Introdução às Medidas em Física (4300152)

Aula 10 (16/06/2023)

Paula R. P. Allegro

paula.allegro@usp.br

Na aula de hoje:

- Conceitos:
 - Utilização de um termopar
 - o Análise de dados:
 - Análise Gráfica´ escala logarítmica
 - Dedução empírica de uma lei física

• Experiência 6: Resfriamento de um Líquido

Referências para a aula de hoje:

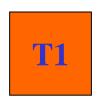
- Apostila do curso (página principal do moodle):
 - o Experiência VI (Aula 10): Resfriamento de um Líquido.
- Aba Material Didático/Arquivos 2023:
 - Manuais dos termopares que serão utilizados

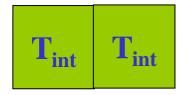
Experiência: Resfriamento de um líquido

- Objetivo do experimento:
 - Estudar o processo de resfriamento até a temperatura ambiente de um corpo aquecido a uma determinada temperatura T
- Na ausência de um modelo teórico iremos estabelecer uma função de maneira empírica:
 - Ajuste dos dados experimentais
 - Variação da temperatura em função do tempo

Lei Zero da Termodinâmica

 Equilíbrio térmico: Dois corpos inicialmente a temperaturas diferentes, quando colocados em contato por um tempo suficiente chegam a um estado final em que a temperatura de ambos se iguala.





Se
$$T_1 > T_2$$

 $T_1 > T_{int} > T_2$

 Portanto, um objeto mais quente irá perder calor (baixar temperatura) para o objeto frio (aumentar temperatura) até igualar as temperaturas dos dois objetos

Temperatura (T_{int}) intermediária

 Para um sistema isolado composto por 2 corpos com temperaturas iniciais T₁ e T₂.

$$\Delta m{Q_{total}} = \Delta m{Q_1} + \Delta m{Q_2} = m{0}$$
 Onde: $\Delta Q_1 = m_1 c_1 (T_{int} - T_1)$ $\Delta Q_2 = m_2 c_2 (T_{int} - T_2)$ $T_{int} = \frac{m_1 c_1 T_1 + m_2 c_2 T_2}{m_1 c_1 + m_2 c_2}$

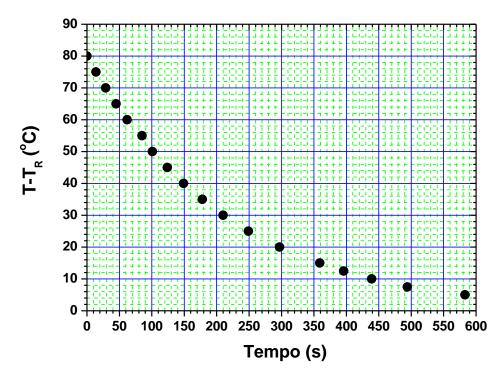
• Para
$$m_1 = m_2 e c_1 = c_2$$
 \longrightarrow $T_{int} = \frac{T_1 + T_2}{2}$

• Para
$$m_2 \gg m_1$$
 \longrightarrow $T_{int} \approx T_2$

Objeto quente vai resfriar até atingir a temperatura ambiente Ambiente – fonte infinita de absorção de calor

Análise de Dados

• Gráfico da temperatura acima da temperatura ambiente \times tempo: $(T(t)-T_{ambiente} \times t)$



- o A dependência é linear? A curva traçada pelos pontos experimentais é uma reta?
- o Qual é essa função?

Função: Exponencial decrescente

- Propriedades de exponenciais decrescentes:
 - o Tempo necessário para diminuir de uma certa fração é fixo
 - o Instante inicial não importa
 - Derivada da exponencial é exponencial

Exponencial: $Y = Y_0 e^{-At}$

• Determinação de Y₀:

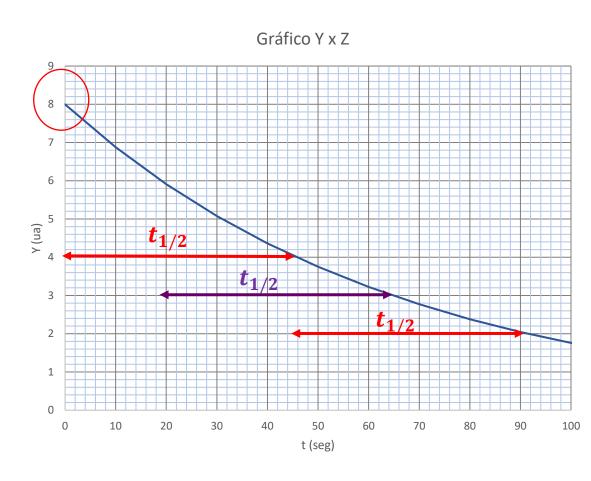
$$Y_0 = Y para t = 0$$

Determinação de A:
 Conceito de meia vida

$$\frac{Y_0}{2} = Y_0 e^{-A t_{1/2}}$$

$$ln(\frac{1}{2}) = ln(e^{-A t_{1/2}})$$

$$t_{1/2} = \frac{\ln 2}{A}$$
 ou $A = \frac{\ln 2}{t_{1/2}}$



Regra vale para qualquer ponto inicial na curva!

Lembretes

Quando aplicamos logaritmo?

$$Y = 10^{x_1}$$
 $Y = 2^{x_2}$ $Y = e^{x_3}$ $x_1 = log_{10}Y$ $x_2 = log_2Y$ $x_3 = log_eY = ln Y$

Algumas propriedades (qualquer base)

$$log(A.B) = logA + logB$$
 $logA^B = B logA$

Detalhe:

$$log_{10}(10.X) = log_{10}10 + log_{10}X = 1 + log_{10}X$$

Análise de Dados da Experiência

- Vamos tentar ver se uma função exponencial descreve nossos dados experimentais e obter uma lei que descreve esse processo de resfriamento de forma empírica.
 - Motivo: função exponencial é muito comum em fenômenos parecidos a este.

$$T(t)-T_{ambiente} = C_0 \cdot e^{-\mu \cdot t}$$

onde C_0 e μ são parâmetros da função

Análise de Dados da Experiência

Como checar?

```
∘ Linearizando a função T(t)-T_{ambiente} = C_0 \cdot e^{-\mu \cdot t} (base 10):
                      log_{10}(T(t) - T_{ambiente}) = log_{10}(C_0 \cdot e^{-\mu \cdot t})
                      log_{10}(T(t) - T_{ambiente}) = log_{10}(C_0) + log_{10}(e^{-\mu \cdot t})
                      \log_{10}(T(t) - T_{ambiente}) = \log_{10}(C_0) - \mu \cdot \log_{10}(e) \cdot t
                                        = a' + b'  t
    sendo: y = log_{10} (T(t) - T_{ambiente})
               a' = log_{10}(C_0)
              b' = -\mu \cdot \log_{10}(e)
```

Análise de Dados da Experiência

- Caso seja verdade que T(t) - $T_{ambiente} = C_0 \cdot e^{-\mu \cdot t}$:
 - $_{\circ}$ Gráfico $log(T(t) T_{ambiente}) \times t$ deve ser uma reta

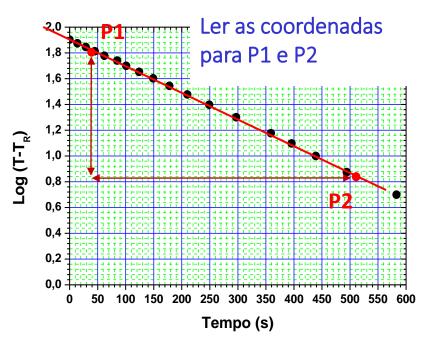
$$log(T(t) - T_{ambiente}) = a' + b' \cdot t$$

$$y = a' + b' \cdot x$$

coeficiente linear – valor que cruza o eixo y (log(T)) para x (t) = 0

$$a' = log(C_0)$$
 $C_0 = 10^{a'}$

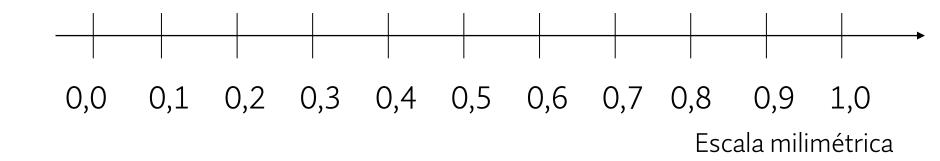
coeficiente angular – inclinação reta



$$b' = \frac{\log_{10}(\Delta T(t_2)) - \log_{10}(\Delta T(t_1))}{t_2 - t_1} = -\mu \log_{10}(e) \implies \mu = -\frac{b'}{\log_{10}(e)}$$

Escala Logarítmica

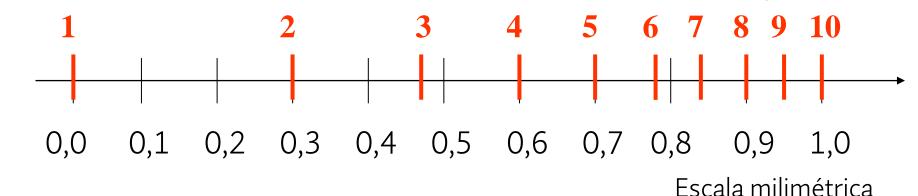
- A fim de facilitar a construção desse gráfico: papel monolog
 - o o eixo-y é construído de forma que o comprimento real no papel corresponde ao logaritmo na base 10 do número marcado na escala do gráfico



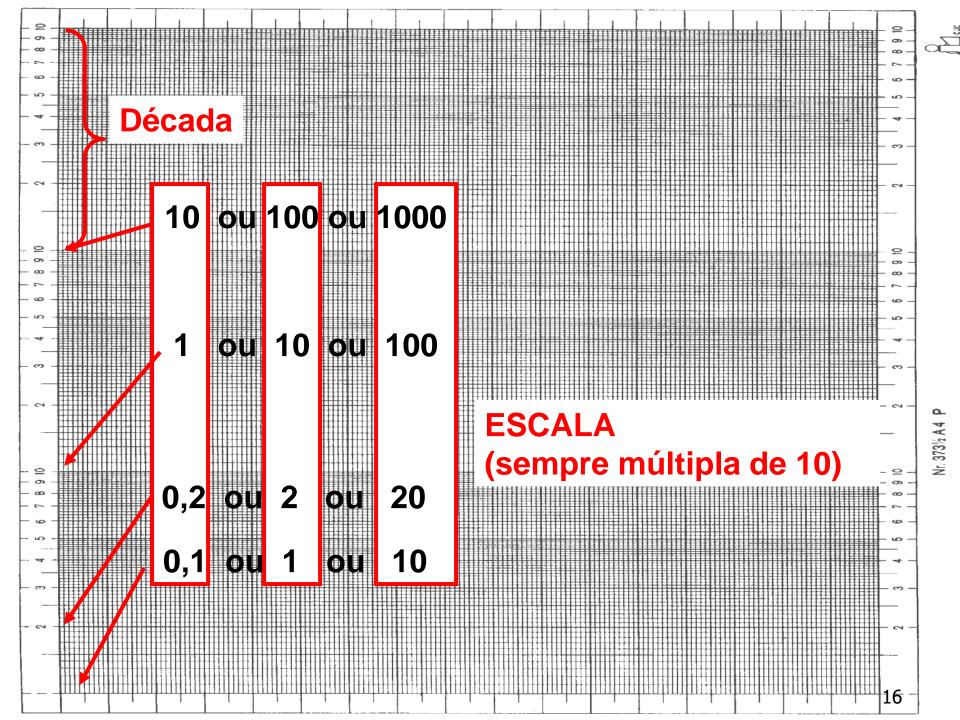
Escala Logarítmica

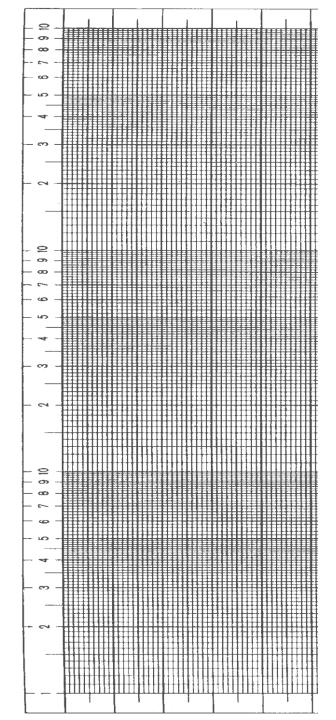
- A fim de facilitar a construção desse gráfico: papel monolog
 - o o eixo-y é construído de forma que o comprimento real no papel corresponde ao logaritmo na base 10 do número marcado na escala do gráfico

 Escala logarítmica

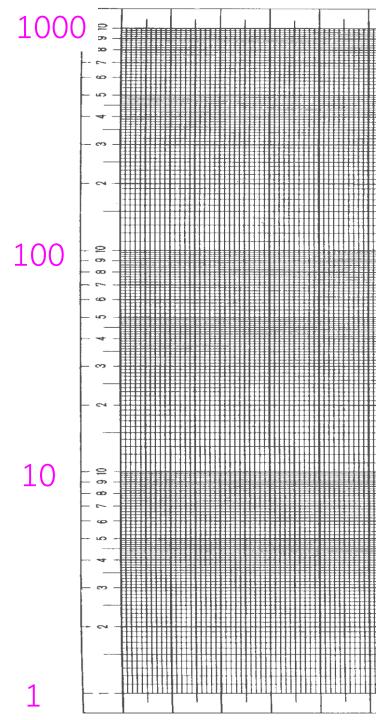


 $Log_{10}(1)=0,0$ $Log_{10}(4)=0,6$ $Log_{10}(7)=0,84$ $Log_{10}(2)=0,3$ $Log_{10}(5)=0,7$ $Log_{10}(8)=0,90$ $Log_{10}(10)=1,0$ $Log_{10}(3)=0,47$ $Log_{10}(6)=0,78$ $Log_{10}(9)=0,95$



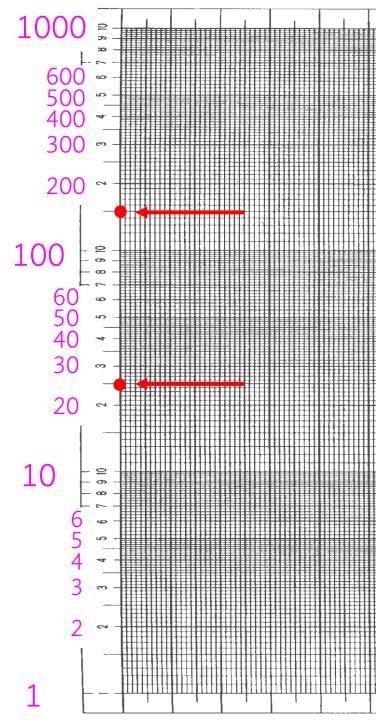


Pontos na escala



Pontos na escala

1) Identificar potências



Pontos na escala

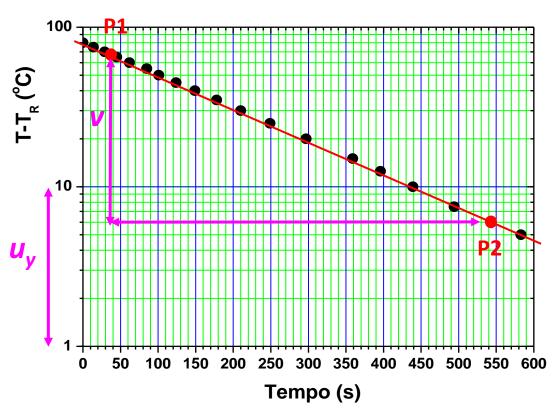
- 1) Identificar potências
- Posicionar pontos:
 Leitura dentro das décadas

$$Y = 25$$

$$Y = 125$$

Cuidado com os valores dentro de cada década

Obtenção do coeficiente angular



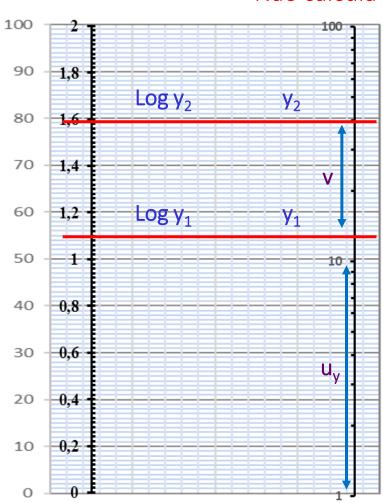
$$b' = \frac{\log_{10}(T(t_2)) - \log_{10}(T(t_1))}{t_2 - t_1} = \frac{v/u_y}{t_2 - t_1}$$

Para t₁ e t₂: ler as coordenadas no eixo horizontal

Para $\log_{10} T(t_2) - \log_{10} T(t_1)$ medir com régua (na vertical): u_y é a unidade (mm) e v é a distância (mm) de P1 – P2

Calculo de: $log_{10} y_2 - log_{10} y_1$

Logarítmico Não calcula log



Nova calibração: Régua (outra escala)

Regra de 3

Log y2 –log y1 Medida com régua (v)

Dois valores quaisquer

1 Medida com régua (u_y) Uma década

- Os eixos abaixo podem representar os valores de log x de duas maneiras:
 - 1) diretamente na escala logarítmica sem ter que calcular log x
 - 2) na escala milimetrada representando o valor calculado de log x.

Primeiramente, coloque os números da tabela diretamente na escala logarítmica.

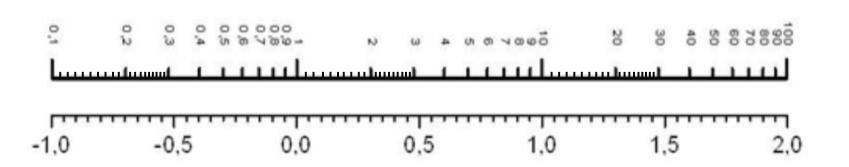
Em seguida, leia na escala milimetrada o valor da localização correspondente ao número colocado anteriormente na escala logarítmica.

Compare o valor obtido na escala milimetrada com o valor calculado do logaritmo do número.

Número	Log ₁₀ (x) - calculado	Valor lido milimetrado
0,153		
15,3		

A subtração dos dois valores lidos é compatível com a subtração dos dois valores calculados?

$$dif_{calc} = dif_{lido} =$$



- Os eixos abaixo podem representar os valores de log x de duas maneiras:
 - 1) diretamente na escala logarítmica sem ter que calcular log x
 - 2) na escala milimetrada representando o valor calculado de log x.

Primeiramente, coloque os números da tabela diretamente na escala logarítmica.

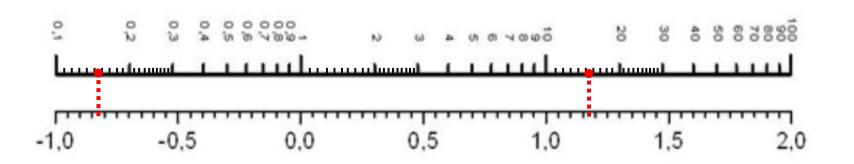
Em seguida, leia na escala milimetrada o valor da localização correspondente ao número colocado anteriormente na escala logarítmica.

Compare o valor obtido na escala milimetrada com o valor calculado do logaritmo do número.

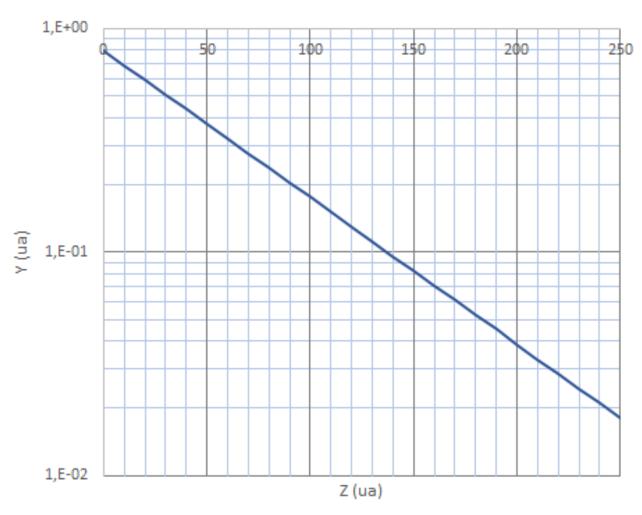
Número	Log ₁₀ (x) - calculado	Valor lido milimetrado
0,153	-0.815	-0,83
15,3	1.185	1,17

A subtração dos dois valores lidos é compatível com a subtração dos dois valores calculados?

$$dif_{calc}=2,000$$
 $dif_{lido}=2,00$



Leia no gráfico monolog o valor de Y correspondente ao valor de Z=200.

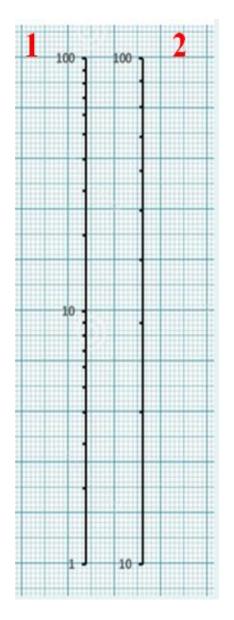


Leia no gráfico monolog o valor de Y correspondente ao valor de Z=200.

Avalie a diferença de logaritmos seguindo o procedimento ensinado na aula (usando as medidas com régua). Os valores avaliados com esse procedimento (para as duas escalas) devem ser compatíveis com os valores calculados diretamente

Valo	ores	Calculado
y ₁	y ₂	$\log_{10}(y_2)$ - $\log_{10}(y_1)$
20	84,3	

Escala	Valores		Calculado
	1 década	$\log_{10}(y_2) - \log_{10}(y_1)$	$\log_{10}(y_2)$ - $\log_{10}(y_1)$
Escala 1			
Escala 2			



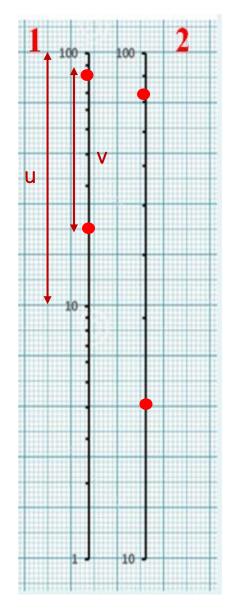
Avalie a diferença de logaritmos seguindo o procedimento ensinado na aula (usando as medidas com régua). Os valores avaliados com esse procedimento (para as duas escalas) devem ser compatíveis com os valores calculados diretamente

Valo	ores	Calculado
у ₁	y ₂	$\log_{10}(y_2)$ - $\log_{10}(y_1)$
20	84,3	0,624

Escala	Valores		Calculado
	1 década	$\log_{10}(y_2) - \log_{10}(y_1)$	$\log_{10}(y_2)$ - $\log_{10}(y_1)$
Escala 1	5,0 cm	3,2 cm	0,64
Escala 2	10,0 cm	6,3 cm	0,63

Colocar pontos nas duas escalas Usar escala milimetrada (como régua)

Distância dos pontos Distância de uma década



Medida de temperatura

- A temperatura de um sistema é medida através de fenômenos físicos cuja dependência com a temperatura é conhecida
- O tipo de termômetro mais comum é o de coluna de mercúrio. O fenômeno físico usado neste caso é o da dilatação volumétrica de líquidos quando estes são aquecidos

T1

T2 > T1

Termopar

- Termopar é um tipo de termômetro bastante popular
- Princípio de funcionamento baseia-se na produção de uma diferença de potencial (dependente da temperatura) na junção entre dois metais
 - Descoberto em 1822 pelo médico Thomas Seebeck (Estônia)
- Um dos tipos de termopar mais populares é do tipo K, composto pela junção das ligas de níquel-cromo e níquelalumínio

Atividade prática

Experimento

- Estudo do resfriamento da glicerina:
 - o Material: Tubo de ensaio com glicerina + termopar
- Procedimento:
 - Tubo de ensaio quente é colocado para esfriar dentro de um cilindro no qual há um fluxo de ar constante
 - Medidas de temperatura x tempo
 - Avaliação de incertezas

Medidas

- Posicionar os dois termopares: um ao lado do cilindro e outro dentro tubo (metade da glicerina)
 - Medir a altura da glicerina no tubo de ensaio e colocar o termopar na metade desse valor
- Aquecer o tubo de ensaio até que T2 T1 seja aprox. 90 °C
 - CUIDADO para não se queimar ou botar fogo na sala!
- Depois de chegar a 90°:
 - Apagar o fogo.
 - o Inserir o tubo de ensaio no cilindro:
 - Evitar encostar o tubo nas paredes e fundo do cilindro
 - o Realizar as medidas de temperatura em função do tempo

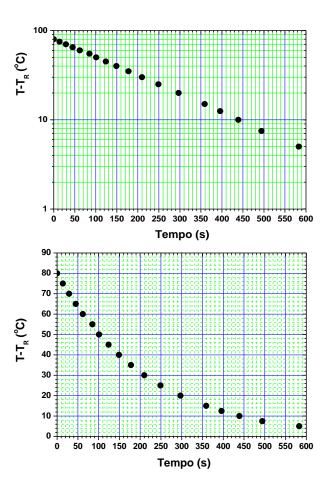
Medidas

- Medir temperatura da glicerina (T2 T1) para vários instantes de tempo:
 - o Disparar o cronômetro quando tubo chegar a 80 °C
 - Anotar o valor de tempo:
 - de 5 em 5 °C até 40 °C
 - de 2 em 2 °C até 20 °C
 - de 1 em 1 °C até 10°C

T(°C)	t(s)
80	0
•••	•••

Análise de Dados

- Gráfico de temperatura vs tempo (papel monolog)
 - $_{\circ}$ Extrair os parâmetros C_0 e μ de um ajuste de reta
- Gráfico de temperatura vs tempo (papel milimetrado ou computador)
 - $_{\circ}$ Obter μ usando através de cálculo usando $t_{1/2}$
 - $_{\circ}$ Apresentar valores simulados usando os parâmetros C_0 e μ obtidos do gráfico monolog.



- Cada aluno faz os dois gráficos com um conjunto diferente de dados:
 - Grupos de 2 alunos: aluno 1 pega os dados de número 1,3,5 ... aluno 2 pega os dados de número 2,4,6 ...
 - Grupos de 3 alunos: aluno 1 pega os dados de número 1,4,7 ... aluno 2 pega os dados de número 2,5,8 ... aluno 3 pega os dados de número 3,6,9 ...

Lei de Resfriamento Newton

• Hipóteses:

 Taxa de troca de calor é proporcional à diferença de temperatura entre o corpo e o ambiente (T_R constante)

$$\frac{dQ}{dt} = cte \times (T - T_R)$$

 $_{\circ}$ Como Q=C $_{\Delta}T$, isso implica que a variação de temperatura será proporcional à diferença de temperatura:

$$\frac{d(T-T_R)}{dt} = \frac{d\Delta T}{dt} = -\mu(T-T_R)$$

- o a constante μ é positiva e tem unidade de tempo⁻¹
 - depende de formato e material do corpo
- Consequências: $\Delta T = (T T_R) = \Delta T_0 e^{-\mu t}$
 - $_{\circ}$ ΔT_{0} é a diferença inicial de temperatura entre o líquido e o ambiente

Relatório – Principais pontos

- Resumo
- Introdução
- Descrição experimental + Medidas Experimentais
 - Arranjo+ Procedimento + dados + incertezas
- Análise de dados
 - o Gráficos e ajustes de reta derivação de C₀ e μ
- Discussão e conclusões
 - Qualidade dos ajustes + incertezas
- Tamanho máximo: 10 páginas (sem contar os gráficos no papel monolog)

Para a próxima aula (23/06):

- Entrega do relatório exp. 6. (um por grupo)
- No moodle (aba Experimento # 6 Lei de resfriamento de Newton):
 - Exercício individual (até dia 23/06).
- Apostila do curso (página principal do moodle):
 - Experiência VII Cordas Vibrantes