
6/27/2008 2:36 PM Page 1 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

The Seven Samurai of Systems Engineering:
Dealing with the Complexity of 7 Interrelated Systems

James N Martin

The Aerospace Corporation
M/S CH1-410, 15049 Conference Center Drive, Chantilly, VA 20151

James.Martin@incose.org

Abstract. There are seven different systems that must be acknowledged and understood by
those who purport to do systems engineering. The main system to be engineered is the
Intervention System that will be designed to solve a real or perceived problem. The Intervention
System will be placed in a Context System and must be developed and deployed using a
Realization System. The Intervention, when installed in the Context, becomes the Deployed
System which is often different in substantial ways from the original intent of the Intervention.
This Deployed System will interact with Collaborating Systems to accomplish its own functions.
A Sustainment System provides services and materials to keep the Deployed System operational.
Finally, there are one or more Competing Systems that may also solve the original problem and
will compete for resources with your Deployed System. All seven systems must be properly
reckoned with when engineering a system.

Introduction
The Analogy. “Shichinin No Samurai,” the 1954 film classic directed by Akira Kursawa, is an
apt illustration for the plight of the systems engineer. The Seven Samurai were the mighty
warriors who became the seven national heroes of a small town. A poor village under attack by
bandits recruits seven unemployed samurai to help them defend themselves. The notion of the
“seven samurai” described in this paper illustrates the seven systems that are underemployed in
the classical practice of systems engineering. When these 7 Samurai are employed with proper
consideration and enthusiasm, they will become the seven national heroes of your small town
(the system development project).

The Context System. Let us examine the first of seven
systems—the Context System (S1). Context is “the set
of facts or circumstances that surround a situation or
event.” (WordWeb) It is the set of “interrelated
conditions in which something exists or occurs.”
(Webster’s New Collegiate) Context also goes by the
name “Environment” which means the “circumstances,
objects, or conditions by which one is surrounded.”
(ibid) Context originally meant the “weaving together
of words” and leads us to the more common connotation
of the term: “the parts of a discourse that surround a
word or passage and can throw light on its meaning.”

Linguistics? Now why would we systems engineers bother with the linguistic aspects of the

Context
System (S1)

Problem (P1)

6/27/2008 2:36 PM Page 2 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

word Context? Precisely because systems engineering is very much about finding the correct
words to describe the problem to be solved by the engineering solutions we intend to create. In
the words of Jack Ring, the systems engineer’s job is to “language the project.” [Ring et al 2000]

The Problem System. The Context is where the Problem P1 resides. Aspects of Context can
be, and often must be, reverse engineered to discover the constituents of the problem’s
environment. We must understand the relationships of the constituents to each other and to the
problem itself. Is there something in the context that is causing the problem? If we solve the
“problem” but do not address the cause(s), will the problem merely evolve into something more
dreadful? Is the initial statement of the problem really the problem or merely a symptom of the
real problem?

Object Oriented Thinking. Using the object oriented approach, the relevant items in the
environment can be identified as “objects.” The objects are identified as either types or
instances. These object types (or classes) and instances can be depicted using a Class Diagram.
An older, but still useful, technique for this contextual analysis is the ERA approach. This
involves identifying the relevant Entities, the Relationships between those entities, and the
Attributes of each entity or relationship. Below is an illustration of an ERA diagram developed
during the context analysis phase of a project to develop the Observing System Architecture for
NOAA (National Oceanic and Atmospheric Administration). [Martin 2003]

Larger
System

Observing
System

Data Handling
System

Human

Environmental
Phenomenon

Environmental
Parameter

Sensing
Element

Sensor

Platform /
Station

part of

measures

is a

contains

characterizes

provides
data to

Observation
Control System

is controlled by

Location

located
at

MobileFixed

is

Space
Air
Ground
Ocean

Space
Air
Ground
Ocean

Basic Service
Requirement

< drives

provides data directly to

User
provides
info to

is type
of

Stake-
holder

has

Operator operated by

situated on

Support

supported
by

Owner

owned
by

Stakeholder
Requirement

< drives< drives
Figure 1. ERA diagram for the NOAA Observing System Architecture

The ERA diagram above does not illustrate the attributes, so it is more correct to call this an ER
diagram. Sometimes the attributes of each entity are listed inside each entity box. In the case

6/27/2008 2:36 PM Page 3 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

above only the entity type names are shown. Whether you use a Class Diagram or Entity
Relationship Diagram, you are really defining the “scope” of the problem to be solved.

Metamodeling. The basic structure of any problem can be captured in a “metamodel.” Often the
metamodel you need to use for your problem of interest is already captured in your favorite tool
or methodology (eg, UML or IDEF0). The problem P1 for NOAA was to identify the
deficiencies and excess capacities of the 100 different observing system types owned or operated
by NOAA. The ERA diagram above is a depiction of the metamodel for the NOAA problem
situation. A good description of the differences between a vocabulary, a taxonomy, a thesaurus,
an ontology, and a metamodel are given at [metamodel.com]:

A meta-model is an explicit model of the constructs and rules needed to build specific models within a
domain of interest. A valid meta-model is an ontology, but not all ontologies are modeled explicitly as
meta-models. A meta-model can be viewed from three different perspectives:

1. as a set of building blocks and rules used to build models
2. as a model of a domain of interest, and [emphasis added]
3. as an instance of another model.

When comparing meta-models to ontologies, we are talking about meta-models as models (perspective 2).

Note: Meta-modeling as a domain of interest can have its own ontology. For example, the CDIF Family of
Standards, which contains the CDIF Meta-meta-model along with rules for modeling and extensibility and
transfer format, is such an ontology. When modelers use a modeling tool to construct models, they are
making a commitment to use the ontology implemented in the modeling tool. This model making ontology
is usually called a meta-model, with “model making” as its domain of interest.

The Intervention System
Now we must look for a solution to the problem. Let us call this intended “solution” the
Intervention System (S2). The Intervention System is intended to address the Problem P1. It is
the system to be engineered using the systems engineering process, methods, and tools. This is
the central focus for the development project that is established to be a profitable venture for
systems development companies. But to ensure that the so-called “requirements” for this system
are valid and complete, full and proper consideration must be given to all seven “samurai.”
These samurai will bring misery to all if left loose to roam at will across the countryside.

Context
System (S1)

Intervention
System (S2)

Problem (P1)

intended to address

Preventing the Undesirable. Intervention is “action affecting another’s affairs: an action
undertaken in order to change what is happening or might happen in another’s affairs, especially
in order to prevent something undesirable” (dictionaries.com) Intervention can be seen as a sort

6/27/2008 2:36 PM Page 4 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

of perturbation of the Context, as a form of engagement with the evils of the world. Intervention
has two types: intermediation and mediation. Mediation is a form of negotiation to “resolve
differences conducted by some impartial party.” (WordWeb) Intermediation is acting “between
parties with a view to reconciling differences.” (ibid)

Achieving Reconciliation. What are these differences to be reconciled? There will be people in
the Context that would like the situation to be different, better somehow. The systems engineer
should devise an Intervention System that settles the differences between the way things are
now, the “as-is” situation, and the desired state of affairs after intervention, the “should-be”
situation. It is important to recognize that the systems engineer must be an unprejudiced, third
party to this situation. When a systems engineer is “involved” in the situation, it is difficult to be
impartial and just when deciding how best to “solve” the problem.

Systems Architecting. The conceptual nature of the Intervention System is often understood
through the efforts of “architecting.” [Maier and Rechtin 2000] Bear in mind that S2 may
include ‘mod kits’ to the Problem System and the Context System. A depiction of the system
architecture is created by development of an architectural model which uses the metamodel’s
foundational building blocks—the element types and structures discovered in the Context during
analysis of S1. Architecture can be thought of as “an arrangement of feature and function that
accomplishes some objective.” [Ring 2001]

The Realization System
For the Intervention System to come about, it must be brought into being by a Realization
System (S3). The Realization System consists of all the resources to be applied in causing the
Intervention System to be fully conceived, developed, produced, tested, and deployed.

Context
System (S1)

Realization
System (S3)

Intervention
System (S2)

Problem (P1)

intended to address

needs to understand

The Realization System will consist of a wide variety of things, some tangible and some not:

(a) people & organizations
(b) facilities & equipment
(c) materials & supplies
(d) services & utilities
(e) processes & methods
(f) tools & techniques
(g) policies & procedures
(h) data & information
(i) knowledge & wisdom

6/27/2008 2:36 PM Page 5 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

(j) and so on

All of these things interact in complex ways to bring about a solution to the real or perceived
problem. The Realization System needs to “understand” the Context and the Problem contained
therein. How can this be? How can a system have understanding? Well, people and
organizations have understanding and they are an intimate part of the Realization System.
Understanding is also captured in policies and procedures, and in knowledge and wisdom. This
is the reason that knowledge management has become so important for better execution of the
systems engineering process. A good way to model and understand the Realization System is
through knowledge modeling. [Lillehagen et al. 2003]

Enterprise Architecture. Often this Realization System is known as an Enterprise. An
Enterprise is a purposeful or industrious undertaking (especially one that requires effort or
boldness). It usually involves many organizations that contribute their resources to the “owning”
organization of that enterprise. The organizational resources can be either tangible (eg, funding
and people) or intangible (eg, goodwill and enthusiasm). Enterprise architecting is a relatively
new field of endeavor but is gaining popularity as the complexity of current ventures (and
adventures) becomes more recognized. A good description of enterprise modeling can be found
in [Vernadat 1996].

The Deployed System
Even though we have the best of intentions, the system we design, develop, and build will often
morph into something else once it is transitioned to its final destination. This Deployed System
(S4) is intended to be the same as S2, but variability often occurs due to malicious intent,
inadvertent errors, performance degradation, deployment pressures, interaction between the new
system and its environment (S1/S4 coupling), and so on.

Context
System (S1)

Realization
System (S3)

Intervention
System (S2)

Modified Context
System (S1’)

Deployed
System (S4)

Problem (P1)

intended to address

becomes

becomes

needs to understand

needs to
understand

Modified Context. The new system will often change the original Context into a Modified

6/27/2008 2:36 PM Page 6 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

Context (S1’) in ways that are sometimes beneficial, but more often than we would like this
change is to the detriment of those we were trying to help. Furthermore, several years may have
passed since the original analysis of the Context was conducted and when the Intervention
System was ready to deploy. The world changes without asking our permission. The original
“customer” has often moved on. The people we interviewed to assess the situation may have
already solved their problem through other means.

Unintended Consequences. Notice that the Realization System also needs to understand the
Modified Context. The systems engineers must be cognizant of how their proposed solution
might change the original Context, and perhaps even become worse than the original problematic
situation. Never forget the Law of Unintended Consequences. [Norton]

The law of unintended consequences, often cited but rarely defined, is that actions of people—and
especially of government—always have effects that are unanticipated or "unintended." Economists and
other social scientists have heeded its power for centuries; for just as long, politicians and popular
opinion have largely ignored it.

The concept of unintended consequences is one of the building blocks of economics. Adam Smith's
"invisible hand," the most famous metaphor in social science, is an example of a positive unintended
consequence. Smith maintained that each individual, seeking only his own gain, "is led by an invisible
hand to promote an end which was no part of his intention," that end being the public interest. "It is not
from the benevolence of the butcher, or the baker, that we expect our dinner," Smith wrote, "but from
regard to their own self interest."

This Law clearly applies in the economic domain, but is equally applicable, if not more so, in the
domain of systems engineering. We must heed this Law if we are to be successful in engineering
systems that are appropriate for Context Systems that are complex and adaptive. [Holland 1998]
The best situation is where the proposed solution is adaptive to changes in the environment to
compensate for environmental changes. [Holland 1995]

A New Problem. Not only has the original Context been modified, but our newly deployed
system often causes a new Problem (P2). More work for the unemployed, you say. Yes, but
your company might go out of business due to litigation or bankruptcy before you have a chance
to rid the streets of the homeless.

Modified Context
System (S1’)

Deployed
System (S4)

Problem (P2)

may
cause

One reason for the change in Context is that it contains people. People are highly complex and
adaptive. Therefore you can expect your system “solution” to be used improperly, controverted,
damaged (sometimes even unintentionally), bypassed, and so on. People are good at finding
things to do with your system that were not part of your original intent. Hence, be forewarned—

6/27/2008 2:36 PM Page 7 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

your solutions can sometimes cause more problems than they solve. As system development
progresses, it is essential to be cognizant of mutations in the Context and adjust the development
goals accordingly.

The Collaborating System
When we designed our Intervention System, we may have realized that we had access to certain
resources that could solve only part of the problem. What to do? We made agreements with
industry partners, or we decided to make our system modular so that it fits into someone else’s
platform. We may have decided to incorporate standard interfaces so our system will work with
other systems in a synergistic fashion. This can be a win-win situation. But there are times
when this can backfire due to “emergent” properties that are undesirable. Why, our system
worked with that other system in our integration lab—why doesn’t it work out in the field?

Context
System (S1)

Realization
System (S3)

Intervention
System (S2)

Modified Context
System (S1’)

Deployed
System (S4)

Problem (P1)

Problem (P2)

may
cause

Collaborating
System (S5)

collaborates
with

intended to address

becomes

becomes

needs to understand

needs to
understand

Unintended Collaborations. Don’t forget that the Collaborating Systems also interact with the
Context (the Modified Context, really) and these changes in the environment could affect how
your system interacts with its intended collaborators. And then there are the Collaborating
Systems that you never intended to interact with. Someone else can come along and “plug in” to
your system. This could be great since it could make your system much more valuable to the
customer, more indispensable. Or this could be bad since this new Collaborating System could
be performing some of the functions of your systems (those that are perhaps not quite as efficient
or effective as they could be).

6/27/2008 2:36 PM Page 8 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

The Sustainment System
Now we come to the Sustainment System (S6) that provides the necessities and support such as
fuel, energy, spare parts, training, customer hotline, maintenance, waste removal, refurbishment,
retirement, and so on. It is quite important for the Intervention System to take into account the
capabilities and limitations of the Sustainment System. In many cases, the Realization System
may need to modify (or even develop parts of) the Sustainment System.

Context
System (S1)

Realization
System (S3)

Intervention
System (S2)

Modified Context
System (S1’)

Deployed
System (S4)

Sustainment
System (S6)

Problem (P1)

Problem (P2)

may
cause

Collaborating
System (S5)

collaborates
with

intended to address

becomes

becomes

sustains

may need
to develop
or modify

needs to understand

needs to
understand

The Sustainment System is often thought to be under the purview of the logistics support
engineer. Logistics is a relatively mature discipline that can address most of the concerns related
to sustainment. (See [Blanchard 1998] for a good summary of logistics support tools and
techniques.) But the systems engineering team needs to work with logistics early in the game to
ensure these issues are addressed before “unsupportable” features and functions are captured in
the solution concept. The sustainment costs are typically ten to twenty times the cost of
development. Therefore, it is worthwhile to spend considerable effort in understanding the
sustainment issues before proceeding too far along the path of system development.

6/27/2008 2:36 PM Page 9 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

The Competing System
Now if life were not complicated enough already as a systems engineer, we must also deal with
the Competing System(s) (S7) that may also address all or parts of the original Problem P1. It
may provide similar or identical features and functions as your proposed System solution. The
Competing System also competes for resources used by the Deployed System. Furthermore, you
need to avoid being blindsided by concurrent developments or advances in technologies that
might render the Deployed System obsolete.

Context
System (S1)

Competing
System (S7)

Modified Context
System (S1’)

Deployed
System (S4)

Problem (P1)

may address

competes
with

becomes

Summary
We can now summarize the interactions between these seven samurai systems:

(1) Context System (S1) contains a Problem (P1)
(2) Intervention System (S2) is intended to address P1
(3) Realization System (S3) brings S2 into being
(4) S2 is a constituent of S3
(5) S3 needs to understand S1
(6) S3 needs to understand the Modified Context System (S1’)
(7) S3 may need to develop or modify the Sustainment System (S6)
(8) Intervention System (S2) becomes Deployed System (S4)
(9) S1 becomes the Modified Context System (S1’)
(10) S4 is contained in S1’

6/27/2008 2:36 PM Page 10 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

(11) S4 collaborates with one or more Collaborating Systems (S5)
(12) S4 is sustained by Sustainment System (S6)
(13) S4 may cause new Problem (P2)
(14) Competing System(s) (S7) may address the original Problem (P1)
(15) S7 competes with S4 for resources and for the attention of users and operators

Holistic Systems Thinking. By understanding these fifteen interactions, we now have a better
chance of understanding the “whole picture.” We need to model all aspects of the entire situation
to ensure our system solution is indeed the best way to solve the problem. The essential holistic
view is illustrated below.

Context
System (S1)

Realization
System (S3)

Intervention
System (S2)

Competing
System (S7)

Modified Context
System (S1’)

Deployed
System (S4)

Sustainment
System (S6)

Problem (P1)

Problem (P2)

may
cause

Collaborating
System (S5)

collaborates
with

intended to address

becomes

may address

competes
with

becomes

sustains

may need
to develop
or modify

needs to understand

needs to
understand

Is it any wonder why Systems Engineering (SE) is so difficult? For decades we have not
explicitly acknowledged nor understood the various systems that must be addressed when
engineering a solution for a complex, adaptive situation.

This new paradigm of the “Seven Samurai” must be considered in the
application of SE process, methods, tools, and standards if we expect
SE to address the increasingly complex problems of the 21st century.

6/27/2008 2:36 PM Page 11 of 11 Seven Samurai-Martin-v040316a.doc

Presented at the 2004 Symposium of the

International Council on Systems Engineering (INCOSE)
Received “Best Paper” Award

References
Blanchard, Benjamin S., Logistics Engineering and Management, Prentice Hall, 1998.
Holland, John N., Hidden Order: How Adaptation Builds Complexity, Addison Wesley, Reading

MA, 1995.
Holland, John N., Emergence: From Chaos to Order, Addison Wesley, Reading MA, 1998.
Lillehagen, Frank and Solheim, Helge G., “The foundations of AKM technology.” Concurrent

Engineering Conference, 2003.
Maier, Mark W. and Rechtin, Eberhardt, The Art of Systems Architecting. CRC Press, 2000.
Martin, James, “On the Use of Knowledge Modeling Tools and Techniques to Characterize the

NOAA Observing System Architecture.” Proceedings of the INCOSE Symposium, 2003.
Norton, Rob, “Unintended Consequences,” The Library of Economics and Liberty.

http://www.econlib.org/library/Enc/UnintendedConsequences.html
Ring, Jack, and A. Wayne Wymore, “Concept of Operations (ConOps) of a Systems Engineering

Education Community,” Proceedings of the INCOSE Symposium, 2000.
Ring, Jack, “Discovering the Architecture for Product X,” Proceedings of the INCOSE

Symposium, 2001.
Vernadat, Francois, Enterprise Modeling and Integration: Principles and Applications. Kluwer

Academic Publishers, 1996.

Biography
James Martin is a systems architect and engineer at The Aerospace Corporation developing
solutions for information systems and space systems. Mr. Martin led the working group
responsible for developing ANSI/EIA 632, a US national standard that defines the processes for
engineering a system. He previously worked for Raytheon Systems Company as a lead systems
engineer and architect on airborne and satellite communications networks. He has also worked
at AT&T Bell Labs on wireless telecommunications products and underwater fiber optic
transmission products. His book, Systems Engineering Guidebook, was published by CRC Press.
Mr. Martin is an INCOSE Fellow and leader of the Standards Technical Committee.

