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Abstract: Recent development and implementation of crop cryopreservation protocols has increased
the capacity to maintain recalcitrant seeded germplasm collections via cryopreserved in vitro mate-
rial. To preserve the greatest possible plant genetic resources globally for future food security and
breeding programs, it is essential to integrate in situ and ex situ conservation methods into a cohe-
sive conservation plan. In vitro storage using tissue culture and cryopreservation techniques offers
promising complementary tools that can be used to promote this approach. These techniques can be
employed for crops difficult or impossible to maintain in seed banks for long-term conservation. This
includes woody perennial plants, recalcitrant seed crops or crops with no seeds at all and vegetatively
or clonally propagated crops where seeds are not true-to-type. Many of the world’s most important
crops for food, nutrition and livelihoods, are vegetatively propagated or have recalcitrant seeds.
This review will look at ex situ conservation, namely field repositories and in vitro storage for some
of these economically important crops, focusing on conservation strategies for avocado. To date,
cultivar-specific multiplication protocols have been established for maintaining multiple avocado
cultivars in tissue culture. Cryopreservation of avocado somatic embryos and somatic embryogenesis
have been successful. In addition, a shoot-tip cryopreservation protocol has been developed for
cryo-storage and regeneration of true-to-type clonal avocado plants.

Keywords: vitrification; ex situ conservation; long-term conservation; embryogenic; shoot tips;
plant biodiversity

1. Introduction

Globally plants are recognized as a vital component of biodiverse ecosystems, the
carbon cycle, food production and the bioeconomy. An estimated 7000 species of plants
provide food, fiber, fuel, shelter and medicine [1]. Plant genetic diversity is the foundation
of crop improvement [2] and a primary target of conservation efforts. The two major
approaches to conserve plant genetic resources are ex situ and in situ conservation [3]. In
situ conservation involves the designation, management and monitoring of target taxa
where they are encountered [4]. It protects an endangered plant species in its natural habitat.
In situ techniques are described as protected areas, e.g., genetic reserve, on-farm and home
garden conservation. Ex situ conservation involves the sampling, transfer and storage of
target taxa from the collecting area [4]. Ex situ techniques include seed, in vitro (tissue
culture and cryopreservation), DNA and pollen storage; field gene banks and botanic
garden conservation. In vitro storage using tissue culture and cryopreservation techniques
can deliver valuable tools to achieve a positive conservation outcome for genetic resources.

The majority of conservation programs focus on seed storage [5]. Many of the world’s
major food plants produce orthodox seeds which undergo maturation drying and are
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tolerant to extensive desiccation and can be stored dry at low temperature [6]. Seed storage
under dry and cool conditions is the most widely adopted method for long-term ex situ
conservation at relatively low costs [7]. About 45% of the accessions stored as seeds are
cereals, followed by food legumes [15%], forages [9%] and vegetables [7%] [8]. However,
seeds of many woody perennial plants are recalcitrant, e.g., Juglans spp. (walnut) [9],
Hevea brasiliensis (rubber tree) and Artocarpus heterophyllus (jackfruit) [10]. Thus, they are
difficult to maintain in seed banks. Additionally, seed-based conservation efforts miss
clonal lineages that form the foundation of woody perennial agriculture [9]. Crops such
as Persea americana Mill. (avocado), have recalcitrant seeds that are shed at relatively high
moisture content, thus cannot undergo drying to facilitate long-term storage [6,11]. In
addition, species that are seedless, e.g., Musa spp. (edible banana); or crops vegetatively
propagated as their seeds are not true-to-type, e.g., Manihot esculenta (cassava), Malus
domestica Borkh (Apple). and Citrus spp. (citrus); are not storable through seeds. Field,
in vitro and cryopreserved collections provide an alternative [7].

Field gene banks maintain living collections [12]. They are advantageous as phys-
iological attributes and characteristics of the accessions such as plant habit, yield, tree
height and disease resistance can be evaluated periodically [13]; however, there are several
limitations posed; high maintenance cost, intensive labor and land requirements, pressure
of natural calamities, risk of biotic and abiotic stresses as well as funding sources and
economic decisions limiting the level of accession replication to maintain genetic diversity.

Tissue culture maintains plant material collections employing growth retardants [14],
reduced light [15] or reduced temperature [16] to achieve slow growth, normally in sterile
conditions. Plant germplasm storage via these methods has been increased with more
in vitro protocols being developed for a vast number of plant species [17–19]. These
approaches are used for large-scale micropropagation, reproduction purposes including
embryo rescue, ploidy manipulations, protoplast fusions and somatic embryogenesis
and are appropriate tools for short- and mid-term storage of plant genetic resources [7].
These methods allow for physical evaluation of material, rapid multiplication and plant
establishment when needed, still, very costly to maintain due to space, consumables and
labor inputs [20].

Plant cryopreservation (storage at −196 ± 1 ◦C) is a technique whereby plant tissues
are preserved at ultra-low temperatures without losing viability [21]. It is the most relevant
technology that provides safe long-term conservation of biological material as it maintains
ex vivo biological function, does not induce genetic alterations [22] and provides long-term
stable storage. Thus, it serves as an ultimate back-up of plant accessions for long-term
storage, and material is generally not withdrawn from cryotanks unless it is necessary to
use for research such as genetic manipulations [23] or in vitro culture [24]. A wide range
of plant tissue can be cryopreserved, e.g., pollen, seeds, shoot tips, dormant buds, cell
suspensions, embryonic cultures, somatic and zygotic embryos and callus tissue [25,26].
Recent uses of cryopreservation including cryotherapy to eradicate pathogens, such as
phytoplasmas, viruses and bacteria in plants [27,28] is gaining a lot of attention [23].
Samples are normally given a short exposure to LN and surviving cells are regenerated from
meristematic tissue which is pathogen free [28]. Cryotherapy has been used successfully in
eradicating virus infections in several species with economic importance, such as Prunus
spp. (plum), Musa spp. (banana), Vitis vinifera (grape), Fragaria ananassa (strawberry),
Solanum tuberosum (potato), Rubus idaeus (raspberry) and Allium sativum (garlic) [28]. This
review will look at conservation approaches for woody plants, focusing on avocado as a
case study.

2. Field Repositories of Woody Crops

Field based germplasm conservation maintains living plants and serves as a source
of plant genetic variation. Plants represented in these collections are current and historic
cultivars, breeding material, landraces and sometimes wild relatives [9]. All of these are
important to maintain for future development of new cultivars with superior growth
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characteristics or resistance to pest and diseases. Field repositories have the advantage that
researchers can physically evaluate and characterize the accessions for parameters such
as yield, tree height and disease resistance [29,30]. Table 1 summarizes some examples of
woody crops that are held as field repositories. However, the field repositories require an
adequate area of land and continuous maintenance as well as on-going funding. They are
also vulnerable to loss from natural disasters and damage caused by pests and diseases.
This makes it important to potentiate field germplasm conservation with other methods
which address some of these concerns.

Table 1. Some examples of field repositories maintaining living collections of economically impor-
tant crops.

Country Field Repositories Genus/Species Reference

USA USDA—Geneva NY,
Davis CA, Riverside CA

Malus domestia Borkh. (apple)
Vitis vinifera L. (grape)

Actinidia deliciosa (kiwifruit)
Diospyros spp. (persimmon)

Ficus carica L. (fig)
Juglans spp. (walnut)

Olea europaea L. (olive)
Pistacia vera L. (pistachio)

Punica granatum L. (pomegranate)
Citrus spp. (citrus)
Prunus spp. (plum)

[31]

USA Tropical Botanical
Garden Artocarpus altilis (breadfruit) [32]

Germany German Fruit Gene bank

Malus spp. (apple)
Prunus avium (cherry)

Prunus domestica (plum)
Rubus spp. (raspberry)

[12,33]

United
Kingdom National Fruit Collection

Malus domestica Borkh. (apple)
Prunus domestica (plum)
Pyrus communis L. (pear)

Prunus avium (cherry)

[34]

3. In Vitro Conservation

Different in vitro storage methods are employed depending on the storage dura-
tion required [17,35], i.e., in vitro culture for short- and medium-term storage and cry-
opreservation for long-term storage. Many reviews have been carried out to determine
success [35–38] and standards established for managing field and in vitro germplasm gene
banks [39,40]. These standards ensure effective, safe and efficient conservation of genetic
resources. Due to the success of in vitro conservation techniques, many in vitro gene banks
have been established nationally and internationally [41,42] (Table 2).

Table 2. Some examples of cryo-storage gene banks maintaining collections of economically important crops.

Country Gene Bank Genus/Species Accessions Held Reference

France Institute of Research Development Coffea spp. (coffee) ~500 [12]

Columbia International Centre for Tropical Agriculture Manihot esculenta (cassava) 5690 [43]

Japan National Institute of Agrobiological Sciences Morus spp. (mulberry)
Juncus effusus (rush)

~1000
50 [12]

Japan Shimane Agriculture Research Centre Wasabi japonica M. (Japanese
horseradish) 40 [12]

USA National Clonal Germplasm Repository

Malus spp. (apple)
Pyrus spp. (pear)

Rubus spp. (raspberry)
Vitis spp. (grape)

6073
131
57

1405

[44,45]

Belgium Bioversity International Transit Centre Musa spp. (banana) 1600 [7]
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4. Plant Cryopreservation of Somatic Embryos and Shoot Tips

Cryopreservation of plants covers the entire plant kingdom from herbs and vines to
shrubs and trees. The growth may be annual, biennial or perennial and the climate arctic;
temperate, sub-tropical or tropical. A range of responses can occur within these groups and
they are not always useful groupings for evaluating cryopreservation strategies [46]. The
choice of material used, depends on the conservation goal, e.g., seeds and embryos capture
species diversity; whereas shoot tips and dormant buds capture specific genotypes [47]. The
most commonly used material to cryopreserve is apical meristems. They are at less risk of
genetic variations due to their organized structure and are made up of small unvacuolated
cells generally having a small vascular system [48]. In species that are recalcitrant and
maintained in living field repositories, long-term cryopreservation storage of shoot tips
can offer an alternative back-up as compared to seed storage which is only short-term [24].

Cryopreservation has several steps: (1) initial excision of the germplasm; (2) desicca-
tion or pre-culture on osmotic media to reduce water content; (3) cryoprotection through
exposure to cryoprotective agents; (4) cryopreservation in LN; (5) re-warming; and (6)
unloading of cryoprotective agents and recovery of germplasm after cryopreservation [49].
The most critical step of cryopreservation is avoiding the intracellular and extracellular
water that can lead to damage of cells during freezing [21]. Crystal formation, without
extreme reduction of cellular water, can only be prevented though ‘vitrification’ i.e., the
physical process of transition of an aqueous solution into an amorphous and glassy state
(non-crystalline state) [50].

4.1. Methods to Reduce Water Content

Concentrated intracellular solute is a pre-requisite for successful cryopreservation and
can be achieved with the following methods (Table 3) either individually or in combina-
tion [50–53].

Table 3. Methods to reduce water content.

Dehydration Method Uses

Desiccation
(1) Air drying of explants in laminar flow hood or using flow of

compressed air.
(2) Dehydration of explants in a desiccator with silica gel.

Cryoprotectants

(1) Penetrating cryoprotectants, e.g., dimethyl sulfoxide (DMSO)
and glycerol act by replacing intracellular water.

(2) Non-penetrating cryoprotectants, e.g., sucrose,
polyvinylpyrrolidone (PVP) and polyethylene glycol (PEG),

display different osmotic potential inside and outside the cells.

Freeze-induced dehydration
Preferential freezing of extracellular water by slow cooling at a

rate of 0.5–2 ◦C per min creates a hypotonic surrounding for the
cell, resulting in outflow of cellular water.

Pre-conditioning of donor
plant or explant

Including DMSO abscisic acid, sucrose, polyols or proline in the
pre-culture medium or low temperature treatment to induce

tolerance to dehydration and freezing.

Cryopreservation protocols using vitrification solutions typically involve a two-step
cryoprotection process: (1) loading sometimes called osmoprotection is achieved by incu-
bation in loading solution; and (2) dehydration using vitrification solution [52]. Loading
solutions are commonly used to improve permeation of the cryoprotectant through cell
membrane, it also induces tolerance to dehydration, which will be imposed by vitrification
solutions. A common loading solution used is 2 M glycerol + 0.4 M sucrose [52]. Vitri-
fication solutions contain chemicals that are high in concentration, e.g., ethylene glycol,
glycerol and DMSO which have been reported as toxic to plant tissue [54]. It is therefore
important to establish minimum exposure time to vitrification solutions in order to dehy-
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drate tissue sufficiently to undergo cryopreservation and avoid damage effects to plant
tissue [55,56].

Application of cryoprotectants is the most widely used method in cryopreservation
protocols. Cryoprotectants that are penetrating in nature are able to reduce cell water at
temperatures sufficiently to minimize the damaging effect of the concentrated solutes on
the cells [57]. Whereas non-penetrating cryoprotectants osmotically “squeeze” water from
the cells during the initial phases of freezing at temperatures between −10 and −20 ◦C [57].
Many authors have developed mixtures of cryoprotectants (Table 4) since the discovery
of their benefits in protecting cells during the cryogenic process [54,58–61]. The most
commonly used cryoprotectants for plant cells are PVS2 [59] and PVS3 [58].

Table 4. Some examples of cryoprotectants used for plant tissue.

Cryoprotectant Composition

PVS1 30% w/v glycerol, 15% w/v EG, 5% w/v sucrose, 15% w/v DMSO [61]

PVS2 30% w/v glycerol, 15% w/v DMSO, 15% w/v EG and 15% sucrose [59]

PVS3 50% w/v glycerol and 50% w/v sucrose [58]

PVS4 35% w/v glycerol, 20% w/v EG and 20.5% M sucrose [62]

VSL+ 20% w/v glycerol, 10% w/v DMSO, 30% w/v EG, 15% sucrose and 10 mM CaCl2 [63]

VSL 20% w/v glycerol, 10% w/v DMSO, 30% w/v EG, 5% sucrose and 10 mM CaCl2 [63]

Steponkus 50% w/v EG, 15% sorbitol, 6.0% bovine serum albumin, 13.7% sucrose [64]

Towill 35% EG, 6.8% w/v DMSO, 10% PEG 8000 and 13.7% sucrose [65]

Fahy 20% DMSO, 20% formamide, 15% propylene glycol [66]

4.2. Cryopreservation Methods

Presently there is no one method of cryopreservation that can be applied to a diverse
range of plant species. Many cryopreservation methods (Table 5) have been developed
for shoot tips and somatic embryos depending on the plant species used [17]; namely,
vitrification, droplet-vitrification, encapsulation-vitrification, encapsulation-dehydration,
dehydration, pre-growth, pre-growth-dehydration and D-cryoplate and V-cryoplate, a
modification of the encapsulation-vitrification and droplet-vitrification [52,67,68].

Table 5. Some examples of cryopreservation methods, techniques and applications used.

Method Technique Application Survival/Recovery Reference

Vitrification

Pre-culture of cultures on basal
medium supplemented with

cryoprotectants, pre-treatment with
loading solution, dehydration with

PVS, rapid freezing rewarming.

Cocoa secondary somatic
embryos

74.5% survival with 5- day pre-culture
on 0.5 M sucrose followed by 60 min

dehydration in PVS2 treatment for 1 h
at 0 ◦C.

[69]

Droplet-
vitrification

Resembles vitrification in all steps with
only difference that materials are

cryopreserved on foil strips in drops of
vitirification solution.

Hancornia speciosa Gomes
(rubber tree) shoot tips

43% regrowth with pre-culture on
basal + proline (0.193 M) for 24 h in the
dark at 25 ◦C and PVS2 15 min at 0 ◦C.

[70]

Encapsulation-
vitrification

Sodium alginate beads are formed and
explants are encapsulated in them and

dehydrated in PVS before freezing.

Olea europaea (olive)
somatic embryos

Parkia speciosa Hassk.
(stink bean) shoot tips

64% regrowth after 4 day pre-culture in
sucrose; PVS2 treatment for 3 h
treatment and rapid freezing.

Pre-culture on MS + trehalose (5% w/v)
for 3 days; PVS2 for 1 h at 0 ◦C.

[71]

[72]
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Table 5. Cont.

Method Technique Application Survival/Recovery Reference

Encapsulation-
dehydration

Sodium alginate-encapsulated cultures
are dehydrated osmotically with high
concentrations of sucrose for 1–7 days

and/or desiccated in an air current
before slow cooling to –80 ◦C and then

immersed in LN.

Olea europaea (olive)
somatic embryos

Prunus armeniaca (apricot)
shoots

40% regrowth following 4 days of
sucrose pre-growth, desiccation and

freezing.
Recovered after treated with 0.5 M
sucrose for 2 days followed by air

dehydration for 2 h and frozen in LN.

[71]

[73]

Dehydration

Samples are dehydrated by either air
current, silica gels, or incubation with

cryoprotectant, followed by rapid
freezing or two-step freezing.

Juglans nigra (walnut)
embryo axes

Dried in a laminar flow hood until
5–15% moisture content and 100%

recovery after LN.
[74]

Pre-growth
and

pre-growth-
dehydration

Samples are cultured on media
containing cryoprotectants such as

DMSO, dehydrated and then frozen
slowly or rapidly.

Garcinia mangostana L.
(mangosteen) shoot tips

50% MS + sucrose (0.6 M) + 5% DMSO
for 2 days [75]

V-cryoplate

Modification of
encapsulation-vitrification and

droplet-vitrification. Dehydration is
performed using vitrification solution

PVS2.

Morus alba (mulberry)
shoot tips

87% regrowth, 13 lines pre-cultured at
25 ◦C for 1 day on MS medium
containing 0.3 M sucrose. PVS2

solution for 30 min at 25 ◦C.

[76]

D-cryoplate

Modification of
encapsulation-vitrification and

droplet-vitrification. Dehydration is
achieved using the air current of the

laminar flow cabinet or silica gel.

Diospyros kaki (persimmon)
shoot tips

Average 87% regrowth, 10 lines
1–3 months cold acclimatization, 3 ◦C
pre-cultured on 0.3 M sucrose, 2 days
at 25 ◦C, laminar flow 30 min at 25 ◦C.

[77]

4.2.1. Vitrification

Vitrification can include the pre-culture of samples on medium supplemented with
sucrose, then treated with a loading solution normally high in sucrose molarity [52] (e.g., a
mixture of sucrose and glycerol), dehydration with a vitrification solution such as PVS2 or
PVS3, rapid cooling, rewarming, and plant recovery by removing cryoprotectants [78].

4.2.2. Droplet-Vitrification

Droplet-vitrification is a modification of vitrification [79]; treating explants with load-
ing (usually 2 M glycerol and 0.4 M sucrose) and vitrification solutions; cooling them
ultra-rapidly in a droplet of vitrification solution either PVS2 or PVS3 placed on an al-
foil strip [49] with a droplet of cryoprotectant added before immersion in LN. The alfoil
strip helps with the ultra-rapid cooling (about 4000–5000 ◦C min−1) and re-warming
(3000–4500 ◦C min−1) of samples due to the good conductivity of thermal current of alu-
minum [80]. The removal of the cryoprotectant is achieved during re-warming stage by
using an unloading solution usually with high level of sucrose 1.2 M, then transferred to
recovery and regeneration media [25,55]. Droplet vitrification combines the use of highly
concentrated vitrification solutions with ultra-fast cooling and re-warming rates [81] shown
to be critical for survival [82]. For high success in survival and recovery of shoot tips after
LN it is vital that samples are sufficiently dehydrated by the vitrification solution in order
to vitrify while rapidly cooling in LN [83].

4.2.3. Encapsulation-Vitrification and Encapsulation-Dehydration

Encapsulation-vitrification and encapsulation-dehydration have been successfully
applied to cryopreserve shoot tips of woody species of crops, such as, Malus (apple) [84,85],
Pyrus (pear), Morus (mulberry) [84], Vitis (grape) [86] and Poncirus trifoliata × Citrus sinensis
(Chinese bitter orange) [87,88]. Dissected shoot tips or somatic embryos are suspended
in a solution of sodium alginate. Beads (4–5 mm in size) are then formed using a trun-
cated pipette tip and pipetted into a solution of CaCl2 where they are allowed to set for
30 min [52]. For encapsulation-vitrification, once beads are formed with explant inside,
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they are then dehydrated in PVS solutions such as PVS2 or PVS3 prior to immersion in LN.
Although encapsulation is time-consuming, it eases manipulation due to alginate beads
being relatively large in size [52]. For the encapsulation-dehydration technique instead of
dehydration with PVS solutions beads are dehydrated in a laminar flow hood or under
silica gel before immersion in LN [52].

4.2.4. Dehydration

Of all the methods explained, dehydration is the simplest, as it involves just the
dehydration of explants followed by direct immersion in LN. Embryonic axes or zygotic
embryos extracted from seeds are mainly used. Desiccation is usually achieved by the
air current of a laminar airflow cabinet or over silica gel. Dehydration using a vitrifica-
tion solution removes intracellular water from cells and permits intracellular solution to
undergo phase transition from liquid phase into an amorphous phase upon rapid cool-
ing [52]. Cryoprotectant mixtures are commonly used as vitrification solution, such as
PVS2 and PVS3.

4.2.5. Pre-Growth and Pre-Growth-Dehydration

In pre-growth and pre-growth-dehydration, explants are first exposed and grown on
media containing cryoprotectants, dehydrated by air under a laminar flow cabinet or with
silica gel, and then frozen rapidly. Depending on the plant species optimal conditions can
vary greatly.

4.2.6. D-cryoplate and V-cryoplate

D-cryoplate and V-cryoplate use special aluminium cryoplates which have been
developed (length 37 mm, width 7 mm and a thickness of 0.5 mm with 10 wells). An
alginate solution containing 2% (w/v) sodium alginate in calcium-free MS basal medium
with 0.4 M sucrose is poured over the cryo -plate. Samples are placed in wells and more
sodium alginate solution is poured over the top to cover them. In V-cryoplate, dehydration
is performed using the vitrification solution PVS2, while in D cryo-plate, dehydration
is achieved using the air current of the laminar flow cabinet or silica gel [89]. After
dehydration cryo-plates are immersed in LN. The main advantages of V-cryoplate and
D-cryoplate is that handling of specimens is easy and quick because only the cryo-plates
are manipulated [89].

5. The Avocado Case
5.1. Background

Avocado (Persea americana Mill.), a high-value fruit found in almost all tropical and
sub-tropical regions of the world [90,91] belongs to the plant family Lauraceae [92], genus
Persea [93]. Mexico is thought to be the center of origin of the species [94]. The genus Persea
has about 400 to 450 species consisting of the currently often recognized genera Alseodaphne
Nees, Apollonias Nees, Dehaasia Blume, Machilus Nees, Nothaphoebe Blume, Persea Mill. and
Phoebe Nees. There are eight sub-species of P. americana including P. americana var. nubigena
(Williams) Kopp, P. americana var. steyermarkii Allen, P. americana var. zenymyerii Schieber
and Bergh, P. americana var. floccosa Mez, P. americana var. tolimanensis Zentmyer and
Schieber, P. americana var. drymifolia Blake, P. americana var. guatemalensis Williams,
P. americana var. americana Mill. [91,95]. Genetic diversity within the genus Persea, the
sub-genera Persea and Eriodaphne and the species P. americana is large and is threatened by
the progressive loss of tropical and sub-tropical forests [95]. This genetic diversity can serve
as a resource in crop improvement [96–98] and plays an important role both ecologically
and culturally.

The three recognized ecological races of P. americana [99]; are the Mexican race, P. amer-
icana var. drymifolia, adapted to the tropical highlands; the Guatemalan race, P. americana
var. guatemalensis, adapted to medium elevations in the tropics; and the West Indian
race, P. americana var. americana, adapted to the lowland humid tropics [100]. The ability
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of the three main races to withstand cold conditions varies; the West Indian race cannot
tolerate temperatures below 15 ◦C, the Guatemalan race can tolerate cooler temperatures
of −3 to −1 ◦C, and the Mexican race withstands temperatures as low as −7 ◦C exhibit-
ing the highest cold tolerance [101–103]. They have distinctive characteristics; e.g., plant
habit, leaf chemistry, peel texture, fruit color, disease and salinity tolerance [104]. The
Guatemalan and Mexican races and their hybrids are very important for conservation and
future breeding programs [97]. Cultivars classified as pure Guatemalan and Mexican races
and Mexican × Guatemalan hybrids have been shown to have more diversity than those
of pure West Indian race and Guatemalan × West Indian hybrid cultivars [97]. In Mexico
and Central America, avocado trees grow under highly varied ecological conditions and
natural selection over thousands of years has produced vast populations [97]. This serves
as an essential source of varied attributes that are not among horticulturally available
items [105].

The main avocado sold throughout the world, ‘Hass’, is a medium sized pear-shaped
fruit with dark purplish black leathery skin [106]. Its commercial value is due to its superior
taste, size, shelf-life, high growing yield, and in some areas, year-round harvesting [107].
The precise breeding history of ‘Hass ’ is unknown however, it is reported to be 61%
Mexican and 39% Guatemalan [108]. This finding is supported by a study that analyzed
the complete genome sequences of a ‘Hass’ individual and a representative of the highland
Mexican landrace, Persea americana var. drymifolia; as well as genome sequencing data
for other Mexican individuals, Guatemalan and West Indian accessions [108]. Analyses of
admixture and introgression highlighted the hybrid origin of ‘Hass’, pointed to its Mexican
and Guatemalan progenitor races and showed ‘Hass’ contained Guatemalan introgression
in approximately one-third of its genome [108]. In Australia, ‘Hass’, represents 80% of total
production [109] with 2019/20 producing 87,546 tonnes of avocados, an increase of 2%
more than the previous season’s 85,546 tonnes [109]. This increased consumer demand is
due to its popularity as a healthy food; often referred to as a superfood due to its beneficial
nutrients, vitamins, minerals, fiber and healthy fats [110,111]. Consumer market value of
Australian fruit sold domestically was worth ~$845 m in 2019/20 [109].

Due to the vast range of climates and conditions in our eight major avocado grow-
ing regions, avocados are produced all year round [109]. Avocado trees propagated by
seed, take approximately 4–6 years to bear fruit, in some cases they can take 10 years to
come into bearing [111]. Avocado trees are partially able to self-pollinate. Their flowers
behave in synchronous dichogamy, flowers are perfect, bearing both male and female
parts, however the periods of maleness and femaleness are temporarily distinct to enhance
the likelihood of outcrossing [112,113]. The resultant progeny is highly heterozygous in
the desirable parent tree characteristics [114]. New cultivars are normally derived from
chance seedlings or mutations due to the difficult nature of breeding programs, which are
costly, time-consuming and under threat of abiotic and biotic stresses. Nevertheless, the
avocado industry’s goal is to preserve superior cultivars for commercial production. Thus,
to meet this goal, avocado is propagated clonally through grafting with breeding programs
based on both scion and rootstock cultivars. The threat of Ambrosia beetle species and
its symbiont fungus Laurel Wilt disease to the avocado field gene banks and commercial
industry in Florida, California, and Israel is a glaring example of a biotic stress that could
destroy the industry [115]. For scion cultivars the focus is on high yield [116], extending
harvest season, regular bearing tendencies and disease resistance e.g., Anthracnose [117],
Cercospora spot [118] and Verticillium wilt [117]. Rootstocks are often selected for dwarf
size [119], salinity tolerance, adaptation to alkaline soil [119,120] and pest and disease
resistance [120] such as Phytophthora cinnamomi Rands and Rosellina necatrix [121]. Clonal
rootstocks are thought to be the only rootstocks for the future for achieving sustainable
productivity gains [122–124]. These influence the total productivity of the plant in terms
of yield and health. Rootstocks from Mexico, ‘Orizaba 3’, ‘Antigua’ and ‘Galvan’, show a
universal adaptation to multiple soil stress problems. The last two, also, have tolerance
to P. cinnamomi [96]. Many breeding programs have concentrated on the development of
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new rootstocks such as ‘Dusa’, ‘Bounty’ and ‘Velvick’ [125] to help the industry overcome
these threats [126]. ‘Dusa’s popularity has increased significantly since the mid-2000s. It is
a common standard against which other P. cinnamomi tolerant rootstocks are compared in
international breeding programs. It has been reported to bear fruit even under heavy P. cin-
namomi disease pressure and has higher yields than many other rootstocks [127]. ‘Bounty’
is often selected for its P. cinnamomi tolerance and ability to survive in wet soils [127].

5.2. Avocado Conservation
5.2.1. Global Germplasm Repositories

Field living germplasm collections (Table 6) and (Figure 1), are currently the most used
conservation method, but funding and threats from natural calamities; pest and diseases
are a problem.

Table 6. Avocado germplasm maintained as field repositories throughout the world.

Country Germplasm Repositories No. of Accessions References

USA The Huntington San Marino CA 56 Persea americana accessions
4 wild Persea spp (6 accessions) [128]

USA Riverside University CA
~230 avocado scion accessions [129]

~15 wild Persea spp.
~246 avocado rootstock accessions [129,130]

USA National Genetic Resources Program, Miami, Florida P. americana (167 accessions) and P. schiedeana
(1 accession) [44,131]

USA The Sub-Tropical Horticulture Research Station, Miami,
Florida ~400 avocado accessions [132]

Mexico National Research Institute of Forestry and Livestock
in Guanajuato

500 accessions belonging to P. americana: Mexican and
Guatemalan races. Related species: P. schiedeana, P.

cinerascens, P. floccosa, P nubigena
[133]

Mexico State of Mexico of the Fundación Salvador Sanchez
Colin-CICTAMEX, S.C.

800 accessions of avocado and related species.
Mexican, Guatemalan, West Indian races, P. americana

var. costaricensis race materials.
[133]

Mexico Coatepec Harinas and Temascaltepec; State of Mexico

Wild relatives: Beilschmiedia anay, B. miersii, P.
schiedeana, P. longipes, P. cinerascens, P. hintonni, P.

floccosa, P. tolimanensis, P. steyermarkii, P. nubigena, P.
lingue, P. donnell-smithii, P. parvifolia, P. chamissonis,

Persea spp.

[133]

Ghana University of Ghana Forest and Horticultural Crops
Research Centre

110 local land races and 5 varieties from South Africa
(‘Hass’, ‘Fuerte’, ‘Ryan’, ‘Ettinger’ and ‘Nabal’ [134]

Israel Volcanic Centre in Bet Dagan 194 trees, propagated from 148 accessions [96]

Spain The Experimental Station ‘La Mayora’ in Malaga 75 avocado accessions [132,135]

Cuba N/A 210 genotypes [132]

Chile N/A 4 botanical breeds of P. americana: var. drymifolia, var.
guatemalensis, var. jacket and var. costaricencis [132]

Australia Maroochydore Research Station 46 avocado accessions [136]

Nigeria 8 avocado accessions [137]

Brazil Brasilia, in the Federal District, depending on the
Embrapa Research Institute 30 avocado accessions [138]

Brazil Conceicao do Almeida and Juazeiro collections, both in
the Bahia State 22 avocado accessions [138]

Brazil Piracicaba, in the Sao Paulo State 33 avocado accessions [138]

Brazil Jaboticabal, in the Sao Paulo State 7 avocado accessions [138]
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Figure 1. One of the 56 avocado accessions being maintained in The Huntington Botanical Gardens
[in San Marino, California USA] living germplasm collection.

5.2.2. Cryopreservation of Avocado Somatic Embryos

To preserve global avocado diversity; development of improved technologies for avo-
cado conservation, breeding/improvement and propagation is essential. In vitro somatic
embryogenesis has direct importance to these objectives [139,140]. Somatic embryogenesis
is the process by which somatic cells give rise to totipotent embryogenic cells capable of
becoming complete plants [141]. Somatic embryogenesis can be a robust tool to regenerate
genetically clonal plants from single cells chosen from selected plant material, or genetically
engineered cells [142]. Somatic embryogenic cultures are generally highly heterogeneous
since they consist of embryos at different developmental stages [143]. Though heterozy-
gous in nature when regenerated using zygotic embryos as explants, cryopreservation of
avocado somatic embryos offers an attractive pathway to conserve avocado germplasm. Re-
covery of plantlets from somatic embryos and clonal multiplication in vitro is an essential
step for commercial application of this technology to crop improvement [144].

Somatic embryogenesis in avocado was first achieved using immature zygotic em-
bryos of cv ‘Hass’ [145]. Studies have reported that the embryogenic capacity of avocado
was highly genotype dependent [146]. To improve somatic embryogenesis previous studies
have shown that several factors are vital for success, (1) composition of media, (2) hor-
mone type and concentration, (3) type and concentration of gelling agent and (4) light
intensity [147]. Morphogenic competence of somatic embryos has been reported to be
lost 3–4 months after induction depending on the genotype [145,148]. In addition, the
main factor limiting conversion of somatic embryos into plantlets is incomplete matura-
tion [149]. Studies have found that there are two types of regeneration that occur after
maturation; unipolar (only shoot apex or root) and bipolar (both shoot apex and root).
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Shoots regenerated from unipolar embryos can either be rooted or rescued using in vitro
micrografting [150]. Studies have shown that the percentage of high-quality bipolar em-
bryos from avocado somatic embryos was extremely low at 2–3% and was genotype
dependent [145,150,151]. This low rate of somatic embryo conversion is currently the
main bottleneck in avocado regeneration via somatic embryogenesis [144]. A study de-
scribed an in vitro induction and multiplication system for somatic embryos of avocado,
across four cultivars, which remained healthy and viable for 11 months, on a medium
used for mango somatic embryogenesis [139]. Furthermore for one of the cultivars, culti-
var ‘Reed’, a two-step regeneration system was developed that resulted in 43.3% bipolar
regeneration [139].

Cryopreservation of avocado somatic embryos has been successful for various culti-
vars (Table 7). The effect of cryogenic storage on five avocado cultivars (‘Booth 7’, ‘Hass’,
‘Suardia’, ‘Fuerte’ and ‘T362’) using two cryopreservation protocols (controlled-rate freez-
ing and vitrification) was investigated [152]. In terms of controlled-rate freezing, three out
of five embryogenic cultivars were successfully cryopreserved with a recovery of 53 to 80%.
Using vitrification, cultivar ‘Suardia’ showed 62% recovery whereas ‘Fuerte’ had only a 5%
recovery. When the droplet-vitrification technique was used, two ‘Duke-7’ embryogenic
cell lines showed viability ranging from 78 to 100% [153]. Protocols employed in both
studies cannot be applied in general to multiple cultivars and optimization of loading
sucrose concentrations and plant vitrification solution 2 (PVS2), temperature and times
need more intensive research.

Table 7. Summary of successfully applied cryopreservation techniques to avocado somatic embryos.
* Recovery is defined as any somatic embryo clump which was proliferating into new callus clumps.

Cryopreservation Technique Cultivars * Recovery Percentages

Vitrification

‘Suardia’ 62%
‘Fuerte’ 5% [152]

‘A10’ 91%
‘Reed’ 73%

‘Velvick’ 86%
‘Duke 7’ 80% [144]

Slow freezing
‘Suardia’ 60–80%

‘T362’ 4–53%
‘Fuerte’ 73–75% [152]

Droplet vitrification

‘A10’ 100%
‘Reed’ 85%

‘Velvick’ 93% [144]
Two lines of ‘Duke 7’ 78–100% [153]

5.2.3. Shoot-Tip Cryopreservation of Avocado

Cryopreservation is a secure and cost-effective method for long-term storage of av-
ocado. It provides a high degree of genetic stability in maintaining avocado collections
for the long-term compared to other conservation methods. Shoot-tip cryopreservation
conserves ‘true-to-type’ avocado plant tissue. It is ideal for preserving a core selection of
avocado genotypes, for example, with superior characteristics, disease and pest resistance,
rarity, drought and salinity tolerance. In one study, it was shown that axillary buds of
Mexican and Guatemalan races were viable through fluorescein diacetate staining after
dehydration with sterile air and being treated with cryopreservation solutions; however,
shoot regeneration was not achieved with the cryopreserved material [154]. Another study,
showed that dehydration at 60 min with sterile air and 30 min in PVS4 at 0 ◦C produced
normal plant development and 100% survival was obtained after 30, 45 and 60 days [155].
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5.2.4. Critical Factors Identified for Successful Cryopreservation of Avocado Shoot-Tips

Although still cultivar-dependent, in vitro protocols have been established for multi-
ple cultivars of avocado [111] advancing cryopreservation of avocado. Droplet vitrification
can be considered as a “generic” cryopreservation protocol for hydrated tissues, such
as in vitro cultures [49,156]. Vitrification-based procedures offer practical advantages in
comparison to classical freezing techniques and are more appropriate for complex organs
e.g., avocado shoot tips, which contain a variety of cell types, each with unique require-
ments under conditions of freeze-induced dehydration [157]. A problem associated with
cryopreservation is formation of lethal ice crystals. To overcome this vitrification makes
use of the physical phase called ‘vitrification’, i.e., solidification of a liquid forming an
amorphous ‘or glassy’ structure [7] to avoid ice crystal formation of a watery solution.
Glass is viscous and stops all chemical reactions that require molecular diffusion, which
leads to dormancy and stability over time [158]. Samples can be vitrified and rapidly super-
cooled at low temperatures and form in a solid metastable glass with crystallization [66].
For procedures that involve vitrification, cell dehydration occurs using a concentrated
cryoprotective media and/or air desiccation and is performed first before rapid freezing
in LN [157]. It is important that cells are not damaged or injured during the vitrification
process and are vitrified enough to sustain immersion in LN [24]. As a result, all factors
that affect intracellular ice formation are avoided [157].

Oxidative stress is a common and often severe problem in plant tissue [159,160] of
most woody plant species, such as avocado. Therefore, it is important to optimize regrowth
conditions of extracted avocado shoot tips to prevent browning when developing an
in vitro cryopreservation protocol. Browning of cell tissue takes place as the cytoplasm and
vacuoles are mixed and phenolic compounds readily become oxidized by air, peroxidase or
polyphenol oxidase. Oxidization of phenolic compounds inhibit enzyme activity and result
in darkening of the culture medium and subsequent lethal browning of explants [161].
The antioxidant ascorbic acid (ASA) or vitamin C (ASA) occurs naturally in plants, in
plant tissue and meristems [162]. It has many roles in a plant’s physiological processes
but mainly in its defense against oxidative damage resulting from aerobic metabolism,
photosynthesis, pollutants and other stresses caused by the environment [163]. Wounding
of avocado tissue can lead to an increase in reactive oxygen species (ROS) within the shoot
therefore affecting the viability. ROS are highly reactive molecules and have been shown
to cause damage in cells. Many molecules are considered as ROS, some of which include
oxygen-free radical species and reactive oxygen non-radical derivatives [48]. The most
common ROS species found in plants are superoxide (O2

−), hydroperoxyl (OOH), hydroxyl
radical (OH) and singlet oxygen (O2) [48]. ASA has an important role in the detoxification
of ROS species both enzymatically or non-enzymatically [164]. It can do this by scavenging
a singlet oxygen, hydrogen peroxide, superoxide and hydroxyl radical [163].

It has been reported by several authors that the addition of antioxidants can help in-
crease the viability of plants by suppressing browning which leads to shoot tip
death [83,165–169]. By maintaining a higher antioxidant level protection improved post
cryopreservation [166]. It has been reported that in Actinidia spp. (kiwifruit) the addition
of ASA in regrowth media improved the survival after cryopreservation by reducing lipid
peroxidation [83]. The addition of ASA to pre-culture media, loading solution, unloading
solution and regrowth media significantly increased regrowth of shoot tips of Rubus spp.
(raspberry) [168]. A recent study found treating Persea americana cv ‘Reed’ (avocado), with
varying concentrations of different antioxidants (ASA, polyvinylpyrrolidone [PVP], citric
acid and melatonin) reduced browning caused when extracting shoot tips. The type of
antioxidant and concentration had an effect on viability, vigor and health of the shoots [170].

Avocado is highly susceptible to osmotic stresses imposed by cryoprotectants which
are high in osmolarity. Cold sensitive species such as avocado are likely to be positively
responsive to vitrification treatments during cryopreservation if optimizations are done
carefully [171]. In order to improve on tolerance to cryoprotectants and increase permeation
of the cryoprotectant through the cell membrane and induce tolerance to dehydration
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caused by vitrification solutions, a pre-step called ‘loading’ is used [52]. Loading is achieved
by incubating tissues for 10−20 min in solutions composed of glycerol and sucrose [48].
This loading step is particularly useful for plant species, that are sensitive to direct exposure
to cryoprotectants due to dehydration intolerance and osmotic stresses [48]. However, use
of loading solution alone for avocado shoot tips is not adequate to induce tolerance to
cryoprotectants, and other pre-treatments/pre-culture such as osmotic conditioning with
sugars and cold acclimatization are necessary [172].

Pre-culturing shoot tips with a high sugar enriched media has been reported previ-
ously by several authors [173–175] to increase the viability post-cryopreservation by better
pre-conditioning the shoot. Also, time of incubation in pre-culture solutions was critical
to ensuring survival and high regrowth rates [55,176]. There have been attempts to use
alternative sources of sugar in pre-culture media, such as, sorbitol or mannitol [177–180],
glucose and fructose; all have shown no negative effects on post-cryopreservation sur-
vival [181]. However, most researchers prefer to use sucrose as the sugar source when
adding to pre-culture media [181]. Sucrose has been found to be more beneficial in pre-
culture as compared to sorbitol and mannitol as these two sugars were unable to support
regrowth of olive somatic embryos [182]. However, when 0.2 M sorbitol was combined with
5% DMSO it was an effective cryoprotectant for embryogenic tissue of Pinus roxburghii Sarg.
(chir pine) [183]. Sucrose is an excellent glass former and is able to stabilize membranes
and proteins [184]. Sucrose stimulates the production of other elements such as proline,
glycine betaine, glycerol and polyamines, which have colligative as well as non-colligative
effects [185,186]. Of the above-mentioned sugars [187], glycerol [188], proline [189] and
glycine betaine [190] have proved their cryoprotectant ability, whereas polyamines are
known for their antioxidant properties. Therefore, these compounds play a vital role in
protecting the cells during cryopreservation. It has also been shown that pre-culturing in
high sucrose media enhances the acclimatization process to low temperature and stimulates
osmotic dehydration [47].

Water availability and temperature are influenced by environmental variables and
are major determinants of plant growth and development [191]. Most tropical and sub-
tropical species have little to no freezing tolerance, however, temperate plant species
have evolved some form of cold tolerance [191,192]. It has been shown in temperate
plants that they have the genetic ability to increase cold tolerance significantly when
exposed to environmental cues that signal the arrival of winter [193]. Many plants can
increase their tolerance to the cold by exposure to lower temperatures, generally with
temperatures below 10 ◦C [193]. This process is referred to as cold hardening or cold
acclimatization (CA) and requires days to weeks for full development [50,193,194]. Several
biochemical, physiological and metabolic functions are altered in plants by low temperature
as well as gene expression [195]. Expression of cold induced genes include those that
control the function of cell membranes to stabilize and protect themselves against freezing
injury [196]. Freezing tolerance can be increased by 2–8 ◦C in spring annuals, 10–30 ◦C
in winter annuals and 20–200 ◦C in tree species [193]. Cold acclimatization can help
improve the regrowth rates of in vitro plants, improve regeneration rates [197]. Cold
acclimatization has been used as an in vitro pre-treatment on donor plants before shoot
tip extraction [198] in developing cryopreservation protocols in plants such as Malus
domestica Borkh (apple), Malus sieversii (Ledeb.) (wild apple) and Phoenix dactylifera (date
palm) [199,200]. Cold acclimatization with or without ABA significantly improved the
survival of Rubus spp. [201]. Abscisic acid (ABA) pre-treatment alone could not increase the
survival of plants grown under warm conditions after cryopreservation, but the survival
tripled when cold acclimatization was combined with ABA pre-treatment [201]. High
sucrose (0.3 M) or low temperature (10 ◦C) incubation treatments primed in vitro plants of
cvs ‘Reed’ and ‘Velvick’ shoot tips to tolerate cryoprotectant (PVS2) treatments but was
cultivar-specific [202].
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6. Conclusions

Field living germplasm collections are currently the only conservation method for
avocado, but funding and threats from natural calamities; pest and diseases are a prob-
lem. Cryopreservation is an invaluable tool that could be utilized in conjunction with
field repositories to securely preserve this important horticultural crop. There have been
significant improvements within the cryopreservation platform to preserve Persea spp.
germplasm [202–204]. Studies have shown that cryopreservation of somatic embryos offers
usefulness in conserving Persea germplasm biodiversity [144,152,153]. An important factor
for somatic embryos is that regeneration can be achieved after exposure to LN to ensure
that protocols can be effectively applied for conservation programs [176]. Cryopreservation
of somatic embryos is valuable as it is readily retrievable for further biotechnology ma-
nipulations as well as storage of biotechnology products such as genetically transformed
lines [23,205].

To date, although cultivar-dependent, in vitro multiplication protocols have been
established for maintaining multiple avocado cultivars in tissue culture from mature
glasshouse cuttings [111]. This can be used to supply new plants to avocado farmers,
meeting a critical issue that is preventing the expansion of industry, the shortage of available
avocado trees. Twenty thousand in vitro plants can be maintained in a 10 sqm tissue culture
room saving on land, fertilizer, pesticides promoting an environmentally sustainable and
efficient method of multiplication of avocado plants.

Development of the in vitro shoot-tip cryopreservation protocol was highly dependent
on the availability of this reliable in vitro multiplication and regeneration protocol. For
the first time studies [202–204] have shown that in vitro cryopreservation using droplet-
vitrification for mature material of two avocado cultivars have been successful. Correctly
treating avocado shoot tips with the ideal pre-treatment before LN is vital for a successful
outcome [202]. It was identified that the use of 100 and 250 mg L−1 of ASA can effectively
reduce browning of freshly extracted avocado shoot tips [170,202]. High sucrose and cold
pre-treatments are effective in increasing survivability following cryoprotectant incubation
of avocado shoot tips. While pre-treatments are effective for avocado, the type of pre-
treatment needed and the degree of effectiveness was cultivar-specific [202]. This can be
directly linked to the genetics of the two cultivars which display varying tolerance to cold
and salinity in their natural growing environments; namely, cv ‘Velvick’ from West Indian
race (no cold tolerance) and cv ‘Reed’ from Guatemalan race (moderate cold tolerance) [204].
The type of cryoprotectant and exposure time to the cryoprotectant was also essential in
obtaining morphologically normal and vigorous plants [204]. Avocado shoots that survived
LN grew into full plants ready for rooting after 24 weeks [204]. Cultivar ‘Reed’ shoots were
successfully rooted [206] and after 8 weeks, plantlets were ready to be acclimatized in a
University of Queensland glasshouse (Figure 2). These plants will be screened for growth
parameters and yield in a field trial at Duranbah, Queensland. Shoot tips from cv ‘Velvick’
are currently in the rooting stage.

In vitro multiplication and in vitro cryopreservation protocols provide another set
of tools that can be used to preserve global avocado diversity to improve conservation
germplasm collections, breeding and propagation. Somatic embryogenesis, cryopreser-
vation of somatic embryos and shoot tips, have the ability to be adapted to lead to the
establishment of a global Cryo-Bank conserving avocado biodiversity and offering a source
of disease-free genetic material. They provide useful tools for further optimization of the
species and other woody plant species facing similar challenges in conservation. Shoot
tip cryopreservation is ideal for preserving a core selection of avocado genotypes, for
example, with superior characteristics, disease and pest resistance, rarity, drought and
salinity tolerance. Shoot tip cryopreservation of avocado is a major breakthrough and this
work can pave the way for storing a core collection of Persea spp. for true-to-type avocado
shoot tip preservation.
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Figure 2. Shoot tips of cv ‘Reed’ treated with VSL and revived from LN growing in a glasshouse.
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179. Mikuła, A.; Tykarska, T.; Kuraś, M. Ultrastructure of Gentiana tibetica proembryogenic cells before and after cooling treatments.

CryoLetters 2005, 26, 367–378.
180. Pritchard, H.; Grout, B.; Short, K. Osmotic stress as a pregrowth procedure for cryopreservation: 1. Growth and ultrastructure of

sycamore and soybean cell suspensions. Ann. Bot. 1986, 57, 41–48. [CrossRef]
181. Panis, B.; Strosse, H.; van den Hende, S.; Swennen, R. Sucrose pre-culture to simplify cryopreservation of banana meristem

cultures. CryoLetters 2002, 23, 375–384.
182. Lynch, P.T.; Siddika, A.; Johnston, J.W.; Trigwell, S.M.; Mehra, A.; Benelli, C.; Lambardi, M.; Benson, E.E. Effects of osmotic

pre-treatments on oxidative stress, antioxidant profiles and cryopreservation of olive somatic embryos. Plant Sci. 2011, 181, 47–56.
[CrossRef] [PubMed]

183. Malabadi, R.B.; Nataraja, K. Cryopreservation and plant regeneration via somatic embryogenesis using shoot apical domes of
mature Pinus roxburghii sarg, trees. Vitr. Cell. Dev. Biol. Plant 2006, 42, 152. [CrossRef]

184. Crowe, L.M. Lessons from nature: The role of sugars in anhydrobiosis. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2002,
131, 505–513. [CrossRef]

185. Antony, J.J.J.; Keng, C.L.; Mahmood, M.; Subramaniam, S. Effects of ascorbic acid on PVS2 cryopreservation of Dendrobium
Bobby Messina’s PLBs supported with SEM analysis. Appl. Biochem. Biotechnol. 2013, 171, 315–329. [CrossRef]

186. Hirsh, A.G. Vitrification in plants as a natural form of cryoprotection. Cryobiology 1987, 24, 214–228. [CrossRef]
187. Herbert, R.; Vilhar, B.; Evett, C.; Orchard, C.; Rogers, H.; Davies, M.; Francis, D. Ethylene induces cell death at particular phases

of the cell cycle in the tobacco TBY-2 cell line. J. Exp. Bot. 2001, 52, 1615–1623. [CrossRef]
188. Williams, W.P.; Quinn, P.J.; Tsonev, L.I.; Koynova, R.D. The effects of glycerol on the phase behaviour of hydrated distearoylphos-

phatidylethanolamine and its possible relation to the mode of action of cryoprotectants. Biochim. Biophys. Acta Bba Biomembr.
1991, 1062, 123–132. [CrossRef]

189. Burritt, D.J. Proline and the cryopreservation of plant tissues: Functions and practical applications. In Current Frontiers in
Cryopreservation; Katkov, I.I., Ed.; InTech: Rijeka, Croatia, 2012.

190. Cleland, D.; Krader, P.; McCree, C.; Tang, J.; Emerson, D. Glycine betaine as a cryoprotectant for prokaryotes. J. Microbiol. Methods
2004, 58, 31–38. [CrossRef]

191. Janská, A.; Maršík, P.; Zelenková, S.; Ovesná, J. Cold stress and acclimation—What is important for metabolic adjustment? Plant
Biol. 2010, 12, 395–405. [CrossRef] [PubMed]

192. Arora, R. Freezing Tolerance and Cold Acclimation in Plants; Deparment of Horticulture, Iowa State University: Ames, IA, USA,
2010. [CrossRef]

193. Gusta, L.; Trischuk, R.; Weiser, C.J. Plant cold acclimation: The role of abscisic acid. J. Plant Growth Regul. 2005,
24, 308–318. [CrossRef]

194. Reed, B. Pre-treatment strategies for cryopreservation of plant tissues. In In Vitro Conservation of Plant Genetic Resources; Normah,
M.N., Narimah, M.K., Clyde, M.M., Eds.; Universiti Kebangsaan: Bangi Selangor, Malaysia, 1996; pp. 73–87.

195. Janmohammadi, M.; Zolla, L.; Rinalducci, S. Low temperature tolerance in plants: Changes at the protein level. Phytochemistry
2015, 117, 76–89. [CrossRef] [PubMed]

196. Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50,
571–599. [CrossRef] [PubMed]

197. Dumet, D.; Chang, Y.; Reed, B.M.; Benson1, E.E. Replacement of cold acclimatization with high sucrose pretreatment in black
currant cryopreservation. Satoshi Katomasaya Ishikawamiwako Ito Tatsuo Matsumoto 338 2000, 17, 393.

198. Coelho, N.; González-Benito, M.E.; Martín, C.; Romano, A. Cryopreservation of Thymus lotocephalus shoot tips and assessment of
genetic stability. CryoLetters 2014, 35, 119–128.

199. Fki, L.; Bouaziz, N.; Chkir, O.; Benjemaa-Masmoudi, R.; Rival, A.; Swennen, R.; Drira, N.; Panis, B. Cold hardening and sucrose
treatment improve cryopreservation of date palm meristems. Biol. Plant. 2013, 57, 375–379. [CrossRef]

200. Kushnarenko, S.V.; Romadanova, N.V.; Reed, B.M. Cold acclimation improves regrowth of cryopreserved apple shoot tips.
CryoLetters 2009, 30, 47–54.

201. Reed, B.M. Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry
meristems. Cryobiology 1993, 30, 179–184. [CrossRef]

202. O’Brien, C.; Hiti-Bandaralage, J.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Folsom, J.; Mitter, N. A method to increase regrowth of
vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Sci. Hortic.
2020, 266, 109305. [CrossRef]

http://doi.org/10.1007/s00299-008-0574-1
http://www.ncbi.nlm.nih.gov/pubmed/18587582
http://www.ncbi.nlm.nih.gov/pubmed/26574682
http://doi.org/10.17660/ActaHortic.2001.560.16
http://doi.org/10.1093/oxfordjournals.aob.a087092
http://doi.org/10.1016/j.plantsci.2011.03.009
http://www.ncbi.nlm.nih.gov/pubmed/21600397
http://doi.org/10.1079/IVP2005731
http://doi.org/10.1016/S1095-6433(01)00503-7
http://doi.org/10.1007/s12010-013-0369-x
http://doi.org/10.1016/0011-2240(87)90024-1
http://doi.org/10.1093/jexbot/52.361.1615
http://doi.org/10.1016/0005-2736(91)90383-J
http://doi.org/10.1016/j.mimet.2004.02.015
http://doi.org/10.1111/j.1438-8677.2009.00299.x
http://www.ncbi.nlm.nih.gov/pubmed/20522175
http://doi.org/10.1036/1097-8542.YB100044
http://doi.org/10.1007/s00344-005-0079-x
http://doi.org/10.1016/j.phytochem.2015.06.003
http://www.ncbi.nlm.nih.gov/pubmed/26068669
http://doi.org/10.1146/annurev.arplant.50.1.571
http://www.ncbi.nlm.nih.gov/pubmed/15012220
http://doi.org/10.1007/s10535-012-0284-y
http://doi.org/10.1006/cryo.1993.1017
http://doi.org/10.1016/j.scienta.2020.109305


Plants 2021, 10, 934 23 of 23

203. O’Brien, C.; Hiti-Bandaralage, J.C.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Mitter, N. Developing a cryopreservation protocol for
avocado (Persea americana Mill.) shoot tips. Cryobiology 2018, 85, 171. [CrossRef]

204. O’Brien, C.; Hiti-Bandaralage, J.C.A.; Folgado, R.; Lahmeyer, S.; Hayward, A.; Folsom, J.; Mitter, N. First report on cryopreserva-
tion of mature shoot tips of two avocado (Persea americana Mill.) rootstocks. Plant Celltissue Organ Cult. 2020. [CrossRef]

205. Sánchez-Romero, C.; Márquez-Martín, B.; Pliego-Alfaro, F. Somatic and zygotic embryogenesis in avocado. In Somatic Embryogen-
esis; Springer: Berlin/Heidelberg, Germany, 2006; pp. 271–284.

206. Hiti-Bandaralage, J.; Hayward, A.; O’Brien, C.; Gleeson, M.; Nak, W.; Mitter, N. Advances in Avocado Propagation for the
Sustainable Supply of Planting Materials. In Achieving Sustainable Cultivation of Tropical Fruits; Burleigh dodds Science Publishing:
Cambridge, UK, 2019; pp. 215–238. ISBN 9781786762849.

http://doi.org/10.1016/j.cryobiol.2018.10.199
http://doi.org/10.1007/s11240-020-01861-y

	Introduction 
	Field Repositories of Woody Crops 
	In Vitro Conservation 
	Plant Cryopreservation of Somatic Embryos and Shoot Tips 
	Methods to Reduce Water Content 
	Cryopreservation Methods 
	Vitrification 
	Droplet-Vitrification 
	Encapsulation-Vitrification and Encapsulation-Dehydration 
	Dehydration 
	Pre-Growth and Pre-Growth-Dehydration 
	D-cryoplate and V-cryoplate 


	The Avocado Case 
	Background 
	Avocado Conservation 
	Global Germplasm Repositories 
	Cryopreservation of Avocado Somatic Embryos 
	Shoot-Tip Cryopreservation of Avocado 
	Critical Factors Identified for Successful Cryopreservation of Avocado Shoot-Tips 


	Conclusions 
	References

