THE NATIONAL ACADEMIES PRESS E OPENBOOK

Dietary Reference Intakes for Calcium and Vitamin D (2011)

Chapter: Summary Tables: Dietary Reference Intakes

Visit NAP.edu/10766 to get more information about this book, to buy it in print, or to download it as a free PDF.

Summary Tables Dietary Reference Intakes

Estimated Average Requirements

Recommended Dietary Allowances and Adequate Intakes, Vitamins

Recommended Dietary Allowances and Adequate Intakes, Elements

Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients

Acceptable Macronutrient Distribution Ranges

Additional Macronutrient Recommendations

Tolerable Upper Intake Levels, Vitamins

Tolerable Upper Intake Levels, Elements

Dietary Reference Intakes (DRIs): Estimated Average Requirements

Life Stage	Calcium	СНО	Protein	Vit A	Vit C	Vit D	Vit E	Thiamin	Riboflavin	Niacin
Group	(mg/d)	(g/d)*	(g/kg/d)*	$(\mu g/d)^a$	(mg/d)	$(\mu g/d)$	$(mg/d)^b$	(mg/d)	(mg/d)	(mg/d) ^c
Infants										
0-6 mo										
7-12 mo			1.0							
Children										
1-3 y	500	100	0.87	210	13	10	5	0.4	0.4	5
4-8 y	800	100	0.76	275	22	10	6	0.5	0.5	6
Males										

16/12/2019	Summary Tab	oles: Dietary	Reference Intake	es Dietary	Reference I	ntakes for C	alcium and V	itamin D The N	National Academ	ies Press
9-13 y	1,100	100	0.76	445	39	10	9	0.7	0.8	9
14-18 y	1,100	100	0.73	630	63	10	12	1.0	1.1	12
19-30 y	800	100	0.66	625	75	10	12	1.0	1.1	12
31-50 y	800	100	0.66	625	75	10	12	1.0	1.1	12
51-70 y	800	100	0.66	625	75	10	12	1.0	1.1	12
> 70 y	1,000	100	0.66	625	75	10	12	1.0	1.1	12
Females										
9-13 y	1,100	100	0.76	420	39	10	9	0.7	0.8	9
14-18 y	1,100	100	0.71	485	56	10	12	0.9	0.9	11
19-30 y	800	100	0.66	500	60	10	12	0.9	0.9	11
31-50 y	800	100	0.66	500	60	10	12	0.9	0.9	11
51-70 y	1,000	100	0.66	500	60	10	12	0.9	0.9	11
> 70 y	1,000	100	0.66	500	60	10	12	0.9	0.9	11
Pregnancy										
14-18 y	1,000	135	0.88	530	66	10	12	1.2	1.2	
19-30 y	800	135	0.88	550	70	10	12	1.2	1.2	14
31-50 y	800	135	0.88	550	70	10	12	1.2	1.2	14
Lactation										
14-18 y	1,000	160	1.05	885	96	10	16	1.2	1.3	13
19-30 y	800	160	1.05	900	100	10	16	1.2	1.3	13
31-50 y	800	160	1.05	900	100	10	16	1.2	1.3	13

NOTE: An Estimated Average Requirement (EAR) is the average daily nutrient intake level estimated to meet the requirements of half of the healthy individuals in a group. EARs have not been established for vitamin K, pantothenic acid, biotin, choline, chromium, fluoride, manganese, or other nutrients not yet evaluated via the DRI process.

Vit	Folate	Vit	Copper	Iodine	Iron	Magnesium	Molybdenum	Phosphorus S	Selenium	Zinc
$B_6 \text{ (mg/d)}$	$(\mu g/d)^d$	$B_{12} (\mu g/d)$	(μg/d)	$(\mu g/d)$	(mg/d)	(mg/d)	$(\mu g/d)$	(mg/d)	(µg/d)	(mg/d)
					6.9					2.5
0.4	120	0.7	260	65	3.0	65	13	380	17	2.5
0.5	160	1.0	340	65	4.1	110	17	405	23	4.0
0.8	250	1.5	540	73	5.9	200	26	1,055	35	7.0

^{*}These labels were revised since publication.

 $[^]a$ As retinol activity equivalents (RAEs). 1 RAE = 1 μg retinol, 12 μg β-carotene, 24 μg α-carotene, or 24 μg β-cryptoxanthin. The RAE for dietary provitamin A carotenoids is two-fold greater than retinol equivalents (RE), whereas the RAE for preformed vitamin A is the same as RE.

^bAs α-tocopherol. α-tocopherol includes RRR-α-tocopherol, the only form of α-tocopherol that occurs naturally in foods, and the 2R-stereoisomeric forms of α-tocopherol (RRR-, RSR-, RRS-, and RSS-α-tocopherol) that occur in fortified foods and supplements. It does not include the 2S-stereoisomeric forms of α-tocopherol (SRR-, SSR-, SRS-, and SSS-α-tocopherol), also found in fortified foods and supplements.

9	Summary Ta	ables: Dietar	y Reference	Intakes D	ietary Refe	erence Intakes for Cal	cium and Vitami	n D The Nation	al Academi	es Press
1.1	330	2.0	685	95	7.7	340	33	1,055	45	8.5
1.1	320	2.0	700	95	6	330	34	580	45	9.4
1.1	320	2.0	700	95	6	350	34	580	45	9.4
1.4	320	2.0	700	95	6	350	34	580	45	9.4
1.4	320	2.0	700	95	6	350	34	580	45	9.4
0.8	250	1.5	540	73	5.7	200	26	1,055	35	7.0
1.0	330	2.0	685	95	7.9	300	33	1,055	45	7.3
1.1	320	2.0	700	95	8.1	255	34	580	45	6.8
1.1	320	2.0	700	95	8.1	265	34	580	45	6.8
1.3	320	2.0	700	95	5	265	34	580	45	6.8
1.3	320	2.0	700	95	5	265	34	580	45	6.8
1.6	520	2.2	785	160	23	335	40	1,055	49	10.5
1.6	520	2.2	800	160	22	290	40	580	49	9.5
1.6	520	2.2	800	160	22	300	40	580	49	9.5
1.7	450	2.4	985	209	7	300	35	1,055	59	1(
1.7	450	2.4	1,000	209	6.5	255	36	580	59	10.4
1.7	450	2.4	1,000	209	6.5	265	36	580	59	10.4

^cAs niacin equivalents (NE). 1 mg of niacin = 60 mg of tryptophan.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B_6 , Folate, Vitamin B_{12} , Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). These reports may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Vitamins

Food and Nutrition Board, Institute of Medicine, National Academies

Life Stage Group	Vitamin A (μg/d) ^a	Vitamin C (mg/d)	Vitamin D (μg/d) ^{b,c}	Vitamin E (mg/d) ^d	Vitamin K (μg/d)	Thiamin (mg/d)
Infants						
0-6 mo	400*	40*	10*	4*	2.0*	0.2*
6-12 mo	500*	50*	10*	5*	2.5*	0.3*
Children						
1-3 y	300	15	15	6	30*	0.5
4-8 y	400	25	15	7	55*	0.6

16/12/2019

 $[^]d$ As dietary folate equivalents (DFE). 1 DFE = 1 μg food folate = 0.6 μg of folic acid from fortified food or as a supplement consumed with food = 0.5 μg of a supplement taken on an empty stomach.

Males						
9-13 y	600	45	15	11	60*	0.9
14-18 y	900	75	15	15	75*	1.2
19-30 y	900	90	15	15	120*	1.2
31-50 y	900	90	15	15	120*	1.2
51-70 y	900	90	15	15	120*	1.2
> 70 y	900	90	20	15	120*	1.2
Females						
9-13 y	600	45	15	11	60*	0.9
14-18 y	700	65	15	15	75*	1.0
19-30 y	700	75	15	15	90*	1.1
31-50 y	700	75	15	15	90*	1.1
51-70 y	700	75	15	15	90*	1.1
> 70 y	700	75	20	15	90*	11
Pregnancy						
14-18 y	750	80	15	15	75*	1.4
19-30 y	770	85	15	15	90*	1.4
31-50 y	770	85	15	15	90*	1.4
Lactation						
14-18 y	1,200	115	15	19	75*	1.4
19-30 y	1,300	120	15	19	90*	1.4
31-50 y	1,300	120	15	19	90*	1.4

NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). An RDA is the average daily dietary intake level sufficient to meet the nutrient requirements of nearly all (97–98 percent) healthy individuals in a group. It is calculated from an Estimated Average Requirement (EAR). If sufficient scientific evidence is not available to establish an EAR, and thus calculate an RDA, an AI is usually developed. For healthy breast-fed infants, an AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all healthy individuals in the groups, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^aAs retinol activity equivalents (RAEs). 1 RAE = 1 μ g retinol, 12 μ g β-carotene, 24 μ g α-carotene, or 24 μ g β-cryptoxanthin. The RAE for dietary provitamin A carotenoids is two-fold greater than retinol equivalents (REs), whereas the RAE for preformed vitamin A is the same as RE.

^bAs cholecalciferol. 1 μg cholecalciferol = 40 IU vitamin D.

^cUnder the assumption of minimal sunlight.

 $[^]d$ As α-tocopherol. α-tocopherol includes RRR-α-tocopherol, the only form of α-tocopherol that occurs naturally in foods, and the 2R-stereoisomeric forms of α-tocopherol (RRR-, RSR-, RRS-, and RSS-α-tocopherol) that occur in fortified foods and supplements. It does not include the 2S-stereoisomeric forms of α-tocopherol (SRR-, SSR-, SRS-, and SSS-α-tocopherol), also found in fortified foods and supplements. e As niacin equivalents (NE). 1 mg of niacin = 60 mg of tryptophan; 0–6 months = preformed niacin (not NE). f As dietary folate equivalents (DFE). 1 DFE = 1 μg food folate = 0.6 μg of folic acid from fortified food or as a supplement consumed with food = 0.5 μg of a supplement taken on an empty stomach.

0.3* 2* 0.1* 65* 0.4* 1.7* 5* 0.4* 4* 0.3* 80* 0.5* 1.8* 6* 0.5 6 0.5 150 0.9 2* 8*	125* 150* 200* 250*
	200*
0.5 6 0.5 150 0.9 2* 8*	
	250*
0.6 8 0.6 200 1.2 3* 12*	
0.9 12 1.0 300 1.8 4* 20*	375*
1.3 16 1.3 400 2.4 5* 25*	550*
1.3 16 1.3 400 2.4 5* 30*	550*
1.3 16 1.3 400 2.4 5* 30*	550*
1.3 16 1.7 400 2.4 ^h 5* 30*	550*
1.3 16 1.7 400 2.4 ^h 5* 30*	550
0.9 12 1.0 300 1.8 4* 20*	375
1.0 14 1.2 400 ⁱ 2.4 5* 25*	400*
1.1 14 1.3 400 ⁱ 2.4 5* 30*	425*
1.1 14 1.3 400 ⁱ 2.4 5* 30*	425*
1.1 14 1.5 400 2.4 ^h 5* 30*	425*
1.1 14 1.5 400 2.4 ^h 5* 30*	425*
1.4 18 1.9 600 ^j 2.6 6* 30*	450*
1.4 18 1.9 600 ^j 2.6 6* 30*	450*
1.4 18 1.9 600 ^j 2.6 6* 30*	450*
1.6 17 2.0 500 2.8 7* 35*	550*
1.6 17 2.0 500 2.8 7* 35*	550*
1.6 17 2.0 500 2.8 7* 35*	550*

⁹Although AIs have been set for choline, there are few data to assess whether a dietary supply of choline is needed at all stages of the life cycle, and it may be that the choline requirement can be met by endogenous synthesis at some of these stages.

^hBecause 10 to 30 percent of older people may malabsorb food-bound B₁₂, it is advisable for those older than 50 years to meet their RDA mainly by consuming foods fortified with B₁₂ or a supplement containing B₁₂.

 i In view of evidence linking folate intake with neural tube defects in the fetus, it is recommended that all women capable of becoming pregnant consume 400 μ g from supplements or fortified foods in addition to intake of food folate from a varied diet.

 j It is assumed that women will continue consuming 400 μ g from supplements or fortified food until their pregnancy is confirmed and they enter prenatal care, which ordinarily occurs after the end of the periconceptional period—the critical time for formation of the neural tube.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B_6 , Folate, Vitamin B_{12} , Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids

(2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). These reports may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Elements

Life Stage Group	Calcium (mg/d)	Chromium (μg/d)	Copper (µg/d)	Fluoride (mg/d)	Iodine (μg/d)	Iron (mg/d)	Magnesium (mg/d)	Manganese (mg/d)
Infants	0004	0.04	000-1-	0.044	44.0-1-	0.074	0.04	0.000
0-6 mo	200*	0.2*	200*	0.01*	110*	0.27*	30*	0.002
6–12 mo	260*	5.5*	220*	0.5*	130*	11	75*	0.
Children	700	114	240	0.7*	00	7	00	1 0+
1-3 y	700	11*	340	0.7*	90	7	80	1.2*
4-8 y	1,000	15*	440	1*	90	10	130	1.5*
Males	4.000	o=.			100		2.42	4.01
9–13 y	1,300	25*	700	2*	120	8	240	1.9*
14-18 y	1,300	35*	890	3*	150	11	410	2.2*
19-30 y	1,000	35*	900	4*	150	8	400	2.3*
31-50 y	1,000	35*	900	4*	150	8	420	2.3*
51-70 y	1,000	30*	900	4*	150	8	420	2.3*
> 70 y	1,200	30*	900	4*	150	8	420	2.3*
Females								
9-13 y	1,300	21*	700	2*	120	8	240	1.6*
14-18 y	1,300	24*	890	3*	150	15	360	1.6*
19-30 y	1,000	25*	900	3*	150	18	310	1.8*
31-50 y	1,000	25*	900	3*	150	18	320	1.8*
51-70 y	1,200	20*	900	3*	150	8	320	1.8*
> 70 y	1,200	20*	900	3*	150	8	320	1.8*
Pregnancy								
14-18 y	1,300	29*	1,000	3*	220	27	400	2.0*
19-30 y	1,000	30*	1,000	3*	220	27	350	2.0*
31-50 y	1,000	30*	1,000	3*	220	27	360	2.0*
Lactation								
14-18 y	1,300	44*	1,300	3*	290	10	360	2.6*
19-30 y	1,000	45*	1,300	3*	290	9	310	2.6*
31-50 y	1,000	45*	1,300	3*	290	9	320	2.6*
J	, -		,		_		-	

NOTE: This table (taken from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDAs) in **bold type** and Adequate Intakes (AIs) in ordinary type followed by an asterisk (*). An RDA is the average daily dietary intake level sufficient to meet the nutrient requirements of nearly all (97–98 percent) healthy individuals in a group. It is calculated from an Estimated Average Requirement (EAR). If sufficient scientific evidence is not available to establish an EAR, and thus calculate an RDA, an AI is usually developed. For healthy breast-fed infants, an AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all healthy individuals in the groups, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

Molybdenum (μg/d)	Phosphorus (mg/d)	Selenium (μg/d)	Zinc (mg/d)	Potassium (g/d)	Sodium (g/d)	Chloride (g/d)
2*	100*	15*	2*	0.4*	0.12*	0.18*
3*	275*	20*	3	0.7*	0.37*	0.57.
17	460	20	3	3.0*	1.0*	1.
22	500	30	5	3.8*	1.2*	1.9*
34	1,250	40	8	4.5*	1.5*	2.3*
43	1,250	55	11	4.7*	1.5*	2.3*
45	700	55	11	4.7*	1.5*	2.3*
45	700	55	11	4.7*	1.5*	2.3*
45	700	55	11	4.7*	1.3*	2.0*
45	700	55	11	4.7*	1.2*	1.8*
34	1,250	40	8	4.5*	1.5*	2.3*
43	1,250	55	9	4.7*	1.5*	2.3*
45	700	55	8	4.7*	1.5*	2.3*
45	700	55	8	4.7*	1.5*	2.3*
45	700	55	8	4.7*	1.3*	2.0*
45	700	55	8	4.7*	1.2*	1.8*
50	1,250	60	12	4.7*	1.5*	2.3*
50	700	60	11	4.7*	1.5*	2.3*
50	700	60	11	4.7*	1.5*	2.3*
50	1,250	70	13	5.1*	1.5*	2.3*
50	700	70	12	5.1*	1.5*	2.3*
50	700	70	12	5.1*	1.5*	2.3*

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). These reports may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes, Total Water and Macronutrients

Food and Nutrition Board, Institute of Medicine, National Academies

Life Stage Group	Total Water ^a (L/d)	Carbohydrate (g/d)	Total Fiber (g/d)	Fat (g/d)	Linoleic Acid (g/d)	α-Linolenic Acid (g/d)	Protein ^b (g/d)
Infants 0–6 mo	0.7*	60*	ND	31*	4.4*	0.5*	9.1*
6-12 mo	0.7**	95*	ND ND	30*	4.4*	0.5*	9.1 ⁿ 11.0
Children	0.8	95	ND	30"	4.0	0.5	11.0
1–3 y	1.3*	130	19*	ND ^c	7*	0.7*	13
·	1.7*		25*	ND	10*	0.7*	
4-8 y	1./^	130	25^	ND	10^	0.9^	
Males	2.4*	130	21∗	ND	12*	1.2*	24
9–13 y	2.4* 3.3*	130	31* 38*	ND ND	12* 16*	1.2*	34 52
14-18 y 19-30 y	3.7*	130	38*	ND	17*	1.6*	56
31–50 y	3.7*	130	38*	ND	17*	1.6*	56
51-30 y 51-70 y	3.7*	130	30*	ND	14*	1.6*	56
> 70 y	3.7*	130	30*	ND	14*	1.6*	56
Females	5.7	130	30	ND	17	1.0	30
9–13 y	2.1*	130	26*	ND	10*	1.0*	34
14-18 y	2.3*	130	26*	ND	11*	1.1*	46
19-30 y	2.7*	130	25*	ND	12*	1.1*	46
31-50 y	2.7*	130	25*	ND	12*	1.1*	46
51-70 y	2.7*	130	21*	ND	11*	1.1*	46
> 70 y	2.7*	130	21*	ND	11*	1.1*	46
Pregnancy							
14-18 y	3.0*	175	28*	ND	13*	1.4*	71
19-30 y	3.0*	175	28*	ND	13*	1.4*	71
31-50 y	3.0*	175	28*	ND	13*	1.4*	71
Lactation							
14-18	3.8*	210	29*	ND	13*	1.3*	71
19-30 y	3.8*	210	29*	ND	13*	1.3*	71
31-50 y	3.8*	210	29*	ND	13*	1.3*	71

NOTE: This table (take from the DRI reports, see www.nap.edu) presents Recommended Dietary Allowances (RDA) in **bold type** and Adequate Intakes (AI) in ordinary type followed by an asterisk (*). An RDA is the average daily dietary intake level sufficient to meet the nutrient requirements of nearly all (97–98 percent) healthy individuals in a group. It is calculated from an Estimated Average Requirement (EAR). If sufficient scientific evidence is not available to establish an EAR, and thus calculate an RDA, an AI is usually developed. For healthy

breast-fed infants, an AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all healthy individuals in the groups, but lack of data or uncertainty in the data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^aTotal water includes all water contained in food, beverages, and drinking water.

^bBased on g protein per kg of body weight for the reference body weight, e.g., for adults 0.8 g/kg body weight for the reference body weight.

^cNot determined.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005) and Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2005). The report may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Acceptable Macronutrient Distribution Ranges

Food and Nutrition Board, Institute of Medicine, National Academies

	Range (percent of ener			
	Children, 1-	Children, 4-	Adults	
Macronutrient	3 y	18 y		
Fat	30-40	25-35	20-35	
n -6 polyunsaturated fatty acids a (linoleic acid)	5-10	5–10	5-10	
n -3 polyunsaturated fatty acids a (α-linolenic acid)	0.6-1.2	0.6-1.2	0.6- 1.2	
Carbohydrate	45-65	45-65	45-65	
Protein	5-20	10-30	10-35	

 a Approximately 10 percent of the total can come from longer-chain n-3 or n-6 fatty acids.

SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The report may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Additional Macronutrient Recommendations

Food and Nutrition Board, Institute of Medicine, National Academies

Macronutrient Recommendation

Dietary As low as possible while consuming a nutritionally

cholesterol adequate diet

Trans fatty acids As low as possible while consuming a nutritionally

adequate diet

Saturated fatty As low as possible while consuming a nutritionally

acids adequate diet

Added sugars^a Limit to no more than 25% of total energy

^aNot a recommended intake. A daily intake of added sugars that individuals should aim for to achieve a healthful diet was not set. SOURCE: Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids (2002/2005). The report may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels, Vitamins

Life Stage Group	Vitamin A (μg/d) ^a	Vitamin C (mg/d)	Vitamin D (μg/d)	Vitamin E (mg/d) ^{b,c}	Vitamin K	Thiamin Ri	boflavin
Infants							
0-6 mo	600	ND^e	25	ND	ND	ND	ND
6-12 mo	600	ND	38	ND	ND	ND	ND
Children							
1-3 y	600	400	63	200	ND	ND	ND
4-8 y	900	650	75	300	ND	ND	ND
Males							
9-13 y	1,700	1,200	100	600	ND	ND	ND
14-18 y	2,800	1,800	100	800	ND	ND	ND
19-30 y	3,000	2,000	100	1,000	ND	ND	ND
31-50 y	3,000	2,000	100	1,000	ND	ND	ND
51-70 y	3,000	2,000	100	1,000	ND	ND	ND
> 70 y	3,000	2,000	100	1,000	ND	ND	ND
Females							
9-13 y	1,700	1,200	100	600	ND	ND	ND
14-18 y	2,800	1,800	100	800	ND	ND	ND
19-30 y	3,000	2,000	100	1,000	ND	ND	ND
31-50 y	3,000	2,000	100	1,000	ND	ND	ND
51-70 y	3,000	2,000	100	1,000	ND	ND	ND
> 70 y	3,000	2,000	100	1,000	ND	ND	ND

Pregnancy							
14-18 y	2,800	1,800	100	800	ND	ND	ND
19-30 y	3,000	2,000	100	1,000	ND	ND	ND
31-50 y	3,000	2,000	100	1,000	ND	ND	ND
Lactation							
14-18 y	2,800	1,800	100	800	ND	ND	ND
19-30 y	3,000	2,000	100	1,000	ND	ND	ND
31-50 y	3,000	2,000	100	1,000	ND	ND	ND

NOTE: A Tolerable Upper Intake Level (UL) is the highest level of daily nutrient intake that is likely to pose no risk of adverse health effects to almost all individuals in the general population. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to a lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, and carotenoids. In the absence of a UL, extra caution may be warranted in consuming levels above recommended intakes. Members of the general population should be advised not to routinely exceed the UL. The UL is not meant to apply to individuals who are treated with the nutrient under medical supervision or to individuals with predisposing conditions that modify their sensitivity to the nutrient.

Niacin	Vitamin B ₆	Folate	Vitamin	Pantothenic		Choline		
(mg/d) ^c	(mg/d)	$(\mu g/d)^c$	B ₁₂	Acid	Biotin	(g/d)	Carotenoids d	
ND	ND	ND	ND	ND	ND	ND	ND	
ND	ND	ND	ND	ND	ND	ND	ND	
10	30	300	ND	ND	ND	1.0	ND	
15	40	400	ND	ND	ND	1.0	ND	
20	60	600	ND	ND	ND	2.0	ND	
30	80	800	ND	ND	ND	3.0	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
20	60	600	ND	ND	ND	2.0	ND	
30	80	800	ND	ND	ND	3.0	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	
35	100	1,000	ND	ND	ND	3.5	ND	

^aAs preformed vitamin A only.

^bAs α-tocopherol; applies to any form of supplemental α-tocopherol.

^cThe ULs for vitamin E, niacin, and folate apply to synthetic forms obtained from supplements, fortified foods, or a combination of the two.

16/12/2019	Summary Tables: Dietary Reference Intakes Dietary Reference	e Intakes for Calcium and Vitamin D The National Academies Press
------------	---	--

30	80	800	ND	ND	ND	3.0	ND
35	100	1,000	ND	ND	ND	3.5	ND
35	100	1,000	ND	ND	ND	3.5	ND
30	80	800	ND	ND	ND	3.0	ND
35	100	1,000	ND	ND	ND	3.5	ND
35	100	1,000	ND	ND	ND	3.5	ND

 $[^]d$ β-Carotene supplements are advised only to serve as a provitamin A source for individuals at risk of vitamin A deficiency.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B_6 , Folate, Vitamin B_{12} , Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamine E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); and Dietary Reference Intakes for Calcium and Vitamin D (2011). These reports may be accessed via www.nap.edu.

Dietary Reference Intakes (DRIs): Tolerable Upper Intake Levels, Elements

Life Stage Group	Arsenic ^a	Boron (mg/d)	Calcium (mg/d)	Chromium	Copper (μg/d)	Fluoride (mg/d)	Iodine (μg/d)	Iron (mg/d)
Infants		,	4.000	110		0.7) ID	40
0-6 mo	ND^e	ND	1,000	ND	ND	0.7	ND	40
6-12 mo	ND	ND	1,500	ND	ND	0.9	ND	40
Children								
1-3 y	ND	3	2,500	ND	1,000	1.3	200	40
4-8 y	ND	6	2,500	ND	3,000	2.2	300	40
Males								
9-13 y	ND	11	3,000	ND	5,000	10	600	40
14-18 y	ND	17	3,000	ND	8,000	10	900	45
19-30 y	ND	20	2,500	ND	10,000	10	1,100	45
31-50 y	ND	20	2,500	ND	10,000	10	1,100	45
51-70 y	ND	20	2,000	ND	10,000	10	1,100	45
> 70 y	ND	20	2,000	ND	10,000	10	1,100	45
Females								
9-13 y	ND	11	3,000	ND	5,000	10	600	40
14-18 y	ND	17	3,000	ND	8,000	10	900	45
19-30 y	ND	20	2,500	ND	10,000	10	1,100	45

^eND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

16/12/2019	Summary Tables: Di	etary Reference	Intakes Dietary F	Reference Intal	kes for Calcium and	Vitamin D The I	National Acader	nies Press
31-50 y	ND	20	2,500	ND	10,000	10	1,100	45
51-70 y	ND	20	2,000	ND	10,000	10	1,100	45
> 70 y	ND	20	2,000	ND	10,000	10	1,100	45
Pregnancy								
14-18 y	ND	17	3,000	ND	8,000	10	900	45
19-30 y	ND	20	2,500	ND	10,000	10	1,100	45
61-50 y	ND	20	2,500	ND	10,000	10	1,100	45
Lactation								
14-18 y	ND	17	3,000	ND	8,000	10	900	45
19-30 y	ND	20	2,500	ND	10,000	10	1,100	45
31-50 y	ND	20	2,500	ND	10,000	10	1,100	45

NOTE: A Tolerable Upper Intake Level (UL) is the highest level of daily nutrient intake that is likely to pose no risk of adverse health effects to almost all individuals in the general population. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to a lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B_{12} , pantothenic acid, biotin, and carotenoids. In the absence of a UL, extra caution may be warranted in consuming levels above recommended intakes. Members of the general population should be advised not to routinely exceed the UL. The UL is not meant to apply to individuals who are treated with the nutrient under medical supervision or to individuals with predisposing conditions that modify their sensitivity to the nutrient.

Magnesium _I	Manganese 1	Molybdenum	Nickel	Phosphorus :	Selenium		Vanadium	Zinc	Sodium	Chloride
$(mg/d)^b$	(mg/d)	$(\mu g/d)$	(mg/d)	(g/d)	(µg/d)	Silicon ^c	$(mg/d)^d$	(mg/d)	(g/d)	(g/d)
ND	ND	ND	ND	ND	45	ND	ND	4	ND	ND
ND	ND	ND	ND	ND	60	ND	ND	5	ND	ND
65	2	300	0.2	3	90	ND	ND	7	1.5	2.3
110	3	600	0.3	3	150	ND	ND	12	1.9	2.9
350	6	1,100	0.6	4	280	ND	ND	23	2.2	3.4
350	9	1,700	1.0	4	400	ND	ND	34	2.3	3.6
350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
350	11	2,000	1.0	3	400	ND	1.8	40	2.3	3.6
350	6	1,100	0.6	4	280	ND	ND	23	2.2	3.4
350	9	1,700	1.0	4	400	ND	ND	34	2.3	3.6

^aAlthough the UL was not determined for arsenic, there is no justification for adding arsenic to food or supplements.

^bThe ULs for magnesium represent intake from a pharmacological agent only and do not include intake from food and water.

^cAlthough silicon has not been shown to cause adverse effects in humans, there is no justification for adding silicon to supplements.

16/12/2019		Summary Tables: Diet	ary Referenc	ce Intakes Di	etary Reference	Intakes for	Calcium and	Vitamin D Ti	ne Nation	al Academie	s Press
	350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
	350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
	350	11	2,000	1.0	4	400	ND	1.8	40	2.3	3.6
	350	11	2,000	1.0	3	400	ND	1.8	40	2.3	3.6
	350	9	1,700	1.0	3.5	400	ND	ND	34	2.3	3.6
	350	11	2,000	1.0	3.5	400	ND	ND	40	2.3	3.6
	350	11	2,000	1.0	3.5	400	ND	ND	40	2.3	3.6
	350	9	1,700	1.0	4	400	ND	ND	34	2.3	3.6
	350	11	2,000	1.0	4	400	ND	ND	40	2.3	3.6
	350	11	2,000	1.0	4	400	ND	ND	40	2.3	3.6

^dAlthough vanadium in food has not been shown to cause adverse effects in humans, there is no justification for adding vanadium to food, and vanadium supplements should be used with caution. The UL is based on adverse effects in laboratory animals, and this data could be used to set a UL for adults but not children and adolescents.

^eND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001); Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate (2005); and Dietary Reference Intakes for Calcium and Vitamin D (2011). These reports may be accessed via www.nap.edu.

This page intentionally left blank.

STATE OF THE STATE

The National Academies of Sciences, Engineering, and Medicine 500 Fifth St., NW | Washington, DC 20001 © 2019 National Academy of Sciences. All rights reserved.