

ESCOLA SUPERIOR DE AGRICULTURA "LUIZ DE QUEIROZ" LEB 1440 – HIDROLOGIA E DRENAGEM

PRECIPITAÇÕES

Prof. Dr. Fernando Campos Mendonça

Haikai Hidrológico

Toda chuva, à luz da Ciência, Tem altura, intensidade, duração e frequência.

Precipitações - Caracterização

Importância

- Infiltração no solo
 - Zona radicular
 - Recarga de aquíferos
 - Freáticos
 - Confinados
- Escoamento superficial
 - Erosão
 - Assoreamento
 - Inundação
- Excedente hídrico em rios
 - Diluição de poluentes
 - Armazenamento Barragens

Eventos Extremos - Microexplosão

Microexplosão – Campinas, SP

Altura Precipitada (h, mm)

h = volume de água/ área da boca do coletor

• $1 \text{ mm} = 1 \text{ L/m}^2$

$$A = \frac{\pi D^2}{4}$$

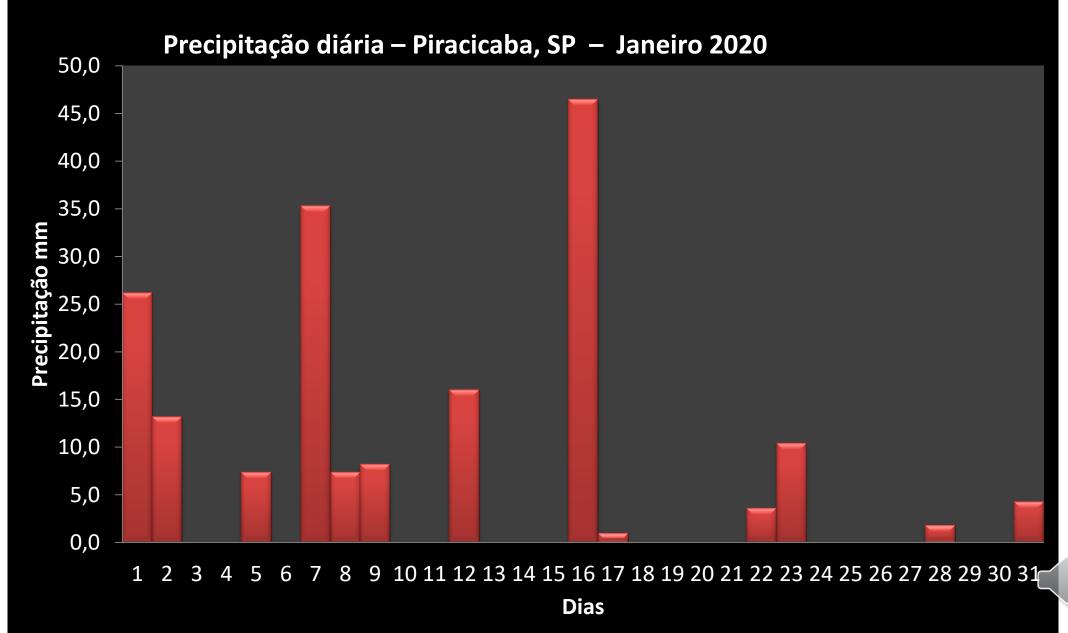
Duração (t, min ou h)

Evento como um todo

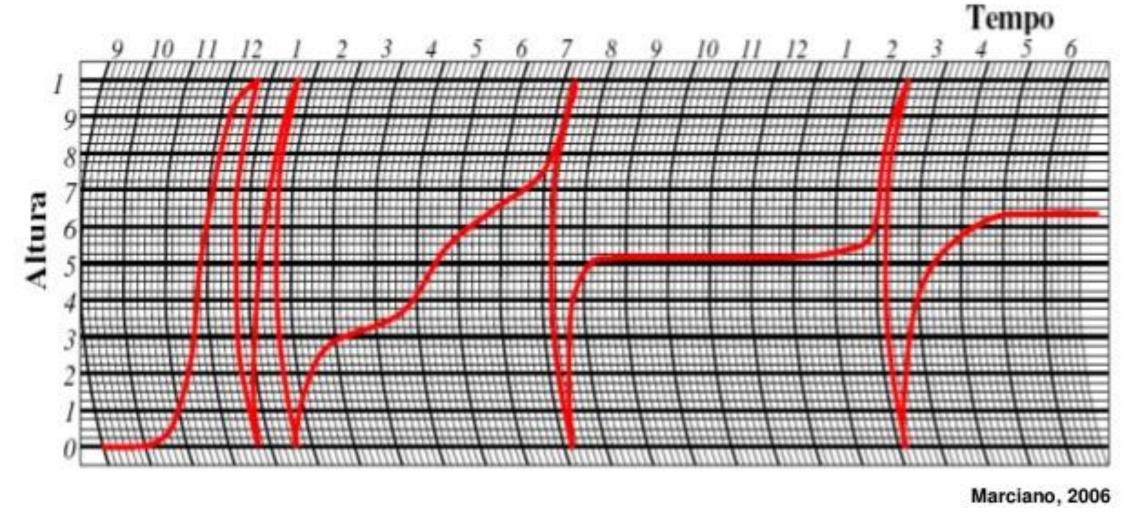
Período especifico de interesse (fração do todo)

• Importância:

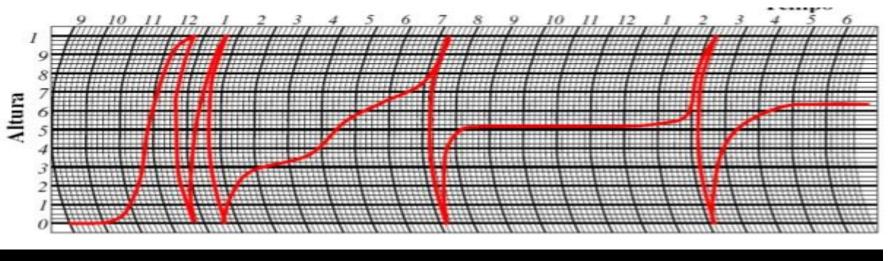
- Calcular intensidade da chuva (i, mm/h)
- Calcular escoamento superficial (Q_{sup})
- Calcular vazão de pico de cheias (Q_p)

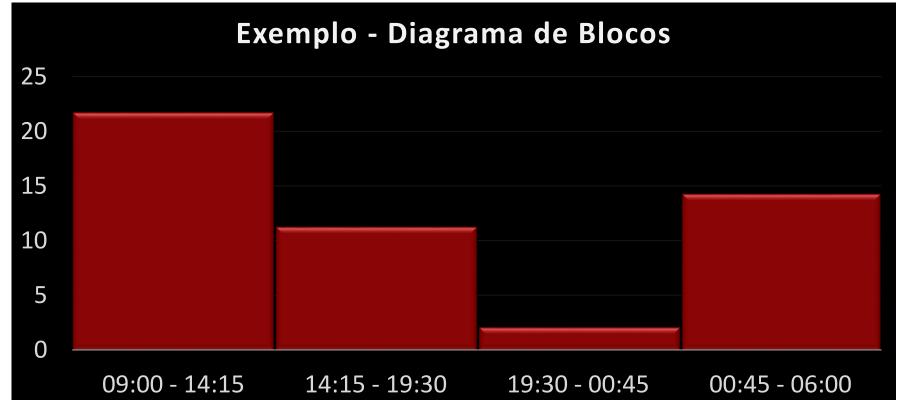


Intensidade média (i, mm/h) i = h/t

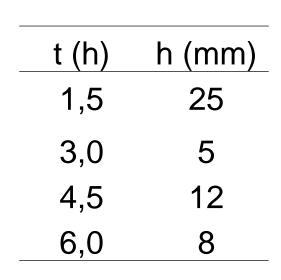


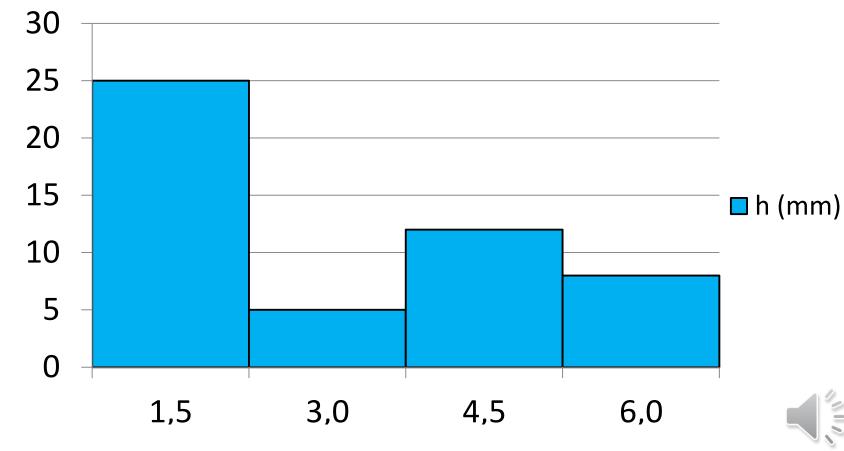
Chuva - Distribuição temporal


Exemplo: Pluviograma e Diagrama de Blocos

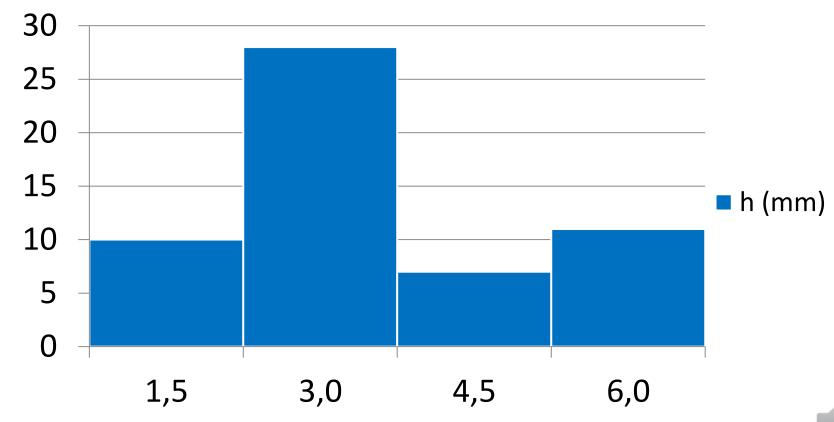


Exemplo: Pluviograma e Diagrama de Blocos





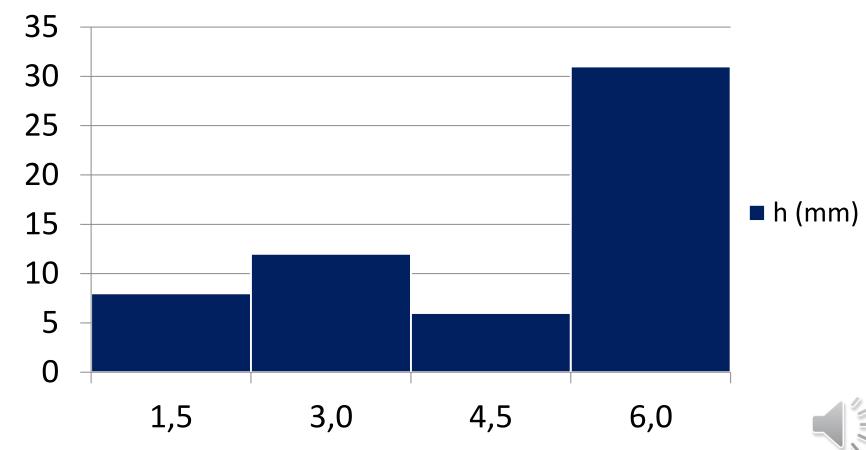
Exemplo: Chuva Adiantada



Exemplo: Chuva Intermediária

Chuva Intermediária

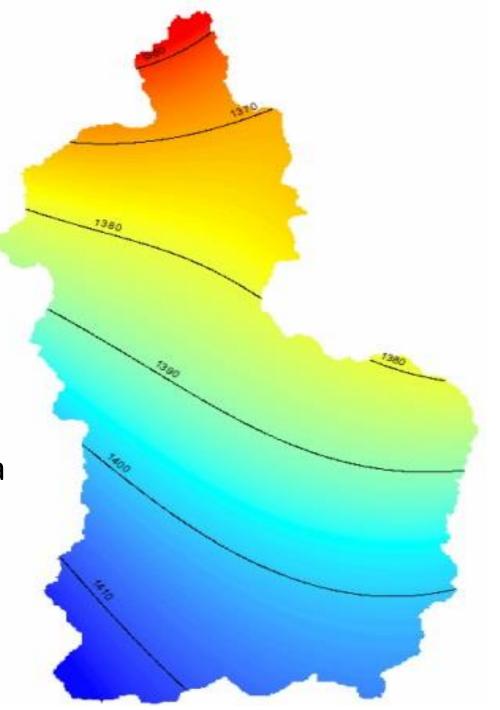
t (h)	h (mm)
1,5	10
3,0	28
4,5	7
6,0	11



Exemplo: Chuva Atrasada

Chuva Atrasada

t (h)	h (mm)
1,5	8
3,0	12
4,5	6
6,0	31

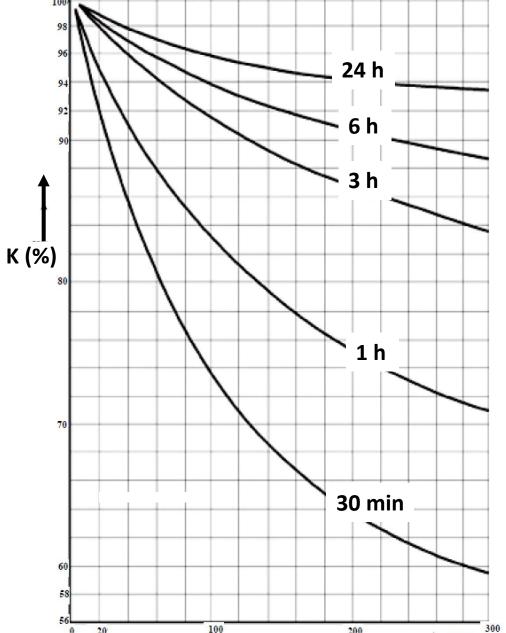

Chuva Distribuição espacial

Exemplo: área plana 296 km²

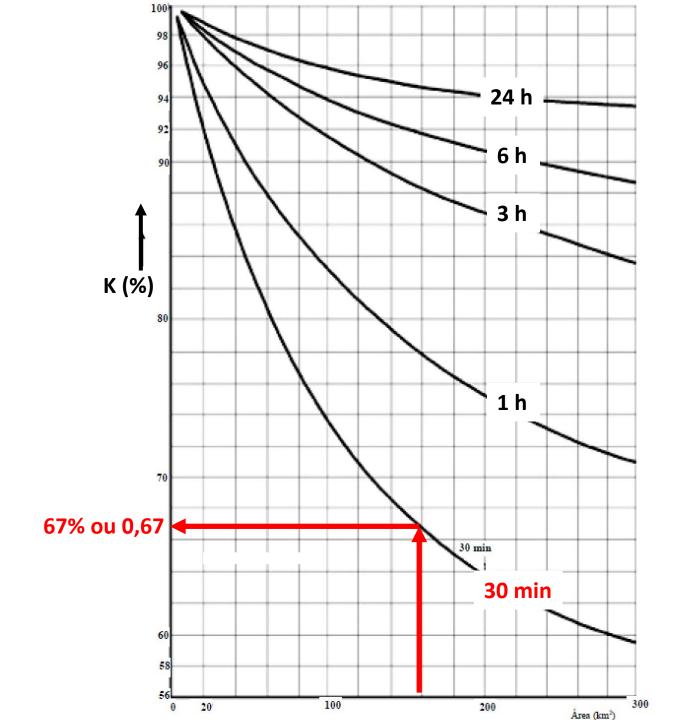
Isoietas

Iso: igual letos: chuva

(mesma h, mm)

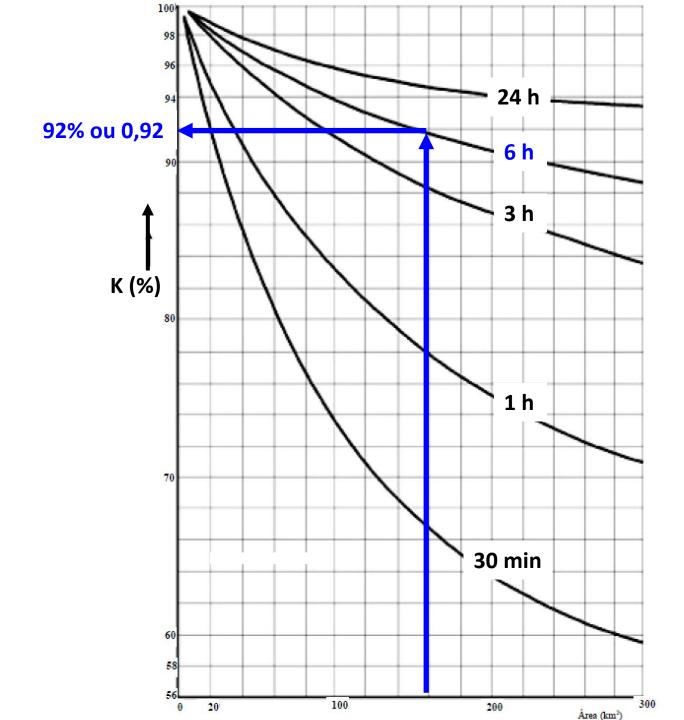

Distribuição espacial da chuva

- Áreas pequenas (≤ 2 km²)
 - Despreza-se a distribuição espacial da chuva
 - Assumir hproj = hepicentro
- Áreas grandes (> 2 km²)
 - Considerar a distribuição espacial da chuva
 - $-h_{proj} = h_{epicentro} \times K$
 - K fator ou fração de abatimento da chuva (determinação gráfica)


Coeficiente K – Reducão de h_{proj}

Coeficiente K

Redução de h_{proj}



Coeficiente K

Redução de h_{proj}

Probabilidade de excedência (P) Período de retorno (T)

- Pressuposição
 - Clima não está mudando (na escala de tempo considerada)
 - Eventos passados → mesma probabilidade de ocorrência futura

- Período de retorno (T)
 - Intervalo de tempo (geralmente em anos) em que se espera que o evento extremo seja igualado ou superado ao menos uma vez

Probabilidade de excedência (P) e Período de retorno (T)

$$P = m/n$$
 $T = 1/P$

P - probabilidade de ocorrência de evento igual ou superior (≥)

m – nº de ordem do evento na série de dados

n - nº de dados da série do evento

T – período de retorno do evento (anos)

Exemplo

ESALQ

 Obtenção da chuva máxima de 24 horas com período de retorno de 5 anos (T = 5).

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	т	T *
1960	50						
1961	40						
1962	30						
1963	60						
1964	80						
1965	45						
1966	70						
1967	20						
1968	10						
1969	65						

Ppt máx (24 h) – Dados ordenados

Ordem: do mais raro ao mais comum

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	т	T *
1960	50	80					
1961	40	70					
1962	30	65					
1963	60	60					
1964	80	50					
1965	45	45					
1966	70	40					
1967	20	30					
1968	10	20					
1969	65	10					

Nº de ordem (m) e Total de dados (n)

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	т	T *
1960	50	80	1				
1961	40	70	2				
1962	30	65	3				
1963	60	60	4				
1964	80	50	5				
1965	45	45	6				
1966	70	40	7				
1967	20	30	8				
1968	10	20	9				
1969	65	10	10				

Probabilidade de excedência (P)

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = (m+1)/n	т	T *
1960	50	80	1	10%			
1961	40	70	2	20%			
1962	30	65	3	30%			
1963	60	60	4	40%			
1964	80	50	5	50%			
1965	45	45	6	60%			
1966	70	40	7	70%			
1967	20	30	8	80%			
1968	10	20	9	90%			
1969	65	10	10	100%			

Ppt máx (24 h) Período de Retorno (T)

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	т	T *
1960	50	80	1	10%		10	
1961	40	70	2	20%		5	
1962	30	65	3	30%		3,3	
1963	60	60	4	40%		2,5	
1964	80	50	5	50%		2	
1965	45	45	6	60%		1,7	
1966	70	40	7	70%		1,4	
1967	20	30	8	80%		1,3	
1968	10	20	9	90%		1,1	
1969	65	10	10	100%		1	

Período de Retorno (T)

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	T = 1/P	T *
1960	50	80	1	10%		10	
1961	40	70	2	20%		5	
1962	30	65	3	30%		3,3	
1963	60	60	4	40%		2,5	
1964	80	50	5	50%		2	
1965	45	45	6	60%		1,7	
1966	70	40	7	70%		1,4	
1967	20	30	8	80%		1,3	
1968	10	20	9	90%		1,1	
1969	65	10	10	100%		1	

Probabilidade de excedência (P* - Método de Kimball)

Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	T = 1/P	T *
1960	50	80	1	10%	9,09%	10	
1961	40	70	2	20%	18,18%	5	
1962	30	65	3	30%	27,27%	3,3	
1963	60	60	4	40%	36,36%	2,5	
1964	80	50	5	50%	45,45%	2	
1965	45	45	6	60%	54,55%	1,7	
1966	70	40	7	70%	63,64%	1,4	
1967	20	30	8	80%	72,73%	1,3	
1968	10	20	9	90%	81,82%	1,1	
1969	65	10	10	100%	90,91%	1	

P* - probabilidade de excedência calculada com o Método de Kimball

Período de Retorno (T* - Método de Kimball)

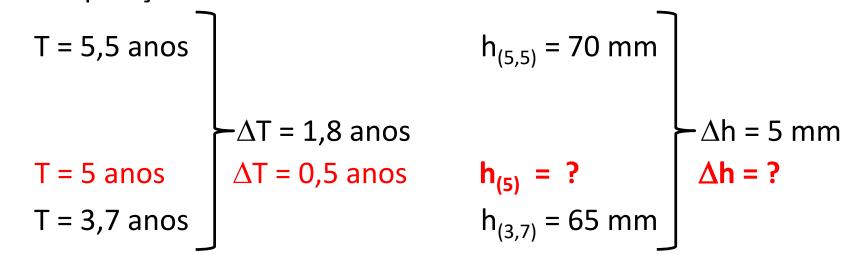
Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n	P* = m/n+1	T= 1/P	T* = 1/P*
1960	50	80	1	10%	9,09%	10	11
1961	40	70	2	20%	18,18%	5	5,5
1962	30	65	3	30%	27,27%	3,3	3,7
1963	60	60	4	40%	36,36%	2,5	2,8
1964	80	50	5	50%	45,45%	2	2,2
1965	45	45	6	60%	54,55%	1,7	1,8
1966	70	40	7	70%	63,64%	1,4	1,6
1967	20	30	8	80%	72,73%	1,3	1,4
1968	10	20	9	90%	81,82%	1,1	1,2
1969	65	10	10	100%	90,91%	1	1,1

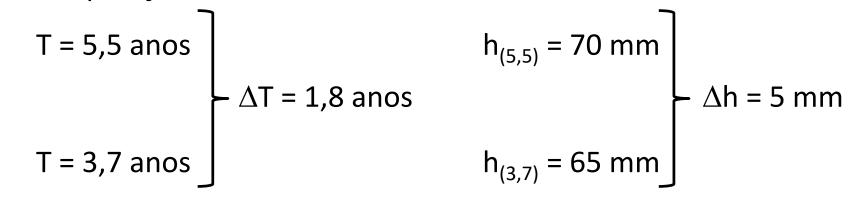
P* - probabilidade de excedência calculada com o Método de Kimball

T* - período de retorno calculado a partir de P*

Ppt máx (24 h)

Período de Retorno (T - Método de Kimball)


Ano	h _{24h}	h _{24h} Ordenados	m	P = m/n+1	T = 1/P	
1960	50	80	1	9,09%	11	
1961	40	70	L 3	18,18%	5,5	
1962	30	65	h = ?	27,27%	3,7	T = 5
1963	60	60	4	36,36%	2,8	
1964	80	50	5	45,45%	2,2	
1965	45	45	6	54,55%	1,8	
1966	70	40	7	63,64%	1,6	
1967	20	30	8	72,73%	1,4	
1968	10	20	9	81,82%	1,2	
1969	65	10	10	90,91%	1,1	

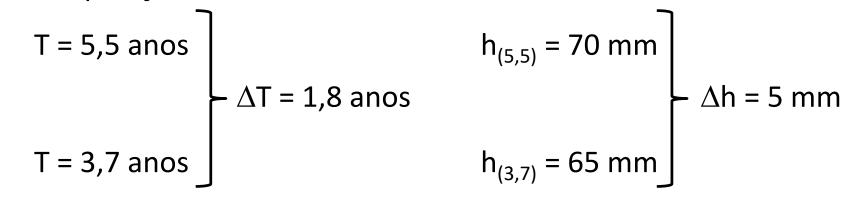

T = 5 anos

T = 5 anos

$$T = 5$$
 anos

$$T = 5$$
 anos $\Delta T = 0.5$ anos

$$h_{(5)} = ?$$


$$\Delta h = ?$$

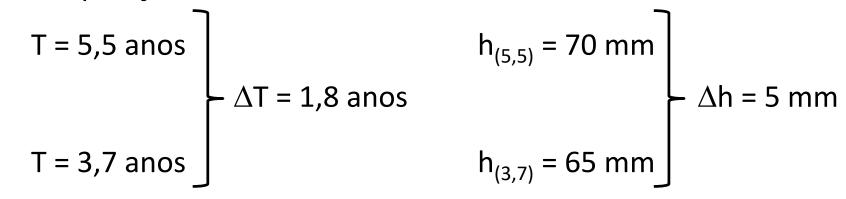
ΔΤ	Δh
1,8	5

T = 5 anos

$$T = 5$$
 anos

$$T = 5$$
 anos $\Delta T = 0.5$ anos

$$h_{(5)} = ?$$


$$\Delta h = ?$$

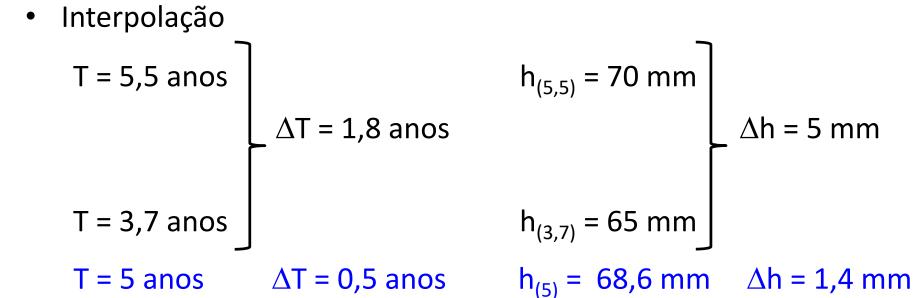
ΔΤ	Δh
1,8	5
0,5	X

T = 5 anos

$$T = 5$$
 anos

$$T = 5$$
 anos $\Delta T = 0.5$ anos

$$h_{(5)} = ?$$


$$\Delta h = ?$$

ΔΤ	Δh	
1,8	5	
0,5	X	
$X = \Delta h_{(5)} = 1.4$		

T = 5 anos

ΔΤ	Δh	
1,8	5	
0,5	X	
$\Delta h_{(5)} = 1.4$		
$h_{(5)} = 70 - 1,4 = 68,6 \text{ mm}$		

Período de retorno (T) Estruturas hidráulicas de controle

ESTRUTURA	T (anos)
1 – Galeria de águas pluviais	2 a 10
2 – Terraço agrícola	5 a 10
3 – Retificação de rios em zonas rurais	20 a 100
4 – Cota de casa de bombas (irrigação)	25 a 100
5 – Bueiros e vertedores (pequenas barragens)	100
6 – Vertedores de barragens (porte médio)	1.000
7 – Vertedores de grandes barragens	10.000
8 – Vertedores de barragens muito grandes	Ppt máxima possível (PMP)

Chuvas máximas com t ≤ 24 h

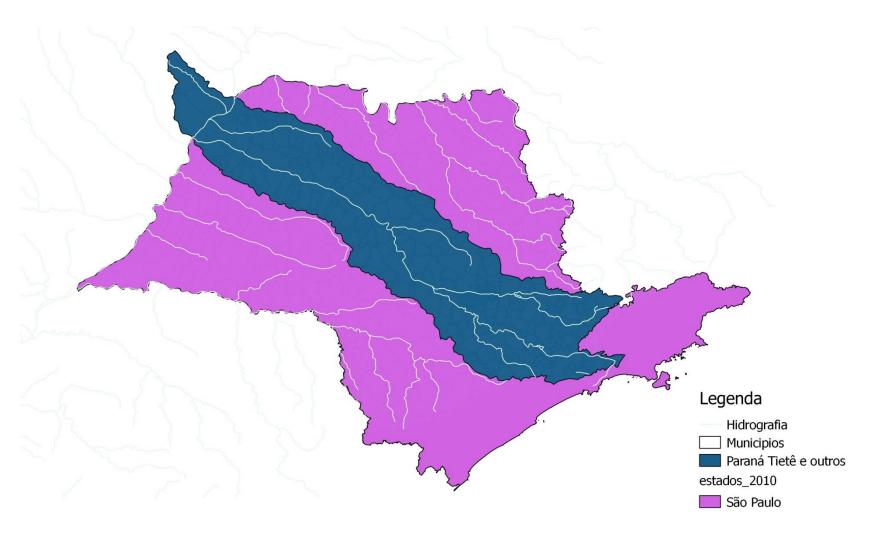
A chuva que gera a máxima vazão para um dado período de retorno tem duração igual à do tempo de concentração.

Cada obra hidraúlica tem características distintas de concentração de água.

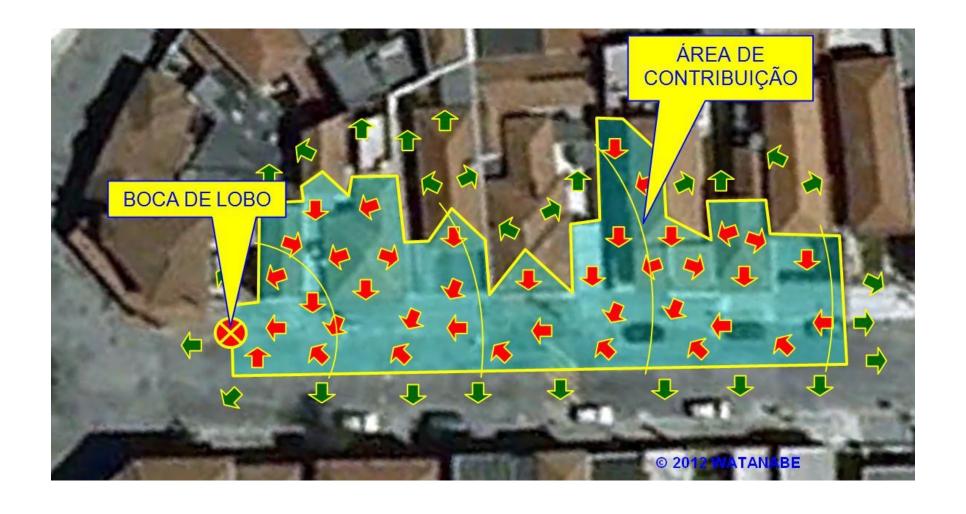
Chuvas máximas com t ≤ 24 h

Tempo de concentração (T, anos):

* Tempo necessário p/ que toda a área (BH ou área de contribuição) forneça água para o escoamento superficial


* Tempo em que ocorre a vazão de pico (Qp)

Área de contribuição grande


BH Rio Tietê

Área de contribuição pequena Bueiro de rua

Conclusão

Dimensionamento de obras hidráulicas

Determinar a chuva de projeto:

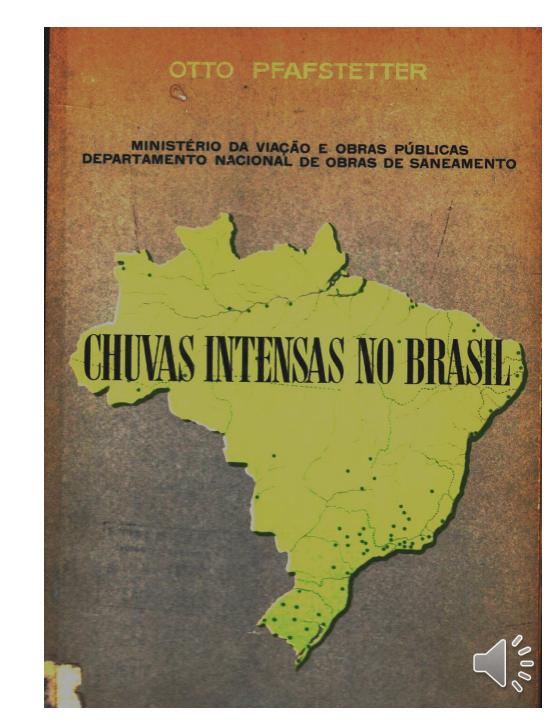
Chuva de Projeto = Chuva máxima

Duração (t)

Período de retorno (T)

Fontes de dados de precipitações intensas no Brasil

- Formas de apresentação
 - Gráficos e tabelas
 - Equações IDF (Intensidade, Duração, Frequência)
 - Softwares
 - Coeficientes de transformação



Gráficos e tabelas

Pioneiro:

Eng. Otto Pfasfstetter DNOS

- 98 postos, 14 em SP Gráficos (1957)
- Cetesb SP
 Tabelas (1982)

EQUAÇÕES

Otto Pfafstetter:

$$h_{t,T} = T^{\alpha + \frac{\beta}{T^{\gamma}}} \cdot [a(t) + b \cdot \log(1 + c(t))]$$

h_{t.T} – precipitação (mm) correspondente à duração t e ao período de retorno T

T – período de retorno (T, anos)

t – duração da precipitação (horas)

a, b, c, α , β , γ - constantes de ajuste da equação para cada local

Obs.: Este modelo gerou uma tabela de fácil utilização (Próximo slide).

Gráficos e tabelas

Duração	Período de retorno (T, anos)					
	2	5	10	25	50	100
	PIRACICABA - SP					
15 min	21	24	27	30	33	35
30 min	30	37	42	48	53	58
1 h	39	48	55	65	73	81
2 h	48	58	66	78	88	98
4 h	57	70	81	96	108	122
8 h	56	83	95	113	128	145
12 h	74	91	104	124	140	168
24 h	87	106	121	144	162	182

Equações IDF

Modelos IDF (Intensidade, Duração e Frequência)

Denardin & Freitas (1982):

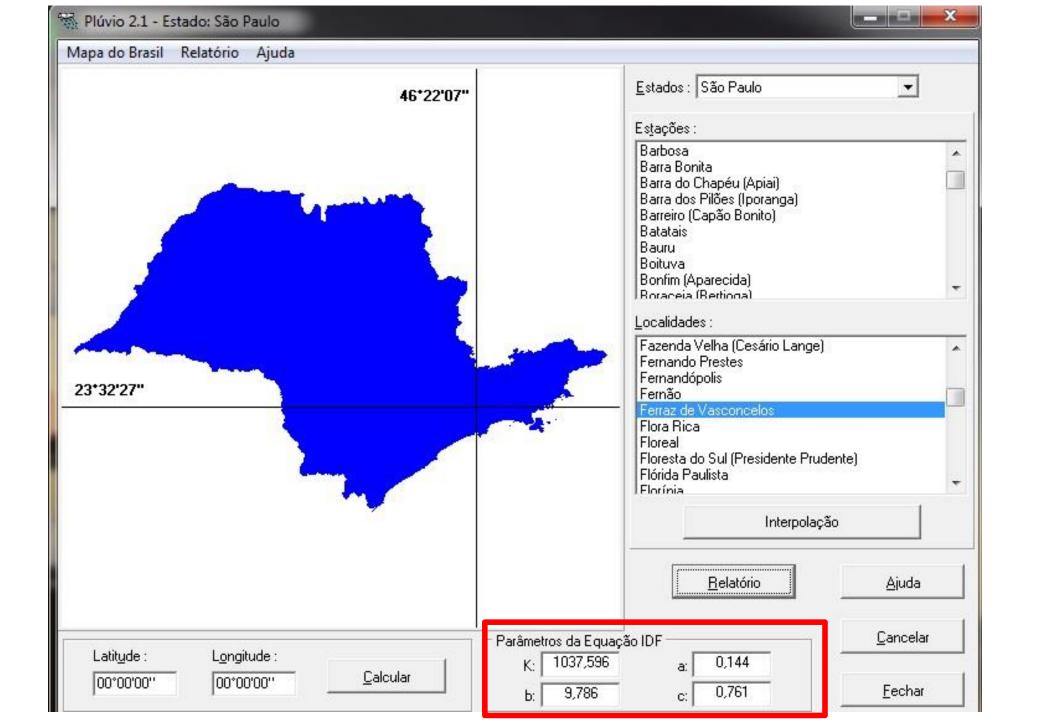
$$i = \frac{a.T^b}{(t+c)^d}$$

i – intensidade da precipitação (mm/h)

t – duração da precipitação (min)

T – período de retorno (anos)

a, b, c, d – constantes de ajuste da equação para cada local


Softwares

• Pluvio 2.1

http://www.gprh.ufv.br/?area=softwares

• Uso de equações IDF $i = \frac{K \cdot T^a}{(t+b)^c}$

Coeficientes de transformação

$$h_{24 h} = h_{1 dia} \times 1,14$$

$$h_{12h} = h_{24h} \times 0.85$$

$$h_{1h} = h_{24h} \times 0.42$$

$$h_{30 \text{ min}} = h_{1 \text{ h}} \times 0.74$$

$$h_{15 \text{ min}} = h_{30 \text{ min}} \times 0,54$$

$$h_{1dia} \times 1,14 \rightarrow h_{24 h} \times 0,42 \rightarrow h_{1h} \times 0,74 \rightarrow h_{30min} \times 0,54 \rightarrow h_{15min}$$
 \downarrow $\times 0,85$ \downarrow \downarrow $h_{12 h}$

Análise de dados pluviométricos Ppt média na BH

1) Média Aritmética simples

2) Método de Thiessen

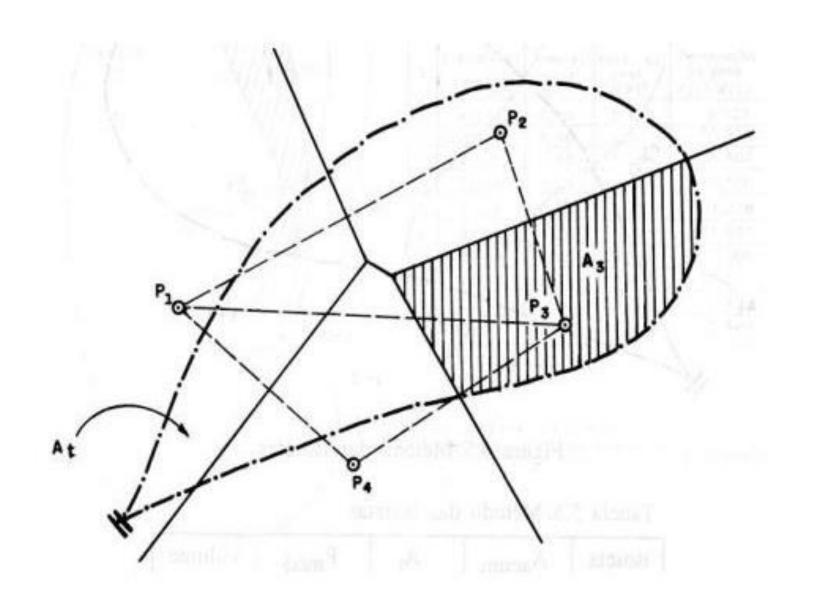
Média ponderada por área de abrangência

Média Aritmética Simples

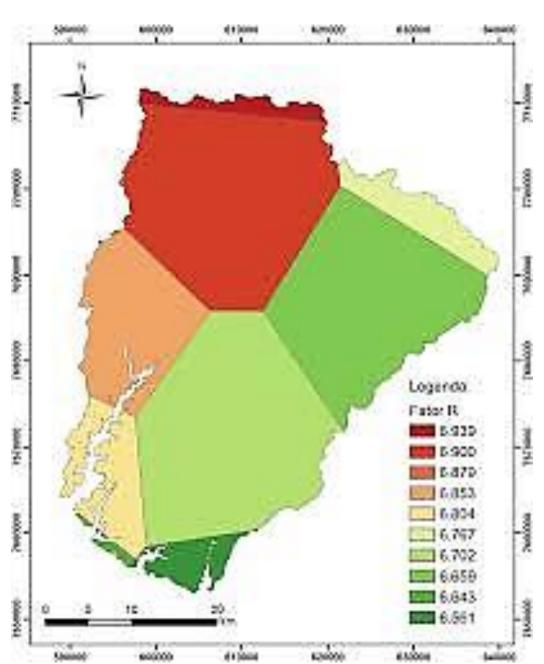
$$Hm = \frac{80 + 105 + 60 + 50}{4} = 73,8 \text{ mm}$$

- O método negligencia dados fora da BH
- Não considera área de abrangência do posto meteorológico

Ppt média ponderada por área de influência (P_m)


Precipitação medida em cada posto (P_i)

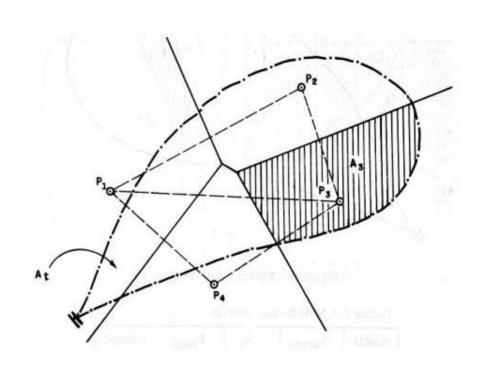
Determinação da área de influência (A_i)


Divisão das áreas de influência

Uso de mediatrizes e circuncentros

Método de Thiessen PASSO-A-PASSO

- Identificar postos meteorológicos na BH e no entorno
- Traçar retas pontilhadas entre os postos adjacentes
- Dividir ao meio as retas entre postos adjacentes
- Traçar mediatrizes entre pontos adjacentes
- Unir mediatrizes p/ separar áreas de influência
 - Ponto de encontro = Circuncentro
- Calcular a área de influência de cada posto (A_i)



$$Pm = \frac{\sum AiPi}{\sum Ai}$$

Pm é a precipitação média na bacia

Ai é área de influência de cada posto;

Pi é a precipitação de cada posto

Tamanho das séries históricas

Séries históricas curtas "escondem" extremos

- Qual o tamanho mínimo da série histórica?
- Alexander Binnie (1839-1917):
 - Análise de 123 estações com mais de 50 anos de dados
 - Médias móveis (2 dados, 3 dados,..., 40 dados)

Tamanho das séries históricas

(Erros médios associados ao tamanho da série)

Tamanho das séries históricas

- Dados de chuva:

Série ideal: ≥ 30 anos (erro médio ≤ 2%)

Série aceitável: ≥ 15 anos (erro médio ≤ 5%)

Fontes de Informação Utilizadas na Aula

- Chuva sobre o gramado do Prédio Principal da ESALQ Filipe Paes
- Isoietas

http://www.conhecer.org.br/enciclop/2015c/agrarias/pluviometria% 20da%20bacia.pdf

Área de contribuição de um Bueiro

http://www.ebanataw.com.br/drenagem/area.htm

Gráfico de chuvas no mês de Março

http://www.inmet.gov.br/portal/index.php?r=tempo/graficos

