Introdução às Medidas em Física (4300152)

Aula 12 (30/06/2023)

Paula R. P. Allegro

paula.allegro@usp.br

Na aula de hoje:

- Conceitos:
 - o Análise de dados:
 - Análise Gráfica escala logarítmica
 - Dedução empírica de uma lei física

• Experiência 7: Cordas vibrantes - Continuação

Referências para a aula de hoje:

- Apostila do curso (página principal do moodle):
 - o Experiência VII (aulas 11 e 12) Cordas Vibrantes .

- Aba Experimento # 7 -Cordas vibrantes:
 - Tabela densidades linear dos fios.

Dependência das frequências de ressonância

- Os parâmetros principais são:
 - Modo de vibração (n)
 - Comprimento do fio (L)
 - Densidade (μ)
 - Vamos usar a densidade linear $\mu = m/L$
 - Tensão aplicada (T)

- Como correlacionar a frequência com esses parâmetros?
 - Estudando a variação da frequência com cada parâmetro

Descrição empírica:

- Como obter uma expressão para a frequência de ressonância?
- Hipótese:
 - Supor que a frequência depende de um parâmetro como uma potência deste parâmetro

$$f(x) = A \cdot x^b$$

 No caso dos nossos parâmetros, supor uma combinação de potências

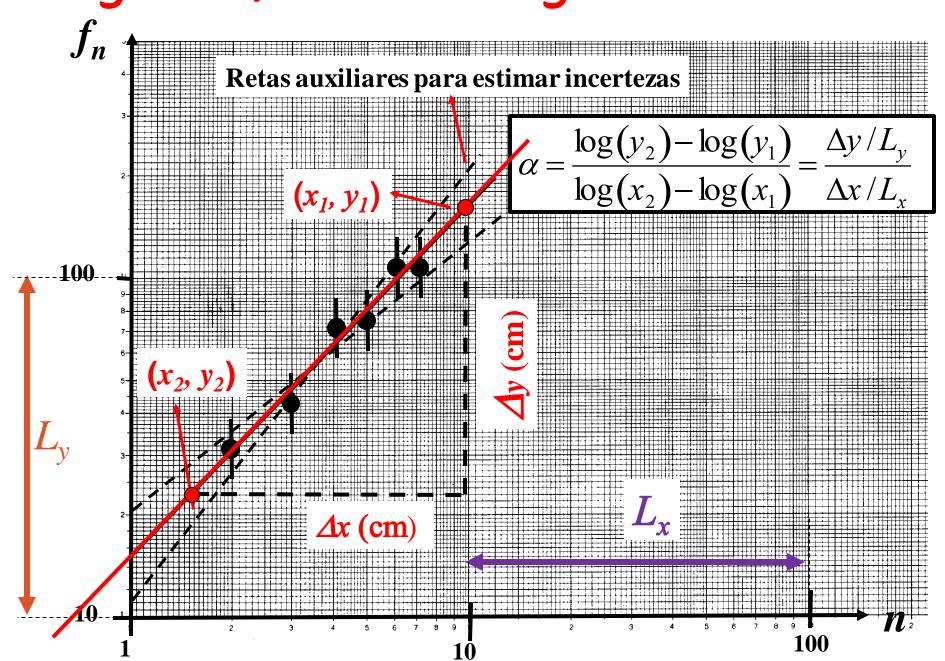
$$f_n = C n^{\alpha} L^{\beta} T^{\gamma} \mu^{\delta}$$

Descrição empírica:

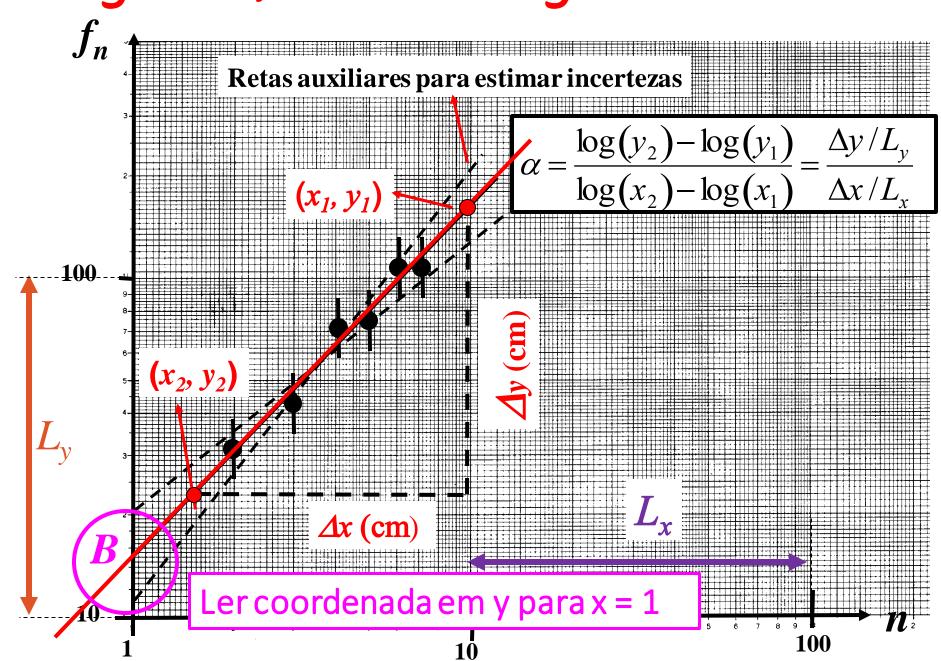
• Fixar todos os parâmetros e variar somente *n* :

$$f_n = Bn^{\alpha}$$
 , onde: $B = cte = CL^{\beta}T^{\gamma}\mu^{\delta}$

- Como determinar $B \in \alpha$?
 - Extrair o logaritmo da expressão acima:


$$\log(f_n) = \log(Bn^\alpha)$$

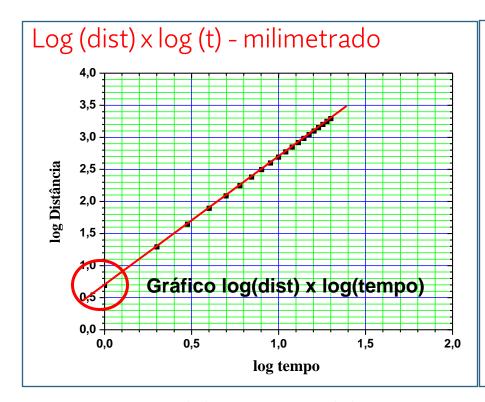
$$\log(f_n) = \log(B) + \alpha \cdot \log(n)$$

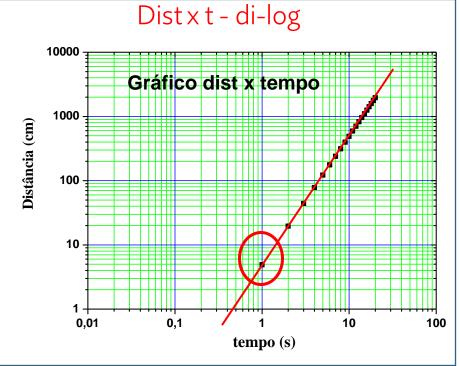

$$y = a + b \cdot x$$

$$y = \log(f_n) \qquad x = \log(n) \qquad a = \log(B) \qquad b = \alpha$$
função variável Coef. linear Coef. ang

Dilog: Coeficientes angular e linear

Dilog: Coeficientes angular e linear


Dilog: Coeficiente linear


Função:
$$d = \frac{1}{2}gt^2$$
 Linearização:

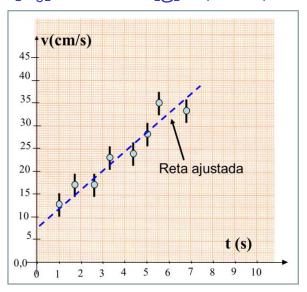
$$\log(d) = \log\left(\frac{1}{2}g\right) + 2\log(t)$$

$$y = a + b x$$

Coef. linear = log da constante multiplicativa

Valor log(y) para log(x) = 0

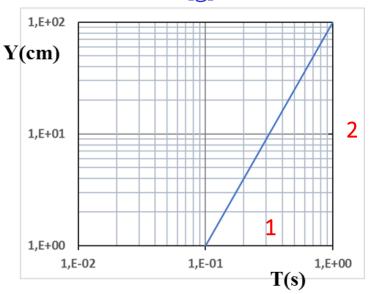
Esc. logarítmica log(x) = 0 para x = 1


Unidades dos coeficientes angular e linear

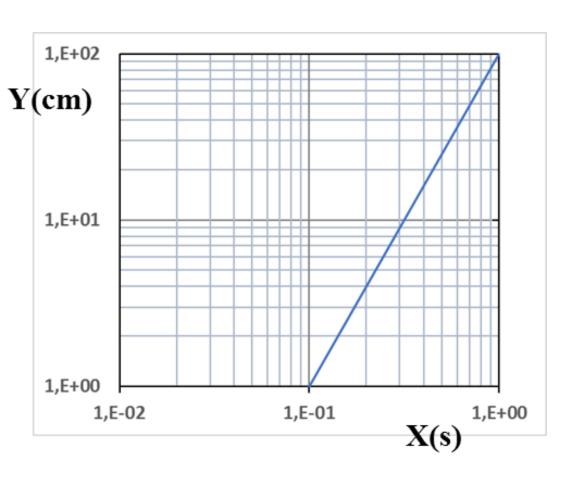
Papel Milimetrado

- [coef ang.] = Unid Y / unid X
- [coef linear] = Unid Y

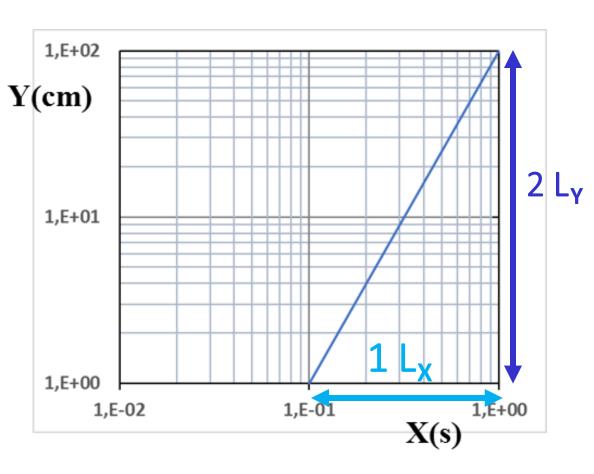
$$V(t) = V_0 + g.t$$


$$[v_0] = cm/s$$
 $[g] = (cm/s)/s = cm/s^2$

Dilog


- [coef ang.] = sem unidade
- [coef linear]= Unid Y/ Unid X^{expoente}

$$Y = \frac{1}{2}gT^2$$
 Expoente = 2 [g] = cm/s²


Exercício em aula

Avalie a unidade do coeficiente linear (a) da expressão: $Y=aX^b$

Exercício em aula

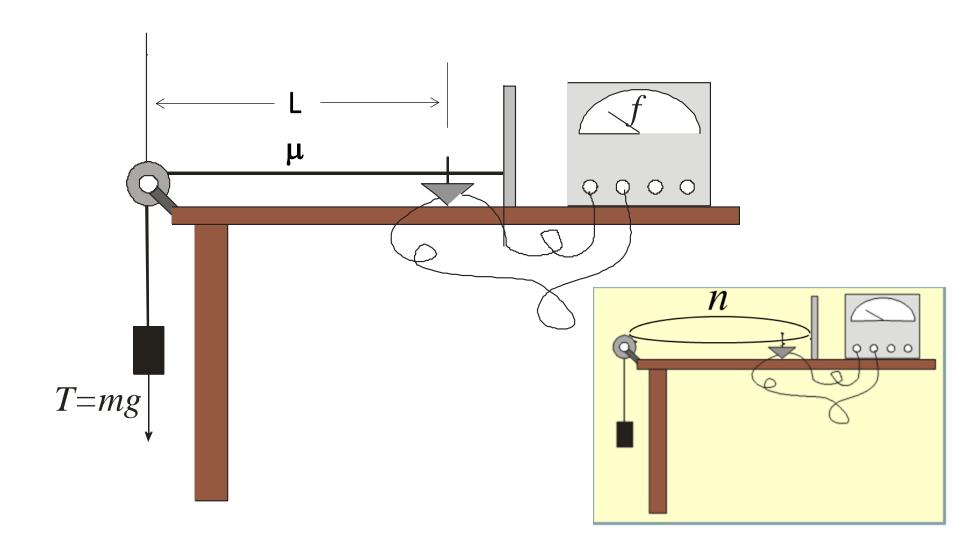
Avalie a unidade do coeficiente linear (a) da expressão: $Y=aX^b$

 Determinar o expoente através de:

$$EXP = \frac{\Delta Y/L_y}{\Delta X/L_x}$$

$$EXP = \frac{N \text{ décadas em } y}{N \text{ décadas em } X}$$

$$EXP = 2$$


2) Definir a unidade de a:

$$Un(a) = \frac{Un(Y)}{Un(X)^b}$$

[a] =
$$cm/s^2$$

Atividade prática

Arranjo experimental

Procedimento

- Quatro parâmetros a serem estudados: n, L, μ e T
 - o Obter dados da dependência da frequência
 - Frequência em função de um parâmetro
 - Manter outros 3 parâmetros fixos.
 - Medidas
 - Dependência da frequência com n

Aula anterior

- o Fixos: μ do fio de nylon, comprimento do fio e massa
- Dependência da frequência com T (massa)
 - $_{\circ}$ Fixos: μ do fio de nylon, comprimento do fio e n (2)
- Dependência da frequência com μ

Aula de hoje

- o Fixos: massa, comprimento do fio e n (2)
- Dependência da frequência com L
 - o Fixos: μ do fio de nylon, massa e n (2)

Análise dos dados – aula de hoje

- Fazer o gráfico di-log das frequências de ressonância como função dos parâmetros medidos:
 - Gráfico 1: f vs comprimento do fio (L)
 - \circ Gráfico 2: f vs densidade linear (μ)
 - Grupos de 2 alunos: aluno 1 faz o gráfico 1.
 - aluno 2 faz o gráfico 2.
 - Grupos de 3 alunos: aluno 1 faz o gráfico 1.
 - aluno 2 faz o gráfico 2.
 - aluno 3 também faz o gráfico 1.
- Os dados realmente são uma reta no papel di-log?
 - Calcular os coeficientes angulares (com incerteza) para os dados acima.

Análise dos dados - relatório

 Apresentar o gráfico di-log das frequências de ressonância como função dos parâmetros medidos:

```
f vs modo de vibração (n)
f vs tensão no fio (m)
f vs comprimento do fio (L)
f vs densidade linear (μ)
```

- Ajuste de reta no papel di-log:
 - o Todos os gráficos: calcular os coeficientes angulares
 - Gráfico f vs modo de vibração (n): calcular também o coeficiente linear
 - Calcular o valor da constante C

Não esqueça de avaliar as incertezas (graficamente) para todos os gráficos!

Incerteza do valor de C

Função original: $f = C n^{\alpha} L^{\beta} T^{\gamma} \mu^{\delta}$ Fixos para essas medidas

Ajuste no gráfico dilog: $f = B n^{\alpha}$

Coef linear =
$$B = C L^{\beta} T^{\gamma} \mu^{\delta} \implies C = \frac{B}{L^{\beta} T^{\gamma} \mu^{\delta}}$$

Cálculo de C: Utilizar Parâmetros no SI e g = (9,7865 ± 0,0001) m/s² Incerteza de C (σ_C):

Sem considerar as incertezas dos expoentes :

$$\frac{\sigma C}{C} = \sqrt{\left(\frac{\sigma B}{B}\right)^2 + \left(\beta \frac{\sigma L}{L}\right)^2 + \left(\gamma \frac{\sigma m}{m}\right)^2 + \left(\delta \frac{\sigma \mu}{\mu}\right)^2}$$

Utilizar: $\sigma\mu = 0.2 \text{ mg/m}$

Discussão

 Comparação dos valores obtidos com a fórmula proposta (fator Z – usar valores dos expoentes obtidos nas duas aulas):

$$f = \frac{1}{2} \frac{n}{L} \sqrt{\frac{T}{\mu}}$$

- Ajuste de reta foi a melhor opção nos gráficos dilog?
 - o Pontos realmente estão alinhados?
- Avaliação das incertezas e método
 - o Arranjo ou procedimento precisa ser melhorado?

Para o dia 07/07:

- Entrega do Relatório parte 2 (um por grupo). Entregar junto a parte 1 que foi devolvida corrigida durante a semana.
- No moodle (aba Experimento # 7 Cordas Vibrantes):
 - Exercício individual.
- Lembrando: dia 07/07/23 PROVA 02