+1 − Cq| · |f (1)
p+1 − f (0)

p+1|
.= |C hq+2

old | ≤ ε.

The new step hnew is considered “successful” if we can make

|C hq+2
new | ≤ ε.

Elimination of C again yields

hnew
.= hold

(
ε

|Eq|

) 1
q+2

.

This strategy can still be combined with a change of q (variable order
method). One computes the three quantities(

ε

|Eq−1|

) 1
q+1

,

(
ε

|Eq|

) 1
q+2

,

(
ε

|Eq+1|

) 1
q+3

and determines their maximum. If the first quantity is the maximum, one
reduces q by 1. If the second is the maximum, one holds on to q. If the

7.2 Initial-Value Problems 521

third is the maximum, one increases q by 1. The important point to note is
that the quantities Eq−1, Eq, Eq+1 can be computed recursively from the
table of divided differences. One has

Eq−1 = gq−1,2f
(1)[xp+1, xp, . . . , xp−q+1],

Eq = gq,2f
(1)[xp+1, xp, . . . , xp−q],

Eq+1 = gq+1,2f
(1)[xp+1, xp, . . . , xp−q−1],

where f (1)[xp+1, xp, . . . , xp−i] are the divided differences relative to the in-
terpolation points (xp+1, f

(1)
p+1), (xp, fp), . . . , (xp−i, fp−i) and gij is defined

by

gij =
∫ xp+1

xp

Q̄i(x)(x− xp+1)j−1dx, i, j ≥ 1.

The quantities gij satisfy the recursion

gij = (xp+1 − xp+1−i)gi−1,j + gi−1,j+1,

j = 1, 2, . . . , q + 2 − i, i = 2, 3, . . . , q,

with the initial values

g1j =
(−(xp+1 − xp))j+1

j(j + 1)
, j = 1, . . . , q + 1.

The method discussed is “self-starting”; one begins with q = 0, then raises
q in the next step to q = 1, etc. The “initialization” [cf. Section 7.2.6]
required for multistep methods with equidistant nodes and fixed q becomes
unnecessary.

For a more detailed study we refer to the relevant literature, for ex-
ample, Hairer, Nørsett, and Wanner (1993); Shampine and Gordon (1975);
Gear (1971); and Krogh (1974).

7.2.14 Extrapolation Methods for the Solution of the Initial-
Value Problem

As discussed in Section 3.4, asymptotic expansions suggest the applica-
tion of extrapolation methods. Particularly effective extrapolation methods
result from discretization methods which have asymptotic expansions con-
taining only even powers of h. Observe that this is the case for the midpoint
rule or the modified midpoint rule [see (7.2.12.8), (7.2.12.9) or (7.2.12.10),
(7.2.12.13)].

In practice, one uses especially Gragg’s function S(x;h) of (7.2.12.10),
whose definition we repeat here because of its importance: Given the triple
(f, x0, y0), a real number H, and a natural number n > 0, define x̄ :=
x0 +H, h := H/n. For the initial-value problem

522 7 Ordinary Differential Equations

y′ = f(x, y), y(x0) = y0,

with exact solution y(x), one then defines the function value S(x̄;h), in the
following way:

(7.2.14.1)

η0 : = y0,

η1 : = η0 + hf(x0, η0), x1 := x0 + h,
for j = 1, 2, . . . , n− 1 :

ηj+1 : = ηj−1 + 2hf(xj , ηj), xj+1 := xj + h,
S(x̄;h) : = 1

2 [ηn + ηn−1 + hf(xn, ηn)].

In an extrapolation method for the computation of y(x̄) [see Sections 3.4,
3.5], one then has to select a sequence of natural numbers

F = {n0, n1, n2, . . .}, 0 < n0 < n1 < n2 < · · · ,

and for hi := H/ni to compute the values S(x̄;hi). Because of the oscilla-
tion term (−1)(x−x0)/h in (7.2.12.13), however, F must contain only even
or only odd numbers. Usually, one takes the sequnce

(7.2.14.2) F = {2, 4, 6, 8, 12, 16, . . .}, ni := 2ni−2 for i ≥ 3.

As described in Section 3.4, beginning with the 0th column, one then
computes by means of interpolation formulas a tableau of numbers Tik, one
upward diagonal after another:

(7.2.14.3)

S(x̄;h0) =: T00

T11

S(x̄;h1) =: T10 T22
↘

T21 T33
↘ ↗ . . .

S(x̄;h2) =: T20 T32
...↘ ↗

T31
...↗

S(x̄;h3) =: T30
...

...

Here
Tik := T̃ik(0)

is just the value of the interpolating polynomial (rational functions would
be better)

T̃ik(h) = a0 + a1h2 + · · · + akh2k

7.2 Initial-Value Problems 523

of degree k in h2 with T̃ik(hj) = S(x̄;hj) for j = i, i − 1, . . . , i − k. As
shown in Section 3.5, each column of (7.2.14.3) converges to y(x̄):

lim
i→∞

Tik = y(x̄) for k = 0, 1,

In particular, for k fixed, the Tik for i→ ∞ converge to y(x̄) like a method
of order (2k + 2). We have in first approximation, by virtue of (7.2.12.13)
[see (3.5.10)],

Tik − y(x̄) .= (−1)kh2
ih

2
i−1 · · ·h2

i−k[ũk+1(x̄) + ṽk+1(x̄)].

One can further, as described in Section 3.5, exploit the monotonic behavior
of the Tik in order to compute exlicit estimates of the error Tik − y(x̄).

Once a sufficiently accurate Tik =: ȳ is found, ȳ will be accepted as an
approximate value for y(x̄). Thereafter, one can compute in the same way
an approximation to y(¯̄x) at an additional point ¯̄x = x̄ + H̄ by replacing
x0, y0, H by x̄, ȳ, H̄ and by solving the new initial-value problem again,
just as described.

We wish to emphasize that the extrapolation method can be applied
also for the solution of an initial-value problem (7.0.3), (7.0.4) for systems of
n ordinary differential equations. In this case, f(x, y) and y(x) are vectors
of functions, and y0, ηi, and S(x̄;h) in (7.2.14.1) are vectors in IRn. The
asymptotic expansions (7.2.12.9) and (7.2.12.13) remain valid, and they
mean that each component of S(x̄;h) ∈ IRn has an asymmptotic exspansion
of the form indicated. The elements Tik of (7.2.14.3), likewise, are vectors
in IRn and are computed as before, component by component, from the
corresponding components of S(x̄;hi).

In the practical realization of the method, the problem arises how large
the basic steps H are to be chosen. If one chooses H too large, one must
compute a very large tableau (7.2.14.3) before a sufficiently accurate Tik is
found; i is a large integer, and to find Tik one has to compute S(x̄;hj) for
j = 0, 1, . . . , i. The computation of S(x̄;hj) requires nj + 1 evaluations
of the right-hand side f(x, y) of the differential equation. For the sequence
F in (7.2.14.2) chosen above, the numbers si :=

∑i
j=0(nj + 1), and thus

the expenditure of work for a tableau with i + 1 upward diagonals grows
rapidly with i: one has si+1 ≈ 1.4si.

If, on the other hand, the step H is too small, one takes unnecessarily
small, and hence too many, integration steps (x0, y(x0)) → (x0 +H, y(x0 +
H)). It is therefore very important for the efficiency of the method that one
incorporate into the method, as in Section 7.2.5, a mechanism for estimating
a reasonable stepsize H. This mechanism must accomplish two things:
(1) It must guarantee that any stepsize H which is too large is reduced,

so that no unnecessarily large tableau is constructed.
(2) It should propose to the user of the method (of the program) a reason-

able stepsize H̄ for the next integration step.

524 7 Ordinary Differential Equations

However, we don’t want to enter into further discussion of such mech-
anisms and only remark that one can proceed, in principle, very much as
in Section 7.2.5.

An algol program for the solution of initial-value problems by means
of extrapolation methods can be found in Bulirsch and Stoer (1966).

7.2.15 Comparison of Methods for Solving Initial-Value
Problems

The methods we have described fall into three classes:

(1) one-step methods,
(2) multistep methods,
(3) extrapolation methods.

All methods allow a change of the steplength in each integration step; an
adjustment of the respective stepsizes in each of them does not run into any
inherent difficulties. The modern multistep methods are not employed with
fixed orders; nor are the extrapolation methods. In extrapolation methods,
for example, one can easily increase the order by appending another column
to the tableau of extrapolated values. One-step methods of the Runge-
Kutta-Fehlberg type, by construction, are tied to a fixed order, although
methods of variable orders can also be constructed with correspondingly
more complicated procedures.

In an attempt to find out the advantages and disadvantages of the var-
ious integration schemes, computer programs for the methods mentioned
above have been prepared with the utmost care, and extensive numeri-
cal experiments have been conducted with a large number of differential
equations. The result may be described roughly as follows:

The least amount of computation, measured in evaluations of the right-
hand side of the differential equation, is required by the multistep methods.
In a predictor method the right-hand side of the differential equation must
be evaluated only once per step, while in a corrector method this number
is equal to the (generally small) number of iterations. The expense caused
by the step control in multistep methods, however, destroys this advantage
to a large extent. Multistep methods have the largest amount of overhead
time. Advantages accrue particularly in cases where the right-hand side
of the differential equation is built in a very complicated manner (large
amount of computational work to evaluate the right-hand side). In contrast,
extrapolation methods have the least amount of overhead time, but on the
other hand sometimes do not react as “sensitively” as one-step methods
or multistep methods to changes in the prescribed accuracy tolerance ε:
often results are furnished with more corrrect digits than necessary. The
reliability of extrapolation methods is quite high, but for modest accuracy
requirements they no longer work economically (are too expensive).

7.2 Initial-Value Problems 525

For modest accuracy requirements, Runge-Kutta-Fehlberg methods
with low orders of approximation p are to be preferred. Runge-Kutta-
Fehlberg methods of certain orders sometimes react less sensitively to dis-
continuities in the right-hand side of the differential equation than multi-
step or extrapolation methods. It is true that in the absence of special pre-
cautions, the accuracy at a discontinuity in Runge-Kutta-Fehlberg meth-
ods is drastically reduced at first, but afterward these methods continue to
function without disturbances. In certain practical problems, this can be
an advantage.

None of the methods is endowed with such advantages that it can be
preferred over all others (assuming that for all methods computer programs
are used that were developed with the greatest care). The question of which
method ought to be employed for a particular problem depends on so many
factors that it cannot be discussed here in full detail; we must refer for this
to the original papers, e.g., Clark (1968), Crane and Fox (1969), Hull et al.
(1972), Shampine et al. (1976), Diekhoff et al. (1977).

7.2.16 Stiff Differential Equations

In the upper atmosphere, ozone decays under the influence of the radiation
of the sun. This process is described by the formulas

O3 +O2
k1⇀↽
k2
O + 2O2; O3 +O k3→ 2O2

of chemical reaction kinetics. The kinetic parameters kj , j = 1, 2, 3, are
either known from direct measurements or are determined indirectly from
the observed concentrations as functions of time by solving an “inverse
problem”. If we denote by y1 = [O3], y2 = [O], and y3 = [O2] the concen-
tration of the reacting gases, then according to a simple model of physical
chemistry, the reaction can be described by the following set of ordinary
differential equation [cf. Willoughby (1974)]:

ẏ1(t) = −k1y1y3 + k2y2y23 − k3y1y2,
ẏ2(t) = k1y1y3 − k2y2y23 − k3y1y2,
ẏ3(t) = −k1y1y3 + k2y2y23 + k3y1y2.

We simplify this system by assuming that the concentration of molecular
oxygen [O2] is constant, i.e., ẏ3 = 0, and consider the situation where
initially the concentration [O] of the radical O is zero. Then, after inserting
the appropriate constants and rescaling of the kj , one obtains the initial
value problem

ẏ1 = −y1 − y1y22 + 294y2,
ẏ2 = (y1 − y1y2)/98 − 3y2,

y1(0) = 1,
y2(0) = 0,

t ≥ 0.

526 7 Ordinary Differential Equations

Typical for chemical kinetics are the widely different velocities (time scales)
of the various elementary reactions. This results in reaction constants kj
and coefficients of the differential equations of very different orders of mag-
nitudes. A linearization therefore gives linear differential equations with a
matrix having a large spread of eigenvalues [see the Gershgorin theorem
(6.9.4)]. One therefore has to expect a solution structure characterized by
“boundary layers” and “asymptotic phases”. The integration of systems of
this kind gives rise to peculiar difficulties. The following example will serve
as an illustration [cf. Grigorieff (1972, 1977)].

Suppose we are given the system

(7.2.16.1)
y′
1(x) =

λ1 + λ2

2
y1 +

λ1 − λ2

2
y2,

y′
2(x) =

λ1 − λ2

2
y1 +

λ1 + λ2

2
y2,

with negative constants λ1, λ2: λi < 0. The general solution is

(7.2.16.2)
y1(x) = C1e

λ1x + C2e
λ2x

y2(x) = C1e
λ1x − C2e

λ2x

}
x ≥ 0,

where C1, C2 are constants of integration. If (7.2.16.1) is integrated by
Euler’s method [cf. (7.2.1.3)], the numerical solution can be represented in
“closed form” as follows,

(7.2.16.3)
η1i = C1(1 + hλ1)i + C2(1 + hλ2)i,

η2i = C1(1 + hλ1)i − C2(1 + hλ2)i.

Evidently, the approximations converge to zero as i → ∞ only if the
steplength h is chosen small enough to have

(7.2.16.4) |1 + hλ1| < 1 and |1 + hλ2| < 1.

Now let |λ2| be large compared to |λ1|. Since λ2 < 0, the influence
of the component eλ2x in (7.2.16.2) is negligibly small in comparison with
eλ1x. Unfortunately, this is not true for the numerical integration. In view
of (7.2.16.4), indeed, the steplength h > 0 must be chosen so small that

h <
2

|λ2|
.

For example, if λ1 = −1, λ2 = −1000, we must have h ≤ 0.002. Thus, even
though e−1000x contributes practically nothing to the solution, the factor
1000 in the exponent severely limits the step size. This behavior in the
numerical solution is referred to as “stiffness”: It is to be expected if for
a system of differential equations y′ = f(x, y), y ∈ IRn, the n × n-matrix
fy(x, y) has eigenvalues λ with Reλ� 0.

7.2 Initial-Value Problems 527

Euler’s method (7.2.1.3) is hardly suitable for the numerical integra-
tion of such systems; the same can be said for the Runge-Kutta-Fehlberg
methods, multistep methods, and extrapolation methods, discussed earlier.

Appropriate methods for integrating stiff differential equations can be
derived from so-called implicit methods. As an example, we may take the
implicit Euler method,

(7.2.16.5) ηi+1 = ηi + hf(xi+1, ηi+1), i = 0, 1,

The “new” approximation ηi+1 will have to be determined by iteration.
The computational effort thus increases considerably.

One finds that many methods, applied with constant steplength h > 0
to the linear system of differential equations

(7.2.16.6) y′ = Ay, y(0) = y0,

A a constant n × n matrix, will produce a sequence ηi of approximation
vectors for the solution y(xi) which satisfy a recurrence formula

(7.2.16.7) ηi+1 = g(hA)ηi.

The function g(z) depends only on the method employed and is usually a
rational function in which it is permissible to substitute a matrix for the
argument.

Example 1. For the explicit Euler method (7.2.1.3) one finds

ηi+1 = ηi + hAηi = (I + hA)ηi, whence g(z) = 1 + z;

for the implicit Euler method (7.2.16.5),

ηi+1 = ηi + hAηi+1, ηi+1 = (I − hA)−1ηi, whence g(z) =
1

1 − z
.

If one assumes that the matrix A in (7.2.16.6) has only eigenvalues λj
with Reλj < 0 [cf. (7.2.16.1)], then the solution y(x) of (7.2.16.6) converges
to zero as x→ ∞, while the discrete solution {ηi}, by virtue of (7.2.16.7),
converges to zero as i → ∞ only for those stepsizes h > 0 for which
|g(hλj)| < 1 for all eigenvalues λj of A.

Inasmuch as the presence of eigenvalues λj with Reλj � 0 will not
force the employment of small stepsizes h > 0, a method will be suitable
for the integration of stiff differential equations if it is absolutely stable in
the following sense:

(7.2.16.8) Definition. A method (7.2.16.7) is called absolutely stable if
|g(z)| < 1 for all z with Re z < 0.

A more accurate description of the behavior of a method (7.2.16.7) is
provided by its region of absolute stability DF , by which we mean the set

528 7 Ordinary Differential Equations

(7.2.16.9) M = {z ∈ C
∣∣ |g(z)| < 1}.

The larger the intersection M ∩ C− of M with the left half-plane C− =
{z | Re z < 0}, the more suitable the method is for the integration of stiff
differential equations; it is absolutely stable if M contains C−.

Example 2. The region of absolute stability for the explicit Euler method is

{z
∣∣ |1 + z| < 1};

for the implicit Euler method,

{z
∣∣ |1 − z| > 1}.

The implicit Euler method is thus absolutely stable; the explicit Euler method is
not.

Taking A-stability into account, one can then develop one-step, mul-
tistep, and extrapolation methods as in the previous Sections 7.2.1, 7.2.9,
and 7.2.14. All these methods are implicit or semi-implicit, since only these
methods have a proper rational stability function. All explicit methods con-
sidered earlier lead to polynomial stability functions, and hence cannot be
A-stable. The implicit character of all stable methods for solving stiff differ-
ential equations implies that one has to solve a linear system of equations
in each step at least once (semi-implicit methods), sometimes even repeat-
edly, resulting in Newton-type iterative methods. In general, the matrix E
of these linear equations contains the Jacobian matrix fy = fy(x, y) and
usually has the form E = I − hγfy for some number γ.

Extrapolation methods

In order to derive an extrapolation method for solving a stiff system of
the form* y′ = f(y), we note that the stiff part of the solution y(t) can be
factored off near t = x by putting c(t) := e−A(t−x)y(t) where A := fy(y(x)).
Then

c′(x) = f̄(y(x)), with f̄(y) := f(y) −Ay,
and Euler’s method (7.2.1.3), resp., the midpoint rule (7.2.6.9), lead to the
approximations

c(x+ h) ≈ y(x) + hf̄(y(x)),
c(x+ h) ≈ c(x− h) + 2hf̄(y(x)).

Using that c(x ± h) = e∓Ahy(x ± h) ≈ (I ∓ Ah)y(x ± h) we obtain a
semi-implicit midpoint rule [cf. (7.2.12.8)]

* Every differential equation can be reduced to this autonomous form:
ỹ′ = f̃(x̃, ỹ) is equivalent to

[
ỹ
x̃

]′
=
[
f̃(x̃,ỹ)

1

]
.

7.2 Initial-Value Problems 529

η(x0;h) := y0, A := fy(y0),

η(x0 + h;h) := (I − hA)−1[y0 + hf̄(y0)],

η(x+ h;h) := (I − hA)−1[(I + hA)η(x− h;h) + 2hf̄(η(x;h))
]

for the computation of an approximate solution η(x;h) ≈ y(x) of the initial
value problem y′ = f(y), y(x0) = y0. This rule was used by Bader and
Deuflhard (1983) as a basis for extrapolation methods, and they applied it
with great success to problems of chemical reaction kinetics.

One-step methods

In analogy to the Runge-Kutta-Fehlberg methods [see Equation (7.2.5.6)
ff.], Kaps and Rentrop (1979) construct for stiff autonomous systems y′ =
f(y) methods that are distinguished by a simple structure, efficiency and
robust step control. They have been tested numerically for stiffness ratios
as large as ∣∣∣∣λmax

λmin

∣∣∣∣ = 107 (with 12-digit computation).

As in (7.2.5.6) one takes

(7.2.16.10)
ȳi+1 = ȳi + hΦI(ȳi;h),
ŷi+1 = ȳi + hΦII(ȳi;h),

with

(7.2.16.11)
|∆(x, y(x));h) − ΦI(y(x);h)| ≤ NIh

3,

|∆(x, y(x));h) − ΦII(y(x);h)| ≤ NIIh
4

and

ΦI(y;h) =
3∑
k=1

ckf
∗
k (y;h),

ΦII(y;h) =
4∑
k=1

ĉkf
∗
k (y;h),

where the f∗
k := f∗

k (y;h), k = 1, 2, 3, 4, have the form

(7.2.16.12) f∗
k = f

(
y + h

k−1∑
l=1

βklf
∗
l

)
+ hf ′(y)

k∑
l=1

γklf
∗
l .

For specified constants, the f∗
k must be determined iteratively from these

systems. The constants obey equations similar to those in (7.2.5.9) ff. Kaps
and Rentrop provide the following values:

530 7 Ordinary Differential Equations

γkk= 0.220 428 410 for k = 1, 2, 3, 4,
γ21= 0.822 867 461,
γ31= 0.695 700 194, γ32= 0,
γ41= 3.904 813 42, γ42= 0, γ43 = 1,

β21= −0.554 591 416,
β31= 0.252 787 696, β32= 1,
β41= β31, β42= β32, β43 = 0,

c1 = −0.162 871 035, c2 = 1.182 153 60,
c3 = −0.192 825 995 × 10−1,

ĉ1 = 0.545 211 088, ĉ2 = 0.301 486 480,
ĉ3 = 0.177 064 668, ĉ4 = −0.237 622 363 × 10−1,

Step control is accomplished as in (7.2.5.17):

hnew = 0.9h 3

√
ε|h|

|ŷi+1 − ȳi+1|
.

Multistep methods

It was shown by Dahlquist (1963) that there are no A-stable multistep
methods of order r > 2 and that the implicit trapezoidal rule

ηn+1 = ηn +
h

2
(f(xn, ηn) + f(xn+1, ηn+1)), n > 0,

where η1 is given by the implicit Euler method (7.2.16.5), is the A-stable
method of order 2 with an error coefficient c = − 1

12 of smallest modulus.

���

��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
��
�
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
�

�
��
�
��
�
��
�
�
��
�
��
�
��
��
��
���
���
��

�
�
��
��
��
���
���
��

�������������������������������

�����
����
���
���
�

��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��

�
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
�
��
�
�
�
��
�
��
��
�
��
�
�
�
�

��
������ ���

	�
��

�
��

�
�
��
�
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��������
���
���

������������

�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
��

Fig. 16. The stability of BDF -methods

7.2 Initial-Value Problems 531

Gear (1971) also showed that the BDF-methods up to order r = 6 have
good stability properties: Their stability regions (7.2.16.9) contain subsets
of C− = {z | Re z < 0} having the shape sketched in Figure 16. These
multistep methods all belong to the choice [see (7.2.11.3)]

χ(µ) = brµ
r

and can be represented by backward difference formulas, which explains
their name. Coefficients of the standard representation

ηj+r + ar−1ηj+r−1 + · · · + a0ηj = hbrf(xj+r, ηj+r)

are listed in the following table [taken from Gear (1971) and Lambert
(1973)]. In this table, α = αr and c = cr are the parameters indicated
in Figure 16 that correspond to the particular BDF -method. Byrne and
Hindmarsh (1987) report very favorable numerical results for these meth-
ods.

More details on stiff differential equations can be found in e.g., Grigorieff
(1972, 1977), Enright, Hull, and Lindberg (1975), and in Willoughby
(1974). For a recent comprehensive treatment, see Hairer and Wanner
(1991).

r αr cr br a0 a1 a2 a3 a4 a5

1 90o 0 1 −1

2 90o 0
2
3

1
3

−4
3

3 88o 0.1
6

11
− 2

11
9

11
−18

11

4 73o 0.7
12
25

3
25

−16
25

36
25

−48
25

5 51o 2.4
60

137
− 12

137
75

137
−200

137
300
137

−300
137

6 18o 6.1
60

147
10

147
− 72

147
225
147

−400
147

450
147

−360
147

7.2.17 Implicit Differential Equations. Differential-Algebraic
Equations

So far we have only considered explicit ordinary differential equations y′ =
f(x, y) (7.0.1). For many modern applications this is too restrictive, and it
is important, for reasons of efficiency, to deal with implicit systems

532 7 Ordinary Differential Equations

F (x, y, y′) = 0

directly without transforming them to explicit form, which may not even
be possible.

Large-scale examples of this type abound in many applications, e.g., in the
design of efficient microchips for modern computers. Thousands of transistors
are densely packed on these chips, so that their economical design is not possible
without using efficient numerical techniques. Such a chip can be modeled as a
large complicated electrical network. Kirchhoff’s laws for the electrical potentials
and currents in the nodes of this network lead to a huge system of ordinary
differential equations for these potentials and currents as functions of time t. By
solving this system numerically, the behavior of these chips, and their electrical
properties, can be checked before their actual production, that is, such a chip
can be simulated by a computer [see, e.g., Bank, Bulirsch, and Merten (1990);
Horneber (1985)].

The resulting differential equations are implicit, and the following types,
depending on the complexity of the model for a single transistor, can be distin-
guished:

Linear implicit systems(7.2.17.1)

CU̇(t) = BU(t) + f(t),
Linear-implicit nonlinear systems(7.2.17.2)

CU̇(t) = f(t, U(t)),
Quasilinear-implicit systems(7.2.17.3)

C(U)U̇(t) = f(t, U(t)),
General implicit systems(7.2.17.4)

F (t, U(t), Q̇(t)) = 0,
Q(t) = C(U)U(t).

The vector U , which may have a very large number of components, describes
the electrical potentials of the nodes of the network. The matrix C contains the
capacities of the network which may depend on the voltages, C = C(U). Usually,
this matrix is singular and very sparse.

There are already algorithms for solving systems of type (7.2.17.2) [cf.
Deuflhard, Hairer, and Zugck (1987); Petzold (1982); Rentrop (1985); Rentrop,
Roche, and Steinebach (1989)]. But the efficient and reliable solution of systems
of the types (7.2.17.3) and (7.2.17.4) is still the subject of research [see, e.g.,
Hairer, Lubich, and Roche (1989); Petzold (1982)].

We now describe some basic differences between initial value problems
for implicit and explicit systems (we again denote the independent variable
by x)

(7.2.17.5) y′(x) = f(x, y(x)), y(x0) := y0

treated so far.
Concerning systems of type (7.2.17.1),

7.2 Initial-Value Problems 533

(7.2.17.6)
Ay′(x) = By(x) + f(x),
y(x0) = y0,

where y(x) ∈ IRn and A, B are n× n matrices, the following cases can be
distinguished:

1st Case. A regular, B arbitrary.
The formal solution of the associated homogeneous system is given by

y(x) = e(x−x0)A−1By0.

Even though the system can be reduced to explicit form y′ = A−1By +
A−1f , this is not feasible for large sparse A in practice, since then the
inverse A−1 usually is a large full matrix and A−1B would be hard to
compute and store.

2nd Case. A singular, B regular.
Then (7.2.17.6) is equivalent to

B−1Ay′ = y +B−1f(x).

The Jordan normal form J of the singular matrix B−1A = TJT−1 has the
structure

J =
[
W O
O N

]
,

where W contains all Jordan blocks belonging to the nonzero eigenvalues
of B−1A, and N the Jordan blocks corresponding to the eigenvalue zero.

We say that N has index k if N is nilpotent of order k, i.e., Nk = 0,
N j �= 0 for j < k. The transformation to Jordan normal form decouples
the system: In terms of[

u
v

]
:= T−1y,

[
p(x)
q(x)

]
:= T−1B−1f(x)

we obtain the equivalent system

Wu′(x) = u(x) + p(x),
Nv′(x) = v(x) + q(x).

The partial system for u′ has the same structure as in Case 1, so it has
a unique solution for any initial value y0. This is not true for the sec-
ond system for v′: First, this system can only be solved under additional
smoothness assumption for f :

f ∈ Ck−1[x0, xend],

where k is the index of N . Then

534 7 Ordinary Differential Equations

v(x) = −q(x) +Nv′(x)

= −(q(x) +Nq′(x)) +N2v′′(x)
...

= −(q(x) +Nq(x) + · · · +Nk−1q(k−1)(x)).

Since Nk = 0, this resolution chain for v finally terminates, proving that
v(x) is entirely determined by q(x) and its derivatives. Therefore, the fol-
lowing principal differences to (7.2.17.5) can be noted:

(1) The index of the Jordan normal form of B−1A determines the
smoothness requirements for f(x).

(2) Not all components of the initial value y0 can be chosen arbitrar-
ily: v(x0) is already determined by q(x), and therefore by f(x), and its
derivatives at x = x0. For the solvability of the system, the initial val-
ues y0 = y(x0) have to satisfy a consistency condition, and one speaks
of consistent initial values in this context. However, the computation of
consistent initial values may be difficult in practice.

3rd Case. A and B singular.
Here it is necessary to restrict the investigation to “meaningful” sys-

tems. Since there are matrices (the zero matrix A := B := 0 provides a
trivial example) for which (7.2.17.6) has no unique solution, one considers
only pairs of matrices (A,B) that lead to uniquely solvable systems. It is
possible to characterize such pairs by means of the concept of a regular ma-
trix pencil : These are pairs (A,B) of matrices such that λA+B is regular
for some λ ∈ C. Since then det(λA+B) is a nonvanishing polynomial in λ
of degree ≤ n, there are at most n numbers λ, namely, the eigenvalues of
the generalized eigenvalue problem [see Section 6.8] Bx = λAx, for which
λA+B is singular.

It is possible to show for regular matrix pencils that (7.2.17.6) has
at most one solution. Also, there is a closed formula for this solution in
terms of the Drazin-inverse of matrices [see, e.g., Wilkinson (1982) or
Gantmacher(1969)]. We will not pursue this analysis further, as it does
not lead to essentially new phenomena compared with Case 2.

If the capacity matrices C of the systems (7.2.17.1) and (7.2.17.2) are
singular, then, after a suitable transformation, these systems decompose
into a differential equation and a nonlinear system of equations (we denote
the independent variable again by x):

(7.2.17.7)
y′(x) = f(x, y(x), z(x)),

0 = g(x, y(x), z(x)) ∈ IRn2 ,

y(x0) ∈ IRn1 , z(x0) ∈ IRn2 : consistent initial values.

7.2 Initial-Value Problems 535

Such a decomposed system is called a differential-algebraic system [see, e.g.,
Griepentrog and März (1986), Hairer and Wanner (1991)]. By the implicit
function theorem, it has a unique local solution if the Jacobian

∂g

∂z
is regular (Index-1 assumption).

Differential-algebraic systems typically occur in models of the dynamics of
multibody systems; however, the Index-1 assumption may not always be
satisfied [see Gear (1988)].

Numerical methods

The differential-algebraic system (7.2.17.7) can be viewed as a differential
equation on a manifold. Therefore, such systems can be successfully solved
by methods combining solvers for differential equations [see Section 7.2],
for nonlinear equations [see Section 5.4], and continuation methods.

Extrapolation and Runge-Kutta type methods can be derived by
imbedding the nonlinear equation of (7.2.17.7) formally into a differential
equation

εz′(x) = g(x, y(x), z(x))

and then considering the limiting case ε = 0. Efficient and reliable one-step
and extrapolation methods for solving differential-algebraic systems are de-
scribed in Deuflhard, Hairer, and Zugck (1987). The method (7.2.16.10)–
(7.2.16.12) for solving stiff systems can be modified into a method for solv-
ing implicit systems of the form (7.2.17.2). The following method of order 4
with stepsize control is described in Rentrop, Roche, and Steinebach (1989):
In the notation of Section 7.2.16, and for an autonomous implicit system
Cy′ = f(y), the method has the form [cf. (7.2.16.12)]

Cf∗
k = f

(
y + h

k−1∑
l=1

βklf
∗
l

)
+ hf ′(y)

k∑
l=1

γklf
∗
l , k = 1, 2, . . . , 5,

where the coefficients are given in Table (7.2.17.8).
Multistep methods can also be used for the numerical solution of

differential-algebraic systems. Here, we only refer to the program package
Dassl [see Petzold (1982)] for solving implicit systems of the form

F (x, y(x), y′(x)) = 0.

There, the derivative y′(x) is replaced by a BDF-formula, which leads to a
nonlinear system of equations. Concerning details of solution strategies and
their implementation, we refer to the literature, e.g., Byrne and Hindmarsh
(1987), Gear and Petzold (1984, and Petzold (1982).

536 7 Ordinary Differential Equations

γkk= 0.5 for k = 1, 2, 3, 4, 5,
γ21= 4.0,
γ31= 0.46296 . . . , γ32= −1.5,
γ41= 2.2083 . . . , γ42= −1.89583 . . . , γ43= −2.25,
γ51= −12.00694 . . . , γ52= 7.30324074 . . . , γ53= 19.0,
γ54= −15.851 . . . ,

β21= 0,
β31= 0.25, β32= 0.25,
β41= −0.0052083 . . . , β42= 0.1927083 . . . , β43= 0.5625,
β51= 1.200810185 . . . , β52= −1.950810185 . . . , β53= 0.25,
β54= 1.0,

c1 = 0.538 . . . , c2 = −0.13148 . . . , c3 = −0.2,
c4 = 0.5925 . . . , c5 = 0.2,
ĉ1 = 0.4523148 . . . , ĉ2 = −0.1560185 . . . , ĉ3 = 0,
ĉ4 = 0.5037 . . . , ĉ5 = 0.2.

Table (8.2.17.8)

7.2.18 Handling Discontinuities in Differential Equations

So far, the methods for solving initial value problems

y′(x) = f(x, y(x)), y(x0) = y0,

assumed that the right hand side f of the differential equation and, there-
fore, its solution y(x) is sufficiently often differentiable. However, there are
many applied problems where f and y are discontinuous. These discontinu-
ities are often due to the underlying tasks, e.g., in friction and contact prob-
lems of mechanics, in process engineering if one admits different charges
of input. But they may also be caused by unavoidable simplifications of a
model, e.g. if one represents discrete tabular data found in experiments by
an interpolating function of low order of differentiability.

Here, we consider initial value problems of the form

(7.2.18.1)
y′(x) = fn(x, y(x)), xn−1 < x < xn, n = 1, 2, . . . ,
y(x0) = y0.

We assume that the initial values y+n = limx→x+
n
y(x) at the points

of discontinuity, the “switching points” xn, are determined by known
transition functions φn(x, y) as follows:

y+n = φn(xn, y−
n),

where y−
n = limx→x−

n
y(x).

7.2 Initial-Value Problems 537

It would be easy to solve (7.2.18.1), say by one-step methods, if the
switching points xn were known a priori. One would have to choose the
integration points xi of these methods, x0 =: x0 < x1 < · · ·, which are
usually determined by a stepsize control technique alone [see Section 7.2.5]
in such a way that also all switching points xn occur among them, and to
compute at xn the new starting ordinate y+n by means of the transition
function.

However, there are many problems where the switching points are not
known a priori: They are usually characterized as zeros of known real valued
switching functions:

(7.2.18.2) qn(xn, y(x−
n)) = 0, n = 1, 2, . . . ,

that depend on the value y(x−
n) of the solution y. In what follows we suppose

that these zeros are simple zeros. In these cases one has to compute y(.)
and the switching points concurrently. Essentially, one has to check each
prospective integration interval [xi, xi+1] whether it contains a switching
point xn, and, if this is the case, to compute xn, to interrupt the integration
at xn [i.e. replace xi+1 by xn], to compute the starting ordinate y+n , and
resume the integration with the new starting point (xn, y+n) and the new
right hand side fn+1 of (7.2.18.1).

Efficient methods for finding the switching points are as follows [cf. e.g.,
Eich (1992)]:

Let ηi−1 and ηi be numerical approximations of the solution of (7.2.18.1)
at the points xi−1 and xi obtained in the (i−1)st and i-th integration step,
respectively, using the right hand side fn(x, y(x)). Also let ỹ(x) be a contin-
uous approximation of the solution y(x) for x ∈ [xi−1, xi], and assume that
the switching function qn has a zero xn with xi−1 < xn < x

i. Moreover,
we assume that ηi exists and therefore also the approximation ỹ(x) on the
whole interval [xi−1, xi].

If ỹ(x) is sufficiently well approximated on [xi−1, xn + ε] [here ε > 0
accounts for an eventual shift of the zero xn due to roundoff], then the
function qn(x, ỹ(x)), too, has a zero x̃n in [xi−1, xn + ε], which can be used
as an approximation of switching point xn. The zero x̃n can be determined
by an appropriate algorithm, e.g., by the secant method or by inverse in-
terpolation [see Section 5.9]. Suitable generalizations [safeguard methods]
of these algorithms are described in Gill et al. (1995).

It would be too expensive to search for a possible zero of a switching
function between every two integrations steps. If the integration stepsize
is small enough so that each switching function has at most one zero in
the integration interval, it is sufficient to monitor only the sign changes of
the switching functions on these intervals. If more than one switching func-
tion changes its sign, the switching of the differential equation (7.2.18.1) is
effected by the zero of that switching function which changes its sign first.

538 7 Ordinary Differential Equations

7.2.19 Sensitivity Analysis of Initial-Value Problems

Initial value problems often depend on real parameters p = (p1, . . . , pnp
),

(7.2.19.1)
y′(x; p) = f(x, y(x; p), p), x0 < x < x1,

y(x0; p) = y0(p).

Possibly, even small changes of these parameters may produce large changes
in the solution y(x; p). Thus, it is important to carefully investigate param-
eter dependence. This may add valuable insight into the process described
by the differential equation. Mainly, such an investigation requires comput-
ing, along with a solution trajectory y(x; p), also its sensitivity (condition
numbers) given by the matrix

∂y(x; p)
∂p

∣∣∣
p
.

If the parameters are genuine model parameters, then this information
allows to judge the quality of the model. Sensitivities play also a dominant
role in the solution of optimal control problems, such as parametrization of
control functions or parameter identification [Heim and von Stryk (1996),
Engl et al. (1999)]. There are several numerical methods to compute these
sensitivities:

– approximation by difference quotients,
– solution of the sensitivity equations,
– solution of adjoint equations.

With the first method, the sensitivities are approximated by

∂y(x; p)
∂pi

∣∣∣
p
≈ y(x; p+∆piei) − y(x; p)

∆pi
, i = 1, . . . , np.

Here ei is the ith axis vector of IRnp . The implementation is easy and
not too expensive. When using an integration method with order and/or
stepsize control, the computation of the “perturbed trajectory” y(x; p +
∆piei) must use the same order/stepsize sequence used for the computation
of the reference trajectory y(x; p) [see Buchauer et al. (1994), Kiehl (1999)].
If higher accuracy is needed or if the number np of parameters is large the
other two methods are preferable.

By Theorem (7.1.8), the following sensitivity equations are associated
with (7.2.19.1):
(7.2.19.2)

∂y′(x; p)
∂p

=
∂f(x, y; p)

∂y
· ∂y(x; p)

∂p
+
∂f(x, y; p)

∂p
, x0 < x < x1,

∂y(x0; p)
∂p

=
∂y0(p)
∂p

.

7.3 Boundary-Value Problems 539

[see Hairer et al. (1993) for details].
These equations establish the function

z(x) := ∂y(x; p)/∂p,

which is a n × np-matrix function if y ∈ IRn, as the solution of an initial
value problem for a system of linear differential equations. That can be
used to implement a very efficient method for solving (7.2.19.2).

For the method based on adjoint differential equations, we refer the
reader to the literature [e.g., Morrison and Sargent (1986)].

High precision approximations of sensitivities can be computed very
efficiently both by integrating the sensitivity equations and the system of
adjoint equations. A basic tool is the internal numerical differentiation
(IND), that employs the differentiation of the recursions used for the nu-
merical computation of the reference trajectory [Leis and Kramer (1985),
Caracotsios and Stewart (1985), Bock et al. (1995)] . By contrast, the ex-
ternal numerical differentiation (END), does not change the integration
method (up to the adaptation of the order/stepsize control).

If the initial value problem contains discontinuities [see Section 7.2.18],
the sensitivities have to be corrected at the switching points. Such correc-
tions for systems of ordinary differential equations have been described by
Rozenvasser (1967), and for initial value problems for differential-algebraic
systems of index-1 [see Section 7.2.17] by Galán, Feehery and Barton
(1998).

7.3 Boundary-Value Problems

7.3.0 Introduction

More general than initial-value problems are boundary-value problems. In
these one seeks a solution y(x) of a system of n ordinary differential equa-
tions,

(7.3.0.1a) y′ = f(x, y), y =

 y1...
yn

 , f(x, y) =

 f1(x, y1, . . . , yn)...
fn(x, y1, . . . , yn)

 ,
satisfying a boundary condition of the form

(7.3.0.1b) Ay(a) +By(b) = c.

Here, a �= b are given numbers, A, B square matrices of order n, and c a
vector in IRn. In practice, the boundary conditions are usually separated :

540 7 Ordinary Differential Equations

(7.3.0.1b′) A1 y(a) = c1, B2 y(b) = c2,

i.e., in (7.3.0.1b) the rows of the matrix [A,B, c] can be permuted such that
for the rearranged matrix [Ā, B̄, c̄],

[Ā, B̄, c̄] =

A1 0 c1

0 B2 c2

 .
The boundary conditions (7.3.0.1b) are linear (more precisely, affine) in
y(a), y(b).

Occasionally, in practice, one encounters also nonlinear boundary con-
ditions of the type

(7.3.0.1b′′) r
(
y(a), y(b)

)
= 0,

which are formed by means of a vector r of n functions ri, i = 1, . . . , n, of
2n variables:

r(u, v) ≡

 r1(u1, . . . , un, v1, . . . , vn)
...

rn(u1, . . . , un, v1, . . . , vn)

 .
Even separated linear boundary-value problems are still very general. Thus,
initial-value problems, e.g., can be thought of as special boundary-value
problems of this type (with A = I, a = x0, c = y0, B = 0).

Whereas initial-value problems are normally uniquely solvable [see The-
orem (7.1.1)], boundary-value problems can also have no solution or several
solutions.

Example. The differential equation

(7.3.0.2a) w′′ + w = 0

for the real function w : IR → IR, with the notation y1(x) := w(x), y2(x) :=
w′(x), can be written in the form (7.3.0.1a),[

y1
y2

]′
=
[

y2
−y1

]
.

It has the general solution

w(x) = c1 sinx+ c2 cosx, c1, c2 arbitrary.

The special solution w(x) := sinx is the only solution satisfying the boundary
conditions

(7.3.0.2b) w(0) = 0, w(π/2) = 1.

7.3 Boundary-Value Problems 541

All functions w(x) := c1 sinx, with c1 arbitrary, satisfy the boundary conditions

(7.3.0.2c) w(0) = 0, w(π) = 0,

while there is no solution w(x) of (7.3.0.2a) obeying the boundary conditions

(7.3.0.2d) w(0) = 0, w(π) = 1.

[Observe that all boundary conditions (7.3.0.2b–d) have the form (7.3.0.1b′) with
A1 = B2 = [1, 0].]

The preceding example shows that there will be no theorem, such as
(7.1.1), of similar generality, for the existence and uniqueness of solutions
to boundary-value problems [see, in this connection, Section 7.3.3].

Many practically important problems can be reduced to boundary-
value problems (7.3.0.1). Such is the case, e.g., for

eigenvalue problems for differential equations,
in which the right-hand side f of a system of n differential equations de-
pends on a parameter λ,

(7.3.0.3a) y′ = f(x, y, λ),

and one has to satisfy n+ 1 boundary conditions of the form
(7.3.0.3b)

r
(
y(a), y(b), λ

)
= 0, r

(
u, v, λ

)
=

 r1(u1, . . . , un, v1, . . . , vn, λ)
...

rn+1(u1, . . . , un, v1, . . . , vn, λ)

 .
The problem (7.3.0.3) is overdetermined and therefore, in general, has no
solution for an arbitrary choice of λ. The eigenvalue problem in (7.3.0.3)
consists in determining those numbers λi, the “eigenvalues” of (7.3.0.3),
for which (7.3.0.3) does have a solution. Through the introduction of an
additional function

yn+1(x) := λ

and an additional differential equation

y′
n+1(x) = 0,

(7.3.0.3) is seen to be equivalent to the problem

ȳ′ = f̄
(
x, ȳ

)
, r̄

(
ȳ(a), ȳ(b)

)
= 0,

which now has the form (7.3.0.1), with

ȳ :=
[
y
yn+1

]
, f̄(x, ȳ) :=

[
f(x, y, yn+1)

0

]
,

r̄(u1, . . . , un, un+1, v1, . . . , vn, vn+1) := r(u1, . . . , un, v1, . . . , vn, vn+1).

542 7 Ordinary Differential Equations

Furthermore, so-called
boundary-value problems with free boundary

are also reducible to (7.3.0.1). In these problems, only one boundary ab-
scissa, a, is prescribed, while b is to be determined so that the system of n
ordinary differential equations

(7.3.0.4a) y′ = f(x, y)

has a solution y satisfying n+ 1 boundary conditions

(7.3.0.4b) r
(
y(a), y(b)

)
= 0, r(u, v) =

 r1(u, v)
...

rn+1(u, v)

 .
Here, in place of x, one introduces a new independent variable t and a
constant zn+1 := b− a, yet to be determined, by means of

x− a = t zn+1, 0 ≤ t ≤ 1,

żn+1 =
dzn+1

dt
= 0.

[Instead of this choice of parameters, any substitution of the form x− a =
Φ(t, zn+1) with Φ(1, zn+1) = zn+1 is also suitable.] For z(t) := y(a+t zn+1),
where y(x) is a solution of (7.3.0.4), one then obtains

ż(t) = Dtz(t) = Dxy(a+ t zn+1) zn+1 = f
(
a+ t zn+1, z(t)

)
zn+1,

and (7.3.0.4) is thus equivalent to a boundary-value problem of the type
(7.3.0.1) for the functions zi(t), i = 1, . . . , n+ 1,

(7.3.0.5)

ż1
...
żn
żn+1

 =

zn+1 f1(a+ t zn+1, z1, . . . , zn)

...
zn+1 fn(a+ t zn+1, z1, . . . , zn)

0

 ,
ri
(
z1(0), . . . , zn(0), z1(1), . . . , zn(1)

)
= 0, i = 1, . . . , n+ 1.

7.3.1 The Simple Shooting Method

We want to explain the simple shooting method first by means of an exam-
ple. Suppose we are given the boundary-value problem

(7.3.1.1)
w′′ = f(x,w,w′),

w(a) = α, w(b) = β,

7.3 Boundary-Value Problems 543

with separated boundary conditions. The initial-value problem

(7.3.1.2) w′′ = f(x,w,w′), w(a) = α, w′(a) = s

in general has a uniquely determined solution w(x) ≡ w(x; s) which of
course depends on the choice of the initial value s for w′(a). To solve the
boundary-value problem (7.3.1.1), we must determine s =: s̄ so as to satisfy
the second boundary condition, w(b) = w(b; s̄) = β. In other words: one has
to find a zero s̄ of the function F (s) :≡ w(b; s)−β. For every argument s the
function F (s) can be computed. For this, one has to determine (e.g., with
the methods of Section 7.2) the value w(b) = w(b; s) of the solution w(x; s)
of the initial-value problem (7.3.1.2) at the point x = b. The computation
of F (s) thus amounts to the solution of an initial-value problem.

For determining a zero s̄ of F (s) one can use, in principle, any method
of Chapter 5. If one knows, e.g., values s(0), s(1) with

F
(
s(0)

)
< 0, F

(
s(1)

)
> 0

[see Figure 17], one can compute s̄ by means of a simple bisection method
[see Section 5.6].

���

�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
�
��
��
�
��
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�

�
�
�
��
�
�
��
�
�

�
�
�
��
�
�
��
�
�

�
�
��
�
��
�
�
��
�
��
��
��
��
��
��
���
���
�

�
��
��
��
��
���
���
�

�������������������������������

����
���
��
���
���
�

�

�� �

�

�

���
���

�
�

���� �����

���� ���

���� �����

��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
���
���
��
���
��
���
��
���
���
���
���
���
���
���
���
���
���
����
��
���
���
��
���
���
��
����
���
���
���
��
���
���
���
����
���
���
���
���
���
���
����
����
���
���
����
���
���
�����
���
����
����
���
�����
����
����
�����
����
�����
�����
�����
�����
�����
�������
�������
������
��������
��������
����������
������������

���������������
��

��

�������
�
��������

������
�� ��������

�������� �������� �������� �������� �������� �������� �������� �������� ��������
��������

��������
��������

��������
��������

��������
��������

��������

��������

��������

��������

���

Fig. 17. Simple shooting

Since w(b; s), and hence F (s), are in general [see Theorem (7.1.8)] con-
tinuously differentiable functions of s, one can also use Newton’s method
to determine s̄. Starting with an initial approximation s(0), one then has
to iteratively compute values s(i) according to the prescription

(7.3.1.3) s(i+1) = s(i) −
F
(
s(i)

)
F ′
(
s(i)

) .
w(b; s(i)) and thus F (s(i)), can be determined by solving the initial-value
problem

(7.3.1.4) w′′ = f(x,w,w′), w(a) = α, w′(a) = s(i).

544 7 Ordinary Differential Equations

The value of the derivative of F ,

F ′(s) =
∂

∂s
w(b; s),

for s = s(i) can be obtained, e.g., by adjoining an additional initial-value
problem. With the aid of Theorem (7.1.8) one easily verifies that the func-
tion v(x) :≡ v(x; s) = (∂/∂s)w(x; s) satisfies

(7.3.1.5) v′′ = fw(x,w,w′)v + fw′(x,w,w′)v′, v(a) = 0, v′(a) = 1.

Because of the partial derivatives fw, fw′ , the initial-value problem (7.3.1.5)
is in general substantially more complex than (7.3.1.4). For this reason,
one often replaces the derivative F ′(s(i)) in Newtons formula (7.3.1.3) by
a difference quotient ∆F (s(i)),

∆F
(
s(i)

)
:=
F
(
s(i) +∆s(i)

)
− F

(
s(i)

)
∆s(i)

,

where ∆s(i) is chosen “sufficiently” small. F (s(i) +∆s(i)) is computed, like
F (s(i)), by solving an initial-value problem. The following difficulties then
arise:

If∆s(i) is chosen too large, ∆F (s(i)) is a poor approximation to F ′(s(i))
and the iteration

(7.3.1.3a) s(i+1) = s(i) −
F
(
s(i)

)
∆F

(
s(i)

)
converges toward s̄ considerably more slowly (if at all) than (7.3.1.3). If
∆s(i) is chosen too small, then F (s(i)+∆s(i)) ≈ F (s(i)), and the subtraction
F (s(i) +∆s(i))−F (s(i)) is subject to cancellation, so that even small errors
in the calculation of F (s(i)) and F (s(i) +∆s(i)) strongly impair the result
∆F (s(i)).

The solution of the initial-value problems (7.3.1.4), i.e., the calculation
of F , therefore has to be carried out as accurately as possible. The relative
error of F (s(i)) and F (s(i) + ∆s(i)) is only allowed to have the order of
magnitude of the machine precision eps. Such accuracy can be attained with
extrapolation methods [see Section 7.2.14]. If∆s(i) is then further chosen so
that in t-digit computation F (s(i)) and F (s(i) +∆s(i)) have approximately
the first t/2 digits in common, ∆s(i)∆F (s(i)) ≈

√
epsF (s(i)), then the

effects of cancellation are still tolerable. As a rule, this is the case with the
choice ∆s(i) =

√
eps s(i).

Example. Consider the boundary-value problem

w′′ = 3
2w

2,

w(0) = 4, w(1) = 1.

7.3 Boundary-Value Problems 545

Following (7.3.1.2), one finds the solution of the initial-value problem

w′′ = 3
2w

2,

w(0; s) = 4, w′(0; s) = s.

The graph of F (s) := w(1; s) − 1 is shown in Figure 18.

���� ��� ��� ��� ���

� ��

��

��

��

��

��

��

	�

�

�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��� ���

�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
��
��
�
��
�
���
����
����������������

������������������������������������
�����

����
���
���
����
����
���
����
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
��
���
��
��
��
���
���
��
���
���
��
��
��
��
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
�
��
��
�
��
��
��
��
��
��
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
�
��
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
��
�
�
�
�
��
��
�
�
�
�
�
�
�
�
�

Fig. 18. Graph of F (s) = w(1; s) − 1.

It is seen that F (s) has two zeros s̄1, s̄2. The iteration according to (7.3.1.3a)
yields

s̄1 = −8.000 000 0000,
s̄2 = −35.858 548 7278.

��� ��� ��� ��� ���

� ��

���

���

��

��

��

��

�

�

�

�

�����

�����

���

��
���
���
���
���
���
���
���
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
����
���
���
��
��
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
����
���
���
���
���
���
���
����
���
���
���
����
���
���
����
���
���
����
����
���
����
����
����
����
����
����
����
�����
�����
������
��
�
���
�
�
���
�
��
��
�
���
�
���
�
���
�
�
��
�
���
�
���
�
���
���
�
���
���������
���
��

����
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
�
��
��
��
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
��
�
�
�
��
�
�
��
�
�
�
��
�
�
�
��
��
��
��
��
�
��
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
�

Fig. 19. The solutions w1 and w2.

546 7 Ordinary Differential Equations

Figure 19 shows the graphs of the two solutions wi(x) = w(x; s̄i), i = 1, 2, of
the boundary-value problem. The solutions were computed to about ten decimal
digits. Both solutions, incidentally, can be expressed in closed form by

w(x; s̄1) =
4

(1 + x)2
,

w(x; s̄2) = C2
1

(
1 − cn(C1x− C2|k2)

1 + cn(C1x− C2|k2)
−

1
√

3

)
,

where cn(ξ|k2) denotes the Jacobian elliptic function with modulus

k =

√
2 +

√
3

2
.

From the theory of elliptic functions, and by using an iterative method of Section
5.2, one obtains for the constants of integration C1, C2 the values

C1 = 4.303 109 90 . . . ,
C2 = 2.334 641 96

For the solution of a general boundary-value problem (7.3.0.1) involving
n unknown functions yi(x), i = 1, . . . , n,

(7.3.1.6) y′ = f(x, y), r
(
y(a), y(b)

)
= 0, y = [y1, . . . , yn]T ,

where f(x, y) and r(u, v) are vectors of n functions, one proceeds as in the
example above. One tries again to determine a starting vector s ∈ IRn for
the initial-value problem

(7.3.1.7) y′ = f(x, y), y(a) = s

in such a way that the solution y(x) = y(x; s) obeys the boundary condi-
tions of (7.3.1.6),

r
(
y(a; s), y(b; s)

)
≡ r

(
s, y(b; s)

)
= 0.

One thus has to find a solution s = [σ1, σ2, . . . , σn]T of the equation

(7.3.1.8) F (s) = 0, F (s) :≡ r
(
s, y(b; s)

)
.

This can be done, e.g., by means of the general Newton’s method (5.1.6)

(7.3.1.9) s(i+1) = s(i) −DF
(
s(i)

)−1
F
(
s(i)

)
.

In each iteration step, therefore, one has to compute F (s(i)), the Jacobian
matrix

DF
(
s(i)

)
=
[
∂Fj(s)
∂σk

]
s=s(i)

,

7.3 Boundary-Value Problems 547

and the solution d(i) := s(i) − s(i+1) of the linear system of equations
DF (s(i))d(i) = F (s(i)). For the computation of F (s) = r(s, y(b; s)) at
s = s(i) one must determine y(b; s(i)), i.e., solve the initial value problem
(7.3.1.7) for s = s(i). For the computation of DF (s(i)) one observes

(7.3.1.10) DF (s) = Dur
(
s, y(b; s)

)
+Dvr

(
s, y(b; s)

)
· Z(b; s),

with the matrices

(7.3.1.11)
Dur(u, v) =

[
∂ri(u, v)
∂uj

]
, Dvr(u, v) =

[
∂ri(u, v)
∂vj

]
,

Z(b; s) = Dsy(b; s) =
[
∂yi(b; s)
∂σj

]
.

In the case of nonlinear functions r(u, v), however, one will not compute
DF (s) by means of these complicated formulas, but instead will approxi-
mate by means of difference quotients. Thus, DF (s) will be approximated
by the matrix

∆F (s) = [∆1F (s), . . . , ∆nF (s)],

where
(7.3.1.12)

∆jF (s) =
F (σ1, . . . , σj +∆σj , . . . , σn) − F (σ1, . . . , σj , . . . , σn)

∆σj
.

In view of F (s) = r(s, y(b; s)), the calculation of ∆jF (s) of course will
require that y(b; s) = y(b;σ1, . . . , σn) and y(b;σ1, . . . , σj +∆σj , . . . , σn) be
determined through the solution of the corresponding initial-value prob-
lems.

For linear boundary conditions (7.3.0.1b),

r(u, v) ≡ Au+Bv − c, Dur = A, Dvr = B,

the formulas simplify somewhat. One has

F (s) ≡ As+By(b; s) − c,
DF (s) ≡ A+BZ(b; s).

In this case, in order to form DF (s), one needs to determine the matrix

Z(b; s) =
[
∂y(b; s)
∂σ1

, · · · , ∂y(b; s)
∂σn

]
.

As just described, the jth column ∂y(b; s)/∂σj of Z(b; s) is replaced by a
difference quotient

∆jy(b; s) :=
y(b;σ1, . . . , σj +∆σj , . . . , σn) − y(b;σ1, . . . , σj , . . . , σn)

∆σj
.

548 7 Ordinary Differential Equations

One obtains the approximation
(7.3.1.13)

∆F (s) = A+B∆y(b; s), ∆y(b; s) := [∆1y(b; s), . . . , ∆ny(b; s)].

Therefore, to carry out the approximate Newton’s method

(7.3.1.14) s(i+1) = s(i) −∆F
(
s(i)

)−1
F
(
s(i)

)
,

the following has to be done:

(0) Choose a starting vector s(0).

For i = 0, 1, 2, . . . :

(1) Determine y(b; s(i)) by solving the initial-value problem (7.3.1.7) for
s = s(i), and compute F (s(i)) = r(s(i), y(b; s(i))).

(2) Choose (sufficiently small) numbers ∆σj �= 0, j = 1, . . . , n, and deter-
mine y(b; s(i) +∆σjej) by solving the n initial-value problems (7.3.1.7)
for s = s(i) +∆σjej = [σ(i)

1 , . . . , σ
(i)
j +∆σj , . . . , σ

(i)
n]T , j = 1, 2, . . . , n.

(3) Compute ∆F (s(i)) by means of (7.3.1.12) [or (7.3.1.13)] and also the
solution d(i) of the system of linear equations ∆F (s(i))d(i) = F (s(i)),
and put s(i+1) := s(i) − d(i).

In each step of the method one thus has to solve n+1 initial-value problems
and an nth-order system of linear equations.

In view of the mere local convergence of the (approximate) Newton’s
method (7.3.1.14), the method will in general diverge unless the starting
vector s(0) is already sufficiently close to a solution s̄ of F (s) = 0 [see
Theorem (5.3.2)]. Since, as a rule, such initial values are not known, the
method in the form (7.3.1.9), or (7.3.1.14), is not very useful in practice. For
this reason, one replaces (7.3.1.9), or (7.3.1.14), by the modified Newton
method [see (5.4.2.4)], which usually converges even for starting vectors
s(0) that are not particularly good (if the boundary-value problem is at all
solvable).

7.3.2 The Simple Shooting Method for Linear Boundary-Value
Problems

By substituting ∆F (s(i)) for DF (s(i)) in (7.3.1.9), one generally loses the
(local) quadratic convergence of Newton’s method. The substitute method
(7.3.1.14) as a rule converges only linearly (locally), the rate of convergence
being larger for better approximations ∆F (s(i)) to DF (s(i)).

In the special case of linear boundary-value problems, one now has
DF (s) = ∆F (s) for all s (and for arbitrary choice of the ∆σj), so that
(7.3.1.9) and (7.3.1.14) become identical. By a linear boundary-value prob-
lem one means a problem in which f(x, y) is an affine function in y and the
boundary conditions (7.3.0.1b) are linear, i.e.,

7.3 Boundary-Value Problems 549

y′ = T (x)y + g(x),
(7.3.2.1)

Ay(a) +By(b) = c,

with an n × n matrix T (x), a function g: IR → IRn, c ∈ IRn, and constant
n × n matrices A and B. We assume in the following that T (x) and g(x)
are continuous functions on [a, b]. By y(x; s) we again denote the solution
of the initial-value problem

(7.3.2.2) y′ = T (x) y + g(x), y(a; s) = s.

For y(x; s) one can give an explicit formula,

(7.3.2.3) y(x; s) = Y (x) s+ y(x; 0),

where the n× n matrix Y (x) is the solution of the initial-value problem

Y ′ = T (x)Y, Y (a) = I.

Denoting the right-hand side of (7.3.2.3) by u(x; s), one indeed has

u(a; s) = Y (a) s+ y(a; 0) = I s+ 0 = s

Dxu(x; s) = u′(x; s) = Y ′(x) s+ y′(x; 0)
= T (x)Y (x) s+ T (x) y(x; 0) + g(x)
= T (x)u(x; s) + g(x),

i.e., u(x; s) is a solution of (7.3.2.2). Since, under the assumptions on T (x)
and g(x) made above, the initial-value problem has a unique solution, it
follows that u(x; s) ≡ y(x; s). Using (7.3.2.3), one obtains for the function
F (s) in (7.3.1.8)

(7.3.2.4) F (s) = As+By(b; s) − c = [A+BY (b)] s+By(b; 0) − c.

Thus, F (s) is also an affine function of s. Consequently [cf. (7.3.1.13)],

DF (s) = ∆F (s) = A+BY (b) = ∆F (0).

The solution s̄ of F (s) = 0 [assuming the existence of ∆F (0)−1] is given by

s̄ = −[A+BY (b)]−1[By(b; 0) − c]
= 0 −∆F (0)−1F (0),

or, slightly more generally, by

(7.3.2.5) s̄ = s(0) −∆F (s(0))−1F (s(0)),

where s(0) ∈ IRn is arbitrary. In other words, the solution s̄ of F (s) = 0,
and hence the solution of the linear boundary-value problem (7.3.2.1), will

550 7 Ordinary Differential Equations

be produced by the method (7.3.1.14) in one iteration step, initiated with
an arbitrary starting vetor s(0).

7.3.3 An Existence and Uniqueness Theorem for the Solution
of Boundary-Value Problems

Under very restrictive conditions one can show the unique solvability of
certain boundary-value problems. To this end, we consider in the following
boundary-value problems with nonlinear boundary conditions:

(7.3.3.1)
y′ = f(x, y),

r
(
y(a), y(b)

)
= 0.

The problem given in (7.3.3.1) is solvable precisely if the function F (s) in
(7.3.1.8) has a zero s̄:

(7.3.3.2) F (s̄) = r
(
s̄, y(b; s̄)

)
= 0.

The latter is certainly true if one can find a nonsingular n × n matrix Q
such that

(7.3.3.3) Φ(s) := s−QF (s)

is a contractive mapping in IRn; the zero s̄ of F (s) is then a fixed point of
Φ, Φ(s̄) = s̄.

With the help of Theorem (7.1.8), we can now prove the following
result, which for linear boundary conditions is due to Keller (1968).

(7.3.3.4) Theorem. For the boundary-value problem (7.3.3.1), let the fol-
lowing assumptions be satisfied:

(1) f and Dyf are continuous on S := {(x, y) | a ≤ x ≤ b, y ∈ IRn}.
(2) There is a k ∈ C[a, b] with ‖Dyf(x, y)‖ ≤ k(x) for all (x, y) ∈ S.

(3) The matrix
P (u, v) := Dur(u, v) +Dvr(u, v)

admits for all u, v ∈ IRn a representation of the form

P (u, v) = P0
(
I +M(u, v)

)
with a constant nonsingular matrix P0 and a matrix M = M(u, v), and
there are constants µ and m with

‖M(u, v)‖ ≤ µ < 1, ‖P−1
0 Dvr(u, v)‖ ≤ m

for all u, v ∈ IRn.

(4) There is a number λ > 0 with λ+ µ < 1 such that

7.3 Boundary-Value Problems 551∫ b

a

k(t) dt ≤ ln
(

1 +
λ

m

)
.

Then the boundary-value problem (7.3.3.1) has exactly one solution
y(x).

Proof. We show that with a suitable choice of Q, namely Q := P−1
0 , the

function Φ(s) in (7.3.3.3) satisfies

(7.3.3.5) ‖DsΦ(s)‖ ≤ K < 1 for all s ∈ IRn, where K := λ+ µ < 1.

From this it then follows at once that

‖Φ(s1) − Φ(s2)‖ ≤ K‖s1 − s2‖ for all s1, s2 ∈ IRn,

i.e., Φ is a contractive mapping which, according to Theorem (5.2.3), has
exactly one fixed point s̄ = Φ(s̄), which is a zero of F (s), on account of the
nonsingularity of Q.

For Φ(s) := s− P−1
0 r(s, y(b; s)) one has

(7.3.3.6)
DsΦ(s) = I − P−1

0

[
Dur

(
s, y(b; s)

)
+Dvr

(
s, y(b; s)

)
Z(b; s)

]
= I − P−1

0

[
P
(
(s, y(b; s)

)
+Dvr

(
s, y(b; s)

)(
Z(b; s) − I

)]
= I − P−1

0

[
P0(I +M) +Dvr (Z − I)

]
= −M

(
s, y(b; s)

)
− P−1

0 Dvr
(
s, y(b; s)

)(
Z(b; s) − I

)
,

where the matrix
Z(x; s) := Dsy(x; s)

is the solution of the initial-value problem

Z ′ = T (x)Z, Z(a; s) = I, T (x) := Dyf
(
x, y(x; s)

)
[see (7.1.8), (7.1.9)]. From Theorem (7.1.11), by virtue of assumption (2),
there thus follows for Z the estimate∥∥Z(b; s) − I

∥∥ ≤ exp
(∫ b

a

k(t) dt
)

− 1,

and further, from (7.3.3.6) and assumptions (3) and (4),

∥∥DsΦ(s)
∥∥ ≤ µ+m

[
exp

(∫ b

a

k(t) dt
)

− 1
]

≤ µ+m
[
1 +

λ

m
− 1

]
= µ+ λ = K < 1.

552 7 Ordinary Differential Equations

The theorem is now proved. ��

Remark. The conditions of the theorem are only sufficient and are also
very restrictive. Assumption (3), for example, already in the case n = 2, is
not satisfied for such simple boundary conditions as

y1(a) = c1, y1(b) = c2

[see Exercise 20]. Even though some of the assumptions, for example (3),
can be weakened, one nevertheless obtains only theorems whose conditions
are vere rarely satisfied in practice.

7.3.4 Difficulties in the Execution of the Simple Shooting
Method

To be useful in practical applications, methods for solving the boundary-
value problem

y′ = f(x, y), r
(
y(a), y(b)

)
= 0,

should yield an approximation to y(x0) for every choice of x0 in the region
of definition of a solution y. In the shooting method discussed so far, an
approximate value s̄ for the solution y(a) is computed only at one point,
the point x0 = a. This seems to suggest that the boundary value problem
has thus been solved, since the value y(x0) of the solution at every other
point x0 can be (approximately) determined by solving the initial-value
problem

(7.3.4.1) y′ = f(x, y), y(a) = s̄,

say, with the methods of Section 7.2. This, however, is true only in princi-
ple. In practice, there often accrue considerable inaccuracies if the solution
y(x) = y(x; s̄) of (7.3.4.1) depends very sensitively on s̄, as shown in the
following example.

Example 1. The linear system of differential equations

(7.3.4.2)
[
y1
y2

]′
=
[

0 1
100 0

] [
y1
y2

]
has the general solution

(7.3.4.3) y(x) =
[
y1(x)
y2(x)

]
= c1e

−10x
[

1
−10

]
+ c2e

10x
[

1
10

]
, c1, c2 arbitrary.

Let y(x; s) be the solution of (7.3.4.2) satisfying the initial condition

y(−5) = s =
[
s1
s2

]
.

One verifies at once that

7.3 Boundary-Value Problems 553

(7.3.4.4) y(x; s) =
e−50(10s1 − s2)

20
e−10x

[
1

−10

]
+
e50(10s1 + s2)

20
e10x

[
1
10

]
.

We now wish to determine the solution y(x) of (7.3.4.2) which satisfies the linear
and separated (7.3.0.1b’) boundary conditions

(7.3.4.5) y1(−5) = 1, y1(5) = 1.

Using (7.3.4.3), the exact solution is

(7.3.4.6) y(x) =
e50 − e−50

e100 − e−100 e
−10x

[
1

−10

]
+

e50 − e−50

e100 − e−100 e
10x

[
1

10

]
.

The initial vale s̄ = y(−5) of the exact solution is

s̄ =

 1

−10 + 20(1 − e−100)
e100 − e−100

 .
Trying to compute s̄, e.g., in 10-digit floating-point arithmetic, we obtain at best
an approximate value s̃ of the form

s̃ = fl(s̄) =

[
1(1 + ε1)

−10(1 + ε2)

]
,

with |εi| ≤ eps = 10−10. Let, e.g., ε1 = 0, ε2 = −10−10. To the initial value

s̃ =

[
1

−10 + 10−9

]
,

however, correspondss by (7.3.4.4) an exact solution y(x; s̃) with

(7.3.4.7) y1(5; s̃) ≈ 10−9

20
e100 ≈ 1.3 × 1034.

On the other hand, the boundary-value problem (7.3.4.2), (7.3.4.5) is well-
conditioned with respect to the influence of the boundary data on the solution
y(x). For example, to a perturbation of the first boundary condition

y1(−5) = 1 + ε, y1(5) = 1,

corresponds the solution ȳ(x, ε) (ȳ(x, 0) = y(x)):

ȳ(x, ε) =
e50 − e−50 + e50ε

e100 − e−100 e−10x
[

1
−10

]
+
e50 − e−50 − e−50ε

e100 − e−100 e10x
[

1
10

]
.

For −5 ≤ x ≤ 5 the factors of ε are small (=O(1)), one can even show for small
|ε|

|ȳ1(x, ε) − ȳ1(x, 0)|≤̇εȳ1(x, 0) ≤ ε,

|ȳ2(x, ε) − ȳ2(x, 0)|≤̇10εȳ1(x, 0) ≤ 10ε

with factors ȳ1(x, 0) = y1(x) that are extremely small in the open interval (−5, 5).
Therefore the roundoff error committed when computing the starting value s̄ =

554 7 Ordinary Differential Equations

y(−5) of the exact solution by means of the shooting method has a much larger
influence on the solution y(.) than comparably small errors in the input data
(here the boundary data). In this example, the shooting method is thus not well-
conditioned [see Section 1.3].

The above example shows that even the computation of the initial value
s̄ = y(a) to full machine accuracy does not guarantee that additional values
y(x) can be determined accurately. By (7.3.4.4), we find that, for x > 0
sufficiently large,∥∥y(x; s1) − y(x; s2)

∥∥ = O
(
e10x

∥∥s1 − s2
∥∥),

i.e., the inaccuracy in the initial data propagates exponentially with x.
Theorem (7.1.4) asserts that this may be true in general: For the so-

lution y(x; s) of the initial-value problem y′ = f(x, y), y(a) = s, it follows
that

‖y(x; s1) − y(x; s2)‖ ≤ ‖s1 − s2‖ eL|x−a|,

provided the hypotheses of Theorem (7.1.4) are satisfied.
This estimate, however, also shows that for sufficiently small intervals

[a, b], the influence of inaccuracies in the initial data s = y(a) remains small.
For large intervals, there is a further problem which severely restricts the
practical significance of the simple shooting method: Frequently, the func-
tion f in the differential equation y′ = f(x, y) has a derivative Dyf(x, y)
which is continuous for all x ∈ [a, b] and all y ∈ IRn, but ‖Dyf(x, y)‖ is
unbounded on S = { (x, y) | a ≤ x ≤ b, y ∈ IRn }, so that the Lips-
chitz condition of Theorem (7.1.1) is violated. In this case, the solution
y(x) = y(x; s) of the initial-value problem y′ = f(x, y), y(a) = s, still ex-
ists, but only in a neighborhood Us(a) of a, whose size may depend on s,
and perhaps not for all x ∈ [a, b]. Thus, y(b; s) possibly exists only for the
values s in a small set M . Besides, M is usually not known. The simple
shooting method, therefore, will always break down if one chooses for the
starting value in Newton’s method a vector s(0) �∈M .

Example 2. Consider the boundary-value problem [cf. Troesch (1960), (1976)]

(7.3.4.8) y′′ = λ sinhλy

(7.3.4.9) y(0) = 0, y(1) = 1

(λ a fixed parameter).
In order to treat the problem with the simple shooting method, the ini-

tial slope y′(0) = s needs to “estimated” first. When numerically integrating the
initial-value problem (7.3.4.8) with λ = 5, y(0) = 0, y′(0) = s, the solution y(x; s)
turns out to depend extremely sensitively on s. For s = 0.1, 0.2, . . . the compu-
tation breaks down even before the right-hand boundary (x = 1) is reached, due
to exponent overflow, i.e., y(x; s) has a singular point (which depends on s) at
some xs ≤ 1. The effect of the initial slope y′(0) = s upon the location of the
singularity can be estimated in this example:

7.3 Boundary-Value Problems 555

y′′ = λ sinhλy

possesses the first integral

(7.3.4.10)
(y′)2

2
= coshλy + C.

The conditions y(0) = 0, y′(0) = s define the constant of integration,

C =
s2

2
− 1.

Integration of (7.3.4.10) leads to

x =
1
λ

∫ λy

0

dη√
s2 + 2 cosh η − 2

.

The singular point is then given by

xs =
1
λ

∫ ∞

0

dη√
s2 + 2 cosh η − 2

.

For the approximate evaluation of the integral we decompose the interval of
integration, ∫ ∞

0

=
∫ ε

0

+
∫ ∞

ε

, ε > 0 arbitrary,

and estimate the partial integrals separately. We find∫ ε

0

dη√
s2 + 2 cosh η − 2

=
∫ ε

0

dη√
s2 + η2 + η4/12 + · · ·

≤
∫ ε

0

dη√
s2 + η2

= ln

(
ε

|s| +

√
1 +

ε2

s2

)
,

and ∫ ∞

ε

dη√
s2 + 2 cosh η − 2

=
∫ ∞

ε

dη√
s2 + 4 sinh(η/2)

≤
∫ ∞

ε

dη

2 sinh(η/2)

= − ln (tanh(ε/4)) .

One thus gets the estimate

xs ≤ 1
λ

ln

ε

|s| +

√
1 +

ε2

s2

tanh
(
ε

4

)
 =: H(ε, s).

For each ε > 0 the quantity H(ε, s) is an upper bound for xs; therefore, in
particular,

556 7 Ordinary Differential Equations

xs ≤ H
(√

|s|, s
)

for all s �= 0.

The asymptotic behavior of H
(√

|s|, s
)

for s → 0 can easily be found: For small
|s|, in fact, we have in first approximation

tanh

(√
|s|

4

)
=̇

√
|s|

4
,

1√
|s|

+

√
1 +

1
|s| =̇

2√
|s|
,

so that, asymptotically for s → 0,

(7.3.4.11) xs ≤ H(
√

|s|, s) =̇
1
λ

ln

(
2/
√

|s|√
|s|/4

)
=

1
λ

ln
8
|s| .

[One can even show (see below) that, asymptotically for s → 0,

(7.3.4.12) xs =̇
1
λ

ln

(
8
|s|

)
holds].

If, in the shooting process, one is to arrive at the right-hand boundary x = 1,
the value of |s| can thus be chosen at most so large that

1 ≤̇ 1
λ

ln

(
8
|s|

)
, i.e., |s| ≤̇ 8e−λ;

for λ = 5, one obtains the small domain

(7.3.4.13) |s| ≤̇ 0.05 .

For the “connoisseur” we add the following: The initial-value problem

(7.3.4.14) y′′ = λ sinhλy, y(0) = 0, y′(0) = s

has the exact solution

y(x; s) =
2
λ

sinh−1

(
s

2
sn(λx|k2)
cn(λx|k2)

)
, k2 = 1 − s2

4
;

here, sn and cn are the Jacobian elliptic functions with modulus k, which here
depends on the initial slope s. If K(k2) denotes the quarter period of cn, then cn
has a zero at

(7.3.4.15) xs =
K(k2)
λ

and therefore y(x; s) has a logarithmic singularity there. But K(k2) has the ex-
pansion

K(k2) = ln
4√

1 − k2
+

1
4

(
ln

4√
1 − k2

− 1

)
(1 − k2) + · · · ,

or, rewritten in terms of s,

7.3 Boundary-Value Problems 557

K(k2) = ln
8
|s| +

s2

16

(
ln

8
|s| − 1

)
+ · · · ,

from which (7.3.4.12) follows.
For the solution of the actual boundary-value problem, i.e.,

y(1; s) = 1,

one finds for λ = 5 the value

s = 4.575 046 14 × 10−2

[cf. (7.3.4.13)]. This value is obtained from a relation between Jacobi functions
combined with an iteration method of Section 5.1. For completeness, we add
still another relation, which can be derived from the theory of Jacobi functions.
The solution of the boundary-value problem (7.3.4.8), (7.3.4.9) has a logarithmic
singularity at

(7.3.4.16) xs =̇ 1 +
1

λ cosh(λ/2)
.

For λ = 5 it follows that
xs =̇ 1.0326 . . . ;

the singularity of the exact solution lies in the immediate neighborhood of the
right-hand boundary point. The example sufficiently illuminates the difficulties
that can arise in the numerical solution of boundary value problems.

For a direct numerical solution of the problem without knowledge of the
theory of elliptic functions, see Section 7.3.6.

A further example for the occurrence of singularities can be found in Exer-
cise 19.

7.3.5 The Multiple Shooting Method

The multiple shooting method has been described repeatedly in the liter-
ature, for example in Keller (1968), Osborne (1969), and Bulirsch (1971).
A fortran program can be found in Oberle and Grimm (1989).

In a multiple shooting method, the values

s̄k = y(xk), k = 1, 2, . . . , m,

of the exact solution y(x) of a boundary-value problem

(7.3.5.1) y′ = f(x, y), r(y(a), y(b)) = 0,

at several points
a = x1 < x2 < · · · < xm = b

are computed simultaneously by iteration. To this end, let y(x;xk, sk) be
the solution of the initial-value problem

y′ = f(x, y), y(xk) = sk.

558 7 Ordinary Differential Equations

The problem now consists in determining the vectors sk, k = 1, 2, . . . , m,
in such a way that the function

y(x) := y(x;xk, sk) for x ∈ [xk, xk+1), k = 1, 2, . . . , m− 1,
y(b) := sm,

pieced together by the y(x;xk, sk), is continuous, and thus a solution of the
differential equation y′ = f(x, y), and in addition satisfies the boundary
conditions r(y(a), y(b)) = 0 (see Figure 20).

�� ���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�

���������������� ����������������

�����
�����
���������������������

����������������

�������������������������������
���������������

�

y

x

�����������

�����������

�����������

�����������

�����������

a�x� x� x� xm�� xm�b

�

�x��s��

�

�x��s��

�

�x��s��

�

�xm���sm���
� �xm�sm�

��������������
�����������
���������
���������
��������
��������
�������
�������
�������
�������
�������
�������
������
������
���

��������������
�����������
����������
���������
��������
��������
�������
�������
�������
�������
�������
������
������
������
������
������
������
��

���
��

��������
��������
�������
�������
�������
�������
������
���������
������
����
�

������������������

��������
�������
�

Fig. 20. Multiple shooting.

This yields the following nm conditions:

(7.3.5.2)
y(xk+1;xk, sk) = sk+1, k = 1, 2, . . . ,m− 1,

r(s1, sm) = 0

for the nm unknown components σkj , j = 1, 2, . . . , n, k = 1, 2, . . . , m, of
the

sk = [σk1, σk2, . . . , σkn]T .

Altogether, (7.3.5.2) respresents a system of equations of the form
(7.3.5.3)

F (s) :=

F1(s1, s2)
F2(s2, s3)

...
Fm−1(sm−1, sm)
Fm(s1, sm)

 :=

y(x2;x1, s1) − s2
y(x3;x2, s2) − s3

...
y(xm;xm−1, sm−1) − sm

r(s1, sm)

 = 0

in the unknowns

7.3 Boundary-Value Problems 559

s =

 s1...
sm

 .
It can be solved iteratively with the help of Newton’s method,

(7.3.5.4) s(i+1) = s(i) −
[
DF

(
s(i)

)]−1
F
(
s(i)

)
, i = 0, 1,

In order to still induce convergence if at all possible, even for a poor choice
of the starting vector s(0), instead of (7.3.5.4) one takes in practice the
modified Newton method (5.4.2.4) [see Section 7.3.6 for further indications
concerning the implementation of the method]. In each step of the method
one must compute F (s) and DF (s) for s = s(i). For the computation of
F (s) one has to determine the values y(xk+1;xk, sk) for k = 1, 2, . . . , m−1
by solving the initial-value problems

y′ = f(x, y), y(xk) = sk,

and to compute F (s) according to (7.3.5.3). The Jacobian matrix

DF (s) =
[
Dsk

Fi(s)
]
i,k=1,...,m,

in view of the special structure of the Fi in (7.3.5.3), has the form

(7.3.5.5) DF (s) =

G1 −I 0 0

0 G2 −I . . .
. 0

0
. . . Gm−1 −I

A 0 0 B

 ,

where the n×n matrices A, B, Gk, k = 1, . . . , m− 1, in turn are Jacobian
matrices,
(7.3.5.6)

Gk :≡ Dsk
Fk(s) ≡ Dsk

y(xk+1;xk, sk), k = 1, 2, . . . , m− 1,
B :≡ DsmFm(s) ≡ Dsm

r(s1, sm),
A :≡ Ds1Fm(s) ≡ Ds1r(s1, sm).

As already described in the simple shooting method, it is expedient in
practice to again replace the differential quotients in the matrices A, B,
Gk by difference quotients, which can be computed by solving additional
(m − 1)n initial-value problems (n initial-value problems for each matrix
G1, . . . , Gm−1). The computation of s(i+1) from s(i) according to (7.3.5.4)
can be carried out as follows: With the abbreviations

(7.3.5.7)

 ∆s1...
∆sm

 := s(i+1) − s(i), Fk := Fk
(
s
(i)
k , s

(i)
k+1

)
,

560 7 Ordinary Differential Equations

(7.3.5.4) (or the slightly modified substitute problem) is equivalent to the
following system of linear equations:

(7.3.5.8)

G1∆s1 −∆s2 = −F1,

G2∆s2 −∆s3 = −F2,

...
Gm−1∆sm−1 −∆sm = −Fm−1,

A∆s1 +B∆sm = −Fm.

Beginning with the first equation, one can express all ∆sk successively in
terms of ∆s1. One thus finds

(7.3.5.9)

∆s2 = G1∆s1 + F1,

...

∆sm = Gm−1Gm−2 . . . G1∆s1 +
m−1∑
j=1

(
j−1∏
l=1

Gm−l

)
Fm−j ,

and from this finally, by means of the last equation,

(7.3.5.10) (A+BGm−1Gm−2 . . . G1)∆s1 = w,

where w := −(Fm+BFm−1 +BGm−1Fm−2 + · · ·+BGm−1Gm−2 . . . G2F1).
This is a system of linear equations for the unknown vector ∆s1, which

can be solved by means of Gauss elimination. Once ∆s1 is determined,
one obtains ∆s2, ∆s3, . . . , ∆sm successively from (7.3.5.8) and s(i+1) from
(7.3.5.7).

We further remark that under the assumptions of Theorem (7.3.3.4) one
can show that the matrix A + BGm−1 . . . G1 in (7.3.5.10) is nonsingular.
Furthermore, there again will be a nonsingular nm × nm matrix Q such
that the function

Φ(s) := s−QF (s)

is contracting, and thus has exactly one fixed point s̄ with F (s̄) = 0.
It is seen, in addition, that F (s), and essentially also DF (s), is defined

for all vectors

s =

 s1...
sm

 ∈M := M (1) ×M (2) × · · · ×M (m−1) ×Rn,

so that the iteration (7.3.5.4) of the multiple shooting method can be exe-
cuted for s ∈ M . Here M (k), k = 1, 2, . . . , m − 1, is the set of all vectors
sk for which the solution y(x;xk, sk) exists (at least) on the small intervall
[xk, xk+1]. This set M (k) includes the set Mk of all sk for which y(x;xk, sk)

7.3 Boundary-Value Problems 561

exists on all of [a, b]. Now Newton’s method for computing s̄k by means
of the simple shooting method can only be executed for sk ∈ Mk ⊂ M (k).
This shows that the demands of the multiple shooting method upon the
quality of the starting vectors in Newton’s method are considerably more
modest than those of the simple shooting method.

7.3.6 Hints for the Practical Implementation of the Multiple
Shooting Method

The multiple shooting method in the form described in the previous section
is still rather expensive. The iteration in the modified Newton’s method
(5.4.2.4), for example, has the form

(7.3.6.1) s(i+1 = s(i) − λid(i), d(i) := [∆F
(
s(i)

)
]−1F

(
s(i)

)
,

and in each step one has to compute at least the approximation ∆F (s(i))
of the Jacobian matrix DF (s(i)) by forming appropriate difference quo-
tients. The computation of ∆F (s(i)) alone amounts to the solution of n
initial-value problems. This enormous amount of work can be substantially
reduced by means of the techniques described in Section 5.4.3, recomput-
ing the matrix ∆F (s(i)) only occasionally, and employing the rank-one
procedure of Broyden in all remaining iteration steps in order to obtain
approximations for ∆F (s(i)).

We next wish to consider the problem of how to choose the intermediate
points xk, k = 1, . . . , m, in [a, b], provided an approximate solution (start-
ing trajectory) η(x) is known for the boundary-value problem. Put x1 := a.
Having already chosen xi (< b), integrate the initial-value problem

η′
i = f(x, ηi), ηi(xi) = η(xi)

by means of the methods of Section 7.2, and terminate the integration at
the first point x = ξ for which the solution ‖ηi(ξ)‖ becomes “too large”
compared to ‖η(ξ)‖, say ‖ηi(ξ)‖ ≥ 2‖η(ξ)‖; then put xi+1 := ξ.

Example 1. Consider the boundary-value problem

(7.3.6.2) y′′ = 5 sinh 5y, y(0) = 0, y(1) = 1

[cf. Example 2 of Section 7.3.4].
For the starting trajectory η(x) we take the straight line connecting the two

boundary points, η(x) ≡ x.
The subdivision 0 = x1 < x2 · · · < xm = 1 found by the computer is shown in

Figure 21. Starting with this subdivision and the values sk := η(xk), s′
k := η′(xk),

the multiple shooting method yields the solution to about 9 digits in 7 iterations.
The problem suggests a “more advantageous” starting trajectory: the lin-

earized problem
η′′ = 5 · 5η, η(0) = 0, η(1) = 1

has the solution η(x) := sinh 5x/ sinh 5. This function would have been a some-
what “better” starting trajectory.

562 7 Ordinary Differential Equations

��� ���

� ��

���

���

���

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ
Æ
Æ
Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

Æ

���
���
�

���
���
�

���
���
�

���
���
�

���
���
�

���
���
�

���
���
�

��
���
��

���
���
�

��
���
��

���
���
�

��
���
��

���
���
�

��
���
��

���
���
�

���
��
��

���
���
�

��
���
��

���
���
�

��
���
��

���
���
�

���
��
��

���
��
��

���
��
��

��
���
�

���
���
��

��
���
��
�

���

��
���
�

���
���

���
�

���
��

���
��

���
��

��
���

��
���
�

���������������������������������������
���������������������������������������

�������������������������������
������������������������

������������������
�����������������

���������������
������������

�����������
����������
���������
��������
��������
�������
������
�������
�����
������
�����
�����
����
�����
����
����
����
����
����
���
����
����
���
���
���
���
���
���
���
���
���
���
��
���
���
��
���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
�
�
��
�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
��
��
�

���
���
���
��
���
���
��
���
���
���
���
���
���
��
���
���
��
���
���
��
���
��
��
���
��
��
��
��
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
�
�
��
��
��
��
��
�
��
��
��
��
��
�
�
��
��
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
�
��
��
��
�
��
��

���
��
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
��
�
��
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�

���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
��
��
�
��
�
��
��
�
��
��
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
�

���
��
��
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
�
��
��
��
�
��
��
�

��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
��
�
��
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��

��
��
��
��
��
��
��
��
�
��
�
��
��
��
�
��
��
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
�

��
��
��
�
��
��
�
��
�
��
�
��
��
��
�
��
��
�
��
��
��
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
�

��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��

��
��
��
��
��
�
��
��
�
��
��
��
��
�
��
��
��
��
�
��

��
��
��
��
��
�
��
��
�
��
��
��
�
��
��
��
��
�

����� ���	�
��

������

������

Fig. 21. Subdivision in multiple shooting.

In some practical problems the right-hand side f(x, y) of the differential
equation is only piecewise continuous on [a, b] as a function of x, or else
only piecewise continuously differentiable. In these cases one ought to be
careful to include the points of discontinuity among the subdivision points
xi; otherwise there are convergence difficulties [see Example 2].

There remains the problem of how to find a first approximation η(x)
for a boundary-value problem. In many cases one knows the qualitative
behavior of the solution, e.g. on pysical grounds, so that one can easily find
at least a rough approximation. Usually this also suffices for convergence,
as the modified Newton’s method does not impose high demands on the
qualitiy of the starting vector.

In complicated cases the so-called continuation method (homotopy
method) is usually effective. Here one gradually feels one’s way, via the
solution of “neighboring” problems, toward the solution of the actually
posed problem: Almost all problems contain certain parameters α,

(7.3.6.3) Pα: y′ = f(x, y; α), r(y(a), y(b); α) = 0,

and the problem consists in determining the solution y(x) ≡ y(x;α), which
of course depends also on α, for a certain value α = ᾱ. It is usually true
that for a certain other value α = α0 the boundary-value problem Pα0

is simpler, so that at least a good approximation η0(x) is known for the
solution y(x;α0) of Pα0 . One then chooses a finite sequence of sufficiently
close numbers εi with 0 < ε1 < ε2 < · · · < εl = 1, puts αi := α0+εi(ᾱ−α0),
and for i = 0, 1, . . . , l− 1 takes the solution y(x;αi) of Pαi

as the starting
approximation for the determination of the solution y(x;αi+1) of Pαi+1 . In

7.3 Boundary-Value Problems 563

y(x;αl) = y(x; ᾱ) one then finally has the desired solution of Pᾱ. For the
method to work, it is important that one not take too large steps εi → εi+1,
and that “natural” parameters α, which are intrinsic to the problem, be
chosen: The introduction of parameters, say constructs of the type

f(x, y;α) = αf(x, y) + (1 − α)g(x, y), ᾱ = 1, α0 = 0,

where f(x, y) is the given right-hand side of the differential equation and
g(x, y) an arbitrarily chosen “simple” function which has nothing to do
with the problem, does not succeed in critical cases.

A more refined variant of the continuation method, which has proved
to be useful in the context of multiple shooting methods, is described in
Deuflhard (1979).

Example 2. (A singular boundary-value problem). The steady-state temperature
distribution in the interior of a cylinder of radius 1 is described by the solution
y(x;α) of the nonlinear boundary-value problem [cf. e.g., Na and Tang (1969)]

(7.3.6.4)
y′′ = −y′

x
− αey,

y′(0) = y(1) = 0.

Here, α is a “natural” parameter with

α =̇
heat generation

conductivity
, 0 < α ≤ 0.8 .

For the numerical computation of the solution for α = 0.8 one could use the
subdivision

α = 0, 0.1, . . . , 0.8

and, beginning with the explicitly known solution y(x; 0) ≡ 0, construct the ho-
motopy chain for the computation of y(x; 0.8). The problem, however, exhibits
one further difficulty: The right-hand side of the differential equation has a singu-
larity at x = 0. While it is true that y′(0) = 0 and the solution y(x;α) is defined,
indeed analytic, on the whole interval 0 ≤ x ≤ 1, there nevertheless arise con-
siderable convergence difficulties. The reason is to be found in the following: A
backward analysis [cf. Section 1.3] shows that the result ỹ of the numerical com-
putation can be interpreted as the exact solution of the boundary-value problem
(7.3.6.4) with slightly perturbed boundary data

ỹ′(0) = ε1, ỹ(1) = ε2

[see, e.g., Babuška et al. (1966)]. This solution ỹ(x;α) is “near” the solution
y(x;α), but in contrast to y(x;α) has only a continuous first derivative at x = 0,
because

lim
x→0

ỹ′′ = − lim
x→0

ε1
x

= ±∞.

Since the order of convergence of every numerical method depends not only on the
method itself, but also (as is often overlooked) on the existence and boundedness
of the higher derivatives of the solution, the order of convergence in the present
example will be considerably reduced (to essentially 1). These difficulties and

564 7 Ordinary Differential Equations

others as well, are encountered in many practical boundary-value problems. The
cause of failure is often not recognized, and the “blame” put on the method or
the computer.

Through a simple artifice these difficulties can be avoided. The “neighboring”
solutions with y′(0) �= 0 are filtered out by means of a power series expansion
about x = 0:

(7.3.6.5) y(x) = y(0) +
x2

2!
y(2)(0) +

x3

3!
y(3)(0) +

x4

4!
y(4)(0) + · · · .

The coefficients y(i)(0), i = 2, 3, 4, . . . , can all be expressed in terms of λ := y(0),
an unknown constant; through substituion in the differential equation (7.3.6.4)
one finds

(7.3.6.6) y(2)(x) = −
(
y(2)(0) +

x

2!
y(3)(0) +

x2

3!
y(4)(0) + · · ·

)
− αey(x),

from which, for x → 0,

y(2)(0) = −y(2)(0) − αey(0), i.e., y(2)(0) = − 1
2αe

λ.

Differentiation gives

y(3)(x) = −
(

1
2y

(3)(0) + 1
3xy

(4)(0) + · · ·
)

− αy′(x)ey(x),

so that
y(3)(0) = 0.

Further,

y(4)(x) = −
(

1
3y

(4)(0) + x(. . .)
)

− α
{(
y′(x)

)2
+ y(2))(x)

}
ey(x)

and
y(4)(0) = 3

8α
2e2λ.

One can show that y(5)(0) = 0, and in general, y(2i+1)(0) = 0.
The singular boundary-value problem can now be treated as follows. For

y(x;α) one utilizes in the neighborhood of x = 0 the power-series representation
(7.3.6.5), and at a sufficient distance from the singularity x = 0 the differential
equation (7.3.6.4) itself—for example,

(7.3.6.7) y′′(x) =

1
2αe

λ
[
1 − 3

8x
2αeλ

]
if 0 ≤ x ≤ 10−2,

−y′(x)
x

− αey(x) if 10−2 ≤ x ≤ 1.

The error is of the order of magnitude 10−8. Now the right-hand side still contains
the unknown parameter λ = y(0). As shown in Section 7.3.0, however, this can
be interpreted as an extended boundary-value problem. One puts

y1(x) := y(x),
y2(x) := y′(x),
y3(x) := y(0) = λ,

and obtains the system of differential equations on 0 ≤ x ≤ 1,

7.3 Boundary-Value Problems 565

(7.3.6.8)

y′
1 = y2,

y′
2 =

{ 1
2αe

y3
[
1 − 3

8x
2αey3

]
if 0 ≤ x ≤ 10−2,

−y2
x

− αey1 if 10−2 ≤ x ≤ 1,

y′
3 = 0,

with the boundary conditions

(7.3.6.9) r =

[
y2(0)
y1(1)

y3(0) − y1(0)

]
= 0.

In the multiple shooting method one chooses the “patch point” 10−2 as one of
the subdivision points, say,

x1 = 0, x2 = 10−2, x3 = 0.1, . . . , x11 = 0.9, x12 = 1.

There is no need to worry about the smoothness of the solution at the patch point;
it is ensured by construction. With the use of the homotopy [see (7.3.6.3)], begin-
ning with y(x;α0) ≡ 0, the solution y(x;αk) is easily obtained from y(x;αk−1) in
only 3 iterations to an accuracy of about 6 digits (total computing time on the
CDC 3600 computer for all 8 trajectories: 40 seconds). The results are shown in
Figure 22.

��� ���

� ��

���

���

������

Æ

�

�����

�����

�����

���

��

��

���

��

��

��

��

���

Fig. 22. The solution y(x;α) for α = 0(0.1)0.8.

7.3.7 An Example: Optimal Control Program for a lifting
Reentry Space Vehicle

The following extensive problem originates in space travel. This concluding
example is to illustrate how nonlinear boundary-value problems are handled
and solved in practice, because experience shows that the actual solution
of such real-life problems causes the greatest difficulties to the beginner.

566 7 Ordinary Differential Equations

The numerical solution was carried out with the multiple shooting method;
a program can be found in Oberle and Grimm (1989).

The coordinates of the trajectory of an Apollo type vehicle satisfy, dur-
ing the flight of the vehicle through the earth’s atmosphere, the following
differential equations:

(7.3.7.1)

v̇ = V (v, γ, ξ, u) = −Sρv
2

2m
CD(u) − g sin γ

(1 + ξ)2
,

γ̇ = Γ (v, γ, ξ, u) =
Sρv

2m
CL(u) +

v cos γ
R(1 + ξ)

− g cos γ
v(1 + ξ)2

,

ξ̇ = Ξ(v, γ, ξ, u) =
v sin γ
R

,

ζ̇ = Z(v, γ, ξ, u) =
v

1 + ξ
cos γ.

The meanings are: v: velocity; γ: flight-path angle; h: altitude above the
earth’s surface; R: earth radius; ξ = h/R: normalized altitude; ζ: distance
on the earth’s surface; ρ = ρ0 exp(−βRξ): atmospheric density; CD(u) =
1.174 − 0.9 cosu: aerodynamical drag coefficient; CL(u) = 0.6 sinu: aero-
dynamical lift coefficient; u: control parameter, which can be chosen arbi-
trarily as a function of time; g: gravitational acceleration; S/m: (frontal
area)/(mass of vehicle). Numerical values are: R = 209 (=̂ 209105 ft);
β = 4.26; ρ0 = 2.70410-3; g = 3.217210-4; S/m = 53, 200; (1 ft = 0.3048 m).
(See Figure 23.)

Æ

Æ

Æ

Æ

Æ�

�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
�

�
�
��
�
�
�
�
�
�
��
�
��
��
���
���

�
�
��
��
���
���

����������������
���
���
�

������������

���
�������
��������
����
��
��
��
��
��

�
��
��
�
��
�
��
�

��
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
��
���
��
���
��
��

��
��
���
��
��
���
��
���
��
��
���
��
��
���
��
��
���
��
���
��
��
���

���
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
��
���
��

�

������
�������
������
������
�������
������
�������
������
������
�������
������
������
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�

���������������
��
��
��
��
��

���
����
�����

��
��
��
��
�
��
��
��
��
��
�
��
��

�������������

��

������������������
������
��
��
��
��
��
��

�

�
�����
����
����
�����
����
����
�����
����
����
����

�
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��

���
�����
����
���
���
���
��
��
��
���
��
�
��
��
��
��
�
��
��
�
��
��
�
��
��
�
�
��
�
��
�
��
��
��
�
��
�
��
��
�
��
��
��
��
�
��
��
��
��
��
���
��
���
��
����
����
�����
���

�������
�����
����
����
����
����
���
���
���
��
���
���
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
�
��
��
��
�
��
��
�
��
��
��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
�
�
��
�
��
��
�
��
��
�
��
��
�
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
��
�
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
����
����
����
�����
�����
���������

�����

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���

�����������������������
��

����������������������������
���

��������������
��

�
��
�������������������

���

Fig. 23. The coordinates of the trajectory.

The differential equations have been simplified somewhat by assuming
(1) a spherical earth at rest, (2) a flight trajectory in a great circle plane,

7.3 Boundary-Value Problems 567

(3) that vehicle and astronauts can be subjected to unlimited decelera-
tion. The right-hand sides of the differential equations nevertheless contain
all terms which are essential physically. The largest effect is produced by
the terms multiplied by CD(u) and CL(U), respectively; these are the at-
mospheric forces, which in spite of the low air density ρ, are particularly
significant by virtue of the high speed of the vehicle; they can be influenced
via the parameter u (angle of attack). The terms multiplied by g are the
gravitational forces of the earth acting on the vehicle; the remaining terms
result from the choice of the coordinate system.

During the flight through the earth’s atmosphere the vehicle is heated
up considerably. The total stagnation point convective heating per unit
area is given by the integral

(7.3.7.2) J =
∫ T

0
q̇dt, q̇ = 10v3

√
ρ.

The range of integration is from t = 0, the time when the vehicle hits the
400, 000 ft atmospheric level, until a time instant T . The vehicle is to be
maneuvered into an initial position favorable for the final splashdown in the
Pacific. Through the freely disposable parameter u the maneuver is to be
executed in such a way that the heating J becomes minimal and that the
following boundary conditions are satisfied: Data at the moment of entry:

((7.3.7.3)

v(0) = 0.36 (=̂ 36,000 ft/sec),

γ(0) = −8.1◦ π

180◦ ,

ξ(0) =
4
R

[h(0) = 4 (=̂ 400,000 ft)].

Data at the end of maneuver:

(7.3.7.4)

v(T) = 0.27 (=̂ 27,000 ft/sec),
γ(T) = 0,

ξ(T) =
2.5
R

[h(T) = 2.5 (=̂ 250,000 ft)].

The terminal time T is free. ζ is ignored in the optimization process.
The calculus of variations [cf., e.g., Hestenes (1966)] now teaches the

following: Form, with parameters (Lagrange multipliers), the expression

(7.3.7.5) H := 10v3
√
ρ+ λvV + λγΓ + λξΞ,

where λv, λγ , λξ satisfy the three differential equations

568 7 Ordinary Differential Equations

(7.3.7.6)

λ̇v = −∂H
∂v
,

λ̇γ = −∂H
∂γ
,

λ̇ξ = −∂H
∂ξ
.

The optimal control u is then given by
(7.3.7.7)

sinu =
−0.6λγ
α

, cosu =
−0.9vλv
α

, α =
√

(0.6λγ)2 + (0.9vλv)2.

Note that (7.3.7.6), by virtue of (7.3.7.7), is nonlinear in λv, λγ .
Since the terminal time T is not subject to any condition, the further

boundary condition must be satisfied:

(7.3.7.8) H
∣∣∣
t=T

= 0.

The problem is thus reduced to a boundary-value problem for the six dif-
ferential equations (7.3.7.1), (7.3.7.6) with the seven boundary conditions
(7.3.7.3), (7.3.7.4), (7.3.7.8). We are thus dealing with a free boundary-
value problem [cf. (7.3.0.4a,b)]. A closed-form solution is impossible; one
must use numerical methods.

It would be wrong to construct a starting trajectory η(x) without ref-
erence to reality. The unexperienced should not be misled by the innocent-
looking form of the right-hand side of the differential equation (7.3.7.1):
During the numerical integration one quickly observes that v, γ, ξ, λv, λγ ,
λξ depend in an extremely sensitive way on the initial data. The solution
has moving singularities which lie in the immediate neighborhood of the
initial point of integration [see for this the comparatively trivial example
(7.3.6.2)]. This sensitivity is a consequence of the effect of atmospheric
forces, and the physical interpretation of the singularity is a “crash” of the
vehicle or a “hurling back” into space. As can be shown by an a posteriori
calculation, there exist differentiable solutions of the boundary-value prob-
lem only for an extremely narrow domain of boundary data. This is the
mathematical formulation of the danger involved in the reentry maneuver.

Construction of a Starting Trajectory. For aerodynamic reasons the
graph of the control parameter u will have the shape depicted in Figure 24
(information from space engineers).

This function can be approximated, e.g., by

(7.3.7.9) u = p1 erf
(
p2(p3 − τ)

)
,

where

7.3 Boundary-Value Problems 569

�
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
�
�
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
�

��

�
�
��
�
�
�
�
�
�
��
��
�
���
��
���

�
��
�
���
��
���

�����������������������

�����
����
���

��������

��������

�
�
��
��
�
�

�
�
��
��
�
�

�

�

�

�

�

��� � �

u

Fig. 24. Control parameter (empirical).

τ =
t

T
, 0 < τ < 1,

erf(x) =
2√
π

∫ x

0
e−σ

2
dσ,

and p1, p2, p3 are, for the moment, unknown constants.
For the determination of the pi one solves the following auxiliary

boundary-value problem: the differential equations (7.3.7.1) with u from
(7.3.7.9) and in addition

(7.3.7.10)
ṗ1 = 0,
ṗ2 = 0,
ṗ3 = 0,

with boundary conditions (7.3.7.3), (7.3.7.4) and T = 230.
The boundary value T = 230 sec is an estimate for the duration of the

reentry maneuver. With the relatively poor approximations

p1 = 1.6, p2 = 4.0, p3 = 0.5

the auxiliary boundary-value problem can be solved even with the simple
shooting method, provided one integrates in the backward direction (initial
point τ = 1, terminal point τ = 0). The result after 11 iterations is

(7.3.7.11) p1 = 1.09835, p2 = 6.48578, p3 = 0.347717.

Solution of the Actual Boundary-Value Problem. With the “nonopti-
mal” control function u from (7.3.7.9), (7.3.7.11) one obtains approxima-
tions to v(t), γ(t), ξ(t) by integrating (7.3.7.1). This “incomplete” starting
trajectory can be made to a “complete” one as follows: since cosu > 0, it
follows from (7.3.7.7) that λv < 0; we choose λv ≡ −1.

Further, from

570 7 Ordinary Differential Equations

Fig. 25. The trajectories h, γ, v.

Fig. 26. The trajectories of the adjoint variables λξ, λγ , λv.

7.3 Boundary-Value Problems 571

tanu =
6λγ
9vλv

there follows an approximation for λγ . An approximation for λξ can be
obtained from the relation H ≡ 0, where H is given by (7.3.7.5), because
H = const is a first integral of the equations of motion.

With this approximate trajectory for v, γ, . . . , λξ, T (T = 230) and the
techniques of Section 7.3.6, one can now determine the subdivision points
for the multiple shooting method (m = 6 suffices).

Figures 25 and 26 show the result of the computation (after 14 iter-
ations); the total time of the optimal reentry maneuver comes out to be
T = 224.9 sec; the accuracy of the results is about 7 digits.

Fig. 27. Successive approximations to the control u.

Figure 27 shows the behavior of the control u = arctan(6λγ/9vλv) dur-
ing the course of the iteration. It can be seen how the initially large jumps
at the subdivision points of the multiple shooting method are “flattened
out”.

The following table shows the convergence behavior of the modified
Newton’s method [see Sections 5.4.2 and 5.4.3].

572 7 Ordinary Differential Equations

Error Steplength Error Steplength
‖F (s(i))‖2 (in (5.4.3.5)) ‖F (s(i))‖2 (in (5.4.3.5))
[s. (7.3.5.3)] λ [s. (7.3.5.3)] λ

5 × 102

3 × 102 0.250 1 × 10−1 1.000
6 × 104 0.500 (trial) 6 × 10−2 1.000
7 × 102 0.250 (trial) 3 × 10−2 1.000
2 × 102 0.125 1 × 10−2 1.000
1 × 102 0.125 1 × 10−3 1.000
8 × 101 0.250 4 × 10−5 1.000
1 × 101 0.500 3 × 10−7 1.000
1 × 100 1.000 1 × 10−9 1.000

7.3.8 Advanced Techniques in Multiple Shooting

In Section 7.3.5 we examined a prototype version of the multiple shooting
method. In this section, we deal with some advanced techniques for reduc-
ing the large computational expenses when applying the multiple shooting
algorithm to complex problems in science and engineering.

Calculation of the Jacobian Matrix. The calculation of approximations
∆F (s(i)) of the Jacobian matrices DF (s(i)) – especially of the partial
derivatives Gk in (7.3.5.6) – is the most expensive part of the algorithm.
Those partial derivatives

Gk(xk+1;xk, sk) := Dsk
y(xk+1;xk, sk), k = 1, 2, . . . , m− 1,

can be computed by solving at least n (m − 1) additional initial-value
problems and forming appropriate difference quotients. This approach is
straightforward, but no information concerning the accuracy of the Gk is
available and all initial-value problems have to be solved to high accuracy.
Low accuracy of the Gk often leads to poor convergence of the iteration to
solve the nonlinear system (7.3.5.4).

In view of these problems, another approach has been developed based
on the integration of the so-called “variational equation” [see Hiltmann
(1990), Callies (2000)]

(7.3.8.1)
∂Gk(x;xk, sk)

∂x
= fy(x, y(x;xk, sk))Gk(x;xk, sk),

Gk(xk;xk, sk) = I.

To prove (7.3.8.1), we only have to differentiate

7.3 Boundary-Value Problems 573

(7.3.8.2) y′ = f(x, y), y(xk) = sk

with respect to sk observing that y = y(x;xk, sk) is also a function of sk.
(7.3.8.1) and (7.3.8.2) are integrated in parallel with completely different
integrators specially tailored to the respective differential equation. In case
of (7.3.8.1), full advantage is taken of the linearity of the system to save
about half of the function evaluations [see Callies (2001)]. Step size control
is done independently, integration accuracy is different for each system but
controlled for both systems, and switching points can be located much
easier than in the original approach.

We also note the formula

(7.3.8.3) Dxk
y(xk+1;xk, sk) = −Gk(xk+1;xk, sk)f(xk, sk)

for the partial derivative of y(xk+1;xk, sk) with respect to xk, which follows
from the differentiation of (7.3.8.2) and the identity y(xk;xk, sk) ≡ sk with
respect to xk.

Piecewise Continuous Right Hand Sides. In many applications, the right
hand side f(x, y) of the differential equation is discontinuous or not differ-
entiable [cf. Section 7.2.18]. Even jumps in the solution y(x) are possible.
These problems could, in principle, be treated in the framework of the basic
multiple shooting algorithm by incorporating the discontinuity points into
the set of the multiple shooting abscissae xi, but the price to be paid is
a dramatic increase in the number of switching points accompanied by a
similar increase in the size of the nonlinear system (7.3.5.3).

These problems can be overcome by working with two types of discreti-
sations [Callies (2000a)], the macro-discretisation x1 < x2 < . . . < xm and
the micro-discretisation xν =: xν,1 < xν,2 < . . . < xν,κν := xν+1, ν = 1,
. . . , m− 1.

Consider the following piecewise defined multi-point boundary value
problem
(7.3.8.4)
y′ = fν,µ(x, y), x ∈ [xν,µ, xν,µ+1)

y(xν,µ) = sν,µ

}
ν = 1, . . . ,m− 1, µ = 1, . . . , κν − 1,

rν,µ(xν,µ, sν,µ, y(x−
ν,µ)) = 0, ν = 1, . . . , m− 1, µ = 2, . . . , κν ,

r(x1, s1,1, xm, sm−1,κm−1) = 0.

Using the abbreviations s1 := s1,1 and

sν+1 := sν,κν , rν := rν,κν , ν = 1, . . . , m− 1,

the solution of (7.3.8.4) is formally equivalent to the solution of a special
system of nonlinear equations [cf. (7.3.5.3)]

574 7 Ordinary Differential Equations

(7.3.8.5) F (z) :=

r1(x2, s2, y(x−

2))
r2(x3, s3, y(x−

3))
...

rm−1(xm, sm, y(x−
m))

r(x1, s1, xm, sm)

 = 0, z :=

x1
s1
x2
s2
...
xm
sm

.

Here, y(x−
ν+1) := y(x−

ν+1;xν , sν), ν = 1, . . . , m − 1, and, for x ∈
[xν,µ, xν,µ+1), y(.) is the solution of the initial value problem

y′ = fν,µ(x, y), x ∈ [xν,µ, xν,µ+1), µ = 1, . . . , κν − 1,
y(xν,µ) = sν,µ,

where sν,1 := sν , and, for µ = 2, . . . , κν − 1, xν,µ and sν,µ satisfy the
equation

rν,µ(xν,µ, sν,µ, y(x−
ν,µ)) = 0.

Note that the switching and jump functions considered in Sections 7.2.18
generate equations of this type.

These problems are rather general, since the xν,µ may not be known
a priori, jumps in the solution y(.) are allowed at x = xν,µ, and the right
hand side of the differential equation fν,µ may depend on ν and µ. Note that
(7.3.8.4) encompasses the basic problem (7.3.5.1) and (7.3.5.2) treated in
Section 7.3.5 with a fixed f , fixed abscissae xi in the macro-discretization,
no micro-discretization points, no jumps in the solution, as special case: we
only have to set κν := 2, fν,µ := f , xν,1 := xν , xν,2 := xν+1, sν,1 := sν ,
rν,2(x, s, y) := y − s, and to drop the variables x1, x2, . . . , xm from z in
(7.3.8.5).

The nonlinear system (7.3.8.5) is iteratively solved e.g. by a modified
Newton method (iteration of the linearized system). The ξ-th iteration step
reads
(7.3.8.6)

z(ξ+1) := z(ξ) − λ(∆F (z(ξ)))−1F (z(ξ)), ∆F (z(ξ)) ≈ DF (z(ξ))

An iteration step is accepted if both of the following tests are valid:
(7.3.8.7)

‖F (z(ξ+1))‖ ≤ ‖F (z(ξ))‖
‖(∆F (z(ξ)))−1F (z(ξ+1))‖ ≤ ‖(∆F (z(ξ)))−1F (z(ξ))‖

(Test 1)
(Test 2)

In particular, calculating the Jacobian matrix DF (z) requires comput-
ing the sensitivity matrices

Gν = Gν(xν+1;xν , sν) := Dsν
y(x−

ν+1;xν , sν), ν = 1, 2, . . . , m− 1.

7.3 Boundary-Value Problems 575

This presents a problem when the open interval (xν , xν+1) contains points
of the micro-discretization, κν > 2. We will treat this problem, but only
for the most elementary case κν = 3 and only one such interval, when this
interval contains exactly one point of the micro-discretization. This leads
to the following core problem and a basic assumption.

Assumption (A): Let x1 < x2 < x3 and ε > 0. Further let f1 ∈
CN ([x1 − ε, x2 + ε] × IRn, IRn), f2 ∈ CN ([x2 − ε, x3 + ε] × IRn, IRn), and
q ∈ C2([x1, x3]×IRn, IR). Consider the piecewise defined system of ordinary
differential equations

(7.3.8.8) y′ =
{
f1(x, y(x)), if q(x, y(x)) < 0,
f2(x, y(x)), if q(x, y(x)) > 0,

and the initial condition y(x1) = s1; let x2 exist with q(x2, y(x−
2 ;x1, s1)) =

0 and start the integration of f2 with the initial value (x2, s2), where s2 is
a solution (assumed to exist) of a further equation p(y(x−

2), s2) = 0 with a
function p: IR2n → IRn. Assume that q(x, y(x)) < 0 for x1 ≤ x < x2) and
q(x, y(x)) > 0 for x2 < x ≤ x3. Further let Q(x, y) := [qx + qyf1](x, y).
Finally, assume that Q(x2, y(x2)) > 0, p is twice continuously differentiable
on some open convex set D̃ ⊂ IR2n with (y(x2), s2) ∈ D̃, and that the
Jacobian Ds2p(y(x2), s2) is nonsingular.

If Assumption (A) is satisfied, the function q(x, y) is called a switching
function, p(y, s) a transition function, and x2 a design point.

Interpretation of the core problem: x1 and x3 represent two adjacent points of
the macro-discretization, and x2 the abscissa of the micro-discretization between
x1 and x3. The role of the equation rν,µ(. . .) = 0 in (7.3.8.4) is played by the
simple system [

q(x2, y(x−
2))

p(y(x−
2), s2)

]
= 0.

In many applications, p has the form p(y, s) = φ(y) − s [cf. Section 7.2.18].

Assumption (A) allows the application of the implicit function theorem
and guarantees that the design point x2 and the new starting ordinate s2 are
locally unique solutions of smooth equations and depend smoothly on s1,
x2 = x2(s1), s2 = s2(s1) . This will be used in the proof of the following
Theorem:

(7.3.8.9) Theorem. Let Assumption (A) be satisfied and let x2 be a de-
sign point. Then the sensitivity matrix ∂y(x3;x2(s1), s2(s1))/∂s1 can be
computed by

576 7 Ordinary Differential Equations

∂y(x3;x2(s1), s2(s1))
∂s1

=

−G2(x3;x2, s2)
(
∂p

∂s2

)−1
∂p

∂y
G1(x2;x1, s1)

+G2(x3;x2, s2)

[
f2(x2, s2) +

(
∂p

∂s2

)−1
∂p

∂y
f1(x2, y(x2))

]
· L(.)

with the abbreviations

∂p

∂y
=
∂p(y, s2)
∂y

∣∣∣
y=y(x−

2)
,

∂p

∂s2
=
∂p(y, s2)
∂s2

∣∣∣
y=y(x−

2)

L(.) := L(x2, x1, s1) := (Q(x2, y(x2)))
−1 ∂q(x2, y)

∂y

∣∣∣
y=y(x−

2)
G1(x2;x1, s1).

Proof. By Assumption (A), x2 and s2 satisfy q(x2, y(x2;x1, s1)) = 0,
p(y(x−

2 ;x1, s1), s2) = 0 and thus can be treated as functions of s1 (and
x1, but the dependence on x1 is not used): x2 = x2(s1), s2 = s2(s1). By
differentiating the identity q(x2(s1), y(x2(s1);x1, s1)) ≡ 0 we obtain by the
implicit function theorem

∂x2

∂s1
= −

(
∂q(x2, y(x2;x1, s1))

∂x2

)−1
∂q(x2, y(x2;x1, s1))

∂s1

= −Q(x2, y(x2))−1 ∂q(x2, y)
∂y

∣∣∣
y=y(x−

2)
G1(x2;x1, s1).

Analogously we get from the equation p(y, s2) = 0, which defines s2 as
function of y,

∂s2
∂y

= −
(
∂p(y, s2)
∂s2

)−1
∂p(y, s2)
∂y

.

Using the chain rule and (7.3.8.3) we obtain

∂y(x3;x2, s2)
∂s1

=
∂y(x3;x2, s2)

∂x2

∂x2

∂s1
+
∂y(x3;x2, s2)

∂s2

∂s2
∂y

∂y(x2)
∂s1

= G2(x3;x2, s2)
(
−f2(x2, s2)

∂x2

∂s1
+
∂s2
∂y

∂y(x2)
∂s1

)
,

where ∂y(x2)/∂s1 stands for

∂y(x2(s1)−;x1, s1)
∂s1

=
∂y(x−

2)
∂x2

∂x2

∂s1
+
∂y(x;x1, s1)

∂s1

∣∣∣
x=x−

2

= f1(x2, y(x−
2))

∂x2

∂s1
+G1(x2;x1, s1).

7.3 Boundary-Value Problems 577

Combination of the equations yields the desired result. ��
The theorem stated above allows to treat piecewise continuous right

hand sides without an increase in the size of the nonlinear system (7.3.5.3),
but with equal precision. The determination of the zeros of the switching
functions q(x, y(x)) = 0 is coupled to the convergence tests (7.3.8.7) of
the shooting algorithm making the algorithm even more efficient (Callies
(2001a)).

7.3.9 The Limiting Case m → ∞ of the Multiple Shooting
Method (General Newton’s Method, Quasilinearization)

If the subdivision [a, b] is made finer and finer (m→ ∞), the multiple shoot-
ing method converges toward the general Newton’s method for boundary-
value problems [cf., e.g., Collatz (1966)], also known as quasilinearization.

In this method an approximation η(x) for the exact solution y(x) of
the nonlinar boundary-value problem (7.3.5.1) is improved by solving lin-
ear bondary-value problems. Using Taylor expansion of f(x, y(x)) and
r(y(a), y(b)) about η(x) one finds in first approximation [cf. the derivation
of Newton’s method in Section 5.1]

y′(x) = f
(
x, y(x)

) .= f
(
x, η(x)

)
+Dyf

(
x, η(x)

)(
y(x) − η(x)

)
,

0 = r
(
y(a), y(b)

) .= r
(
η(a), η(b)

)
+A

(
y(a) − η(a)

)
+B

(
y(b) − η(b)

)
,

where A := Dur(η(a), η(b)), B := Dvr(η(a), η(b)). One may expect, there-
fore, that the solution η̄(x) of the linear boundary-value problem

(7.3.9.1)
η̄′ = f

(
x, η(x)

)
+Dyf

(
x, η(x)

)(
η̄ − η(x)

)
A
(
η̄(a) − η(a)

)
+B

(
η̄(b) − η(b)

)
= −r

(
η(a), η(b)

)
,

will be a better solution of (7.3.5.1) than η(x). For later use we introduce
the correction function ∆η(x) := η̄(x)−η(x), which by definition is solution
of the boundary-value problem

(7.3.9.2)
(∆η)′ = f

(
x, η(x)

)
− η′(x) +Dyf

(
x, η(x)

)
∆η,

A∆η(a) +B∆η(b) = −r
(
η(a), η(b)

)
,

so that

(7.3.9.3) ∆η(x) = ∆η(a) +
∫ x

a

[
Dyf

(
t, η(t)

)
∆η(t) + f

(
t, η(t)

)
− η′(t)

]
dt.

Replacing η in (7.3.9.1) by η̄, one obtains a further approximation ¯̄η for
y, etc. In spite of the simple derivation, this iteration method has serious
disadvantages which cast some doubt on its practical value:

(1) The vector functions η(x), η̄(x), . . .must be stored over their entire
range [a, b].

578 7 Ordinary Differential Equations

(2) The matrix function Dyf(x, y) must be computed in explicit analytic
form and must likewise be stored over its entire range [a, b]. The real-
ization of both these requirements is next to impossible in the problems
that currently arise in practice (e.g., f with 25 components, 500–1000
arithmetic operations per evaluation of f).

We now wish to show that the multiple shooting method as m → ∞
converges to the method (7.3.9.1) in the following sense: Let η(x) be a
sufficiently smooth function on [a, b] and let further (7.3.9.1) be uniquely
solvable with the solution η̄(x), ∆η(x) := η̄(x)−η(x). Then the following is
true: If in the multiple shooting method (7.3.5.3)–(7.3.5.10) one chooses any
subdivision a = x1 < x2 < · · · < xm = b of fineness h := maxk |xk+1 − xk|
and the starting vector

s =

s1
s2
...
sm

 with sk := η(xk),

then the solution of (7.3.5.8) will yield a vector of corrections

(7.3.9.4) ∆s =

∆s1
∆s2

...
∆sm

 with maxk
∥∥∆sk −∆η(xk)

∥∥ = O(h)

For the proof we assume for simplicity |xk+1 − xk| = h, k = 1, 2, . . . ,
m−1. We want to show that to each h there exists a differentiable function
∆s̄ : [a, b] → IRn such that maxk ‖∆sk − ∆s̄(xk)‖ = O(h), ∆s̄(a) = ∆s1
and maxx∈[a,b] ‖∆s̄(x) −∆η(x)‖ = O(h).

To this end, we first show that the products

Gk−1Gk−2 · · ·Gj+1 = Gk−1Gk−2 · · ·G1
(
GjGj−1 · · ·G1

)−1

appearing in (7.3.5.9), (7.3.5.10) have simple limits as h→ 0 (hk = const,
hj = const). The representation (7.3.5.9) for ∆sk can be written in the
form
(7.3.9.5)

∆sk = Fk−1 +Gk−1 · · ·G1

[
∆s1 +

k−2∑
j=1

(
Gj · · ·G1

)−1
Fj

]
, 2 ≤ k ≤ m.

According to (7.3.5.3), Fk is given by

Fk = y
(
xk+1; xk, sk

)
− sk+1, 1 ≤ k ≤ m− 1;

thus

7.3 Boundary-Value Problems 579

Fk = sk +
∫ xk+1

xk

f
(
t, y(t; xk, sk)

)
dt− sk+1,

and with the help of the mean-value theorem,

(7.3.9.6) Fk =
[
f
(
τk, y(τk; xk, sk)

)
− η′(τ̃k)]h, xk < τk, τ̃k < xk+1.

Let now Z(x) be the solution of the initial-value problem

(7.3.9.7) Z ′ = Dyf
(
x, η(x)

)
Z, Z(a) = I,

and the matrix Z̄k solution of

Z̄ ′
k = Dyf

(
x, η(x)

)
Z̄k, Z̄k(xk) = I, 1 ≤ k ≤ m− 1,

so that

(7.3.9.8) Z̄k(x) = I +
∫ x

xk

Dyf
(
t, η(t)

)
Z̄k(t) dt.

For the matrices Zk := Z̄k(xk+1) one now shows easily by induction on k
that

(7.3.9.9) Z(xk+1) = ZkZk−1 · · ·Z1.

Indeed, since Z̄1 = Z, this is true for k = 1. If the assertion is true for k− 1,
then the function

Z̄(x) := Z̄k(x)Zk−1 · · ·Z1

satisfies the differential equation Z̄′ = Dyf(x, η(x))Z̄ and the initial conditions
Z̄(xk) = Z̄k(xk)Zk−1 . . . Z1 = Zk−1 . . . Z1 = Z(xk). By uniqueness of the solution
of initial-value problems there follows Z̄(x) = Z(x), hence (7.3.9.9).

By Theorem (7.1.8) we further have for the matrices
Ḡk(x) := Dsk

y(x; xk, sk),

(7.3.9.10)
Ḡk(x) = I +

∫ x

xk

Dyf
(
t, y(t; xk, sk)

)
Ḡk(t) dt,

Gk = Ḡk
(
xk+1

)
.

With the abbreviation

ϕ(x) :=
∥∥Z̄k(x) − Ḡk(x)

∥∥,
upon subtraction of (7.3.9.8) and (7.3.9.10), one obtains the estimate

(7.3.9.11)
ϕ(x) ≤

∫ x

xk

∥∥Dyf(t, η(t))−Dyf
(
t, y(t; xk, sk)

)∥∥ ∥∥Z̄k(t)∥∥ dt
+
∫ x

xk

∥∥Dyf(t, y(t;xk, sk))∥∥ϕ(t) dt.

580 7 Ordinary Differential Equations

If Dyf(t, y), for all t ∈ [a, b], is uniformly Lipschitz continuous in y, one
easily shows for xk ≤ t ≤ xk+1 that∥∥Dyf(t, η(t))−Dyf

(
t, y(t; xk, sk)

)∥∥ ≤ L
∥∥η(t) − y(t; xk, sk)

∥∥ = O(h),

as well as the uniform boundedness of ‖Z̄k(t)‖, ‖Dyf(t, y(t; xk, sk))‖ for
t ∈ [a, b], k = 1, 2, . . . , m− 1. From (7.3.9.11) and the proof techniques of
Theorems (7.1.4) (7.1.11), one then obtains an estimate of the form

ϕ(x) = O(h2) for x ∈ [xk, xk+1]

—in particular, for x = xk+1,

(7.3.9.12)
∥∥Zk −Gk

∥∥ ≤ c1h2, 1 ≤ k ≤ m− 1,

with a constant c1 independent of k and h.
From the identity

ZkZk−1 · · ·Z1 −GkGk−1 · · ·G1 =
(
Zk −Gk

)
Zk−1 · · ·Z1

+Gk
(
Zk−1 −Gk−1

)
Zk−2 · · ·Z1 + · · · +GkGk−1 · · ·G2

(
Z1 −G1

)
and the further estimates

‖Gk‖ ≤ 1 + c2h, ‖Zk‖ ≤ 1 + c2h, 1 ≤ k ≤ m− 1,

c2 independent of k and h, which follow from Theorem (7.1.11), we thus
obtain for 1 ≤ k ≤ m− 1, in view of kh ≤ b− a and (7.3.9.9),

(7.3.9.13) ‖Z(xk+1) −GkGk−1 · · ·G1‖ ≤ c1h2k(1 + c2h)k−1 ≤ Dh,

with a constant D independent of k and h.
From (7.3.9.5), (7.3.9.6), (7.3.9.9), (7.3.9.12), (7.3.9.13) one obtains

(7.3.9.14)
∆sk =

(
Z(xk) +O(h2)

)
×
[
∆s1 +

k−2∑
j=1

(
Z(xj+1) +O(h2)

)−1(
f
(
τj , y(τj ; xj , sj)

)
− η′(τ̃j)

)
h

]
+O(h)

= Z(xk)∆s1 + Z(xk)
∫ xk

a

Z(t)−1[f(t, η(t))− η′(t)
]
dt+O(h)

= ∆s̄(xk) +O(h).

Here, ∆s̄(x) is the function

(7.3.9.15)
∆s̄(x) := Z(x)∆s1 + Z(x)

∫ x

a

Z(t)−1[f(t, η(t))− η′(t)
]
dt,

∆s̄(a) = ∆s1.

7.3 Boundary-Value Problems 581

Note that ∆s̄ depends also on h, since ∆s1 depends on h. Evidently, ∆s̄ is
differentiable with respect to x, and by (7.3.9.7) we have

∆s̄′(x) =Z ′(x)
[
∆s1 +

∫ x

a

Z(t)−1[f(t, η(t))− η′(t)
]
dt

]
+ f

(
x, η(x)

)
− η′(x)

=Dyf
(
x, η(x)

)
∆s̄(x) + f

(
x, η(x)

)
− η′(x),

so that

∆s̄(x) = ∆s̄(a) +
∫ x

a

[
Dyf

(
t, η(t)

)
∆s̄(t) + f

(
t, η(t)

)
− η′(t)

]
dt.

By subtracting this equation from (7.3.9.3), we obtain for the difference

θ(x) := ∆η(x) −∆s̄(x)

the equation

(7.3.9.16) θ(x) = θ(a) +
∫ x

a

Dyf
(
t, η(t)

)
θ(t) dt,

and further, with the aid of (7.3.9.7),

(7.3.9.17) θ(x) = Z(x)θ(a), ‖θ(x)‖ ≤ K‖θ(a)‖ for a ≤ x ≤ b,

with a suitable constant K.
In view of (7.3.9.14) and (7.3.9.17) it suffices to show ‖θ(a)‖ = O(h)

in order to complete the proof of (7.3.9.4). With the help of (7.3.5.10) and
(7.3.9.15) one now shows in the same way as (7.3.9.14) that ∆s1 = ∆s̄(a)
satisfies an equation of the form[

A+B
(
Z(b) +O(h2)

)]
∆s1

= −Fm −BZ(b)
∫ b

a

Z(t)−1(f(t, η(t))− η′(t)
)
dt+O(h)

= −Fm −B
[
∆s̄(b) − Z(b)∆s1

]
+O(h).

From Fm = r(s1, sm) = r(η(a), η(b)) it follows that

A∆s̄(a) +B∆s̄(b) = −r
(
η(a), η(b)

)
+O(h).

Subtraction of (7.3.9.2), in view of (7.3.9.17), yields

Aθ(a) +Bθ(b) =
[
A+BZ(b)

]
θ(a) = O(h),

and thus θ(a) = O(h), since (7.3.9.1) by assumption is uniquely solvable
and hence A+BZ(b) is nonsingular. Because of (7.3.9.14), (7.3.9.17), this
proves (7.3.9.4). ��

582 7 Ordinary Differential Equations

7.4 Difference Methods

The basic idea underlying all difference metods is to replace the differential
quotients in a differential equation by suitable difference quotients and to
solve the discrete equations that are so obtained.

We illustrate this with the following simple boundary-value problem of
second order for a function y : [a, b] → IR:

(7.4.1)
−y′′ + q(x)y = g(x),
y(a) = α, y(b) = β.

Under the assumptions that q, g ∈ C[a, b] (i.e., q and g are continuous
functions on [a, b]) and q(x) ≥ 0 for x ∈ [a, b], it can be shown that (7.4.1)
has a unique solution y(x).

In order to discretize (7.4.1), we subdivide [a, b] into n+1 equal subin-
tervals,

a = x0 < x1 < · · · < xn < xn+1 = b, xj = a+ j h, h :=
b− a
n+ 1

,

and, with the abbreviation yj := y(xj), replace the differential quotient
y′′
i = y′′(xi) for i = 1, 2, . . . , n by the second difference quotient

∆2yi :=
yi+1 − 2yi + yi−1

h2 .

We now estimate the error τi(y) := y′′(xi) − ∆2yi. We assume that y is
four times continuously differentiable on [a, b], y ∈ C4[a, b]. Then, by Taylor
expansion of y(xi ± h) about xi, one finds

yi±1 = yi ± hy′
i +

h2

2!
y′′
i ± h3

3!
y′′′
i +

h4

4!
y(4)(xi ± θ±

i h), 0 < θ±
i < 1,

and thus

∆2yi = y′′
i +

h2

24
[y(4)(xi + θ+i h) + y(4)(xi − θ−

i h)].

Since y(4) is still continuous, it follows that

(7.4.2) τi(y) := y′′(xi) −∆2yi = −h
2

12
y(4)(xi + θih) for some |θi| < 1.

Because of (7.4.1), the values yi = y(xi) satisfy the equations

(7.4.3)

y0 = α

2yi − yi−1 − yi+1

h2 + q(xi)yi = g(xi) + τi(y), i = 1, 2, . . . , n,

yn+1 = β.

7.4 Difference Methods 583

With the abbreviations qi := q(xi), gi := g(xi), the vectors

ȳ :=

y1
y2
...
yn

 , τ(y) :=

τ1(y)
τ2(y)

...
τn(y)

 , k :=

g1 +
α

h2

g2
...

gn−1

gn +
β

h2

,

and the symmetric n× n tridiagonal matrix

(7.4.4) A :=
1
h2

2 + q1h2 −1 0

−1 2 + q2h2 . . .
. −1

0 −1 2 + qnh2

the equations (7.4.3) are equivalent to

(7.4.5) Aȳ = k + τ(y).

The difference method now consists in dropping the error term τ(y) in
(7.4.5) and taking the solution u = [u1, . . . , un]T of the resulting system of
linear equations,

(7.4.6) Au = k,

as an approximation to ȳ.
We first want to show some properties of the matrix A in (7.4.4). We

will write A ≤ B for two n× n matrices if aij ≤ bij for i, j = 1, 2, . . . , n.
We now have the following:

(7.4.7) Theorem. If qi ≥ 0 for i = 1, . . . , n, then A in (7.4.4) is positive
definite, and 0 ≤ A−1 ≤ Ã−1 with the positive definite n× n matrix

(7.4.8) Ã :=
1
h2

2 −1

−1
.
. −1

−1 2

 .

Proof. We begin by showing that A is positive definite. For this, we con-
sider the n × n matrix An := h2Ã. According to Gershgorin’s theorem
(6.9.4), we have for the eigenvalues the estimate |λi − 2| ≤ 2, and hence
0 ≤ λi ≤ 4. If λi = 0 were an eigenvalue of An, it would follow that
det(An) = 0; however, det(An) = n + 1, as one easily verifies by means
of the recurrence formula det(An+1) = 2 det(An) − det(An−2) (which is

584 7 Ordinary Differential Equations

obtained at once by expanding det(An+1) along the first row). Neither is
λi = 4 an eigenvalue of An, since otherwise An−4I would be singular. But

An − 4I =

−2 −1

−1
.
. −1

−1 −2

 = −DAnD−1,

D := diag(1,−1, 1, . . . ,±1),

so that |det(An − 4I)| = |det(An)|, and with An, also An − 4I is nonsin-
gular. We thus obtain the estimate 0 < λi < 4 for the eigenvalues of An.
This shows in particular that An is positive definite. By virtue of

zHAz = zHÃz +
n∑
i=1

qi|zi|2, zHÃz > 0 for z �= 0 and qi ≥ 0,

it follows immediately that zHAz > 0 for z �= 0; hence the positive defi-
niteness of A. Theorem (4.3.2) shows the existence of A−1 and Ã−1, and
it only remains to prove the inequality 0 ≤ A−1 ≤ Ã−1. To this end, we
consider the matrices D, D̃, J , J̃ with

h2A = D(I − J), D = diag(2 + q1h2, . . . , 2 + qnh2),

h2Ã = D̃(I − J̃), D̃ = 2I.

Since qi ≥ 0, we obviously have the inequalities

0 ≤ D̃ ≤ D,

0 ≤ J =

0
1

2 + q1h2 0

1
2 + q2h2

.

. 1
2 + qn−1h2

0
1

2 + qnh2 0

(7.4.9)

≤ J̃ =

0 1

2 0

1
2 0

. . .
. 1

2
0 1

2 0

 .
In view of J̃ = 1

2 (−An+2I) and the estimate 0 < λi < 4 for the eigenvalues
of An, we have −1 < µi < 1 for the eigenvalues µi of J̃ , i.e., ρ(J̃) < 1 for

7.4 Difference Methods 585

the spectral radius of J̃ . From Theorem (6.9.2) there easily follows the
convergence of the series

0 ≤ I + J̃ + J̃2 + J̃3 + · · · = (I − J̃)−1.

Since 0 ≤ J ≤ J̃ , we then also have convergence in

0 ≤ I + J + J2 + J3 + · · · = (I − J)−1 ≤ (I − J̃)−1,

and since, by (7.4.9), 0 ≤ D−1 ≤ D̃−1 we get

0 ≤ (h2A)−1 = (I − J)−1D−1 ≤ (I − J̃)−1D̃−1 = (h2Ã)−1,

as was to be shown. ��

From the above theorem it follows in particular that the system of
equations (7.4.6) has a solution (if q(x) ≥ 0 for x ∈ [a, b]), which can easily
be found, e.g., by means of the Choleski method [see Section 4.3]. Since A
is a tridiagonal matrix, the number of operations for the solution of (7.4.6)
is proportional to n.

We now wish to derive an estimate for the errors

yi − ui

of the approximations ui obtained from (7.4.6) for the exact solutions yi =
y(xi), i = 1, . . . , n.

(7.4.10) Theorem. Let the boundary-value problem (7.4.1) have a solution
y(x) ∈ C4[a, b], and let |y(4)(x)| ≤ M for x ∈ [a, b]. Also, let q(x) ≥ 0 for
x ∈ [a, b] and u = [u1, . . . , un]T be the solution of (7.4.6). Then, for i = 1,
2, . . . , n,

|y(xi) − ui| ≤
Mh2

24
(xi − a)(b− xi).

Proof. Because of (7.4.5) and (7.4.6) we have for ȳ − u the equation

A(ȳ − u) = τ(y).

Using the notation

|y| :=

 |y1|
...

|yn|

 for y ∈ IRn,

we obtain from Theorem (7.4.7) and the representation (7.4.2) of τ(y),

(7.4.11) |ȳ − u| = |A−1τ(y)| ≤ Ã−1|τ(y)| ≤ Mh2

12
Ã−1e,

586 7 Ordinary Differential Equations

where e := [1, 1, . . . , 1]T . The vector Ã−1e can be obtained at once by the
following observation: The special boundary-value problem

−y′′(x) = 1, y(a) = y(b) = 0,

of the type (7.4.1) has the exact solution y(x) = 1
2 (x− a)(b− x). For this

boundary-value problem, however, we have τ(y) = 0 by (7.4.2), and the
discrete solution u of (7.4.6) coincides with the exact solution ȳ of (7.4.5).
In addition, for this special boundary-value problem the matrix A in (7.4.4)
is just the matrix Ã in (7.4.8), and moreover k = e. We thus have Ã−1e = u,
ui = 1

2 (xi − a)(b − xi). Together with (7.4.11) this yields the assertion of
the theorem. ��

Under the assumptions of Theorem (7.4.10), the errors go to zero
like h2: the difference method has order 2. The method of Störmer and
Numerov, which discretizes the differential equation y′′(x) = f(x, y(x)) by

yi+1 − 2yi + yi−1 =
h2

12
(fi+1 + 10fi + fi−1)

and leads to tridiagonal matrices, has order 4. All these methods can also
be applied to nonlinear boundary-value problems

y′′ = f(x, y), y(a) = α, y(b) = β.

We then obtain a system of nonlinear equations for the approximations
ui ≈ y(xi), which in general can be solved only iteratively. At any rate, one
obtains only methods of low order. To achieve high accuracy, one has to
use a very fine subdivision of the interval [a, b]; in contrast, e.g., with the
multiple shooting method [see Section 7.6 for comparative examples].

For an example of the application of difference methods to partial dif-
ferential equations, see Section 8.4.

7.5 Variational Methods

Variational methods (Rayleigh-Ritz-Galerkin methods) are based on the
fact that the solutions of some important types of boundary-value problems
possess certain minimality properties. We want to explain these methods for
the following simple boundary-value problem for a function u : [a, b] → IR,

(7.5.1)
−(p(x)u′(x))′ + q(x)u(x) = g(x, u(x)),

u(a) = α, u(b) = β.

Note that the problem (7.5.1) is somewhat more general than (7.4.1).
Under the assumptions

7.5 Variational Methods 587

(7.5.2)

p ∈ C1[a, b],
q ∈ C[a, b],

g ∈ C1([a, b] × IR),

p(x) ≥ p0 > 0,
q(x) ≥ 0,

gu(x, u) ≤ λ0,

with λ0 the smallest eigenvalue of the eigenvalue problem

−(pz′)′ − (λ− q)z = 0, z(a) = z(b) = 0,

it is known that (7.5.1) always has exactly one solution. For the following we
therefore assume (7.5.2) and make the simplifying assumption g(x, u(x)) =
g(x) (no u-dependence of the right-hand side).

If u(x) is the solution of (7.5.1), then y(x) := u(x) − l(x) with

l(x) := α
b− x
b− a + β

a− x
a− b , l(a) = α, l(b) = β,

is the solution of a boundary-value problem of the form

(7.5.3)
−(py′)′ + qy = f ,
y(a) = 0, y(b) = 0,

with vanishing boundary values. Without loss of generality, we can thus
consider, instead of (7.5.1), problems of the form (7.5.3). With the help of
the differential operator

(7.5.4) L(v) :≡ −(pv′)′ + qv

associated with (7.5.3), we want to formulate the problem (7.5.3) somewhat
differently. The operator L maps the set

DL := { v ∈ C2[a, b] | v(a) = 0, v(b) = 0 }

of all real functions that are twice continuously differentiable on [a, b] and
satisfy the boundary conditions v(a) = v(b) = 0 into the set C[a, b] of
continuous functions on [a, b].The boundary-value problem (7.5.3) is thus
equivalent to finding a solution of

(7.5.5) L(y) = f, y ∈ DL,

Evidently,DL is a real vector space and L a linear operator onDL: for u, v ∈
DL also αu+βv belongs toDL, and one has L(αu+βv) = αL(u)+βL(v) for
all real numbers α, β. On the set L2(a, b) of all square-integrable functions
on [a, b] we now introduce a bilinear form and a norm by means of the
definition

(7.5.6) (u, v) :=
∫ b

a

u(x)v(x) dx, ‖u‖2 := (u, u)1/2.

588 7 Ordinary Differential Equations

The differential operator L in (7.5.4) has a few properties which are im-
portant for the understanding of the variational methods. One has the
following:

(7.5.7) Theorem. L is a symmetric operator on DL, i.e., we have

(u, L(v)) = (L(u), v) for all u, v ∈ DL.

Proof. Through integration by parts one finds

(u, L(v)) =
∫ b

a

u(x)[−(p(x)v′(x))′ + q(x)v(x)] dx

= −u(x)p(x)v′(x)|ba +
∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx

=
∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx,

since u(a) = u(b) = 0 for u ∈ DL. For reasons of symmetry it follows
likewise that

(7.5.8) (L(u), v) =
∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx;

hence the assertion. ��

The right-hand side of (7.5.8) is not only defined for u, v ∈ DL. Indeed,
let D := {u ∈ K1(a, b)|u(a) = u(b) = 0 } be the set of all functions u
that are absolutely continuous on [a, b] with u(a) = u(b) = 0, for which u′

on [a, b] (exists almost everwhere and) is square integrable [see Definition
(2.4.1.3)]. In particular, all piecewise continuously differentiable functions
satisfying the boundary conditions belong to D. D is again a real vec-
tor space with D ⊇ DL. The right-hand side of (7.5.8) defines on D the
symmetric bilinear form

(7.5.9) [u, v] :=
∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx,

which for u, v ∈ DL coincides with (u, L(v)). As above, one shows for
y ∈ DL, u ∈ D, through integration by parts, that

(7.5.10) (u, L(y)) = [u, y].

Relative to the scalar product introduced on DL by (7.5.6), L is a positive
definite operator in the following sense:

(7.5.11) Theorem. Under the assumptions (7.5.2) one has

7.5 Variational Methods 589

[u, u] = (u, L(u)) > 0 for all u �= 0, u ∈ DL.

One even has the estimate

(7.5.12) γ‖u‖2
∞ ≤ [u, u] ≤ Γ‖u′‖2

∞ for all u ∈ D

with the norm ‖u‖∞ := supa≤x≤b |u(x)| and the constants

γ :=
p0
b− a, Γ := ‖p‖∞(b− a) + ‖q‖∞(b− a)3.

Proof. In view of γ > 0 it suffices to show (7.5.12). For u ∈ D we have,
because u(a) = 0,

u(x) =
∫ x

a

u′(ξ) dξ for x ∈ [a, b].

The Schwarz inequality yields the estimate

u(x)2 ≤
∫ x

a

12 dξ ·
∫ x

a

u′(ξ)2 dξ = (x− a)
∫ x

a

u′(ξ)2 dξ

≤ (b− a) ·
∫ b

a

u′(ξ)2 dξ,

and thus

(7.5.13) ‖u‖2
∞ ≤ (b− a)

∫ b

a

u′(x)2 dx ≤ (b− a)2‖u′‖2
∞.

Now, by virtue of the assumption (7.5.2), we have p(x) ≥ p0 > 0, q(x) ≥ 0
for x ∈ [a, b]; from (7.5.9) and (7.5.13) it thus follows that

[u, u] =
∫ b

a

[p(x)u′(x)2 + q(x)u(x)2] dx ≥ p0
∫ b

a

u′(x)2 dx ≥ p0
b− a‖u‖

2
∞.

By (7.5.13), finally, we also have

[u, u] =
∫ b

a

[p(x)u′(x)2 + q(x)u(x)2] dx

≤ ‖p‖∞(b− a)‖u′‖2
∞ + ‖q‖∞(b− a)‖u‖2

∞

≤ Γ‖u′‖2
∞,

as was to be shown. ��

In particular, from (7.5.11) we may immediately deduce the uniqueness
of the solution y of (7.5.3) or (7.5.5). If L(y1) = L(y2) = f , y1, y2 ∈ DL,
then L(y1 −y2) = 0 and hence 0 = (y1 −y2, L(y1 −y2)) ≥ γ‖y1 −y2‖2

∞ ≥ 0,
which yields at once y1 = y2.

590 7 Ordinary Differential Equations

We now define for u ∈ D a quadratic functional F : D → IR, by

(7.5.14) F (u) := [u, u] − 2(u, f);

here f is the right-hand side of (7.5.3) or (7.5.5): F associates with each
function u ∈ D a real number F (u). Fundamental for variational methods
is the observation that the function F attains its smallest value exactly for
the solution y of (7.5.5):

(7.5.15) Theorem. Let y ∈ DL be the solution of (7.5.5). Then

F (u) > F (y)

for all u ∈ D, u �= y.

Proof We have L(y) = f and therefore, by (7.5.10) and the definition of
F , for u �= y, u ∈ D,

F (u) = [u, u] − 2(u, f) = [u, u] − 2(u, L(y))
= [u, u] − 2[u, y] + [y, y] − [y, y]
= [u− y, u− y] − [y, y]
> −[y, y] = F (y),

since, by Theorem (7.5.11), [u− y, u− y] > 0 for u �= y. ��
As a side result, we note the identity

(7.5.16) [u− y, u− y] = F (u) + [y, y] for all u ∈ D.

Theorem (7.5.15) suggests approximating the desired solution y by mini-
mizing F (u) approximately. Such an approximate minimum of F may be
obtained systematically as follows: One chooses a finite-dimensional sub-
space S of D, S ⊂ D. If dimS = m, then relative to a basis u1, . . . , um of
S, every u ∈ S admits a representation of the form

(7.5.17) u = δ1u1 + . . .+ δmum, δi ∈ IR.

One then determines the minimum uS ∈ S of F in S,

(7.5.18) F (uS) = min
u∈S

F (u),

and takes uS to be an approximation for the exact solution y of (7.5.5),
which according to (7.5.15) minimizes F on the whole space D. For the
computation of the approximation uS consider the following representation
of F (u), u ∈ S, obtained via (7.5.17),

7.5 Variational Methods 591

Φ(δ1, δ2, . . . , δm) : ≡ F (δ1u1 + · · · + δmum)

=

[
m∑
i=1

δiui,

m∑
k=1

δkuk

]
− 2

(
m∑
k=1

δkuk, f

)

=
m∑

i,k=1

[ui, uk]δiδk − 2
m∑
k=1

(uk, f)δk.

With the help of the vectors δ, ϕ and the m×m matrix A,

(7.5.19) δ :=

 δ1...
δm

 , ϕ :=

 (u1, f)
...

(um, f)

 , A :=

 [u1, u1] . . . [u1, um]
...

...
[um, u1] . . . [um, um]

 ,
one obtains for the quadratic function Φ : IRm → IR

(7.5.20) Φ(δ) = δTAδ − 2ϕT δ.

The matrix A is positive definite, since A is symmetric by (7.5.9), and for
all vectors δ �= 0 one also has u := δ1u1 + · · · + δmum �= 0 and thus, by
Theorem (7.5.11),

δTAδ =
∑
i,k

δiδk[ui, uk] = [u, u] > 0.

The system of linear equations

(7.5.21) Aδ = ϕ,

therefore, has a unique solution δ = δ̃, which can be computed by means
of the Choleski method [see Section 4.3]. In view of the identity

Φ(δ) = δTAδ − 2ϕT δ = δTAδ − 2δ̃TAδ + δ̃TAδ̃ − δ̃TAδ̃
= (δ − δ̃)TA(δ − δ̃) − δ̃TAδ̃
= (δ − δ̃)TA(δ − δ̃) + Φ(δ̃)

and (δ− δ̃)TA(δ− δ̃) > 0, for δ �= δ̃, it follows at once that Φ(δ) > Φ(δ̃) for
δ �= δ̃, and consequently that the function

uS := δ̃1u1 + · · · + δ̃mum

belonging to δ̃ furnishes the minimum (7.5.18) of F (u) on S. With y
the solution of (7.5.5), it follows immediately from (7.5.16), by virtue of
F (uS) = minu∈S F (u), that

(7.5.22) [uS − y, uS − y] = min
u∈S

[u− y, u− y].

592 7 Ordinary Differential Equations

We want to use this relation to estimate the error ‖uS − y‖∞. One has the
following:

(7.5.23) Theorem. Let y be the exact solution of (7.5.3), (7.5.5). Let S ⊂
D be a finite-dimensional subspace of D, and let F (uS) = minu∈S F (u).
Then the estimate

‖uS − y‖∞ ≤ C‖u′ − y′‖∞

holds for all u ∈ S. Here C =
√
Γ/γ, where Γ , γ are the constants of

Theorem (7.5.11).

Proof. (7.5.12) and (7.5.22) yield immediately, for arbitrary u ∈ S ⊆ D,

γ‖uS − y‖2
∞ ≤ [uS − y, uS − y] ≤ [u− y, u− y] ≤ Γ‖u′ − y′‖2

∞.

From this, the assertion follows. ��

Every upper bound for infu∈S [u− y, u− y], or more weakly for

inf
u∈S

‖u′ − y′‖∞,

immediately gives rise to an estimate for ‖uS − y‖∞. We wish to indicate
such a bound for an important special case. We choose for the subspace S
of D the set

S = Sp∆ := {S∆ | S∆(a) = S∆(b) = 0}

of all cubic spline functions S∆ [see Definition (2.4.1.1)] which belong to a
fixed subdivision of the interval [a, b],

∆ : a = x0 < x1 < x2 < · · · < xn = b,

and vanish at the end points a, b. Evidently, Sp∆ ⊆ DL ⊆ D. We denote
by ‖∆‖ the width of the largest subinterval of the subdivision ∆,

‖∆‖ := max
1≤i≤n

(xi − xi−1).

The spline function u := S∆ with

u(xi) = y(xi), i = 0, 1, . . . , n,
u′(ξ) = y′(ξ) for ξ = a, b,

where y is the exact solution of (7.5.3), (7.5.5), clearly belongs to S = Sp∆.
From Theorem (2.4.3.3) and its proof one gets the estimate

‖u′ − y′‖∞ ≤ 7
4‖y

(4)‖∞‖∆‖3,

provided y ∈ C4(a, b). Together with Theorem (7.5.23) this gives the fol-
lowing result:

7.5 Variational Methods 593

(7.5.24) Theorem. Let the exact solution y of (7.5.3) belong to C4(a, b),
and let the assumptions (7.5.2) be satisfied. Let S := Sp∆ and uS be the
spline function for which

F (uS) = min
u∈S

F (u).

Then with the constant C :=
√
Γ/γ, which is independent of y,

‖uS − y‖∞ ≤ 7
4C‖y(4)‖∞‖ ·∆‖3.

By the footnote following Theorem (2.4.3.3), the estimate can be improved:

‖uS − y‖∞ ≤ 1
24C‖y(4)‖∞ · ‖∆‖3.

The error bound thus goes to zero like the third power of the fineness
of ∆; in this respect, therefore, the method is superior to the difference
method of the previous section [see Theorem (7.4.10)].

For the practical implementation of the variational method, say in the
case S = Sp∆, one first has to select a basis for Sp∆. One easily sees that
m := dim Sp∆ = n+1 [according to (2.4.1.2) the spline function S∆ ∈ Sp∆
is uniquely determined by n+ 1 conditions

S∆(xi) = yi, i = 1, 2, . . . , n− 1,
S′
∆(a) = y′

0, S′
∆(b) = y′

n,

for arbitrary yi, y′
0, y

′
n]. As in Exercise 29, Chapter 2, one can find a basis

of spline functions S0, S1 . . . , Sn in Sp∆ such that

(7.5.25) Sj(x) = 0 for x ≤ max(x0, xj−2) and x ≥ min(xn, xj+2).

This basis has the advantage that the corresponding matrix A in
(7.5.19) is a band matrix of the form

(7.5.26) A = ([Si, Sk]) =

x x x x 0
x · ·
x · ·
x · ·

· · x
· · x

· · x
0 x x x x

,

since, by virtue of (7.5.9), (7.5.25),

[Si, Sk] =
∫ b

a

[p(x)S′
i(x)S

′
k(x) + q(x)Si(x)Sk(x)] dx = 0

594 7 Ordinary Differential Equations

whenever |i − k| ≥ 4. Once the components of the matrix A and of the
vector ϕ in (7.5.19) for this basis S0, . . . , Sn have been found by integration,
one solves the system of linear equations (7.5.21) for δ and so obtains the
approximation uS for the exact solution y.

Of course, instead of Sp∆ one can also choose other spaces S ⊆ D. For
example, one could take for S the set

S =
{
P | P (x) = (x− a)(x− b)

n−2∑
i=0

aix
i, ai arbitrary

}
of all polynomials of degree at most n which vanish at a and b. The matrix
A in this case would be in general no longer be a band matrix (and besides
would be very ill conditioned if the special polynomials

Pi(x) := (x− a)(x− b)xi, i = 0, 1, . . . , n− 2,

were chosen as basis in S).
Similarly to the spline functions, one can also choose for S the set [see

(2.1.5.10)]
S = H

(m)
∆ ,

where ∆ is again a subdivision a = x0 < x1 < · · · < xn = b and H(m)
∆

consists of all functions u ∈ Cm−1[a, b] which in each subinterval [xi, xi+1],
i = 0, . . . , n− 1, coincide with a polynomial of degree ≤ 2m− 1 (“Hermite
function space”). Here again, through a suitable choice of the basis {ui}
in H(m)

∆ , one can assure that the matrix A = ([ui, uk]) is a band matrix.
By appropriate choices of the parameter m one can even obtain methods
of order higher than 3 in this way [cf. Theorem (7.5.24)]. For S = H

(m)
∆ ,

analogously to Theorem (7.5.24), using the estimate (2.1.5.14) instead of
(2.4.3.3), one obtains

‖uS − y‖∞ ≤ C

22m−2(2m− 2)!
‖y(2m)‖∞‖∆‖2m−1,

provided y ∈ C2m[a, b]; we have a method of order at least 2m−1. [Proofs of
these and similar estimates, as well as the generalization of the variational
methods to certain nonlinear boundary-value problems, can be found in
Ciarlet, Schultz, and Varga (1967).] Observe, however, that with increasing
m the matrix A becomes more and more difficult to compute.

We further point out that the variational method can be applied to
considerably more general boundary-value problems than (7.5.3), e.g., to
partial differential equations. The important prerequisites for the crucial
theorems (7.5.15), (7.5.23) and the solvability of (7.5.21) are essentially
only the symmetry of L and the possibility of estimates of the form (7.5.12)
[see Section 7.7 for applications to the Dirichlet problem].

7.5 Variational Methods 595

The bulk of the work with methods of this type consists in computing
the coefficients of the system of linear equations (7.5.21) by means of in-
tegration, having made a decision concerning an appropriate basis u1, . . . ,
um in S. For boundary-value problems in ordinary differential equations
these methods as a rule are too expensive and too inaccurate, and are not
competitive with the multiple shooting method [see the following section
for comparative results]. Its value becomes evident only in boundary-value
problems for partial differential equations.

Finite-dimensional spaces S ⊂ D of functions satisfying the boundary
conditions of the boundary-value problem (7.5.5) also play a role in collo-
cation methods. The idea of these methods is quite natural: One tries to
approximate the solution y(x) of (7.5.5) by a function u(x) in S represented
by

u = δ1u1 + · · · + δmum
in terms of a basis {uj} of S. To this end, one selects m different collocation
points xj ∈ (a, b), j = 1, 2, . . . , m and determines u ∈ S such that

(7.5.27a) (Lu)(xj) = f(xj), j = 1, 2, . . . , m,

that is, the differential equation L(u) = f is to be satisfied exactly at the
collocation points. Of course, this is equivalent to solving the following
linear equations for the coefficients δk, k = 1, . . . , m:

(7.5.27b)
m∑
k=1

L(uk)(xj)δk = f(xj), j = 1, 2, . . . , m.

There are many possibilities of implementing such methods, namely,
by different choices of S, of bases of S, and of collocation points xj . With
a suitable choice, one may obtain very efficient methods.

For instance, it is advantageous for the basis functions uj , j = 1, 2, . . . ,
m, to have compact support, like the B-splines [see 2.4.4 and (7.5.25)]. Then
the matrix A = [L(uk)(xj)] of the linear system (7.5.27) is a band matrix.
In the so-called spectral methods, one chooses spaces S of trigonometric
polynomials (2.3.1.1) and (2.3.1.2), which are spanned by finitely many
simple trigonometric functions, say, eikx, k = 0, ±1, ±2, Then, with
a suitable choice of the collocation points xj , one can often solve (7.5.27)
with the aid of fast Fourier transforms [see Section 2.3.2].

For illustration, consider the simple boundary-value problem

−y′′(x) = f(x), y(0) = y(π) = 0,

of the form (7.5.3). Here, all functions u(x) =
∑m

k=1 δk sin kx satisfy the boundary
conditions. If we choose the collocation points xj := jπ/(m+1), j = 1, 2, . . . , m,
then by (7.5.27) the numbers γk := δkk

2 will solve the trigonometric interpolation
problem [see Section 2.3.1]

596 7 Ordinary Differential Equations

m∑
k=1

γk sin
kjπ

m+ 1
= fj := f(xj), j = 1, 2, . . . , m.

Therefore, the γk can be computed by using fast Fourier transforms.

These methods play an important role for the solution of initial-
boundary value problems for partial differential equations. For a detailed
exposition, the reader is referred to the literature, e.g., Gottlieb and Orszag
(1977), Canuto et al. (1987), and Boyd (1989).

7.6 Comparison of the Methods for Solving
Boundary-Value Problems for Ordinary
Differential Equations

The methods described in the previous sections, namely

(1) the simple shooting method,
(2) the multiple shooting method,
(3) the difference method,
(4) the variational method,

will now be compared by means of the following example. We consider the
linear boundary-value problem with linear separated boundary conditions

(7.6.1)
− y′′ + 400y = −400 cos2 πx− 2π2 cos(2πx),

y(0) = y(1) = 0,

with the exact solution [see Figure 28]

(7.6.2) y(x) =
e−20

1 + e−20 e
20x +

1
1 + e−20 e

−20x − cos2(πx).

Although this problem must be considered very simple compared with
most problems in practice, the following peculiarities are present which lead
us to expect difficulties in its solution:

(1) The homogeneous differential equation −y′′ +400y = 0 associated with
(7.6.1) has solutions of the form y(x) = c e±20x which grow or decay at
a rapid exponential rate. This leads to difficulties in the simple shooting
methods.

(2) The derivatives y(i)(x), i = 1, 2, . . . , of the exact solution (7.6.2)
are very large for x ≈ 0 and x ≈ 1. The error estimates (7.4.10) for
the difference method, and (7.5.24) for the variational method, thus
suggest large errors.

7.6 Boundary-Value Problems, Comparison of Methods 597

�
�
�
�
�
�
��
�
��
�
�
����
��
�
���
��
��
��
�
�

��
��
�
���
��
��
��
�
�

�������������������������������

����
���
���
���
���

�
�
��
�
��
�
�
�
�
��
��
�
��
�
��
�
��
��
�
�
�
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
�
�
��
�
��
�
��
�
��
��
�
��
�
�
�
�
��
�
�
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
�
�
�
��
�
��
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
��
�
��
��
�
��
�
�
�
�
��
��
�
��
�
��
�
��
��
�
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
�
�
��
�
��
�
��
�
�
�
�
��
��
�
�
�
�
��
�
��
��
�
�
�
�
��
�
��
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
�
�
�
��
��
�
��
�
�
�
�
��
�
��
�
�
�
��
�
��
�
��
�
�
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
�
��
�
��
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
�
�
�
�
�
��
�
��
�
�
�
��
�
��
�
�
�
�
�
�
��
�
��
�
�
�
�
�
�
�
��
�
�
�
��
�
��
�
��

��

���������������

�
��
�
�
�
��
�
��
��
�
�

�
��
�
�
�
��
�
��
��
�
�

�

�

��� ��

����

��
�
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
�
�
��
�
��
��
�
�
�
�
��
��
�
�
�
��
�
��
�
��
��
�
��
�
��
�
�
�
��
�
��
��
�
��
��
�
��
�
�
�
��
�
��
�
�
�
��
�
��
��
�
��
�
��
��
�
�
�
��
�
��
�
�
�
��
��
�
�
�
��
�
��
�
��
�
�
�
��
��
�
�
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
��
�
��
�
�
��
�
��
�
�
�
��
��
�
�
��
�
��
�
�
��
��
�
��
��
��
��
��
��
��
��
��
��
���
��
��
���
��
���
����
���
������������������������

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
��
��
�
��
��
�
��
��
��
�
��
�
��
��
��
�
��
�
��
�
��
�
�
��
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
�
�
��
��
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
��
�
��
��
��
�
��
��
��
��
�
��
��
�
��
��
��
��
�
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
��
�
��
�
��
��
��
��
��
�
��
��
��
��
�
��
��
�
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
�����
���

�������
������
�����
����
����
����
����
���
����
���
���
���
���
���
���
���
���
���
��
���
���
���
��
���
��
���
���
��
���
��
���
��
���
��
��
���
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
���
��
��
��
��
���
��
��
���
��
��
��
��
���
�
�
��
��
�
��
��
�
�
��
��
���
�
�
��
��
�
�
���
�
�
��
��
���
�
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
��
��
�
��
��
��
��
�
��
��
�
�
���
�
�
��
��
���
�
�
��
��
�
��
��
�
�
��
�
��
��
���
��
��
���
��
��
�
��
��
�
��
��
���
�
�
���
�
�
���
��
��
�
���
��
���
���
�
��
���
��
���
����
�
��
���
����
����
����
���
��
�����
����������������
��������������������

��
��
��
��
��
��
��
��
�
��
��
��
�
��
�
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
�
�
��
�
�
�
��
��
�
�
�
��
��
��
�
��
��
�
�
�
��
��
�
��
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
��
��
�
�
�
��
�
��
��
�
�
�
��
�
��
�
�
�
��
��
�
�
�
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
�
�
��
��
�
��
��
�
��
�
��
�
�
�
��
�
��
�
�
�
��
�
��
��
�
�
�
�
��
��
�
�
�
��
�
��
��
�
�
�
�
��
��
�
�
�
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
�
��
�

Fig. 28. Exact solution of (7.6.1).

On a 12-digit computer the following results were found [in evaluating
the error, especially the relative error, one ought to observe the behavior
of the solution [see Figure 28]: max0≤x≤1 |y(x)| ≈ 0.77, y(0) = y(1) = 0,
y(0.5) = 0.907 998 593 370 × 10−4]:

(a) Simple shooting method : The initial values

y(0) = 0, y′(0) = −20
1 − e−20

1 + e−20 = −19.999 999 9176 . . .

of the exact solution were found, after one iteration, with a relative
error ≤ 3.2 ·10−11. If the initial-value problem corresponding to (7.6.1)
is then solved by means of an extrapolation method [see Section 7.2.14;
algol procedure Diffsys in Bulirsch and Stoer (1966)], taking as initial
values the exact initial values y(0), y′(0) rounded to machine precision,
one obtains instead of the exact solution y(x) in (7.6.2) an approximate
solution ỹ(x) having the absolute error∆y(x) = ỹ(x)−y(x) and relative
error εy(x) = (ỹ(x) − y(x))/y(x) as shown in the table below. Here
the effect of the exponentially growing solution y(x) = ce20x of the
homogeneous problem is clearly noticeable [cf. Section 7.3.4].

598 7 Ordinary Differential Equations

x |∆y(x)|∗ |εy(x)|

0.1 1.9 × 10−11 2.5 × 10−11

0.2 1.5 × 10−10 2.4 × 10−10

0.3 1.1 × 10−9 3.2 × 10−9

0.4 8.1 × 10−9 8.6 × 10−8

0.5 6.0 × 10−8 6.6 × 10−4

0.6 4.4 × 10−7 4.7 × 10−5

0.7 3.3 × 10−6 9.6 × 10−6

0.8 2.4 × 10−5 3.8 × 10−5

0.9 1.8 × 10−4 2.3 × 10−4

1.0 1.3 × 10−3 ∞

∗ maxx∈[0,1] |∆y(x)| ≈ 1.3 × 10−3.

(b) Multiple shooting method : To reduce the effect of the exponentially
growing solution y(x) = c e20x of the homogeneous problem, we chose
m large, m = 21:

0 = x1 < x2 < . . . < x21 = 1, xk =
k − 1
20

.

x |∆y(x)|∗ |εy(x)|

0.1 9.2 × 10−13 1.2 × 10−12

0.2 2.7 × 10−12 4.3 × 10−12

0.3 4.4 × 10−13 1.3 × 10−12

0.4 3.4 × 10−13 3.6 × 10−12

0.5 3.5 × 10−13 3.9 × 10−9

0.6 1.3 × 10−12 1.4 × 10−11

0.7 1.8 × 10−12 5.3 × 10−12

0.8 8.9 × 10−13 1.4 × 10−12

0.9 9.2 × 10−13 1.2 × 10−12

1.0 5.0 × 10−12 ∞

∗ maxx∈[0,1] |∆y(x)| ≈ 5 × 10−12.

Three iterations of the multiple shooting method [program in Oberle
and Grimm (1989)] gave the absolute and relative errors in the above
table.

(c) Difference method : The method of Section 7.4 for stepsizes h =
1/(n+ 1) produces the following absolute errors ∆y = maxi |∆y(xi)|,
xi = i h [powers of 2 were chosen for h in order that the matrix A in
(7.4.4) could be calculated exactly on the computer]:

7.6 Boundary-Value Problems, Comparison of Methods 599

h ∆y

2−4 2.0 × 10−2

2−6 1.4 × 10−3

2−8 9.0 × 10−5

2−10 5.6 × 10−6

These errors are in harmony with the estimate of Theorem (7.4.10).
Halving the step h reduces the error to 1

4 of the old value. In order to
achieve errors comparable to those of the multiple shooting method,
∆y ≈ 5 × 10−12, one would have to choose h ≈ 10−6!

(d) Variational method : In the method of Section 7.5 we choose for the
spaces S spaces Sp∆ of cubic spline functions corresponding to equidis-
tant subdivisions

∆: 0 = x0 < x1 < · · · < xn = 1, xi = ih, h =
1
n
.

The following maximum absolute errors ∆y = ‖uS−y‖∞ [cf. Theorem
(7.5.24)] were found:

h ∆y

1/10 6.0 × 10−3

1/20 5.4 × 10−4

1/30 1.3 × 10−4

1/40 4.7 × 10−5

1/50 2.2 × 10−5

1/100 1.8 × 10−6

In order to achieve errors of the order of magnitude ∆y ≈ 5× 10−12 as
in the multiple shooting method, one would have to choose h ≈ 10−4.
Merely to compute the band matrix A in (7.5.26), this would require
about 4 × 104 integrations for this stepsize.

These results clearly demonstrate the superiority of the multiple shoot-
ing method, even for simple linear separated boundary-value problems.
Difference methods and variational methods are feasible, even here, only if
the solution need not be computed very accurately. For the same accuracy,
difference methods require the solution of larger systems of equations than
variational methods. This advantage of the variational methods, however,
is of importance only for smaller stepsizes h, and its significance is consid-
erably reduced by the fact that the computation of the coefficients in the

600 7 Ordinary Differential Equations

systems of equations is much more involved than in the simple difference
methods. For the treatment of nonlinear boundary-value problems for or-
dinary differential equations the only feasible methods, effectively, are the
multiple shooting method and its modifications.

7.7 Variational Methods for Partial Differential
Equations. The Finite-Element Method

The methods described in Section 7.5 can also be used to solve boundary-
value problems for partial differential equations. We want to explain this for
a Dirichlet boundary-value problem in IR2. We are given a (open bounded)
region Ω ⊂ IR2 with boundary ∂Ω. We seek a function y: Ω̄ → IR, Ω̄ :=
Ω ∪ ∂Ω such that

(7.7.1)
−∆y(x) + c(x)y(x) = f(x) for x = (x1, x2) ∈ Ω,

y(x) = 0 for x ∈ ∂Ω,

where ∆ is the Laplace-Operator

∆y(x) :=
∂2y(x)
∂x2

1
+
∂2y(x)
∂x2

2
.

Here, c, f : Ω̄ → IR are given continuous functions with c(x) ≥ 0 for x ∈ Ω̄.
To simplify the discussion, we assume that (7.7.1) has a solution y ∈ C2(Ω̄),
i.e., y has continuous derivativesDα

i y := ∂αy/∂xαi on Ω for α ≤ 2 which are
continuously extendable to Ω̄. As domain DL of the differential operator
L(v) := −∆v + c v associated to (7.7.1) we accordingly take DL := { v ∈
C2(Ω̄ | v(x) = 0 for x ∈ ∂Ω }. Thus, the problem is to find a solution of

(7.7.2) L(v) = f, v ∈ DL.

We further assume that the region Ω is such that the integral theorems of
Gauss and Green apply, and moreover, that each line xi = const, i = 1, 2,
intersects Ω in at most finitely many segments. With the abbreviations

(u, v) :=
∫
Ω

u(x)v(x) dx, ‖u‖2 := (u, u)1/2 (dx = dx1 dx2)

we then have [cf. Theorem (7.5.7)]:

(7.7.3) Theorem. L is a symmetric operator on DL:

(7.7.4)
(u, L(v)) = (L(u), v) =

∫
Ω

[D1u(x)D1v(x) +D2u(x)D2v(x)

+ c(x)u(x)v(x)] dx

7.7 Variational Methods for Partial Differential Equations 601

for all u, v ∈ DL.

Proof. One of Green’s formulas is

−
∫
Ω

u∆v dx =
∫
Ω

(2∑
i=1

DiuDiv
)
dx−

∫
∂Ω

u
∂v

∂ν
dω.

Here ∂v/∂ν is the differential quotient in the direction of the outward
normal, and dω the line element of ∂Ω. Since u ∈ DL, we have u(x) = 0 for
x ∈ ∂Ω; thus

∫
∂Ω
u(∂v/∂ν) dω = 0. From this, the assertion of the theorem

follows at once. ��

The right-hand side of (7.7.4) again defines a bilinear form [cf. (7.5.9)]

(7.7.5) [u, v] :=
∫
Ω

(2∑
i=1

DiuDiv + c u v
)
dx,

and there holds an analog of Theorem (7.5.11):

(7.7.6) Theorem. There are constants γ > 0, Γ > 0 such that

(7.7.7) γ‖u‖2
W (1) ≤ [u, u] ≤ Γ

2∑
i=1

‖Diu‖2
2 for all u ∈ DL.

Here
‖u‖2

W (1) := (u, u) + (D1u,D1u) + (D2u,D2u)

is the so-called “Sobolev norm”.

Proof. The region Ω is bounded. There exists, therefore, a square Ω1 with
side lenght a which contains Ω in its interior. Without loss of generality,
let the origin be a corner of Ω1 (Figure 29).

�
��
�
��
�
�
��
�
��
�
��
��
�
��
���
��
���
��

�
��
�
��
���
��
���
��

�������������������������������

�����
����
���
���
�

�

� ��

��

�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
�

���
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
�
��
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��������������
��
��
��
��
�

������������

��

���
��
��
��
��
��
��
��
��
��
��
���
��
��
��
��
��
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
��
�
��
��
�
���
��
��
��
��
��
��
��
��
��
�
��
��
��
��

�
��
��
��
��
��
��
�
��
�
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
��
�
��
��
��
��
��
��
��
��
�
��
��
��
��
��
�
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
���
���
���
���
���
���
����
����
������
��

Fig. 29. The regions Ω and Ω1

602 7 Ordinary Differential Equations

Now let u ∈ DL. Since u(x) := 0 for x ∈ ∂Ω, we can extend u contin-
uously onto Ω1 by letting u(x) := 0 for x ∈ Ω1\Ω. By our assumption on
Ω, D1u(t1, ·) is piecewise continuous, so that by u(0, x2) = 0

u(x1, x2) =
∫ x1

0
D1u(t1, x2) dt1 for all x ∈ Ω1.

The Schwarz inequality therefore gives

[u(x1, x2)]2 ≤ x1

∫ x1

0
[D1u(t1, x2)]2 dt1

≤ a
∫ a

0
[D1u(t1, x2)]2 dt1 for x ∈ Ω1.

Integrating this inequality over Ω1, one obtains

(7.7.8)

∫
Ω1

[u(x1, x2)]2 dx1 dx2 ≤ a2
∫
Ω1

[D1u(t1, t2)]2 dt1 dt2

≤ a2
∫
Ω1

[(D1u)2 + (D2u)2] dx.

Since u(x) = 0 for x ∈ Ω1\Ω, one can restrict the integration to Ω, and
because c(x) ≥ 0 for x ∈ Ω̄, it follows immediately that

a2[u, u] ≥ a2
2∑
i=1

‖Diu‖2
2 ≥ ‖u‖2

2,

and from this finally

γ‖u‖2
W (1) ≤ [u, u] with γ :=

1
a2 + 1

.

Again from (7.7.8) it follows that∫
Ω

c u2 dx ≤ C
∫
Ω

u2 dx ≤ Ca2
2∑
i=1

‖Diu‖2
2, C := max

x∈Ω
|c(x)|,

and thus

[u, u] ≤ Γ
2∑
i=1

‖Diu‖2
2 with Γ := 1 + Ca2.

This proves the theorem. ��
As in Section 7.5, one can find a larger vector spaceD ⊃ DL of functions

such that definition (7.7.5) of [u, v] remains meaningful for u, v ∈ D, the
statement (7.7.7) of the previous theorem remains valid for u ∈ D, and

(7.7.9) [u, v] = (u, L(y)) for y ∈ DL and u ∈ D.

7.7 Variational Methods for Partial Differential Equations 603

In what follows, we are not interested in what the largest possible setD with
this property looks like8; we are only interested in special finite-dimensional
vector spaces S of functions for which the validity of (7.7.7) and (7.7.9) for
u ∈ DS , DS the span of S and DL, can be established individually.

Example. Let the set Ω be supplied with a triangulation T = {T1, . . . , Tk}, i.e.,
Ω̄ is the union of finitely many triangles Ti ∈ T , Ω̄ =

⋃k

i=1 Ti, such that any
two triangles in T either are disjoint or have exactly one vertex or one side in
common (Figure 30).

T1 T2

T3

Ω

Fig. 30. Triangulation of Ω

By Si(i ≥ 1) we denote the set of all functions u: Ω̄ → IR with the following
properties:

(1) u is continuous on Ω̄.
(2) u(x) = 0 for x ∈ ∂Ω.
(3) On each triangle T of the triangulation T of Ω the function u coincides with

a polynomial of degree i,

u(x1, x2) =
∑

j+k≤i

ajkx
j
1x

k
2 .

Evidently, each Si is a real vector space. Even though u ∈ Si need not even
be continuously differentiable in Ω, it is nevertheless continuously differentiable
in the interior of each triangle T ∈ T . Definition (7.7.5) is meaningful for all u,
v ∈ DSi ; likewise, one sees immediately that (7.7.7) is valid for all u ∈ DSi . The
function spaces S = Si, i = 1, 2, 3 — in particular S2 and S3 — are used in the
finite-element method in conjunction with the Rayleigh-Ritz method.

Exactly as in Section 7.5 [cf. (7.5.14), (7.5.15), (7.5.22)] one shows the
following:

8 One obtains such a D by “completion” of the vector space C1
0 (Ω), equipped

with the norm ‖ · ‖W (1) of all once continuously differentiable functions ϕ on
Ω, whose “support” supp(ϕ) := {x ∈ Ω | ϕ(x) �= 0} is compact and contained
in Ω.

604 7 Ordinary Differential Equations

(7.7.10) Theorem. Let y be the solution of (7.7.2), and S a finite-
dimensional space of functions for which (7.7.7), (7.7.9) hold for all u ∈ DS.
Let F (u) be defined by

(7.7.11) F (u) := [u, u] − 2(u, f) for u ∈ DS.

Then:

(a) F (u) > f(y) for all u �= y.
(b) There exists a uS ∈ S with F (uS) = minu∈S F (u).
(c) For this uS one has

[uS − y, uS − y] = min
u∈S

[u− y, u− y].

The approximate solution uS can be represented as in (7.5.17)–(7.5.21)
and determined by solving a linear system of equations of the form (7.5.21).
For this, one must choose a basis in S and calculate the coefficients (7.5.19)
of the system of linear equations (7.5.21).

A practically useful basis for S2, e.g., is obtained in the following way: Let
P be the set of all vertices and midpoints of sides of the triangles Ti, i = 1, 2,
. . . , k, of the triangulation T which are not located on the boundary ∂Ω. One
can show, then, that for each P ∈ P there exists exactly one function uP ∈ S2
satisfying

uP (P) = 1, uP (Q) = 0 for Q �= P , Q ∈ P.
In addition, these functions have the nice property that

uP (x) = 0, for all x ∈ T with P �∈ T ;

it follows from this that in the matrix A of (7.5.21), all those elements vanish,

[uP , uQ] = 0,

for which there is no triangle T ∈ T to which both P and Q belong: the matrix
A is sparse. Bases with similar properties can be found also for the spaces S1 and
S3 [see Zlámal (1968)].

The error estimate of Theorem (7.5.23), too, carries over.

(7.7.12) Theorem. Let y be the exact solution of (7.7.1), (7.7.2), and S a
finite-dimensional space of functions such that (7.7.7), (7.7.9) holds for all
u ∈ DS. For the approximate solution uS with F (uS) = minu∈S F (u) one
then has the estimate

‖uS − y‖W (1) ≤ inf
u∈S

(Γ
γ

2∑
j=1

‖Dju−Djy‖2
2

)1/2
.

We now wish to indicate upper bounds for

7.7 Variational Methods for Partial Differential Equations 605

inf
u∈S

2∑
j=1

‖Dju−Djy‖2
2

in the case of the spaces S = Si, i = 1, 2, 3, defined in the above example
of triangulated regions Ω. The following theorem holds:

(7.7.13) Theorem. Let Ω be a triangulated region with triangulation T .
Let h be the maximum side length, and θ the smallest angle, of all triangles
occurring in T . Then the following is true:

(1) If y ∈ C2(Ω̄) and∣∣∣∣∂2y(x1, x2)
∂xi∂xj

∣∣∣∣ ≤M2 for all 1 ≤ i, j ≤ 2, x ∈ Ω,

then there exists a function ũ ∈ S1 with

(a) |ũ(x) − y(x)| ≤M2h
2 for all x ∈ Ω̄,

(b) |Dj ũ(x) −Djy(x)| ≤ 6M2h/ sin θ for j = 1, 2 and for all x ∈ T o,
T ∈ T .

(2) If y ∈ C3(Ω̄) and∣∣∣∣∂3y(x1, x2)
∂xi∂xj∂xk

∣∣∣∣ ≤M3 for all 1 ≤ i, j, k ≤ 2, x ∈ Ω,

then there exists a ũ ∈ S2 with

(a) |ũ(x) − y(x)| ≤M3h
3 for x ∈ Ω̄,

(b) |Dj ũ(x) −Djy(x)| ≤ 2M3h
2/ sin θ for j = 1, 2, x ∈ T o,

T ∈ T .

(3) If y ∈ C4(Ω̄) and∣∣∣∣ ∂4y(x1, x2)
∂xi∂xj∂xk∂xl

∣∣∣∣ ≤M4 for 1 ≤ i, j, k, l ≤ 4, x ∈ Ω,

then there exists a ũ ∈ S3 with

(a) |ũ(x) − y(x)| ≤ 3M4h
4/ sin θ for x ∈ Ω̄,

(b) |Dj ũ(x) −Djy(x)| ≤ 5M4h
3/ sin θ for j = 1, 2, x ∈ T o, T ∈ T .

[Here, T o means the interior of the triangle T . The limitation x ∈ T o,
T ∈ T in the estimates (b) is necessary because the first derivatives Dj ũ
may have jumps along the sides of the triangles T .]

Since for u ∈ Si, i = 1, 2, 3, the function Dju is only piecewise contin-
uous, and since

606 7 Ordinary Differential Equations

‖Dju−Djy‖2
2 =

∑
T∈T

∫
T

[Dju(x) −Djy(x)]2 dx

≤ C max
x∈T0
T ∈T

|Dju(x) −Djy(x)|2, C :=
∫
Ω

1 dx,

from each of the estimates given under (b) there immediately follows, via
Theorem (7.7.12), an upper bound for the Sobolev norm ‖uS − y‖W (1) of
the error uS−y for the special function spaces S = Si, i = 1, 2, 3, provided
only that the exact solution y satisfies the differentiability assumptions of
(7.7.13): ∥∥uS1 − y

∥∥
W (1) ≤ C1M2

h

sin θ
,

∥∥uS2 − y
∥∥
W (1) ≤ C2M3

h2

sin θ
,

∥∥uS3 − y
∥∥
W (1) ≤ C3M4

h3

sin θ
.

The constants Ci are independent of the triangulation T of Ω and of y, and
can be specified explicitly; the constants Mi, h, θ have the same meaning
as in (7.7.13). These estimates show, e.g. for S = S3, that the error (i.e.,
its Sobolev norm) goes to zero like the third power of the fineness h of the
triangulation.

We will not prove Theorem (7.7.13) here. Proofs can be found, e.g., in
Zlámal (1968) and in Ciarlet and Wagschal (1971). We only indicate that
the special functions ũ ∈ Si, i = 1, 2, 3, of the theorem are obtained by
interpolation of y: For S = S2, e.g., one obtains the function ũ ∈ S2 by
interpolation of y at the points P ∈ P of the triangulation (see above):

ũ(x) =
∑
P∈P

y(P)uP (x).

An important advantage of the finite-element method lies in the fact
that boundary-value problems can be treated also for relatively complicated
regions Ω, provided Ω can still be triangulated. We remark, in addition,
that not only can problems in IR2 of the special form (7.7.1) be attacked
by these methods, but also boundary-value problems in higher-dimensional
spaces and for more general differential operators than the Laplace opera-
tor.

A detailed exposition of the finite element method and its practi-
cal implementation can be found in Strang and Fix (1973), Oden and
Reddy(1976), Schwarz (1988), and Ciarlet and Lions (1991), and Quarteroni
and Valli (1994).

Exercises for Chapter 7 607

Exercises for Chapter 7

1. Let A be a real diagonalizable n×n matrix with the real eigenvalues λ1, . . . ,
λn and the eigenvectors c1, . . . , cn. How can the solution set of the system

y′ = Ay

be described in terms of the λk and ck? How is the special solution y(x)
obtained with y(0) = y0, y0 ∈ IRn?

2. Determine the solution of the initial-value problem

y′ = Jy, y(0) = y0

with y0 ∈ IRn and the n× n matrix
λ 1 0

. . .
. . .
. . . 1

0 λ

 , λ ∈ IR.

Hint: Seek the kth component of the solution vector y(x) in the form y(x) =
pk(x)eλx, pk a polynomial of degree ≤ n− k.

3. Consider the initial-value problem

y′ = x− x3, y(0) = 0.

Suppose we use Euler’s method with stepsize h to compute approximate
values η(xj ;h) for y(xj), xj = jh. Find an explicit formula for η(xj ;h) and
e(xj ;h) = η(xj ;h) − y(xj), and show that e(x;h), for x fixed, goes to zero as
h = x/n → 0.

4. The initial-value problem

y′ =
√
y, y(0) = 0

has the nontrivial solution y(x) = x2/4. Application of Euler’s method how-
ever yields η(xj ;h) = 0 for all x and h = x/n, n = 1, 2, Explain this
paradox.

5. Let η(x;h) be the approximate solution furnished by Euler’s method for the
initial-value problem

y′ = y, y(0) = 1.

(a) One has η(x;h) = (1 + h)x/h.
(b) Show that η(x;h) has the expansion

η(x;h) =
∞∑

i=0

τi(x)hi with τ0(x) = ex,

which converges for |h| < 1; the τi(x) here are analytic functions inde-
pendent of h.

608 7 Ordinary Differential Equations

(c) Determine τi(x) for i = 1, 2, 3.
(d) The τi(x), i ≥ 1, are the solutions of the initial-value problems

τ ′
i(x) = τi(x) −

i∑
k=1

τk+1
i−k (x)

(k + 1)!
, τi(0) = 0.

6. Show that the modified Euler method furnishes the exact solution of the
differential equation y′ = −2ax.

7. Show that the one-step method given by

Φ(x, y;h) := 1
6 [k1 + 4k2 + k3],

k1 := f(x, y),

k2 := f
(
x+

h

2
, y +

h

2
k1

)
,

k3 := f(x+ h, y + h(−k1 + 2k2))

(“simple Kutta formula”) is of third order.

8. Consider the one-step method given by

Φ(x, y;h) := f(x, y) +
h

2
g(x+ 1

3h, y + 1
3hf(x, y)),

where

g(x, y) :=
∂

∂x
f(x, y) +

(
∂

∂y
f(x, y)

)
· f(x, y).

Show that it is a method of order 3.

9. What does the general solution of the difference equation

uj+2 = uj+1 + uj , j ≥ 0,

look like? (For u0 = 0, u1 = 1 one obtains the “Fibonacci sequence”.)

10. In the methods of Adams-Moulton type, given approximate values ηp−(q−1),
. . . , ηp for y(xp−(q−1)), . . . , y(xp), one computes an approximate value
ηp+1 for y(xp+1), xp+1 ∈ [a, b], through the following iterative process [see
(7.2.6.7)]:

η
(0)
p+1 arbitrary;

for i = 0, 1, . . . :

η
(i+1)
p+1 := Ψ(η(i)

p+1) := ηp + h[βq0f(xp+1, η
(i)
p+1) + βq1fp + · · · +

+βqqfp+1−q].

Show: For f ∈ F1(a, b) there exists an h0 > 0 such that for all |h| ≤ h0 the
sequence {η(i)

p+1} converges toward an ηp+1 with ηp+1 = Ψ(ηp+1).

11. Use the error estimates for interpolation by polynomials, or for Newton-Cotes
formulas, to show that the Adams-Moulton method for q = 2 is of third order
and the Milne method for q = 2 of fourth order.

Exercises for Chapter 7 609

12. For q = 1 and q = 2 determine the coefficients βqi in Nyström’s formulas

ηp+1 = ηp−1 + h[β10fp + β11fp−1],
ηp+1 = ηp−1 + h[β20fp + β21fp−1 + β22fp−2].

13. Check whether or not the linear multistep method

ηp − ηp−4 =
h

3
[8fp−1 − 4fp−2 + 8fp−3]

is convergent.

14. Let Ψ(1) = 0, and assume that for the coefficients in

Ψ(µ)
µ− 1

= γr−1µ
r−1 + γr−2µ

r−2 + · · · + γ1µ+ γ0

one has |γr−1| > |γr−2| ≥ · · · ≥ |γ0|. Does Ψ(µ) satisfy the stability condi-
tion?

15. Determine α, β and γ such that the linear multistep method

ηj+4 − ηj+2 + α(ηj+3 − ηj+1) = h[β(fj+3 − fj+1) + γfj+2]

has order 3. Is the method thus found stable?

16. Consider the predictor method given by

ηj+2 + a1ηj+1 + a0ηj = h[b0f(xj , ηj) + b1f(xj+1, ηj+1)].

(a) Determine a0, b0 and b1 as a function of a1 such that the method has
order at least 2.

(b) For which a1-values is the method thus found stable?
(c) What special methods are obtained for a1 = 0 and a1 = −1?
(d) Can a1 be so chosen that there results a stable method of order 3?

17. Suppose the method

ηj+2 + 9ηj+1 − 10ηj =
h

2
[13fj+1 + 9fj]

is applied to the initial-value problem

y′ = 0, y(0) = c.

Let the starting values be η0 = c and η1 = c+eps (eps = machine precision).
What values ηj are to be expected for arbitrary stepsize h?

18. For the solution of the boundary-value problem

y′′ = 100y, y(0) = 1, y(3) = e−30,

consider the initial-value problem

y′′ = 100y, y(0) = 1, y′(0) = s,

610 7 Ordinary Differential Equations

with solution y(x; s), and determine s = s̄ iteratively such that y(3; s̄) = e−30.
Assume further that s̄ is computed only within a relative error ε, i.e., instead
of s̄ one obtains s̄(1+ε). How large is y(3; s̄(1+ε))? In this case, is the simple
shooting method (as described above) a suitable method for the solution of
the boundary-value problem?

19. Consider the initial-value problem

y′ = κ(y + y3), y(0) = s.

(a) Determine the solution y(x; s) of this problem.
(b) In which x-neighborhood Us(0) of 0 is y(x; s) defined?
(c) For a given b �= 0 find a k > 0 such that y(b; s) exists for all |s| < k.

20. Show that assumption (3) of Theorem (7.3.3.4) in the case n = 2 is not
satisfied for the boundary conditions

y1(a) = c1, y1(b) = c2.

21. Show that the matrix E := A + BGm−1 · · ·G1 in (7.3.5.10) is nonsingular
under the assumptions of Theorem (7.3.3.4).
Hint: E = P0(I +H), H = M + P−1

0 Dvr · (Z − I).

22. Show by an error analysis (backward analysis) that the solution vector of
(7.3.5.10), (7.3.5.9), subject to rounding errors, can be interpreted as the
exact result of (7.3.5.8) with slightly perturbed right-hand sides F̃j and per-
turbed last equation

(A+ E1)∆s1 + E2∆s2 + · · · + Em−1∆sm−1 + (B + Em)∆sm = −F̃m,

lub(Ej) small.

23. Let DF (s) be the matrix in (7.3.5.5). Prove:

det(DF (s)) = det(A+BGm−1 · · ·G1).

For the inverse (DF (s))−1 find explicitly a decomposition in block matrices
R, S, T :

(DF (s))−1 = RST

with S block-diagonal, R unit lower block triangular, and S, T chosen so
that ST ·DF (s) is unit lower block triangular.

24. Let ∆ ∈ IRn be arbitrary. Prove: If ∆s1 := ∆ and ∆sj , j = 2, . . . , m, is
obtained from (7.3.5.9), then

∆s =

 ∆s1
...

∆sm

satisfies

(DF (s) · F)T∆s = −FTF + FT
m((A+BGm−1 · · ·G1)∆− w).

Thus, if ∆ is a solution of (7.3.5.10), then always

Exercises for Chapter 7 611

(DF (s) · F)T∆s < 0.

25. Consider the boundary-value problem (y(x) ∈ IRn)

y′ = f(x, y)

with the separated boundary conditions

y1(a) − α1

...
yk(a) − αk

yk+1(b) − βk+1

...
yn(b) − βn

 = 0.

There are thus k initial values and n−k terminal values which are known. The
information can be used to reduce the dimension of the system of equations
(7.3.5.8) (k components of ∆s1 and n− k components of ∆sm are zero). For
m = 3 construct the system of equations for the corrections ∆si. Integrate
(using the given information) from x1 = a to x2 as well as from x3 = b to x2
(“counter shooting”; see Figure 31).

�
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��

��

�
�
�
��
�
��
�
��
�
�
����
��
�
���
��
��
����

��
��
�
���
��
��
����

�������������������������������

�����
����
���
���
�

�
�
��
�
��
�

�
�
��
�
��
�

���� �� ����

Æ

Æ

������������������������
�����������������������

������������������������������
�����������������������������������

���
����������������������������

������������������������
�����������������

��

�����������������������
������������

���������������������
��

������������

�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��
�����
��

Fig. 31. Counter shooting.

26. The steady concentration of a substrate in a sperical cell of radius 1 in an
enzyme catalyzed reaction is described by the solution y(x;α) of the following
singular boundary-value problem [cf. Keller (1968)]:

y′′ = −2y′′

x
+

y

α(y + k)
,

y′(0) = 0, y(1) = 1,

α, k : parameters, k = 0.1, 10−3 ≤ α ≤ 10−1. Altough f is singular at
x = 0, there exists a solution y(x) which is analytic for small |x|. In spite
of this, every numerical integration method fails near x = 0. Help yourself
as follows: By using the symmetries of y(x), expand y(x) as in Example 2,
Section 7.3.6, into a Taylor series about 0 up to and including the term x6;

612 7 Ordinary Differential Equations

thereby express all coefficients in terms of λ := y(0). By means of p(x;λ) =
y(0) + y′(0)x+ · · · + y(6)(0)x6/6! one obtains a modified problem

(∗)
y′′ = F (x, y, y′) =

 d2p(x;λ)
dx2 for 0 ≤ x ≤ 10−2,

f(x, y, y′) for 10−2 < x ≤ 1,

y(0) = λ, y′(0) = 0, y(1) = 1,

which is better suited for numerical solution. Consider (∗) an eigenvalue
problem for the eigenvalue λ, and formulate (∗) as in Section 7.3.0 as a
boundary-value problem (without eigenvalue). For checking purposes we give
the derivatives:

y(0) = λ, y(2)(0) =
λ

3α(λ+ k)
, y(4)(0) =

kλ

5α2(λ+ k)3
,

y(6)(0) =
(3k − 10λ)kλ
21α3(λ+ k)5

, y(i)(0) = 0 for i = 1, 3, 5.

27. Consider the boundary-value problem

y′′ − p(x)y′ − q(x)y = r(x), y(a) = α, y(b) = β

with q(x) ≥ q0 > 0 for a ≤ x ≤ b. We are seeking approximate values ui for
the exact values y(xi), i = 1, 2, . . . , n, at xi = a + ih, h = (b − a)/(n + 1).
Replacing y′(xi) by (ui+1 − ui−1)/2h and y′′(xi) by (ui−1 − 2ui + ui+1)/h2

for i = 1, 2, . . . , n, and putting u0 = α, un+1 = β, one obtains from the
differential equation a system of equations for the vector u = [u1, . . . , un]T

Au = k, A an n× n-matrix, k ∈ IRn.

(a) Determine A and k.
(b) Show that the system of equations is uniquely solvable for h sufficiently

small.

28. Consider the boundary-value problem

y′′ = g(x), y(0) = y(1) = 0,

with g ∈ C[0, 1].
(a) Show:

y(x) =
∫ 1

0

G(x, ξ)g(ξ)dξ

with
G(x, ξ) :=

{
ξ(x− 1) for 0 ≤ ξ ≤ x ≤ 1,
x(ξ − 1) for 0 ≤ x ≤ ξ ≤ 1.

(b) Replacing g(x) by g(x) +∆g(x) with |∆g(x)| ≤ ε for all x, the solution
y(x) changes to y(x) +∆y(x). Prove:

|∆y(x)| ≤ ε

2
x(1 − x) for 0 ≤ x ≤ 1.

References for Chapter 7 613

(c) The difference method described in Secion 7.4 yields the system of equa-
tions [see (7.4.6)]

Au = k,

the solution vector u = [u1, . . . , un]T of which provides approximate
values ui for y(xi), xi = i/(n + 1) and i = 1, 2, . . . , n. Replacing k by
k+∆k with |∆ki| ≤ ε, i = 1, 2, . . . , n, the vector u changes to u+∆u.
Show:

|∆ui| ≤ ε

2
xi(1 − xi), i = 1, 2, . . . , n.

29. Let
D := {u | u(0) = 0, u ∈ C2[0, 1] }

and

F (u) :=
∫ 1

0

{ 1
2 (u′(x))2 + f(x, u(x))} dx+ p(u(1))

with u ∈ D, fuu(x, u) ≥ 0, p′′(u) ≥ 0. Prove: If y(x) is solution of

y′′ − fu(x, y) = 0, y(0) = 0, y′(1) + p′(y(1)) = 0,

then
F (y) < F (u), u ∈ D, u �= y,

and vice versa.

30.
(a) Let T be a triangle in IR2 with the vertices P1, P3 and P5; let further

P2 ∈ P1P3, P4 ∈ P3P5, and P6 ∈ P5P1 be different form P1, P3, P5. Then
for arbitrary real numbers y1, . . . , y6 there exists exactly one polynomial
of degree at most 2,

u(x1, x2) =
∑

0≤j+k≤2

ajkx
j
1x

k
2 ,

which assumes the values yi at the points Pi, i = 1, . . . , 6.
Hint: It evidently suffices to show this for a single triangle with suitably
chosen coordinates.

(b) Is the statement analogous to (a) valid for arbitrary position of the Pi?
(c) Let T1, T2 be two triangles of a triangulation with a common side g and

u1, u2 polynomials of degree at most 2 on T1 and T2, respectively. Show:
If u1 and u2 agree in three distinct points of g, then u2 is a continuous
extension of u1 onto T2 (i.e., u1 and u2 agree on all of g).

References for Chapter 7

Babuška, I., Prager, M., Vitásek, E. (1966): Numerical Processes in Differential
Equations. New York: Interscience.

Bader, G., Deuflhard, P. (1983): A semi-implicit midpoint rule for stiff systems
of ordinary systems of differential equations. Numer. Math. 41, 373–398.

614 7 Ordinary Differential Equations

Bank, R. E., Bulirsch, R., Merten, K. (1990): Mathematical modelling and sim-
ulation of electrical circuits and semiconductor devices. ISNM. 93, Basel:
Birkhäuser.

Bock, H.G., Schlöder, J.P., Schulz, V.H. (1995): Numerik großer Differentiell-
Algebraischer Gleichungen: Simulation und Optimierung, p. 35-80 in: Schu-
ler, H. (ed.) Prozeßsimulation, Weinheim: VCH.

Boyd, J. P. (1989): Chebyshev and Fourier Spectral Methods. Berlin, Heidelberg,
New York: Springer-Verlag.

Broyden, C.G. (1967): Quasi-Newton methods and their application to function
minimization. Math. Comp. 21, 368–381.

Buchauer, O., Hiltmann, P., Kiehl, M. (1994): Sensitivity analysis of initial-value
problems with application to shooting techniques. Numerische Mathematik 67,
151–159.

Bulirsch, R. (1971): Die Mehrzielmethode zur numerischen Lösung von nichtlin-
earen Randwertproblemen und Aufgaben der optimalen Steuerung. Report der
Carl-Cranz-Gesellschaft.

, Stoer, J. (1966): Numerical treatment of ordinary differential equations
by extrapolation methods. Numer. Math. 8, 1–13.

Butcher, J. C. (1964): On Runge-Kutta processes of high order. J. Austral. Math.
Soc. 4, 179–194.

Byrne, D. G., Hindmarsh, A. C. (1987): Stiff o.d.e.-solvers: A review of current
and coming attractions. J. Comp. Phys. 70, 1–62.

Callies, R. (2000): Design Optimization and Optimal Control. Differential-Alge-
braic Systems, Multigrid Multiple-Shooting Methods and Numerical Realiza-
tion. Habilitation Thesis, Technische Universität München.

(2000a): Efficient Treatment of Experimental Data in Integrate Design
Optimization. In: Advances in Computational Engineering & Sciences (S. N.
Atluri, F. W. Brust, Eds.), pp. 1188-1193. Palmdale/CA: Tech Science Press, .

(2001): Optimized Runge-Kutta Methods forLinear Differential Equa-
tions. Submitted to: J. Appl. Math. Comp.

(2001a): Multidimensional Stepsize Control. ZAMM 81 S3, 743–744.
Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A. (1987): Spectral Methods

in Fluid Dynamics. Berlin, Heidelberg, New York: Springer-Verlag.
Caracotsios, M., Stewart, W.E. (1985): Sensitivity analysis of initial value prob-

lems with mixed ODEs and algebraic equations. Computers and Chemical En-
gineering 9, 359–365.

Ciarlet, P. G., Lions, J. L., Eds. (1991): Handbook of Numerical Analysis. Vol.
II. Finite Element Methods (Part 1). Amsterdam: North Holland.

, Schultz, M. H., Varga, R. S. (1967): Numerical methods of high order
accuracy for nonlinear boundary value problems. Numer. Math. 9, 394–430.

, Wagschal, C. (1971): Multipoint Taylor formulas and applications to the
finite element method. Numer. Math. 17, 84–100.

Clark, N. W. (1968): A study of some numerical methods for the integration
of systems of first order ordinary differential equations. Report ANL-7428.
Argonne National Laboratories.

Coddington, E. A., Levinson, N. (1955): Theory of Ordinary Differential Equa-
tions. New York: McGraw-Hill.

Collatz, L. (1960): The Numerical Treatment of Differential Equations. Berlin,
Göttingen, Heidelberg: Springer-Verlag.

(1966): Functional Analysis and Numerical Mathematics. New York: Aca-
demic Press.

References for Chapter 7 615

Crane, P.J., Fox, P.A. (1969): A comparative study of computer programs for
integrating differential equations. Num. Math. Computer Program library one
– Basic routines for general use. Vol. 2, issue 2. New Jersey: Bell Telephone
Laboratories Inc.

Dahlquist, G. (1956): Convergence and stability in the numerical integration of
ordinary differential equations. Math. Scand. 4, 33–53.

(1959): Stability and error bounds in the numerical integration of ordi-
nary differential equations. Trans. Roy. Inst. Tech. (Stockholm), No. 130.

(1963): A special stability problem for linear multistep methods. BIT 3,
27–43.

Deuflhard, P. (1979): A stepsize control for continuation methods and its special
application to multiple shooting techniques. Numer. Math. 33, 115–146.

, Hairer, E., Zugck, J. (1987): One-step and extrapolation methods for
differential-algebraic systems. Numer. Math. 51, 501–516.

Diekhoff, H.-J., Lory, P., Oberle, H. J., Pesch, H.-J., Rentrop, P., Seydel, R.
(1977): Comparing routines for the numerical solution of initial value problems
of ordinary differential equations in multiple shooting. Numer. Math. 27, 449–
469.

Dormand, J. R., Prince, P. J. (1980): A family of embedded Runge-Kutta formu-
lae. J. Comp. Appl. Math. 6, 19–26.

Eich, E. (1992): Projizierende Mehrschrittverfahren zur numerischen Lösung von
Bewegungsgleichungen technischer Mehrkörpersysteme mit Zwangsbedingun-
gen und Unstetigkeiten. Fortschritt-Berichte VDI, Reihe 18, Nr. 109, VDI-
Verlag, Düsseldorf.

Engl, G., Kröner, A., Kronseder, T., von Stryk, O. (1999): Numerical Simulation
and Optimal Control of Air Separation Plants, pp. 221–231 in: Bungartz, H.-
J., Durst, F., Zenger, Chr.(eds.): High Performance Scientific and Engineering
Computing, Lecture Notes in Computational Science and Engineering Vol. 8,
New York: Springer-Verlag.

Enright, W. H., Hull, T. E., Lindberg, B. (1975): Comparing numerical methods
for stiff systems of ordinary differential equations.BIT 15, 10–48.

Fehlberg, E. (1964): New high-order Runge-Kutta formulas with stepsize control
for systems of first- and second-order differential equations. Z. Angew. Math.
Mech. 44, T17–T29.

(1966): New high–order Runge–Kutta formulas with an arbitrary small
truncation error. Z. Angew. Math. Mech. 46, 1–16.

(1969): Klassische Runge–Kutta Formeln fünfter und siebenter Ordnung
mit Schrittweiten–Kontrolle. Computing 4, 93–106.

(1970): Klassische Runge-Kutta Formeln vierter und niedrigerer Ordnung
mit Schrittweiten-Kontrolle und ihre Anwendung auf Wärmeleitungsprobleme.
Computing 6, 61–71.

Galán, S., Feehery, W.F., Barton, P.I. (1998): Parametric sensitivity functions for
hybrid discrete/continuous systems. Preprint submitted to Applied Numerical
Mathematics.

Gantmacher, F. R. (1969): Matrizenrechnung II. Berlin: VEB Deutscher Verlag
der Wissenschaften.

Gear, C. W. (1971): Numerical initial value problems in ordinary differential
equations. Englewood Cliffs, N.J.: Prentice-Hall.

(1988): Differential algebraic equation index transformations. SIAM J.
Sci. Statist. Comput. 9, 39–47.

, Petzold, L. R. (1984): ODE methods for the solution of differen-
tial/algebraic systems. SIAM J. Numer. Anal. 21, 716–728.

616 7 Ordinary Differential Equations

Gill, P.E., Murray, W., Wright, H.M. (1995): Practical Optimization, 10th print-
ing. London: Academic Press.

Gottlieb, D., Orszag, S. A. (1977): Numerical Analysis of Spectral Methods: The-
ory and Applications. Philadelphia: SIAM.

Gragg, W. (1963): Repeated extrapolation to the limit in the numerical solution
of ordinary differential equations. Thesis, UCLA.

(1965): On extrapolation algorithms for ordinary initial value problems.
J. SIAM Numer. Anal. Ser. B 2, 384–403.

Griepentrog, E., März, R. (1986): Differential-Algebraic Equations and Their Nu-
merical Treatment. Leipzig: Teubner.

Grigorieff, R.D. (1972, 1977): Numerik gewöhnlicher Differentialgleichungen 1, 2.
Stuttgart: Teubner.

Hairer, E., Lubich, Ch. (1984): Asymptotic expansions of the global error of fixed
stepsize methods. Numer. Math. 45, 345–360.

, , Roche, M. (1989): The numerical solution of differential-
algebraic systems by Runge-Kutta methods. In: Lecture Notes in Mathematics
1409. Berlin, Heidelberg, New York: Springer-Verlag.

, Nørsett, S. P., Wanner, G. (1993): Solving Ordinary Differential Equa-
tions I. Nonstiff Problems. 2nd ed., Berlin, Heidelberg, New York: Springer-
Verlag.

, Wanner, G. (1991): Solving Ordinary Differential Equations II. Stiff
and Differential-Algebraic Problems. Berlin, Heidelberg, New York: Springer-
Verlag.

Heim, A., von Stryk, O. (1996): Documentation of parest — A multiple shooting
code for optimization problems in differential-algebraic equations. Technical
Report M9616, Fakultät für Mathematik, Technische Universität München.

Henrici, P. (1962): Discrete Variable Methods in Ordinary Differential Equations.
New York: John Wiley.

Hestenes, M. R. (1966): Calculus of Variations and Optimal Control Theory. New
York: John Wiley.

Heun, K. (1900): Neue Methode zur approximativen Integration der Differential-
gleichungen einer unabhängigen Variablen. Z. Math. Phys. 45, 23–38.

Hiltmann, P. (1990): Numerische Lösung von Mehrpunkt-Randwertproblemen
und Aufgaben der optimalen Steuerung mit Steuerfunktionen über endlichdi-
mensionalen Räumen. PhD Thesis, Mathematisches Institut, Technische Uni-
versität München.

Horneber, E. H. (1985): Simulation elektrischer Schaltungen auf dem Rechner.
Fachberichte Simulation, Bd. 5. Berlin, Heidelberg, New York: Springer-Verlag.

Hull, T. E., Enright, W. H., Fellen, B. M., Sedgwick, A. E. (1972): Comparing
numerical methods for ordinary differential equations. SIAM J. Numer. Anal.
9, 603–637. [Errata, ibid. 11, 681 (1974).]

Isaacson, E., Keller, H. B. (1966): Analysis of Numerical Methods. New York:
John Wiley.

Kaps, P., Rentrop, P. (1979): Generalized Runge–Kutta methods of order four
with stepsize control for stiff ordinary differential equations. Numer. Math. 33,
55–68.

Keller, H. B. (1968): Numerical Methods for Two-Point Boundary-Value Prob-
lems. London: Blaisdell.

Kiehl, M. (1999): Sensitivity analysis of ODEs and DAEs — theory and imple-
mentation guide. Optimization Methods and Software 10,803–821.

References for Chapter 7 617

Krogh, F. T. (1974): Changing step size in the integration of differential equations
using modified divided differences. In: Proceedings of the Conference on the
Numerical Solution of Ordinary Differential Equations, 22–71. Lecture Notes
in Mathematics 362. Berlin, Heidelberg, New York: Springer-Verlag.

Kutta, W. (1901): Beitrag zur näherungsweisen Integration totaler Differential-
gleichungen. Z. Math. Phys. 46, 435–453.

Lambert, J. D. (1973): Computational Methods in Ordinary Differential Equa-
tions. London-New York-Sidney-Toronto: John Wiley.

Leis, J.R., Kramer, M.A. (1985): Sensitivity analysis of systems of differential
and algebraic equations. Computers and Chemical Engineering 9, 93–96.

Morrison, K.R., Sargent, R.W.H. (1986): Optimization of multistage processes
described by differential-algebraic equations, pp. 86–102 in: Lecture Notes in
Mathematics 1230. New York: Springer-Verlag.

Na, T. Y., Tang, S. C. (1969): A method for the solution of conduction heat
transfer with non-linear heat generation. Z. Angew. Math. Mech. 49, 45–52.

Oberle, H. J., Grimm, W. (1989): bndsco — A program for the numerical solu-
tion of optimal control problems. Internal Report No. 515-89/22, Institute for
Flight Systems Dynamics, DLR, Oberpfaffenhofen, Germany.

Oden, J. T., Reddy, J. N. (1976): An Introduction to the Mathematical Theory of
Finite Elements. New York: John Wiley.

Osborne, M. R. (1969): On shooting methods for boundary value problems. J.
Math. Anal. Appl. 27, 417–433.

Petzold, L. R. (1982): A description of dassl — A differential algebraic system
solver. IMACS Trans. Sci. Comp. 1, 65ff., Ed. H. Stepleman. Amsterdam:
North Holland.

Quarteroni, A., Valli, A. (1994): Numerical Approximation of Partial Differential
Equations. Berlin, Heidelberg, New York: Springer-Verlag.

Rentrop, P. (1985): Partitioned Runge-Kutta methods with stiffness detection
and stepsize control. Numer. Math. 47, 545–564.

, Roche, M., Steinebach, G. (1989): The application of Rosenbrock-
Wanner type methods with stepsize control in differential-algebraic equations.
Numer. Math. 55, 545–563.

Rozenvasser, E. (1967): General sensitivity equations of discontinuous systems.
Automation and Remote Control 28, 400–404

Runge, C. (1895): Über die numerische Auflösung von Differentialgleichungen.
Math. Ann. 46, 167–178.

Schwarz, H. R. (1981): fortran-Programme zur Methode der finiten Elemente.
Stuttgart: Teubner.

, (1988): Finite Element Methods. London-New York: Academic Press.
Shampine, L. F., Gordon, M. K. (1975): Computer Solution of Ordinary Dif-

ferential Equations. The Initial Value Problem. San Francisco: Freeman and
Company.

, Watts, H. A., Davenport, S. M. (1976): Solving nonstiff ordinary differ-
ential equations – The state of the art. SIAM Review 18, 376–411.

Shanks, E. B. (1966): Solution of differential equations by evaluation of functions.
Math. Comp. 20, 21–38.

Stetter, H. J. (1973): Analysis of Discretization Methods for Ordinary Differential
Equations. Berlin, Heidelberg, New York: Springer-Verlag .

Strang, G., Fix, G. J. (1973): An Analysis of the Finite Element Method. Engle-
wood Cliffs, N.J.: Prentice-Hall.

Troesch, B. A. (1960): Intrinsic difficulties in the numerical solution of a boundary
value problem. Report NN-142, TRW, Inc. Redondo Beach, CA.

618 7 Ordinary Differential Equations

(1976): A simple approach to a sensitive two-point boundary value prob-
lem. J. Computational Phys. 21, 279–290.

Wilkinson, J. H. (1982): Note on the practical significance of the Drazin Inverse.
In: L.S. Campbell, Ed. Recent Applications of Generalized Inverses. Pitman
Publ. 66, 82–89.

Willoughby, R. A. (1974): Stiff Differential Systems. New York: Plenum Press.
Zlámal, M. (1968): On the finite element method. Numer. Math. 12, 394–409.

8 Iterative Methods for the Solution of
Large Systems of Linear Equations.
Additional Methods

8.0 Introduction

Many applications require the solution of very large systems of linear equa-
tions Ax = b in which the matrix A is fortunately sparse, i.e., has only rel-
atively few nonzero elements. Such systems arise, for instance, if difference
methods or finite element methods are being used for solving boundary
value problems in partial differential equations. The classical elimination
methods [see Chapter 4] are not suitable in this context since they tend to
lead to the formation of dense intermediate matrices, making the number of
arithmetic operations necessary for the solution too large even for present-
day computers, not to mention the fact that the memory requirements for
such intermediate matrices exceed available space.

For these reasons, researchers have long since moved to iterative meth-
ods for solving such systems of equations. These methods start with an
initial vector x(0) and subsequently generate a sequence of vectors

x(0) → x(1) → x(2) → · · ·

which converge toward the desired solution x. A common feature of all these
methods is the fact that the effort required for an individual iteration step
x(i) → x(i+1) is essentially equal to that of multiplying a vector by the
matrix A — a very modest effort provided A is sparse. Therefore, one can
still carry out a relatively large number of iterations with a reasonable
amount of effort. This is necessary for the reason alone that these methods
converge only linearly, and sometimes very slowly at that. Iterative methods
are therefore usually inferior to elimination methods if A is small (a 100 ×
100 matrix is small in this sense) or not sparse.

Somewhat outside of this framework lie the so-called method of iterative
refinement [see (8.1.9)–(8.1.11)] and the Krylov space methods [see Section
8.7]. Iterative refinement is used frequently to iteratively improve the accu-
racy of an approximate solution x̃ of a system of equations which has been
obtained by an elimination method using machine arithmetic.

The general characteristics of iterative methods, stated above, also ap-
ply to Krylov space methods, with the one exception that these methods, in

620 8 Iterative Methods for the Solution of Systems of Linear Equations

exact arithmetic, terminate with the exact solution x after a finite number
of steps. They generate iterates xk that approximate the solution of Ax = b
best among all vectors belonging to a Krylov space of dimension k. We de-
scribe four methods of this type: the classical conjugate-gradient method
(cg-method) of Hestenes and Stiefel (1952) for systems of equations with
a positive definite matrix A [see Section 8.7.1], and, for systems with an
arbitrary nonsingular A, the GMRES-method of Saad and Schultz (1986)
[see Section 8.7.2], a simplified version of the QMR-method of Freund and
Nachtigal (1991) [Section 8.7.3], and the Bi-CGSTAB algorithm of van der
Vorst (1992) [Section 8.7.4]. These methods have the advantage that they
do not depend on additional parameters (as other methods do), the proper
choice of which is often difficult. With regard to the applicability of Krylov
space methods, however, the same remarks apply as for the true iterative
methods. For this reason, we include these methods in the present chapter.

A detailed treatment of iterative methods can be found in the new
edition of the classical book by Varga (2000), and also in Young (1971)
and Axelsson (1994); Krylov space methods are described in depth in Saad
(1996).

For the solution of certain special systems of equations arising with the
solution of the so-called model problem (the Poisson problem on a rect-
angle) there are some direct methods which give the solution after finitely
many steps and are superior to (most) iterative methods. Two such meth-
ods are the algorithm of Buneman (1969), and Fourier methods that use the
FFT-algorithm of trigonometric interpolation. Both methods are described
in Section 8.8.

Nowadays, the very large systems of equations connected with the so-
lution of boundary-value problems of partial differential equations by finite
element techniques are mainly solved by multigrid methods. We describe in
Section 8.9 only concepts of these important iterative methods, using the
context of a boundary value problem for ordinary differential equation. For
thorough treatments of multigrid methods, which are closely connected to
the numerics of partial differential equations, we refer the reader to the vast
special literature on this subject, e.g. to Hackbusch (1985), Braess (1997),
Bramble (1993), Quarteroni and Valli (1997).

It should be pointed out that elimination techniques for solving linear
systems Ax = b have also been modified in various ways to handle large
sparse matrices A. These techniques concern themselves with appropri-
ate ways of storing such matrices, and with the determination of suitable
permutation matrices P1, P2 such that in the application of elimination
methods to the equivalent system P1AP2y = P1b, y = P−1

2 x, the interme-
diate matrices generated remain as sparse as possible. Basic methods of
this type were described in Section 4.12. For a relevant exposition, we refer
the reader to the literature cited there, and in addition to George (1973),
who proposed a particularly useful technique for handling the linear equa-

8.1 General Procedures for the Construction of Iterative Methods 621

tions arising from the application of finite element techniques to partial
differential equations.

8.1 General Procedures for the Construction of
Iterative Methods

Let a nonsingular n×n matrix A be given, and a system of linear equations

(8.1.1) Ax = b

with the exact solution x := A−1b. We consider iterative methods of the
form [cf. Chapter 5]

(8.1.2) x(i+1) = Φ(x(i)), i = 0, 1,

With the help of an arbitrary nonsingular n × n matrix B such iteration
algorithms can be obtained from the equation

Bx+ (A−B)x = b,

by putting

(8.1.3) Bx(i+1) + (A−B)x(i) = b,

or solved for x(i+1),

(8.1.4) x(i+1) = x(i) −B−1(Ax(i) − b) = (I −B−1A)x(i) +B−1b.

Such iteration methods, in this generality, were first considered by Witt-
meyer (1936).

Note that (8.1.4) is identical with the following special vector iteration
[see Section 6.6.3]:[

1
x(i+1)

]
= W

[
1
x(i)

]
, W :=

[
1 0

B−1b I −B−1A

]
,

where the matrix W of order n + 1, in correspondence to the eigenvalue
λ0 := 1, has the left eigenvector [1, 0] and the right eigenvector

[1
x

]
, x :=

A−1b. According to the results of Section 6.6.3, the sequence
[1
x(i)

]
will

converge to
[1
x

]
only if λ0 = 1 is a simple dominant eigenvalue of W , i.e., if

λ0 = 1 > |λ1| ≥ · · · ≥ |λn|,

the remaining eigenvalues λ1, . . . , λn of W (these are the eigenvalues of
I −B−1A) being smaller in absolute value than 1.

622 8 Iterative Methods for the Solution of Systems of Linear Equations

Each choice of a nonsingular matrix B leads to a potential iterative
method (8.1.4). The better B satisfies the following conditions, the more
useful the method will be:

(1) the system of equations (8.1.3) is easily solved for x(i+1),

(2) the eigenvalues of I−B−1A have moduli which are as small as possible.

The better B agrees with A, the more likely the latter will be true.
These questions of optimality and convergence will be examined in the next
sections. Here, we only wish to indicate a few important special iterative
methods (8.1.3) obtained by simple choices of B. We introduce, for this
purpose, the following standard decomposition of A:

(8.1.5) A = D − E − F,

with

D =

 a11 0
. . .

0 ann

 ,

E = −

0 0

a21 0
...

.
an1 · · · an,n−1 0

 , F = −

0 a12 · · · a1n

0 . . .
...

. . . an−1,n
0 0

 ,
as well as the abbreviations

(8.1.6) L := D−1E, U := D−1F, J := L+ U, H := (I − L)−1U,

assuming aii �= 0 for i = 1, 2, . . . , n.

(1) In the Jacobi method or total-step method one chooses

(8.1.7) B := D, I −B−1A = J.

One thus obtains for (8.1.3)

ajjx
(i+1)
j +

∑
k
=j

ajkx
(i)
k = bj , j = 1, 2, . . . , n, i = 0, 1, . . . ,

where x(i) := [x(i)
1 , . . . , x

(i)
n]T .

(2) In the Gauss-Seidel method or single-step method one chooses

(8.1.8) B := D − E, I −B−1A = (I − L)−1U = H.

One thus obtains for (8.1.3)

8.2 Convergence Theorems 623∑
k<j

ajkx
(i+1)
k + ajjx

(i+1)
j +

∑
k>j

ajkx
(i)
k = bj ,

j = 1, 2, . . . , n, i = 0, 1,

(3) The method of iterative refinement is a special case in itself. Here, the
following situation is assumed. As the result of an elimination method for
the solution of Ax = b one obtains, owing to rounding errors, a (generally)
good approximate solution x(0) for the exact solution x and a lower and up-
per triangular matrix L̄ and R̄, respectively, such that L̄ R̄ ≈ A [see Section
4.5]. The approximate solution x(0) can then subsequently be improved by
means of an iterative method of the form (8.1.3), choosing

B := L̄ R̄.

(8.1.3) is equivalent to

(8.1.9) B
(
x(i+1) − x(i)) = r(i)

with the residual
r(i) := b−Ax(i).

From (8.1.9) it then follows that

(8.1.10) x(i+1) = x(i) + u(i), u(i) := R̄−1L̄−1r(i).

Note that u(i) can be simply computed by solving the triangular systems
of equations

(8.1.11) L̄z = r(i), R̄u(i) = z.

In general (if A is not too ill conditioned), the method converges extremely
fast. Already x(1) or x(2) agrees with the exact solution x to machine ac-
curacy. Since, precisely for this reason, there occurs severe cancellation in
the computation of the residuals r(i) = b−Ax(i), it is extremely important
for the proper functioning of the method that the computation of r(i) be
done in double precision. For the subsequent computation of z, u(i), and
x(i+1) = x(i) + u(i) from (8.1.11) and (8.1.10), double precision is not re-
quired. [Programs and numerical examples for iterative refinement can be
found in Wilkinson and Reinsch (1971), and in Forsythe and Moler (1967)].

8.2 Convergence Theorems

The iterative methods considered in (8.1.3), (8.1.4) produce from each ini-
tial vector x(0) a sequence of vectors {x(i)}i=0,1,.... We now call the method
convergent if for all initial vectors x(0) this sequence {x(i)}i=0,1,... converges

624 8 Iterative Methods for the Solution of Systems of Linear Equations

toward the exact solution x = A−1b. By ρ(C) we again denote in the fol-
lowing the spectral radius [see Section 6.9] of a matrix C. We can then
state the following convergence criterion:

(8.2.1) Theorem.

(a) The method (8.1.3) converges if and only if ρ(I −B−1A) < 1.
(b) It is sufficient for convergence of (8.1.3) that lub(I −B−1A) < 1.

Here lub(·) can be taken relative to any norm.

Proof. (a): For the error fi := x(i) − x, from

x(i+1) = (I −B−1A)x(i) +B−1b,

x = (I −B−1A)x+B−1b,

we immediately obtain by subtraction the recurrence formula

fi+1 = (I −B−1A)fi,

or

(8.2.2) fi = (I −B−1A)if0, i = 0, 1,

(1) Assume now (8.1.3) is convergent. Then we have limi→∞ fi = 0 for
all f0. Choosing in particular f0 to be an eigenvector of I − B−1A
corresponding to the eigenvalue λ, it follows from (8.2.2) that

(8.2.3) fi = λif0,

and hence |λ| < 1, since limi→∞ fi = 0. Therefore, ρ(I −B−1A) < 1.

(2) If, conversely, ρ(I −B−1A) < 1, it follows immediately from Theorem
(6.9.2) that limi→∞(I−B−1A)i = 0 and thus limi→∞ fi = 0 for all f0.

(b): For arbitrary norms one has ρ(I − B−1A) ≤ lub(I − B−1A) [see
Theorem (6.9.1)]. This proves the theorem. ��

Theorem (8.2.1) suggests the conjecture that the rate of convergence is
larger the smaller ρ(I −B−1A). The statement can be made more precise.

(8.2.4) Theorem. For the method (8.1.3) the errors fi = x(i) − x satisfy

(8.2.5) sup
f0
=0

lim sup
i→∞

i

√
‖fi‖
‖f0‖

= ρ
(
I −B−1A

)
.

Here ‖ · ‖ is an arbitrary norm.

Proof. Let ‖·‖ be an arbitrary norm, and lub(·) the corresponding matrix
norm. By k we denote, for short, the left-hand side of (8.2.5). One sees im-
mediately that k ≥ ρ(I −B−1A), by choosing for f0, as in (8.2.2), (8.2.3),

8.2 Convergence Theorems 625

the eigenvectors of (I−B−1A). Let now ε > 0 be arbitrary. Then by Theo-
rem (6.9.2) there exists a vector norm N(·) such that for the corresponding
matrix norm lubN (·),

lubN (I −B−1A) ≤ ρ(I −B−1A) + ε.

According to Theorem (4.4.6) all norms on Cn are equivalent, and there
exist constants m, M > 0 with

m ‖x‖ ≤ N(x) ≤M ‖x‖.

If now f0 �= 0 is arbitrary, from these inequalities and (8.2.2) it follows that

‖fi‖ ≤ 1
m
N(fi) =

1
m
N
(
(I −B−1A)if0

)
≤ 1
m

[
lubN (I −B−1A)

]i
N(f0)

≤ M

m

(
ρ(I −B−1A) + ε

)i‖f0‖,
or

i

√
‖fi‖
‖f0‖

≤
[
ρ(I −B−1A) + ε

]
i

√
M

m
.

Since limi→∞
i
√
M/m = 1, one obtains k ≤ ρ(I − B−1A) + ε, and since

ε > 0 was arbitrary, k ≤ ρ(I −B−1A). The theorem is now proved. ��
Let us appply these results first to the Jacobi method (8.1.7). We con-

tinue using the notation (8.1.5)–(8.1.6) introduced in the previous section.
Relative to the maximum norm lub∞(C) = maxi

∑
k |cik|, we then have

lub∞(I −B−1A) = lub∞(J) = max
i

1
|aii|

∑
k
=i

|aik|.

If |aii| >
∑
k
=i |aik| for all i, we get immediately

lub∞(J) < 1.

From Theorem (8.2.1b) we thus obtain at once the first part of the following
theorem:

(8.2.6) Theorem.

(a) Strong Row Sum Criterion: The Jacobi method is convergent for all
matrices A with

(8.2.7) |aii| >
∑
k
=i

|aik| for i = 1, 2, . . . , n.

626 8 Iterative Methods for the Solution of Systems of Linear Equations

(b) Strong Column Sum Criterion: The Jacobi method converges for all
matrices A with

(8.2.8) |akk| >
∑
i
=k

|aik| for k = 1, 2, . . . , n.

A matrix A satisfying (8.2.7) [(8.2.8)] is called strictly row-wise (col-
umn-wise) diagonally dominant.

Proof of (b). If (8.2.8) is satisfied by A, then (8.2.7) holds for the matrix
AT . The Jacobi method therefore converges for AT , and thus, by Theorem
(8.2.1a), ρ(X) < 1 for X := I −D−1AT . Now X has the same eigenvalues
as XT and D−1XTD = I −D−1A. Hence also ρ(I −D−1A) < 1, i.e., the
Jacobi method is convergent also for the matrix A. ��

For irreducible matrices A the strong row (column) sum criterion can be
improved. Here, a matrix A is called irreducible if there is no permutation
matrix P such that PTAP has the form

PTAP =
[
Ã11 Ã12
0 Ã22

]
,

where Ã11 is a p× p matrix and Ã22 a q × q matrix with p+ q = n, p > 0,
q > 0.

The irreducibility of a matrix A can often be readily tested by means
of the (directed) graph G(A) associated with the matrix A. If A is an
n× n matrix, then G(A) consists of n vertices P1, . . . , Pn and there is an
(oriented) arc Pi → Pj in G(A) precisely if aij �= 0.

Example.

A =

1 2 0

−1 1 0

3 0 1

,
...

........
.........
.........................

...
........
.........
.........................

...
........
.........
.........................

P1 P2 P3G(A) :
..

..
............
...............

..........................
..

It is easily shown that A is irreducible if and only if the graph G(A) is
connected in the sense that for each pair of vertices (Pi, Pj) in G(A) there
is an oriented path from Pi to Pj .

For irreducible matrices one has the following:

(8.2.9) Theorem (Weak Row Sum Criterion). If A is irreducible and

|aii| ≥
∑
k
=i

|aik| for all i = 1, 2, . . . , n,

but |ai0i0 | >
∑
k
=i0 |ai0k| for at least one i0, then the Jacobi method con-

verges.

8.2 Convergence Theorems 627

A matrix A satisfying the hypotheses of the theorem is called irreducibly
diagonally dominant.

Analogously there is, of course, also a weak column sum criterion for
irreducible A.

Proof. From the assumptions of the theorem it follows for the Jacobi
method, as in the proof of (8.2.6a), that

lub∞(I −B−1A) = lub∞(J) ≤ 1,

and from this,

(8.2.10) |J |e ≤ e, |J |e �= e, e := (1, 1, . . . , 1)T .

[Absolute value signs | · | and inequalities for vectors or matrices are always
to be understood componentwise.]

Now, with A also J is irreducible. In order to prove the theorem, it
suffices to show the inequality

|J |ne < e,

because from it we have immediately

ρ(J)n = ρ(Jn) ≤ lub∞(Jn) ≤ lub∞
(
|J |n

)
< 1.

Now, in view of (8.2.10) and |J | ≥ 0,

|J |2e ≤ |J |e ≤
�= e,

and generally,
|J |i+1e ≤ |J |ie ≤ · · · ≤

�= e,

i.e., the vectors t(i) := e− |J |ie satisfy

(8.2.11) 0 ≤
�= t

(1) ≤ t(2) ≤ · · · .

We show that the number τi of nonvanishing components of t(i) increases
monotonically with i as long as τi < n: 0 < τ1 < τ2 < · · ·. If this were not
the case, there would exist, because of (8.2.11), a first i ≥ 1 with τi = τi+1.
Without loss of generality, let t(i) have the form

t(i) =
[
a
0

]
with a vector a > 0, a ∈ IRp, p > 0.

Then, in view of (8.2.11) and τi = τi+1, also t(i+1) has the form

t(i+1) =
[
b
0

]
with a vector b > 0, b ∈ IRp.

628 8 Iterative Methods for the Solution of Systems of Linear Equations

Partitioning |J | analogously,

|J | =
[
|J11| |J12|
|J21| |J22|

]
, |J11| a p× p matrix,

it follows that [
b
0

]
= t(i+1) = e− |J |i+1e ≥ |J |e− |J |i+1e

= |J | t(i) =
[
|J11| |J12|
|J21| |J22|

] [
a
0

]
.

Because a > 0, this is only possible if J21 = 0, i.e., if J is reducible. Hence,
0 < τ1 < τ2 < · · ·, and thus t(n) = e − |J |ne > 0. The theorem is now
proved. ��

The conditions of Theorems (8.2.6) and (8.2.9) are also sufficient for
the convergence of the Gauss-Seidel method. We show this only for the
strong row sum criterion. We have even more precisely:

(8.2.12) Theorem. If

|aii| >
∑
k
=i

|aik| for all i = 1, 2, . . . , n,

the Gauss-Seidel method is convergent, and furtermore [see (8.1.6)]

lub∞(H) ≤ lub∞(J) < 1.

Proof. Let κH := lub∞(H), κJ := lub∞(J). As already exploited repeat-
edly, the assumption of the theorem implies

|J |e ≤ κJe < e, e = (1, . . . , 1)T ,

for the matrix J = L+U . From this, because |J | = |L|+ |U |, one concludes

(8.2.13) |U |e ≤ (κJI − |L|)e.

Now L and |L| are both lower triangular matrices with vanishing diagonal.
For such matrices, as is easily verified,

Ln = |L|n = 0,

so that (I − L)−1 and (I − |L|)−1 exist and

0 ≤ |(I − L)−1| = |I + L+ · · · + Ln−1|

≤ I + |L| + · · · + |L|n−1 = (I − |L|)−1.

8.3 Relaxation Methods 629

Multiplying (8.2.13) by the nonnegative matrix (I − |L|)−1, one obtains,
because H = (I − L)−1U ,

|H|e ≤ (I − |L|)−1|U |e ≤ (I − |L|)−1(I − |L| + (κJ − 1)I)e

= (I + (κJ − 1)(I − |L|)−1)e.

Now, (I − |L|)−1 ≥ I and κJ < 1, so that the chain of inequalities can be
continued:

|H|e ≤ (I + (κJ − 1)I)e = κJe.

But this means

κH = lub∞(H) = lub∞(|H|) ≤ κJ ,

as was to be shown. ��
Since lub∞(H) ≥ ρ(H), lub∞(J) ≥ ρ(J), this theorem may suggest the

conjecture that under the assumptions of the theorem also ρ(H) ≤ ρ(J) <
1, i.e., in view of Theorem (8.2.4), that the Gauss-Seidel method converges
at least as fast as the Jacobi method. This, however, as examples show, is
not true in general, but only under further assumptions on A. Thus, e.g.,
the following theorem is valid, which we state without proof [for a proof,
see Varga (2000)].

(8.2.14) Theorem (Stein, Rosenberg). If the matrix J = L + U ≥ 0 is
nonnegative, then for J and H = (I−L)−1U precisely one of the following
relations holds:
(1) ρ(H) = ρ(J) = 0,
(2) 0 < ρ(H) < ρ(J) < 1,
(3) ρ(H) = ρ(J) = 1,
(4) ρ(H) > ρ(J) > 1.

The assumption J ≥ 0 is satisfied in particular [see (8.1.5), (8.1.6)] if
the matrix A has positive diagonal elements and nonpositive off-diagonal
elements: aii > 0, aik ≤ 0 for i �= k. Since this condition happens to be
satisfied in almost all systems of linear equations which are obtained by dif-
ference approximations to linear differential operators [cf., e.g., Section 8.4],
this theorem provides in many practical cases the significant information
that the Gauss-Seidel method converges faster than the Jacobi method, if
one of the two converges at all.

8.3 Relaxation Methods

The results of the previous section suggest looking for simple matrices B
for which the corresponding iterative method (8.1.3) converges perhaps

630 8 Iterative Methods for the Solution of Systems of Linear Equations

still faster than the Gauss-Seidel method, ρ(I − B−1A) < ρ(H). More
generally, one can consider classes of suitable matrices B(ω) depending on
a parameter ω and try to choose the parameter ω in an “optimal” way, i.e.,
so that ρ(I − B(ω)−1A) as a function of ω becomes as small as possible.
In the relaxation methods (SOR methods) one studies the following class
of matrices B(ω):

(8.3.1) B(ω) =
1
ω
D (I − ωL).

Here again we use the notation (8.1.5)–(8.1.6). This choice is obtained
through the following considerations.

Suppose for the (i + 1)st approximation x(i+1) we already know the
components x(i+1)

k , k = 1, 2, . . . , j − 1. As in the Gauss-Seidel method
(8.1.8), we then define an auxiliary quantity x̃(i+1)

j by
(8.3.2)
ajj x̃

(i+1)
j = −

∑
k<j

ajkx
(i+1)
k −

∑
k>j

ajkx
(i)
k + bj , 1 ≤ j ≤ n, i ≥ 0,

whereupon x(i+1)
j is determined through a certain averaging of x(i)

j and

x̃
(i+1)
j , viz.

(8.3.3) x
(i+1)
j := (1 − ω)x(i)

j + ω x̃(i+1)
j = x

(i)
j + ω

(
x̃

(i+1)
j − x(i)

j

)
.

Eliminating the auxiliary quantitiy x̃(i+1)
j from (8.3.3) by means of (8.3.2),

one obtains

ajjx
(i+1)
j = ajjx

(i)
j + ω

[
−
∑
k<j

ajkx
(i+1)
k − ajjx(i)

j −
∑
k>j

ajka
(i)
k + bj

]
,

1 ≤ j ≤ n, i ≥ 0.

In matrix notation this is equivalent to

B(ω)x(i+1) =
(
B(ω) −A

)
x(i) + b,

where B(ω) is defined by (8.3.1) and

B(ω) −A =
1
ω
D
(
(1 − ω)I + ωU

)
.

For this method the rate of convergence, therefore, is determined by the
spectral radius ρ(H(ω)) of the matrix

(8.3.4) H(ω) := I −B(ω)−1A = (I − ωL)−1[(1 − ω)I + ωU
]
.

One calls ω the relaxation parameter and speaks of overrelaxation if
ω > 1 and underrelaxation if ω < 1. For ω = 1 one exactly recovers the
Gauss-Seidel method.

8.3 Relaxation Methods 631

We begin by listing, in part without proof, a few qualitative results
about ρ(H(ω)). The following theorem shows that in relaxation methods
only parameters ω with 0 < ω < 2, at best, lead to convergent methods:

(8.3.5) Theorem (Kahan).For arbitrary matrices A one has

ρ
(
H(ω)

)
≥ |ω − 1|

for all ω.

Proof. I − ωL is a lower triangular matrix with 1 as diagonal elements,
so that det(I − ωL) = 1 for all ω. For the characteristic polynomial ϕ(λ)
of H(ω) it follows that

ϕ(λ) = det
(
λI −H(ω)

)
= det

(
(I − ωL)(λI −H(ω))

)
= det

(
(λ+ ω − 1)I − ωλL− ωU

)
.

Up to a sign, the constant term ϕ(0) of ϕ(.) is equal to the product of the
eigenvalues λi(H(ω)) of H(ω):

(−1)n
n∏
i=1

λi
(
H(ω)

)
= ϕ(0) = det

(
(ω − 1)I − ωU

)
≡ (ω − 1)n.

It follows immediately that ρ(H(ω)) = maxi |λi(H(ω))| ≥ |ω − 1|. ��
For matrices A with L ≥ 0, U ≥ 0, only overrelaxation can give faster

convergence than the Gauss-Seidel method:

(8.3.6) Theorem. If the matrix A is irreducible and J = L + U ≥ 0,
and if the Jacobi method converges, ρ(J) < 1, then the function ρ(H(ω))
is strictly decreasing on the interval 0 < ω ≤ ω̄ for some ω̄ ≥ 1.

For a proof, see Varga (1962) and Householder (1964).
One further shows:

(8.3.7) Theorem (Ostrowski, Reich). For positive definite matrices A one
has

ρ
(
H(ω)

)
< 1 for all 0 < ω < 2.

In particular, the Gauss-Seidel method (ω = 1) converges for positive defi-
nite matrices.

Proof. Let 0 < ω < 2, and A be positive definite. Then F = EH in
the decomposition (8.1.5), A = D − E − F of A = AH . For the matrix
B = B(ω) in (8.3.1) one has B = (1/ω)D − E, and the matrix

B +BH −A =
1
ω
D − E +

1
ω
D − F − (D − E − F)

=
(

2
ω

− 1
)
D

632 8 Iterative Methods for the Solution of Systems of Linear Equations

is positive definite, since the diagonal elements of the positive definite ma-
trix A are positive [Theorem (4.3.2)] and (2/ω) − 1 > 0.

We first show that the eigenvalues λ of A−1(2B − A) all lie in the
interior of the right half plane, Reλ > 0. Indeed, if x is an eigenvector for
λ, then

A−1(2B −A)x = λx,

xH(2B −A)x = λxHAx.

Taking the conjugate complex of the last relation gives, because A = AH ,

xH(2BH −A)y = λ̄xHAx.

By addition, it follows that

xH(B +BH −A)x = Re λxHAx.

But now, A and (B+BH −A) are positive definite and thus Reλ > 0. For
the matrix Q := A−1(2B −A) = 2A−1B − I one has

(Q− I)(Q+ I)−1 = I −B−1A = H(ω).

[Observe that B is a nonsingular triangular matrix; therefore B−1 and
thus (Q+ I)−1 exist.] If µ is an eigenvalue of H(ω) and z a corresponding
eigenvector, then from

(Q− I)(Q+ I)−1z = H(ω)z = µz

it follows, for the vector y := (Q+ I)−1z �= 0, that

(Q− I)y = µ(Q+ I)y,
(1 − µ)Qy = (1 + µ)y.

Since y �= 0, we must have µ �= 1, and one finally obtains

Qy =
1 + µ
1 − µy,

i.e., λ = (1 + µ)/(1 − µ) is an eigenvalue of Q = A−1(2B − A). Hence,
µ = (λ− 1)/(λ+ 1). For |µ|2 = µµ̄ one obtains

|µ|2 =
|λ|2 + 1 − 2 Reλ

|λ|2 + 1 + 2 Reλ
,

and since Reλ > 0 for 0 < ω < 2,

|µ| < 1, i.e., ρ
(
H(ω)

)
< 1. ��

For an important class of matrices the more qualitative assertions of
Theorems (8.3.5)–(8.3.7) can be considerably sharpened. This is the class

8.3 Relaxation Methods 633

of matrices with property A introduced by Young [see, e.g., Young (1971)],
or its generalization due to Varga (1962), the class of consistently ordered
matrices [see (8.3.10)].

(8.3.8) Definition. The matrix A has property A if there exists a permu-
tation matrix P such that PAPT has the form

PAPT =
[
D1 M1
M2 D2

]
, D1, D2 diagonal matrices.

The most important fact about matrices with property A is given in
the following theorem:

(8.3.9) Theorem. For every n×n matrix with property A and aii �= 0, i =
1, . . . , n, there exists a permutation matrix P such that the decomposition
(8.1.5), (8.1.6), Ā = D(I − L − U), of the permuted matrix Ā := PAPT

has the following property : The eigenvalues of the matrices

J(α) := αL+ α−1U, α ∈ C, α �= 0,

are independent of α.

Proof. By Definition (8.3.8) there exists a permutation P such that

PAPT =
[
D1 M1
M2 D2

]
= D(I − L− U),

D :=
[
D1 0
0 D2

]
, L = −

[
0 0

D−1
2 M2 0

]
, U = −

[
0 D−1

1 M1
0 0

]
.

Here D1 and D2 are nonsingular diagonal matrices. For α �= 0, one now
has

J(α) = −
[

0 α−1D−1
1 M1

αD−1
2 M2 0

]
= −Sα

[
0 D−1

1 M1
D−1

2 M2 0

]
S−1
α

= −SαJ(1)S−1
α

with the nonsingular diagonal matrix

Sα :=
[
I1 0
0 αI2

]
, I1, I2 unit matrices.

The matrices J(α) and J(1) are similar, and hence have the same eigen-
values. ��

Following Varga (1962), a matrixA which, relative to the decomposition
(8.1.5), (8.1.6), A = D(I − L − U), has the property that the eigenvalues
of the matrices

J(α) = αL+ α−1U

634 8 Iterative Methods for the Solution of Systems of Linear Equations

for α �= 0 are independent of α, is called

(8.3.10) consistently ordered.

Theorem (8.3.9) asserts that matrices with property A can be ordered
consistently, i.e., the rows and columns of A can be rearranged by a per-
mutation P such that there results a consistently ordered matrix PAPT .

Consistently ordered matrices A, however, need not at all have the form

A =
[
D1 M1
M2 D2

]
, D1, D2 diagonal matrices.

This is shown by the important example of block tridiagonal matrices A,
which have the form

A =

D1 A12

A21 D2
. . .

. AN−1,N

AN,N−1 DN

 , Di diagonal matrices.

If all Di are nonsingular, then the matrices

J(α) = −

0 α−1D−1
1 A12

αD−1
2 A21 0

. . .

. α−1D−1
N−1AN−1,N

αD−1
N AN,N−1 0

obey the relation

J(α) = SαJ(1)S−1
α , Sα :=

I1
αI2

. . .
αN−1IN

 ,
that is, A is consistently ordered. In addition, block tridiagonal matrices
have property A. We show this only for the special 3 × 3 matrix

A =

 1 b 0
a 1 d
0 c 1

 .
One has in fact,

8.3 Relaxation Methods 635

PAPT =

1 a d

b 1 0
c 0 1

 for P :=

 0 1 0
1 0 0
0 0 1

 .
In the general case, one proceeds analogously.

We point out, however, that there are consistently ordered matrices
which do not have property A. This is shown by the example

A :=

 1 0 0
1 1 0
1 1 1

 .
For irreducible n× n matrices A with nonvanishing diagonal elements

aii �= 0 and decomposition A = D(I − L − U) it is often easy to find out
whether or not A has property A by considering the graph G(J) associated
with the matrix J = L+U . For this one examines the lenghts s(i)1 , s(i)2 , . . .
of all closed oriented paths (oriented cycles)

Pi → Pk1 → Pk2 → · · · → Pk
s(i) = Pi

in G(J) which lead from Pi to Pi. Denoting by li the greatest common
divisor of the s(i)1 , s(i)2 , . . . ,

li = gcd(s(i)1 , s
(i)
2 , . . .),

the graph G(J) is called 2-cyclic if l1 = l2 = · · · = ln = 2, and weakly
2-cyclic if all li are even.

The following theorem then holds, which we state without proof.

(8.3.11) Theorem. An irreducible matrix A has property A if and only if
G(J) is weakly 2-cyclic.

Example. To the matrix

A =

 4 −1 0 −1
−1 4 −1 0

0 −1 4 −1
−1 0 −1 4

there belongs the matrix

J :=
1
4

 0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

with the graph

636 8 Iterative Methods for the Solution of Systems of Linear Equations

...

........................

.........
........
........
........
........
........
........
....

........................

...

........................

.........
........
........
........
........
........
........
....

........................

...

...

...

...

P1

P4

P2

P3

G(J) : .

G(J) is connected, so that J , and thus also A, is irreducible (see Section 8.2).
Since G(J) is evidently 2-cyclic, A has property A.

The significance of consistently ordered matrices [and therefore by
(8.3.9), indirectly also of matrices with property A] lies in the fact that
one can explicitly show how the eigenvalues µ of J = L+ U are related to
the eigenvalues λ = λ(ω) of H(ω) = (I − ωL)−1((1 − ω)I + ωU):

(8.3.12) Theorem (Young, Varga). Let A be a consistently ordered matrix
(8.3.10) and ω �= 0. Then:

(a) With µ, also −µ is an eigenvalue of J = L+ U .

(b) If µ is an eigenvalue of J and

(8.3.13) (λ+ ω − 1)2 = λω2µ2

then λ is an eigenvalue of H(ω).

(c) If λ �= 0 is an eigenvalue of H(ω) and (8.3.13) holds, then µ is an
eigenvalue of J .

Proof. (a): Since A is consistently ordered, the matrix J(−1) = −L−U =
−J has the same eigenvalues as J(1) = J = L+ U .

(b): Because det(I − ωL) = 1 for all ω, one has

det
(
λI −H(ω)

)
= det

[(
I − ωL

)(
λI −H(ω)

)]
= det

[
λI − λωL− (1 − ω)I − ωU

]
(8.3.14)

= det
(
(λ+ ω − 1)I − λωL− ωU

)
.

Now let µ be an eigenvalue of J = L+U and λ a solution of (8.3.13). Then
λ+ ω − 1 =

√
λωµ or λ+ ω − 1 = −

√
λωµ. Because of (a) we can assume

without loss of generality that

λ+ ω − 1 =
√
λωµ.

If λ = 0, then ω = 1, so that by (8.3.14),

det
(
0 · I −H(1)

)
= det(−ωU) = 0,

i.e., λ is an eigenvalue of H(ω). If λ �= 0 it follows from (8.3.14) that

8.3 Relaxation Methods 637

det
(
λI −H(ω)

)
= det

[
(λ+ ω − 1)I −

√
λω
(√
λL+

1√
λ
U
)]

=
(√
λω
)n det

[
µI −

(√
λL+

1√
λ
U
)]

(8.3.15)

=
(√
λω
)n det

(
µI − (L+ U)

)
= 0,

since the matrix J(
√
λ) =

√
λL + (1/

√
λ)U has the same eigenvalues as

J = L+U and µ is eigenvalue of J . Therefore, det(λI −H(ω)) = 0, and λ
is an eigenvalue of H(ω).

(c): Now, conversely, let λ �= 0 be an eigenvalue of H(ω), and µ a
number satisfying (8.3.13), i.e., with λ+ω− 1 = ±ω

√
λµ. In view of (a) it

suffices to show that the number µ with λ+ω−1 = ω
√
λµ is an eigenvalue

of J . This, however, follows immediately from (8.3.15). ��

As a side result the following is obtained for ω = 1:

(8.3.16) Corollary. Let A be a consistently ordered matrix (8.3.10). Then
for the matrix H = H(1) = (I − L)−1U of the Gauss-Seidel method one
has

ρ(H) = [ρ(J)]2.

In view of Theorem (8.2.4) this means that with the Jacobi method one
has to carry out about twice as many iteration steps as with the Gauss-
Seidel method, to achieve the same accuracy.

We now wish to exhibit in an important special case the optimal relax-
ation parameter ωb, characterized by [see Theorem (8.3.5)]

ρ
(
H(ωb)

)
= min
ω∈IR

ρ
(
H(ω)

)
= min

0<ω<2
ρ
(
H(ω)

)
.

(8.3.17) Theorem (Young, Varga). Let A be a consistently ordered matrix.
Let the eigenvalues of J be real and ρ(J) < 1. Then

ωb =
2

1 +
√

1 − ρ(J)2
, ρ

(
H(ωb)

)
= ωb − 1 =

(
ρ(J)

1 +
√

1 − ρ(J)2

)2

.

One has in general,
(8.3.18)

ρ
(
H(ω)

)
=

ω − 1 for ωb ≤ ω ≤ 2,

1 − ω + 1
2ω

2µ2 + ωµ
√

1 − ω + 1
4ω

2µ2 for 0 ≤ ω ≤ ωb,

638 8 Iterative Methods for the Solution of Systems of Linear Equations

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��

����
���
���
��
��
��

���
�����
���
���
��
�
��
�
�
�����������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��

�
�
�
�
�
�

�������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� �������� ���������
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
���
��
��

���
��
���

��
��
���
�

�
��
���
��

��
���
���

�
���
���
�

�������

���� �

�

Fig. 32. Spectral radius of ρ(H(ω))

where the abbreviation µ := ρ(J) is used (see Figure 32).
Note that the left-hand differential quotient of ρ(H(ω)) at ωb is “−∞”.

One should preferably take, therefore, as relaxation parameter ω a number
that is slightly too large, rather than one that is too small, if ωb is not
known exactly.

Proof. The eigenvalues µi of the matrix J , by assumption, are real, and

−ρ(J) ≤ µi ≤ ρ(J) < 1.

For fixed ω ∈ (0, 2) [by Theorem (8.3.5) it suffices to consider this domain]
to each µi there belong two eigenvalues λ(1)

i (ω), λ
(2)
i (ω) of H(ω), which

are obtained by solving the quadratic equation (8.3.13) in λ. Geometrically,
λ

(1)
i (ω), λ(2)

i (ω) are obtained as abscissae of the points of intersection of
the straight line

gω(λ) =
(λ+ ω − 1)

ω

with the parabola mi(λ) := ±
√
λµi (see Figure 33). The line gω has the

slope 1/ω and passes through the point (1, 1). If it does not intersect the
parabola mi(λ), then λ(1)

i (ω), λ(2)
i (ω) are conjugate complex numbers with

modulus |ω − 1|, as one finds immediately from (8.3.13). Evidently,

ρ
(
H(ω)

)
= max

i

(
|λ(1)
i (ω)|, |λ(2)

i (ω)|
)

= max
(
|λ(1)(ω)|, |λ(2)(ω)|

)
,

the λ(1)(ω), λ(2)(ω) being obtained by intersecting gω(λ) with m(λ) :=
±

√
λµ, where µ = ρ(J) = maxi |µi|. By solving the quadratic equation

(8.3.13), with µ = ρ(J), one verifies (8.3.18) immediately, and thus also
the remaining assertions of the theorem. ��

8.4 Applications to Difference Methods—An Example 639

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�

���

����
���
���
��
��
��

��
�����
�������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���������
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
����
���
�����
���

���
������
���
���
���
��
��
��
�
��������������
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��������������
��
�
��
��
��
���
���
�����
��������
���

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
���
��
��
���
��
���
��
��
���
��
���
��
��
���
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��

�

��

�
���
�

�
���
�

�����

����

���
���

�����

Fig. 33. Determination of ωb.

8.4 Applications to Difference Methods—An Example

In order to illustrate how the iterative methods described can be applied,
we consider the Dirichlet boundary-value problem

−uxx − uyy = f(x, y), 0 < x, y < 1,
(8.4.1)

u(x, y) = 0 für (x, y) ∈ ∂Ω,

for the unit square Ω := {(x, y) | 0 < x, y < 1} ⊂ IR2 with boundary ∂Ω
[cf. Section 7.7]. We assume f(x, y) continuous on Ω∪∂Ω. Since the various
methods for the solution of boundary-value problems are usually compared
on this problem, (8.4.1) is also called the model problem. To solve (8.4.1)
by means of a difference method, one replaces the differential operator by a
difference operator, as described in Section 7.4 for boundary-value problems
in ordinary differential equations. One covers Ω∪∂Ω with a grid Ωh∪∂Ωh:

Ωh :=
{
(xi, yj) | i, j = 1, 2, . . . , N

}
,

∂Ωh :=
{
(xi, 0), (xi, 1), (0, yj), (1, yj) | i, j = 0, 1, . . . , N + 1

}
,

where, for abbreviation, we put [see Figure 34]

xi := ih, yj := jh, i, j = 0, 1, . . . , N + 1,

h :=
1

N + 1
, N ≥ 1 an integer.

640 8 Iterative Methods for the Solution of Systems of Linear Equations

....................

....................

............y

y1

yj

1

x1 xi x1

•

• • •

•

Fig. 34. The grid Ωh

With the further abbreviation

uij := u(xi, yj), i, j = 0, 1, . . . , N + 1,

the differential operator
−uxx − uyy

can be replaced for all (xi, yj) ∈ Ωh by the difference operator

(8.4.2)
4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1

h2

up to an error τij . The unknowns uij , 1 ≤ i, j ≤ N [because of the boundary
conditions, the uij = 0 are known for (xi, yj) ∈ ∂Ωh] therefore obey a
system of linear equations of the form

(8.4.3)
4uij − ui−1,j − ui+1,j − ui,j−1 − ui,j+1 = h2fij + h2τij ,

(xi, yj) ∈ Ωh,

with fij := f(xi, yj). Here the errors τij of course depend on the mesh size
h. Under appropiate assumptions for the exact solution u, one shows as in
Section 7.4 that τij = O(h2). For sufficiently small h one can thus expect
that the solution zij , i, j = 1, . . . , N , of the linear system of equations

(8.4.4)
4zij − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 = h2fij , i, j = 1, . . . , N,
z0j = zN+1,j = zi0 = zi,N+1 = 0 for i, j = 0, 1, . . . , N + 1,

obtained from (8.4.3) by omitting the error τij , agrees approximately with
the uij . To every grid point (xi, yj) of Ωh there belongs exactly one com-
ponent zij of the solution of (8.4.4). Collecting the N2 unknowns zij and
the right-hand sides h2fij row-wise [see Figure 34] into vectors

8.4 Applications to Difference Methods—An Example 641

z := (z11, z21, . . . , zN1, z12, . . . , zN2, . . . , z1N , . . . , zNN)T ,

b := h2(f11, . . . , fN1, . . . , f1N , . . . , fNN)T ,

then (8.4.4) is equivalent to a system of linear equations of the form

Az = b,

with the N2 ×N2 matrix

A =

4 −1 −1
−1 4 . . . −1. −1 . . .

−1 4 −1

−1 4 −1 . . .
−1 −1 4 −1 . . .

−1 −1 4 . . .
. −1. −1. −1

−1 4 −1
−1 −1 4 −1

−1 −1 4

(8.4.5) =

A11 A12 0

A21 A22
. . .

. AN−1,N
0 AN,N−1 ANN

 .
A is partitioned in a natural way into blocks Aij of order N , which are
induced by the partitioning of the points (xi, yj) of Ωh into horizontal rows
(x1, yj), (x2, yj), . . . , (xN , yj).

The matrix A is quite sparse. In each row, at most five elements are
different from zero. For this reason, in the execution of an iteration step
z(i) → z(i+1) of, say, the Jacobi method (8.1.7) or the Gauss-Seidel method
(8.1.8), one requires only about 5N2 operations (1 operation = 1 multiplica-
tion or division + 1 addition). (If the matrix A where dense, N4 operations
per iteration step would be required.) Compare this expenditure with that
of a direct method for solving Az = b. If we were to compute a triangular
decomposition A = LLT of A, say with the Choleski method (below we

642 8 Iterative Methods for the Solution of Systems of Linear Equations

will see that A is positive definite), then L would be an N2 × N2 lower
triangular matrix of the form

L =

∗
...

. . .

∗ . . .
.

∗ · · · ∗︸ ︷︷ ︸
N+1

 .

The computation of L alone requires approximately 1
2N

4 operations.
Since the Jacobi method, e.g., requires approximately (N + 1)2 iterations
(overrelaxation method: N + 1 iterations) [see (8.4.9)] in order to obtain
a result accurate to 2 decimal places, the Choleski method would be less
expensive than the Jacobi method. The main difficulty with the Choleski
method however, lies in its storage requirement: The storage of the approx-
imately N3 nonvanishing elements of L requires too much space for larger
values of N , say N ≥ 100. Here lie the advantages of iterative methods:
Their storage requirement is only of the order of magnitude N2.

To the Jacobi method belongs the matrix

J = L+ U = 1
4 (4I −A).

The associated graph G(J) (for N = 3)

...

........................

.........
........
........
........
........
........
........
....

........................

...

........................

.........
........
........
........
........
........
........
....

........................

...

...

...

...

P13

P12

P23

P22

...

........................

.........
........
........
........
........
........
........
....

........................

...

...

...

...

P33

P32
...

........................

.........
........
........
........
........
........
........
....

........................

...

........................

.........
........
........
........
........
........
........
....

........................

...

...

P11 P21

...

........................

.........
........
........
........
........
........
........
....

........................

...

...

P31

is connected and 2-cyclic. A is therefore irreducible [see Section 8.2] and
has property A [Theorem 8.3.11]. One easily sees, in addition, that A is
already consistently ordered.

The eigenvalues and eigenvectors of J = L + U can be determined
explicitly. One verifies at once, by substitution, that the N2 vectors

z(k,l), k, l = 1, 2, . . . , N,

with components

8.4 Applications to Difference Methods—An Example 643

z
(k,l)
ij := sin

kπi

N + 1
sin

lπj

N + 1
, 1 ≤ i, j ≤ N,

satisfy
Jz(k,l) = µ(k,l)z(k,l)

with

µ(k,l) :=
1
2

(
cos

kπ

N + 1
+ cos

lπ

N + 1

)
, 1 ≤ k, l ≤ N.

J thus has the eigenvalues µ(k,l), 1 ≤ k, l ≤ N .
The spectral radius of J , therefore, is

(8.4.6) ρ(J) = max
k,l

∣∣µ(k,l)
∣∣ = cos

π

N + 1
.

To the Gauss-Seidel method belongs the matrix H = (I − L)−1U with
the spectral radius [see (8.3.16)]

ρ(H) = ρ(J)2 = cos2
π

N + 1
.

According to Theorem (8.3.17) the optimal relaxation parameter ωb and
ρ(H(ωb)) are given by

ωb =
2

1 +
√

1 − cos2
π

N + 1

=
2

1 + sin
π

N + 1

,

(8.4.7)

ρ
(
H(ωb)

)
=

cos2
π

N + 1(
1 + sin

π

N + 1

)2 .

The number κ = κ(N) with ρ(J)κ = ρ(H(ωb)) indicates how many steps
of the Jacobi method produce the same error reduction as one step of the
optimal relaxation method. Clearly,

κ =
ln ρ

(
H(ωb)

)
ln ρ(J)

.

Now, for small z one has ln(1 + z) = z − z2/2 +O(z3), and for large N

cos
π

N + 1
= 1 − π2

2(N + 1)2
+O

(
1
N4

)
,

so that

ln ρ(J) = − π2

2(N + 1)2
+O

(
1
N4

)
.

Likewise,

644 8 Iterative Methods for the Solution of Systems of Linear Equations

ln ρ
(
H(ωb)

)
= 2

[
ln ρ(J) − ln

(
1 + sin

π

N + 1

)]
= 2

[
− π2

2(N + 1)2
− π

N + 1
+

π2

2(N + 1)2
+O

(
1
N3

)]
= − 2π

N + 1
+O

(
1
N3

)
,

so that finally, asymptotically for large N ,

(8.4.8) κ = κ(N) ≈ 4(N + 1)
π

,

i.e., the optimal relaxation method is more than N times as fast as the
Jacobi method. The quantities

RJ := − ln(10)
ln ρ(J)

≈ 0.467(N + 1)2,

RGS :=
1
2
RJ ≈ 0.234(N + 1)2,(8.4.9)

Rωb
:= − ln(10)

ln ρ
(
H(ωb)

) ≈ 0.367(N + 1)

indicate the number of iterations required in the Jacobi method, the Gauss-
Seidel method, and the optimal relaxation method, respectively, in order
to reduce the error by a factor of 1

10 .
Finally, we derive an explicit formula for the condition number cond2(A)

of A with respect to the Euclidean norm, which will be important for the
speed of convergence of the conjugate-gradient method in Section 8.7.1 [see
(8.7.1.9)]: Since A = 4(I − J) and J has the eigenvalues

µ(k,l) =
1
2

(
cos

kπ

N + 1
+ cos

lπ

N + 1

)
, 1 ≤ k, l ≤ N,

it follows

λmax(A) = 4
(
1 + cos

π

N + 1

)
, λmin(A) = 4

(
1 − cos

π

N + 1

)
.

This implies for cond2(A) := λmax(A)/λmin(A)

(8.4.10) cond2(A) =
cos2

π

N + 1
sin2 π

N + 1

=̇
4
π2 (N + 1)2 =

4
π2h2 .

8.5 Block Iterative Methods 645

8.5 Block Iterative Methods

As the example of the previous section shows, the matrices A arising in
the application of difference methods to partial differential equations often
exhibit a natural block structure,

A =

 A11 · · · A1N
...

...
AN1 · · · ANN

 ,
where Aii are square matrices. If now, in addition, all Aii are nonsingular,
it seems natural to introduce block iterative methods relative to the given
partition π of A, in the following way: In analogy to the decomposition
(8.1.5) of A one defines, relative to π, the decomposition

A = Dπ − Eπ − Fπ, Lπ := D−1
π Eπ, Uπ := D−1

π Fπ

with
(8.5.1)

Dπ =

A11 0

A22
. . .

0 ANN

 , Eπ := −

0 0

A21
. . .

...
.

AN1 · · · AN,N−1 0

 ,

Fπ := −

0 A12 · · · A1N

.
...

. . . AN−1,N
0 0

.

One obtains the block Jacobi method (block total-step method) for the so-
lution of Ax = b by choosing in (8.1.3), analogously to (8.1.7), B := Dπ.
One thus obtains the iteration algorithm

Dπx
(i+1) = b+ (Eπ + Fπ)x(i),

or, written out in full,

(8.5.2) Ajjx
(i+1)
j = bj −

∑
k
=j

Ajkx
(i)
k , j = 1, 2, . . . , N, i = 0, 1,

Here, the vectors x(i), b are of course partitioned similarly to A. In each
step x(i) → x(i+1) of the method we now must solve N systems of linear
equations of the form Ajjz = y, j = 1, 2, . . . , N . This is accomplished by
first obtaining, by the methods of Section 4, a triangular decomposition (or
a Choleski decomposition, if appropriate) Ajj = LjRj of the Ajj , and then
reducing Ajjz = y to the solution of two triangular systems of equations

646 8 Iterative Methods for the Solution of Systems of Linear Equations

Lju = y, Rjz = u.

For the efficiency of the method it is essential that the Ajj be simply
structured matrices for which the triangular decomposition is easily carried
out. This is the case, e.g., for the matrix A in (8.4.5) of the model problem.
Here, Ajj are positive definite tridiagonal N ×N matrices

Ajj =

4 −1

−1
.
. −1

−1 4

 , Lj =

∗
∗ . . .

.
∗ ∗

 ,
whose Choleski decomposition requires a very modest amount of work
(number of operations proportional to N).

The rate of convergence of (8.5.2) of course is now determined by the
spectral radius ρ(Jπ) of the matrix

Jπ := I −B−1A = Lπ + Uπ.

In the same way one can define, analogously to (8.1.8), a block Gauss-
Seidel method (block single-step method), through the choice

B := Dπ − Eπ, Hπ := (I −B−1A) = (I − Lπ)−1Uπ,

or, explicitly,

(8.5.3)
Ajjx

(i+1)
j = bj −

∑
k<j

Ajkx
(i+1)
k −

∑
k>j

Ajkx
(i)
k ,

j = 1, 2, . . . , N, i = 0, 1,

Again, systems of equations with the matrices Ajj need to be solved in
each iteration step.

As in Section 8.3, one can also introduce block relaxation methods
through the choice B := B(ω) = (1/ω)Dπ(I−ωLπ). Explicitly [cf. (8.3.3)],
let x̃(i+1)

j be the solution of (8.5.3); then

x
(i+1)
j := ω

(
x̃

(i+1)
j − x(i)

j

)
+ x(i)

j , j = 1, 2, . . . , N.

Now, of course,

Hπ(ω) :=
(
I −B(ω)−1A

)
= (I − ωLπ)−1[(1 − ω)I + ωUπ

]
.

Also the theory of consistently ordered matrices of Section 8.3 carries over,
if one defines A as consistently ordered whenever the eigenvalues of the
matrices

Jπ(α) = αLπ + α−1Uπ

8.6 The ADI Method of Peaceman and Rachford 647

are independent of α. Optimal relaxation factors are determined as in The-
orem (8.3.17) with the help of ρ(Jπ).

One expects intuitively that the block methods will converge faster
with increasing coarseness of the block partition π of A. This indeed can
be shown under fairly general assumptions on A [see Varga (1962)]. For
the coarsest partition π of A into a single block, e.g., the iterative method
“converges” after just one step. It is then equivalent to a direct method.
This example shows that arbitrarily coarse partitions are only of theoreti-
cal interest. The reduction in the number of iterations is compensated, to a
certain extent, by the larger computational work for each individual itera-
tion step. For the most common partitions, in which A is block tridiagonal
and the diagonal blocks usually tridiagonal (this, e.g., is the case for the
model problem), one can show, however, that the computational work per
iteration involved in block methods is equal to that in ordinary methods.
In these cases, block methods bring real advantages. For the model prob-
lem [see Section 8.4], relative to the partition given in (8.4.5), the spectral
radius ρ(Jπ) can again be determined explicitly. One finds

ρ(Jπ) =
cos

π

N + 1

2 − cos
π

N + 1

< ρ(J).

For the corresponding optimal block relaxation method one has asymptot-
ically for N → ∞

ρ
(
Hπ(ωb)

)
≈ ρ

(
H(ωb)

)κ mit κ =
√

2.

The number of iterations is reduced by a factor
√

2 compared to the ordi-
nary optimal relaxation method [proof: see Exercise 17].

8.6 The ADI Method of Peaceman and Rachford

Still faster convergence than in relaxation methods is obtained with the
ADI methods (alternating-direction implicit methods) for the iterative com-
putation of the solution of a system of linear equations which arises in
difference methods. From amongst the many variants of this method we
describe here only the historically first method of this type, which is due to
Peaceman and Rachford [see Varga (1962) and Young (1971) for an expo-
sition of further variants]. We illustrate the method for the boundary-value
problem

(8.6.1)
−uxx(x, y) − uyy(x, y) + σ u(x, y) = f(x, y) for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω, Ω :=
{
(x, y) | 0 < x, y < 1

}

648 8 Iterative Methods for the Solution of Systems of Linear Equations

on the unit square, which on account of the term σu is only slightly more
general than the model problem (8.4.1). We assume in the following that σ
is constant and non-negative. Using the same discretization and the same
notation as in Section 8.4, in place of (8.4.4) one now obtains the system
of linear equations
(8.6.2)

4zij − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 + σh2zij = h2fij , 1 ≤ i, j ≤ N,
z0j = zN+1,j = zi0 = zi,N+1 = 0 for 0 ≤ i, j ≤ N + 1

for the approximate values zij of the values uij = u(xi, yj) of the exact
solution. To the decomposition

4zij − zi−1,j − zi+1,j − zi,j−1 − zi,j+1 + σh2zij ≡
≡ [2zij − zi−1,j − zi+1,j] + [2zij − zi,j−1 − zi,j+1] + [σh2zij]

into variables which are located on the same horizontal and vertical line
[see Figure 34] of Ωh, respectively, there corresponds a decomposition of
the matrix A of the system of equations (8.6.2), Az = b, of the form

A = H + V +Σ.

Here, H, V , Σ are defined through their actions on a vector z:

(8.6.3) wij =

2zij − zi−1,j − zi+1,j , if w = Hz,
2zij − zi,j−1 − zi,j+1, if w = V z,
σh2zij , if w = Σz.

Σ is a diagonal matrix with nonnegative elements; H and V are both
symmetric and positive definite. It suffices to show this for H: If the
zij are ordered in correspondence to the rows of Ωh [see Figure 34],
z = [z11, z21, . . . , zN1, . . . , z1N , z2N , . . . , zNN]T , then

H =

2 −1

−1
.
. −1

−1 2
.
.

2 −1

−1
.
. −1

−1 2

.

8.6 The ADI Method of Peaceman and Rachford 649

But according to Theorem (7.4.7) the matrices
2 −1

−1
.
. −1

−1 2

 ,
and hence also H, are positive definite. For V one proceeds similarly.

Analogous decompositions of A are also obtained for boundary-value
problems which are considerably more general than (8.6.1).

In the ADI method of Peaceman and Rachford the system of equations

Az = b,

in accordance with the decomposition A = H +V +Σ, is now transformed
equivalently into(

H + 1
2Σ + rI

)
z =

(
rI − V − 1

2Σ
)
z + b

and also (
V + 1

2Σ + rI
)
z =

(
rI −H − 1

2Σ
)
z + b.

Here r is an arbitrary real number. With the abbreviations H1 := H+ 1
2Σ,

V1 := V + 1
2Σ, one obtains the iteration algorithm of the ADI method,(
H1 + ri+1I

)
z(i+1/2) =

(
ri+1I − V1

)
z(i) + b,(8.6.4a) (

V1 + ri+1I
)
z(i+1) =

(
ri+1I −H1

)
z(i+1/2) + b.(8.6.4b)

Given z(i), one first computes z(i+1/2) from the first of these equations, then
substitutes this value into the second and computes z(i+1). The quantity
ri+1 is a real parameter which may be chosen differently from step to step.
With suitable ordering of the variables zij the matrices (H1 + ri+1I) and
(V1 + ri+1I) are positive definite tridiagonal matrices (assuming ri+1 ≥ 0),
so that the systems of equations (8.6.4a,b) can easily be solved for z(i+1/2)

and z(i+1) via a Choleski decomposition of H1 + ri+1I and V1 + ri+1I.
Eliminating z(i+1/2), one obtains from (8.6.4)

(8.6.5) z(i+1) = Tri+1z
(i) + gri+1(b)

with

(8.6.6)
Tr :=

(
V1 + rI

)−1(
rI −H1

)(
H1 + rI

)−1(
rI − V1

)
,

gr(b) :=
(
V1 + rI

)−1[
I +

(
rI −H1

)(
H1 + rI

)−1]
b.

For the error fi := z(i) − z it follows from (8.6.5) and the relation z =
Tri+1z + gri+1(b), by subtraction, that

650 8 Iterative Methods for the Solution of Systems of Linear Equations

(8.6.7) fi+1 = Tri+1fi,

and therefore

(8.6.8) fm = Trm
Trm−1 · · ·Tr1f0.

As in relaxation methods, one tries to choose the parameters ri in such
a way that the method converges as fast as possible. In view of (8.6.7),
(8.6.8), this means that the ri are to be determined so that the spectral
radius ρ(Trm

· · ·Tr1) becomes as small as possible.
We first want to consider the case in which the same parameter ri = r

is chosen for all i = 1, 2, Here one has the following:

(8.6.9) Theorem. Under the assumption that H1 and V1 are positive def-
inite one has ρ(Tr) < 1 for all r > 0.

Note that the assumption is satisfied for our special problem (8.6.1).
From Theorem (8.6.9) it follows in particular that each constant choice
ri = r > 0 leads to a convergent iterative method (8.6.4).

Proof. By assumption, V1 and H1 are positive definite; therefore (V1 +
rI)−1, (H1 +rI)−1 exist for r > 0, and hence also Tr of (8.6.6). The matrix

T̃r : = (V1 + rI)Tr (V1 + rI)−1

=
[
(rI −H1)(H1 + rI)−1][(rI − V1)(V1 + rI)−1]

is similar to Tr; hence ρ(Tr) = ρ(T̃r). The matrix H̃ := (rI−H1)(H1+rI)−1

has the eigenvalues
r − λj
r + λj

,

where λj = λj(H1) are the eigenvalues of H1, which are positive by as-
sumption. Since r > 0, λj > 0, it follows that∣∣∣∣r − λj

r + λj

∣∣∣∣ < 1,

and thus ρ(H̃) < 1. Since with H1 also H̃ is Hermitian, relative to the
Euclidean norm ‖ · ‖2 one has [see Section 4.4] lub2(H̃) = ρ(H̃) < 1. In the
same way one has lub2(Ṽ) < 1, Ṽ := (rI − V1)(V1 + rI)−1, and thus [see
Theorem (6.9.1)]

ρ(T̃r) ≤ lub2(T̃r) ≤ lub2(H̃) lub2(Ṽ) < 1. ��

For the model problem (8.4.1) more precise statements can be made.
The vectors z(k,l), 1 ≤ k, l ≤ N , introduced in Section 8.4, with

(8.6.10) z
(k,l)
ij := sin

kπi

N + 1
sin

lπj

N + 1
, 1 ≤ i, j ≤ N,

8.6 The ADI Method of Peaceman and Rachford 651

as is easily verified, are eigenvectors of H = H1 and V = V1, and thus also
of Tr. Therefore, the eigenvalues of Tr can be exhibited explicitly. One finds

(8.6.11)

H1z
(k,l) = µkz

(k,l),

V1z
(k,l) = µlz

(k,l),

Trz
(k,l) = µ(k,l)z(k,l),

with

(8.6.12) µ(k,l) :=
r − µl
r + µl

r − µk
r + µk

, µj := 4 sin2 jπ

2(N + 1)
,

so that

(8.6.13) ρ(Tr) = max
1≤j≤N

∣∣∣∣r − µj
r + µj

∣∣∣∣2 .
By a discussion of this expression [see Exercise 20] one finally finds a result
of Varga,

min
r>0

ρ(Tr) = ρ
(
H(ωb)

)
=

cos2
π

N + 1(
1 + sin

π

N + 1

)2
,

where ωb characterizes the best (ordinary) relaxation method [cf. (8.4.7)].
In other words, the best ADI method, assuming constant choice of parame-
ters, has the same rate of convergence for the model problem as the optimal
ordinary relaxation method. Since the individual iteration step in the ADI
method is a great deal more expensive than in the relaxation method, the
ADI method would appear to be inferior. This is certainly true if for all
iteration steps one and the same parameter r = r1 = r2 = · · · is chosen.
However, if one makes use of the option to choose a separate parameter ri
in each step, the picture changes in favor of the ADI method. For the model
problem one can argue, e.g., as follows: The vectors z(k,l) are eigenvectors
of Tr for arbitrary r, with corresponding eigenvalue µ(k,l) in (8.6.12); there-
fore, the z(k,l) are also eigenvectors of Tri · · ·Tr1 in (8.6.8). Indeed,

Tri
· · ·Tr1z(k,l) = µ(k,l)

ri,...,r1z
(k,l),

where

µ(k,l)
ri,...,r1 :=

i∏
j=1

(rj − µl)(rj − µk)
(rj + µl)(rj + µk)

.

Choosing rj := µj , j = 1, 2, . . . , N , we have

µ(k,l)
rN ,...,r1 = 0 for all 1 ≤ k, l ≤ N ,

652 8 Iterative Methods for the Solution of Systems of Linear Equations

so that, by the linear independence of the z(k,l),

TrN
TrN−1 · · ·Tr1 = 0.

With this special choice of the rj , the ADI method for the model problem
terminates after N steps with the exact solution. This, of course, is a happy
coincidence, which is due to the following essential assumptions:

(1) H1 and V1 have in common a set of eigenvectors which span the whole
space.

(2) The eigenvalues of H1 and V1 are known.

One cannot expect, of course, that these assumptions will be satisfied
in practice for problems other than (8.6.1), (8.6.2); in particular, one will
hardly know the exact eigenvalues σi of H1 and τi of V1, but only, at best,
lower and upper bounds α ≤ σi, τi ≤ β for these eigenvalues. We would
like to deal with this situation and give first a criterion for the validity of
(1).

(8.6.14) Theorem. For two Hermitian matrices H1 and V1 of order n
there exist n linearly independent (orthogonal) vectors z1, . . . , zn, which
are common eigenvectors of H1 und V1,

(8.6.15) H1zi = σizi, V1zi = τizi, i = 1, 2, . . . , n,

if and only if H1 commutes with V1: H1V1 = V1H1.

Proof. (1) From (8.6.15) it follows that

H1V1zi = σiτizi = V1H1zi for all i = 1, 2, . . . , n.

Since the zi form a basis in Cn, it follows at once that H1V1 = V1H1.
(2) Conversely, let H1V1 = V1H1. Let λ1 < · · · < λr be the eigenvalues

of V1 with the multiplicities σ(λi), i = 1, . . . , r. Then, according to Theorem
(6.4.2), there exists a unitary matrix U with

ΛV := UHV1U =

λ1I1
. . .

λrIr

 ,
where Ij is a unit matrix of order σ(λj). From H1V1 = V1H1 it follows
immediately that H̃1ΛV = ΛV H̃1, with the matrix H̃1 := UHH1U . We
partition H̃1 analogously to ΛV :

H̃1 =

H11 H12 · · · H1r
H21 H22 H2r

...
...

...
Hr1 Hr2 · · · Hrr

 .

8.6 The ADI Method of Peaceman and Rachford 653

By multiplying out H̃1ΛV = ΛV H̃1, one obtains Hij = 0 for i �= j, since
λi �= λj . The Hii are Hermitian matrices of order σ(λi). Again by Theorem
(6.4.2) there exist unitary matrices Ūi of order σ(λi) such that ŪHi HiiŪi
becomes a dieagonal matrix Λi. For the unitary n× n matrix

Ū :=

 Ū1
. . .

Ūr

 ,
since Hij = 0 for i �= j, there follow the relations

(
UŪ

)H
H1
(
UŪ

)
= ŪHH̃1Ū = ΛH =

Λ1
. . .
Λr

 ,
(
UŪ

)H
V1
(
UŪ

)
= ŪHΛV Ū = ΛV .

This implies

H1
(
UŪ

)
=
(
UŪ

)
ΛH , V1

(
UŪ

)
=
(
UŪ

)
ΛV ,

so that the columns zi := (UŪ)ei of the unitary matrix UŪ = (z1, . . . , zn)
can be taken as n common orthogonal eigenvectors of H1 and V1. ��

Unfortunately, the condition H1V1 = V1H1 is rather severe. One can
show [see Varga (1962), Young (1971)] that it is satisfied only, essentially,
for boundary-value problems of the type

− ∂

∂x

(
p1(x)

∂u(x, y)
∂x

)
− ∂

∂y

(
p2(y)

∂u(x, y)
∂y

)
+ σu(x, y) = f(x, y)

for (x, y) ∈ Ω,

u(x, y) = 0 for (x, y) ∈ ∂Ω,

σ > 0 constant, p1(x) > 0, p2(y) > 0 for (x, y) ∈ Ω,

with rectangular domain Ω and the usual discretization (rectangular grid,
etc). Nevertheless, practical experience with the ADI method seems to
suggest that the favorable convergence properties which can be proven in
the commutative case frequently are present also in the noncommutative
case. We therefore assume for the following discussion that H1 and V1 are
two positive definite commuting n×n matrices with (8.6.15) and that two
positive numbers α, β are given such that 0 < α ≤ σi, τi ≤ β for i = 1, 2,
. . . , n. Then

Trzi =
r − σi
r + σi

r − τi
r + τi

· zi for all r > 0, i = 1, 2, . . . , n,

654 8 Iterative Methods for the Solution of Systems of Linear Equations

so that

ρ
(
Trm

· · ·Tr1
)

= max
1≤i≤n

m∏
j=1

∣∣∣∣rj − σi
rj + σi

rj − τi
rj + τi

∣∣∣∣
(8.6.16)

≤ max
α≤x≤β

m∏
j=1

∣∣∣∣rj − x
rj + x

∣∣∣∣2.
For given m, it is natural, therefore, to choose the parameters ri > 0, i = 1,
. . . , m, so that the function

(8.6.17) ϕ(r1, . . . , rm) := max
α≤x≤β

m∏
j=1

∣∣∣∣rj − x
rj + x

∣∣∣∣
becomes as small as possible. It can be shown that this problem for each
m > 0 has a unique solution. For each m there are uniquely determined
numbers r̄i with α < r̄i < β, i = 1, . . . , m, such that

(8.6.18) dm(α, β) := ϕ(r̄1, . . . , r̄m) = min
ri>0

1≤i≤m

ϕ(r1, . . . , rm).

The optimal parameters r̄1, . . . , r̄m can even be given explicitly, for each m,
in terms of elliptic functions [see Wachspress (1966), Young (1971)]. One
further knows good approximations for the r̄i which are easy to compute.
In the special case m = 2k, however, the optimal parameters r̄i can also be
easily computed by recursion. For this case, the relevant results will now
be presented without proof [for proofs, see, e.g., Wachspress (1966), Young
(1971), Varga (1962)].

Let r(m)
i , i = 1, 2, . . . , m, denote the optimal ADI parameters for

m = 2k. The r(m)
i and dm(α, β) can be computed recursively by means of

Gauss’ arithmetic-geometric mean algorithm.
It can be shown that

(8.6.19) d2n(α, β) = dn

(√
αβ,

α+ β
2

)
,

the optimal parameters of the minimax problem (8.6.18), r(2n)
i and r(n)

i ,
being related by

(8.6.20) r
(n)
i =

r
(2n)
i + αβ/r(2n)

i

2
, i = 1, 2, . . . , n.

Starting with this observation, one obtains the following algorithm for de-
termining r(m)

i . Define

8.6 The ADI Method of Peaceman and Rachford 655

(8.6.21)
α0 := α, β0 = β,

αj+1 :=
√
αjβj , βj+1 :=

αj + βj
2

, j = 0, 1, . . . , k − 1.

Then

(8.6.22) d2k(α0, β0) = d2k−1(α1, β1) = · · · = d1(αk, βk) =
√
βk −

√
αk√

βk +
√
αk
.

The solution of d1(αk, βk) can be found with r(1)1 =
√
αkβk. The optimal

ADI parameters r(m)
i , i = 1, 2, . . . , m = 2k can be computed as follows:

(8.6.23).
(1) Put s(0)1 :=

√
αkβk.

(2) For j = 0, 1, . . . , k − 1, determine s(j+1)
i , i = 1, 2, . . . , 2j+1, as the

2j+1 solutions of the 2j quadratic equations in x,

s
(j)
i =

1
2

(
x+

αk−1−jβk−1−j
x

)
, i = 1, 2, . . . , 2j .

(3) Put r(m)
i := s

(k)
i , i = 1, 2, . . . , m = 2k.

The s(j)i , i = 1, 2, . . . , 2j , are just the optimal ADI parameters for the
interval [αk−j , βk−j].

Let us use these formulas to study for the model problem (8.4.1),
(8.4.4), withm = 2k fixed, the asymptotic behavior of d2k(α, β) as N → ∞.
For α and β we take the best possible bounds (see (8.6.12)):

(8.6.24)
α = 4 sin2 π

2(N + 1)
,

β = 4 sin2 Nπ

2(N + 1)
= 4 cos2

π

2(N + 1)
.

We then have

(8.6.25) dm(α, β) ∼ 1 − 4 m

√
π

4(N + 1)
as N → ∞, m := 2k.

Proof. By mathematical induction on k. With the abbreviation

ck :=
√
αk/βk,

one obtains from (8.6.21), (8.6.22)

d2k(α, β) =
1 − ck
1 + ck

,(8.6.26a)

c2k+1 =
2ck

1 + c2k
.(8.6.26b)

656 8 Iterative Methods for the Solution of Systems of Linear Equations

In order to prove (8.6.25), it suffices to show

(8.6.27) ck ∼ 2 2k

√
π

4(N + 1)
, N → ∞,

since it follows then from (8.6.26a) that for N → ∞

d2k(α, β) ∼ 1 − 2ck.

But (8.6.27) is true for k = 0, since

c0 = tan
π

2(N + 1)
∼ π

2(N + 1)
.

If (8.6.27) is valid for some k ≥ 0, then it is also valid for k + 1, because
from (8.6.26b) we have at once

ck+1 ∼
√

2ck as N → ∞;

hence the assertion. ��
In practice, the parameters ri are often repeated cyclically, i.e., one

chooses a fixedm (e.g., in the formm = 2k), then determines approximately
the optimal ADI parameters r(m)

i belonging to this m, and finally takes for
the ADI method the parameters

rjm+i := r
(m)
i for i = 1, 2, . . . , m, j = 0, 1,

If m individual steps of the ADI method are considered a “big iteration
step”, the quantity

− ln(10)
ln ρ(Trm

· · ·Tr1)
indicates how many big iteration steps are required to reduce the error by
a factor of 1

10 , i.e.,

R
(m)
ADI = −m ln(10)

ln ρ(Trm
· · ·Tr1)

indicates how many ordinary ADI steps, on the average, are required for
the same purpose. In case of the model problem one obtains for the optimal
choice of parameters and m = 2k, by virtue of (8.6.16) and (8.6.25),

ρ(Trm · · ·Tr1) ≤ dm(α, β)2 ∼ 1 − 8 m

√
π

4(N + 1)
, N → ∞,

ln ρ(Trm . . . Tr1) ≤̇ −8 m

√
π

4(N + 1)
, N → ∞,

so that

8.7 Krylov Space Methods 657

(8.6.28) R
(m)
ADI ≤̇ m

8
ln(10) m

√
4(N + 1)

π
for N → ∞.

Comparison with (8.4.9) shows that for m > 1 the ADI method converges
considerably faster than the optimal ordinary relaxation method. It is this
convergence behavior which establishes the practical significance of the ADI
method.

8.7 Krylov Space Methods for Solving Linear
Equations

For the solution of a system of linear equations

Ax = b, A a (real) nonsingular n× n matrix,

beginning with a vector x0, Krylov space methods produce a chain of vec-
tors

x0 → x1 → · · · → xm,

which in exact arithmetic terminates with the exact solution, xm = x̄ :=
A−1b after at most n steps, m ≤ n. The special feature of Krylov space
methods is that the iterates xk satisfy for all k ≥ 0

xk ∈ x0 +Kk(r0, A),

where Kk(r0, A) is the Krylov space [see Section 6.5.3] belonging to the
matrix A and the starting vector r0 := b−Ax0 given by the residual of x0,

Kk(r0, A) := span [r0, Ar0, . . . , Ak−1r0], k = 1, 2,

Because of roundoff errors, these methods typically do not terminate
with the desired solution after finitely many steps. As in true iterative
methods, therefore, an indefinite number of steps needs to be carried out
to reach an sufficiently accurate solution, and what matters, is the speed
of convergence of the iterates xk. The amount of work per step xk → xk+1
roughly equals that of multiplying the matrix A by a vector. For this reason
these methods are advantageous for sparse unstructured matrices A as they
occur, e.g. in network calculations, but are not recommended for dense
matrices or band matrices.

A first method of this kind, the conjugate-gradient method (cg-method)
was proposed by Hestenes and Stiefel (1952) for systems with a positive
definite matrix A. These matrices define a norm ‖z‖A :=

√
zTAz, and the

cg-method generates a sequence xk ∈ x0 +Kk(r0, A) with the minimality
property

‖xk − x̄‖A = min
z∈x0+Kk(r0,A)

‖z − x̄‖A.

658 8 Iterative Methods for the Solution of Systems of Linear Equations

In this method, an important role is played by A-conjugate vectors pk ∈
IRn, k = 0, 1, . . . ,

pTi Apk = 0 for i �= k,

that span the Krylov spaces Kk(r0, A),

span[p0, p1, . . . , pk−1] = Kk[r0, A], k = 1, 2,

We describe the cg-method in Section 8.7.1.

The generalized minimum residual method (GMRES method) [see Saad
and Schulz (1986), Saad (1996)] is more expensive but is defined also for
general linear systems with a nonsymmetric nonsingular matrix A. It gen-
erates vectors xk ∈ x0 +Kk(r0, A) with a minimal residual b−Axk,

‖b−Axk‖2 = min
z∈x0+Kk(r0,A)

‖b−Az‖2,

and uses, as main tool, orthonormal vectors v1, v2, . . . , that provide an
orthonormal basis for the Krylov spaces Kk(r0, A) of dimension k,

span[v1, v2, . . . , vk] = Kk(r0, A).

These vectors are given by the method of Arnoldi (1951). The GMRES
algorithm is described in Section 8.7.2.

In Section 8.7.3 we present (a simplified version of) the quasi-minimal
residual method (QMR method) of Freund and Nachtigal (1991), for solv-
ing arbitrary sparse linear systems of equations. This method is based on
the more efficient (but numerically more sensitive) biorthogonalization al-
gorithm of Lanczos (1950), which provides non-orthogonal bases v1, . . . ,
vk for the Krylov spaces Kk(r0, A) of dimension k. Using these bases, one
can compute iterates xk ∈ x0 +Kk(r0, A) with an approximately minimal
residual.

The biconjugate gradient algorithm (Bi-CG) due to Lanczos (1950) and
thorougly studied by Fletcher (1976) is also a method for solving linear
systems of equations with an arbitrary matrix A. It is an inexpensive,
natural generalization of the cg-algorithm, and also generates iterates xk ∈
x0 +Kk(r0, A). Frequently, however, the size of the corresponding residuals
rk = b−Axk fluctuates considerably as k. With his Bi-CGSTAB algorithm,
Van der Vorst (1992) was able to stabilize the Bi-CG algorithm in a very
elegant way. Both methods are, described in Section 8.7.4.

8.7.1 The Conjugate-Gradient Method of Hestenes and Stiefel

We now consider a system of linear equations

(8.7.1.1) Ax = b

8.7 Krylov Space Methods 659

with a (real) positive definite n×n matrix A, b ∈ IRn and the exact solution
x̄ = A−1b. By ‖z‖A we denote the norm ‖z‖A :=

√
zTAz, which is closely

related to the quadratic functional F : IRn → IR,

F (z) = 1
2 (b−Az)TA−1(b−Az)

= 1
2 z

TAz − bT z + 1
2b
TA−1b

= 1
2 (z − x̄)TA(z − x̄)

= 1
2 ‖z − x̄‖2

A,

minimized by x̄ ,
0 = F (x̄) = min

z∈IRn
F (z).

This might suggest using the “method of steepest descent”, in which [cf.
Section 5.4.1] the sequence x0 → x1 → · · · is found by one-dimensional
minimization of F in the direction of the gradient:

xk+1: F (xk+1) = min
u
F (xk + urk) with rk := −∇F (xk) = −Axk + b.

At the step xk → xk+1 of the conjugate-gradient method, instead, a (k+1)-
dimensional minimization is carried out:

(8.7.1.2)
xk+1 : F (xk+1) = min

u0,...,uk

F (xk + u0r0 + · · · + ukrk),

ri := b−Axi for i ≤ k .

It turns out that xk+1 can be computed rather easily. The ri obtained are
orthogonal, and hence linearly independent, as long as rk �= 0. In exact
computation there is thus a first m ≤ n with rm = 0, since at most n
vectors are linearly independent in IRn. The corresponding xm is the desired
solution of (8.7.1.1).

We first describe the method, and then verify its properties.

(8.7.1.3) Conjugate-Gradient Method. Initialization: Choose x0 ∈ IRn,
and put p0 := r0 := b−Ax0.
For k = 0, 1, . . . :

(1) If pk = 0, set m := k and stop: xk is the solution of Ax = b. Otherwise,

(2) compute

ak :=
rTk rk
pTkApk

, xk+1 := xk + akpk,

rk+1 := rk − akApk, bk :=
rTk+1rk+1

rTk rk
,

pk+1 := rk+1 + bkpk.

660 8 Iterative Methods for the Solution of Systems of Linear Equations

For the implementation of this method, only four vectors, xk, rk, pk and
Apk, need to be stored. At each iteration step, only one matrix multiplica-
tion, Apk, is required; the remaining work amounts to the calculation of six
inner products in IRn. The total computational effort, for sparse matrices,
is therefore modest.

The most important theoretical properties of the method are summa-
rized in the following theorem.

(8.7.1.4) Theorem. Let A be a positive definite (real) n×n matrix and b ∈
IRn. Then for each initial vector x0 ∈ IRn there is a smallest nonnegative
integer m, m ≤ n, such that pm = 0. The vectors xk, pk, rk, k ≤ m,
generated by the conjugate-gradient (8.7.1.3) have the following properties:

(a) Axm = b: The method thus produces the exact solution of the equation
Ax = b after at most n steps.

(b) rTj pi = 0 for 0 ≤ i < j ≤ m.

(c) rTi pi = rTi ri for i ≤ m.
(d) pTi Apj = 0 for 0 ≤ i < j ≤ m, pTj Apj > 0 for j < m.

(e) rTi rj = 0 for 0 ≤ i < j ≤ m, rTj rj > 0 for j < m.
(f) ri = b−Axi for i ≤ m.

From Theorem (8.7.1.4) it follows, in particular, that the method is well
defined since rTk rk > 0, pTkApk > 0 for pk �= 0. Property (d) states ,
furthermore, that the vectors pk are A-conjugate, which explains the name
of the method.

Proof. We begin by showing, using mathematical induction on k, that the
following statement (Ak) is valid for all 0 ≤ k ≤ m, where m is the first
index with pm = 0:

(1) rTj pi = 0 for 0 ≤ i < j ≤ k,
(2) rTi ri > 0 for 0 ≤ i < k, rTi pi = rTi ri for 0 ≤ i ≤ k,

(Ak) (3) pTi Apj = 0 for 0 ≤ i < j ≤ k,
(4) rTi rj = 0 for 0 ≤ i < j ≤ k,
(5) ri = b−Axi for 0 ≤ i ≤ k.

(A0) is trivially true. We assume, inductively, that (Ak) holds for some
0 ≤ k < m and show (Ak+1) (1): From (8.7.1.3), where pTkApk > 0 since A
is positive definite and pk �= 0, it follows that

(8.7.1.5) rTk+1pk =
(
rk − akApk

)T
pk = rTk pk − rTk rk

pTkApk
pTkApk = 0

because of (Ak) (2). For j < k, analogously,

rTk+1pj =
(
rk − akApk

)T
pj = 0,

8.7 Krylov Space Methods 661

because of (Ak) (1), (3). This proves (Ak+1) (1).
(2): We have rTk rk > 0, since otherwise rk = 0, and thus, in view of

(8.7.1.3)

(8.7.1.6) pk =
{
r0, if k = 0,
bk−1pk−1, if k > 0.

Since k < m, we must have k > 0, because otherwise p0 = r0 = 0 and
m = 0. For k > 0, in view of pk �= 0 (k < m), we get from(8.7.1.6) and
(Ak) (3) the contradiction 0 < pTkApk = bk−1p

T
kApk−1 = 0. Therefore

rTk rk > 0, so that bk and pk+1 are well defined through (8.7.1.3). It thus
follows from (8.7.1.3) and (8.7.1.5) that

rTk+1pk+1 = rTk+1
(
rk+1 + bkpk

)
= rTk+1rk+1.

This proves (Ak+1) (2).
(3): From what was just proved, rk �= 0, so that a−1

j is well defined for
j ≤ k. From (8.7.1.3), we thus get for j ≤ k

pTk+1Apj = rTk+1Apj + bkpTkApj

= a−1
j r

T
k+1

(
rj − rj+1

)
+ bkpTkApj

= a−1
j r

T
k+1

(
pj − bj−1pj−1 − pj+1 + bjpj

)
+ bkpTkApj

=
{

0 for j < k because of (Ak) (3) and (Ak+1) (1),
0 for j = k by the definition of ak and bk,

and (Ak+1) (1), (2).

(Here, for j = 0, the vector p−1 has to be interpreted as the zero vector
p−1 = 0.) This proves (Ak+1) (3).

(4): By (8.7.1.3) and (Ak+1) (1), we have for i ≤ k (p−1 = 0),

rTi rk+1 =
(
pi − bi−1pi−1

)T
rk+1 = 0.

(5): From (8.7.1.3) and (Ak) (5) one gets

b−Axk+1 = b−A(xk + akpk) = rk − akApk = rk+1.

(Ak+1) has thus been verified in its entirety, and consequently, by induction,
(Am) holds true.

Because of (Am) (2), (4) we have ri �= 0 for all i < m, and these vectors
form an orthogonal system in IRn. Consequently, m ≤ n. From pm = 0 it
finally follows, by virtue of (Am) (2), that rTmrm = rTmpm = 0, and thus
rm = 0, so that xm is a solution of Ax = b. The proof of (8.7.1.4) is now
completed. ��

662 8 Iterative Methods for the Solution of Systems of Linear Equations

Armed with the information in Theorem (8.7.1.4), we can finally show
(8.7.1.2). To begin with, it is seen from (8.7.1.3) that for k < m the vectors
ri, i ≤ k, and pi, i ≤ k, span the same subspace of IRn:

Sk :=
{
u0r0 + · · · + ukrk | ui ∈ IR

}
=
{
ρ0p0 + · · · + ρkpk | ρi ∈ IR

}
.

For the function

Φ(ρ0, . . . , ρk) := F (xk + ρ0p0 + · · · + ρkpk)

however, we have for j ≤ k

∂Φ(ρ0, . . . , ρk)
∂ρj

= −rT pj ,

where r = b−Ax, x := xk + ρ0p0 + · · · + ρkpk. Choosing

ρj :=
{
ak for j = k,
0 for j < k,

we thus obtain, by (8.7.1.3), x = xk+1, r = rk+1 and by (8.7.1.4) (b),
−rTk+1pj = 0, so that indeed

min
ρ0,...,ρk

Φ(ρ0, . . . , ρk) = min
u0,...,uk

F
(
xk + u0r0 + · · · + ukrk

)
= F

(
xk+1

)
.

Using the recursions of (8.7.1.3) for the vectors rk and pk, it is readily
verified that

pk ∈ span[r0, Ar0, . . . , Akr0],

so that

Sk = span[p0, . . . , pk] = span[r0, Ar0, . . . , Akr0] = Kk+1(r0, A)

is the (k+1)-st Krylov space of A belonging to the vector r0. If one replaces
k + 1 by k and uses (8.7.1.2) and F (z) = 1

2‖z − x̄‖2
A, one obtains Sk−1 =

Kk(r0, A), xk − x0 ∈ Kk(r0, A) and

(8.7.1.7) ‖xk − x̄‖A = min{‖u− x̄‖A | u ∈ x0 +Kk(r0, A)}.

In exact arithmetic, we would have, at the latest, rn = 0, and thus
in xn the desired solution of (8.7.1.1). Because of the effects of rounding
errors the value computed for rn is, as a rule, different from zero. In actual
computation, the method is then simply continued beyond the value k = n
until an rk (or pk) is found which is sufficiently small. An Algol program
for a variant of this algorithm can be found in Wilkinson, Reinsch (1971);
an extensive account of numerical experiments, in Reid (1971) and further
results in Axelsson (1976).

8.7 Krylov Space Methods 663

The minimum property (8.7.1.7) can be used to estimate the speed of
convergence of the conjugate-gradient method (8.7.1.3). If we introduce the
error ej := xj−x̄ of xj , then by r0 = −Ae0, any u ∈ x0+Kk(r0, A) satisfies

u− x̄ ∈ e0 + span[Ae0, A2e0, . . . , A
ke0],

that is, there is a real polynomial p(t) = 1 + α1t+ · · · + αktk with u− x̄ =
p(A)e0. Therefore

‖ek‖A = min{‖p(A)e0‖A | p ∈ Π̄k},

where Π̄k denotes the set of all real polynomials of degree ≤ k with p(0) =
1. Now, the positive definite matrix A has n eigenvalues λ1 ≥ λ2 ≥ · · · ≥
λn > 0 and associated orthonormal eigenvectors zi, Azi = λzi, zTi zj = δij
[Theorems (6.4.2) and (6.4.4)]. We may write e0 in the form e0 = ρ1z1 +
· · · + ρnzn, which then implies

‖e0‖2
A = eT0 Ae0 =

n∑
i=1

λiρ
2
i

‖p(A)e0‖2
A =

n∑
i=1

p(λi)2λiρ2i ≤
(
max
i
p(λi)2

)
· ‖e0‖2

A,

and therefore

(8.7.1.8)
‖ek‖A
‖e0‖A

≤ min
p∈Π̄k

max
i

|p(λi)| ≤ min
p∈Π̄k

max
λ∈[λn,λ1]

|p(λ)|.

In terms of the Chebyshev polynomials

Tk(x) := cos(k arccosx) = cos kθ, if cos θ = x, k = 0, 1, . . . ,

which obviously satisfy |Tk(x)| ≤ 1 for x ∈ [−1, 1], we can construct a
polynomial of Π̄k with small max{ |p(λ)| | λ ∈ [λn, λ1] } in the following
way (in fact, we so obtain the optimal polynomial): Consider the mapping

λ �→ x = x(λ) := (2λ− (λn + λ1))/(λ1 − λn),

which maps the interval [λn, λ1] onto [−1, 1]. Then the polynomial

pk(λ) :=
Tk(x(λ))
Tk(x(0))

belongs to Π̄k and satisfies

max
λ∈[λn,λ1]

|pk(λ)| = |Tk(x(0))|−1 =
∣∣∣Tk(c+ 1

c− 1

)∣∣∣−1
.

Here, c := λ1/λn is just the condition number of the matrix A with respect
to the lub2(.)-norm [see Example (b) of Section 4.4].

664 8 Iterative Methods for the Solution of Systems of Linear Equations

It is easy to find an upper bound for |Tk(x(0))|−1. Using that Tk(x) =
(zk + z−k)/2 if x = (z + z−1)/2, and

c+ 1
c− 1

=
1
2

(√
c+ 1√
c− 1

+
√
c− 1√
c+ 1

)
,

we finally obtain the estimate

(8.7.1.9)
‖ek‖A
‖e0‖A

≤
(
Tk

(c+ 1
c− 1

))−1

≤ 2
(√

c− 1√
c+ 1

)k
.

Thus, the speed of convergence of the conjugate-gradient method is deter-
mined by

√
c and increases if the condition number c of A decreases.

This behavior is exploited by the so-called preconditioning techniques
in order to accelerate the conjugate-gradient method. Here, one tries to
approximate as well as possible the positive definite matrix A by another
positive definite matrix B, the preconditioner , so that B−1A is a good
approximation of the unit matrix. Then the positive definite matrix

A′ = B1/2(B−1A)B−1/2 = B−1/2AB−1/2,

which is similar to B−1A, has a much smaller condition than A, c′ =
cond(A′) � c = cond(A). [Here, we have used that for any positive definite
matrix B there exists a positive definite matrix C =: B1/2 with C2 = B.
This follows easily from Theorem (6.4.2).] Moreover, the matrix B should
be chosen such that linear equations Bq = r are easily solvable, which is
the case, e.g., if B has a Choleski decomposition B = LLT with known
sparse Choleski factor L. After having chosen B, the vector x̄′ := B1/2x̄
solves the system

A′x′ = b′, b′ := B−1/2b,

which is equivalent to Ax = b.
We now apply the conjugate-gradient method (8.7.1.3) to solve the

primed system A′x′ = b′, using x′
0 := B1/2x0 as starting vector. Because

of (8.7.1.9) and c′ � c, the sequence x′
k generated by the cg-method will

converge very rapidly toward x̄′. But, instead of computing the matrix A′

and the vectors x′
k explicitly, we generate the sequence xk := B−1/2x′

k

associated with x′
k directly as follows: Using the transformation rules

A′ = B−1/2AB−1/2, b′ = B−1/2b,

x′
k = B1/2xk, r′k = b′ −A′x′

k = B−1/2rk, p′
k = B1/2pk,

we obtain from the recursions of (8.7.1.3) for the primed system A′x′ = b′

immediately the recursions of the following method.

(8.7.1.10) Preconditioned Conjugate Gradient Method.
Initialization: Choose x0 ∈ Rn, compute r0 := b − Ax0, q0 := B−1r0 and
put p0 := q0.

8.7 Krylov Space Methods 665

For k = 0, 1, . . . :
(1) If pk = 0, stop: xk is the solution of Ax = b. Otherwise,
(2) compute

ak :=
rTk qk
pTkApk

, xk+1 := xk + akpk,

rk+1 := rk − akApk, qk+1 := B−1rk+1,

bk :=
rTk+1qk+1

rTk qk
, pk+1 := qk+1 + bkpk.

Essentially, the only difference, compared to (8.7.1.3), is that we have
to solve at each step an additional linear system Bq = r with the matrix
B.

Now, the problem arises of finding an appropriate preconditioning ma-
trix B, a problem similar to the problem of finding a suitable iterative
method studied in Sections 8.1 to 8.3. When solving the linear equations
Ax = b arising from the disretization of boundary value problems for el-
liptic equations, say the model problem of Section 8.4, it turned out to be
useful to choose B as the SSOR matrix [cf. 8.3] defined by

(8.7.1.11) B =
1

2 − ω

(1
ω
D − E

)(1
ω
D
)−1(1

ω
D − ET

)
with a suitable ω ∈ (0, 2) [see Axelsson (1977)]. Here, D and E are defined
as in the standard decomposition (8.1.5) of A, that is A = D − E − ET .

Note, that the factor L = (1/ω)D−E of B is a lower triangular matrix
that is as sparse as the matrix A: Below the diagonal it is nonzero at the
same positions as A.

Another more general proposal is due to Meijerink and van der Vorst
(1977): They proposed to determine the preconditioner B and its Choleski
decomposition by the so-called incomplete Choleski factorization of A.
Slightly more general than in Section 4.3, we consider here Choleski de-
compositions of the form B = LDLT , where L is a lower triangular matrix
with lii = 1 and D is a positive definite diagonal matrix. With the incom-
plete Choleski decomposition it is even possible to prescribe the sparsity
structure of L: Given an arbitrary set G ⊂ { (i, j) | j ≤ i ≤ n } of pairs of
indices with (i, i) ∈ G for alle i, it is possible to find an L with

li,j �= 0 ⇒ (i, j) ∈ G.

However, incomplete Choleski factorization gives a decent B approximation
to A only for positive definite matrices A, which are also M -matrices, that
is matrices A mit aij ≤ 0 for i �= j and A−1 ≥ 0 [see Meijerink and van der
Vorst].

666 8 Iterative Methods for the Solution of Systems of Linear Equations

Fortunately,M -matrices occur very frequently in applications and there
are simple sufficient criteria for A to be an M -matrix. For instance, any
matrix A = AT with aii > 0, aij ≤ 0 for i �= j that also satisfies the
hypotheses of Theorem (8.2.9) (weak row sum criterion) is an M -matrix
(e.g., the matrix A (8.4.5) of the model problem). This is shown, as in the
proofs of Theorems (8.2.9) and (8.2.12), by establishing the convergence of
the Neumann series

A−1 = (I + J + J2 + · · ·)D−1 ≥ 0

for A = D(I − J).
Given an index set G as earlier, the incomplete Choleski factorization of

a positive definite M -matrix A produces the factors D and L of a positive
definite matrix B = LDLT approximating A according to the following
rules [cf. the program for the Choleski algorithm at the end of Section 4.3]:

(8.7.1.12) Incomplete Choleski Factorization.
For i = 1, . . . , n :

di := aii −
∑i−1
k=1 dkl

2
ik

For j = i+ 1, . . . , n:

dilji :=
{
aji −

∑i−1
k=1 dkljklik if (i, j) ∈ G,

0 otherwise.
That is the only difference, compared to the ordinary Choleski algorithm,
is that lij = 0 is set equal to zero at the “forbidden” places (i, j) /∈ G.

The conjugate-gradient method can also be used to solve the least-
squares problem for overdetermined systems

(8.7.1.13) Determine minx ‖Bx− c‖2,

where B is a sparse m×n matrix B with m ≥ n of rankB = n. According
to Section 4.8.1, indeed, the optimal solution x̄ of (8.7.1.13) is also solution
of the normal equations

Ax = b, A := BTB, b := BT c,

where A is positive definite. Even if B is sparse the matrix A = BTB
can be dense. This suggests the following variant of the conjugate-gradient
method (8.7.1.3) for the solution of (8.7.1.13), and has proved useful in
practice:

Initialization: Choose x0 ∈ IRn and compute s0 := c − Bx0, p0 := r0 :=
BT s0.
For k = 0, 1, . . . :
(1) If pk = 0, stop: xk is the optimal solution of (8.7.1.13). Otherwise,
(2) compute

8.7 Krylov Space Methods 667

qk := Bpk, ak :=
rTk rk
qTk qk

,

xk+1 := xk + akpk, sk+1 := sk − akqk,

rk+1 := BT sk+1, bk :=
rTk+1rk+1

rTk rk
,

pk+1 := rk+1 + bkpk.

Clearly, the iterates xk generated by this method satisfy

xk − x0 ∈ Kk(r0, BTB),
‖xk − x̄‖BTB = min{‖u− x̄‖BTB | u ∈ x0 +Kk(r0, BTB)}.

Since cond2(BTB) = cond2(B)2 the convergence speed of this variant of
the conjugate-gradient method is low if the conditon number cond2(B) � 1
of B is large [cf. Sections 4.8.2 and 4.8.3].

For a quadratic matrix B, this algorithm could also be used to solve
the linear equations Bx = c even for a nonsymmetric matrix B. However,
it is usually better to apply one of the algorithms (GMRES, QMR, Bi-
CGSTAB) described in Sections 8.7.2 to 8.7.4 to solve such equations.

Numerical examples illustrating the original conjugate-gradient algo-
rithm (8.7.1.3) and its preconditioned version (8.7.1.10) are given in Section
8.10.

8.7.2 The GMRES Algorithm

In this section, we consider a system of linear equations

Ax = b

with a general real nonsingular n×nmatrix A which may be nonsymmetric,
and solution x̄ := A−1b. There were many efforts to develop conjugate-
gradient type algorithms for solving such systems [see Saad (1996) for a
comprehensive representation] that, among others, lead to the generalized
minimum residual method (GMRES) of Saad and Schultz (1986). It is a
Krylov space method: Starting with any approximate solution x0 �= x̄ with
residual r0 := b − Ax0 �= 0, it generates subsequent approximations xk to
x̄ with the following properties:

(8.7.2.1)
xk ∈ x0 +Kk(r0, A),

‖b−Axk‖2 = min{‖b−Au‖2 | u ∈ x0 +Kk(r0, A)}.

668 8 Iterative Methods for the Solution of Systems of Linear Equations

As a tool, we use orthonormal bases of the Krylov spaces Kk(r0, A), k ≥ 1.
In view of the definition

Kk(r0, A) = span[r0, Ar0, · · · , Ak−1r0],

r0 �= 0 implies
1 ≤ dimKk(r0, A) ≤ k, k ≥ 1.

Thus, there is a largest index m with 1 ≤ m ≤ n so that

dimKk(r0, A) = k for all 1 ≤ k ≤ m.

The number m is also the smallest integer for which the Krylov space
Km(r0, A) is A-invariant, that is,

(8.7.2.2) AKm(r0, A) := {Ax | x ∈ Km(r0, A) } ⊂ Km(r0, A).

Indeed, the A-invariance of Km(r0, A) is equivalent to

Amr0 ∈ Km(r0, A),

so that
dimKm+1(r0, A) = dimKm(r0, A) < m+ 1.

A key feature of the GMRES method is that it uses orthonormal vectors
vi ∈ IRn to span all the spaces Kk(r0, A), k ≤ m:

span[v1, v2, . . . , vk] = Kk(r0, A) for 1 ≤ k ≤ m.

For k = 1, this determines v1 up to a sign:

v1 :=
r0
β
, β := ‖r0‖2.

For computing the remaining vectors vi, Arnoldi (1951) proposed the fol-
lowing method (it generalizes the algorithm of Lanczos (6.5.3.1) to non-
symmetric matrices A):

(8.7.2.3) Arnoldi’s orthonormalization method.
Initialization: Given r0 �= 0, put β := ‖r0‖2, v1 := r0/β.
For k = 1, 2, . . . :
(1) Compute u := Avk.
(2) For i = 1, 2, . . . , k

compute hik := vTi u.
(3) Compute wk := u−

∑k
i=1 hikvi und hk+1,k := ‖wk‖2.

(4) If hk+1,k = 0, set m := k and stop.
Otherwise,

(5) compute vk+1 := wk/hk+1,k.

8.7 Krylov Space Methods 669

As in Gram-Schmidt orthogonalization, the hik are determined in step
(2) such that

wk ⊥ vi, i.e., vTi wk = 0,

for all i = 1, . . . , k. Therefore, if ‖wk‖2 �= 0, step (5) determines a new
vector vk+1 such that v1, . . . , vk+1 form an enlarged orthonormal system
of k + 1 vectors.

We will see that the Arnoldi method breaks off with the same index
m we encountered earlier. It follows by induction that Arnoldi’s method
generates vectors v1, . . . , vm such that

(8.7.2.4) span[v1, . . . , vk] = Kk(r0, A) = span[r0, Ar0, . . . , Ak−1r0]

for k ≤ m. Each vk, 1 ≤ k ≤ m, can even be represented in the form

(8.7.2.5) vk =
k∑
j=1

γjA
j−1r0 with γk �= 0,

that is, the coefficient γk of Ak−1r0 is nonzero. This is true for k = 1 by
definition of v1 = r0/β. If (8.7.2.5) holds for some k ≥ 1, then, by the
induction hypothesis, vi ∈ Kk(r0, A) for i ≤ k and (8.7.2.5) implies

Avk =
k∑
j=1

γjA
jr0, γk �= 0,

and

wk =
k∑
j=1

γjA
jr0 −

k∑
j=1

hjkvj .

By the induction hypothesis, each vj , 1 ≤ j ≤ k, has a representation

vj =
j∑
i=1

δiA
i−1r0.

Thus, wk has the form

wk =
k∑
j=1

εjA
jr0 with εk = γk �= 0.

Hence, if hk+1,k = ‖wk‖ �= 0, assertion (8.7.2.5) for k + 1 follows, because
of vk+1 = wk/hk+1,k.

If wk = 0 then Akr0 is a linear combination of the vectors Ajr0, j ≤
k − 1, that is the break-off index m = k of Arnoldi’s method is the same
index introduced earlier:

670 8 Iterative Methods for the Solution of Systems of Linear Equations

m = max{k ≥ 1 | dimKk(r0, A) = k}.

The n × k matrices Vk := [v1, v2, . . . , vk], k ≤ m, have orthonormal
columns, V Tk Vk = Ik, that form a basis of Kk(r0, A),

Kk(r0, A) = {Vky | y ∈ IRk}.

Each x ∈ x0 +Kk(r0, A), therefore, has a representation of the form x =
x0 + Vky with a unique vector y ∈ IRk.

The Arnoldi recursions may be formulated compactly in terms of the
(k + 1) × k Hessenberg matrices

H̄k :=

h11 h12 · · · h1k
h21 h22 · · · h2k

0
.

...
...

. hkk
0 · · · 0 hk+1,k

 , 1 ≤ k ≤ m,

and their k × k submatrices Hk obtained by deleting the last row of H̄k:

The formulas of steps (3) and (5) of algorithm (8.7.2.3) imply for all 1 ≤
k < m

Avk =
k+1∑
i=1

hikvi =
k∑
i=1

hikvi + wk,

and for k = m (since wm = 0)

Avm =
m∑
i=1

himvi.

For k = m, these relations are equivalent to

(8.7.2.6) AVm = VmHm,

and for 1 ≤ k < m to

(8.7.2.7)
AVk = VkHk + wkeTk , eTk := [0, . . . , 0, 1] ∈ IRk,

= Vk+1H̄k.

For 1 ≤ k ≤ m (because of V Tk wk = 0), they imply immediately

(8.7.2.8) Hk = V Tk AVk.

We note the following property of the matrices Hk:

(8.7.2.9). The matrix Hm is nonsingular, and rank H̄k = k for k < m.

8.7 Krylov Space Methods 671

For otherwise, there would exist a y ∈ IRm, y �= 0, with Hmy = 0. But
then z := Vmy �= 0, and (8.7.2.6) would imply

Az = AVmy = VmHmy = 0,

contradicting the nonsingularity of A. The subdiagonal elements hj+1,j ,
j=1, 2, . . . , k, of H̄k, k < m, are nonzero: this establishes rank H̄k = k for
k < m.

The matrices H̄k, Hk and Vk permit a straightforward determination
of the solution xk of (8.7.2.1). As noted before, each x ∈ x0 + Kk(r0, A)
can be written in the form x = x0 + Vky with a unique vector y ∈ IRk.
Since r0 = βv1 = βVk+1ē1, ē1 = [1, 0, . . . , 0]T ∈ IRk+1, V Tk+1Vk+1 = I, and
(8.7.2.7) for k < m, it follows

‖b−Ax‖2 = ‖b−Ax0 −AVky‖2

= ‖r0 − Vk+1H̄ky‖2

= ‖Vk+1(βē1 − H̄ky)‖2

= ‖βē1 − H̄ky‖2.

The solution yk of the linear least squares problem

(8.7.2.10) min
y∈IRk

‖βē1 − H̄ky‖2

thus provides the solution xk of (8.7.2.1), xk = x0 + Vkyk.

In the case k = m, (8.7.2.6) implies for x ∈ x0 +Km(r0, A) that

(8.7.2.11)
‖b−Ax‖2 = ‖r0 −AVmy‖2

= ‖Vm(βe1 −Hmy)‖2

= ‖βe1 −Hmy‖2.

Here, e1 is the vector e1 = [1, 0, . . . , 0]T ∈ IRm. Now, we can sharpen the
characterization of the break-off index m of (8.7.2.3) in terms of the vectors
xk (8.7.2.1):

(8.7.2.12). The vector xm solves Ax = b, xm = A−1b, and xk �= A−1b
for all k < m: The break-off index m is the first index for which xk solves
Ax = b.

Proof. We use (8.7.2.8). The matrix Hm is nonsingular, hence there
is a unique ym ∈ IRm with Hmym = βe1. By (8.7.2.11), the corresponding
xm := x0 + Vmym, therefore, solves Ax = b.

For k < m, all subdiagonal elements hj+1,j , j = 1, 2, . . . , k, of the
Hessenberg matrix H̄k are nonzero. The linear equations

672 8 Iterative Methods for the Solution of Systems of Linear Equations

H̄ky =

h11 . . . h1k

h21
. . .

...
...

. . . hkk
0 . . . hk+1,k

 y =

β
0
...
0

 = βē1

are thus not solvable: The only solution of last k equations is y = 0, since
hj+1,j �= 0, but y = 0 does not solve the first equation as β �= 0. ��

The linear least squares problems (8.7.2.10) may be solved by the or-
thogonalization methods described in Section 4.8.2, taking advantage of
the Hessenberg structure of the matrices H̄k. The main tools are the
(k + 1) × (k + 1) Givens rotations Ωj = Ωj,j+1 (j=1, 2, . . . , k) of type
Ωj,j+1 [see (6.5.2.1)]

Ωj,j+1 =

1
. . .

1
cj −sj
sj cj

1
. . .

1

← j
← j + 1 , c2j + s2j = 1.

The parameters cj , sj are chosen such that for each matrix in the sequence

H̄k → Ω1H̄k → Ω2(Ω1H̄k) → · · · → Ωk(Ωk−1 · · ·Ω1H̄k) =: R̄k,

the first nonzero subdiagonal element is annihilated so that the sequence
terminates with an “upper triangular” (k + 1) × k matrix

R̄k =
[
Rk
0

]
, Rk =

x . . . x
...

. . .
...

0 . . . x

 .
The concurrent transformations of the vector ḡ0 := βē1 ∈ IRk+1,

ḡ0 → Ω1ḡ0 → · · · → Ωk(Ωk−1 · · ·Ω1ḡ0) =: ḡk,

lead to the vector

ḡk :=
[
gk
γ̄k+1

]
, gk :=

γ1
γ2
...
γk

 ∈ IRk.

8.7 Krylov Space Methods 673

(The notation of its components is to indicate, that the first k components
γ1, . . . , γk of ḡk will no longer change in the subsequent steps k → k+1 →
· · ·, of the algorithm.)

We illustrate the method for k = 2. Here, B Ω−→ C stands for a left-
multiplication with the matrix Ω, C := ΩB. Again, * denotes elements that
have changed during the preceding transformation

[H̄2, ḡ0] =

[x x x
x x 0

x 0

]
Ω1−→

[∗ ∗ ∗
0 ∗ ∗

x 0

]
Ω2−→

[x x x
0 ∗ ∗

0 ∗

]
=

=
[
R2 g2
0 γ̄3

]
= [R̄2 ḡ2] .

Now, Qk := ΩkΩk−1 · · ·Ω1 is a unitary matrix, so that

‖βē1 − H̄ky‖2 = ‖Qk(βē1 − H̄ky)‖2 = ‖ḡk − R̄ky‖2.

The solution yk of the least-squares problem (8.2.7.10) is obtained as the
solution of

min
y

‖ḡk − R̄ky‖2 = min
y

∥∥∥ [gk
γ̄k+1

]
−
[
Rk
0

]
y
∥∥∥

2
,

that is, as the solution yk := R−1
k gk of the linear equations

(8.7.2.13) gk = Rky.

[Note that Rk is nonsingular, since for k < m rank H̄k = k implies
rank R̄k = rank (QkH̄k) = k.] Then xk := x0 + Vkyk is the solution of
(8.7.2.1).

We also note that the size of the residual b−Axk is given by

(8.7.2.14) ‖b−Axk‖2 = ‖βē1 − H̄kyk‖2 = ‖ḡk − R̄kyk‖2 = |γ̄k+1|.

It is important to realize that we can save a major portion of the
previous computations as we step from k − 1 to k. The reason is that the
(k + 1) × k matrixH̄k differs from the k × (k − 1) matrix H̄k−1 essentially
only by one additional column,

H̄k =

h1,1 . . . h1,k−1 h1,k

h2,1
. . .

...
...

0
. . . hk−1,k−1

...
...

. . . hk,k−1 hk,k
0 . . . 0 hk+1,k

=
[
H̄k+1 hk

0 hk+1,k

]

674 8 Iterative Methods for the Solution of Systems of Linear Equations

namely by the last column

h̄k :=

h1,k

...
hk,k
hk+1,k

 =
[
hk

hk+1,k

]
,

the components of which are computed in steps (2) and (3) of algorithm
(8.7.2.3). This can be used for the matrix Qk−1H̄k, Qk−1 := Ωk−1 · · ·Ω1,
which has the form

Qk−1H̄k =

Rk−1 rk
0 ρ
0 σ

 =: R̃k with

 rkρ
σ

 := Qk−1h̄k, rk ∈ IRk−1.

Therefore, we have to compute only the last column r̃k of R̃k, which
amounts to forming the product

(8.7.2.15) r̃k =

 rkρ
σ

 = Qk−1h̄k = Ωk−1Ωk−2 · · ·Ω1h̄k.

Then R̃k is transformed by a single appropriate Givens rotation Ωk
(with k+1 rows) of type Ωk,k+1 with parameters ck, sk to upper triangular
form:

R̃k =

Rk−1 rk
0 ρ
0 σ

 → ΩkR̃k =: R̄k =
[
Rk
0

]
=

Rk−1 rk
0 rk,k
0 0

 .
This is achieved by the choice

(8.7.2.16) ck :=
ρ√

ρ2 + σ2
, sk :=

−σ√
ρ2 + σ2

.

The last column r̄k of R̄k, finally, is obtained as follows:

(8.7.2.17) r̄k =

 rkrkk
0

 =

r1k
...
rkk
0

 = Ωkr̃k, rkk =
√
ρ2 + σ2.

Sketch for k = 3 :

R̃2 =

x x x
x x

ρ
σ

 Ω3−→

x x x
x x

∗
0

 =: R̄3.

8.7 Krylov Space Methods 675

Now, ē1 ∈ IRk+1 is the first axis vector in IRk+1. Letting ḡ0 := βē1,

Qk−1ḡ0 =
[
ḡk−1

0

]
, with ḡk−1 =

γ1
...

γk−1
γ̄k

 =
[
gk−1
γ̄k

]
,

as ḡk−1 ∈ IRk−1. Hence ḡk := ΩkΩk−1 · · ·Ω1ḡ0 satisfies

ḡk =

γ1
...
γk
γ̄k+1

 := Ωk

[
ḡk−1

0

]
= Ωk

γ1
...

γk−1
γ̄k
0

 ,

that is,

(8.7.2.18) γk = ckγ̄k, γ̄k+1 = skγ̄k.

Illustration of step k − 1 → k for k = 3:

[
ḡ2
0

]
=

 γ1
γ2
γ̄3
0

 =

xx
x
0

 Ω3−→

xx
∗
∗

 =

 γ1
γ2
γ3
γ̄4

 =: ḡ3.

Thus, because of (8.7.2.14) and (8.7.2.18), the size of the residual b −
Axk can be computed recursively, ‖b−Axk‖2 = |γ̄k+1| = |skγ̄k|, so that

‖b−Axk‖2 = |γ̄k+1| = |sksk−1 · · · s1|β.

We, therefore, need not solve Rky = gk for yk and compute xk = x0 +Vkyk
in order to find ‖b − Axk‖2. This can be used in the GMRES algorithm,
if, for a desired accuracy ε > 0, the solution xk (8.7.2.1) is computed only
when |γ̄k+1| = |sksk−1 · · · s1|β ≤ ε and not before.

We show briefly that also the vectors xk can be computed recursively. Let us
introduce the matrices Pk := VkR

−1
k = [p1, . . . , pk] with columns pi. Then

xk = x0 + Vkyk = x0 + VkR
−1
k gk =: x0 + Pkgk

The equation

Rk =
[
Rk−1 rk

0 rkk

]
,

shows that Pk satisfies

Vk = [v1, . . . , vk] = PkRk = [Pk−1, pk]
[
Rk−1 rk

0 rkk

]
,

676 8 Iterative Methods for the Solution of Systems of Linear Equations

if and only if vk = Pk−1rk + rkkpk. Thus, the vectors pi can be computed recur-
sively by:

(8.7.2.19) pk =
1
rkk

(
vk −

k−1∑
i=1

rikpi

)
.

This gives, because of

Pkgk = [Pk−1, pk]
[
gk−1
γk

]
= Pk−1gk−1 + γkpk,

the following recursion for the vectors xk:

(8.7.2.20) xk = x0 + Pkgk = xk−1 + γkpk.

If one uses this formula, a storage of the matrices Rk is not necessary. However this
saving is more than offset since one has to compute the vectors pk by (8.7.2.19),
which becomes, with increasing k, progressively expensive, and to store these
vectors. So, in general, the use of (8.7.2.20) is not recommendable. We will see
below that this balance changes if the H̄k are band matrices of small bandwidth
l, l � n.

A weakness of the Arnoldi method (8.7.2.3) is that, due to roundoff
errors, the computed vectors vi, i ≤ k, become less and less orthogonal as
k increases [this is a known defect of Gram-Schmidt orthogonalization, see
Section 4.7 for an analysis of this phenomenon]. An expensive remedy is to
use reorthogonalization: A newly computed ṽk+1 is orthogonalized against
all already accepted vectors v1, . . . , vk,

ṽk+1 → v̂k+1 := ṽk+1 −
k∑
i=1

(vTi ṽk+1)vi,

before accepting vk+1 := v̂k+1/‖v̂k+1‖2 as next vector. But this doubles the
computing efforts. An improvement, at no extra expenses, of the orthogo-
nality of the computed vi is already obtained if one replaces steps (1) to
(3) of the Arnoldi method by

(1’) Compute w := Avk.

(2’) For i := 1, 2, . . . k :

Compute hik := vTi w, w := w − hikvi.
(3’) Compute hk+1,k := ‖w‖2 and set wk := w.

In contrast to the conjugate-gradient algorithm (8.7.1.3), a more serious
disadvantage of the GMRES method is that the computational expenses
of step k − 1 → k increase proportionally to k, since each vector Avk has
to be orthogonalized with respect to all previous vectors v1,. . . , vk in order
to find vk+1.

8.7 Krylov Space Methods 677

A drastic remedy is to restart the GMRES method periodically, say
every N -th step, where 1 < N � n (e.g., N = 10), according to the
following scheme, which is denoted by GMRES(N):

(8.7.2.21).
(0) Given x0, compute r0 := b−Ax0.
(1) Compute xN by means of the GMRES method.
(2) Set x0 := xN and goto step (0).

A drawback of this approach is that, after each restart, one loses all
information contained in the vectors v1, . . . , vN .

Instead of using restarts, one could artificially limit the number of or-
thogonalizations in step (2) of the Arnoldi method (8.7.2.3): One could fix
an integer l with 1 ≤ l � n and orthogonalize the vector Avk only against
the last l vectors vk, vk−1, . . . , vk−l+1. Then only the information con-
tained in the old vectors vk−i with i ≥ l is not used anymore. This leads
to an incomplete GMRES method, where one replaces steps (1) to (3) in
(8.7.2.3) by:

(1’) Compute w := Avk.
(2’) For i = max{1, k − l + 1}, . . . , k

compute hik := vTi w, w := w − hikvi.
(3’) Compute hk+1,k := ‖w‖2 and set wk := w.

This method generates (k + 1) × k Hessenberg matrices H̄k that are band
matrices of bandwidth l, and k × k upper triangular band matrices Rk of
bandwidth l + 1.

Sketch for k = 4 and l = 2:

H̄4 =

x x 0 0
x x x 0
0 x x x
0 0 x x
0 0 0 x

 , R4 =

x x x 0
x x x

x x
x

 .
The relations (8.7.2.7) are still valid, but the columns of the matrices

Vk = [v1, . . . , vk] are no longer orthogonal. Yet, the vectors v1, . . . , vk
remain linearly independent for k ≤ m, and they form a basis of Kk(r0, A)
[cf. (8.7.2.4), the induction proof given there remains valid] so that each
x ∈ x0+Kk(r0, A) has the form x = x0+Vky with a unique y. But, because
of the lacking orthogonality of the vi, we have for k < m

‖b−Ax‖2 = ‖b−Ax0 −AVky‖2

= ‖r0 − Vk+1H̄ky‖2

= ‖Vk+1(βē1 − H̄ky)‖2

�= ‖βē1 − H̄ky‖2,

678 8 Iterative Methods for the Solution of Systems of Linear Equations

so that the minimization of ‖βē1 − H̄ky‖2 is no longer equivalent with
the minimization of ‖b−Ax‖2. Since, in general, the vi are approximately
orthogonal, it is still meaningful to compute the optimal solution yk of

min
y

‖βē1 − H̄ky‖2

and the associated vector xk := x0 +Vkyk: the vector xk will then minimize
‖b−Ax‖2 on x0 +Kk(r0, A) not exactly but to a good approximation.

Since H̄k and the triangular matrix Rk now are band matrices of band-
width l and l + 1, respectively, the use of the recursions (8.7.2.19) and
(8.7.2.20) is advantageous. One then has to store only the l vectors vk,. . . ,
vk−l+1 and l additional vectors pk−1, . . . , pk−l. A storage of the full matrix
Rk is no longer necessary, only the last column of Rk is needed. Formulas
(8.7.2.15) and (8.7.2.19) simplify, because of hik = 0 for i ≤ k − l, rik = 0
for i ≤ k − l − 1, and they read

r̃k = Ωk−1Ωk−2 · · ·Ωk−lhk,

pk =
1
rkk

(
vk −

k−1∑
i=max{1,k−l}

rikpi
)
.

In sum, one obtains the following incomplete quasi-minimal GMRES
method (QGMRES), also denoted by QGMRES(l):

(8.7.2.22). Given ε > 0, l an integer with 2 ≤ l � n,
and x0 with r0 := b−Ax0 �= 0.
(0) Put β := γ̄0 := ‖r0‖2, v1 := r0/β, k := 1.
(1) Compute w := Avk.
(2) For i = 1, 2, . . . , k, compute

hik :=
{

0, if i ≤ k − l,
vTi w, otherwise,

w := w − hikvi.

(3) Compute hk+1,k := ‖w‖2,
and thus the vector h̄k = [h1k, . . . , hk+1,k]T .

(4) Compute r̃k := Ωk−1Ωk−2 · · ·Ωk−lh̄k,
the rotation parameters ck, sk by (8.7.2.16),
γk, γ̄k+1 by (8.7.2.18)
and the vector [see (8.7.2.17)]

r̄k =

r1k
...
rkk
0

 := Ωkr̃k.

8.7 Krylov Space Methods 679

(5) Compute

pk :=
1
rkk

(
vk −

k−1∑
i=max{1,k−l}

rikpi
)
.

(6) Compute xk := xk−1 + γkpk.
(7) If |γ̄k+1| ≤ ε, stop.

Otherwise,
set vk+1 := w/hk+1,k, k := k + 1 and goto (1).

For symmetric, but indefinite matrices A = AT , the method of Arnoldi is
identical with the Lanczos method (6.5.3.1): As in Section 6.5.3, one can show
that all scalar products hik = vT

i Avk = 0, 1 ≤ i ≤ k − 2, vanish in this case and

hk,k+1 = hk+1,k, k = 1, 2, . . . n.

Then also the matrices

Hk :=

h11 h12 0

h21
. . .

. . .
. . .

. . . hk−1,k

0 hk,k−1 hkk

are symmetric tridiagonal matrices. Therefore, we have before us, without ar-
tificial truncation, the case l = 2 of the incomplete GMRES method, and the
method reduces to the SYMMLQ method of Paige and Saunders (1975).

Similarly as in the conjugate-gradient algorithm [cf. (8.7.1.10)], it is
possible to accelerate also the convergence of the GMRES-method by
preconditioning techniques. These techniques are based on the choice of
a preconditioning matrix B with the following properties:

(1) B is a good approximation of A so that B−1A resp. AB−1 are approx-
imations of the unit matrix.

(2) Equations of the form Bu = v are easy to solve, that is, it is simple to
compute B−1v.

Property (2) is satisfied if one knows the LR decomposition of B = LR
and L and R are sparse triangular matrices.

For a given preconditioner B one has the choice between left precondi-
tioning and right preconditioning: With left preconditioning, the GMRES
method is applied to the system

B−1Ax = B−1b,

and with right preconditioning to the system

680 8 Iterative Methods for the Solution of Systems of Linear Equations

AB−1u = b

in the new variable u = Bx. Both systems are equivalent to Ax = b.
Here, we will describe only left preconditioning. We then have to modify

the GMRES method by replacing the matrix A by B−1A and the residual
r0 = b − Ax0 by the new residual q0 := B−1b − B−1Ax0 = B−1r0. We so
obtain the following method instead of (8.7.2.3):

(8.7.2.23) GMRES with Left Preconditioning. Given ε > 0, x0 with
r0 := b−Ax0 �= 0.

(0) Compute q0 := B−1r0, β := γ̄0 := ‖q0‖2, v1 := q0/β

and set k := 1.

(1) Compute w := B−1Avk.

(2) For i = 1, 2, . . . , k :

compute hik := vTi w, w := w − hikvi.
(3) Compute hk+1,k := ‖w‖2 and γ̄k+1 [cf. (8.7.2.18)].
(4) If |γ̄k+1| > ε,

Compute vk+1 := w/hk+1,k, set k := k + 1

and goto (1).

Otherwise,

(5) compute the solution yk of (8.7.2.13) and xk := x0 + Vkyk,

set m := k and stop.

Now, the Krylov spaces Kk(q0, B−1A), k = 1, 2, . . . , have the or-
thonormal bases v1,. . . , vk and the method computes the first vector
xm ∈ x0 +Km(q0, B−1A) with

‖B−1(b−Axm)‖2 = min
u

{ ‖B−1(b−Au)‖2 | u ∈ x0 +Km(q0, B−1A) }

≤ ε.

Clearly, there are similar preconditioned versions of the truncated
[see GMRES(N), (8.7.2.21)] and incomplete versions [see QGMRES(l),
(8.7.2.22)] of the GMRES algorithm. Some numerical results for these ver-
sions of GMRES(N) and QGMRES(l) are described in Section 8.10.

8.7.3 The Biorthogonalization Method of Lanczos and the
QMR Algorithm

There are additional Krylov space methods for solving linear equations
Ax = b with arbitrary real or complex nonsingular n×n matrices A. These
methods work with pairs of Krylov spaces

8.7 Krylov Space Methods 681

Kk(v1, A) = span[v1, Av1, . . . , Ak−1v1],

Kk(w1, A
T) = span[w1, A

Tw1, . . . , (AT)k−1w1],

and not with single spaces, as the methods considered so far. Even though
these methods are applicable to systems with a complex matrix A, we will
assume that A is real.

Again, let x0 be an initial approximate solution of Ax = b with r0 =
b−Ax0 �= 0. Then the following biorthogonalization algorithm of Lanczos
(1950) starts with the vector

v1 := r0/β, β := ‖r0‖2,

and an arbitrary additional vector w1 ∈ IRn with ‖w1‖2 = 1 (a common
choice is w1 := v1). The algorithm seeks to generate two, as long as possible,
sequences vi, i = 1, 2, . . . , and wi, i = 1, 2, . . . , of linearly independent
vectors that are biorthogonal, that is,

wTi vj =
{
δj �= 0 for i = j,
0 otherwise,

and span the Krylov spaces Kk(v1, A) and Kk(w1, A
T), k ≥ 1, respectively,

span[v1, . . . , vk] = Kk(v1, A), span[w1, . . . , wk] = Kk(w1, A
T),

(8.7.3.1) Biorthogonalization method of Lanczos.

Given x0 with r0 := b−Ax0 �= 0, set β := ‖r0‖2 v1 := r0/β,
choose w1 ∈ IRn with ‖w1‖2 = 1, and let v0 := w0 := 0, k := 1.
(1) Compute δk := wTk vk. If δk = 0, set m := k − 1 and stop.

Otherwise,
(2) compute αk := wTk Avk/δk, β1 := ε1 := 0, and for k > 1,

βk :=
σkδk
δk−1

, εk :=
ρkδk
δk−1

,

and

ṽk+1 := Avk − αkvk − βkvk−1,

w̃k+1 := ATwk − αkwk − εkwk−1.

(3) Compute ρk+1 := ‖ṽk+1‖2, σk+1 := ‖w̃k+1‖2.
If ρk+1 = 0 or σk+1 = 0, set m := k and stop.
Otherwise,

(4) compute vk+1 := ṽk+1/ρk+1, wk+1 := w̃k+1/σk+1.
(5) Set k := k + 1 and goto (1).

682 8 Iterative Methods for the Solution of Systems of Linear Equations

The following theorem shows that the vectors vk, wk have the required
properties:

(8.7.3.2) Theorem. Let m be the break-off index of algorithm (8.7.3.1).
Then for all 1 ≤ k ≤ m

(8.7.3.3)
span[v1, . . . , vk] = Kk(v1, A),

span[w1, . . . , wk] = Kk(w1, A
T),

and

(8.7.3.4) wTk vj =
{
δj �= 0 for j = k,
0 for j �= k, j = 1, . . . ,m.

The vectors v1, . . . , vm, and also the vectors w1, . . . , wm are linearly
independent.

Proof. Steps (2) to (4) of the algorithm imply immediately (8.7.3.3). The
biorthogonality (8.7.3.4) is shown by induction. It is trivially true form = 0,
and if m ≥ 1 also for k = 1. Assume inductively that for some k with
1 ≤ k < m the following holds [cf. (8.7.3.4)]

wTi vj = 0, vTi wj = 0, 1 ≤ i < j ≤ k.

Because of k < m, it follows δj �= 0 for all j ≤ k, ρk+1 �= 0, σk+1 �= 0, and
the vectors vk+1 and wk+1 are well-defined. We wish to show that also the
vectors v1, . . . , vk+1 and w1, . . . , wk+1 are biorthogonal.

First, we show wTi vk+1 = 0 for i ≤ k. For i = k, this follows from the
definition of ṽk+1, the induction hypothesis, and the definition of αk, since

wTk vk+1 =
1
ρk+1

[wTk Avk − αkwTk vk − βkwTk vk−1]

=
1
ρk+1

[wTk Avk − αkwTk vk] = 0.

For i ≤ k − 1, the induction hypothesis and the definition of w̃k+1 give

wTi vk+1 =
1
ρk+1

[wTi Avk − αkwTi vk − βkwTi vk−1]

=
1
ρk+1

[wTi Avk − βkwTi vk−1]

=
1
ρk+1

[vTk (w̃i+1 + αiwi + εiwi−1) − βkwTi vk−1]

=
1
ρk+1

[(σi+1v
T
k wi+1 + αivTk wi + εivTk wi−1) − βkwTi vk−1].

The induction hypothesis then implies wTi vk+1 = 0 for i < k − 1, and for
i = k − 1, by the definition of βk,

8.7 Krylov Space Methods 683

wTi vk+1 = wTk−1vk+1

=
1
ρk+1

[(σkvTk wk + 0 + 0) − βkwTk−1vk−1]

=
1
ρk+1

[(σkδk − βkδk−1)] = 0.

In the same way, one shows vTi wk+1 = 0 for all i ≤ k. Finally, in terms of the
matrices Vk := [v1, . . . , vk], Wk := [w1, . . . , wk], and the diagonal matrices
Dk := diag (δ1, . . . , δk), relation (8.7.3.4) is equivalent to the equation

WT
mVm = Dm.

The nonsingularity of Dm, and WT
mVm = Dm then imply rankVm =

rankWm = m. ��

Similarly to Arnoldi’s method (8.7.2.3), the recursions of (8.7.3.1) can
be expressed in terms of the matrices Vk, Wk, the tridiagonal Hessenberg
matrices

(8.7.3.5) T̄k :=

α1 β2 . . . 0

ρ2 α2
. . .

...
...

. βk
...

. . . αk
0 ρk+1

 , S̄k :=

α1 ε2 . . . 0

σ2 α2
. . .

...
...

. εk
...

. . . αk
0 σk+1

 ,

and their submatrices Tk and Sk of order k obtained by deleting the last
row of T̄k and S̄k, respectively: As in the proof of (8.7.2.6), (8.7.2.7) one
shows for k < m

AVk = Vk+1T̄k = VkTk + ṽk+1e
T
k ,

ATWk = Wk+1S̄k = WkSk + w̃k+1e
T
k .

Because of WT
k Vk = Dk, WT

k ṽk+1 = V Tk w̃k+1 = 0, this implies

WT
k AVk = DkTk, V Tk A

TWk = DkSk,

and, by WT
k AVk = (V Tk A

TWk)T , also

STk = DkTkD
−1
k .

[The last identity can also be verified directly by means of the definitions
of βk and εk.]

The break-off behavior of the biorthogonalization algorithm (8.7.3.1) is more
complicated than that of the Arnoldi method (8.7.2.3).

It can terminate in step (4) if ρk+1 = 0 and/or σk+1 = 0. Because of k =
rkVk = dimKk(v1, A) = rkWk = dimKk(w1, A

T), this is equivalent to

684 8 Iterative Methods for the Solution of Systems of Linear Equations

dimKk+1(v1, A) = k resp., dimKk+1(w1, A
T) = k,

that is, with theA invariance ofKk(v1, A), resp., theAT invariance ofKk(w1, A
T).

The columns of Vk (resp. Wk) then provide a basis of the invariant Krylov space
Kk(v1, A) (resp. Kk(w1, A

T)). Therefore, the break-off index m of (8.7.3.1) is at
most equal to n, m ≤ n.

Unfortunately, Lanczos’ algorithm can also stop in step (1) because of δk =
wT

k vk = 0 even though, in this case, both vectors vk and wk are nonzero. Then
the method terminates “prematurely”, that is, before invariant Krylov spaces
have been found. This situation marks a so-called “serious breakdown” of the
method.

In floating point calcalutions, already situations in which |δk| ≈ 0 becomes
too small (“numerical breakdown”) may cause a serious loss of accuracy of the
quantities computed in (8.7.3.1). However these dangerous situations can be
(almost) always avoided by employing “look ahead techniques”, which weaken
the biorthogonality requirements (8.7.3.4). The QMR method of Freund and
Nachtigal (1991) is such a variant of (8.7.3.1) which avoids (almost) all numeri-
cal breakdowns, and still provides bases v1, . . . , vk of Kk(v1, A), and bases w1,
. . . , wk of Kk(w1, A

T), without changing the simple structure of the matrices T̄k,
S̄k (8.7.3.5) too much: In their method, these matrices will become block tridiago-
nal matrices. Their block components αi, βi, ρi, εi, σi are no longer numbers but
simple matrices with a very small number of rows and columns. The dimension of
these blocks are determined in such a way that too small |δk| are avoided. Since
the details of the QMR method are fairly sophisticated, we refer the reader to
Freund and Nachtigal (1991).

In the interest of simplicity, we restrict ourselves in this presentation
to describe the QMR method in the basic situation when no numerical
breakdown occurs. So we assume that (8.7.3.1) never terminates in step
(1) but only in step (4). Then, δk �= 0 for all k ≤ m+ 1, the columns of Vk
provide a basis of Kk(v1, A) = Kk(r0, A) for k ≤ m, and

AVk = Vk+1T̄k = VkTk + ṽk+1e
T
k .

Each x ∈ x0 + Kk(r0, A) then has the form x = x0 + Vky with a unique
vector y ∈ IRk, and, as Section 8.7.2,

‖b−Ax‖2 = ‖b−Ax0 −AVky‖2

= ‖r0 − Vk+1T̄ky‖2

= ‖Vk+1(βē1 − T̄ky)‖2,

where ē1 := [1, 0, . . . , 0]T ∈ IRk+1. Instead of minimizing ‖b − Ax‖2 over
x0+Kk(r0, A), one determines xk as in quasi-minimal GMRES method (see
Section 8.7.2): One computes the solution yk of the least-squares problem

(8.7.3.6) min
y

‖βē1 − T̄ky‖2

and sets xk := x0 + Vkyk.

8.7 Krylov Space Methods 685

The calculations are as in the incomplete quasi-minimal GMRES
method QGMRES (8.7.2.21), if we replace in (8.7.2.21) the Hessenberg
matrix H̄k of bandwidth l by the tridiagonal matrix T̄k (a band matrix of
bandwidth l = 2) of this section: We only have to choose l = 2 in (8.7.2.21),
and to replace the vector hk by

(8.7.3.7) tk =

t1k
...

tk−1,k
tkk
tk+1,k

 :=

0
...
βk
αk
ρk+1

 ,

the last column of T̄k.
In this way, we obtain a much simplified version of the QMR method,

which, however, does not take the possibility of a serious or of a numerical
breakdown (8.7.3.1) into account, which one should in practice.

(8.7.3.8) QMR Method.

Given x0 with r0 := b−Ax0 �= 0 and ε > 0.
Compute β := ‖r0‖2, v1 = w1 := r0/β and set k := 1.
(1) Use (8.7.3.1) and (8.7.3.7) to determine αk, βk, εk, ρk+1, σk+1,

vk+1, wk+1 and the last column tk of T̄k.
(2) Compute r̃k := Ωk−1Ωk−2tk (with Ω−1 = Ω0 := I),

the rotation parameters ck, sk of Ωk as in (8.7.2.16),
and γk, γ̄k+1 as in (8.7.2.18).

(3) Compute the vectors

r̄k =

r1k
...
rkk
0

 := Ωkr̃k,

pk :=
1
rkk

(
vk −

k−1∑
i=k−2

rikpi
)
.

(4) Compute xk := xk−1 + γkpk.
(5) If |γ̄k+1| ≤ ε, then stop.

Otherwise, set k := k + 1 and goto (1).

As with the GMRES algorithm, it is possible to improve the efficiency
the QMR method by incorporating preconditioning techniques [see Freund
and Nachtigal (1991) for details]. Some numerical results for a precondi-
tioned version of QMR are described in Section 8.10.

686 8 Iterative Methods for the Solution of Systems of Linear Equations

8.7.4 The Bi-CG and Bi-CGSTAB Algorithms

The biconjugate gradient (Bi-CG, also BCG) algorithm for solving a system
Ax = b with a nonsymmetric (real) n×n-matrix A is a direct generalization
of the classical cg-method (8.7.1.3) of Hestenes and Stiefel. It is related to
the biorthogonalization algorithm (8.7.3.1) and is due to Lanczos (1950)
and Fletcher (1976). In what follows, (v, w) and ‖v‖ always denote the
usual scalar product (v, w) = vTw and the Euclidean norm ‖v‖ := (v, v)1/2,
respectively.

The following formulation of the Bi-CG algorithm stresses its relations
with the cg-method (8.7.3.1):

(8.7.4.1) Bi-CG algorithm. Initialization: Given x0 ∈ IRn with r0 :=
b−Ax0 �= 0. Choose r̂0 ∈ IRn with (r̂0, r0) �= 0 and set p0 := r0, p̂0 := r̂0.

For k = 0, 1, . . . :
Compute

(1) ak =
(r̂k, rk)

(p̂k, Apk)
, xk+1 := xk + akpk,

rk+1 := rk − akApk, r̂k+1 := r̂k − akAT p̂k.
(2) bk :=

(r̂k+1, rk+1)
(r̂k, rk)

,

pk+1 := rk+1 + bkpk, p̂k+1 := r̂k+1 + bkp̂k.

The algorithm is well-defined as long as (r̂k, rk) and (p̂k, Apk) re-
main nonzero. Its theoretical properties are comparable to those of the
cg-algorithm [see Theorem (8.7.1.4)]:

(8.7.4.2) Theorem. Let A be any real nonsingular n× n-matrix and b ∈
IRn. Then to any starting vectors x0 ∈ IRn, r̂0 with (r̂0, r0) �= 0, r0 :=
b − Ax0, the vectors xk, pk, p̂k, rk, r̂k generated by (8.7.4.1) have the
following properties:
There is a first index m ≤ n such that (r̂m, rm) = 0 or (p̂m, Apm) = 0, and
all assertions (1) – (6) of (Am) hold :

(Am) (1) (p̂i, rj) = (r̂j , pi) = 0 for i < j ≤ m,

(2) (r̂i, ri) �= 0 for i < m,

(r̂i, pi) = (r̂i, ri) = (p̂i, ri) �= 0 for i ≤ m,

(3) (p̂i, Apj) = (AT p̂j , pi) = 0 for i < j ≤ m,

(p̂i, Api) �= 0 for i < m,

(4) (r̂i, rj) = (r̂j , ri) = 0 for i < j ≤ m,

(5) ri = b−Axi for i ≤ m.

(6) For i ≤ m:
span[r0, r1, . . . , ri] = span[p0, p1, . . . , pi] = Ki+1(r0, A),
span[r̂0, r̂1, . . . , r̂i] = span[p̂0, p̂1, . . . , p̂i] = Ki+1(r̂0, A).

8.7 Krylov Space Methods 687

Proof. The proof is by induction and essentially the same as the proof of
Theorem (8.7.1.4): Property (A0) is trivially true, and for any k ≥ 0 the
implication

(Ak), (p̂k, Apk) �= 0, (r̂k, rk) �= 0 ⇒ (Ak+1)

holds, the proof of which is left to the reader. Since (Ak), (2), (4) imply
that the vectors ri, r̂i are nonzero for i < k and biorthogonal

(r̂i, rj) = (r̂j , ri) = 0 for i < j < k,

the vectors ri, i = 0, 1, . . . k−1, and r̂i, i = 0, 1, . . . k−1, must be linearly
independent vectors in IRn. Hence k ≤ n, so that there is a first index
m ≤ n such that (r̂m, rm) = 0 or (p̂m, Apm) = 0 holds. ��

The iterates xi exist for i = 0, 1, . . . , m, but they have no minimization
property with respect to the set x0 + Ki(r0, A), but only the Galerkin
property

(w, b− xi) = 0 for all w ∈ Ki−1(r̂0, AT).

This follows at once from (Am) (1),(6).
The break-off behavior of the algorithm is related to but even more com-

plicated than that of the Lanczos biorthogonalization algorithm (8.7.3.1).
First, the algorithm stops if (p̂m, Apm) = 0 but both pm and p̂m are
nonzero: one can show that this happens exactly if there is no xm+1 ∈
x0 +Km+1(r0, A) with the Galerkin property. But the algorithm stops also
if (r̂m, rm) = 0 even though the vectors rm and r̂m are nonzero: This hap-
pens exactly if the Lanczos biorthogonalization algorithm (8.7.3.1), when
started with v1 := r0/‖r0‖, w1 := r̂0/‖r̂0‖, stops because of a “serious
break-down” [see Section 8.7.3].

A further drawback of the algorithm is that the sizes ‖ri‖ of the resid-
uals may behave quite erratically as i increases: usually they fluctuate very
much before settling down. Moreover, the accuracy of the computed vectors
rk, r̂k, pk, p̂k, and xk suffer badly due to round-off if a near break down
occurs when some of the crucial quantities

(r̂k, rk)
‖r̂k‖‖rk‖

,
(p̂k, Apk)

‖p̂k‖‖Apk‖

become small.
However, the “convergence” of the residuals rk and their erratic be-

havior can be much improved by using techniques proposed by van der
Vorst (1992) (on the basis of results found by Sonneveld (1989)) in his Bi-
CGSTAB algorithm that stabilizes the Bi-CG method. For a description of
this method we need some further properties of the vectors generated by
the Bi-CG algorithm (8.7.4.1). The following proposition is given without
proof. It is readily verified by induction on k using (8.7.4.1):

688 8 Iterative Methods for the Solution of Systems of Linear Equations

(8.7.4.3) Proposition. There are polynomials Rk(µ), Pk(µ), k = 1, 2,
. . . , m, of degree k with Rk(0) = 1, R0(µ) ≡ P0(µ) ≡ 1 satisfying

rk = Rk(A)r0, r̂k = Rk(AT)r̂0
pk = Pk(A)r0, p̂k = Pk(AT)r̂0

}
k = 0, 1, . . . , m,

and the recursions

(8.7.4.4)
Rk+1(µ) = Rk(µ) − akµPk(µ)
Pk+1(µ) = Rk+1(µ) + bkPk(µ)

}
k = 0, 1, . . . , m− 1.

��

As a consequence of these recursions, the highest order terms of these
polynomials are known for k = 0, 1, . . . , m:

(8.7.4.5)
Rk(µ) = (−1)ka0a1 · · · ak−1µ

k + lower order terms,

Pk(µ) = (−1)ka0a1 · · · ak−1µ
k + lower order terms.

Moreover, property (Am) (4) of Theorem (8.7.4.2) implies the orthog-
onality relation
(8.7.4.6)(

Ri(AT)r̂0, Rj(A)r0
)

=
(
r̂0, Ri(A)Rj(A)r0

)
= 0 for i < j ≤ m.

We now introduce new vectors

r̄k := Qk(A)Rk(A)r0 = Qk(A)rk,
p̄k := Qk(A)Pk(A)r0 = Qk(A)pk,

k = 0, 1, . . . ,

defined by the choice of real polynomials Qk(µ) of degree k of the form

Qk(µ) = (1 − ω1µ)(1 − ω2µ) · · · (1 − ωkµ),

that satisfy the recursion

(8.7.4.7) Qk+1(µ) = (1 − ωk+1µ)Qk(µ).

It will turn out that the vectors r̄k and p̄k (and the associated vectors x̄k
with residual b − Ax̄k = r̄k) can be computed directly without using the
vectors defined by the Bi-CG algorithm. Moreover, the parameter ωk of Qk
can be chosen such that the size of the new residual r̄k becomes as small
as possible.

To see this, we note first that the recursions (8.7.4.4) and (8.7.4.7) lead
to a recursion for r̄k, p̄k:

8.7 Krylov Space Methods 689

(8.7.4.8a)

r̄k+1 = Qk+1(A)Rk+1(A)r0

= (1 − ωk+1A)Qk(A)
[
Rk(A) − akAPk(A)

]
r0

=
[
Qk(A)Rk(A) − akAQk(A)Pk(A)

]
r0

− ωk+1A
[
Qk(A)Rk(A) − akAQk(A)Pk(A)

]
r0

= r̄k − akAp̄k − ωk+1A(r̄k − akAp̄k).

Likewise,

(8.7.4.8b)

p̄k+1 = Qk+1(A)Pk+1(A)r0

= Qk+1(A)
[
Rk+1(A) + bkPk(A)

]
r0

= r̄k+1 + (1 − ωk+1A)
[
bkQk(A)Pk(A)

]
r0

= r̄k+1 + bk(p̄k − ωk+1Ap̄k).

Next, we show that ak and bk can be expressed in terms of the vectors
r̄j and p̄j . For this purpose, we introduce new quantitities ρk and ρ̄k by

(8.7.4.9)

ρk :=(r̂k, rk),

ρ̄k :=(r̂0, r̄k) =
(
r̂0, Qk(A)Rk(A)r0

)
=
(
Qk(AT)r̂0, Rk(A)r0

)
.

Now, the highest order term of Qk(µ) is

(−1)kω1 · · ·ωk µk

and, by (8.7.4.5), each power µi with i < k (≤ m) can be expressed as
a linear combination of the polynomials Rj(µ) with j < k. Therefore the
orthogonality relations (8.7.4.6) and (8.7.4.9) give

ρ̄k = (−1)kω1 · · ·ωk
(
(AT)kr̂0, Rk(A)r0

)
.

This implies, using the same orthogonality arguments and (8.7.4.5),

(8.7.4.10)

ρk = (r̂k, rk) =
(
Rk(AT)r̂0, Rk(A)r0

)
= (−1)ka0 · · · ak−1

(
(AT)kr̂0, Rk(A)r0

)
,

= ρ̄k
a0
ω1

· · · ak−1

ωk
.

Therefore bk = (r̂k+1, rk+1)/(r̂k, rk) can also be computed as:

(8.7.4.11) bk =
ρ̄k+1

ρ̄k

ak
ωk+1

.

Next, we reexpress (p̂k, Apk) using (Am) (3), (8.7.4.1) and (8.7.4.5):

690 8 Iterative Methods for the Solution of Systems of Linear Equations

(p̂k, Apk) = (r̂k + bk−1p̂k−1, Apk)

= (r̂k, Apk) =
(
Rk(AT)r̂0, APk(A)r0

)
= (−1)ka0 · · · ak−1

(
(AT)kr̂0, APk(A)r0

)
.

On the other hand, again using (Am) (3)

(r̂0, Ap̄k) =
(
r̂0, AQk(A)Pk(A)r0

)
=
(
Qk(AT)r̂0, APk(A)r0

)
= (−1)kω1 · · ·ωk

(
(AT)kr0, APk(A)r0

)
holds so that

(p̂k, Apk) =
a0
ω1

· · · ak−1

ωk
(r̂0, Ap̄k).

Together with (8.7.4.10) this gives an alternative formula for

ak = (r̂k, rk)/(p̂k, Apk),

namely

(8.7.4.12) ak =
(r̂0, r̄k)

(r̂0, Ap̄k)
=

ρ̄k
(r̂0, Ap̄k)

.

So far, the choice of ωk+1 was left open: Since we wish to achieve small
residuals r̄i, it is reasonable to choose ωk+1 such that the norm ‖r̄k+1‖ of
[cf. (8.7.4.8a)]

r̄k+1 = sk − ωk+1tk, where sk := r̄k − akAp̄k, tk := Ask,

becomes minimal. This leads to the choice

ωk+1 :=
(sk, tk)
(tk, tk)

.

Finally, if r̄k = b− ax̄k is the residual of x̄k then (8.7.4.8a) shows that
r̄k+1 is the residual of

(8.7.4.13) x̄k+1 := x̄k + akp̄k + ωk+1(r̄k − akAp̄k).

Combining the formulas (8.7.4.8) – (8.7.4.13) leads to the Bi-CGSTAB
algorithm:

(8.7.4.14) Bi-CGSTAB Algorithm. Initialization: Given x̄0 ∈ IRn with
r̄0 := b−Ax̄0 �= 0. Choose r̂0 ∈ IRn so that (r̂0, r̄0) �= 0, and set p̄0 := r̄0.
For k = 0, 1, . . . , :

Compute

(1) ak :=
(r̂0, r̄k)

(r̂0, Āpk)
,

v := Ap̄k, t := As,

8.8 Buneman’s Agorithm and Fourier Methods 691

(2) ωk+1 :=
(s, t)
(t, t)

,

x̄k+1 := x̄k + akp̄k + ωk+1s, r̄k+1 := s− ωk+1,
Stop, if ‖r̄k+1‖ is small enough.
Otherwise,

(3) compute

bk :=
(r̂0, r̄k+1)
(r̂0, r̄k)

ak
ωk+1

,

p̄k+1 := r̄k+1 + bk(p̄k − ωk+1v).

Note, that in step k, (r̂0, r̄k) need not be determined, since it has already
been computed in step k−1. An operation count shows that each iteration
of Bi-CGSTAB requires the computation of two matrix-vector products
with the n× n-matrix A, four inner products, and 12n additional floating
point operations to update various vectors of length n.

Bi-CGSTAB is a powerful algorithm for solving even very large systems
Ax = b with a sparse nonsymmetric matrix A. It is possible to increase
its efficiency still further by preconditioning techniques [see van der Vorst
(1992)].

However, even though the stability of Bi-CGSTAB is much better than
that of Bi-CG, it will break down whenever the underlying Bi-CG method
breaks down. Compared with the QMR method, Bi-CGSTAB is much sim-
pler but not so stable: Unlike QMR, Bi-CGSTAB takes no precautions
against the danger of “serious” or “nearly serious” break-downs and is also
affected if the Galerkin condition defines some iterates only badly [see Sec-
tion 8.10 for some numerical results].

8.8 Buneman’s Algorithm and Fourier Methods for
Solving the Discretized Poisson Equation

Slightly generalizing the model problem (8.4.1), we consider the Poisson
problem [compare (8.6.1)]

−uxx − uyy + σu = f(x, y) for (x, y) ∈ Ω,
(8.8.1)

u(x, y) = 0 for (x, y) ∈ ∂Ω

on the rectangle Ω := { (x, y) | 0 < x < a, 0 < y < b } ⊂ IR2 with
boundary ∂Ω. Here σ > 0 is a constant and f :Ω ∪ ∂Ω → IR a continuous
function.

Discretizing (8.8.1) in the usual way, we obtain for the approximate
values zij of u(xi, yj), xi := i+x, yj := j+y, +x := a/(p + 1), +y :=
b/(q + 1), the equations

692 8 Iterative Methods for the Solution of Systems of Linear Equations

−zi−1,j + 2zij − zi+1,j

+x2 +
−zi,j−1 + 2zij − zi,j+1

+y2 + σzij = f(xi, yj)

for i = 1, 2, . . . , p, j = 1, 2, . . . , q. Together with the boundary values

z0j := zp+1,j := 0
zi0 := zi,q+1 := 0

for j = 0, 1, . . . , q + 1,
for i = 0, 1, . . . , p+ 1,

we thus obtain a linear system of equations for the unknowns

z =

z1
z2
...
zq

 , zj =
[
z1j , z2j , . . . , zpj

]T
,

which can be written in the form [cf. (8.4.5)]

(8.8.2a) Mz = b

with

(8.8.2b) M =

A I 0
I A

. . .
. I

0 I A

 , b =

b1
b2
...
bq

 ,
where I = Ip is the p × p unit matrix, A is a p × p Hermitian tridiagonal
matrix of the form

(8.8.2c)) A = ρ2

−2α 1 0

1 −2α . . .
. 1

0 1 −2α

with

ρ :=
+y
+y , α := 1 +

1 + σ+y2/2
ρ2

≥ 1,

and M consists of q block rows and columns.
In recent years, several very effective methods for solving (8.8.2) have

been proposed, which are superior even to the ADI method [see Section 8.6].
All these methods are reduction methods: exploiting the special structure
of the matrix M , one reduces the solution of (8.8.2) recursively to the
solution of systems of equations which are similarly structured, but have
only half as many unknowns, and in this way successively halves the number
of unknowns. We describe here only one of the first of these methods, the
algorithm of Buneman (1969) [see also Buzbee, Golub and Nielson (1970)].

8.8 Buneman’s Agorithm and Fourier Methods 693

The following observation is essential for the reduction method of Bune-
man: In the system of equations (8.8.2), written out in full as

Az1+z2 = b1,

(8.8.3) zj−1 +Azj+zj+1 = bj , j = 2, 3,. . . , q − 1,

zq−1 +Azq = bq,

from the three consecutive equations

zj−2 +Azj−1+zj = bj−1

zj−1+Azj + zj+1 = bj ,
zj +Azj+1 + zj+2 = bj+1,

one can, for all even j = 2, 4, . . . , eliminate the variables zj−1 and zj+1 by
subtracting A times the second equation from the sum of the others:

zj−2 + (2I −A2)zj + zj+2 = bj−1 −Abj + bj+1.

For q odd, one thus obtains the reduced system

(8.8.4)

2I −A2 I

I
.
. I

I 2I −A2

z2
z4
...

zq−1

=

b1 + b3 −Ab2
b3 + b5 −Ab4

...
bq−2 + bq −Abq−1

for z2, z4, Once a solution of (8.8.4) (i.e., the subvector z2j with even
indices) is known, the vectors z1, z3, . . . with odd indices can be determined
from the following equations, which immediately follow from (8.8.3) for
j = 1, 3, . . . :

(8.8.5)

A 0

A
A

. . .
0 A

z1
z3
z5
...
zq

 =

b1 − z2
b3 − z2 − z4
b5 − z4 − z6

...
bq − zq−1

 .

In this way, the solution of (8.8.2) is reduced to the solution of the sys-
tem (8.8.4) with half the number of unknowns and subsequent solution of
(8.8.5). Now (8.8.4) again has the same structure as (8.8.2):

M (1)z(1) = b(1)

with

694 8 Iterative Methods for the Solution of Systems of Linear Equations

M (1) =

A(1) I 0

I
.
. I

0 I A(1)

 , A(1) := 2I −A2,

z(1) =

z
(1)
1

z
(1)
2
...
z
(1)
q1

 :=

z2
z4
...

zq−1

 , b(1) =

b
(1)
1

b
(1)
2
...
b
(1)
q1

 :=

b1 + b3 −Ab2
b3 + b5 −Ab4

...
bq−2 + bq −Abq−1

 ,
so that the reduction procedure just described can again be applied toM (1),
etc. In general, for q := q0 := 2k+1 − 1, one obtains in this way a sequence
of matrices A(r) and vectors b(r)j according to the following prescription:

(8.8.6).
Initialization: Put A(0) := A, b

(0)
j := bj , j = 1, 2, . . . , q0, q0 := q =

2k+1 − 1.
For r = 0, 1, 2, . . . , k − 1:
Put
(1) A(r+1) := 2I −

(
A(r)

)2,
(2) b(r+1)

j := b
(r)
2j−1 + b(r)2j+1 −A(r)b

(r)
2j , j = 1, 2, . . . , 2k−r − 1 =: qr+1.

For each stage r + 1, r = 0, . . . , k − 1, one thus obtains a system of linear
equations

M (r+1)z(r+1) = b(r+1),

or, written out in full,
A(r+1) I 0

I A(r+1) . . .
. I

0 I A(r+1)

z
(r+1)
1

z
(r+1)
2

...

z
(r+1)
qr+1

 =

b
(r+1)
1

b
(r+1)
2

...

b
(r+1)
qr+1

 .

Its solution z(r+1) immediately furnishes the subvector with even indices of
the solution z(r) of the corresponding system of equations M (r)z(r) = b(r)

in stage r,
z
(r)
2

z
(r)
4
...

z
(r)
qr−1

 :=

z
(r+1)
1

z
(r+1)
2

...

z
(r+1)
qr+1

 ,

8.8 Buneman’s Agorithm and Fourier Methods 695

while the subvectors with odd indices of z(r) can be obtained by solving
the equations

A(r) 0

A(r)

. . .

0 A(r)

z
(r)
1

z
(r)
3
...

z
(r)
qr

 =

b
(r)
1 − z(r)2

b
(r)
3 − z(r)2 − z(r)4

...

b
(r)
qr − z(r)qr−1

 .

From the data A(r), b(r), produced by (8.8.6), the solution z := z(0) of
(8.8.2) is thus finally obtained by the following procedure:

(8.8.7).
(0) Initialization: Determine z(k) = z

(k)
1 by solving the systems of equations

A(k)z(k) = b(k) = b
(k)
1 .

(1) For r = k − 1, k − 2, . . . , 0:

(a) Put z(r)2j := z
(r+1)
j , j = 1, 2, . . . , qr+1 = 2k−r − 1.

(b) For j = 1, 3, 5, . . . , qr compute the vector z(r)j by solving

A(r)z
(r)
j = b

(r)
j − z(r)j−1 − z(r)j+1 (z(r)0 = z

(r)
qr+1 = 0).

(2) Put z := z(0).

In the form (8.8.6), (8.8.7), the algorithm is still unsatisfactory, as it has
serious numerical drawbacks. In the first place, the explicit computation of
A(r+1) = 2I−(A(r))2 in (8.8.6) (1) is very expensive: The tridiagonal matrix
A(0) = A, as r increases, very quickly turns into a dense matrix (A(r) is a
band matrix with the band width 2r + 1), so that, firstly, the computation
of (A(r))2, and secondly, the solution of the system of linear equations
in (8.8.7)(1)(b) with increasing r become more and more expensive. In
addition, it is easily seen that the magnitude of the matrices A(r) grows
exponentially: For the model problem (8.4.1), e.g., one has

A = A(0) =

−4 1 0

1 −4
. . .

. 1
0 1 −4

 , ∥∥A(0)
∥∥ ≥ 4,

∥∥A(r)
∥∥ ≈

∥∥A(r−1)
∥∥2 ≥ 42r

,

so that in the computation of b(r+1)
j in (8.8.6) (2) one incurs substantial

losses of accuracy for larger values of r, since, in general, ‖A(r)b
(r)
2j ‖ �

696 8 Iterative Methods for the Solution of Systems of Linear Equations

‖b(r)2j−1‖, ‖b(r)2j+1‖, and therefore the information contained in b(r)2j−1, b
(r)
2j+1,

when performing the addition in (8.8.6) (2), gets lost.
Both drawbacks can be avoided by a suitable reformulation of the algo-

rithm. The explicit computation of A(r) is avoided if one exploits the fact
that A(r) can be represented as a product of tridiagonal matrices:

(8.8.8) Theorem. One has, for all r ≥ 0,

A(r) = −
2r∏
j=1

[
−
(
A+ 2 cos θ(r)j · I

)]
,

where θ
(r)
j := (2j − 1)π/2r+1 for j = 1, 2, . . . , 2r.

Proof. By (8.8.6) (1), one has, with A(0) = A,

A(r+1) = 2I −
(
A(r))2,

so that there exists a polynomial pr(t) of degree 2r such that

(8.8.9) A(r) = pr(A).

Evidently, the polynomials pr satisfy

p0(t) = t,

pr+1(t) = 2 − (pr(t))2,

so that pr has the form

(8.8.10) pr(t) = −(−t)2r

+ · · · .

One now shows by mathematical induction, using the substitution t =
−2 cos θ, that

(8.8.11) pr(−2 cos θ) = −2 cos(2rθ).

The formula is trivial for r = 0. If it is valid for some r ≥ 0, then it is also
valid for r + 1, since

pr+1(−2 cos θ) = 2 − (pr(−2 cos θ))2

= 2 − 4 cos2(2rθ)
= −2 cos(2 · 2rθ).

In view of (8.8.11), the polynomial pr(t) has the 2r distinct real zeros

tj = −2 cos
(

2j − 1
2r+1 π

)
= −2 cos θ(r)j , j = 1, 2, . . . , 2r,

and therefore, by (8.8.10), the product representation

8.8 Buneman’s Agorithm and Fourier Methods 697

pr(t) = −
2r∏
j=1

[
−(t− tj)

]
.

From this, by virtue of (8.8.9), the assertion of the theorem follows at once.
��

The preceding theorem can now be exploited, in practice, to reduce the
solution of the various systems of equations

A(r)u = b

in (8.8.7)(1)(b), with matrices A(r), recursively to the solution of 2r systems
of equations with the tridiagonal matrices

A
(r)
j := −A− 2 cos θ(r)j I, j = 1, 2, . . . , 2r,

as follows:

(8.8.12)

A
(r)
1 u1 = b

A
(r)
2 u2 = u1

A
(r)
2r u2r = u2r−1

⇒ u1,

⇒ u2,

...

⇒ u2r ⇒ u := −u2r .

Since, as is easily verified, the tridiagonal matrices A(r)
j for our discretiza-

tion of problem (8.8.1) are positive definite, one can solve these systems
very inexpensively by means of triangular factorizations of A(r)

j without
pivoting [see Section 4.3].

The numerical instability which occurs in (8.8.6) (2) because of the
exponential growth of the A(r) can be avoided, following a suggestion of
Buneman, by introducing in place of the b(r)j other vectors p(r)j , q(r)j , j = 1,

2, . . . , qr, which are related to the b(r)j in the following way:

(8.8.13) b
(r)
j = A(r)p

(r)
j + q(r)j , j = 1, 2, . . . , qr,

and which can be computed in a numerically more stable manner than the
b
(r)
j . Vectors p(r)j , q(r)j with these properties are generated recursively as

follows:

(8.8.14).
Initialization: Put p(0)j := 0, q(0)j = bj = b

(0)
j , j = 1, 2, . . . , q0.

For r = 0, 1, . . . , k − 1:
for j = 1, 2, . . . , qr+1:
compute

698 8 Iterative Methods for the Solution of Systems of Linear Equations

(1) p
(r+1)
j := p

(r)
2j −

(
A(r)

)−1[
p
(r)
2j−1 + p(r)2j+1 − q(r)2j

]
,

(2) q
(r+1)
j := q

(r)
2j−1 + q(r)2j+1 − 2p(r+1)

j .

Naturally, the computation of p(r+1)
j in substep (1) amounts to first de-

termining, as just described [see (8.8.12)], the solution u of the system of
equations

A(r)u = p
(r)
2j−1 + p(r)2j+1 − q(r)2j

with the aid of the factorization of A(r) in Theorem (8.8.8), and then com-
puting p(r+1)

j from u by means of

p
(r+1)
j := p

(r)
2j − u.

Let us prove by induction on r that the vectors p(r)j , q(r)j , defined by (8.8.14),
satisfy the relation (8.8.13).

For r = 0, (8.8.13) is trivial. We assume inductively that (8.8.13) holds
true for some r ≥ 0. Because of (8.8.6) (2) and A(r+1) = 2I − (A(r))2, we
then have

b
(r+1)
j = b

(r)
2j+1 + b(r)2j−1 −A(r)b

(r)
2j

= A(r)p
(r)
2j+1 + q(r)2j+1 +A(r)p

(r)
2j−1 + q(r)2j−1 −A(r)[A(r)p

(r)
2j + q(r)2j

]
= A(r)[p(r)2j+1 + p(r)2j−1 − q(r)2j

]
+A(r+1)p

(r)
2j + q(r)2j−1 + q(r)2j+1 − 2p(r)2j

= A(r+1)p
(r)
2j +

(
A(r))−1{[2I −A(r+1)][p(r)2j+1 + p(r)2j−1 − q(r)2j

]}
+ q(r)2j−1 + q(r)2j+1 − 2p(r)2j

= A(r+1){p(r)2j −
(
A(r))−1[

p
(r)
2j−1 − p(r)2j+1 − q(r)2j

]}
+ q(r)2j−1 + q(r)2j+1 − 2p(r+1)

j

= A(r+1)p
(r+1)
j + q(r+1)

j .

By (8.8.13) we can now express the vectors b(r)j in (8.8.7) in terms of

the p(r)j , q(r)j and obtain, for example, from (8.8.7)(1)(b) for z(r)j the system
of equations

A(r)z
(r)
j = A(r)p

(r)
j + q(r)j − z(r)j−1 − z(r)j+1,

which can be solved as follows: Determine the solution u of

A(r)u = q
(r)
j − z(r)j−1 − z(r)j+1

8.8 Buneman’s Agorithm and Fourier Methods 699

[one uses here again the factorization of Theorem (8.8.8)] and put z(r)j :=

u+ p(r)j .

Replacing in this way be the b(r)j in (8.8.6), (8.8.7) systematically by

p
(r)
j and q(r)j , one obtains:

(8.8.15) The Algorithm of Buneman.
Assumption: Consider the system of equations (8.8.2), with q = 2k+1 − 1.

(0) Initialization: Put p(0)j := 0, q(0)j := bj , j = 1, 2, . . . , q0 := q.
(1) For r = 0, 1, . . . , k − 1:

For j = 1, 2, . . . , qr+1 := 2k−r − 1:
Compute the solution u of the system of equations

A(r)u = p
(r)
2j−1 + p(r)2j+1 − q(r)2j

by means of the factorization of Theorem (8.8.8) and put

p
(r+1)
j := p

(r)
2j − u; q

(r+1)
j := q

(r)
2j−1 + q(r)2j+1 − 2p(r+1)

j .

(2) Determine the solution u of the system of equations

A(k)u = q
(k)
1 ,

and put z(k) := z
(k)
1 := p

(k)
1 + u.

(3) For r = k − 1, k − 2, . . . , 0 :

(a) Put z(r)2j := z
(r+1)
j for j = 1, 2, . . . , qr+1.

(b) For j = 1, 3, 5, . . . , qr determine the solution u of the system of
equations

A(r)u = q
(r)
j − z(r)j−1 − z(r)j+1,

and put
z
(r)
j := p

(r)
j + u.

(4) Put z := z(0).

This method is very efficient: An operation count shows that for the solution
of the model problem (8.4.1) (a = b = 1, p = q = N = 2k+1−1), with itsN2

unknowns, one requires approximately 3kN2 ≈ 3N2 log2N multiplications
and about the same number of additions. An analysis of the numerical
stability of the method can be found in Buzbee, Golub, and Nielson (1970).

Buneman’s algorithm is a so-called cyclic reduction method: It reduces
repeatedly a linear system of the form (8.8.2) to a similarly structured
system (8.8.4) of half size. The same amount O(N2 log2N) of operations
for solving (8.8.2) is needed by an algorithm (“Fourier method”) that uses
the fast Fourier transform techniques of trigonometric interpolation [see

700 8 Iterative Methods for the Solution of Systems of Linear Equations

Sections 2.3.1 and 2.3.2]. Here, the special structure of the matrix A (8.8.2c)
is exploited:

We start with the readily verified observation that the p× p-matrix
0 1
1

. 1
1 0

has the eigenvalues

µk := 2 cos ξk, ξk :=
kπ

p+ 1
, k = 1, 2, . . . , p,

and the associated eigenvectors

(8.8.16) xk := [sin(ξk), sin(2 ξk), . . . , sin(p ξk)]T , k = 1, 2, . . . , p.

These eigenvectors are orthogonal to each other [Theorem (6.4.2)], and
their Euclidean norm is ‖xk‖ =

√
(p+ 1)/2, so that the matrix

X :=
√

2
p+ 1

[
x1, x2, . . . , xp

]
is orthogonal, X−1 = XT . Therefore, the matrix A (8.8.2.c) has the eigen-
values

(8.8.17) λk := ρ2(µk − 2α) = 2ρ2(cos ξk − α), k = 1, 2 . . . , p,

and the same eigenvectors xk (8.8.16). Hence the Jordan normal form of A
is

XTAX = Λ := diag(λ1, . . . , λp).

Now the system (8.8.2) is equivalent to (z0 = zq+1 = 0)

(8.8.18) zj−1 +Azj + zj+1 = bj , j = 1, 2, . . . , q.

Hence the vectors yj := X−1zj = XT zj and uj := X−1bj = XT bj satisfy

(8.8.19) yj−1 + Λyj + yj+1 = uj , j = 1, 2, . . . , q.

Let ykj and ukj , k = 1, . . . , p, be the k-th components of yj and uj ,
respectively. Then by (8.8.19), for each k = 1, 2, . . . , p, the ykj , j = 1,
2, . . . , q, are obtained by solving the following tridiagonal system of linear
equations

yk,j−1 + λkykj + yk,j+1 = ukj , j = 1, 2, . . . , q.

The right hand side ukj , j = 1, . . . , q, of these equations, that is the
components of uj = XT bj , are given by

8.8 Buneman’s Agorithm and Fourier Methods 701

ukj =
√

2
p+ 1

p∑
l=1

blj sin(lξk). k = 1, 2, . . . , p,

Since the abscissae ξk = kπ/(p + 1) are equidistant, these sums can be
computed by means of the algorithms used for trigonometric interpolation
[see Theorem (2.3.1.12)], for example by the FFT-algorithms of Section
2.3.2. Finally, the solutions zj of (8.8.18) are obtained by computing zj =
Xyj , that is again by means of the algorithms of Sections 2.3.1 and 2.3.2.

Since the matrices A(r) of Buneman’s algorithm (8.8.6) have the same
eigenvectors xk as A (8.8.2c), Fourier techniques can also be used to solve
the reduced systems M (r)z(r) = b(r) occurring in (8.8.7), Step(1)(b). It
is thus possible to design a combination method consisting of l reduction
steps of the Buneman type, r = 1, 2, . . . , l, and the solution of lower
order systems by Fourier type methods. This leads to the FACR(l) algo-
rithm of Hockney (1969) (FACR: Fourier analysis and cyclic reduction).
Swarztrauber (1977) showed that a proper choice of l leads to a method
that needs only O(N2 log2 log2N) operations to solve a Poisson problem
on a N ×N -grid with p = q = N = 2k+1 − 1.

In the form described, the method serves to solve the discretized Dirich-
let boundary-value problem for the Poisson equation on a rectangular
domain. There are variants of the method for the solution of analogous
boundary-value problems for the Helmholtz equation or the biharmonic
equation on rectangular domains.

More advanced reduction methods with even better stability proper-
ties for the solution of such problems are given, and extensively stud-
ied, by Schröder, Trottenberg and Reutersberg (1976). There are, in ad-
dition, more complicated versions of these methods for the respective dis-
cretized boundary-value problems on nonrectangular domains [see Buzbee
and Dorr (1974); Buzbee, Dorr, George, and Golub (1971); Proskurowski
and Widlund (1976); O’Leary and Widlund (1979)]. While the methods
mentioned here are direct and noniterative, competitive iterative methods
with substantially improved convergence properties have been developed.
Examples are the multigrid methods and modern domain decomposition
methods. The principles of multigrid methods will be briefly explained in
the next section. With respect to domain decomposition methods, we refer
the reader to the special literature, for instance, Chan, Glowinski, Periaux,
and Widlund; Glowinsky, Golub, Meurant, and Periaux (1988); and Keyes
und Gropp (1987).

702 8 Iterative Methods for the Solution of Systems of Linear Equations

8.9 Multigrid Methods

Multigrid methods belong to the most efficient methods for the solution
of those linear equations that result from the discretization of differential
equations. As these methods are very flexible, there are many variants of
them. Here, we wish to explain only the basic ideas behind these powerful
methods, and do this in a rather simple situation, which however, already
reveals their typical properties. For a detailed treatment, we have to refer
the reader to the special literature, for instance Brandt (1977), Hackbusch
and Trottenberg (1982), and the monographs of Hackbusch (1985), Bramble
(1993) and Braess (1997). Our treatment follows the elementary exposition
of Briggs (1987). Instead of boundary value problems for partial differential
equations, where multigrid methods have their greatest impact, we only
consider their application to the boundary value problem [cf. (7.4.1)]

(8.9.1)
−y′′(x) =f(x) for x ∈ Ω := (0, π),
y(0) =y(π) = 0,

for an ordinary differential equation, which can be viewed as the one-
dimensional analog of the two-dimensional model problem (8.4.1). The
standard discretization [see Section 7.4] with the grid size h = π/n leads
to a one-dimensional grid Ωh = {xj = jh | j = 1, . . . , n − 1}⊂ Ω and
the following set of linear equations for a vector uh = [uh;1, . . . , uh;n−1]T of
approximations uh;j ≈ y(xj) for the exact solution y on the grid Ωh:
(8.9.2)

Ahuh = fh, Ah :=
1
h2

2 −1 0

−1 2
. . .

. −1
0 −1 2

 , fh :=

f(x1)
f(x2)

...
f(xn−1)

 .
The index h also indicates that uh and fh can be viewed as functions on
the grid Ωh. Therefore, we will sometimes write the jth component uh;j of
uh as the value of a grid function uh(x) for x = xj ∈ Ωh, uh;j = uh(xj).
The matrix Ah is a matrix of order (n− 1), for which the eigenvalues λ(k)

h

and eigenvectors z(k)h are known explicitly [see (8.8.16)]:

(8.9.3)
z
(k)
h := [sin kh, sin 2kh, . . . , sin(n− 1)kh]T ,

λ
(k)
h :=

1
h2 4 sin2 kh

2
=

2
h2 (1 − cos kh), k = 1, 2, . . . , n− 1.

This is easily verified by checking Ahz
(k)
h = λ

(k)
h z

(k)
h , k = 1, . . . , n− 1. The

vectors z(k)h have the Euclidean norm ‖z(k)h ‖ =
√
n/2 and are orthogonal

to each other [Theorem (6.4.2)].

8.9 Multigrid Methods 703

If we consider for fixed k the components sin jkh = sin(jkπ/n) of the
eigenvector z(k)h at the grid points xj of Ωh for j = 1, . . . , n−1, we see that
the grid function z(k) = z

(k)
h describes a wave on Ωh with “frequency” k

and “wavelenght” 2π/k: The number k just gives the number of half-waves
on Ωh [see Figure 35 for n = 6, k = 2].

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�

�������������������������������

����
���
���
��
��
��

��������

��������

��������

��������

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�

���

����

��

�� �� �� �� ��

� �

�

� �

�
�
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
��

�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
�
���
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
��

�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
�
�
��
�
�
�
�
��

Fig. 35. The grid function z(2).

In order to simplify the notation, we omit the index h occasionally, if
it is clear from the context to which grid size h and grid Ωh the vectors
u = uh, f = fh and the matrix A = Ah belong.

One motivation for multigrid methods is connected with the conver-
gence behavior of the standard iterative methods, the Jacobi method (8.1.7)
and the Gauss-Seidel method (8.1.8), for solving Au = f . We study this in
more detail for the Jacobi method. The usual decomposition (8.1.5), (8.1.6)

Ah = Dh(I − Jh), Dh =
2
h2 I,

of A = Ah leads to the matrix of order (n− 1)

J = Jh = I − h2

2
Ah =

1
2

0 1 0

1 0
. . .

. 1
0 1 0

and the iteration of the Jacobi method

v(i+1) = Jv(i) +
h2

2
f.

The errors e(i) := v(i) − u of the iterates v(i) then satisfy the recursion

e(i+1) = Je(i) = J i+1e(0).

704 8 Iterative Methods for the Solution of Systems of Linear Equations

Clearly, the iteration matrix J = Jh = I − (h2/2)Ah has the eigenvalues

µ(k) = µ
(k)
h = 1 − h2

2
λ

(k)
h = cos kh, k = 1, . . . , n− 1,

but still the same eigenvectors z(k) = z
(k)
h as Ah. In order to analyze the

behavior of the error e under an iteration step e ⇒ ē = Je, we write e as
a linear combination of the eigenvectors z(k) = z

(k)
h of J = Jh [cf. Section

6.6.3],
e = ρ1z

(1) + · · · + ρn−1z
(n−1).

The weight ρk measures the influence of frequency k in e. Because of

ē = Je = ρ1µ
(1)z(1) + · · · + ρn−1µ

(n−1)z(n−1)

and 1 > µ(1) > µ(2) > · · · > µ(n−1) = −µ(1) > −1, we see that all
frequencies k = 1, 2, . . . , n− 1 are damped in ē, but to a different extent.
The central frequencies k ≈ n/2 are damped most, the extreme frequencies
k = 1 and k = n− 1 only slightly.

The damping of the large frequencies k with n/2 ≤ k ≤ n − 1 can be
much improved by introducing a suitable relaxation factor ω into the itera-
tion matrix. To this end, we consider a slightly more general decomposition
of A [cf. (8.1.3), (8.1.4), (8.1.7)] defined by A = Ah = B − (B − A) with
B := (1/ω)D, which leads to the damped Jacobi method with the iteration
rule

(8.9.4) v(i+1) = J(ω)v(i) +
ω

2
h2f

in terms of the matrix Jh(ω) = J(ω) := (1 − ω)I + ωJ . The original
Jacobi method corresponds to ω = 1, J(1) = J . Clearly, the eigenvalues
µ(k)(ω) = µ

(k)
h (ω) of J(ω) are given by

(8.9.5)

µ
(k)
h (ω) = µ(k)(ω) := 1 − ω + ωµ(k) = 1 − 2ω sin2 kh

2
, k = 1, . . . , n− 1,

and they belong to the same eigenvectors z(k) = z
(k)
h as before.

Now, an iteration step transforms the error as follows:

(8.9.6) e =
n−1∑
k=1

ρkz
(k) ⇒ ē = J(ω)e =

n−1∑
k=1

ρkµ
(k)(ω)z(k).

Since |µ(k)(ω)| < 1 for all 0 < ω ≤ 1, k = 1, . . . , n−1, all frequencies k will
be damped if 0 < ω ≤ 1. However, by a suitable choice of ω it is possible
to damp the high frequencies n/2 ≤ k ≤ n− 1 most heavily. In particular,

max
n/2≤k≤n−1

|µ(k)(ω)|

8.9 Multigrid Methods 705

becomes minimal for the choice ω = ω0 := 2/3, and then |µ(k)(ω)| ≤ 1/3
for n/2 ≤ k ≤ n − 1: the method acts as a “smoother”, as the high-
frequency oscillations are smoothed out. Note that the damping factor 1/3
for the high frequencies does not depend on h, but the overall damping
factor maxk |µ(k)(ω)| = µ(1)(ω) = 1 − 2ω sin2(h/2) = 1 − O(h2) converges
to 1 as h ↓ 0, so that the convergence rate of the damped Jacobi method
deteriorates as h tends to zero [cf. the discussion in Section 8.4].

A drawback of the damped Jaoci method is that it depends on a parameter ω
which has to be chosen properly in order ensure the damping property. In practice,
one prefers parameterfree damping methods. Such a method is the Gauss-Seidel
method (8.1.8) that belongs to the decomposition

Ah = Dh − Eh − Fh, Eh = FT
h :=

1
h2

0 0

1
. . .

...
...

. . .
. . .

...
0 . . . 1 0

 ,
of Ah. With this method, the new iterate v(i+1) is obtained from v(i) as the
solution of the linear equations

(Ah − Eh)v(i+1) − Fhv
(i) = fh.

One can show that the Gauss-Seidel methods has similar damping properties as
the damped Jacobi method. Since the damped Jacobi method is easier to analyse
we restrict the further discussion to this method.

After relatively few steps of the damped Jacobi method one finds an
iterate v(i) = v

(i)
h with an error

e
(i)
h = v

(i)
h − uh = ρ

(i)
1 z

(1)
h + · · · + ρ(i)n−1z

(n−1)
h

containing almost no high frequencies anymore:

max
n/2≤k<n

|ρ(i)k | � max
1≤k<n/2

|ρ(i)k |.

Now there is a new consideration that comes into play: The vector e(i)h
is the exact solution of the system Ahe

(i)
h = −r(i)h , where r(i)h = fh−Ahv(i)h

is the residual of v(i)h ; hence the decomposition of

r
(i)
h = −

n−1∑
k=1

ρ
(i)
k λ

(k)
h z

(k)
h

essentially contains only contributions of the lower frequencies. But a long-
wave grid function gh on Ωh can be approximated quite well by a grid
function g2h on the coarser grid Ω2h = {j · 2h | j = 1, 2, . . . , (n/2) − 1}
(here we assume that n is even) by means of a projection operator I2hh :

706 8 Iterative Methods for the Solution of Systems of Linear Equations

g2h := I2hh gh, I2hh :=
1
4

1 2 1

1 2 1
· · · · · ·

1 2 1

 .
Here, I2hh is an ((n/2) − 1) × (n− 1) matrix. The coarse-grid function

g2h on Ω2h is obtained from the fine-grid function gh on Ωh by averaging:

g2h(j · 2h) =
1
4
gh((2j − 1)h) +

2
4
gh(2j · h) +

1
4
gh((2j + 1)h),

j = 1, . . . ,
n

2
− 1,

[see Figure 36 for n = 6].

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
��
�
�

�
�
�
�
�
�
�
�
�
�
�
�
��
�
�

�������������������������������

����
���
���
��
��
��

��������

��������

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�

�

�

�� �� �� �� ��

Æ

Æ

Æ

Æ

Æ

��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���
���
��
���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
�� �

��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
�
��
��
��
�
��
��
��
�
��
��
�
��
��

�
���
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
��
���
���
��
���
��
���
��
���
���
��
���
��
���
��
�

�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Æ � ��
� ���

�
��
��
��

�
��
��
��

�
��
��
��

�
��
��
��

��
�
��
��

��
�
��
��

��
��
�
��

��
��
�
��

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

��
��
��
�

������
�
�����
��
�����
��
������
�
�������

�����
��
������
�
������
�
�����
��
�����
��

��
��
�
��

�
��
��
�
�

�
��
�
��
�

��
��
�
��

��
�
��
��

�
��
�
��
�

��
��
��
�

��
�
��
��

�
��
�
��
�

�
�
��
��
�

��
�
��
��

�
��
��
�
�

�
�
��
��
�

��
�
��
��

�
��
��
�
�

Fig. 36. Projection by averaging.

Instead of forming averages, one could also use the simple restriction
operator

I2hh =

0 1 0

0 1 0
.

0 1 0

for the projection. Then the function g2h = I2hh gh would be just the re-
striction of the function gh on Ωh to Ω2h,

g2h(j · 2h) := gh(2j · h), j = 1, . . . ,
n

2
− 1.

We do not pursue this possibility further.
Conversely, interpolation operators Ih2h can be used to extend a grid

function g2h on the coarse grid Ω2h to a grid function gh = Ih2hg2h on the
fine grid Ωh, by defining, say,

8.9 Multigrid Methods 707

Ih2h :=
1
2

1
2
1 1

2
1

...

... 1
2
1

.

Here, Ih2h in an (n − 1) × ((n/2) − 1) matrix, and the function gh is
obtained from g2h by interpolation (g2h(0) = g2h(π) := 0), that is, for
j = 1, . . . , n− 1,

gh(jh) :=

g2h(

j

2
· 2h) if j is even,

1
2
g2h(

j − 1
2

· 2h) +
1
2
g2h(

j + 1
2

· 2h) otherwise

[see Figure 37 for n = 6].

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�������������������������������

����
���
���
��
��
��

��������

��������

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�

�

�� �� �� �� ��

Æ

Æ

Æ

Æ

Æ

Æ � ��
� ���

�
��
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�

��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
��
�
��
�
��
�
��
�

��

��

����������������
��

��

Fig. 37. Extension by interpolation.

Now an elementary form of a multigrid method runs as follows: A given
approximate solution v(i)h of Ahuh = fh is first transformed by a finite num-
ber of steps of the damped Jacobi method (8.9.4) into a new approximate
solution w(i)

h of Ahuh = fh with error e(i)h and residual r(i)h . Then the resid-
ual r(i)h is projected to the coarse grid Ω2h, r

(i)
h ⇒ r

(i)
2h := I2hh r

(i)
h , and the

linear “coarse-grid equation”

A2he
(i)
2h = −r(i)2h

is solved. Its solution e(i)2h is then extended to the fine grid e(i)2h ⇒ ẽ
(i)
h :=

Ih2he
(i)
2h by interpolation. We expect that ẽ(i)h is a good approximation for

the exact solution e(i)h of Ahe
(i)
h = −r(i)h , since e(i)h is a low-frequency grid

function. Therefore, v(i+1)
h := v

(i)
h − ẽ(i)h will presumably be a much better

approximation to uh than v(i)h .

708 8 Iterative Methods for the Solution of Systems of Linear Equations

In this way, we obtain the two-grid method, whose basic step v(i)h →
v
(i+1)
h := TGM(v(i)h) is defined by a mapping TGM according to the fol-

lowing rules.

(8.9.7) Two-Grid Method. Let vh be a grid vector on Ωh.

(1) Perform ν steps of the damped Jacobi method (8.9.4), with ω = ω0 :=
2/3 and the starting vector vh, which results in the vector wh with the
residual rh := fh −Ahwh (smoothing step).

(2) Compute r2h := I2hh rh (projecting step).

(3) Solve A2he2h = −r2h (coarse-grid solution).

(4) Set TGM(vh) := wh − Ih2he2h (interpolation and fine-grid correction
step).

It is relatively easy to analyze the behavior of the error

eh := vh − uh → ēh := v̄h − uh

during one iteration step vh → v̄h := TGM(vh) of (8.9.7) in the case of our
simple model problem. Because of (8.9.6), after the ν smoothing steps, the
error dh := wh − uh of wh satisfies

dh = J(ω0)νeh, rh = −Ahdh = −AhJ(ω0)νeh.

Further, by (8.9.7),

A2he2h = −r2h = −I2hh rh = I2hh Ahdh,

ēh = v̄h − uh = dh − Ih2he2h,

and we find the formula

(8.9.8)
ēh =

(
I − Ih2hA−1

2h I
2h
h Ah

)
dh

=Ch · J(ω0)νeh

where Ch is the (n− 1) × (n− 1) matrix

Ch := I − Ih2hA−1
2h I

2h
h Ah.

In order to study the propagation of the frequencies contained in eh,
we need explicit formulas for the maps Chz

(k)
h of the eigenvectors z(k)h of

Ah. Using the abbreviations ck := cos2(kh/2), sk := sin2(kh/2), and
k′ := n− k, a short direct calculation shows

(8.9.9) I2hh z
(k)
h =

 ckz
(k)
2h for k = 1, . . . , (n/2) − 1,

−sk′z
(k′)
2h for k = n/2, . . . , n− 1.

8.9 Multigrid Methods 709

Here, the vectors z(k)2h , 1 ≤ k < n/2, are just the eigenvectors of A2h for
the eigenvalues

λ
(k)
2h =

4
(2h)2

sin2 kh =
1
h2 sin2 kh

[see (8.9.3)], so that

A−1
2h z

(k)
2h =

1

λ
(k)
2h

z
(k)
2h , k = 1, 2, . . . ,

n

2
− 1.

Again, by a simple direct calculation one verifies

(8.9.10) Ih2hz
(k)
2h = ckz

(k)
h − skz(k

′)
h , k = 1, 2, . . . ,

n

2
− 1.

Combining these results gives for k = 1 , 2, . . . , (n/2) − 1

Ih2hA
−1
2h I

2h
h Ahz

(k)
h = λ

(k)
h Ih2hA

−1
2h I

2h
h z

(k)
h

= λ
(k)
h ckI

h
2hA

−1
2h z

(k)
2h

=
λ

(k)
h

λ
(k)
2h

ckI
h
2hz

(k)
2h

=
λ

(k)
h

λ
(k)
2h

ck(ckz
(k)
h − skz(k

′)
h).

Using that

λ
(k)
h

λ
(k)
2h

=

4
h2 sin2 kh/2

1
h2 sin2 kh

=
4sk

sin2 kh
, cksk =

1
4

sin2 kh,

we finally obtain for k = 1, 2, . . . , (n/2) − 1

(8.9.11) Chz
(k)
h = (I − Ih2hA−1

2h I
2h
h Ah)z

(k)
h = skz

(k)
h + skz

(k′)
h .

Similarly, the maps of the high-frequency vectors z(k
′)

h are given by

(8.9.12) Chz
(k′)
h = ckz

(k)
h + ckz

(k′)
h , k = 1, . . . ,

n

2
.

We are now able to show the following theorem.

(8.9.13) Theorem. Let ν = 2, and ω0 = 2/3, and suppose that one step of
the two-grid method (8.9.7) transforms the vector vh into v̄h := TGM(vh).
Then the errors eh := vh − uh, ēh := v̄h − uh of vh and v̄h satisfy

‖ēh‖2 ≤ 0.782 ‖eh‖2.

710 8 Iterative Methods for the Solution of Systems of Linear Equations

Thus, the two-grid method generates a sequence v(j+1)
h = TGM(v(j)h),

j = 1, 2, . . . , whose errors e(j)h = v
(j)
h − uh converge to 0 with a linear rate

of convergence that is independent of h,

‖e(j)h ‖2 ≤ 0.782j‖e(0)h ‖2.

This is quite remarkable: The convergence rates of all iterative methods
considered so far [cf. Section 8.4] depend on h and deteriorate as h ↓ 0.

Proof. We start with the decompostion of the error eh = vh − uh,

eh = ρ1z
(1)
h + · · · + ρn−1z

(n−1)
h .

We have already seen, in (8.9.5), that the vectors z(k)h are also the eigen-
vectors of J(ω0) belonging to the eigenvalues µ(k)

h (ω0) = 1 − 2ω0sk, k = 1,
. . . , n − 1. The choice of ω0 guarantees, for k = 1, . . . , n/2, k′ := n − k,
that

|µ(k)
h (ω0)| < 1, |µ(k′)

h (ω0)| ≤
1
3
.

Next, (8.9.6), (8.9.11), and (8.9.12) imply for k = 1, . . . , n/2

ChJ(ω0)νz
(k)
h =

(
µ

(k)
h (ω0)

)ν(skz(k)h + skz
(k′)
h) =: αk(z

(k)
h + z(k

′)
h),

ChJ(ω0)νz
(k′)
h =

(
µ

(k′)
h (ω0)

)ν(ckz(k)h + ckz
(k′)
h) =: βk(z

(k)
h + z(k

′)
h),

where the constants αk and βk are estimated by

|αk| ≤ sk ≤ 1
2
, |βk| ≤

1
3ν

for k = 1, . . . ,
n

2
.

We thus obtain the following formula for the error ēh:

ēh = ChJ(ω0)νeh

=
n/2∑
k=1

δk(ρkαk + ρk′βk)(z
(k)
h + z(k

′)
h),

where we have used the abbreviations δk := 1 for k < n/2 and δn/2 := 1/2.
Finally, the orthogonality of the vectors z(k)h and ‖z(k)h ‖2 = n/2 imply that

‖ēh‖2 = n
[n/2∑
k=1

δk(ρ2kα
2
k + ρ2k′β2

k + 2ρkρk′αkβk)
]

≤ n
[n/2∑
k=1

δk(ρ2kα
2
k + ρ2k′β2

k + (ρ2k + ρ2k′)|αkβk|)
]

≤ n
(1

4
+

1
2 · 3ν

) n/2∑
k=1

δk(ρ2k + ρ2k′)

=
(1

2
+

1
3ν
)
‖eh‖2.

8.9 Multigrid Methods 711

For ν = 2 we obtain the estimate of the theorem. ��

With the two-grid method there remains the problem of how to solve
the linear equation A2he2h = −r2h “on the coarse grid” Ω2h in step (3)
of (8.9.7). Here, the idea suggests itself to use the two-grid method again,
thereby reducing this problem to the problem of solving further linear equa-
tions on the still coarser grid Ω4h, etc. In this way, we obtain multigrid
methods proper. From among the many variants of these methods we only
describe the so-called multigrid V-cycle, which is an essential ingredient of
all such methods. In order to solve Ahuh = fh on the grid Ωh, the multigrid
V-cycle visits all grids

Ωh → Ω2h → · · · → Ω2jh → Ω2j−1h → · · · → Ωh

between the finest grid Ωh and a coarsest grid Ω2jh in the indicated order:
It first descends from the finest to the coarsest grid, and then ascends again
to the finest grid, which also explains the name of the method. During one
V-cycle, an approximate solution vh of the fine-grid equation Ahu = fh is
replaced by a new approximate solution

vh ←MVh(vh, fh)

of the same equation, where the functionMVh(vh, fh) is recursively defined
by the following:

(8.9.14) Multigrid V-Cycle. Suppose, vh, fh are given vectors on on
Ωh. Put H := h.

(1) By ν steps of the damped Jacobi method (8.9.4) with ω0 = 2/3, trans-
form the approximate solution vH of AHu = fH into another approxi-
mate solution, again denoted by vH .

(2) If H = 2jh goto (4). Otherwise put

f2H := I2HH (fH −AHvH), v2H := MV2H(0, f2H).

(3) Compute vH := vH + IH2Hv2H .

(4) Apply the damped Jacobi method (8.9.4) ν times with ω0 = 2/3 to
transform the approximate solution vH of AHu = fH into another
approximate solution of these equations, again denoted by vH .

Further variants of the multigrid method are described and analyzed
in the literature [see, e.g. Brandt (1977), Hackbusch (1985), McCormick
(1987), Bramble (1993), Braess (1997)]. The most efficient of these methods
require only O(N) operations to compute an approximate solution vh of
a system Ahuh = fh with N unknowns, which is sufficiently accurate in
the following sense. The error ‖vh − uh‖ = O(h2) has the same order of
magnitude as the truncation error maxx∈Ωh

‖y(x)−uh(x)‖ = τ(h) = O(h2)

712 8 Iterative Methods for the Solution of Systems of Linear Equations

[cf. Theorem (7.4.10)] of the underlying discretization method. Since the
exact solution uh of the discretized equation Ahuh = fh differs from the
exact solution y(x) of the boundary value problem (8.9.1) by the truncation
error τ(h) anyway, it makes no sense to compute an approximation vh to
uh with ‖vh − uh‖ � τ(h).

For the simple two-grid method (8.9.7), Theorem (8.9.13) implies only
a weaker result: Because of N = n − 1 and h2 = π2/n2, this method
requires j = O(lnN) iterations to compute an approximate solution v(j)h of
Ahuh = fh with ‖v(j)h − uh‖ = O(h2), if we start with v(0)h = 0. Since the
tridiagonal system in step (3) of (8.9.7) can be solved withO(N) operations,
the two-grid method requires altogether O(N lnN) operations in order to
find an approximate solution vh of acceptable accuracy.

8.10 Comparison of Iterative Methods

In this section, we will determine the respective computational efforts re-
quired by the methods discussed in this chapter when applied to the fol-
lowing boundary value problem:

(8.10.1)
− uxx − uyy + γ xux + γ y uy + δ u = f, δ, γ constants,

u(x, y) = 0 for (x, y) ∈ ∂Ω,
Ω := { (x, y) | 0 ≤ x, y ≤ 1 },

on the unit square Ω of IR2.
For δ = γ = 0 we obtain the model problem of Section 8.4. As in that

section, we approximate problem (8.10.1) by discretization: We choose a
step size h = 1/(N + 1), grid points xi = ih, yj = jh, i, j = 0, 1, N + 1,
and replace the differential operators uxx, uyy, ux, uy at the grid points
(xi, yj), i, j = 1, . . . , N , by central differences:

−uxx(xi, yj) − uyy(xi, yj) ≈ 4uij − ui+1,j − ui−1,j − ui,j+1 − ui,j−1

h2 ,

ux(xi, yj) ≈ ui+1,j − ui−1,j

2h
, uy(xi, yj) ≈ ui,j+1 − ui,j−1

2h
.

This produces a system of linear equations

(8.10.2) Az = b

for the vector

z := [z11, z21, . . . , zN1, . . . , z1N , z2N , . . . , zNN]T

of N2 unknowns zij , i, j = 1, . . . , N , by which we approximate uij :=
u(xi, yj).

8.10 Comparison of Iterative Methods 713

The matrix A depends on the choice of δ and γ. For δ = γ = 0, it is
(up to factor h2) identical with the positive definite matrix A (8.4.5) for
the model problem. For γ = 0 and all δ, the matrix A is still symmetric,
but it becomes indefinite if δ is decreased to sufficiently negative values.
Finally, for γ �= 0, the matrix A is nonsymmetric.

In a first group of tests, we use the linear equations (8.10.2) belonging
to the model problem for comparing the Jacobi, Gauss-Seidel, the relax-
ation, the ADI-methods, and Buneman’s method. We make that choice
because we know the convergence properties of these methods quite well if
they are applied to the model problem. In addition, the ADI-methods and
Buneman’s method are more or less taylored to handle the model prob-
lem and some related variants. The linear equations (8.10.2) belonging to
the model problem are also used to test the conjugate-gradient algorithm
(and the effects of preconditioning) because this method requires a positive
definite matrix A.

For the second group of tests, we use the linear equations (8.10.2) with
a nonsymmetric matrix A belonging to a choice γ �= 0 and δ � 0 in
order to compare the remaining Krylov space methods (GMRES, QMR,
Bi-CGSTAB) that are able to handle general linear equations.

For testing the Jacobi, Gauss-Seidel, the relaxation, the ADI-methods
and Buneman’s method, we choose δ = γ = 0, and as right hand side f in
(8.10.1) the function

f(x, y) = 2π2 sin πx sin πy.

Then the exact solution u(x, y) of (8.10.1) is

u(x, y) := sin πx sin πy,

and the right hand side b of (8.10.2) is

b := 2π2ū

with

ū := [u11, u21, . . . , uN1, . . . , u1N , . . . , uNN]T , uij = u(xi, yj).

In section 8.4, we characterized the eigenvectors of the Jacobi iteration
matrix J associated with A. One sees immediately that the vector b of
(8.10.2) is an eigenvector of J , and hence, by virtue of A = 4(I − J)/h2,
also an eigenvector of A. The exact solution of (8.10.2) is, therefore, readily
found. Indeed, we have

Jb = µb, with µ = cosπh.

For z we obtain

714 8 Iterative Methods for the Solution of Systems of Linear Equations

(8.10.3) z :=
h2π2

2(1 − cosπh)
ū .

For the relaxation method, the optimal relaxation parameter ωb was
chosen according to Theorem (8.3.17), using for ρ(J) the exact value in
(8.4.6). In the ADI method the optimal ADI parameters were computed
by (8.6.23) for m = 2k, k = 2, 4. For α and β we used the values given in
(8.6.24).

As measure of the error, we choose the size of the residual

r̄(i) :=
∥∥Az(i) − b

∥∥
∞.

The iteration was terminated as soon as r̄(i) was reduced to the order of
magnitude 10−4.

In the Jacobi, Gauss-Seidel, relaxation, and ADI methods we started
the iteration with the vector z(0) := 0. The corresponding initial residual is
r̄(0) = 2π2 ≈ 20. The results are found in Table I in which, besides N , the
number of iterations i is also given, as well as the terminal residual r̄(i).

Method k N r̄(i) i

Jacobi 5 3.5 × 10−3 60
10 1.2 × 10−3 235

Gauss-Seidel 5 3.0 × 10−3 33
10 1.1 × 10−3 127
25 5.6 × 10−3 600

Relaxation 5 1.6 × 10−3 13
10 0.9 × 10−3 28
25 0.6 × 10−3 77
50 1.0 × 10−2 180

ADI 2 5 0.7 × 10−3 9
10 4.4 × 10−3 12
25 2.0 × 10−2 16

4 5 1.2 × 10−3 9
10 0.8 × 10−3 13
25 1.6 × 10−5 14
50 3.6 × 10−4 14

Table I

The results of Table I agree with the results about the rate of conver-
gence in the previous sections: the Gauss-Seidel method converges twice as
fast as the Jacobi method [Corollary (8.3.16)], the relaxation methods yield
further reductions of the number of iterations [Theorem (8.3.17), (8.4.9)],
with the ADI method requiring the fewest iterations [cf. (8.6.28)].

8.10 Comparison of Iterative Methods 715

Since the algorithm of Buneman [see Section 8.8] is a noniterative
method which, in exact arithmetic, yields the exact solution of (8.10.2)
in a finite number of steps requiring about 6N2 log2N floating point op-
erations, computational results for this algorithm will not be provided. In
comparing the iterative methods with the Buneman algorithm for the so-
lution of (8.10.2), the reader should keep in mind that all these methods
merely compute the solution z of (8.10.2). This solution z, however, is a
poor approximation to the desired solution u(x, y) of (8.10.1). Indeed, from
(8.10.3), by Taylor expansion in powers of h, we have

z − ū =
(

π2h2

2(1 − cosπh)
− 1

)
ū =

h2π2

12
ū+O(h4),

so that the error ‖z − ū‖∞, inasmuch as ‖ū‖∞ ≤ 1, satisfies

‖z − ū‖∞ ≤ h2π2

12
+O(h4).

Since the final goal is to find the solution u(x, y) of (8.10.1) rather than
the solution z of (8.10.2), there would be little point in approximating z to
higher accuracy than an error of the order of magnitude h2 = 1/(N + 1)2

and in what follows we will aim at this accuracy.
Since the initial vector z(0) = 0 has an error ‖z− z(0)‖ ≈ 1, the Jacobi,

Gauss-Seidel and the optimal SOR method, according to (8.4.9), need the
following numbers of iterations and floating point operations (flops; one
iteration requires approximately 5N2 operations) in order to compute z
with an error of the order h2:

Method
Number of
iterations

Number of
flops

Jacobi 0.467(N + 1)2 log10(N + 1)2 ≈ N2 log10N 5N4 log10N

Gauss-Seidel 0.234(N + 1)2 log10(N + 1)2 ≈ 1
2N

2 log10N 2.5N4 log10N

Optimal SOR 0.367(N + 1) log10(N + 1)2 ≈ 0.72N log10N 3.6N3 log10N

To analyze the ADI method we use (8.6.28). In view of this formula,
it follows directly that, for given N , the number R(m)

ADI is minimized for
m ≈ ln[4(N + 1)/π], in which case m

√
4(N + 1)/π ≈ e. The ADI method

with optimal choice of m and optimal choice of parameters thus requires

R
(m)
ADI · log10(N + 1)2 ≈ 3.6(log10N)2

iterations to approximate the solution z of (8.10.2) with an error of the or-
der of magnitude h2. Per iteration, the ADI method requires approximately

716 8 Iterative Methods for the Solution of Systems of Linear Equations

16N2 floating point operations, so that the total number of operations is
about

57.6N2(log10N)2.

The Buneman method, on the other hand, according to Section 8.8, requires
only

6N2 log2N ≈ 20N2 log10N

floating point operations for the computation of the exact solution of
(8.10.2).

Next, we consider the Krylov space methods of Sections 8.7.1 – 8.7.4.
The test results for these methods were obtained with the help of Matlab

using, with the exception of the incomplete QGMRES(l) method (8.7.2.22),
the Matlab functions PCG, GMRES, QMR and BICGSTAB realizing the corre-
sponding Krylov space methods.

Since the conjugate-gradient method (8.7.1.3) is only applicable to pos-
itive definite systems, we used also here the linear equations (8.10.2) be-
longing to the model problem (δ = γ = 0)) for a numerical test. The vector
b := Ae, e := [1, . . . , 1]T ∈ IRN

2
was chosen as right hand side b of (8.10.2),

so that z = e is the exact solution of (8.10.2), and z(0) := 0 was chosen as
starting point. We describe the test results obtained for N = 50 [i.e., the
number of unknowns in (8.10.2) is N2 = 2500] in the form of a diagram
which lists the sizes

(8.10.4) reli :=
‖Az(i) − b‖2

‖Az(0) − b‖2

of the relative residuals versus the iteration number i. Figure 38 shows
the results for the original conjugate-gradient algorithm (8.7.1.3) using no
preconditioning (solid lines —) and the corresponding results (dashed lines
– –) for the preconditioned conjugate-gradient algorithm (8.7.1.10) using
the SSOR-preconditioner (8.7.1.11) with ω = 1.

The slow convergence of the unpreconditioned conjugate-gradient algo-
rithm is explained by the estimate (8.7.1.9) and the relatively large condi-
tion number

c = cond2(A)=̇
4
π2 (N + 1)2 ≈ 1054

of the matrix A [see (8.4.10)]. This slow convergence is very much improved
by preconditioning. On the other hand, one step of the preconditioned algo-
rithm is more expensive, but not much. The following small table compares
the number of floating point operations (flops) per iteration if one uses the
SSOR preconditioner:

no preconditioning with preconditioning

flops/iteration 34.5N2 47.5N2

8.10 Comparison of Iterative Methods 717

0 100 200 300 400 500 600 700 800
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Fig. 38. The cg-method with and without preconditioning.

The number of iterations (it) and of floating point operations needed to
reduce the size of the initial residual by a factor 10−7 is as follows:

no preconditioning with preconditioning

it 765 56
flops 26378N2 2662N2

In this context belongs a theoretical result of Axelsson (1977): He showed
that the conjugate-gradient method using the SSOR preconditioner re-
quires O(N2.5 logN) operations to find an approximate solution z̄ of the
linear equations (8.10.2) for the model problem that is sufficiently accurate,
‖z̄ − ū‖ = O(h2).

The behavior of the remaining three Krylov space methods GMRES,
QMR, and Bi-CGSTAB described in Sections 8.7.2, 8.7.3, and 8.7.4 is illus-
trated by similar figures and tables. Since these methods work also for sys-
tems of linear equations with nonsymmetric matrices, they were tested us-
ing the nonsymmetric system (8.10.2) resulting from (8.10.1) for the choice
δ = −100, γ = 40, N = 50, and the starting point z(0) = 0, but only for
the preconditioned versions of these algorithms [the SSOR-preconditioner
(8.7.1.11) with ω = 1 was used for left-preconditioning]. Figure 39 illus-
trates the relative sizes reli (8.10.4) of the residuals versus the iteration
number i for the restarted GMRES(25) method (8.7.2.21)(dashed lines –
–), the incomplete QGMRES(30) method (8.7.2.22) (dash-dotted lines – ·),
the QMR method (solid lines —), and the Bi-CGSTAB method (dotted

718 8 Iterative Methods for the Solution of Systems of Linear Equations

lines · · ·). The restart parameter 25 for GMRES, and the incompleteness
parameter l = 30 for QGMRES were chosen minimally so that these meth-
ods were still able to compute an iterate z(i) with reli ≤ 10−9.

0 50 100 150 200 250
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Fig. 39. The GMRES, QMR and Bi-CGSTAB methods.

The arithmetical expenses of these methods are described in the follow-
ing table, where it and flops denote the number of iterations and operations
needed to reduce the initial residual by a factor 10−9:

GMRES(25) QGMRES(30) QMR Bi-CGSTAB

it 202 179 73 101
flops 25199N2 37893N2 6843N2 4928N2

flops/it 124.7N2 211.7N2 93.7N2 48.8N2

The numerical results for the Krylov space methods show the fol-
lowing: The QMR method and Bi-CGSTAB are clearly superior to both
GMRES(restart), the restarted version (8.7.2.21) of GMRES, and the in-
complete QGMRES(l) method (8.7.2.22). If the parameters restart or l
are small, each step of these methods is relatively inexpensive, but these
methods then are not able to reduce an initial residual substantially within
a reasonable number of iterations. For larger values of restart or l the
methods are able to compute accurate solutions, but each iteration then
becomes too expensive. In our tests, QMR needed about 40% more oper-
ations but 30% fewer iterations to compute a high accuracy solution than
Bi-CGSTAB. The results also confirm that the residuals of the iterates

Exercises for Chapter 8 719

converge more smoothly with QMR than with Bi-CGSTAB, where larger
fluctuations are observed.

Some final remarks on the methods considered in Chapter 8 are in
order. The classical methods (Jacobi, Gauss-Seidel, relaxation methods)
and all Krylov space methods are general purpose methods that may, in
principle, be applied to the solution of sparse linear equations Ax = b of
an arbitrary origin. By contrast, the ADI methods, Buneman’s algorithm
and the Fourier methods considered in Section 8.8 are methods for solving
only special linear equations which result from the discretization of a re-
stricted class of particular boundary value problems for partial differential
equations.

Compared to these specialized methods, the convergence of the clas-
sical methods is too slow. Because of their particular damping properties,
the latter, however, are still being used as part of the “smoothing step” of
modern multigrid methods [cf. Section 8.9, algorithms (8.9.7) and (8.9.14)].
In general, multigrid methods are the methods of choice if one wishes to
solve boundary value problems for partial differential equations by dis-
cretization techniques: In rather general situations, multigrid methods will
yield a sufficiently accurate solution of the resulting linear equations with
a number of operations that grows only linearly or almost linearly with the
number of unknowns. In this respect multigrid methods are comparable to
the ADI-methods and the methods of Section 8.8, but may be applied to
much more general problems.

The natural realm of application of Krylov space methods is the solu-
tion of general sparse linear systems Ax = b, in particular those which are
are not connected with the discretization of partial differential equations.
Such system arise e.g. with the treatment of network problems. But Krylov
space methods are also used within multigrid methods e.g. for computing
“coarse grid solutions”, see (8.9.7). For the efficiency of Krylov space meth-
ods it is important to know and use good preconditioners.

Exercises for Chapter 8

1. Show: ρ(A) < 1 ⇔ limi→∞ Ai = 0.
Hint : Use Theorem (6.9.2).

2. Let A be an m × m matrix and Sn =
∑n

i=0A
i. Show: limn→∞ Sn exists if

and only if ρ(A) < 1, and then

lim
n→∞

Sn = (I −A)−1.

Hint : Use Exercise 1 and the identity (I −A)Sn = I −An+1.
3. In floating-point arithmetic, instead of (8.1.10), one effectively carries out

the following iteration:

720 8 Iterative Methods for the Solution of Systems of Linear Equations

x̄(0) := x(0); B := L̄ · R̄,
x̄(i+1) := x̄(i) +B−1r̄(i) + a(i),

with r̄(i) := b−Ax̄(i) and

a(i) := fl(x̄(i) +B−1r̄(i)) − (x̄(i) +B−1r̄(i)).

(Using the theory in Sections 4.5, 4.6, one can estimate ‖a(i)‖ from the
above.) Show:

(a) The error ε(i) := x̄(i) − x, x := A−1b, obeys the recursion

(∗) ε(i+1) = (I −B−1A)ε(i) + a(i) = Cε(i) + a(i), C := I −B−1A.

From this, derive an explicit formula for ε(i).

(b) Show that the ‖ε(i)‖ remain bounded as i → ∞ if ρ(C) < 1 and the a(i)

remain bounded, ‖a(i)‖ ≤ η for all i. Find as good an upper bound as
you can for lim supi→∞ ‖ε(i)‖.

4. (a) Show: A is irreducible if and only if the graph G(A) belonging to A is
connected.
Hint : Use the fact that the graphs G(A) and G(PTAP), P a permutation
matrix, coincide up to the numbering of the vertices.

(b) Given

A1 =

[
1 0 2
3 1 0

−1 0 1

]
, A2 =

[
1 2 0

−1 1 0
3 0 1

]
,

show: There exists a P such that A2 = PTA1P , P a permutation matrix;
G(A1) and G(A2) are identical up to a renaming of the vertices of the
graphs.

5. Given

A =

 2 0 −1 −1
0 2 −1 −1

−1 −1 2 0
−1 −1 0 2

 ,
show:
(a) A is irreducible.
(b) The Jacobi method does not converge.

6. Given

A =

 2 −1 0 −1
−1 2 −1 0

0 0 2 −1
−1 0 −1 2

 ,
show: A is irreducible and nonsingular.

7. Consider the system of linear equations Ax = b, A a nonsingular n×n matrix.
If A is reducible, then the system of equations can always be decomposed
into N systems, 2 ≤ N ≤ n, of the form

Exercises for Chapter 8 721

N∑
k=j

Ajkxk = bj , j = 1, 2, . . . , N,

where the Ajj are irreducible mj ×mj matrices and
∑

j
mj = n.

8. (Varga 1962.) Consider the ordinary differential equation

− d

dx

(
p(x)

d

dx
y(x)

)
+ σ(x)y(x) = f(x), a ≤ x ≤ b,

y(a) = α1, y(b) = α2,

p(x) ∈ C3[a, b], σ(x) continuous and σ(x) > 0, p(x) > 0 on a ≤ x ≤ b.
Discretize the differential equation relative to the general subdivision a =
x0 < x1 < x2 < · · · < xn < xn+1 = b, with

hi := xi+1 − xi,

using

d

dx

(
p(x)

d

dx
y(x)

)
x=xi

=
pi+1/2

yi+1 − yi

hi
− pi−1/2

yi − yi−1

hi−1

hi + hi−1

2

(∗)

+

{
O(h̄2

i) if hi = hi−1,
O(h̄i) if hi �= hi−1,

with h̄i = max(hi, hi−1) and

pi+1/2 = p(xi+1/2) = p(xi + hi/2), pi−1/2 = p(xi−1/2) = p(xi − hi−1/2).

Show:
(a) The validity of (∗) by means of Taylor expansion.

(b) If the resulting system of linear equations is written as Ax = b, then the
following holds for A: A is real, tridiagonal with positive diagonal and
negative side diagonal elements, provided the hi are sufficiently small for
all i.

(c) A is irreducible and satisfies the weak row sum criterion.

(d) The Jacobi iteration matrix J is irreducible, J ≥ 0, 2-cyclic, and consis-
tently ordered, and ρ(J) < 1.

(e) Do the Jacobi, Gauss-Seidel, and relaxation methods converge with the
finest partitioning?

9. Consider

722 8 Iterative Methods for the Solution of Systems of Linear Equations

A1 =

[
0 1 1
1 0 1
1 1 0

]
, A2 =

[
0 1 0
1 0 1
1 1 0

]
,

A3 =

[
0 1 0
1 0 1
0 1 0

]
, A4 =

 0 1 0 0
0 0 1 0
0 1 0 1
1 0 0 0

 ,

A5 =

 0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

 , A6 =

 0 1 0 0
0 0 1 1
0 1 0 1
1 0 0 0

 .
Which graphs G(Ai) are 2-cyclic?

10. Consider the 9 × 9 matrix A,

(∗) A =

[
M −I 0
−I M −I

0 −I M

]
, with M =

[
4 −2 0

−1 4 −1
0 −1 6

]
.

(a) Specify the matrices B, C, of the splitting A = B−C which correspond
to the following four iterative methods:
(1) Jacobi
(2) Gauss-Seidel

}
with the finest partitioning,

(3) Jacobi
(4) Gauss-Seidel

}
with the partitioning used in (∗).

(b) Show: A is irreducible, G(J) is 2-cyclic, and A has property A.
(c) Show that methods (1) and (2) converge for A, and that (2) converges

faster than (1).
(d) Show that (3) and (4) converge.

Hint: Do not compute M−1, but derive a relationship between the eigen-
values of Jπ (and of Hπ) and M . Observe, in this connection, that for
specially partitioned matrices such as

S =

[
0 R 0
R 0 R
0 R 0

]
,

the eigenvalues of S can be expressed in terms of those of R, by consid-
ering an eigenvector of S which is partitioned analogously to S.

11. For the following matrix A show that it has property A and that it is not
consistently ordered, and find a permutation such that the permuted matrix
PTAP is consistently ordered:

A =

4 −1 0 0 0 −1
−1 4 −1 0 −1 0

0 −1 4 −1 0 0
0 0 −1 4 −1 0
0 −1 0 −1 4 −1

−1 0 0 0 −1 4

.

Exercises for Chapter 8 723

12. Show: All block tridiagonal matrices
D1 A12

A21 D2
. . .

. . .
. . . AN−1,N

AN,N−1 DN

 ,
Di nonsingular diagonal matrices, Aij �= 0 have property A.

13. Show that (8.4.5) is consistently ordered.

14. Verify: A is consistently ordered but does not have property A:

A :=

[
1 −1 0
1 1 0
1 1 1

]
.

15. Consider the Dirichlet boundary value problem on the domain Ω [see Figure
38] with mesh Ωh for h = 1.

................

........................y

1

2

3

1 2 3 4 x

1 2 3 4

5 6

7

Figure 38 Domain Ω.

(a) Derive the associated system Ax = b, using the discretization as given
in (8.4.2), and specify A, assuming that the vector x is ordered as shown
in Figure 38, i.e., x = [x11, x21, x31, x41, x12, x22, x13]T .

(b) Show: A is irreducible and symmetric, G(J) is 2-cyclic, A has property
A, and ρ(J) < 1.

(c) Order A consistently, and indicate to which renumbering of the variables
x this corresponds in Figure 38. Is this reordering unique?

16. Consider

A :=

3 −1 0 0 0 −1
−1 3 −1 0 −1 0

0 −1 3 −1 0 0
0 0 −1 3 −1 0
0 −1 0 −1 3 −1

−1 0 0 0 −1 3

.

724 8 Iterative Methods for the Solution of Systems of Linear Equations

(a) Show that the Jacobi, Gauss-Seidel, and relaxation methods converge.
(b) Which of these methods is to be preferred?
(c) Write down explicitly the iteration which belongs to A and to the method

chosen in (b).

17. Show that for the model problem one has for the block relaxation method,
relative to the partitioning given in (8.4.5), as N → ∞,

ρ
(
Hπ(ωb)

)
≈ ρ

(
H(ω)

)κ
, with κ =

√
2.

Hint: Observe the information on the model problem given in Section 8.5.

18. (Varga 1962.) Consider the matrix

A =

[
5 2 2
2 5 3
2 3 5

]
.

(a) Determine the spectral radius ρ1 of the Gauss-Seidel matrix H1 belong-
ing to A for the finest partitioning.

(b) Determine ρ2 = ρ(H2), where H2 is the matrix associated with the block
Gauss-Seidel method. Use the partitioning indicated above.

(c) Show: 1 > ρ2 > ρ1, i.e., the block Gauss-Seidel method does not neces-
sarily converge faster than the point Gauss-Seidel method.

(d) Answer (a), (b) for

Ā =

[
5 −2 −2

− 2 5 −3
− 2 −3 5

]
;

do we again have 1 > ρ2 > ρ1 ?

19. Verify (8.6.10)–(8.6.13).

20. Show:

(a) min
r>0

max
0<α≤x≤β

∣∣∣∣r − x

r + x

∣∣∣∣2 =

(√
β −

√
α√

β +
√
α

)2

,

where the minimum is assumed precisely for r =
√
αβ.

(b) For the model problem with

µj = 4 sin2 jπ

2(N + 1)

[cf. (8.6.12)], one then obtains

min
r>0

ρ(Tr) =
cos2

π

N + 1(
1 + sin

π

N + 1

)2 .

21. For (8.6.18) one can find approximate solutions which in practice, for small
m, often approximate the exact solution with sufficient accuracy. Peaceman
and Rachford proposed the following approximation:

Exercises for Chapter 8 725

rj = β ·
(
α

β

)(2j−1)/(2m)
, j = 1, 2, . . . , m.

Show:

(a)

∣∣∣∣rj − x

rj + x

∣∣∣∣ < 1 for all j, α ≤ x ≤ β.

(b) β > r1 > r2 > · · · > rm > α, and, with z := (α/β)1/(2m), one has:∣∣∣rk − x

rk + x

∣∣∣ ≤ 1 − z

1 + z
for k = m, α ≤ x ≤ rm or k = 1, β ≥ x ≥ r1.∣∣∣x− ri+1

x+ ri+1

x− ri

x+ ri

∣∣∣ ≤
(

1 − z

1 + z

)2

, ri ≥ x ≥ ri+1.

(c) From (a) and (b) it follows for (8.6.17) that

ϕ(r1, . . . , rm) ≤ 1 − z

1 + z
.

[Details for these approximations can be found in Young (1971).]

22. Show for the sequence αj , βj generated in (8.6.21):

α0 < αj < αj+1 < βj+1 < βj < β0, j ≥ 1,

and

lim
j→∞

αj = lim
j→∞

βj .

23. Determine the parameters r(4)i from m = 4, α = 0.5, β = 3.5, and compare
them with the approximate values obtained from the formula of Peaceman
and Rachford given in Exercise 21. In particular, compare ϕ(r1, . . . , r4) with
the upper bound given in Exercise 21.

24. Consider the Dirichlet problem for the differential equation

uxx + uyy +
1
x
ux +

1
y
uy = 0

in a rectangular domain Ω, where Ω lies in the region x ≥ 1, y ≥ 1. Find
a difference approximation to the problem so that the resulting system of
linear equations of the form

(H + V)z = b

has the property HV = V H.

726 8 Iterative Methods for the Solution of Systems of Linear Equations

25. (Varga 1962.) Consider the differential equation

uxx + uyy = 0

on the rectangular domain Ω := {(x, y) | 0 ≤ x, y ≤ 1}, with the boundary
conditions

u(0, y) = 1, u(1, y) = 0, 0 ≤ y ≤ 1.

∂u

∂y
(x, 0) =

∂u

∂y
(x, 1) = 0, 0 ≤ x ≤ 1.

(a) In analogy to (8.4.2), discretize uxx + uyy with mesh size h = 1/3 for
all grid points at which the solution is unknown. Take account of the
boundary condition uy(x, 0) = uy(x, 1) = 0 by introducing fictitious grid
points, e.g. (xi,−h), and approximate uy(xi, 0) by

uy(xi, 0) =
u(xi, 0) − u(xi − h)

h
+O(h), i = 1, 2.

One obtains a system of linear equations Az = b in eight unknowns.
Specify A and b.

(b) Find the decomposition A = H1 + V1 exemplified in (8.6.3) and show:
H1 is real, symmetric, positive definite,
V1 is real, symmetric, positive semidefinite.

(c) Show: H1V1 = V1H1.
(d) Even though the assumptions of (8.6.9) are not fulfilled, show that

ρ(Tr) < 1 for r > 0 and compute ropt:

ρ(Tropt) = min
r>0

ρ(Tr).

The result is ropt =
√

3, with

ρ(Tropt) ≤
√

3 − 1√
3 + 1

.

Hint : Use the result of Exercise 20 (a) and the exact eigenvalues of H1.
Observe the hint to Exercise 10 (d).

26. Consider the system of linear equations Az = b which results from the prob-
lem of Exercise 15 if the unknowns form the components of z not in the order
{1, 2, 3, 4, 5, 6, 7} given in Exercise 15(a) with respect of the numbering of the
unknowns in Figure 38, but in the order {7, 5, 6, 1, 2, 3, 4}.
(a) Show that with this ordering A is consistently ordered.
(b) Find the decomposition analogous to (8.6.3),

A = H1 + V1

and show:
(α) H1, V1 are symmetric and real; H1 is positive definite; V1 has neg-

ative eigenvalues.
(β) H1V1 �= V1H1.

27. Complete the proof of Theorem (8.7.4.2).

References for Chapter 8 727

28. Using the notation of Theorem (8.7.4.2), show:
(a) For i ≤ m, the vector xi generated by the Bi-CG algorithm is character-

ized uniquely as that vector in x0+Ki(r0, A) which satisfies the Galerkin
condition

(∗) (w, b−Axi) = 0 for all w ∈ Ki−1(r̂o, A
T).

(b) There is a vector xm+1 ∈ x0 +Km+1(r0, A) satisfying (∗) if and only if

(p̂m, Apm) �= 0.

29. Show that the residuals ri (and also the vectors pi) generated by the Bi-CG
algorithm (8.7.4.1) satisfy a three term recursion formula.

References for Chapter 8

Arnoldi, W.E. (1951): The principle of minimized iteration in the solution of the
matrix eigenvalue problem. Quart. Appl. Math. 9, 17–29.

Axelsson, O. (1977): Solution of linear systems of equations: Iterative methods.
In: Barker (1977).

(1994): Iterative Solution Methods. Cambridge, UK: Cambridge Univer-
sity Press.

Barker, V.A. (Ed.) (1977): Sparse Matrix techniques. Lecture Notes in Mathe-
matics Vol. 572, Berlin, Heidelberg, New York: Springer-Verlag.

Braess, D. (1997): Finite Elemente. Berlin, Heidelberg, New York: Springer-
Verlag.

Bramble, J.H. (1993): Multigrid Methods. Harlow: Longman.
Brandt, A. (1977): Multi-level adaptive solutions to boundary value problems.

Math. of Comput. 31, 333–390.
Briggs, W.L. (1987): A Multigrid Tutorial. Philadelphia: SIAM.
Buneman, O. (1969): A compact non-iterative Poisson solver. Stanford University,

Institute for Plasma Research Report Nr. 294, Stanford, CA.
Buzbee, B.L., Dorr, F.W. (1974): The direct solution of the biharmonic equation

on rectangular regions and the Poisson equation on irregular regions. SIAM J.
Numer. Anal. 11, 753–763.

, , F.W., George, J.A., Golub, G.H. (1971): The direct solution of
the discrete Poisson equation on irregular regions. SIAM J. Numer. Anal. 8,
722–736.

, Golub, G.H., Nielson, C.W. (1970): On direct methods for solving Pois-
son’s equations. SIAM J. Numer. Anal. 7, 627–656.

Chan, T.F., Glowinski, R., Periaux, J., Widlund, O. (Eds.) (1989): Proceedings
of the Second International Symposium on Domain Decomposition Methods.
Philadelphia: SIAM.

Fletcher, R. (1974). Conjugate gradient methods for indefinite systems. In: G.A.
Watson (ed.), Proceedings of the Dundee Biennial Conference on Numerical
Analysis 1974, p. 73–89. New York: Springer-Verlag 1975.

Forsythe, G.E., Moler, C.B. (1967): Computer Solution of Linear Algebraic Sys-
tems. Series in Automatic Computation. Englewood Cliffs, N.J.: Prentice Hall.

728 8 Iterative Methods for the Solution of Systems of Linear Equations

Freund, R.W., Nachtigal, N.M. (1991): QMR: a quasi-minimal residual method
for non-Hermitian linear systems. Numerische Mathematik 60, 315–339.

George, A. (1973): Nested dissection of a regular finite element mesh. SIAM J.
Numer. Anal. 10,345–363.

Glowinski, R., Golub, G.H., Meurant, G.A., Periaux, J. (Eds.) (1988): Proceedings
of the First International Symposium on Domain Decomposition Methods for
Partial Differential Equations. Philadelphia: SIAM.

Hackbusch, W. (1985): Multigrid Methods and Applications. Berlin, Heidelberg,
New York: Springer-Verlag.

, Trottenberg, U. (Eds.) (1982): Multigrid Methods. Lecture Notes in
Mathematics. Vol. 960. Berlin, Heidelberg, New York: Springer-Verlag.

Hestenes, M.R., Stiefel, E. (1952): Methods of conjugate gradients for solving
linear systems. Nat. Bur. Standards, J. of Res. 49, 409–436.

Hockney, R.W. (1969): The potential calculation and some applications. Methods
of Computational Physics 9, 136–211. New York, London: Academic Press.

Householder, A.S. (1964): The Theory of Matrices in Numerical Analysis. New
York: Blaisdell Publ. Comp.

Keyes, D.E., Gropp, W.D. (1987): A comparison of domain decomposition tech-
niques for elliptic partial differential equations. SIAM J. Sci. Statist. Comput.
8, s166–s202.

Lanczos, C. (1950): An iteration method for the solution of the eigenvalue prob-
lem of linear differential and integral equations. J. Res. Nat. Bur. Standards.
45, 255–282.

(1952): Solution of systems of linear equations by minimized iterations.
J. Res. Nat. Bur. Standards. 49, 33–53.

McCormick, S. (1987): Multigrid Methods. Philadelphia: SIAM.
Meijerink, J.A., van der Vorst, H.A. (1977): An iterative solution method for

linear systems of which the coefficient matrix is a symmetric M -matrix. Math.
Comp. 31, 148–162.

O’Leary, D.P., Widlund, O. (1979): Capacitance matrix methods for the Helm-
holtz equation on general three-dimensional regions. Math. Comp. 33, 849–879.

Paige, C.C., Saunders, M.A. (1975): Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Analysis 12, 617–624.

Proskurowski, W., Widlund, O. (1976): On the numerical solution of Helmholtz’s
equation by the capacitance matrix method. Math. Comp. 30, 433–468.

Quarteroni, A., Valli, A. (1997): Numerical Approximation of Partial Differential
Equations, 2d edition. Berlin, Heidelberg, New York: Springer-Verlag.

Reid, J.K. (Ed.) (1971a): Large Sparse Sets of Linear Equations. London, New
York: Academic Press.

(1971b): On the method of conjugate gradients for the solution of large
sparse systems of linear equations. In: Reid (1971a), 231–252.

Rice, J.R., Boisvert, R.F. (1984): Solving Elliptic Problems Using ELLPACK.
Berlin, Heidelberg, New York: Springer-Verlag.

Saad, Y. (1996): Iterative Methods for Sparse Linear Systems. Boston: PWS Pub-
lishing Company.

, Schultz, M.H. (1986): GMRES: a generalized minimal residual algorithm
for solving nonsymmetric linear systems. SIAM J. Scientific and Statistical
Computing, 7, 856–869.

Schröder, J., Trottenberg, U. (1973): Reduktionsverfahren für Differenzenglei-
chungen bei Randwertaufgaben I. Numer.Math. 22, 37–68.

, , Reutersberg, H. (1976): Reduktionsverfahren für Differenzen-
gleichungen bei Randwertaufgaben II. Numer. Math. 26, 429–459.

References for Chapter 8 729

Sonneveldt, P. (1989): CGS, a fast Lanczos-type solver for nonsymmetric linear
systems. SIAM J. Scientific and Statistical Computing 10, 36–52.

Swarztrauber, P.N. (1977): The methods of cyclic reduction, Fourier analysis
and the FACR algorithm for the discrete solution of Poisson’s equation on a
rectangle. SIAM Review 19, 490–501.

van der Vorst (1992): Bi-CGSTAB: A fast and smoothly converging variant of
Bi-CG for the solution of non-symmetric linear systems. SIAM J. Scientific
and Statistical Computing 12, 631–644.

Varga, R.S. (1962): Matrix Iterative Analysis. Series in Automatic Computation.
Englewood Cliffs: Prentice Hall (2d revised and expanded edition 2000, Berlin,
Heidelberg, New York: Springer-Verlag).

Wachspress, E.L. (1966): Iterative Solution of Elliptic Systems and Applica-
tion to the Neutron Diffusion Equations of Reactor Physics. Englewood Cliffs,
N.J.: Prentice-Hall.

Wilkinson, J.H., Reinsch, C. (1971): Linear Algebra. Handbook for Automatic
Computation, Vol. II. Grundlehren der mathematischen Wissenschaften in
Einzeldarstellungen, Bd. 186. Berlin, Heidelberg, New York: Springer-Verlag.

Young, D.M. (1971): Iterative Solution of Large Linear Systems. Computer Sci-
ence and Applied Mathematics. New York: Academic Press.

General Literature on Numerical Methods

Ciarlet, P.G., Lions, J.L., Eds. (1990, 1991): Handbook of Numerical Analysis.
Vol. I: Finite Difference Methods (Part 1), Solution of Equations in IRn (Part
1). Vol. II: Finite Element Methods (Part 1). Amsterdam: North Holland.

Conte, S.D., de Boor, C. (1980): Elementary Numerical Analysis, an Algorithmic
Approach, 3d edition. New York: McGraw-Hill.

Dahlquist, G., Björck, Å. (1974): Numerical Methods. Englewood Cliffs, N.J.:
Prentice Hall.

Deuflhard, P., Hohmann, A. (1991): Numerische Mathematik. Eine algorithmisch
orientierte Einführung. Berlin, New York: de Gruyter.

Forsythe, G.E., Malcolm, M.A., Moler C.B. (1977): Computer Methods for Math-
ematical Computations. Englewood Cliffs, N.J.: Prentice Hall.

Fröberg, C.E. (1985): Numerical Mathematics. Menlo Park, Calif.: Benjamin/
Cummings.

Gregory, R.T., Young, D.M. (1972, 1973): A Survey of Numerical Mathematics.
Vols. 1, 2. Reading, Mass.: Addison-Wesley.

Hämmerlin, G., Hoffmann, K.-H. (1991): Numerical Mathematics. Berlin, Heidel-
berg, New York: Springer-Verlag.

Henrici, P. (1964): Elements of Numerical Analysis. New York: John Wiley.
Hildebrand, F.B. (1974): Introduction to Numerical Analysis, 2d edition. New

York: McGraw-Hill.
Householder, A.S. (1953): Principles of Numerical Analysis. New York: McGraw-

Hill (republication 1974, New York: Dover Publications).
Isaacson, E., Keller, H.B. (1966): Analysis of Numerical Methods, New York: John

Wiley.
Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T. (1990): Numerical

Recipes. The Art of Scientific Computing. Cambridge: Cambridge University
Press.

Ralston, A., Rabinowitz, P. (1978): A First Course in Numerical Analysis. New
York: McGraw-Hill.

Rutishauser, H. (1990): Lectures on Numerical Mathematics. Edited by M.
Gutknecht with the assistance of P. Henrici et al. and translated by W.
Gautschi. Boston: Birkhäuser.

Schaback, R., Werner, H. (1991): Numerische Mathematik, 4th edition. Berlin,
Heidelberg, New York: Springer-Verlag.

Schwarz, H.-R. (1986): Numerical Analysis. A Comprehensive Introduction. With
a contribution by J. Waldvogel. Chichester: Wiley.

Schwetlick, H., Kreztschmar, H. (1991): Numerische Verfahren für Naturwis-
senschaftler und Ingenieure. Leipzig: Fachbuchverlag.

Stiefel, E. (1963): An Introduction to Numerical Mathenatics. New York, London:
Academic Press.

References for Chapter 8 731

Todd, J. (1962): A Survey of Numerical Analysis. New York: McGraw-Hill.
(1978): Basic numerical mathematics, Vol. 1. Numerical Analysis. Basel:

Birkhäuser (also New York: Academic Press 1978).
(1977): Basic Numerical Mathematics, Vol. 2. Numerical Algebra. Basel:

Birkhäuser (also New York: Academic Press 1977).

Index

In general, page numbers in italics refer to definitions.

Abramowitz 177
absolute error 12, 327
absolute norms 447
absolutely continuous 92, 98, 588
absolutely stable 527
Achieser 92
A-conjugate 353, 660
Adams-Bashforth methods 493ff
Adams-Moulton methods 494ff, 513
ADI methods 647ff, 713

optimal parameters of 654ff
Ahlberg 99
Aitken’s ∆2-method 184, 344ff, 359
Aitken’s interpolation algorithm 43,

344
algebraic multiplicity 366, 370ff
algorithm 9

numerically more trustworthy 18
numerically stable 19
well behaved 19

amplification of errors 14
analog computers 2
Andersen 190
approximation error 1
approximation method 94
arithmetic,

complex 333
fixed point 3
floating-point 4
floating-point 3ff
floating-point 7
interval 28
statistical error 30ff

Armijo line search 306
Arnoldi 658, 668
artificial variables 270
Ashenhurst 4

asymptotic expansion 160, 165f, 169
of central difference quotient 166
of global discretization error 480ff,

513ff
attenuation factors 94
Axelsson 620, 662, 665, 717

Babuška 563
back substitution 191

round-off errors in 221
backward analysis of errors 19
backward deflation 325
Bader 529
badly conditioned 337
Bairstow’s method 333ff, 360
Banachiewicz’ method 198
band matrix 199, 593ff
Bank 532
Baptist 357
Barker 272
Bartels 266
Barth 406
Barton 539
basic (feasible) solution 258
basic variables 258
basis inverse method 266
basis of a linear program 258
Bauer 19, 161, 165, 316, 443, 447
BDF-methods 531, 535
Bendixson, theorem of 454
benign 19
Bernoulli numbers 156, 158
Bernoulli polynomials 158
Bessel functions 135
BFGS method 351, 355f
Bi-CG algorithm 658, 686ff

732

Index 733

Bi-CGSTAB algorithm 620, 658, 686ff,
717ff

bidiagonal matrix 436ff
biharmonic equation 701
bilinear form 587ff, 601
biorthogonal vectors 681
biorthogonalization 658, 680
bisection method 179, 331, 332, 339,

406, 543
bit-cycling permutation 139
bit-reversal permutation 85, 139
Björck 232
block Gauss-Seidel method 646
block iterative methods 645
block Jacobi method 645
block relaxation methods 646
block single-step method 646
block total-step method 645
Bloomfield 81
Bock 539
boundary conditions 466

nonlinear, separated 539 540
boundary-value problems 97, 539, 550,

562
linear 548
model problem for 650ff, 655
singular 563, 564
with free boundary 542, 568

Bowdler 435
Boyd 596
Braess 620, 702, 711
Bramble 620, 702
Brandt 702, 711
Brent 344
Brezinski 167, 344
Briggs 702
Brigham 81
Broyden 313ff, 350f
Broyden’s rank-one method 313, 315,

351, 561
Broyden, Fletcher, Goldfarb, Shanno

(see BFGS) 351
B-splines 111, 106, 142, 595
Buchauer 538
Bulirsch 73, 90, 106, 163ff, 167f, 183,

524, 532, 557, 597
Bunch 190
Buneman 620, 692, 697, 699,

algorithm of 620, 691ff, 699, 713ff,
Butcher 477
Buzbee 692, 699
Buzbee 701
Byrne 531, 535

Böhmer 97

Callies 572f, 577
cancellation 8, 14
Canuto 596
Caracotsios 539
Cauchy’s convergence criterion 293
Cayley-Hamilton Lemma 374
central difference quotient 166
Chan 701
characteristic polynomial 179, 317f,

331, 338, 366ff, 406ff, 454, 503
Chebyschev polynomials 178, 663
Chebyshev system 175
Choleski decomposition 204f, 207, 234,

272, 352, 441, 585, 591, 642, 649
Choleski factor 205
Chui 133
Ciarlet 59, 594, 606
Clark 525
clique representation 279
clique 275
Coddington 470
Collatz 213, 302, 475, 577
collocation method 595
collocation point 595
column sum criteria 626f
complete pivot selection 219f
complex arithmetic 333
complex conjugate roots 333
composite of integration rule 149
computers (digital, analog) 2
cond 211
condition,
condition

of linear equations 207
of matrix 211
of eigenvalue problem 386ff, 412,

447f,
of linear least squares 236

condition numbers 13, 355
conjugate-gradient method 620, 657f,

716ff
consistency condition 534
consistent initial values 534
consistent matrix norm 209
consistently ordered 633, 634
constrained minimization 290
continuation methods 562ff
continued fraction 66
contractive mapping 296, 348
convergence factor 294

734 Index

convergence
alternating 295
global 294
linear 294, 340
local 294
monotone 295
of order p 293
quadratic 294, 295, 299, 320,
superlinear 356
cubic 430

convex 299
Cooley 81
Cooley-Tukey method 81, 139f
corrector method 494, 509, 512, 518ff
Cotes 146
Courant, Weyl, theorem of 453
covariance matrix 234
Cramer’s rule 407
Crane 525
Crout’s method 197
cubic convergence 430
cubic splines 38, 97ff, 101, 107, 592
Cullum 402
Curry 115
curvature 101

Dahlquist 512, 530
damping of errors 14
Daniel 248, 250
Dantzig 256, 259, 270
data fitting 231
Daubechies 132, 134
Davenport 525
Davidon 350, 356
Davidon, Fletcher, Powell (see DFP)

351
Davis 38, 146, 151
de Boor 97, 106, 121
decimal number representation 2
decomposition

QR 228
triangular 195

decomposition of maps 10
deflation, 325, 344

backward 325
forward 325

degenerate linear program 259
degree of a node 275
Dekker 339
∆2-method of Aitken 184, 344ff, 359
Dennis 315
derogatory matrix 372

descent direction 349
design point 575
Deuflhard 529, 532, 535, 563
DFP method 351, 357
diagonal matrix 216, 372, 395, 462
diagonalizable matrix 372, 381ff
diagonally dominant 626

irreducibly 627
Diekhoff 525
difference equations 130, 500ff

linear 501ff
stability condition for 502

difference methods 619
for ordinary differential equations

582ff, 596, 598
for partial differential equations

639ff
difference operator 345
difference quotient,

central 166, 170
one-sided 166,

differential equations,
implicit 531ff
ordinary 97, 465f, 596
partial 97, 639ff

differential error analysis 11
differential operator,

positive definite 588
symmetric 588, 600

differential-algebraic equations 531ff
digital computers 2
direct methods for linear equations

190
Dirichlet boundary-value problem 600,

639
discrete Fouriertransformation 78
discretization (discretizing) 166ff
discretization error 1, 480f

global 477ff, 513
local 474, 497

divided differences 43, 45, 117 ,341f,
divided-difference scheme 45
dividing off 325
Dixon 355
domain decomposition method 701
Dongarra 190
DOPRI 5(4)-method 492
Dormand 490
Dorr 701
double-step method 320ff, 326
Drazin-inverse 534
dual function 126
Duff 272, 280

Index 735

Eberlein 397
Eich 537
eigenproblem, generalized 356
eigensolution 364
eigenvalue problem 364

algebraic 364
for differential equations 541
generalized 440, 534

eigenvalues 179, 317, 331, 364ff, 366
algebraic multiplicity of ff 366,

370ff,
exclusion theorems for 441
extremal properties for 453
eigenvalues, geometric multiplicity

of 367, 370ff,
ill-conditioned 412, 450
multiplicity of 369ff
numerically acceptable 411
sensitivity of 447
well-conditioned 411, 450

eigenvector 179, 365ff
eigenvector 365 366ff

left 368, 447ff
numerically acceptable f 411, 413f

Eisenstat 280
elementary

divisors 372, 411ff, 374, 450
inequalities 256
maps 10
operations 9

elimination,
Gaussian 190
Gauss-Jordan 200

elimination for sparse matrices 272
elimination matrix 248
elimination methods 619
end corrections 151
Engl 538
Enright 525, 531
equilibrated matrix 192, 217
Erdélyi 160
Erisman 272, 280
error analysis,

backward 19
differential 11
for linear equations 207

error bounds 207
for spline interpolation 109

error damping 14
error propagation 9
error

absolute 12
discretization 474, 477ff, 480

error [cont]
inherent 18
interpolation 48ff
relative 5, 12

Euclidean (vector) norm 208, 224, 355,
387

Euclidean algorithm 329
Euler’s method 480, 472, 483, 513,

526ff
implicit 527ff, 530
modified ff 475ff
region of absolute stability for 528ff

Euler–Maclaurin summation formula
156ff, 150, 160

exact line search 306, 353ff
exclusion theorems 441
exponent 3

over(under) flow 6
exponential interpolation 38
exponential spline 143
extended integration rules 149
extrapolation methods 145, 157

for initial value problems 521ff, 544
for initial value problems 544
, for differentiation 166
, for integration 160ff, 181
, for differential equations 528f, 483,

527, 597
extrapolation 51

factorization,
numerical 274
symbolic 274

fast Fourier transforms 80ff
feasible point 256
Feehery 539
Fehlberg 477,490
Fellen 525
field of values 452
Fike 443, 447
fineness 107
finite element method 600, 603, 606,

619
Fix 606
fixed point 293
fixed point theorem of Banach 297
fixed-point representation 3
Fletcher 350, 658, 686
floating-point arithmetic 3ff, 7, 15ff,

483ff
floating-point operations 7

736 Index

floating-point representation 3
normalized 4
unnormalized 4

formula of Lagrange 52
Forsythe 623
forward deflation 325
Fourier coefficients 92
Fourier methods 620, 691
Fourier series 92, 138
Fourier synthesis 78, 88
Fourier transform 80ff
Fox 525
fractional iteration 410
Francis 365, 415, 417, 433

observation of 440ff
Frazer, Duncan, Collar, method of 379
free variables 257
Freund 620, 658, 684
Frobenius matrices 192, 194, 375,

376ff 454,
Frobenius normal form 375f, 377, 398,

503,
fully nondegenerate rational interpola-

tion problem 63
function, differentiable 298

Galán 539
Gantmacher 534
Garbow 365
Gass 256, 270
Gauss’ arithmetic-geometric mean al-

gorithm 654
Gauss-Jordan method 200
Gauss-Newton method 243
Gauss-Seidel method 622, 628f, 630f,

637, 641ff, 703, 705, 713ff
Gaussian

elimination 106, 121, 190f, 215, 560,
416

integration (quadrature) 146, 171,
181, 184

Gautschi 95, 178
Gear 467, 521, 531, 535
generalized

divided differences 56
Lagrange polynomials 52
eigenproblem 356, 534
inverse 243ff

Gentleman 81
geometric multiplicity 367, 370ff
geometrically decreasing step lengths

169

George 272, 278, 280, 620
Gershgorin’s theorem 444, 583
Gill 248, 316, 537
Givens 394f

matrix 249
reflection 437ff, 250
rotation 250, 394, 672
method of 394ff

global discretization error 477ff, 498,
480f, 513

Glowinski 701
GMRES algorithm 620, 658, 667, 717ff

incomplete 677f, 717ff
quasi-minimal 678
with restarts 677, 717ff

Goertzel 88
Goldfarb 351
Goldstein 7
Golub 178ff, 190, 248, 316, 365, 424,

436, 440, 692, 699, 701
Golub and Reinsch, method of 365,

436
Gordon 467, 521
Gottlieb 596
gradient 303
Gragg 248, 250, 481, 516f
Gragg’s function 521
Gram-Schmidt orthogonalization 173,

223, 228, 669, 676
with reorthogonalization 230, 236

graph of matrix 626
(weakly) 2-cyclic 635, 642
connected 626, 642

graph of symmetric matrix 274
great-circle distance 35
Green’s formula 601
Greville 97, 106
grid function 702
Griepentrog 535
Griewank 313
Grigorieff 467, 477, 526, 531
Grimm 557, 566, 598
Gropp 701
Grossmann 232
Gröbner 145
Guest 232

Haar condition 175
Haar-function 123
Haar-wavelet 133
Hackbusch 620, 702, 711
Hadley 256, 270 477, 481

Index 737

Hairer 467, 477, 481, 516, 521, 531f,
535, 539

Hall 109
Handbook of Mathematical Functions

177
Hanson 232
harmless roundoff errors 19
hat-function 125
Hausdorff 452
Heim 538
Helmholtz equation 701
Henrici 151, 317, 328, 467f
Hermite function space 58
Hermite

interpolation 48, 51, 117, 148, 180
polynomials 178, 184
function space 594

Hermitian matrix 204, 365, 379ff, 453,
Herriot 106
Hessenberg matrix 251, 219, 365, 387,

392, 402ff, 407, 415f, 425ff
irreducible 426gg

Hessian matrix 316, 349
Hestenes 567, 620, 657f
Heun, method of 475ff
Hiltmann 538, 572
Himmelblau 290
Hindmarsh 531, 535
Hirsch 442, 454
Hockney 701
Hofreiter 145
Holladay’s identity 99
homogeneity axiom 208
homotopy methods 562ff, 565
Horneber 532
Horner scheme 44, 88, 317
Householder 224, 320, 447, 451, 631

method of 388, 395, 434, 394ff, 436
matrix 224
orthogonalization 223
reduction 392

Householder transformation,
for arbitrary matrix 392
for symmetric matrix 391

Hull 525, 531
Hyman, 407

method of 407

ill-conditioned 13
implicit differential equations 531ff
implicit methods for differential equa-

tions 494, 527f

implicit shift techniques 433ff
improper integrals 184
inaccessible points 62
inclusion theorems 442
inclusion theorems 450
incomplete Choleski factorization 665f
index of nilpotency 533
index-1 assumption 535
inequalities,

elementary 256
linear 256

inexact line search 306
initial (starting) values

rules for the selection of 319
initial value problem 465, 468, 471
integral

definite 145
improper 184
indefinite 145

integration
by parts 93, 157ff
error 151ff

integration rules
of Simpson 152
composite (extended) 149
of Gauss 171, 181
of Milne 148, 163
of Newton Cotes 147, 162, 181, 493,

497
of Simpson 148, 162
of Weddle 148
3/8 148

interpolation 37ff
exponential 38
Hermite 51ff, 180
inverse 344
linear 37
polynomial 38ff
rational 38, 59ff
spline 38, 97ff
trigonometric 37, 74ff

interpolation error 48ff
interpolation formula

of Lagrange 39, 146, 167
of Newton 43ff, 342

Interpolation on product spaces 135
interpolation operator 706
interval arithmetic 28
inverse differences 64ff, 65
inverse interpolation 344
inverse iteration 420
inverse iteration of Wielandt 405, 408,

410, 414, 420, 427f, 435,

738 Index

inverse of matrix 190, 200
irreducible matrix 405, 407,626ff, 631,

635
irreducibly diagonally dominant 627
iteration function 290, 317
iterative methods 639

construction of 290ff, 621ff
convergence of 293ff,349ff, 623ff
convergence of 349ff
for linear equations 619ff
for minimization 290f, 302ff, 349
for roots of polynomials 316
for zeros of functions 289ff, 338ff

iterative refinement 619, 623

Jacobian elliptic function 546, 556ff
Jacobian matrix 12, 14ff, 242, 293,

298,
Jacobi matrix 388
Jacobi method 394ff, 622, 625f, 629,

631, 641, 643, 703, 713ff
damped 704

Jenkins 317
Jordan block 371
Jordan normal form 369ff, 442

Kahan, Theorem of 631
Kaniel 401
Kantorovich

(see Newton-Kantorovich) 302
Kaps 529f
Karlin 121
Kaufman 248, 250
Keller 467, 550, 557
Keyes 701
Kiehl 538
knots of splines 97
Korneichuk 97
Kramer 539
Krogh 521
Kronrod 181
Kronseder 538
Krylov sequence 375, 398
Krylov sequence 375,
Krylov space 398, 657
Krylov space methods 619, 657, 680,

716ff,
Kröner 538
Kublanovskaja 415
Kulisch 30
Kutta 475

Läuchli 239
Lagrange’s interpolation formula 39,

146, 167, 493
Lagrange polynomials 39, 134
Laguerre polynomials 178, 184
Lambert 531
Lanczos 398, 658, 681, 686
Lanczos algorithm 398ff
Laplace-Operator 600
Lawson 232
least upper bound norm 210
least-squares problem 232, 236, 666

nonlinear 241
left eigenvector 368, 447ff
left preconditioning 679
Legendre polynomials 177
Leibniz formula 117
Leis 539
Levinson 470
Lindberg 531
line search 349, 352ff, 356ff

Armijo 306
exact 306, 353ff
inexact 306

linear approximation method 94
linear convergence 294, 340
linear equations,

direct methods for 190
elimination methods for 190
iterative methods for 619ff
positive definite systems of 204

linear interpolation problem 37
linear least squares problem 232, 235
linear multistep methods 508ff
linear programming 256
linearization 292
linked list 273
Lions 606
Lipschitz condition 356, 480, 467
Lipschitz continuous 356, 505
Liu 272, 278, 280
local discretization error 474, 497
local minimum 353
Lory 525
Louis 132, 134
LR method 365, 405, 415ff
lub 210
Lubich 481, 516, 532
Luenberger 290, 350

machine numbers 4
machine precision 5, 89, 499
Maehly 325

Index 739

Maehly’s modification of Newton’s
method 325, 406

März 535
Mallat 134
mantissa 3
Marden 320, 392, 403, 406, 435, 441
matrix norms 209
matrix pencil 534
matrix

band 199, 593f
bidiagonal 436ff
block tridiagonal 634
block tridiagonal 647
consistently ordered ff 633, 634
derogatory 372
diagonalizable 372, 381
diagonally dominant 626 f
diagonal 372, 395, 462
Frobenius 375ff, 454, 503
Givens 249
Hermitian 204, 224, 365, 379ff, 453
Hessenberg 251, 219, 251, 387, 365,

392, 407, 415f, 402ff
Householder 388, 436ff
irreducible 405, 407, 626ff, 631, 635
Jacobi 388
nonderogatory 372ff, 376
normal 365, 379, 381, 450f
normalizable 372, 446
orthogonal 211
permutation 192
positive (semi) definite 204, 353,

381, 649
sparse 272, 619f, 641
symmetric 204, 331
triangular 191, 221
tridiagonal 220, 338, 365, 388, 415f
unitary 211, 224, 379ff
upper Hessenberg 219, 387
with property A 633ff, 642

maximum norm 208
Meijerink 665
Merten 532
method of Jacobi 395
Metropolis 4
Meurant 701
Meyer 109
midpoint rule 476, 495, 497, 521

modified 521
Milne,

corrector method of 495, 513
Milne-Thompson 67
minimal degree algorithm 277, 275

minimal polynomial 372ff
minimization,

constrained, linear 256
constrained, nonlinear 290
unconstrained, general 290, 302ff,

349
minimum point 233, 241, 289, 349

local 349, 353
minimum-norm property 100
M -matrices 665
model problem 639, 650ff, 655ff, 699,

712
modification of matrix decomposition

247
modified Newton method 302ff
Moler 190, 441, 623
moments of cubic splines 102
Moore 30
Moore-Penrose inverse 243ff
Morrison 539
Moré 315
Muller’s method 342ff
multi-resolution

algorithm 128
analysis 121
methods 121ff, 124f

multigrid methods 620, 701f, 711
multigrid V-cycle 711
multiple root 342
multistage Runge-Kutta methods 476
multistep methods 492ff, 495ff, 527,

530
consistency of 497, 509ff
convergence of 498, 504, 509ff
linear 508ff
of order p 497, 511
step control for 517ff
weakly unstable 517

Murray 248, 316, 537
Murty 256, 270

Na 563
Nachtigal 620, 658, 684
National Bureau of Standards 177
natural spline 101
neighboring basis 259
Neville type algorithm 68ff
Neville’s interpolation algorithm 40ff,

161, 344
Newton-Cotes integration formulas

147, 162ff, 181, 493, 497
Newton-Kantorovich, Theorem of 302
Newton-Raphson method 291

740 Index

Newton’s interpolation formula 44ff,
342ff, 503, 518

Newton’s method
approximate 548
for minimization 302ff
for roots of polynomials 316
for zeros of functions 291ff, 298ff
for systems of equations 559
general 546, 577
Maehly’s version of 325, 406
modified 302ff, 548, 559, 561f, 571

Ng 280
Nickel 317
Nielson 692, 699
Nilson 99
nonbasic variables 258
nondegenerate linear program 259
nonderogatory matrix 372ff, 376
norm(s) 207

absolute 447
equivalence of 209
consistent 209
Euclidean 208
maximum 208
Sobolev 601, 606
submultiplicative 209
subordinate 210

normal equations 232, 239, 243
normal matrix 381, 365, 379, 450f
normalizable matrix 372, 446
normalized floating-point representa-

tion 4
numerical factorization 274
numerically more trustworthy 18
numerically stable 19, 88f, 697
Numerov 586
Nyström’s predictor method 495
Nørsett 477, 521, 539
Nürnberger 97

Oberle 525, 557, 566, 598
objective function 256
Oden 606
Oettli 213, 223
O’Leary 701
Olver 160
one-step methods 473, 471

consistency of 474
convergence of 477ff
of order p 474
step control for 485ff, 490ff

operand set 9

opposite terms 82
optimal block relaxation methods 647
optimal parameters of ADI methods

654ff
optimal solution of linear program 257
optimum point 257
ordinary differential equations 465ff

boundary-value problem for 466
initial-value problem for 465
of first order 466ff
of mth order 466ff
systems of 465ff

Oren 350, 355
Oren-Luenberger class 350,356ff
Orszag 596
Ortega 290, 293, 302
orthogonal

polynomials 172ff
projector 244

orthogonality relation 138
orthogonalization

to solve least-squares 235
Gram-Schmidt 223, 228
Householder 223

orthonormal wavelet 133
Osborne 557
Ostrowski 344

Reich, theorem of 631
overflow of exponent 6
overrelaxation 630, 642
overshooting 321, 325f

Paige 401f, 679
Parlett 365, 397, 402, 424
partial pivot selection 192, 194, 201f,

220, 415
partial pivot selection 220 415
partition of unity 114
Peaceman and Rachford,

ADI method of 647ff
formula of 724f

Peano kernel 152
Peano’s error representation 151ff
Periaux 701
permutation matrix 192, 633
perturbation of polynomial coefficients

335
Pesch 525
Peters 325f, 328, 338f, 415, 435, 441
Petzold 532, 535
phase matrix 418
phase polynomial 75

Index 741

phase,
one of simplex method 260, 268f
two of simplex method 260

piecewise polynomial function 111ff
Piessens 181
Pinkus 121
pivot clique 277
pivot element 192

complete selection of 192, 220
partial selection of 192, 202, 194,

220
selection 192, 215

pivot vertex 276
Poisson equation 691, 701
discretized 691
polygon method 472
polynomial

characteristic 318ff, 331, 338 366ff,
406, 454

minimal 372ff
polynomial interpolation ff 37ff
polynomials

Bernoulli 158
Chebyshev 178
Hermite 178
Lagrange 39
Laguerre 178, 184
Legendre 178

Poole 424
positive (semi) definite 204, 353, 381,

631, 649
Powell 350, 356
Prager 213, 223, 563
preconditioned conjugate gradient

method 664
preconditioner 664
preconditioning techniques 664, 679
predictor methods 494, 509, 512, 518ff
Prince 490
principal vector 371
product rule 117
projection operator 705
property A 633
Proskurowski 701
pseudoinverse of matrix 243ff, 385

QMR algorithm 620, 658, 680, 685,
717ff

QR-decomposition 228
QR method 179f, 365, 405, 407, 415,

417ff, 436, 440
convergence of 430

QR method [cont]
implicit shift techniques ff 433ff
practical realization of 425ff
with shifts 428, 430

QZ method 441
quadratic convergence 294, 295, 299,

320
quadratic function 353
quadrature (Gaussian, numerical) 171,

146
Quarteroni 606, 620
quasi-minimal residual method 658
quasi-Newton

equation 350
methods 350ff

quasilinearization 577

Rabinowitz 146, 151
Rachford 724f
Rademacher 30
random variable 234
rank-one modification 250, 351
rank-two method modification 351
rational

interpolation 38, 59ff
normal form 375

rational expressions 60
equivalence of 61
relatively prime 61
normal form 375f

Rayleigh quotient 451
Rayleigh-Ritz method 603
Rayleigh-Ritz-Galerkin method 97,

586
reciprocal differences 64, 67
Reddy 606
reduced costs 261
reduction method 692
region of absolute stability 528
regula falsi 339ff, 358
regular matrix pencil 534
Reid 272, 280, 662
reinitialization 315
Reinsch 90, 95, 106, 190, 232, 266,

365, 392, 435f, 440, 623, 662
relative error 5, 12
relatively prime 61
relaxation methods 629ff, 630, 643,

713
convergence of 631

optimal 647

742 Index

relaxation parameters 630
optimal 637

Rentrop 525, 529f, 532, 535
reorthogonalization 230
residual 211, 233
restricted variables 257
Reutersberg 701
Rheinboldt 290, 293, 302
Riesz-basis 122
right eigenvector 366, 447f
right preconditioning 679
Roche 532, 535
Romberg 161, 163, 167, 171
Romberg’s integration method 145,

161ff, 167
roots of polynomials 175, 289, 316

complex (conjugate) 333, 342
multiple 323, 342
simple 323

Rose 272, 275, 277
round-off error distribution 30
round-off error,

in back-substitution 221
in Gaussian elimination 215
in linear least squares 238
in one-step methods 483ff

rounding 5
roundoff errors 1, 4
row sum (matrix) norm 209
row sum criteria 625 f
Rozenvasser 539
r-step method 495

linear 495
Runge 475
Runge-Kutta methods 475, 476, 482,

487ff, 515
Runge-Kutta-Fehlberg method 488,

527
Rutishauser 3, 73, 106, 161, 165, 286,

365, 396f, 415
Rutishauser’s semilogarithmic nota-

tion 3

Saad 401, 620, 658, 667
Sande 81
Sande-Tukey method 81, 139
Sargent 539
Saunders 248, 316, 679
Sautter 222
scaling 216, 462
scaling function 122
Scarborough 5

Schloeder 539
Schoenberg 115, 121, 150
Schrijver 256
Schröder 701
Schultz 59, 97, 594, 620, 667,
Schulz 539, 658
Schulz’ method 359
Schumaker 97
Schur 379
Schur normal form 379
Schur’s theorem 379
Schur-Norm 210
Schwarz 286, 397, 606
Schwarz inequality 589, 602
Scott 402
search direction 302
Seber 232
secant method 341ff
Secrest 172
Sedgwick 525
semi-implicit midpoint rule 529
semilogarithmic notation 3
sensitivity analysis 538
sensitivity equations 538
sensitivity to input perturbation

of linear equations 211
of linear least squares 236
of polynomial roots 335ff

Seydel 525
Shampine 467, 521, 525
Shanks 477
Shanno 351
shift parameter 427
shift techniques 427ff
shooting methods,

internal subdivision in multiple 561
limiting case of multiple 577ff

multiple ff 557ff, 563ff, 577ff, 595ff
simple 542ff,548, 552ff, 561ff, 569,

596f
starting trajectory 561ff, 568f

sign changes 328
signal processing 97
significant digits (bits) 4
similarity transformation 368, 386
simplex method 256

general step 260
phase one 260, 268f
phase two 260

Simpson’s rule 147, 148, 150, 152, 476,
single-step method 622
singular value decomposition 247, 384,

436ff

Index 743

singular values 382ff, 379, 436ff
slack variable 256
Smith 365, 392, 403, 415, 435
Sobolev norm 601, 606
Sonneveld 687
SOR methods 630

optimal 714ff
sparse matrix 272, 619f, 641
spectral method 595
spectral radius of matrix 442, 624, 585
Spedicato 355
spline

convergence of 107ff
cubic 97ff, 107, 592
interpolation 98
natural 101

spline function of degree k 111
spline interpolation 38, 97ff
spline of degree k 106
SSOR matrix 665, 716
stability condition 502, 504ff, 509,

511ff
stable, numerically 19, 88f, 697
stationary point 305f
steepest descent method 659
Steffensen 147, 155
Steffensen’s convergence acceleration

346ff, 359
Stegun 177
Stein, Rosenberg, theorem of 629
Steinebach 532, 535
step length, size 472, 467

sequences for extrapolation methods
163, 183

Sterbenz 1, 30
Stetter 467, 477
Stewart 190, 248, 250, 285, 441, 539
Stiefel 161, 165, 286, 397, 620, 657f
stiff differential equations 525ff
Stoer 90, 164, 167f, 183, 357, 447, 524,

597,
stopping criterion for extrapolation,

method 164, 171
storage technique 272
Strang 606
Stroud 172
Sturm sequence 328, 406
Störmer 586
submultiplicative norm 209
subordinate norm 210
subspace iteration 419
summation formula of Euler and

Maclaurin 145,156ff, 160

superlinear convergence 356
support

abscissas 37
ordinates 37
points 37

Swarztrauber 701
switching function 575, 537
switching point 536
symbolic factorization 274
symmetric matrix 331
symmetric rank-one method of Broy-

den 351
SY MMLQ method 679
system of linear equations 190
Szegö 179

Tang 563
Taylor’s theorem 108
Tewarson 272
Thiele’s continued fraction 68, 64
Tornheim 360
total-step method 622
transition function 575, 536
translation invariant 94
trapezoidal

rule for integration 148ff, 530
sum 92, 149, 157, 160ff, 170, 183,

476
Traub 290, 317, 342
triangle inequality 208
triangular decomposition 195, 645
triangular decomposition 645

by direct computation 190, 197
by Gaussian elimination 190
by orthogonalization 226s 235
positive definite case 205

triangular matrix 191, 221
triangulation 603
tridiagonal matrix 178, 220, 318, 338,

365, 388, 405
tridiagonalization 388
trigonometric

expression 74
interpolation 37
polynomial 595

Troesch 554
Trottenberg 701f
truncation error 1
trustworthy, numerically 18
Tukey 81
two-grid method 708
two-scale-relation 122, 128

744 Index

unconstrained minimization 290, 302ff,
349ff

underflow of exponent 6
underrelaxation 630
unitary matrix 379ff, 211
upper Hessenberg matrix 251, 387

Valli 606, 620
van der Vorst 620, 658, 665, 687, 691
van Loan 190, 365, 424
Varga 59, 594, 620, 629, 631, 633, 647,

651, 653f, 721, 724, 726
, Young, theorems of 636ff

variable order method 520
variance 234
variational methods,

for ordinary differential equations ff
586ff, 596, 599

for partial differential equations 600
V-cycle, of multigrid method 711
vector iteration 452, 621

simple 405ff, 408, 410, 418
Wielandt’s inverse 405, 410, 408,

414ff, 418, 427, 435,
virtual abscissae 53
Vitasék 563
v. Neumann 7
von Stryk 538

Wachspress 654
Wagschal 606
Walsh 99

Wanner 477, 521, 531, 535, 539
Watts 525
wavelet 133
weight function 171
weights,

in Gaussian quadrature 175
in Newton-Cotes formulas 146

Weinstein, theorem of 451
well behaved 19
well-conditioned 13
Welsch 178ff
Whitney 121
Widlund 701
Wilkinson 19, 190, 198, 219f, 232,

238f, 266, 325f, 328, 337ff, 365,
392, 397, 403, 406, 415, 422, 430,
433, 435, 441, 534, 623, 662

Willoughby 272, 402, 525, 531
Wittmeyer 621
Witzgall 447
word length, double, triple 3
Wright 537

Young 620, 633, 647, 653f, 725
, Varga, theorems of 636ff

Zaglia 167, 344
zero of function 289ff, 338ff
zero suppression 326, 344
Zlámal 604, 606
Zugck 532, 535

	Preface to the Third Edition
	Preface to the Second Edition
	Contents
	1 Error Analysis
	2 Interpolation
	3 Topics in Integration
	4 Systems of Linear Equations
	5 Finding Zeros and Minimum Points by Iterative Methods
	6 Eigenvalue Problems
	7 Ordinary Differential Equations
	8 Iterative Methods for the Solution of Large Systems of Linear Equations. Additional Methods
	General Literature on Numerical Methods
	Index

