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A Really Useful Pathogen, Agrobacterium tumefaciens

Bacteria of the genus Agrobacterium are very useful and unusual

plant pathogens. Through a rare interkingdom DNA transfer, the

bacteria move some of their genes into their host’s genome,

thereby inducing the host cells to proliferate. The result is

uncontrolled cell growth leading to a tumor (as induced by

Agrobacterium tumefaciens and Agrobacterium vitis) or excessive

production of roots (as induced byAgrobacterium rhizogenes). The

proliferating plant tissues produce opines, which are compounds

that few organisms other than Agrobacterium can metabolize.

Agrobacterium’s ability to transfer DNA makes it extraordinarily

useful because it can be modified to introduce other genes not

involved in pathogenesis, such as those encoding useful traits,

into plant genomes. Furthermore, it can be used as a model with

which to study plant responses to pathogenic bacteria. The

development of Agrobacterium as a tool to transform plants is

a landmark event in the development of modern plant biology,

and, as with most great advances, involved the cooperation and

competition of many labs and individuals. This article provides

an introduction toA. tumefaciens and its related species, focusing

on their modes of pathogenicity and their usefulness as tools for

plant transformation, as well as their use as a model for the study

of plant–pathogen interactions.

A. TUMEFACIENS, CROWN GALL DISEASE, AND THE

TUMOR-INDUCING PRINCIPLE

Initial interest in the genus Agrobacterium followed from the

plant diseases this genus causes; these include crown gall, cane

gall, and hairy root. The economic impact of the genus arises

from its effects on long-lived woody plants, including grape-

vines, fruit, and nut trees, and the uncontrolled root growth of

cultivated plants, such as tomato (Solanum lycopersicum), although

the potential host range is much broader.

The first written record of crown gall disease is a description of

the disease on grapevine (Vitis vinifera) that dates from 1853.

Bacteria were isolated from crown galls in the late 19th century,

and in 1907, A. tumefaciens was unambiguously shown to be

the causal agent of crown gall through the work of Smith and

Townsend, two scientists at the USDA. Following Koch’s postu-

lates, they reported that they had isolated and purified the

bacterium from galls, induced the same disease symptoms in

plants inoculated with their purified bacteria, and reisolated the

bacteria from the inoculated plants.

Between 1907 and 1977, several generations of scientists

contributed toward an understanding of how A. tumefaciens

induces crown galls in plants. An examination of some of the key

experiments from this period reveals the rapid advances in

understanding of the principles of genetics and the importance

of the tools developed through the nascent field of molecular

biology.

AGROBACTERIUM-INDUCED TUMORS ARE

METABOLICALLY UNUSUAL

It quickly became clear that the neoplastic (derived from new

growth) tumor-like growths induced by A. tumefaciens were

unlike other wound- or pathogen-induced neoplastic growths.

The proliferation of neoplastic growths induced by some other

types of pathogenic bacteria requires continued bacterial pres-

ence, whereas tumors induced by A. tumefaciens can persist even

when the bacteria are eliminated. Furthermore, A. tumefaciens–

induced tumors are capable of persistent growth in tissue culture,

independent of the presence of exogenous growth hormones,

whereas most uninfected tissues require externally supplied auxin

and cytokinin to proliferate in culture. Exposure to Agrobacterium

fundamentally changed the nature of the infected plant cells.

In 1958, Armin Braun, working at the Rockefeller Institute for

Medical Research, proposed that the autonomous growth of

a plant tumor resulted from the permanent activation of growth

substance–synthesizing systems. This suggestionwas consistent

with elevated levels of the plant hormones auxin and cytokinin

found in crown gall tissues but the uncertainty remained of how

the bacteria induced elevated hormone production. Another clue

as to how Agrobacterium alters plant cells came from later

studies that showed that tumors produce opines and that the

type of opine produced is determined by the genotype of the

bacterium, not that of the plant.

The Tumor-Inducing Principle

The unusual phenotypes of gall tissues generated significant

interest in this disease, including the unsubstantiated hypoth-

esis that it might provide a systemwith which to study the origins

of human cancers. In pursuit of this idea, Braun set out to identify

the tumor-inducing principle. He found that “The active principle

that is responsible for the conversion of normal cells to neoplastic

cells.has the capacity of bringing about the cellular alteration as

early as 36 to 48 h after the bacteria are brought in contact with

susceptible tissues.” On the nature of this principle, he proposed

that it might be a metabolic product of the bacterium, a host

constituent that is converted by the bacterium into a tumor-

inducing substance, a virus or other agent, or a chemical agent,

such as DNA, capable of initiating an alteration in the host cells.

The suggestion that DNA could be the transforming agent was

informed by concomitant studies of Avery, McCarty, andMacLeod,

also at the Rockefeller Institute, who demonstrated that DNA was
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the transforming principle responsible for transforming Streptococ-

cus pneumonia.

Although the idea that DNA was involved in the transformation

of plant tissues such that they could be cultured in vitro without

hormones was widespread, the molecular methods of the era

made acquiring evidence to support this hypothesis very difficult.

Piece by piece, the weight of supporting evidence accumulated,

largely through the efforts of the Eugene Nester group in Seattle

(United States), the Allen Kerr group in Adelaide (Australia), the

Jeff Schell group in Cologne (Germany), the Robbert Schilperoort

lab in Leiden (The Netherlands), and the Marc van Montagu lab in

Ghent (Belgium). In the 1970s, efforts of these groups revealed

that (1) virulent Agrobacterium harbored a large plasmid, (2)

Agrobacterium lost their virulence when they lost the plasmid,

and (3) transfer of this plasmid into another bacterial cell carried

with it the tumor-inducing principle. The definitive study, published

in 1977 byMary-Dell Chilton et al. from the Nester group in Seattle,

was titled “Stable incorporation of plasmid DNA into higher plant

cells: the molecular basis of crown gall tumorigenesis.” This article

showed conclusively that DNA from the bacterial plasmid was

incorporated into the plant cell and demonstrated that the tumor-

inducing principle was in fact DNA. The plasmid from which the

transferred DNA was derived was named the Tumor-inducing (Ti)

plasmid. The transferred DNA (T-DNA) was subsequently shown to

be transferred to the plant nucleus, integrated into the plant

genome, and stably inherited and expressed.

Even before this 1977 publication in Cell, many scientists had

realized that Agrobacterium might offer a unique opportunity to

transform plant cells. Recombinant DNA technology of the

1970s led to the development of methods to introduce foreign

DNA into bacterial cells, but no method existed by which DNA

could be introduced into higher organisms. The possibility of

harnessing the Ti plasmid ofAgrobacterium for plant transformation

motivated an intensive burst of activity that very quickly led to

success; in 1983, three groups reported introducing a new gene

into plant cells through Agrobacterium-mediated transformation.

THE DEVELOPMENT OF AGROBACTERIUM AS A VECTOR

FOR PLANT TRANSFORMATION

The Ti Plasmid T-DNA Region Is Transferred into

the Host Cell

The Ti plasmid of commonly used laboratory strains is very large,

more than 200 kb, and encodes more than 200 genes. Some Ti

plasmids are even larger, up to 800 kb. In addition to the T-DNA

region of the Ti plasmid, a second region, termed the virulence

(vir) region is important for T-DNA transfer. The organization of Ti

plasmids varies between isolates, but all carry one or more T-DNA

region and one vir region. Much of our understanding comes from

studies of pTiC58 and pTiT37 (from the nopaline-utilizing strains

C58 and T37, respectively) and pTiA6 (from the octopine-utilizing

strain A6).

The T-DNA region is flanked by conserved 25-bp imperfect

direct repeats called the right border and left border. These

borders define the region transferred into the host cell. Two

classes of genes are present on T-DNA, those responsible for

phytohormone production, sometimes referred to as oncogenes,

and those responsible for the biosynthesis of opines. Notably, the

genes within the T-DNA region are not required for DNA transfer

and integration and are only highly expressed in plant cells. The

genes encoded by the T-DNA have regulatory elements (pro-

moters and terminators) that are recognized and processed by

the plant cell’s machinery, so that in spite of their bacterial origins

they are not normally expressed in Agrobacterium but efficiently

expressed in the eukaryotic host.

The oncogenes (tumorigenic genes) contribute to the formation

of the tumor. In the early 1980s, the characterization of these

oncogenes by several groups revealed that the unrestricted

proliferative growth described by Braun and his contemporaries

arose as a consequence of the transfer of phytohormone bio-

synthetic genes from pathogen to host (see Morris [1986] and

Nester et al. [1984] for reviews of these important experiments).

When plant cells are subject to elevated levels of both exo-

genous growth regulators, they can proliferate in an uncontrolled

and undifferentiated way. Gene knockout studies contributed to

our understanding of oncogene functions. Plants infected with

A. tumefaciens carrying the tumor-morphology-rooty (tmr) muta-

tion produce rooty tumors and overaccumulate only auxin. TMR

encodes ISOPENTENYLTRANSFERASE (IPT), a cytokinin bio-

synthetic enzyme, and the elevated level of auxin in the infected

cells causes them to initiate root production. Conversely, the

tumor-morphology-shooty1 (tms1) and tms2 mutations cause

shooty tumors to form in infected tissues, as a consequence of

knocking out auxin biosynthetic genes and the corresponding

overaccumulation of cytokinin.

T-DNA also encodes enzymes needed for opine synthesis that,

when expressed in the infected plant cells, lead to the production

of opines. Genes required for opine catabolism are present on

a different, nontransferred region of the Ti plasmid. The pro-

duction of opines by the infected tissues activates expression of

opine catabolic genes as well as genes that regulate the re-

plication and conjugal transfer of the Ti plasmid.

In summary, whenA. tumefaciens infects plant tissues, it transfers

a few genes located in the T-DNA region of the Ti plasmid into the

genome of the host plant, causing the recipient cells to proliferate

and produce an Agrobacterium-specific nutrient and energy

source, opines. Thus, Braun’s suggestion that the tumor-inducing

principle might be DNA was correct.

Developing Agrobacterium as a Plant

Transformation Vector

Four major challenges had to be resolved to harness Agro-

bacterium for plant transformation: (1) the bacteria had to be made

nonpathogenic (disarmed), (2) the desired genes and selectable

markers had to be introduced into the T-DNA, (3) tools had to be

developed with which to manipulate the very large Ti plasmid in

vitro, and (4) methods had to be developed to regenerate whole

plants from transformed plants cells.

The first challenge was simple because elimination of the

oncogenes from T-DNA is sufficient to eliminate the pathogenicity

of the bacterium and has no effect on the ability of the T-DNA to

be transferred.

The second challenge, the incorporation of a foreign gene

(gene of interest) into T-DNA for expression in plants, requires
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optimization of gene expression in plant cells. One solution has

been to affix regulatory sequences from the nopaline synthase

gene to the target gene of interest, although a very wide range of

promoters have been used to give high levels of expression or

inducible or cell- or developmental-specific expression patterns.

Because gene transfer is a relatively rare event, T-DNA must

include one or more selectable markers to allow successful

transformants to be identified; antibiotic-resistance genes flanked

by plant-recognized gene regulatory sequences are commonly

used.

One of the biggest challenges in working with Agrobacterium

is the huge size of the Ti plasmid, which makes manipulating it

in vitro quite challenging. Large plasmids are often low-copy

number, meaning that only small amounts of plasmid DNA can

be isolated. Furthermore, large plasmids have a greater ten-

dency to break or become entangled with chromosomal DNA

during in vitro manipulation; most importantly, the large size of

the plasmid means that restriction endonuclease recognition

sequences are usually found multiple times within the plasmid,

making cloning by restriction enzymes extremely difficult. (Keep

in mind that the wonderful tools derived from the PCR were not

introduced into the lab until the late 1980s.) These problems

were ultimately overcome by the development of a binary vector

system, in which T-DNA and vir genes are located on separate

replicons. Often this means that the T-DNA region is moved to

a smaller plasmid (called binary vector) that can be manipulated

easily in Escherichia coli but can also replicate in Agrobacterium.

After cloning of the gene of interest, this smaller plasmid is

introduced into an Agrobacterium strain that carries a truncated

form of the Ti plasmid that contains the vir genes necessary for

T-DNA mobilization but lacks T-DNA. This truncated Agro-

bacterium Ti plasmid is called a helper plasmid because it allows

the transfer of the T-DNA region from the binary plasmid into the

plant. Alternatively, T-DNA can be artificially inserted into the

bacterial chromosome and launched from the Agrobacterium

chromosome by the helper plasmid.

Tissue Culture Regeneration of Transformed Plants

The introduction of foreign DNA into plant cells was reported in

1980, but producing true transgenic plants required methods to

regenerate whole plants from single transformed cells. Many

plant cells are developmentally totipotent, meaning that they can

redifferentiate into another cell type. Thus, once transformed cells

are selected, they can be induced to differentiate and organize

shoot and root apical meristems, usually by placing them on

growth media with defined nutrients and hormones. Fertile,

phenotypically normal-looking transgenic plants were first re-

ported in 1983, and in 1985, the widely used leaf discmethodwas

introduced, in which a hole punch is used to make leaf discs that

are incubated with Agrobacterium and cultured to induce plantlet

formation.

Early studies used tobacco (Nicotiana tabacum) and petunia

(Petunia hybrida), two related species that are readily regen-

erated in tissue culture. Other species are less amenable to

regeneration, so a regeneration method had to be developed for

every plant species that is transformed. For the model species

Arabidopsis thaliana, this task became significantly simpler in

the 1990s by the development of the floral dip method of Arab-

idopsis transformation. By dipping the developing flowers into

a solution ofAgrobacterium, T-DNA is transferred to and integrated

into the genome of the developing embryo. The resulting seeds

can be germinated and those seedlings that have been trans-

formed can be selected (e.g., by antibiotic resistance or other

markers) and then grown into a transgenic plant; this method

bypasses the need for tissue culture, but only works with a very

few species and is not generally available formost plants, especially

crop species.

The Development of Genetically Modified Crops

Once the technology for plant transformation had been de-

veloped, potential applications were quickly realized. Among the

first transgenic plants produced were those that were resistant

to herbicides (e.g., by introduction of modified plant genes encoding

proteins that were no longer susceptible to the herbicide). This was

followed by production of plants that were resistant to insects due

to the introduction of bacterial genes encoding proteins that are

specifically toxic to some insect larvae. Subsequently, genes con-

tributing to resistance against pathogens and viruses were intro-

duced in the mid to late 1980s, and genes conferring enhanced

nutritional qualities were introduced beginning in 2000. By 2005,

67 traits had been engineered into 23 crops. Furthermore,

transgenic plants represent an alternative for the production of

recombinant proteins and vaccines (molecular pharming) as well

as the remediation of metal-contaminated soils. Although many

scientists and plant breeders see the enormous potential of

Agrobacterium-mediated gene transfer, many consumers have

expressed concerns about potential health and environmental

consequences of GM crops. Although widely grown, GM crops

continue to be a divisive issue. (See Teaching Tools in Plant

Biology 16, Genetic Improvements in Agriculture, for more on

GM crops).

Other Uses of Agrobacterium-Mediated Transformation

Agrobacterium-mediated transformation of plants has been in-

dispensable to plant biology research. Thousands of articles have

been published using this method for basic research purposes,

including studies of gene expression, protein localization, and

gene function. Gene functions can be assayed in stably trans-

formed plants or using a transient assay system. T-DNA has also

been useful to generate mutants. This is useful because T-DNA

integrates into the genome randomly, and its insertion marks the

interrupted gene with a known DNA sequence that can be used

for gene identification (mapping). In the late 1990s, large-scale

T-DNA insertion libraries were developed, first in Arabidopsis and

later in rice (Oryza sativa). These libraries have enabled the

identification of insertion mutations in most plant genes, thereby

greatly facilitating reverse genetics approaches. The ability of

A. tumefaciens strains to transfer T-DNA to yeast and other fungi

has extended this technique to generate insertion mutant libraries

in yeast and other fungi. For many medicinally important fungal

species, Agrobacterium-mediated transformation remains the

only genetic tool available.
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What Is the Host Range of A. tumefaciens?

Traditionally, A. tumefaciens was described as having a broad

host range of mostly dicotyledonous plants. Under natural con-

ditions, crown gall tumors are not observed on monocots, which

include many of the most important crop plants worldwide, the

cereals. Similarly, Agrobacterium-mediated plant transforma-

tion is efficient for many dicotyledonous plants, but is less so for

monocots.

More recently, using diverse Agrobacterium strains and iso-

lates, recombinant Ti plasmids, and different protocols, effi-

cient Agrobacterium-mediated transformation has been achieved

for many plant species previously thought to be recalcitrant, and

transgenic plants are routinely produced even for certain cereal

crops. The reasons that Agrobacterium is less efficient in trans-

ferring DNA to monocots are still not fully understood, although

the production of antimicrobial metabolites, a lack of vir gene

inducers, inefficient T-DNA integration into the monocot genome,

and Agrobacterium-induced programmed cell death have been

proposed as potential mechanisms. Nevertheless, T-DNA is

transferred to dicotyledonous and monocotyledonous plants by

an identical molecular mechanism, which implies that any plant

can potentially be transformed by Agrobacterium if a suitable

transformation protocol is developed.

Somewhat surprisingly, Agrobacterium-mediated T-DNA trans-

fer is not limited to plant cells. Under laboratory conditions,

Agrobacterium can also transfer DNA to nonplant cells, in-

cluding the Gram-positive bacterium Streptomyces lividans, and

eukaryotic cells, including the yeast Saccharomyces, filamentous

fungi, algae, sea urchins, and human HeLa cell lines, although

there are some differences in how the DNA integrates into these

more diverse host cells. These studies show that Agrobacterium-

mediated transformation can be a useful tool for other organisms

and sometimes shows a higher rate of transformation than do

other methods. Studies of the transformation process on diverse

species also provide new opportunities for learning about this

useful pathogen.

HOW IT WORKS: INSIDE THE BLACK BOX OF

TRANSFORMATION

In the time since early studies showed the potential of Agro-

bacterium as a vehicle to transfer genes into plants, we have

learned a great deal more about how this interaction takes place.

These findings have helped to optimize and increase the efficiency

of Agrobacterium-mediated transformation and to expand its host

range. They have also revealed the interesting dialogues that occur

among bacteria and between bacteria and hosts.

Chemoattraction and Activation of Agrobacterium

Virulence

A. tumefaciens is a soil-dwelling bacterium that is fully capable

of independent living; in fact, most agrobacteria isolated from

soil do not carry the Ti plasmid and are therefore incapable of

pathogenesis. Those that do carry the Ti plasmid maintain most of

the Ti plasmid genes in a transcriptionally inactive state, until their

expression is activated by the presence of a suitable plant host.

Agrobacteria are attracted to amino acids, organic acids, and

sugars extruded by plant roots and are able to move toward

the source of these chemicals through a chemotactic process.

Successful infection requires the production of extracellular

b-1,2-glucan polysaccharides that allow attachment to the plant

cell. Agrobacterium frequently gains entry into the plant through

wounds, and compounds such as acetosyringone and mono-

saccharides released from wounded plant cells activate the

expression of the virulence genes. Roots also affect the pH of

the soil that immediately surrounds them (this is called the

rhizosphere), and the full activation of Agrobacterium’s virulence

requires the mildly acidic environment of the rhizosphere.

Although most vir genes are silent until induced, virA and virG

are always expressed (although induced by plant signals) and

encode a two-component system for the response to plant signals.

The VirA protein is the sensor protein of a two-component re-

gulator system. It forms a homodimer that spans the bacterial

inner membrane and has a domain in the periplasmic space

between the inner and outer membranes. The periplasmic domain

binds plant phenolic compounds, such as acetosyringone, to

activate the cytoplasmic protein kinase domain, leading to its

autophosphorylation. The phosphoryl group from VirA is trans-

ferred to VirG, a transcriptional regulator. VirG transcriptionally

activates the other vir genes by binding to a 12-bp DNA element

called the vir box located upstream of the vir operon. Chromo-

somally encoded virulence genes (Chvs) also contribute to the

induction of the vir regulon.

Movement of T-DNA from Agrobacterium to the Plant

Nucleus

The products of the vir genes located on the Ti plasmid, along

with those of some chromosomally encoded virulence genes,

are necessary for the transfer of T-DNA into the plant cell. The

T-DNA vir region is;40 kb and includes several distinct operons.

The functions of the vir genes have been characterized in depth

and reveal a surprisingly complex transformation mechanism.

Some vir gene products operate within Agrobacterium, some

build a macromolecular structure through which T-DNA moves,

and some act within the host plant cell to ensure that T-DNA is

successfully transferred to the nucleus and integrated into the

host genome.

The first step in T-DNA transfer involves the action of a single-

strand endonuclease that cleaves T-DNA at the border sequences.

The bottom T-DNA strand is released from the plasmid by the

action of VirD1 and VirD2. VirD1 is a helicase, and VirD2 is a site-

specific endonuclease that recognizes the 25-bp T-DNA border

sequences. VirD2 nicks only the bottom strand at each border

sequence, releasing the single-stranded T-DNA molecule (re-

ferred to as the T-strand). VirD2 remains covalently attached to

the 5# end of the T-strand throughout the transfer to the host’s

nucleus and is thought to protect T-DNA from exonucleolytic

attack at the 5# end and guide it into and through the plant cell.

The T-strand/VirD2 complex moves into the plant cell through

a large protein complex called a type IV secretion system (T4SS)

that spans the bacterial inner and outer membranes and possibly

the plant cell wall. The virB operon encodes 11 proteins that,

along with VirD4, form the T4SS. The T-strand/VirD2 complex,
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as well as several other proteins, such as VirE2, VirE3, VirD5,

and VirF, move through the T4SS into the plant cytoplasm.

Interestingly, the T4SS is found in bacterial pathogens of humans,

such as Helicobacter pylori, which may play a role in stomach

ulcers, Neisseria gonorrhea, which causes gonorrhea, and

Bordetella pertussis, which causes whooping cough. Studies

of the T4SS of Agrobacterium have contributed to our understand-

ing of these human pathogens.

Many of the events that occur within the plant cell remain

uncertain. Models have been proposed based on in vitro studies

or artificial systems, but whether these models reflect the fate of

T-DNA in natural interactions is not known. A working model

proposes that in the plant cell cytoplasm, VirD2 and VirE2 may

contribute to T-DNA movement into the nucleus. VirD2 and

possibly VirE2 have nuclear localization signals that direct the

complex to the plant nucleus. A plant importin-a (also known as

karyopherin) also contributes to the movement of the T-complex

into the nucleus.

Once the T-DNA complex enters the nucleus, it is thought

to attach to the plant nuclear DNA through interactions with

nucleosomal proteins. The DNA may be uncoated by the action

of bacterial and host F-box proteins VirF and VBF, which target

the coating proteins for proteolysis; VirD5 may protect VirF from

proteolytic degradation. The exact mechanism of DNA insertion

into the plant genome is not fully resolved, but it occurs via a

process known as nonhomologous or illegitimate recombina-

tion. Several models for the mechanism of T-DNA insertion have

been proposed, and many details remain uncertain.

COEVOLUTION, PATHOGENICITY, AND RESISTANCE

The interactions between plants and A. tumefaciens have been

subject to millions of years of coevolutionary pressures. As with

other plant–pathogen interactions, this one reveals that the

pathogen has evolved methods for suppressing and evading the

host’s defenses and for co-opting host proteins to enhance its

pathogenicity, as shown earlier for the use of host proteins

during the T-DNA integration process. Here, we describe a few

additional examples of coevolved interactions, some of which

have only recently been discovered.

Fine-Tuning virGene Expression

Expression of the vir genes is strongly regulated and sensitive to

environmental and host signals. Almost the entire vir regulon

(;30 genes) is maintained in an essentially silent state, induced

under very specific conditions, and silenced again once its gene

products are no longer required for pathogenicity.

Certain phenolic compounds derived from wounded plant

tissues are potent inducers of vir gene expression and act through

the VirA/VirG two-component system, but vir gene expression

is also regulated by other signals found in the rhizosphere,

particularly root-exuded sugars and root-induced acidification.

The Agrobacterium chromosomal virulence gene chvE encodes

a periplasmically localized sugar binding protein. When ChvE

binds certain plant-derived sugars, it promotes autophosphor-

ylation of VirA and enhances its signaling. The chvG and chvI

genes encode a two-component system activated under acidic

conditions. ChvI is a periplasmically localized pH sensor that

activates ChvG, which induces expression of a set of acid-

inducible genes, including virG. Thus, the chromosomally encoded

virulence genes act synergistically with those on the Ti plasmid

to ensure strong induction of the vir regulon in the presence of an

appropriate host.

After T-DNA has been successfully transferred, vir gene expres-

sion is no longer necessary. Infected plant cells produce elevated

levels of auxin and ethylene hormones, which can suppress vir

gene expression, as does the defense signal salicylic acid (SA).

Specifically, SA interferes with the activation of the VirA protein by

acetosyringone.

Quorum Sensing and QuorumQuenching

As with many other bacteria such as the light-emitting bacterium

Vibrio fischeri, A. tumefaciens regulates the expression of genes

in a population-density dependent manner, based on the accumu-

lation of an acyl homoserine lactone (AHL). This mode of regulation

has been called quorum sensing, and the signals are referred to as

autoinducers, quorum signals, or quoromones. Quorum sensing in

Agrobacterium is induced after the initial plant infection takes place,

and the precise details are slightly different in different strains; here,

we describe the response of the octopine-utilizing strains.

The successful transfer of T-DNA leads to octopine production

by the plant. The secreted octopine is recognized byA. tumefaciens

by a transcriptional regulator called the octopine catabolism

regulator (OccR). When bound to octopine, OccR activates trans-

cription of the occ operon, which includes genes involved in

octopine uptake and catabolism; also in this operon is the traR

gene that encodes a transcription factor that is activated by

octopine. TraR bound to AHL activates an operon that includes

traI, which encodes an enzyme for the synthesis of AHL, and the

AHL produced binds more avidly to TraR, thus forming a positive

feedback regulatory loop. Other TraR-regulated genes are involved

in Ti plasmid replication and conjugal transfer (horizontal DNA

transfer between bacterial cells through a specialized conjugal

transfer apparatus). As most Agrobacterium isolated from the

soil do not carry a Ti plasmid, conjugal transfer can spread the

plasmid into these strains. The net result is that after the initial

infection event, the octopine produced as a result of plant

transformation spreads the plasmid into other Agrobacterium in

the soil, conferring on them the ability to utilize opines and

increasing the number of pathogens. It can be considered that

the Ti plasmid promotes its own replication and dispersal and

thereby also confers a fitness advantage to the bacteria.

Recent studies have shown that plants are able to perceive

bacterial quormone signals and respond to them through de-

velopmental changes, defense responses, and initiating quormone

degradation processes known as quorum quenching. Quorum

quenching involves elimination of the quorum signal from the

environment. The Agrobacterium gene attM encodes an AHL

lactonase, which is believed to degrade and therefore quench

the quormone signal. The plant-derived compounds SA (pro-

duced as part of the defense response) and g-amino butyric

acid, which accumulates in crown gall tumors, induce expres-

sion of AttM. Interestingly, quorum quenching can benefit the
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bacterium because it occurs fairly late in the infection process,

beyond the time when the quorum sensing responses are

needed. More studies of the fitness advantages conferred by

quorum quenching to the plant and bacterium will help to

resolve which partner has the most to gain from it.

EVADING THE HOST’S IMMUNE RESPONSES

Agrobacterium is recognized by the host plant as a pathogen

and elicits plant defense responses. Plants have receptors

through which they can recognize conserved pathogen-associated

molecular patterns (PAMPs). One of the best characterized

PAMPs is flagellin, the protein that makes up bacterial flagella.

The Agrobacterium flagellin protein, like that of several related

symbiotic rhizobia, is not recognized by the plant and does not

trigger an immune response. However, another conserved PAMP,

EF-Tu, does; Brassica plants have an EF-Tu receptor called EFR,

mutation of which makes Arabidopsis plants more susceptible to

infection by Agrobacterium; conversely, transfer of the Arabidopsis

EFR receptor into other plants (such as tomato) makes them more

resistant to Agrobacterium and other bacterial pathogens.

Agrobacterium has evolved several strategies by which to

evade the host’s immune responses. For example, upon initial

contact, it transfers T-DNA into the host cell rapidly. Additionally,

Agrobacterium can suppress the plant’s defensive hypersensi-

tive response and detoxify reactive oxygen species. Some of the

host’s defenses themselves have been co-opted to enhance the

bacterium’s success. As described previously, SA shuts off the

quorum sensing and virulence programs after they are no longer

needed, thereby reducing the metabolic load demanded by Ti

plasmid replication. One of the more fascinating models of the

co-option of the host’s defenses has been described as a Trojan

horse strategy and involves the VIP1 protein that interacts with

VirE2 that may facilitate entry of the T-complex into the nucleus.

VIP1 is a transcription factor that is a target of phosphorylation

by defense-induced protein kinases. When phosphorylated, VIP1

is translocated into the nucleus. When the nuclear import

machinery brings the VIP1 complex into the nucleus, it may bring

along its dangerous hidden T-DNA cargo.

Plant Genes Involved in Susceptibility or Resistance

Studies have identified proteins that conferred resistance or

hypersensitivity to Agrobacterium transformation, such as rat

(resistant to Agrobacterium transformation) and hat (hypersus-

ceptible to Agrobacterium transformation) genes. RAT genes

encode a protein that may contribute to T-DNA integration and

a VirB-interacting protein that may facilitate contact between the

T4SS and the host cell. Other identified genes include those

involved in bacterial attachment, cytoplasmic trafficking, and

transgene expression (see Gelvin, 2010). A better understanding

of the plant’s contributions to the infection process can help to

identify methods by which to protect plants, such as almond

(Prunus dulcis) or walnut (Juglans regia) trees or grape vines that

are susceptible to crown gall, and also may lead to more efficient

plant transformation methods, particularly for the important mono-

cotyledonous crop plants.

BEYOND A. TUMEFACIENS

Agrobacterium is a genus in the familyRhizobiacea, which includes

the symbiotic nitrogen-fixing bacteria of the generaRhizobium and

Sinorhizobium. Members of this family have complex genomes

that include large plasmids on which pathogenicity and symbiosis

genes can be found and, because the plasmids are mobile, make

species definitions complex. Traditionally, bacteria of the Agro-

bacterium genus have been defined based on the disease

symptoms they elicit. An alternative approach has been to classify

these bacteria based on nonpathogenic metabolic properties that

are more likely to be encoded in the major chromosome and has

led to a description of three biovars. More recently, genomic

sequencing projects have provided more insights and led to one

species being reassigned to the Rhizobium genus. The nomen-

clature assigned to this group continues to be refined.

A. vitis (Biovar III) and Agrobacterium rubi

A. vitis causes crown gall disease, but its host range is limited to

grape and a few other species. The causal agent was initially

considered to be a variant of A. tumefaciens, but extensive

testing led to its being assigned as a new species in 1990. The

genome of the sequenced A. vitis strain comprises two chromo-

somes and five plasmids, including a large Ti plasmid that

contains four distinct T-DNA regions. A. vitis is unusual among

Agrobacterium in that it can induce necrosis in its host and

induce a hypersensitive response in nonhost plants, such as

tobacco.A. rubi is a pathogen of caneberries of the genus Rubus,

including blackberry and raspberry. As with A. tumefaciens and

A. vitis, A. rubi transfers T-DNA into the host plant cell and induces

gall formation.

Agrobacterium radiobacter (aka Rhizobium radiobacter)

A. radiobacter is avirulent, does not carry a functional Ti plasmid,

and does not cause disease symptoms. Strain K84 (aka biovar II)

has recently been reassigned to the genus Rhizobium (see

Velázquez et al., 2010). Whatever you call it, strain K84 is

particularly important and widely used as a biocontrol agent that

can protect plants against some pathogenic strains of Agro-

bacterium. Its effectiveness in biocontrol is linked to its pro-

duction of anti-Agrobacterium compounds, such as agrocin 84,

which is taken up through the opine uptake mechanism. Inside

the cell, agrocin 84 inhibits a tRNA synthetase; the enzyme found

in R. radiobacter itself is insensitive to the antibiotic. Biocontrol

may also occur due to the production of a rhizobial iron side-

rophore, which allows R. radiobacter to compete very effectively

with other bacteria for iron and limit their growth.

A. rhizogenes (Biovar II)

A. rhizogenes is somewhat different from the otherAgrobacterium

species in that it induces root formation rather than crown gall

formation on its host and carries a root-inducing (Ri) plasmid

rather than a Ti plasmid. Under natural conditions, its host range

is limited to a few perennial dicotyledonous plants, but in the lab it

can be induced to infect many more species. In spite of much
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effort, the functions of the oncogenic genes carried on the T-DNA

of the Ri plasmid, known as root oncogenic loci, or rol, genes,

remain unclear. Rather than inducing hormone synthesis in the

host plant, they may alter the host plant’s sensitivity to hormones.

A. rhizogenes has been exploited as a tool for research and

industrial purposes. Studies of gene expression in roots can be

performed in A. rhizogenes–induced roots by introducing the

gene of interest into the T-DNA region of the Ri plasmid. In

addition, gene silencing (by RNA interference) can be performed

in roots of chimeric plants that have normal leaf and shoot tissue

but transformed roots (so-called composite plants); this RNA

interference approach in roots is particularly useful if silencing of

the targeted gene prevents the regeneration of fertile plants or

prevents seed production by transformed plants. Industrially,

the root masses induced by A. rhizogenes can be cultured for

long periods of time and have been exploited as a rich source of

plant-produced compounds. The benefits of these bioreactor-

cultured roots are that wild plants are thus protected from

overharvesting (which is a particular problem for many plants

that produce medicinally important compounds) and that an

efficient culture system can lower the cost of the compounds.

Examples of compounds harvested from A. rhizogenes–induced

root masses include ginsenosides from root cultures of Panax

ginseng and ginkgolides fromGinkgo biloba. In addition, metabolic

engineering can be applied to these plant tissues to enhance or

modify the compounds produced, including the production of

novel recombinant proteins such as antibodies.

SUMMARY AND ONGOING RESEARCH

Almost every molecular biologist works with E. coli at some point

in their career, and A. tumefaciens is as ubiquitous in the labs of

plant molecular biologists. This unusual and useful pathogen,

which was once thought to hold the secrets of human cancers,

has proven to be the key through which scientists can transform

plants readily. Agrobacterium-mediated transformation of plants

underlies many of the most important scientific breakthroughs of

the past 30 years, including the discovery of transcriptional gene

silencing by small RNAs. The release of an annotated T-DNA

insertion library ofArabidopsis opened the door fully to the powerful

reverse genetic approaches that are enabling its genome to be

functionally annotated, and insertional mutagenesis is contrib-

uting to the characterizations of other, even nonplant genomes.

The introduction of genes into crop plants, through Agro-

bacterium or other methods, can have far-ranging benefits

from pathogen resistance (e.g., rainbow papaya, Carica

papaya) to nutritional enhancement (e.g., golden rice).

Nevertheless, we still don’t fully understand how this process

works, in the lab or in the wild. Many questions about the con-

tributions of plant genes in resisting or facilitating the infection

process remain, and there are clearly opportunities to manipulate

the system to favor infection in the lab, for transformation purposes,

and to discourage infection in the field, to protect plants. Without

question,Agrobacterium is a very useful, and interesting, pathogen.

This review is dedicated to Eugene W. Nester in honor of his

retirement in 2009 at the age of 79. We thank Allan Downie (John

Innes Centre), StantonGelvin (Purdue University) and Vitaly Citovsky

(Stony Brook University) for critical reading of this article.
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