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A B S T R A C T

Land use and land cover (LULC) are intrinsically tied to ecological and social dynamics. Still, classifying LULC in
ecotones, where landscapes are commonly heterogeneous and have a wide range of physiognomies, remains a
challenge. Here we present a three-level hierarchical classification approach, using both Landsat and MODIS
images, and both pixels and objects as units of information. We applied this multi-temporal and -spatial ap-
proach to classify land use in the Upper Xingu River Basin (∼170,000 km2), located in the arc of deforestation of
the Brazilian Amazon. The first level includes five classes and differentiates managed land from native vege-
tation with high overall accuracy (93%). The second level has 11 classes (overall accuracy = 86%) and separates
main land uses and native vegetation domains. The third level has 16 classes (overall accuracy = 83%) and
addresses productivity of both managed and natural systems. We find that this new method presented here is
more efficient than existing regional and global land cover products. Applying this approach to assess land cover
transitions in the basin from 1985 to 2015, we find that agricultural production increased, yet manifested itself
differently in the northern (Amazon biome) and southern (Cerrado biome) portions of the basin. Analyzing land
use change in different levels, we identify that agricultural intensification occurred mainly in the Amazon while
the Cerrado has undergone an expansion in agricultural area. The method presented here can be adapted to other
regions, improving efficiency and accuracy of classifying land cover in heterogeneous landscapes.

1. Introduction

Land cover refers to the observed biophysical component on the
Earth's surface, while land use is defined by the activities undertaken in
a certain area (Di Gregorio, 2016; Turner et al., 2007). Land use and
land cover (LULC) changes are key components of biological, physical,
and socioeconomic processes taking place on the Earth surface (de
Chazal and Rounsevell, 2009; Don et al., 2011; Foley et al., 2005;
Lathuillière et al., 2017; Macedo et al., 2013). Therefore, LULC is a
fundamental input for several models in many research areas and can
help inform decision making processes (Bondeau et al., 2007; Döll
et al., 2003; FAO, 2011, 1993; Ge et al., 2007). Remotely sensed pro-
ducts are the main data source for LULC mapping, and much research
has been devoted to evaluating methodologies with a specific emphasis
on classification techniques (Coppin et al., 2004; Gómez et al., 2016;

Hansen and Loveland, 2012; Hussain et al., 2013; Tewkesbury et al.,
2015; Wang et al., 2017). Despite the large efforts and achievements in
improving LULC classification, accurately transforming remotely sensed
data into thematic maps remains a challenge when modelling complex
landscapes (Gómez et al., 2016), limiting our ability to address patterns
and processes of LULC change, especially in tropical regions (Müller
et al., 2015; Pendrill and Persson, 2017; Toniol et al., 2017).

Ecotones, agriculture frontiers and biomes with multiple physiognomies
present large disagreement in global and continental datasets (Giri et al.,
2005; Herold et al., 2008; Pendrill and Persson, 2017). For example, Herold
et al. (2008) identified that at least three out of four global data sets disagree
on LULC classes attributed to large portions of the Amazon's Arc of Defor-
estation and neotropical savanna biomes. Factors that contribute to this
disagreement are associated with the large biophysical variability observed
in diverse landscapes. Inadequately assessing the spatial and temporal
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variability of these areas precludes the possibility of adequately capturing
their LULC classes. Additionally, accuracy of LULC maps generally decreases
with increasing class complexity (Lu and Weng, 2007), which is very often
important for decision-making. Still, improving LULC monitoring is critical
to evaluating impacts on the extent, condition, and productivity of both
managed and natural systems. Such dynamics are directly linked to several
social or ecosystem services, including food, water and energy security, and
biodiversity conservation (Endo et al., 2015 > ; Lal, 2016; Ozturk, 2015).
This information is essential when planning land use in regions such as the
neotropical savannas (Cerrado) or the tropical rainforest at the Amazon's arc
of deforestation. These regions are not only hotspots for biodiversity con-
servation, but are also undergoing rapid LULC change due to agriculture
expansion (Klink and Machado, 2005; Power, 2010). Aside from the im-
portance of these regions in terms of natural resources and agricultural
production, spatially explicit LULC information that considers landscape
diversity is rarely available.

Classification techniques refer to the process of sorting pixels into a fi-
nite number of individual classes, based on their surface reflectance values
at a certain time (Lu et al., 2004), or the reflectance behavior of pixels
through time (e.g.: MODIS Land Cover products (Friedl et al., 2010)). Use of
both high spatial and temporal resolution data is an approach that increases
both the amount of data and the modelling complexity, while enabling the
study of different native vegetation physiognomies or agriculture pro-
ductivity (Brown et al., 2007; Ferreira et al., 2003). Due to increases in
modelling complexity, current products address either spatial or temporal
resolution when classifying LULC. The computational challenge of model-
ling large satellite imagery data sets can be made more efficient using an
object-based approach (Blaschke, 2010). But this approach is not appro-
priate for landscape formations which are not expected to present a spectral
pattern of an object (a group of pixels presenting a similar response). Still,
for small scale study areas, approaches that integrate pixel-based and object-
based methods out-perform approaches that employ only one of these
methods on their own (Aguirre-Gutiérrez et al., 2012; Chen et al., 2018).
Recently, the combination of machine (or deep) learning, cloud processing,
and big data is shifting classification processing by enabling users to address
more complex models of classification (Azzari and Lobell, 2017); mainly
when the physical processes resulting in the remotely sensed imagery are

not understood, or are not the main focus of the study (Zhu et al., 2017).
Such data-driven classifications rely on many redundant explanatory vari-
ables (Lebourgeois et al., 2017), and results often are not easily translated
into a conceptual model. In this regard, Zhu et al. (2017) argue that uniting
process-based modelling and machine learning is a promising direction.

Here we present a hierarchical classification approach which applies
a multi-temporal/multi-scale and combined object and pixel-based
approach in order to contribute to diverse landscape LULC mapping.
We demonstrate that through this approach we improve the assessment
of LULC change patterns and their causation chains. Moreover, this
study is intended to improve classification processes by presenting a
workflow which (i) generates a classification allowing the analysis of
LULC change in modern agricultural frontiers and ecotone zones, (ii)
facilitates the comparison of results with those generated by other
studies and/or for other regions, (iii) uses freely available remote sen-
sing data, and (iv) employs a straightforward approach that can be
implemented in software commonly used and/or available at no cost to
researchers, NGOs, and governmental agencies (R, GRASS, or Orpheum
toolbox). We tested this approach by creating a series of multi-temporal
LULC maps for the Upper Xingu River Basin, located at the border of the
Amazon rainforest and neo-tropical savannas (Cerrado), and describing
the changes over three decades. We then explore patterns, trajectories,
and causes of LULC change for this study area.

2. Study area and data

2.1. Study area

The Upper Xingu River Basin (hereafter denoted as “UXRB”), is lo-
cated in Mato Grosso state in Brazil, and in the ecotone between the
Amazon rainforest and the neotropical savannas, or Cerrado biome. The
Xingu River is one of the main Amazon River tributaries. Its headwater
region encompasses one-third of the Xingu River Basin, draining
∼170,000 km2. The area spreads from about 9.5°S to 15°S and from
51°W to 55.5°W (Fig. 1). The UXRB exhibits a wide array of natural
physiognomies, ranging from Amazon rainforest to savanna grasslands
(Ivanauskas et al., 2008; Velasquez et al., 2010). The Amazon rainforest

Fig. 1. Upper Xingu River Basin (UXRB) is located in
the Brazilian Legal Amazon, state of Mato Grosso. It
drains an area of ∼170,000 km2 into the Xingu
River, one of the main tributaries of the Amazonas
River. The area is in the ecotone between the
Amazon and Cerrado biome (also known as neo-
tropical savannas). The image on the left is a mosaic
of Landsat 8 images acquired in July and August of
2015. The mosaic is shown in a true-color composi-
tion (RGB 432).
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and Cerrado are the first and second largest biomes in South America.
The Amazon rainforest contains enormous biodiversity and one-third of
the world's tropical tree species used for timber (Brasil, 2018). The
Cerrado is a global biodiversity hotspot and contains the highest land
use change rates in Brazil (Brasil, 2018; Klink and Machado, 2005).

Besides the importance of the region for its natural resources (in-
cluding biodiversity), the UXRB also encompasses large sociocultural
diversity and economic prominence. It is estimated that 16 indigenous
ethnic groups and other traditional communities live in the basin
(Velasquez et al., 2010). The main economic activities in the study area
during the late 1970's to 1990's were timber and beef. Forests were
degraded or cleared due to livestock expansion and logging activities.
In the early 2000's, soybean production emerged as another defor-
estation driver (Brando et al., 2013; Nepstad et al., 2006). The defined
rainy season, flat terrain, and dominance of good physical structured
Oxisol soils (Velasquez et al., 2010), make the UXRB ideal for agri-
cultural expansion and intensification. Currently, approximately 2% of
world's and 9% of Brazil's soybeans are produced in the UXRB, as well
as 0.2% of the world's and 13% of Brazil's cattle (FAOSTAT, 2016; IBGE,
2016).

2.2. Data acquisition and pre-processing

LULC maps for 1985, 1990, 1995, 2000, 2005, 2010, and 2015 of
the UXRB were derived from a combination of Landsat (L5, L7 or L8,
level 2) and MODIS (Aqua and Terra, collection 6) products. These
images were processed based on information gathered through the
Brazilian vegetation map (IBGE, 2004), ground reference points, and
fine resolution images (Rapideye).

2.2.1. Landsat data
Landsat surface reflectance images were obtained from the USGS/

Landsat Higher Level Science Data products (http://espa.cr.usgs.gov/). The
path/row and acquisition date of all 120 Landsat scenes used in this study
are presented in Supplementary Material 1. Landsat Higher Level Science
Data products are delivered pre-corrected for geometrically and radio-
metrically by a homogenous correction chain (Masek et al., 2006; http://
espa.cr.usgs.gov/). Although previously corrected, we registered mosaicked
and resampled (30 m pixel resolution) images by using autosync work-
station (ERDAS, 2014a) in order to guarantee a pixel by pixel overlap be-
tween years. As the UXRB presents a flat relief, we implemented a 2D
polynomial model of third order based on the green band of each image. We
considered 15 m, half pixel resolution, as the maximum acceptable error
value (Root Mean Square Error < 0.5 pixel) and resampled the images
through cubic convolutions. This process was particularly important for
earlier years, as shown in Supplementary Material 1. A histogram matching
procedure was applied when necessary during mosaicking processes based
on central path (225 in the WRS-2 system) overlapping areas. Since all
raster in the time series share a similar histogram shape, this technique
changes each of the pixel's values according to the target histogram but does
not change the histogram shape.

No radiometric correction was applied with the exception of
Landsat 7 images for 2005 and 2010 which were striped - images col-
lected after 2003, when the Scan Line Corrector (SLC) failed. To correct
this error, we applied a gap filling technique, which consists on ac-
quiring a second image (also from Landsat 7 and for same year as the
original one) to fill the gaps in the first scene (Scaramuzza et al., 2004).
Rather than using these corrected images as primary sources of data to
build LULC maps, we used them to visually verify Landsat 5 image
consistency. Since Landsat 5 was launched in 1984, and old sensors can
present degradation problems in more recent acquisitions. We did not
use any image with signs of degradation.

2.2.2. MODIS and derived indices
MODIS Enhanced Vegetation Index (EVI), with a 250 m spatial re-

solution and 8 day temporal resolution were acquired on demand from

the University of Natural Resources and Life Sciences, Vienna - BOKU
(Vuolo et al., 2012). This database is based on MODIS Level-3, 16-day
composite EVI from both Terra and Aqua satellites. The combination of
16-day composites from both satellites allowed us to derive a time
series of 8-day temporal resolution. EVI time-series are delivered mo-
saicked, smoothed, and gap-filled. Such processing steps are based on
the “MODIS package” (Mattiuzzi et al., 2016) developed in R (R
Development Core Team, 2011), and the Whittaker filter (Vuolo et al.,
2012). We tested EVI images against our Landsat mosaic using the
previously described process, but no geometric correction was needed.
An annual EVI series beginning in August of each analyzed year and
ending in August of the following one was built for 2000, 2005, 2010
and 2015. In total, we used 832 MODIS scenes, or ∼210 for each year.

2.2.3. Ground reference
We carried out field work to collect ∼2000 ground reference points

in two independent campaigns. The first campaign, carried out in June
2015, was used to improve systematic comprehension of the study
area's LULC composition and to create thresholds for LULC class se-
parability criteria. This dataset is composed of ∼400 ground reference
points collected on the ground. In addition, ancillary reference data
points (∼100 points) were collected by comparing Landsat 8 images
obtained in 2015 with high spatial resolution RapidEye images ac-
quired in 2012/13 (http://geocatalogo.mma.gov.br/). Hereafter this
dataset is called “training data” and its overview is presented in
Supplementary Material 2. The field work to develop the training data
was mostly concentrated at the contact zone between tropical rainforest
and savannas, as well as at areas with more intense land use change.

During a second campaign (October 2016), we acquired 1500
ground reference points throughout the entire basin for accuracy ana-
lyses. The points were as distributed in the basin as practical, but
concentration around the main roads was inevitable due to access
constrains and study area size. In addition, an ancillary set of data
points (∼500 points) collected by an independent researcher though a
comparison of Landsat 8 images of the year 2016 with RapidEye images
was also used. This complementary approach was necessary in order to
sample large areas which are difficult to assess. This dataset, hereafter
called “validation data”, was used to verify the quality of the final
classification.

3. Methods

To derive LULC maps in highly dynamic tropical ecotone zones, we
developed an assessment approach through a hierarchical classification
model which allows us (i) to assess relevant information for regional
landscape evaluation, (ii) to have different levels of information and
accuracy for a diverse range of applications, (iii) to harmonize our
thematic mapping with LULC schemes produced for other tropical re-
gions or globally, and (iv) to apply the same classification methodology
in other study areas. The hierarchical classification model was built in
ERDAS Imagine Expert Classifier workstation (ERDAS, 2014b). We
applied a hierarchical rule-based approach (a decision tree based on
expert knowledge) to integrate variables of different sources and for-
mats. Each branch describes the conditions under which constituent
information (variables) gets abstracted into a set of higher-level in-
formational classes. The rules were set based on literature and expert
information, and field work observation. This approach focuses on ex-
pected reflectance signals based on knowledge of LULC behavior
though space and time. It differs from currently popular machine
learning algorithms, which fish a signal from data through multiple
variable interactions (Maxwell et al., 2018). The development of clas-
sifications we applied here advances variable selection based on pat-
terns and process behavior concepts, and can be used in any kind of
classification, including machine learning. It is also important to note
that learning algorithms demand a large and well distributed field
sample to train the algorithms, which still is not always the case for
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extensive tropical areas. Still, a preliminary classification as we apply
here could contribute with sample allocation to develop even more
powerful classification processes.

Legend can be defined as the application of a classification scheme
in a specific study area. Here we used three levels of information to
address LULC legend, each level composed for both land cover classes
and land use classes. We considered representative LULC classes for the
ecotone zone between Amazon rainforest and Cerrado both in area and
in meaning of LULC change. The border between both biomes extends
for about 6300 km and overlaps with the Amazon's arc of deforestation.
The developed LULC legend follows hierarchical concepts presented by
FAO's Land Cover Classification System (Di Gregorio and Jansen, 2000).
First, we adopted a general level of information on LULC, followed by a
differentiation of the main land use and native vegetation domains. The
third level of classification is linked to productivity and addresses land
use intensity as well different native physiognomies. It is important to
point out that we do not differentiate all 11 savanna vegetation phy-
siognomies, which range from forest to grassland fields with no trees
(see Oliveira and Marquis (2002) for further description). Instead, we
aggregated them into three different classes according to tree density.
Previous global (GLC2000 (Bartholomé and Belward, 2005) and MODIS
Global land cover (Friedl et al., 2010)), and regional (TerraClass Cer-
rado (Scaramuzza et al., 2017) and TerraClass Amazonia (Almeida
et al., 2016)) efforts produced legends compatible with our inter-
mediate classification level, but no more detailed information on pro-
ductivity systems or physiognomies are provided.

The spatial-temporal resolution of the final classification products is
also of high interest when assessing LULC change. Here we took ad-
vantage of Landsat spatial resolution (30 × 30 m) and EVI MODIS
temporal resolution (7 days) by combining both products and addres-
sing LULC change in terms of cover and management. EVI MODIS time
series presents a 250 m spatial resolution, moreover to overcome this
problem, we segmented Landsat images and used the derived objects
(larger than 250 m) to extract data from EVI MODIS layers by calcu-
lating the modal (discrete variables) or mean value (continuous vari-
ables) of pixels contained in each object. This approach is referred to as
“zonal” in following sections. Level 1 and level 2 products are made
available for each 5-year period from 1985 to 2015. Level 3 was only
developed for 2000–2015 due to MODIS availability. Nevertheless, the
employment of both Landsat and MODIS sensors allows us to rely on the
spatial resolution of the former and the temporal resolution of the latter

to address mainly the Level 3 of our classification.

3.1. Decision tree and classification rules

Our hierarchical classification model consisted of three levels as
presented in Table 1. Level 1 (L1) classifies the region of interest into
five major LULC types: (1) natural and semi-natural vegetation, (2)
cultivated and managed terrestrial areas, (3) burned areas, (4) surface
water, and (5) unclassified (see Fig. 2 for decision tree overview). This
legend is fairly comprehensive and can be harmonized with a broad
range of other researches, reducing conversion uncertainties among
different products. L1 assesses native vegetation conversion and, thus,
supplies information for policies and laws, such as the Brazilian Forest
Code (Soares-Filho et al., 2014). To develop this level, first, we applied
an unsupervised classification method using ISODATA algorithm to
classify Landsat mosaicked images. In this process, each pixel is as-
signed to a class based on its spectral profile. There is no need for prior
knowledge of the number or identification of the different classes pre-
sent in the imaged area. We set the ISODATA algorithm to cluster pixels
in up to 40 classes based on up to 20 iterations, with a minimum size of
0.01% of the study area for each class, a maximum standard deviation
of 5, a maximum of 2 merges, and a convergence threshold of 0.95.
Finally, we visually aggregated each of the output classes into one of
the five legend classes mentioned before.

Level 2 (L2) encompasses a more specific set of LULC classes, but is
broad enough to be adapted or compared to similar regions throughout
the tropics. This legend level assesses biophysical characteristics related
to LULC of the target landscape. For example, L2 is useful as an input
for biogeochemical and hydrological models as it differentiates vege-
tation types. LULC information and user's knowledge acquired in field
work was necessary to map LULC at the second level of detail (see Fig. 2
for decision tree overview). LULC legend for the L2 included: (1) forest
(2) savanna formation (3) wetlands (4) secondary complex, (5) crop-
lands, (6) pasturelands, (7) bare soils, (8) urban, (9) burned areas, (10)
surface water, and (11) unclassified. L1 unsupervised classification
output was disaggregated into forest (closed canopy), savanna forma-
tion (open canopy), wetlands, and secondary complex. We dis-
aggregated these classes by overlapping the Brazilian Institute of Geo-
graphy and Statistics vegetation map as a masking conditional variable,
with the classes resulting from the unsupervised classification (de-
scribed above) being classified as Natural/Semi-natural (L1). Areas

Table 1
Description of the land cover and land use classes used in this study. Level refers to the hierarchical level in the classification scheme.

Level Class Description

1 Natural and semi-natural vegetation Natural or semi-natural vegetation cover, including forest, savannas, and floodplains
Cultivated and managed terrestrial areas Any area under management which modifies the physiognomy of a natural system

1
2
3

Burned areas Either natural or managed areas that have recently being burned
Surface water Area covered by water
Unclassified Any pixel that did not fit in any of the other categories

2 Forest Forest formations, including rain forest, semi-deciduous, deciduous, riverine, cerradão (cerrado woodland with closed
canopy)

Savanna formation Wood-grassland ecosystem with open canopy
Croplands Cultivated areas
Pasturelands Areas with planted grassland for cattle ranching

2
3

Wetlands Flooded area, either permanently or seasonally with high proportion of vegetation.
Secondary complex Vegetation in regeneration or disturbed through natural processes or removal
Bare soils Exposed bare soil lacking any vegetation
Urban Concentrated built-up structures

3 Forest Forest formations in the Amazon domain such as rain and deciduous forests
Forest cerrado Forest formations in the Cerrado domain such riparian forest and woodland
Woody Cerrado Woody formation with open canopy and at least 40% of tree cover
Shrub-grassland cerrado Grassland formation with no trees to formations with up to 40% of tree cover
Single crop Cultivated areas with one harvest per year, rain fed
Double crop Cultivated areas with two harvests per year, rain fed
Irrigated crop Cultivated areas which are artificially irrigated
Pasturelands Areas with regular planted grassland for cattle ranching
Degraded pasturelands Areas with planted grassland for cattle ranching with presence of bare ground and poor greenness recovery
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where both maps did not match were considered secondary complexes.
Urban, burned areas and surface water were imported from L1 without
any modification. Forest, savanna, urban, burned areas and surface
water formation were inputted in L2 classification based on pixel since
we do not expect them to necessarily present object patterns.

We segmented Landsat images to reclassify managed areas.
Segmentation was conducted in ArcGIS 10.3 using bands 5, 6, and 4 of
mosaicked Landsat 8 images (bands 4, 5, and 3 for years using Landsat
5 or Landsat 7) based on the spectral similarity and spatial proximity
among neighbor pixels, with a minimal area of 9 ha. This approach
assumes a minimal aggregated number of pixels or a specific shape in
crops and pasturelands. We arbitrary chose a minimum area of 9 ha
with the goal of adding variance to the analyses but also allowing the
algorithm to capture the smallest area as possible. We chose 9 ha so we
could evaluate more than one Modis’ pixel (pixel resolution equal to
250 m, resampled into 30 m, and resulting in ∼70 pixels), and 100
Landsat pixels (pixel resolution equal to 30 m). We classified each ob-
ject according to L1 classes by defining the major class inside each

object and identified Managed Areas which were then reclassified in
crops, pasturelands or bare soils. To differentiate these three classes
based on MODIS EVI, we calculated three indexes based in relation to
the agriculture calendar for Mato Grosso state (Supplementary Material
3). We used the objects created with Landsat images to calculate the
mean value for each object (referred to in Fig. 2 as zonal approach) and
each index. Indexes based on MODIS EVI are as follow:

(Index i) Minimum EVI during soil preparation/sowing season
(EVImin)

EVI MIN EVI EVI EVI( , , , )min so doy x so doy x so day y( ) ( 7) ( )= …+

where:
EVIso series represents a sequence with 7-day interval from the first

day (doy x) of the soil preparation/sowing season to the last one (doy
y), doy corresponds to day of the year in the julian calendar;

(Index ii) Maximum EVI in the growing season (EVImax)

EVI MAX EVI EVI EVI( , , , )max gro doy x gro doy x gro doy y( ) ( 7) ( )= …+

Fig. 2. Workflow of the three-level hierarchical
classification system developed and applied to derive
a 30-year time series of land use and land cover maps
of the UXRB, Brazil. Grey boxes indicate the data
used in each decision rule designed to obtain a cer-
tain class. Solid line boxes represent land use and
land cover classes. Land use and land cover classes
boxes highlighted in light grey are classes that are
carried over to next level of classification without
modification. Whenever a class is derived based on
an object approach, the arrow defining the respective
workflow pass by a “zonal” box delimited by dotted
lines. All thresholds presented here were developed
for the study area only and can be used as approx-
imate values for similar regions.
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where.
EVIgro series represents a sequence with 7-day interval from the first

day (doy x) of the growing season to the last one (doy y);
(Index iii) Differential greenness enhancement index (Rizzi et al.,

2009)

DGEI EVI EVI
EVI EVI

.max min

max min
=

+

We assumed that crop areas presented both states: bare soil or
haystacks due to soil preparation and sowing period (very low EVI
values), and also at least one green period during a year due to the
growing season (highest EVI values). Moreover, they presented a higher
DGEI when compared to pasturelands. As DGEI is the contrast between
the peak high and low values of EVI in a season (defined as a few
months), it is not sensitive to normal seasonality and precipitation
shifts. Still, it can potentially be affected by drastic droughts which
negatively impact both crop and pasture growth. Additionally, cropland
abandonments can potentially impact this index. Such dynamics pre-
vent land covers from reaching their expected maximum or minimum
EVI values. Optimal DGEI thresholds values were identified based on
training sampled data. However, since EVI time-series from MODIS are
available after 2000, we applied other methods to separate crops from
pastures for 1985, 1990 and 1995. For these years, we identified
cropland polygons by selecting objects which presented Landsat EVI
values lower than 0.3 (bare soil or stover – based on visual selection of
sample fields which remained unchanged between 1995 and 2000, and
were classified as croplands in 2000) and minimum field size of 40 ha.
Cropland area is certainly under estimated for those dates. However, as
croplands account for a maximum of 1% of the UXRB basin before 1995
(IBGE, 2016), we trust this procedure did not compromise our results.

The main goal of Level 3 (L3) is to cope with ecological character-
istics related to LULC such as regional agriculture greenness or ecolo-
gical intensification (Arvor et al., 2012). It is also useful, for example,
when analyzing socio-economic characteristics associated with crop
and cattle ranching intensification or to analyze which natural phy-
siognomies are more likely to be replaced by certain agricultural ac-
tivity (see Fig. 2 for decision tree overview). LULC legend for L3 in-
cluded: (1) forest, (2) forest cerrado, (3) woody Cerrado, (4) shrub-
grassland cerrado, (5) wetland, (6) secondary complex, (7) single crop,
(8) double crop, (9) irrigated crop, (10) pasturelands, (11) degraded
pasturelands, (12) bare soils, (13) urban, (14) burned areas, (15) sur-
face water, and (16) unclassified. L3 maps include classes that rely on
high resolution temporal images, available only from 2000 forwards
due to MODIS availability. We identified low productivity pasturelands
(or degraded pasturelands) by using a combination of two indices de-
rived from MODIS EVI: annual EVIsum and annual DGEI.

(Index iv) Sum of EVI in a certain year (EVIsum)

EVI EVI EVI EVI( , , , )sum gro doy x gro doy x gro doy y( ) ( 7) ( )= …+

where EVIsum series represents a sequence with 7-day interval from the
first day (doy x) of the analyzed period through the last one (doy y).

The applied analysis adopts the hysteresis principle, which means
that degraded pasturelands present a lower resilience and, thus, they
are not able to recover their original state after a disturbance period
(Searle et al., 2009; Yengoh et al., 2015). Grazing, fire, and water
shortages are forms of disturbance, and the lack of recovery implies a
loss of pasture productivity. This loss is liked to biological degradation
(decrease in carbon accumulation) but also with some agricultural de-
gradation processes such as loss of productivity in the form of insect
attacks, for example (Dias-Filho, 2001). DGEI calculated as shown
previously based on the whole analyzed year was used to estimate how
recovering photosynthetic capacity varied within a year. The cumula-
tive vegetation index (EVIsum) was used as a proxy for net primary
productivity (Ferreira et al., 2013). We considered the combination of

low greenness and low annual variation as indicative of pasturelands in
degradation. Both DGEI and EVIsum were used to include the temporal
EVI variation associated to rainfall (Yengoh et al., 2015). Although this
approach does not addresses the complexities of the pasture degrada-
tion process, it is a fair indicator of pasture resilience through different
seasons (Yengoh et al., 2015). Croplands were reclassified according to
a conditional model of double cropping detection. Whenever croplands
presented a large number of days with high vegetative response, we
consider them as double cropping areas as shown in the following
formula:

(v) Count of days with EVI > 0.5 in a certain year (EVIcount)

EVI EVI EVI( , , )count veg doy x veg doy y, ,= …

EVI EVI1 0.5veg doy x doy, = >

EVI EVI0 0.5veg doy x doy, =

Where EVIveg represents a sequence with 7-day interval from the
first day (doy x) of the analyzed period through the last one (doy y).
Each EVIveg is assigned the value 1 if the correspondent EVI value at
certain day is higher than 0.5, otherwise it is zero. Irrigated areas were
manually extracted based on spatial arrangement and higher EVI re-
flectance in the dry season. The optimal thresholds were calculated
based on the training sample data.

We used the Brazilian vegetation map (IBGE, 2004) to first break
forest areas into forest (L2-forest inside the rain forest domain) and
forest cerrado (L2-forest inside the savanic domain). We also relied on
NDVI values calculated from Landsat images in the dry season (NDVIL),
and EVImin, and EVIsum values to reclassify forest and savanic formations
into forest, forest cerrado, woody Cerrado, and shrub-grassland cer-
rado. The optimal thresholds were also calculated based on the training
sample data - they are shown in Fig. 2.

3.2. Accuracy assessment

We produced a confusion matrix based on (i) reference points col-
lected in 2016 on the ground (total of 1460 ground reference points),
and (ii) reference points collected through very high-resolution Rapid
Eye images from 2012 to 2013 (total of 489). We transformed the ob-
served sample confusion matrix into an estimated population matrix, as
recommended by Pontius et al., (2011). Then, we calculated overall
(dis)agreement, overall quantity disagreement (amount of disagree-
ment due to the quantity of each class), and overall allocation dis-
agreement (amount of disagreement due to the miss-overlap of classes
in space). Disagreement and its decomposition were also calculated for
classes. Further details on accuracy assessment are available in
Supplementary Material 4. As accuracy metrics calculated directly from
the observed sample confusion matrix are still very common in the
literature, we also present these metrics in Supplementary Material 4.

Once the classification process for the 2015 images returned a sa-
tisfactory output, we assumed that the analyst acquired the “know
how” of the classification process, and could classify previous years
using the same rules. In the process, we visually checked whether dif-
ferent thresholds would improve the classification of sample points
with a marked land cover, but no improvement was observed. We did
not collected data to estimate accuracy for previous year. But we as-
sumed the 2015 accuracy assessment would also apply for previous
year. It's important to point out that burned lands were not considered
in such analysis. Burned lands class is present in a short temporal
window, which makes it almost impossible to collect ground reference
points. Thus, it was omitted from analyses. Still, such class presents a
very distinct spectral profile and, then, it would not significantly change
the accuracy results. A detailed explanation of reference data collection
and analyses is showed in Supplementary Material 4.

In addition to the validation database collected in our field surveys,
we used LULC information from Amazon Environmental Research
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Institute (IPAM, http://ipam.org.br), Socio-Environmental Institute
(ISA, https://www.socioambiental.org) and The Brazilian Institute of
Geography and Statistics (IBGE, 2016) to evaluate our results in sepa-
rate analysis. The IPAM database includes LULC ground reference
points obtained in 2017 for Querência municipality. ISA database
contains maps for multiple years of LULC for Querência, Canarana, São
José do Xingu, and Santa Cruz do Xingu municipalities, which in turn
represent together about 25% of the UXRB. We randomly sampled these
maps and compared each point with the ones from our output maps for
the 2010 and 2015 years. ISA's and IPAM's LULC information were not
as detailed as our L3 classification for cropping systems. Thus, to ana-
lyze L3 we compared IBGE (Brazilian Institute of Geography and Sta-
tistics) census data for each municipality in the basin with our maps.

3.3. LULC change

Rates of LULC change were calculated based on the continuous rate
of change proposed by Puyravaud (2003):

LCLUc A A
t t

(%) ln ( / )2 1

2 1
=

where A indicates the total area occupied by a certain class in time t.
The subscripts 1 and 2 represent the earlier and the subsequent year in
an analyzed period. LULCc is the rate of change per year expressed in
percentage. We analyzed LULC change trajectories in order to address
proximate (direct) causes of change. We built transition matrices pro-
duced by a pixel-by-pixel identification of the LULC class in an earlier
and the subsequent year time. The number of pixels is transformed in
area by multiplying the former by the pixel resolution. We explore
underlying causes of LULC change in the UXRB by comparing agri-
cultural expansion to market prices of agricultural products and cur-
rency exchange rate (the value ratio between Brazilian Real (R$) and
America Dollar (US$)) using the Spearman correlation index. The
agricultural products incorporated in the analysis were chosen due their
representativeness in the area: (1) cattle herd and beef price, (2) soy-
bean production output and price, (3) maize production output and
price. Two sets of prices were used, (1) commodity real prices (cor-
rected by inflation) published by the World Bank (http://www.
worldbank.org), and (2) prices received by farmers corrected by infla-
tion (IPCA index for February 2018) and published by the Institute of
Applied Economic Research (http://www.ipea.gov.br). Agriculture
production was acquired from the Brazilian Institute of Geography and
Statistics (https://sidra.ibge.gov.br). All calculations were conducted in
R (R Development Core Team, 2011).

4. Results

4.1. Classification approach

We created a classification scheme based on simple classification

routines, remotely sensed information available at no cost, and algo-
rithms that can be implemented in any common and/or free software
that offers the possibility of spatial analyses (E.g.: R, GRASS, among
others). For this approach, we created a set of rules, classified image
mosaics and product accuracy checks based on ground reference points.
We expanded the classification scheme to the years 2010, 2005, 2000,
1995, 1990, and 1985 to identify the main changes in LULC. All derived
maps are presented in Supplementary material 5. To apply this classi-
fication approach in the UXRB, we processed 12 Landsat (1 mosaic) and
∼182 MODIS images (∼45 mosaics) for each year. Some critical years
required more images to double check spectral quality and to replace
cloud covered scenes.

4.2. Accuracy and class separability

We built a three-level hierarchical model (Fig. 2) for image classi-
fication with increasing output detail at each level which, thus, presents
increasing input and computational demand, and an overall decrease in
accuracy (Table 2, Supplementary material 4 for full error matrices).
The comparison of our validation database with the produced maps
shows that the fraction of correctly classified sample points (overall
agreement), considering the proportion of each LULC class in the UXRB,
ranged from 84% to 93%. When decomposing the disagreement, all
levels presented higher disagreement in quantity than in allocation
(Table 2).

All classes presented satisfactory agreement when considering their
extension in the area - equal to or lower than 7%, independent of the
level of classification. The highest disagreement percentages were ob-
served in cultivated areas in L1 (6%), forest and pasturelands in L2 (7%
each), and in forest and pasturelands in L3 (7% each). Forest class error
was composed mostly of commission error and quantity disagreement,
indicating they were overestimated. Pasturelands in both L1 and L2
presented a balanced error between omission and commission, as well
as for quantity and allocation disagreement, indicating both over-
estimation and spatial dislocation.

When not considering class extension and calculating accuracy di-
rectly from observed matrix values, few classes present lower accuracy
than expected. In L2, secondary complex and bare land present com-
mission errors of 52% and 54%, respectively. In L3, woody Cerrado
(39%), shrub-grassland Cerrado (76%), secondary complex (59%), de-
graded pasturelands (57%), and bare soil (44%) presented higher
omission and commission error percentages. Still, L1 presented great
accuracy for all classes. This result was expected, since L1 class separ-
ability based on Landsat bands is highly reliable (See Supplementary
Material 5 – Fig. 1 for spectral profile). L2 classification is dependent on
Level 1, and requires the use of the spectral indexes DGEI and NDVI to
separate croplands from pasturelands, and pasturelands from bare soil
(Fig. 3). Natural covers could still be separated from Landsat band data
(Fig. 2 in Supplementary material 5). L3 classification was dependent
on previous levels and thus represents the most complex model, re-
quiring multiple indices to separate classes. Classes with higher separ-
ability, such as dense forest, and double cropping systems, presented
the highest accuracy (Fig. 4). Degraded pasturelands were mostly
confused with pastureland, indicating that we set a conservative rule
when separating those classes.

When we compare our mapping results to those obtained by other
institutions using different mapping schemas of remote sensing classi-
fication (Table 3), we also achieved high values of overall agreement,
indicating a high correspondence among them. However, it is important
to highlight that LULC validation analyses based on databases created
for other purposes should not be considered as accurate as the analysis
produced from our validation dataset. Data from other sources contain
their own errors, inherent in their production, in addition to errors
which may arise from legend adaptation. Furthermore, IBGE data for
planted cropland area also supports our methodology, as we found 99%
correspondence between this survey and our classified maps through

Table 2
Overall agreement, quantity disagreement, allocation disagreement, and
number of classes relative to the proposed land use and land cover classification
workflow in the Upper Xingu River Basin (Mato Grosso, Brazil) in 3 levels of
information. Calculation was based on comparison with 1500 ground reference
points collected in 2016. Complete error matrix can be assessed in
Supplementary Material 4.

Reference database (2016)

Level 1 Level 2 Level 3

Overall agreement (%) 93.21 86.49 83.64
Quantity disagreement (%) 4.43 8.84 10.19
Allocation disagreement (%) 2.35 4.67 6.17
N° of classes 5 11 16

A. S. Garcia, et al. Remote Sensing Applications: Society and Environment 15 (2019) 100233

7

http://ipam.org.br
https://www.socioambiental.org
http://www.worldbank.org
http://www.worldbank.org
http://www.ipea.gov.br
https://sidra.ibge.gov.br


time (see Fig. 5 and the Supplementary material 4 for graphic by mu-
nicipality).

4.3. LULC change in the UXRB

The period with the highest natural vegetation loss rate in the UXRB
was observed to be between 2000 and 2005 (- 5%. Year−1), while the
average rate was about – 2%. Year−1. According to L2 mapping, before
1995, most land use change occurred in the savanna formations
(9500 km2 of ∼17,000 km2), and resulted primarily from pasture ex-
pansion (Fig. 6; See Supplementary material 7 for transition and area
tables). From 1995 to 2010, expansion grew mainly over forested areas,
while from 2010 to 2015, savanna formations have again been the main
target of agricultural expansion. The observed rates of deforestation
between 1995 and 2005 can be spatially divided into two main

expansion axes. Until 2000, land use change was most intense at the
east and southeast bounds of the UXRB, with large areas of tropical
forest converted into pasturelands (∼30,000 km2). From 2000 to 2005,
when the highest rates of deforestation were observed, forest clearing
occurred mainly in the western portion of the basin and represented
both crop and pastureland expansion.

While the highest rates of pasture and crop expansion occurred,
respectively, between 1990-1995 and 1995–2005, rates dropped to
among the lowest between 2005 and 2010. This last period was also
marked by the largest spread of intensification according to L3 map-
pings - 15% of pasturelands became croplands, and 25% of single crop
systems became double cropping systems (Fig. 7; See Supplementary
material 7 for transition and area tables). Additionally, pastureland
decreased in size during this period, as did the rate of improvement of
degraded pasturelands. In this period, cropland expansion rate slightly

Fig. 3. Separability between (a) croplands and pas-
turelands derived from the differential greenness
enhancement index (DGEI) calculated from MODIS;
and (b) pasturelands and bare soil derived from
NDVI calculated from Landsat. Values were extracted
based in ground reference points collected to assess
classification accuracy.

Fig. 4. Separability between classes proposed for
classification at level 3. Pasturelands and degraded
pasturelands are compared derived from the differ-
ential greenness enhancement index – DGEI (a) and
the sum of EVI values through a year – SUM (b).
Single and double cropping systems are compared
based on how many days along the year an EVI > 0.5
is present – COUNT(c). Forest, woody and shrub-
grassland, all different savanna physiognomies, are
compared based on SUM (d), NDVI values (e), and
the minimal EVI value through a year (f). Values
were extracted based on ground reference points
collected to assess classification accuracy.
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decreased. With the exception of double crop system, cropland expan-
sion rates increased again between 2010 and 2015. From 2010 to 2015,
we observed the largest conversion of pastureland into single or double
cropping agricultural systems (∼9000 km2), while conversion of native
vegetation, mainly Cerrado formations, increased again (∼6500 km2 of
cerrado and ∼2500 km2 of forest were converted into crop systems and
pastureland). Additionally, degraded pastureland area also increased
during this period.

As expected, the expansion of harvested area and cattle herd is
positively correlated with prices and the exchange rate between
American Dollar and Brazilian Real (Table 4). For example, the ob-
served peak in the rate of change for cropland (2000–2005) overlaps
with the highest prices received by producers in the analyzed period
(see Supplementary Material 7 for figures). Still, the exchange rate
presented a significantly higher correlation to the expansion of agri-
culture production than commodity prices.

5. Discussion

5.1. LULC classification and legend

The proposed classification scheme and legend produced spatially
explicit information on LULC for the UXRB with more accuracy than we
would expect if using global or national products. Besides presenting an
overall accuracy between 69 and 78%, global land cover products
achieve poor agreement among themselves in tropical ecotones and
diverse landscapes (Herold et al., 2008). By design, regional LULC maps
derived from satellite images generally present higher levels of accu-
racy than global mapping schemas because of their intrinsic variability.
Our corresponding product (L2) produced an overall accuracy of 86%
for the UXRB. Recently produced regional LULC datasets that en-
compass the UXRB at least partially, also offer information on the study
area. The TerraClass Cerrado has an ∼80% overall accuracy
(Scaramuzza et al., 2017), while TerraClass Amazonia's accuracy is
∼77% (Almeida et al., 2016). Still, these mapping schemes present a
simpler legend assessment when compared to our hierarchical approach
proposed here at L3, and a poorer performance than both L2 (86%
accuracy) and L3 (83% accuracy). Additionally, both datasets together
do not provide information for the whole studied area, since no map-
ping data exists for a large portion of the ecotone zone between the
Amazon and Cerrado biomes located inside the TerraClass Amazonia
study area.

Also, our accuracy analyses showed similar or higher indexes than
others studies applied to similar regions and scale. Sawakuchi et al.,
(2013) applied classification schemes at the Middle Araguaia River
Basin, reaching an overall accuracy of 85%, based on 287 ground re-
ference points and delivering a legend which fits in-between our L1 and
L2 classifications. Walker et al. (2010) also proposed a hierarchical and
multi-level classification approach and applied it to the UXRB. Using a
random forest algorithm, and PALSAR- and Landsat-based data, they
obtained an overall accuracy from 58% (15 classes) to 92% (2 classes),
depending on the classification level. However, all three studies, in-
cluding ours, achieved poorer results for separating (i) Cerrado land
covers, and (ii) pasturelands and degraded pasturelands. Degraded
pastureland is an especially important land cover type due to its link to
food security and conservation. Even though some studies show an
intensification pattern related to improvement in the Brazilian pas-
turelands since 2005 (Parente and Ferreira, 2018), we believe that
degraded pasture is underestimated in our study. The thresholds we
implemented linked to the hysteresis principle were likely too con-
servative.

Few studies have been carried out to improve separability among
Cerrado vegetation physiognomies based on remote sensing products.
Vegetation indices (VIs) derived from MODIS and calculated indices
based on VIs have shown a capacity to separate major physiognomies
(Ratana et al., 2005); however, Landsat-simulated VIs presented a

Table 3
Overall agreement, quantity disagreement, and allocation disagreement calcu-
lated when compared to different databases collected in different years. The
information corresponds to the LULC classification of the UXRB (Brazil) in 3
levels of information. Databases were developed by Instituto de Pesquisa
Ambiental da Amazônia (IPAM) and Instituto Socioambiental (ISA).

IPAM database (2017)

L1 L2 L3

Agreement (%) 79.96 75.38 64.49
Quantity disagreement (%) 13.41 20.41 15.18
Allocation disagreement (%) 6.63 4.21 20.33
ISA database (2010)

L1 L2 L3
Agreement (%) 88.97 90.54 –
Quantity disagreement (%) 9.43 5.69 –
Allocation disagreement (%) 1.60 3.77 –
ISA database (2015)

L1 L2 L3
Agreement (%) 95.85 94.22 –
Quantity disagreement (%) 2.07 2.99 –
Allocation disagreement (%) 2.08 2.78 –

Fig. 5. Correlation between the LULC maps produced for UXRB for croplands
and the census data made available by IBGE for the top four crops (rice, soy-
bean, maize and cotton). (A) Lines show the evolution of cropland according to
L2 classification while bars show planted area data according to IBGE for rice,
soybean discounting secondary maize area (double cropping), main crop maize,
and cotton. (B) Lines show the evolution of cropland (accounting twice for
double cropping areas) according to L3 classification while bars show planted
area data according to IBGE for rice, soybean, maize, and cotton. Data is
available by municipality in Supplementary material 4 – Fig. 2.
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better discrimination capability when compared to these methods
(Ferreira et al., 2003). In our study at the UXRB, even when employing
MODIS and Landsat EVI data together, the overall accuracy for Cerrado
physiognomy separability was 61% (L3) when not weighting the full
class extension, and even lower values were found for shrub-grassland
formations. Since shrub-grassland encompasses only 1% of the land-
scape, and due to the few samples obtained in field surveys, these

results are possibly associated with a poor set of rules in the classifi-
cation process leading to low accuracy values. Still, the results suggest
that further attention should be given to studying the temporal pattern
of spectral responses in different Cerrado formations. Toniol et al.
(2017) evaluated four classifiers for discriminating Cerrado physiog-
nomies in the rainy and dry seasons, and obtained overall accuracies
from 26% to 84%, depending on the classifier, season, and metrics used.

Fig. 6. Land use and land cover transition for all pixels that have changed through time and in non-protected areas in the Upper Xingu River Basin from 1985 to 2015,
according to level 2 of classification. The vertical boxes represent the proportion of the Upper Xingu River Basin which each land use occupies in a certain year. The
flux lines represent the land use and land cover change. The width of each line represents the proportional amount of land being converted into another use, while
each color represents the use it was turned into. The color scheme follows the legend of the map which shows the land use and land cover distribution in 2015.

Fig. 7. Land use and land cover transition for all pixels that have changed through time and in non-protected areas in the Upper Xingu River Basin from 2000 to 2015,
according to level 3 of classification. The vertical boxes represent the proportion of the Upper Xingu River Basin which each land use occupies in a certain year. The
flux lines represent the land use and land cover change. The width of each line represents the proportional amount of land being converted into another use, while
each color represents the use it was turned into. The color scheme follows the legend of the map which shows the land use and land cover distribution in 2015.
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MODIS derived VI temporal profiles have also been applied to
classify managed land, specifically to extract croplands and to derive
crop-specific classes (Brown et al., 2007, 2013). Most of these studies
have been based on modelling annual VI records instead of single in-
dices (Rizzi et al., 2009). Aside from the simplicity of using indices such
as DGEI or COUNT, one advantage of such method compared to other
approaches is that there is no need to define a time period. In other
words, these indices can be applied to other regions that do not ne-
cessarily present the same agricultural calendar, allowing their use at
regional and global mapping scales. In DGEI calculation, the period of
time used can be much broader than the sowing-growth window (as
applied here), avoiding seasonal changes.

We achieved a more realistic and representative approach using a
segmentation-based approach to turn managed areas into objects, and
turning those objects into analysis units (Blaschke, 2010). Through this
approach we, avoided problems such as pixel heterogeneity, mixed
pixels, and spectral similarity due to crop or pastureland spatial
variability (Peña-Barragán et al., 2011; Yu et al., 2016). Additionally,
while classification approaches often present a larger allocation dis-
agreement than quantity disagreement, our results shows the opposite
(E.g.: Pontius et al. (2011)). It suggests that the combined pixel and
object approach represents the land configuration better than automatic
per-pixel classification methods. Still, the techniques used in this re-
search may not favor mapping of small producers and permanent crops.
Such analysis is out of the scope of this research, but it is encouraged for
future studies. Indices other than the ones used in this study, such as a
clumping index, were not reported to significantly improve separability
in neotropical savannas and are highly correlated with VI (Hill et al.,
2011). We encourage the application of object-oriented approaches and
indices derived from temporal composition in other classification
methods, such as machine learning.

The proposed classification approach allowed us to analyze a more
complex and realistic scenario of LULC change in the UXRB, and thus
address issues related to expansion and intensification, biome specific
dynamic changes, and cropland and pastureland roles in native vege-
tation loss. The high accuracy values attributed to L1 and the applied
legend make this level of classification suitable for studies on law and
policy enforcement (Goetz et al., 2015). L2 addresses general differ-
ences in land use and land cover, offering a reliable product to model
ecosystem dynamics such as regional hydrological balance (Dwarakish
and Ganasri, 2015). The third level of classification offers further in-
formation on regional LULC by addressing vegetative productivity. It
allows users to address issues related to habitat suitability and priority
areas for conservation by separating native vegetation physiognomies.
Such separability issues are even more important and challenging for
the Cerrado biome. Although it is recognized as the richest savanna in
the world and a hotspot for conservation (Klink and Machado, 2005;
Myers et al., 2000), it is still not a major focus of policies and research,
nationally or internationally (Nolte et al., 2017). This pattern is related
to the lack of monitoring techniques and knowledge of ecological dy-
namics taking place in the biome. Our proposed methodology offers
insights into monitoring techniques and encourages further research.
The third level of classification also makes it possible to address food

production, land management, and the relationship between productive
systems and socioeconomic dynamics. The intensified use of agri-
cultural lands is a key discussion topic related to both land sparing for
conservation (Ewers et al., 2009) and socioeconomic development
(Martinelli et al., 2017). Still, a clear drawback of the hierarchical ap-
proach used in this study is the nested dependency between levels of
classification since L3 is dependent on L2, and L2 is dependent on L1.
Possible ways of mitigating this problem include assigning a smaller
weight to classified maps when using them as source of information in
another level of classification, or even avoiding altogether the use of
one classified map in the modelling of another level of classification.

5.2. LULC changes in the UXRB

Until 2000, LULC change in UXRB was primarily driven by pas-
tureland expansion following patterns observed in Amazon and Cerrado
biomes (Ferreira et al., 2012; INPE, 2018). In 1990s and 2000s, the
region transitioned from a pioneer landscape to a consolidated frontier,
in which agro-production moved from a labor-intensive system to one
based on financial capital and integration into market. The consolida-
tion of cattle production in the 90s occurred in all states on the southern
frontier of the Amazon (Margulis, 2004). From 2000 to 2015, land use
transitions in the UXRB indicated an intensification process, which was
manifested through an increase in cultivated area over pastureland,
accompanied by a large reduction in deforestation. Intensification
processes are a result of environmental regulations, technological
changes, economic disincentives for deforestation, and/or market reg-
ulations (Gasparri and de Waroux, 2015). By the end of the study
period, the UXRB became a frontier which supplies both international
and regional markets.

Reductions in deforestation, combined with crop expansion, have
been described for the Brazilian biomes in the last decades (Dias et al.,
2016; Macedo et al., 2012). Brando et al. (2013) shed light on how the
actions of different stakeholders (e.g.: government – zero deforestation
act, private sector – soy moratorium, and non-profit organizations
through multiple campaigns) helped to reduce deforestation in the
UXRB during the 2000s. With available technology, producers were
able to increase yields in order to increase profits. However, our ana-
lysis shows that intensification is biome-dependent. We observed an
increase in agricultural intensification mainly in the Amazon region of
the UXRB, between 2000 and 2005, and 2010–2015. This temporal
pattern is correlated with peaks in the exchange rate, and secondarily
with commodity prices. Expansion is still the dominant LULC change
process in the Cerrado portion of the UXRB, as it is for the Cerrado
biome as whole (Lapola et al., 2013). This expansion can be confirmed
as we observe a reduction of 20% in savanic formation from 2010 to
2015, a value 10 times higher than the one found for the amazon forest
over the same period. The conversion from woody Cerrado to pas-
tureland accounts for the majority of these changes. This process is
correlated with an increase in beef prices. But the low number of
conservation areas, as well as the lack of market regulation and effec-
tive deforestation control programs, are the main differences between
protection schemes in the Cerrado and the Amazon biomes (Gibbs et al.,
2015; Sparovek et al., 2010). According to intensification theories,
without those mechanisms of incentive or control, intensification will
not be encouraged (Meyfroidt et al., 2018).

Cash crops primarily replace pasturelands in the UXRB, followed by
cerrado formations and Amazonian forest - mainly between 2000-2005
and 2010–2015. Those results are partially in accordance with Macedo
(Macedo et al., 2012), which underestimated native vegetation loss at
the cerrado region in the UXRB due to cash crop expansion. Rather than
intensification and regulation effects, the lower conversion of native
vegetation into croplands observed between 2005 and 2010 is a result
of market and currency exchange effects pushing soybean prices down
(Richards et al., 2012). The increase in native vegetation loss again
from 2010 to 2015 supports this idea, together with the hypothesis that

Table 4
Spearman correlation and the corresponding significance at 95% (*) and 99%
(**) confidence level between main agriculture products (cattle herd, harvested
area of soybean and maize accounting for double crop systems), commodities
prices (World Bank), price received by the producers (IPEA), and exchange rate
between American Dollar and Brazilian Real (Central Bank of Brazil). One year
lagged tests presented very similar results.

Cattle herd Soybeans area Maize area

Commodity price (US$) – 0.56* 0.56**
Price received by producers (R$) 0.51* 0.62** –
Exchange rate (US$:R$) 0.77** 0.84** 0.81**
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intensification does not necessarily lead to decreases in the expansion of
agricultural frontiers (Barretto et al., 2013; Rudel et al., 2009). Al-
though our goal was not to analyze indirect frontier development
through land use change, the displacement of cattle production by cash
crops has been observed in the UXRB and elsewhere (Barona et al.,
2010; Fehlenberg et al., 2017; Macedo et al., 2012). Aditionally, in-
creased land market values in areas of soybean expansion have been
shown to drive migration-based development (Richards, 2015). The
increase in deforestation in the Cerrado compared to the Amazon por-
tion of the basin can be considered evidence of a rebound effect. The-
ories concerning this effect state that technology, policies, and market-
drive the intensification of land use as observed in the Amazon portion
of the UXRB (Meyfroidt et al., 2018). Land sparing is observed in a
region when land use is restricted by regulations and, as a consequence,
production price per area increases due to a required disaggregation of
production area. Conversely, expansion is observed elsewhere as a re-
bound effect when land with limited regulations is available – such as in
the Cerrado biome (Soares-Filho et al., 2014); and the production is
focused on products for which the prices are elastic based on demand -
such as soybean (Heien and Pick, 1991; Meyfroidt et al., 2018).

6. Conclusions

Tropical ecotone zones and agricultural frontiers, such as the UXRB,
are important for Neotropical biosociodiversity and for agricultural
production. However, their inherent complexity poses challenges for
LULC change analyses and LULC planning. The combination of multiple
classification techniques, as well as the combination of remote sensing
and GIS-based information which assesses temporal variability, have
been reported as superior approaches compared to traditional techni-
ques. Our proposed classification scheme uses an unsupervised classi-
fication approach to initially group pixels into few classes. These classes
are then reclassified through decision trees by the integration of multi-
sensor and GIS data into an object and pixel context. The multi-data,
-temporal and -spatial scale characteristics of the analyses were crucial
to maintaining high spatial resolution and the high amount of in-
formation throughout the hierarchal classification. Furthermore, the
approaches applied here can give insights into continental and global
mapping processes such as the use of metrics based on flexible time
series with no need to define fixed starting and ending dates. Still, to
transfer the methodology to other study areas, thresholds and in-
formation should be adapted.

Because of their ability to discriminate between different LULC in
complex environments, the LULC products created in this research en-
abled us to differentiate between different processes that drive agri-
cultural production increases in the UXRB. Beside our observation that
the increase in agricultural production in the UXRB being generally
correlated with commodity prices and monetary exchange rates, we
were also able to map different processes affecting production (ex-
pansion, intensification, and degradation). For instance, the area in the
basin which overlaps with the Amazon biome experiences intensifica-
tion, while the Cerrado biome experiences expansion. This result is
mainly linked to government and market regulations, which are fo-
cused in the Amazon but are lacking in the Cerrado biome.
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