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What is a crystal structure?

“Iomathematics, if a pattern ocenrs, we can go on tooask, Why dees it occur?
What deey it sipnifv? And we can find answers to these guestions. In fact, for every
; : g 5

pattern that appears, a mathematician feels he ought o know why it appears.”

W. W, Sawwyer, mathematician

In this chapter, we will analyze the various components that make up a crvsral
structire. We will proceed in a rather pragmatic way, and begin with a loose
“definition” of a crystal structure that most of us could agree on:

A crvstal structure is a regular arrangement of atoms or molecules.

We have some idea of what atoms and molecules are — at least, we
think we do. . . And we also have some understanding of the words “regular
arrangement.” The word “regular” could mmply the existence of something
that repeats itself, whereas “arrangement” would imply the presence of a
pattern, But, there are many possible patterns: the words on this page form a
pattern of lines; migrating birds often fly in V-shaped formations: musicians
in a marching band walk in an orderly way.; the kernels on a piece of corn
are arranged in neatly parallel rows; and so on, All of these words, reguiar
arrangement, pattern, orderly, repeaty itself, are commonly vsed words In
our everyday language, but they are not sufficiently precise for a scientific
description of what a crystal structure really 1s.
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Fig. 3.1. (a) A periodic pattern
consisting of () a 2-0 net and
(c) @ motif. The moff is
repeated at each point of the
2-11 net, to create the pattern
in (&)
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S0, we will need to define more ngorously what we mean by a regular
arrangement. We can understand this concept intuitively by considering the
drawing in Fig. 3.1. Figure 3.1(a) shows a periodic drawing: although this
is clearly not a drawing of a crystal structure, the drawing does illustrate
some of the more fundamental aspects of crystals. The drawing consists
of a4 marif, shown in Fig. 3.1(c), which is repeated by translating it from
one point, chosen as the origin in Fig. 3.1(b), to other points arranged in a
two-dimensional pattern, The set of points constitutes what we will call a
net in two dimensions (2-D) and o lattice in three dimensions (3-D). The
motif represents the decoration of that net/lattice. In exactly the same way,
a crystal structure can be described as a 3-D lattice, decorated with atoms
or molecules. Hence, our “regular wrangement™ is now restricted to be a
“lattice.” In the next section, we will describe in a more rigorous way what a
lattice is.

Belore we do so, let us return to one of the examples of patlerns given
in the previous paragraph: the marching band. Consider a marching band in
which the members occupy positions on 10 rows of 3 musicians each. When
the band assembles itsell into this Tformation, the rows and columns are well
defined, and all musicians are nicely lined up, with the nearest musicians in
front. behind, and to left and right at, say, 1.5 meters from each other. Once
the band starts marching, however, it becomes much harder for the musicians
lo maintain this formation with greatl accuracy; as a spectialor, we expect them
to keep their formation as best they can, and. not infrequently, the band which
does this best may also end up being more popular {assuming their music
sounds good, too!), Depending on the discipline and/or motivation of the band
members, the formation may remain nearly perfect throughout the march (as
would be expected for a military marching band), or it may be more loosely
related to the original Tormation, with each musician staying within, say, half
a meter of his/her supposed position. At any moment in time, only a few
of the musicians will be precisely at their nominal position, but on average,
over the duration of the march, all of them will have been where they were
supposed to be. This is illustrated in Fig. 3.2; (a) shows the initial positions
on a regular square grid. At an instant of time, each musician may deviate
somewhat from these positions. In (b}, the trajectory of each musician during
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Fig. 3.2. (a} Initial positions of
the musicians of a marching
band (atoms on a crystal
lattice); (b} trajectaries of all
musicians relative to their
initial position for the length of
the march for a loosely
structured band (atoms at
elevated temperature), and (c)
for a highly disciplined band
(atoms at low temperaturel,
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the entire march is drawn with respect to that musician’s initial position. It is
clear that, on average, the musicians did keep (o the initial formation. The size
of the “trajectory cloud”™ around each site is an indication of how much each
musician deviated on average from the formation, For a military marching
band, we would expect the diameter of these clouds to be very small. as
shown in (c).

Mow we can abandon the marching band and replace each band member by
an atom,' The atoms are positioned on a grid and, as a function of time, they
move around their own grid site in a somewhat random way, The surrounding
atoms prevent them from moving too far from their initial positions, so that, on
average, over a relatively long time, each atom appears to occupy the perfect
grid position. The magnitude. of the instantaneous deviations is determined,
not by motivation or discipling, but by the remperatire of the atom assembly.
A high temperature means that the atoms have a high kinetic energy, so
their excursions from the average position can become quite large; whereas
at a low temperature, there is insufficient Kinetic energy available for large
excursions, and the vibration amplitide will remain small, This kind of atom
motion is known as thermal motion or thermal vibration. It is present in every
crystal structure and it is convenient to ignore it in a structural description
of erystals.® The thermal motion of atoms only becomes important in the
determination of the crystal structure by means of a suitable form of radiation
(X-rays, electrons, neutrons) and can be adequately described by means of the
so-called Debye—Waller factor, which will be introduced in Chapter 11, From
here on, we will always consider the average position to be the “real” position
of the atom: this is an approximation, but it turns out to be a very convenient

I The reader wha also happens 1o be a member of o marching band may rest assured: there

will be no further verbal abuse of marching bands in this book!

* Thermal vibwation is net limited w materials with a crystalline structure; it also ocowrs in
liguids and gases, where there is no periodic stroctore. The vibrations are related o the
curviture of the interatomic interaction potential introduced in the previous chapter. A small
curviture arownd the equilibrivm distance indicates a small restoring {orce for excursion
awway from this position; hence, the vibration frequency will be low, For a large corvature,
the restoring foree is large, and therefore the vibration frequency is high,
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one because most mathematical relations to be derived in the remainder of
this book become independent of time.

The average position of an atom in a crystal structure does not change
with time, so we can slightly revise our initial loose definition of a crystal
structure to:

A erystal structure is a time-invariant, three-dimensional arrangement of
atoms or molecules on a lattice,

We will take this statement as a starting point for this chapter. First, we need
to define more precisely what we mean by the term “lattice.”

3.2.1 Basis vectors and translation vectors

e i e BT

Fig. 3.3. lllustration of a
general building block (2 wnit
celly, with the three basis
vedhors a, b, and « (figure
reproduced from Fig 1.10n
Introduction to

Conventional Transmission
Electron Microscopy,

M. De Graef, 2003, Cambridge
University Press).

The historical comments in Box 3.1 show how Rendé-Just Haily built models
of crystals by stacking rectangular blocks in such a way that the assembly
tesembled the external shape (or form) of macroscopic erystals. By assuming
the existence of a single shape, he was able (o construct many different forms,
thereby explaining the large wvariety of erystal forms (or shapes) observed
in nature. We will take Haiiy’s block model as the starting point for the
introduction of the space lattice. First of all, we consider the most general
block shape, an outline of which is shown in Fig. 3.3. If we take one of the
corners of the block as the origin, then we can define three vectors along the
three edges of the block, We shall call them a, b, and ¢. Note that the angles
between these vectors need not be 907, and that the lengths of these vectors
need not be the same.

The main advantage of defining these basis vectors is that we can easily
identify the coordinates of all of the corners of the block, For instance, the
corner opposite the origin has position vector a-- b+ c. Alternatively, we
can write the coordinates of this point as (1, 1, 1}, since the position vector
corresponds to 1 xa+ 1 x b+ 1 x ¢, Note that we will always write coordinates
between parentheses, with commas separating the mndividual components.

Mext. we consider a stack of blocks, as in Haiiy's models. Since each block
is identical o every other block, and they are stacked edge 1o edge and lace
to face, it 1s easy to see that we can jump from the origin to any corner of
any block in the stack, by taking integer linear combinations of the three
basis vectors, The coordinates of each block corner can therefore be written
as triplets of integers, which we will denote by (u, v, w). Note that these
integers can take on all possible values, including negative ones, since we
can take the origin at any point in the stack.
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Box 3.1 Haiiy’s crystal models

René-Just Haiiy (1743-1822) was a French priest and mineralogist. His
building bleck theory of crystal structures led directly to the lattice model |
(Haiiy, 1784, 1801, 1822), He suggested that erystals are composed of
arravs of subdivisible blocks, called imegral molecules, with shapes spe-
cific to the crystal. Haiiy showed how, replicating the same hlocks in
different ways, he could construct different external shapes. This was
taken as an explanation as to why the same substance could have crystals
with different external forms. Haiiy showed further that the building block
theory implied that the overall symmetry of a crystal must be the same as
that of its constituent parts. Nowadays, we no longer talk about “integral
molecules,” bul, instead, we use the name “unit cell.” The figure below,
taken from Vol. 5 of Haiiy (18010), shows how the rhombic dodecahedron
shape {on the left) can be obtained by starting from a cubic crystal shape
(on the right), and adding layers of cubic building blocks, with each new |
i laver one unit cell smaller on all sides than the previous one,

Instead of considering blocks, we will forget about the outline of the blocks,
and only consider the comer points. We can then jump from the origin o
the point with coordinates {w. v, w) by using the rrarsiation vector (or lattice
vector) 1, defined as

t = ua+vb 4 we. (3.1)

All corner points can be reached by integer linear combinations of the three
basis vectors. We shall call the collection of comer points the space lattice,
and each individual corner a node or lattice point. A space lattice 1s thus a
set of nodes. related to one another by the franslation vectors t. In 2-D, there
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are only two basis vectors, a and b, and the integer linear combinations of
these vectors make up the nodes of the net.

A space lattice (net) is the geometrical image of the operation of the
translition operators on the node at the origin.

3.2.2 Some remarks about notation

At this point, it is useful to introduce a shorthand notation for the translation
vector t. In addition to writing its components as the integer triplet (n, v, w),
we will also write them as (u,, #2, u4), or as u; (i = 1...3). Similarly, we
will often write a; for the basis vectors, where 3, =a, a,=b, and a, =c.
This appears to be a superfluous complication of the notation, but it will turn
out to be extremely useful for all kinds of crystallographic conmputations, as
we will see in the tollowing chapters.

The ser {or collection) of translation vectors of any space lattice necessarily
containg an infinite number of elements; we will denote this set by the

callipraphic symbol T
T ={t|t=ua+vh+uwe, (1, v, w) integers). (3.2)

This expression reads as follows: T s the set of all vectors t that can be
written as linear combinations of the tvpe ua <+ vb- we, with &, v, and w
restricted o be integers.

Before we continue with a description of space lattices, it is worthwhile
taking a brief “notational excursion.” In crystallographic computations, it is
often useful 1o be as economic as possible with symbols: the fewer symbols
needed to describe o concept, the less likely that errors will be made. So, al
this point we will introduce a device which will allow us to shorten all the
expressions that we have discussed so far. This device is commonly known
as the Einstein swmmation convention, and it is stated as follows:

A summation is implied over every subscript which appears twice on the
same side of an eguation.

Here is how it works., We start from the expression for the translation
vector, and rewrite it in a few different ways, using various nolations thal we
are already familiar with:

t = wa+vh+ we;

= 8, 4+ i3, 4 4.8,;

k|
= Z il
=1
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This last expression uses the summation sign } . It is obvious that this last
expression is shorter in length than the other two, but now it has grown in
the vertical direction . . . We all know that we are living and working in a
three-dimensional (3-D) space, so il is rather clear that the sum goes from
i=1to{=3. So, why don't we simply drop the summation sign altogether
and write:

t=ua; (3.3)

and we remind ourselves that there is an fmplied sunmmation over the index i,

We know that there is a summation, since the index | appears twice on

the same side of the equation, once on the n;, and once on the a. This

notation convention (dropping the summation signs) is the Einstein summation

canvention, which we will use profusely throughout this text.’ Since this

looks a little confusing, let’s practice this convention on a few examples.
First of all, consider the expression

Is there an implied summation? Yes, there is, since the subscript j is repeated
twice on the same side of the equation! So, this equation really reads as:

3
t= Eujaf-.
j=1

This also illustrates an important point: it does not matter which letter of the

alphabet we use for the subscript, as long as we use the same letter twice.

The subscript is therefore known as a dunnny subscript or a dummy index.
Let’s look at a slightly more complicated expression:

M = bua,.

First we deal with the right hand side. The index § occurs twice, so there 15
a summation implied over ¢, The index j occurs only once, so there is no
summation over f. So, the equation really reads as:

3
oy g
M=b, Y ua,.
i |

But what would we have on the left hand side? That's a good question! If we
use the relation t = u,a;, then we would have

e b

bit=bua,.

* The reader may find a comment on the netation used in this book in Box 3.2,
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Box 3.2 Alternative notation

There exists an alternative notation, frequently used in the physies litera-
ture. This notation employs both subscripts and superscripts. The compo-
nents of a vector are denoted with superscripts, as in:

3
t=u'a = Z u'a;.
=l

The Einstein summation convention then reads: A sunnnation is implied
aver every index which appears twice on the same side of an equation, once
e  subscript and ence as a superscript, While there are some advantages
of this notation over the one used in this book, in particular when we start
describing reciprocal space in Chapter 6, the authors decided to simplify
the notation, and to only consider subscripts for both vector components
and basis vectors.

This illustrates another important rule when working with subscripts: sub-
scripts must be balanced on bhoth sides of the equation. This means that,
if a subscript is present on one side of the equation, and no summation is
implied over this subscript, then it must also be present on the other side of
the equation.

Finally, let's look at a more complicated example, which we will encounter
in a later chapter:

F=e&,mgin.

Leaving aside for now the exact meaning of the symbol g, simply note that
it is possible for symbols to have more than one subscript.! We see that there
are three different subscripts, and each of them occurs twice, so there must
be three summations:

= [ |

F= Z E El'ﬂ. Fi'(.lrjrﬂ J

I=1 f=1 k=l

Since all indices are used up in the summations, there can be no index on
the left-hand side of the equation. This concludes some simple examples. We
will make extensive use of the summation convention in this text, so it is

* Think about matrices! A 3 ® 3 matrix A has three rows and three columns, and each entry of

the matrix is labeled by two subscripts, a5 in A This stands for the entry on row @ and
column j. The symbol €, s actually a 3 > 3 x 3 matrix, so we necd three indices o describe
each of its entries,
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important for the reader to be familiar with this notation, There are a few
more exercises at the end of this chapter.

3.2.3 More about lattices

Fig. 3.4. All lattice points have
identical surroundings and
every point can be selected as
the origin of the lattice,

Having defined what a lattice is, we can take a closer look at the conseguences
of this definition. If we translate the lattice by any of the lattice vectors t, then
we obtain the same lattice again. In other words, if you were to look at an
infinite lattice, then look away while someone else translates this lattice by t,
then you would not be able to see the difference between the lattices before
and after translation; they would coincide. If the translation vector was not a
lattice vector, then you would be able to see the difference, since the translated
fattice would not coincide with the original ane. This means that the lattice is
invariant under any translation by a lattice vector t. As a consequence of this
invariance, all laftice points are {dentical. This is illustrated in Fig. 3.4: we
can choose any lattice point as the origin, and the surroundings of all lattice
points are identical, as indicated by the thin lines around points 0, 1, and 2.

The space lattice is a purely mathematical abstraction and dees nof comtain
any atoms or molecules at alf. However, we can take a molecule and attach
it to each lattice point to obtain a crystal structure. We thus find that

A erystal structure consists of a 3-D space lattice which is decorated with
One Or more atoms.

The lattice is a 3-D assembly of mathematical points, which reflect the
transiational svmmetry of the complete crystal. In general, any 3-D lattice can
be fully described by stating the lengths of the 3 basis vectors and their muiual
angles. According to the [nternational Tables for Crvstallography (Hahn,
1989} the following notation should be used to deseribe the dimensions of a
3-D lattice:

a = length of a;
b = length of b; (3.4)

o = length of e;
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te = angle between b and ¢;

3
in
=2

B = angle between a and ¢ {

¥ = angle between a and b.

It is easy to remember the angle designations: for any pair of vectors, say,
a and ¢, take the missing letter (in this case #) and tum it into a greek
letter {in this case [8). These six quantities fully specify the space lattice (see
Fig. 3.3). The choice of the shortest lattice vector as either a, b, or ¢ will
depend on the symmetry of the lattice. We will often write the six numbers
as {a, b, e, @, B, v}; they are known as the lattice parameters. For a 2-D net,
the net parameters are usually written as [a, b, y).

The volume defined by the three basis vectors (shown by the dotted lines in
Fig. 3.3) is known as the wnit cell of the space lattice. It is customary to define
the vectors in such a way that the reference frame is right-handed. It the mixed
vector product (a x b) -e is positive, then the reference frame is right-handed;
if the product is negative, then the reference frame is lefi-handed. We will
define the dot and cross products in the following chapters. Next, we will
attempt to answer the question: how many different space lattices/ers are
there? We will consider 2-D nets before describing the 3-D lattices.

3.3 The four 2-D crystal systems

Consider the net parameters {a. &, ¥). If we take arbitrary values for all three
parameters, then we end up with a net similar to that shown in Fig. 3.5. This
is known as an ebligue net. There are no special conditions on any of the net
parameters. The oblique net has a low symmetry:® if we place a line normal
to the drawing in Fig. 3.5(a), through one of the nodes of the net, then it is
easy (o see that, if we rotate the net by 1807 around this line, all the nodes
of the rotated net will coincide with the original nodes. A node at a position
ua+vh will end up at position —xa — vh after the rotation, and this is again
an integer linear combination of the basis vectors. This means that the new
rotated node coincides with one of the original nodes, so that the original and
rotated nets are indistinguishable,

There is one special value for the angle y. When y = 90°, the unit cell
of the net becomes a rectangle, and the resulting net is the recrangular

4

We will define and discuss the concept of symmetry extensively in Chaprer 8, For now it is
sufficient for the reader to understand what a rotation is.



Fig. 3.5. Examples of the
oblique {a), rectangular

(b}, square (c), and hexagonal
(d) 2-D nets,
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ret, illustrated in Fig. 3.5(b). The rectangular net has the same rotational
symmetry (a 1807 rotation axis normal to the plane of the drawing). In addi-
tion, it also has mirror symmetry. This is easily verified by heolding this
book in front of a mirror and looking at Fig. 3.5(b); there 15 no difference
between the original and its mirror image. For the oblique net, we see that
the image in the mirror leans over to the left, whereas the original leans
over lowards the right. Therelore, the oblique net does not have mirror sym-
metry, and we say that the rectangular net has a higher symmetry than the
oblique net. The net parameters of the rectangular net are usually written as
la, b, 7/2).

MNext, we again start from the oblique net, but this time we take the two
basis vectors to have equal length, so that the net parameters are [a, a, ¥}
In this case, there are two special angles y, for which the resulling net has
4 higher symmetry than the oblique net. If y = 90°, then the net is based
on i square unit cell, and 1s called the sguare net, as shown in Fig, 3.5(c).
The higher symmetry is easy o spot, since a rotation of 90° around any axis
going through a node (perpendicular to the plane of the drawing) leaves the
net Invariant.

Finally, the last 2-D net is obtained by setting ¥ = 120°, This is the
hexagonal net; 1L is easy to see that this net is invariant under a rotation
of 60°, hence the name frexagonal. Note that we could also have selected
y = 607 the resulting net would have been indistinguishable from the one
shown in Fig. 3.5(d). The international convention is to select y = 120°
for the hexagonal net. These four nets are the only possible nets that can
be penerated with only two basis vectors a and b, We say that, in 2-D,
there are only four possible crystal systems: obligue, rectangular, hexagonal,
and sguare. Table 3.1 summarizes the net parameter symbols, the crystal
system name and an example of a unit cell for each of the 2-D crystal
systems,
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Table 3.1. The four 2-D crystal systems.

Condition/symbal Crystal systern Drawing

no condition,

[a. b, ¥ OBLIQUE

[

fid
Tzq“’“’ A il » -
[ar, b, 907} RECTANGULAR

L a
a=hy= 120", —
{a, @, 120°) HEXAGONAL

Ri0N

i

a=bh,y=9,
1

(e, 2. 90°) SQUARE

L &

3.4 The seven 3-D crystal systems

There are seven fundamentally different combinations of basis vectors in 3-D.
In the most general case, we select arbitrary numbers for the set of six lattice
parameters {a, b, o, a. B, v}, This generates the teicfinic or anorthic lattice.”
Figure 3.3 shows an example of a triclinic unit cell. When we translate this
unit cell by integer linear combinations of its basis vectors, we obtain the
triclinic lattice. No matter how we rotate this lattice, there are no rotation
axes for which the lattice is invariant,

MNext, we can assign special values to some or all of the lattice parameters,
as we did for the 2-D case. We look for combinations of lattice parame-
ters for which we can identifly rotational symmetry in the resulting lattice.
It turns out that we can have a single 180° rotation axis when two of the

® The name driclfinie con be split ino two parts: o which stands for “three” and cfinfe, which
comes from the Greek word Afinein for “to bend or slope.” In other words, we need three
angles 1o describe this unit cell. The second name, arorthic, is a combination of @, which
means “not,” and artfie, which stands for “perpendicular,” meaning that none of the three
angles i a right angle.
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three angles @, B, and y are equal to 90°.7 It is customary to select 8 to be
the angle that is not equal to 907, so that we arrive at the lattice parameters
(a, b, c, w2, B, w/2}. This is known as the menoclinic lattice.” Table 3.2
shows the lattice parameters and conditions for each of the 3-D crystal sys-
tems, along with simple sketches of the corresponding unit cells.

If we select two of the lattice parameters, a and b, 10 be equal to each
other then we can create ancther 3-D lattice by putting the angles equal to
0, 90°, 120°, or {o, a, ¢, w/2, w/2, 2a/3}. This is similar (o the hexagonal
2-D net o, a, 2w/3}, but now there is a third dimension to the unit cell,
perpendicular to the 2-D drawing of Fig. 3.5(d). This is known as the 3-D
hexagonal lattice. Similar to its 2-D analogue, the 3-D hexagonal lattice has
a 60° rotation axis along the ¢ direction.

If all three lengths a. b, and ¢ are equal to each other, then we find that
there is in general no new lattice unless the three angles are also equal to each
other: {a, a,a, o, o, ). The resulting lattice is known as the rhombohedral
lattice. Along the direction corresponding to the body diagonal of this unit
cell, a rotation of 120" leaves the lattice invariant. An alternative name for this
system is trigenal, indicating that the three angles are equal to each other,”

A special case of the thombohedral lattice is found when the angle e is set
equal to 90°. In that case. {a. a.a, /2, w/2, m/2}, we have a cubic lattice.
MNote that there are now several rotation axes that will leave the unit cell
invariant, We can rotate the cube by 90° around any axis normal through
one of the faces and going through the center of the cube, by 1207 around
the body diagonals, and by 180° around any axis going through the centers
of two edges of opposite sides of the cube. It is also clear that, when we
look at a cube in a mirror, we will see the same cube, so that the cube
also has mirror symmeltry. We will describe all these symmetry propertics
in a much more systematic way later on in this book. For now, it suffices
that the reader obtain just a simple intuitive understanding of what symmetry
means,

Starting from the monoclinic unit cell. we can put the angle B equal to
907, so that we obtain a lattice for which all three angles are equal, but the
lengths of the basis vectors are not equal: {a, b, ¢, w/2, w/2, w/2}. This is
the orthorfiombic lattice, with a unit cell which is shaped like a night-angled
thombus, This shape will be familiar o the reader. since most packaging
boxes have this shape. It is easy 1o convinee yourself that this shape has three
180° rolation axes, going through the centers of opposite faces.

Finally, we can put two of the three parameters of the orthorhombic lattice
equal to each other, as in {a, a, ¢, /2, /2, w/2}. This is the tetragonal

T We postpone a more rigorous proof of the existence of the seven 3D crystal systems umil
Chapter 8, where we will define all symmetry operators,

Muono means “one,” indicating that one of the three angles is not a right-angle.

The Greek word gomia mesns “angle.’”

H
L
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Table 3.2. The 7 three-dimensional crystal systems.

Condition/symbol Crystal system Drawing
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P The angle 3 s uswally chosen 10 be farger than 90°



69 3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices

Fig. 3.6. The seven crystal Cubic

systems ranked according to Hesxaiiromil
symmetry. The doser the 3
system is to the top of the

drawing, the higher its

symmetry. Trigonal
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lattice, which has a single rotation axis of 90° going through the centers of
the opposite square faces, and 180° rotation angles through the center of the
opposite non-square faces. This concludes the enumeration of the seven 3-D
crystal systems (Table 3.2).

The 3-I) erystal systems can be ranked by their symmetry (for a more
complete description of symmetry, see Chapter 8). This ranking is shown in
Fig. 3.6. Starting from the cubic symmeiry, we can, by successive distortions,
create 4 triclinic lattice.

3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices

Consider the 2-D lattice in Fig. 3.7. We can define a unit cell for this lattice
in an infinite number of ways; a few possibilities are shown in the figure.
The unit cells numbered 1, 2, and 3 are so-called primitive unit cells, because
they contain only one lattice point. The number of nodes in a cell can be
computed in two different ways:

(1} Displace the outline of the unit cell. so that the corners of the cell no
longer coincide with lattice sites. Mow count the number of sites inside
the displaced unit cell. This is illustrated by the dashed cell outlines
in Fig. 3.7.

a @ ]

. ]

L]

I

]

- & -

Fig. 3.7. A few possible unit e o
cells in a 2-D square nat, LI °



70

What is a crystal structure?

(if) In 2-D. count the number of sites inside the unit cell (N, ): add to that
1/2 of the number of sites on the unit cell boundaries (N, ), and add to

that 1/4 of the sites on the unit cell corners (N ). In other words:

carner

1 1
Nm e Nin + E"vun:lgc + E'ﬁ‘rl.'nrmtr'

In 3-D, the total number of sites in a unit cell is given by:

l 1 l
hr_ﬂ] = Nih i ENI';J-.--.- o EN.:utg-: + ENcu.nb:r'

where Np. is the number of sites in the faces of the unit cell.

For all three of the cells 1, 2, and 3, we find that there are 4 sites located at
the corners and none inside or on the edges, hence the number of sites in the
unit cell is 1.

The unit cells numbered 4 and 5 in Fig. 3.7 are non-primitive unit cells,
because they conlain more than one lattice site. From the displaced unit cell
outlines (indicated with a dashed line) we find that there are M. = 2 for cell
4, and My =4 for cell 5. Although these cells could be used o describe
this 2-D net, they are not as convenient as cell 1. In general, one describes
a lattice with the simplest (not necessarily the smallest) possible unit cell, in
this case cell 1. Note also that cell 1 is the only cell of the five shown that
reflects the squareness of the net. It is vseful to select as unit cell, the cell
that reflects the symmetry of the net. This is also true for 3-D lattices.

From the definitions of the seven 3-D crystal systems, we know that there
are seven primitive unit cells. They are denoted by a two-letter symbol: the
first letter (lowercase) indicates the crystal system (& for anorthic or triclinic,
m for monoelinie, o for orthorhombie, ¢ for tetragonal, f for hexagonal, ¢ for
cubic, and, strangely enough, no letter for trigonal or rhombohedral), The
second letter (uppercase} indicates the type of cell, which in this case is
primitive or P. The exception to this rule is the rhombohedral or trigonal
system, which is indicated by the symbol £, The primitive cubic unit cell is
hence represented by the symbol P, the primitive tetragonal cell by P, etc.

We can then ask: can we add additional lattice points to the primitive
lattices or nets, in such a way that we stll have a lattice (net) belonging 1o
the same crystal system? We will first illustrate this for the 2-D nets. We
know that, in order for a collection of nodes to form a net, the surroundings
of each node must be identical. If we consider a rectangular net with lattice
parameters {a, &, /2], and add a node at the position a/3 + b/2, as shown
in Fig. 3.8(a), then it is clear that the surroundings of the point A are not the
same as those of the point B, While A has as a neighbor the point located
at ry = a/3 —b/2 from A, this point B does not have a point located at
a/3—b/2 from itself (this location is indicated by a gray circle). Therefore,
the surroundings of A and B are not identical, so this is not a net. There
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Fig. 3.8, {a) Adding the paint
Ty =a/3-+b/2 o each unit cell
of a redtangular net does not
produce a new net, since all
paints are no longer identical;
(b} adding the point

ry =(a+b)2, produces the
centered rectangular net. A
primitive cell for this net is
shown in gray.

3.5 The five 2-D Bravais nets and fourteen 3-D Bravais lattices

is, however, a special position B inside the rectangular unit cell, for which the
surroundings are identical to those of A. This is the point at the center of the
cell, as shown in Fig. 3.8(b). If ry, = (a-b}/2, then there is a point located at
this position relative to B, namely the point C. Hence, the surroundings of A,
B, and C are identical - in fact, all of the nodes have identical surroundings -
s0 that this 18 a new net.

The attentive reader might say: “Wait a minute! This is not a new ner,
becanse | can select a smaller, primitive wnit cell (in gray in Fie. 3.8(5))
which fullv defines this net. Furthermaore, this primitive cell indicares that this
net iy an obligue nel, not a rectangular one’™ This is absolutely correct. We
could indeed use the primitive cell (o deseribe the complete net. However,
this primitive oblique cell does not reveal that the net actually has a higher
symmetry! Indeed, looking at the primitive unit cell in a mirror, we see that
the mirror image is not the same as the original cell. The mirror image of
the rectangular cell with a node at its center is the same as the original, so
it makes sense to use this non-primitive cell to describe the net. This simple
example illustrates two important ideas:

o It is always possible to define a primitive unit cell, for every possible net
(this is also true for 3-D lattices ).

s I a non-primitive cell can be found, that describes the symmetry of the net
(lattice), then that cell should be used to describe the net (lattice). Since
the surroundings of every node must be identical. we can only add new
nodes at locations that are cenfered in the middle between the original
lattice sites,

The 2-D net shown in Fig. 3.8(b) is, therefore, a new net, known as the
centered reclangular net. If we try to do the same thing with the other 2-D
nets, we find (this is lefl as an exercise for the reader) that there are no new
nets to be found. We conclude that in 2-D, there are only five possible nets:
four of them are primitive (oblique, rectangular, hexagonal, and square) and
one is centered (centered rectangular), We call these five nets the 2-D Bravais
nets. The five 2-D Bravais nets are shown in Fig 3.9,

We can repeat this procedure in three dimensions. In this case, there are
three possible ways to add nodes at the center in between existing nodes,
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Fig. 3.9. The five
two-dimensional Bravais
lattices.

Fig. 3.10. {3) {P lattice, (b) £
lattice, (c) equivalence of 1C
and #F lattices,

What is a crystal structure?

b B~y 7| | 1
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o Bodv centering: we add a lattice site in the center of the unit cell. at
the location (1/2,1/2,1/2). For every site t, there is then an additional
site t+ (a+b+¢)/2. The vector 1 = (a+b+¢)/2 is known as the body
cemtering vector. Note that this vector is nor a translation vector of the
lattice since its components are not integer numbers, The symbol for

# body centered lattice is I, from the German word for body centered:
"Innenzentriert.”

o Face centering: we add a lattice site to the center of all faces of the unit cell,
at the locations (172, 1/2,0), (1/2.0,1/2), and (0, 1/2, 1/2). For every
site t there are then three additional sites t+(a+b)/2. t+(a+¢)/2, and
t+(bh+e¢)/2 The vectors C=({a+b)/2. B=(a+c)/2, and A=(h+e)/2
are known as the face centering veciors. The symbol for a face centered
lattice is F.

o Base cenfering: we add a lattice site to the center of only one
face of the unit cell, at the location (1/2,1/2,0) or (1/2,0,1/2) or
(0.1/2,1/2). The base centering vectors are identical to the face cen-
tering vectors, except that only one of them is present. If the plane
formed by the basis vectors a and b is centered, then the lattice is
known as a C-centered lattice. If the a—¢ plane is centered, the lat-
tice is B-centered and if the b—c plane is centered then the lattice is
A-centered,

One can show that for two-face centering not all lattice points have the same
surroundings, and hence two-face centering cannot give rise to a new lattice.

We can now apply these five forms of centering (A, B, C. I, and F}) 10
all seven primitive unit cells. In several cases we do generate a new lattice,
in other cases we can redefine the unit cell and reduce the cell to another
type. Consider the following example. The primitive tetragonal unit cell (P
shown in Figure 3.10(a) is C-centered in Fig. 3.10(b). This is not a new cell,
however, since we can redefine the unit cell by the thick lines in Fig. 3.10{c},
which form a new, smaller primitive tetragonal unit cell with lattice parameter
o= mﬁ;‘ 2. We find that a C-centered tetragonal cell ¢C 15 equivalent to tP
and hence does not form a new lattice. Repeating this exercise for all possible

{a) ”.I_I 4] UE
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Fig. 3.11. The fourteen 3-D
Bravais lattices, g

Triclinic (af) Monoclinic {m™) Monoclinic {(mC)
Orthorhombic (eF) Orthorhombic {(a07) Orthorhombic {af) Orthorhombic (eF)
Tetragonal (#F) Tetragonal (1) Hexagonal {(47) FEhombohedeal ()

Cubic (cP) Cubic {cl) Cubic {cF)

types of lattice centering (there are 5 x 7 = 35 possibilities!) we end up with
seven additional lattice types that cannot be reduced to primitive ones of the
same crystal system: mC, oC, of, oF, #I, ¢l, and ¢F. All fourteen 3-D Bravais
lattices are shown in Fig. 3.11.

3.6 Other ways to define a unit cell

It is always possible to descrnibe a lattice with a primitive unit cell. Hence, all
14 Bravais lattices can be described by primitive cells, even when they are
centered, As an example, consider the oF lattice in Fig. 3.12a. By selecting
shorter vectors a,. b, and ¢, we can define a primitive rhombohedral unit
cell with angle a = 60°. This cell does not reflect the cubic symmetry of the
cfF lattice, but is has the advantage that it contains only one lattice site. In
solid state physics, it is often convenient to work with the primitive unit cells
of all the Bravais lattices, rather than with their non-primitive {and higher

SYMmetry} versions.



74

Fig. 3.12. {a) Unit cell of the
oF lattice, {B) primitive
rhombohedral unit cell, with
edge length 0= a,27'"* and
angle o = 607,

Fig. 3.13. Example of the
Wigner-Seitz cell construction
for an oblique net. Solid lines
are perpendicular o the

dashed lines connecting nodes.

The gray region represents the
WS cell. One can build the
complete lattice by stacking
WS cells in a regular way, as
shown on the right.

What is a crystal structure?

(a} ()

There is yel another usetul way to define a unit cell: the Wigner—Seiiz
cell. The Wigner—Seitz (WS8) cell corresponding to a particular lattice point
is the region of space which is closer to that particular lattice point than
to any other lattice point. Tt is straightforward to construct the WS cell (see
Fig. 3.13): construct the vector between the origin and one of the neigh-
boring lattice points. Draw the perpendicular plane through the midpoint of
this vector, This plane separates space into two regions, cach of which con-
tains all of the points closer to one of the endpoints of the vector than to
the other endpoint. Repeat this construction for all other latiice points. The
smallest volume around the selected point enclosed by all these planes is
the Wigner—Seitz cell. MNote that the WS cell can have more than six sides
in 3-D. or more than 4 in 2-D. All WS cells are primitive by construction
and they do display the true symmetry of the underlying lattice. In 3-, it
can be shown that there are 24 topologically different Wigner-Seitz cells
for the 14 Bravais lattices {Burns and Glazer, 1990). These cells have dif-
ferent shapes, depending on the actual values of the lattice parameters. An
example of the W5 cell for the ¢f Bravais lattice is shown in Fig. 3.14.
The WS cell is also known as the Voroned domain, the Divichilet domain,
or the domain of influence of a given lattice point, It can be shown on
theoretical grounds that the number of faces of a 3-D WS cell is always
between 6 and 14 (inclusive). In 2-D, the number of edges of the WS cell
lies between 4 and 6. Inspection of Fig. 3.14 reveals that the WS cell has the
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Fig. 3.14. The Wigner=Seitz
cell (b} for the body centered
cubic Bravais lattice (a). This
shape has fourteen faces, six
of them are squares, the other
eight are hexagons.

3.7 Historical notes

3.7 Historical notes

same symmetry as the Bravais lattice. This is true for the general WS cell
as well.

In spite of the possibly complicated shape of the Wigner—Seitz cell, it
is often very easy to compute its volume. The difficult way would be to
actually use geometry to determine the volume. However, there is a much
casier method. We know that the of Bravais lattice is a cubic lattice, so that
the volume of the unit cell is «*, where a is the edge length. We also know
that there are 2 nodes in the unit cell (the one in the center counts as a whole,
whereas the 8 at the corners count for 1/8 each). So. the volume per node
is equal to a' /2. If we take the WS cell for this Bravais lattice, then two of
those WS cells must still be equal to the volume a*; the shape is different, but
the available volume must be the same. Therefore, in spite of its complicated
shape, the volume of the WS cell for the ¢f Bravais lattice is simply a* /2,

In summary, there are fourteen Bravais lattices and we can define three
types of unit cells to describe them: the conventional unit cell, the primitive
unit cell, and the Wigner-5eitz cell. Of these three, only the conventional
cell and the Wigner—Seitze cell display the true symmetry of the underlying
lattice.

Moritz Frankenheim { 1801-69) was a German crystallographer who was the
first to enumerate the 32 crystal classes, He was also the first to enumerate the
14 three-dimensional lattices, but his list contained an error. In 1850, August
Bravais (1811-63), a French naval officer and scientist, showed that two of
Frankenheim’s lattices were identical, and he subsequently correctly derived
the 14 lattices that now carry his name (Bravais, 1850). After the classifi-
cation of crystals into seven axial systems, the guestion of which symmetry
operations were compatible with these crystal systems was addressed and
first solved correctly by Frankenheim. In 1830, J. F. C. Hessel (17961872,
Fig. 9.15(b} on page 228} independently solved the problem of the symmetries
compitible with the seven axial systems, i.e., he found that only 2-, 3-, 4-, and
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Fig. 3.15. {a) A Bravais
{1811-1863) (picture courtesy
of J. Lima-de-Faria), and

(b} E.P. Wigner (1902-1995)
{picture courtesy of the Nobel
Museum).

3.8 Problems

What is a crystal structure?

(b}

6-fold rotation axes were compatible with the translational lattice symmetry.
Neither his work nor the work by Frankenheim were noticed by scientists at
the time.

Fugene Paul Wigner (1902-95) was a Hungarian scientist. While at the
Technische Hochschule in Berlin, he learned about the role of symmetry
in crystallography. At about the same time, the new quantum mechanics
was being developed, and Wigner immediately realized the importance of
symmetry principles in quantum mechanics. His work in this area earned
him the 1963 Nobel prize in physics. After a short stay at the University of
Géttingen, he moved o Princeton, where he worked on solid state physics,
along with his first graduate student, Frederick Seitz. The Wigner—Seitz cell,
as introduced in this chapter, results from their joint research. Wigner applied
the mathematics of irreducible representations of groups to a variety of physics
problems; he became especially well known for his ground-breaking paper
on the relativistic Lorentz transformation and for his work on the algebra
of angular momentum coupling in quantum mechanics, Wigner's interest in
nuclear physics and his knowledge of chemistry were instrumental in his
design of a full scale nuclear reactor, which was to become the basis for the
commercial Dupont reactors in the post World War I1 years. In his later years,
Wigner founded the quantum theory of chaos.

(i) Bravais lattices I: Show that a face centered tetragonal lattice (1F) can
be reduced to one of the 14 Bravais lattices. Write the basis vectors of
this Bravais lattice in terms of those of the tF latice.
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3.8 Problems

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

Bravais lattices [f: Consider the cubic Bravais lattices o, ¢f, and cF,
each with lattice parameter a. Make a table showing for each lattice the
number of first nearest neighbour Lattice sites &, the distance to those
neighbours . the number of second nearest neighbour lattice sites MV,,
and the distance to those neighbours o,

Bravais lattices I Describe the consecutive deformations that need
to be applied to a cubic unit cell to turn it into a monoclinic unit
cell; repeat the question for the deformation of a tetragonal cell into a
triclinic cell.

Bravais fattices IV: Show, using a graphical example, that is not possible
to create a new Bravais lattice which has two centered faces (e.g., both
A and B centering).

Other unit cells: Determine graphically the 3-D primitive unit cell
corresponding to the ¢f Bravais lattice and express its lattice parameters
in terms of the cubic ones.

Wigner—Seirz cells 1: Make a drawing of the Wigner—5Seitz unit cell for
the #F lattice and compute the volume of this cell. (Hint: this does not
require any actual computations. The volume can be derived simply by
thinking about the definition of the WS cell.)

Wigner-Seitz cells 11: Compute the volume of the largest sphere that
can be inscribed in the Wigner—Seitz cell of the ¢f lattice. (Hint: As
in the previous question, this does not really require any significant
computations. )

(viil) foeo Wigner—Seitz celf: Construct the Wigner-Seitz cell for the fee lattice.

(ix)

bee Wiener=Seirz cell: Show that the fractional coordinates of the ver-
tices of the Wigner—Seitz cell of the foe lattice in the v = () plane are
(O, /2,040, (0,172,304, (0, 14, 1/2), and (0, 3/4,1/2),

(%) fee molecular selid: Fullerites (discussed in more detail in Chapter

(xi)

25) have Buckminsterfulferene T, molecules decorating the sites of
an fee Bravais lattice. The reported low temperature latlice constant,
a, = 1.404( 1) nm for fee Cy,.

{a) Calculate the number of C atoms contained in the cubic cell.

(b} Calculate the touching molecular sphere radius of C,, in the struc-
ture.

{c) What is the coordination number, CN of Cg, molecules about
another in this structure.

Cubic lattices packing fractions; Determine directions in which hard
spheres touch, and the volume fractions occupied by them in three cubic
structures:

o - 73 fie w2
¢ =i e —= fee  ——.
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Fig. 3.16. Monaclinic unit cell ’
o= y=00°

MONOCLINIC
[, h, e, S, 4, 90}

&

(xii) Monoclinie crystal systen: Consider the monoclinic unit cell illustrated
in Fig. 3.16. Give an example of a 2-fold rotational symmetry and
mirror plane that leaves this lattice invariant. (i.e., show an axis about
which you can rotate the cell and a plane through which you can reflect
the cell and not tell it apart.)



