2

Lattices, planes and directions

e How does a crystal lattice differ from a
crystal structure?

o What is a primitive unit cell?

o What are Miller-Bravais indices used for?

The development of the idea of a lattice was
among the earliest mathematical explorations in
crystallography. Crystal structures and crystal
lattices are different, although these terms are
frequently (and incorrectly) used as synonyms.
A crystal structure is built of atoms. A crystal
lattice is an infinite pattern of points, each of
which must have the same surroundings in the
same orientation. A lattice is a mathematical
concept.

All crystal structures can be built up from a
lattice by placing an atom or a group of atoms at
each lattice point. The crystal structure of a
simple metal and that of a complex protein may
both be described in terms of the same lattice, but
whereas the number of atoms allocated to each
lattice point is often just one for a simple metallic
crystal, it may easily be thousands for a protein
crystal.

2.1 Two-dimensional lattices

In two dimensions, if any lattice point is chosen
as the origin, the position of any other lattice
point is defined by the vector P(uv):
P(uv) = ua+vb (2.1)
where the vectors a and b define a parallelogram
and u and v are integers. The parallelogram is the
unit cell of the lattice, with sides of length a
and b. The coordinates of the lattice points are
indexed as u, v, (Figure 2.1). Standard crystal-
lographic terminology writes negative values as u
and v, (pronounced u bar and v bar). To agree
with the convention for crystal systems given in
Table 1.1, it is usual to label the angle between
the lattice vectors, y. The lattice parameters are
the lengths of the axial vectors and the angle
between them, a, b and y. The choice of the
vectors a and b, which are called the basis vectors
of the lattice, is completely arbitrary, and any
number of unit cells can be constructed. However,
for crystallographic purposes it is most convenient
to choose as small a unit cell as possible and one
that reveals the symmetry of the lattice.
Despite the multiplicity of possible unit cells,
only five unique two-dimensional or plane lattices
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Part of an infinite lattice: the numbers are the indices, u, v, of

each lattice point. The unit cell is shaded. Note that the points are exaggerated

in size and do not represent atoms

are possible, (Figure 2.2). Those unit cells that
contain only one lattice point are called primitive
cells, and are labelled p. They are normally drawn
with a lattice point at each cell corner, but it is easy

b

Oblique
primitive (mp)

(@)

90°

Rectangular
primitive (op)

(b)

Square
primitive (fp)

(©)

to see that the unit cell contains just one lattice
point by mentally displacing the unit cell outline
slightly. There are four primitive plane lattices,
oblique, (mp), (Figure 2.2a), rectangular, (op),

Hexagonal
primitive (hp)

(d)

Rectangular
centred (oc)

(e)

Figure 2.2 The unit cells of the five plane lattices: (a) oblique, (mp); (b) rectangular, (op); (¢) square, (ip);

(d) hexagonal, (hp); (e) rectangular centred, (oc)
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(Figure 2.2b), square, (fp), (Figure 2.2c), and
hexagonal, (hp), (Figure 2.2d).

The fifth plane lattice contains one lattice
point at each corner and one in the unit cell
centre. Such unit cells are called centred cells,
and are labelled c. In this particular case, as the
lattice is rectangular it is designated oc, (Figure
2.2e). The unit cell contains two lattice points, as
can be verified by displacing the unit cell outline
slightly. It is easily seen that this lattice could
also be drawn as a primitive lattice, (Figure 2.3).
This latter lattice, known as a rhombic (7p)
lattice, has the two basis vectors of equal length,
and an interaxial angle, y, different from 90°. In
terms of the basis vectors of the centred oc cell, a
and b, the basis vectors of the rhombic rp cell, a’
and b’ are:

a’=%(a+b); b =Y(-a+b)

Rectangular )
centred (oc)

Rhombic
primitive
(rp)

Figure 2.3 The relationship between the rectangular
(oc) lattice (a) and (b) the equivalent rhombic primitive
(rp) designation of the same lattice

Table 2.1 The five plane lattices

Crystal system

(Lattice type)  Lattice symbol  Lattice parameters

Oblique mp a#b,y+#90°
Rectangular
primitive op a#b,y=90°
Rectangular oc a#b,y=90°
centred rp a=b,y#90°
Square tp a=b,y=90°
Hexagonal hp a=b, y=120°

Note that this is a vector equation and the terms
are to be added vectorially (see Appendix 1). The
five plane lattices are summarised in Table 2.1.

Although the lattice points in any primitive cell
can be indexed in accordance with equation (2.1),
using integer values of u and v, this is not possible
with the oc-lattice. For example, taking the basis
vectors as the unit cell sides, the coordinates of
the two lattice points in the unit cell are 0, 0 and
14, Y2. For crystallographic purposes it is better to
choose a basis that reflects the symmetry of the
lattice rather than stick to the rigid definition
given by equation (2.1). Because of this, lattices
in crystallography are defined in terms of con-
ventional crystallographic bases (and hence
conventional crystallographic unit cells). In
this formalism, the definition of equation (2.1)
is relaxed, so that the coefficients of each vector,
u, v, must be either integral or rational. (A
rational number is a number that can be written
as a/b where both a and b are integers.) The oc
lattice makes use of this definition, as the rectan-
gular nature of the lattice is of prime importance.
Remember though, that the oc and rp definitions
are simply alternative descriptions of the same
array of points. The lattice remains unique. It is
simply necessary to use the description that
makes things easiest.

It is an axiomatic principle of crystallography
that a lattice cannot take on the symmetry of a
regular pentagon. It is easy to see this. Suppose
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Figure 2.4 Lattices with pentagonal symmetry can-
not form: (a) a fragment of a ‘lattice’ with pentagonal
symmetry; (b, c¢) displacement of the fragment by a
lattice vector does not extend the lattice; (d) fragments
with pentagonal symmetry can be part of a pattern by
placing each on a lattice point

that a lattice fragment is drawn in which a
lattice point is surrounded by five others
arranged at the vertices of a regular pentagon,
(Figure 2.4a). Now each point in a lattice must
have the exactly the same surroundings as any
other lattice point. Displacement of the frag-
ment by a lattice vector (Figure 2.4b,c) will
show that some points are seen to be closer
than others, which means that the construction

is not a lattice. However, the fragment can form
part of a pattern by placing the fragment itself
upon each point of a lattice, in this case an op
lattice (Figure 2.4d).

2.2 Unit cells

The unit cells described above are conventional
crystallographic unit cells. However, the method
of unit cell construction described is not unique.
Other shapes can be found that will fill the space
and reproduce the lattice. Although these are not
often used in crystallography, they are encoun-
tered in other areas of science. The commonest of
these is the Wigner-Seitz cell.

This cell is constructed by drawing a line
from each lattice point to its nearest neigh-
bours, (Figure 2.5a). A second set of lines is
then drawn normal to the first, through the mid-
points, (Figure 2.5b). The polygon so defined,
(Figure 2.5¢), is called the Dirichlet region or
the Wigner-Seitz cell. Because of the method
of construction, a Wigner-Seitz cell will always
be primitive. Three-dimensional equivalents are
described in Section 2.5.

2.3 The reciprocal lattice
in two dimensions

Many of the physical properties of crystals, as
well as the geometry of the three-dimensional
patterns of radiation diffracted by crystals, (see
Chapter 6) are most easily described by using
the reciprocal lattice. The two-dimensional
(plane) lattices, sometimes called the direct
lattices, are said to occupy real space, and
the reciprocal lattice occupies reciprocal
space. The concept of the reciprocal lattice is
straightforward. (Remember, the reciprocal lat-
tice is simply another lattice.) It is defined in
terms of two basis vectors labelled a* and b*.
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Figure 2.5 The construction of a Wigner-Seitz cell
or Dirichlet region: (a) draw a line from each lattice
point to its nearest neighbours; (b) draw a set of lines
normal to the first, through their mid-points; (c) the
polygon formed, (shaded) is the cell required

The direction of these vectors is perpendicular
to the end faces of the direct lattice unit cell.
The lengths of the basis vectors of the reciprocal
lattice are the inverse of the perpendicular distance
from the lattice origin to the end faces of the
direct lattice unit cell. For the square and rectan-

gular plane lattices, this is simply the inverse of the
lattice spacing:
a=1/a, b*=1/b
For the oblique and hexagonal plane lattices,
these are given by:
a*Il/dl(), b*Il/dol
where the perpendicular distances between the
rows of lattice points is labelled djy and dj;.
The construction of a reciprocal plane lattice
is simple and is illustrated for the oblique plane
(mp) lattice. Draw the plane lattice and mark the
unit cell (Figure 2.6a). Draw lines perpendicular
to the two sides of the unit cell. These lines give
the axial directions of the reciprocal lattice basis
vectors, (Figure 2.6b). Determine the perpendi-
cular distances from the origin of the direct
lattice to the end faces of the unit cell, d;o and
do, (Figure 2.6¢). The inverse of these distances,

1/dyo and 1/dy,, are the reciprocal lattice axial
lengths, a* and b*.

l/d10 =a
1/dy = b*

Mark the lattice points at the appropriate
reciprocal distances, and complete the lattice,
(Figure 2.6d). Note that in this case, as in all
real and reciprocal lattice pairs, the vector joining
the origin of the reciprocal lattice to a lattice point
hk is perpendicular to the (hk) planes in the real
lattice and of length 1/dy, (Figure 2.6e).

It will be seen that the angle between the
reciprocal axes, a* and b*, is (180 —y) = yx,
when the angle between the direct axes, a and b,
is 7. It is thus simple to construct the reciprocal
lattice by drawing a* and c¢* at an angle of
(180 —y) and marking out the lattice with the
appropriate spacing a* and b*.
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Figure 2.6 The construction of a reciprocal lattice: (a) draw the plane lattice and mark the unit cell; (b) draw
lines perpendicular to the two sides of the unit cell to give the axial directions of the reciprocal lattice basis vectors;
(c) determine the perpendicular distances from the origin of the direct lattice to the end faces of the unit cell, d;¢ and
do1, and take the inverse of these distances, 1/d;o and 1/dy, as the reciprocal lattice axial lengths, a* and b*; (d) mark
the lattice points at the appropriate reciprocal distances, and complete the lattice; (e) the vector joining the origin
of the reciprocal lattice to a lattice point ik is perpendicular to the (kk) planes in the real lattice and of length 1/d
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Sometimes it can be advantageous to construct
the reciprocal lattice of the centred rectangular
oc-lattice using the primitive unit cell. In this
way it will be found that the primitive reci-
procal lattice so formed can also be described
as a centred rectangular lattice. This is a general
feature of reciprocal lattices. Each direct lattice
generates a reciprocal lattice of the same type,
i.e. mp — mp, oc — oc, etc. In addition, the
reciprocal lattice of a reciprocal lattice is the
direct lattice.

A construction in reciprocal space identical to
that used to delineate the Wigner-Seitz cell in direct
space gives a cell known as the first Brillouin zone,
(Figure 2.7). The first Brillouin zone of a lattice is
thus a primitive cell.

2.4 Three-dimensional lattices

Three-dimensional lattices use the same nomen-
clature as the two-dimensional lattice described
above. If any lattice point is chosen as the origin,
the position of any other lattice point is defined by
the vector P(uvw):

P(uvw) = ua + vb + we

where a, b, and ¢ are the basis vectors, and u, v
and w are positive or negative integers or rational
numbers. As before, there are any number of
ways of choosing a, b and ¢, and crystallographic
convention is to choose vectors that are small and
reveal the underlying symmetry of the lattice. The
parallelepiped formed by the three basis vectors
a, b and ¢, defines the unit cell of the lattice, with
edges of length a, b, and c. The numerical values
of the unit cell edges and the angles between
them are collectively called the lattice parameters
of the unit cell. It follows from the above descrip-
tion that the unit cell is not unique and is chosen
for convenience and to reveal the underlying
symmetry of the crystal.

O
O
O

O

O
(@)

(@)
@)
O

(b) O O O O
Figure 2.7 The first Brillouin zone of a reciprocal

lattice: (a) the real lattice and Wigner-Seitz cell;
(b) the reciprocal lattice and first Brillouin zone.
The zone is constructed by drawing the perpendicular
bisectors of the lines connecting the origin, 00, to the
nearest neighbouring lattice points, in an identical
fashion to that used to obtain the Wigner-Seitz cell in
real space

There are only 14 possible three-dimensional
lattices, called Bravais lattices (Figure 2.8). Bra-
vais lattices are sometimes called direct lattices.
Bravais lattices are defined in terms of conven-
tional crystallographic bases and cells, (see Sec-
tion 2.1). The rules for selecting the preferred
lattice are determined by the symmetry of the
lattice, (see Chapters 3, 4 for information on
symmetry). In brief, the main conditions are:

(i) The three basis vectors define a right-
handed coordinate system, that is, a (or x)
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Figure 2.8 The 14 Bravais lattices. Note that the lattice points are exaggerated in size and are not atoms. The
monoclinic lattices have been drawn with the b-axis vertical, to emphasise that it is normal to the plane containing
the a- and c-axes
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points out of the page, b (or y) points to the
right and ¢ (or z) is vertical.

(ii) The a, b and c basis vectors for a cubic
lattice are parallel to the three four-fold
symmetry axes.

(ii1)) The basis vector ¢ for the hexagonal lattice
lies parallel to the unique six-fold symmetry
axis; a and b are along two-fold symmetry
axes perpendicular to ¢ and at 120° to each
other.

(iv) The basis vector ¢ for the tetragonal lattice
is taken along the unique four-fold sym-
metry axis; a and ¢ lie along two-fold
symmetry axes perpendicular to each other
and c.

(v) The basis vectors a, b and ¢ for an orthor-
hombic crystal lie along three mutually
perpendicular two-fold symmetry axes.

(vi) The unique symmetry direction in mono-
clinic lattices is conventionally labelled b;
a and c lie in the lattice net perpendicular
to b and include an oblique angle.

(vii) A rhombohedral lattice is described in
two ways. If described in terms of a hexa-
gonal lattice, ¢ lies along the three-fold
symmetry axis, with a and ¢ chosen as for
the hexagonal system. In terms of rhombo-
hedral axes, a, b and ¢ are the shortest
non-coplanar lattice vectors symmetrically
equivalent with respect to the three-fold
axis.

(viii) A triclinic cell is chosen as primitive.

The smallest unit cell possible for any of the
lattices, the one that contains just one lattice
point, is the primitive unit cell. A primitive unit
cell, usually drawn with a lattice point at each

corner, is labelled P. All other lattice unit cells
contain more than one lattice point. A unit cell
with a lattice point at each corner and one at the
centre of the unit cell, (thus containing two lattice
points in total), is called a body-centred unit cell,
and labelled 1. A unit cell with a lattice point in
the middle of each face, thus containing four
lattice points, is called a face-centred unit cell,
and labelled F. A unit cell that has just one of the
faces of the unit cell centred, thus containing two
lattice points, is labelled A-face-centred, A, if
the centred faces cut the a-axis, B-face-centred,
B, if the centred faces cut the b-axis and C-face-
centred, C, if the centred faces cut the c-axis. The
14 Bravais lattices are summarised in Table 2.2.
Note that all of the non-primitive Bravais lattices
can be described in terms of alternative primitive
unit cells.

The rhombohedral primitive lattice is often
described in terms of a hexagonal lattice, but
the lattice points can also be indexed in terms
of a cubic face-centred lattice in the unique case
in which the rhombohedral angle «, is exactly
equal to 60°, (also see Section 4.5).

As in two-dimensions, a lattice with a three-
dimensional unit cell derived from regular
pentagons, such as an icosahedron, cannot be
constructed.

2.5 Alternative unit cells

As outlined above, a number of alternative unit
cells can be described for any lattice. The most
widely used is the Wigner-Seitz cell, constructed
in three dimensions in an analogous way to that
described in Section 2.2. The Wigner-Seitz cell of
a body-centred cubic Bravais / lattice is drawn in
Figure 2.9a,b. It has the form of a truncated
octahedron, centred upon any lattice point, with
the square faces lying on the cube faces of the
Bravais lattice unit cell. The Wigner-Seitz cell of
a face-centred cubic Bravais F lattice is drawn
in Figure 2.9c,d. The polyhedron is a regular
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Table 2.2 Bravais lattices

Crystal system Lattice symbol  Lattice parameters

Triclinic aP a#b#c, a#£90°,
B#90°, y#90°%
Monoclinic primitive mP a#b#c, 0=90°,
B#90°, y =90
Monoclinic centred mC
Orthorhombic primitive oP a#xb#c,o=p=7=90°
Orthorhombic C-face-centred oC
Orthorhombic body-centred ol
Orthorhombic face-centred oF
Tetragonal primitive tP a=b#c,a==y=90°
Tetragonal body-centred t
Trigonal (Rhombohedral) hR a=b=c,a=0=y
(primitive cell);
ad=>b#c,d =p =90°
7" = 120° (hexagonal cell)
Hexagonal primitive hP a=b#c,a=0=90°
y = 120°
Cubic primitive cP a=b=c,a==y=90°
Cubic body-centred cl
Cubic face-centred cF

rhombic dodecahedron. Note that it is displaced
by %2 a with respect to the crystallographic cell,
and is centred upon the lattice point marked * in
Figure 2.9c. The lattice points labelled A, B, C
help to make the relationship between the two
cells clearer. Recall that a Wigner-Seitz cell is
always primitive. Other unit cells are sometimes
of use when crystal structures are discussed, (see
Chapter 7).

2.6 The reciprocal lattice
in three dimensions

As with the two-dimensional lattices, the three-
dimensional (Bravais) lattices, the direct lattices,
are said to occupy real space, and the reciprocal

lattices occupy reciprocal space. Similarly, a
reciprocal lattice is simply a lattice. It is defined
in terms of three basis vectors a*, b* and ¢*. The
direction of these vectors is perpendicular to
the end faces of the direct lattice unit cell. This
means that a direct axis will be perpendicular to a
reciprocal axis if they have different labels, that
is, a is perpendicular to b* and c¢*. The reciprocal
lattice axes are parallel to the direct lattice axes
for cubic, tetragonal and orthorhombic direct
lattices, that is, a is parallel to a*, b is parallel
to b* and c is parallel to ¢*.

A direct lattice of a particular type, (triclinic,
monoclinic, orthorhombic, etc.), will give a reci-
procal lattice cell of the same type, (triclinic, mono-
clinic, orthorhombic, etc.). The reciprocal lattice
of the cubic F direct lattice is a cubic / lattice and
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Figure 2.9 Wigner-Seitz cells: (a) the body-centred cubic lattice; (b) the Wigner-Seitz cell of (a); (c) the face-
centred cubic lattice; (d) the Wigner-Seitz cell of (c). The face-centred cubic lattice point marked * forms the

central lattice point in the Wigner-Seitz cell

the reciprocal lattice of the cubic [ lattice is a
cubic F lattice.

The reciprocal lattice of a reciprocal lattice is
the direct lattice.

The lengths of the basis vectors of the reci-
procal lattice, a*, b* and c*, are the inverse of
the perpendicular distance from the lattice ori-
gin to the end faces of the direct lattice unit cell,
di0o, do1o and dygq, that is:

a’ = 1/d\p, b* = 1/do1o, c* = 1/doo1

For cubic, tetragonal and orthorhombic lattices,
these are equivalent to:

a=1/a, b*=1/b, " =1/c

The construction of a three-dimensional reci-
procal lattice is similar to that for a plane lattice,
although more complex in that the third dimen-
sion is less easy to portray. The construction of
the reciprocal lattice of a P monoclinic lattice is
described in Figure 2.10. The direct lattice has a
lozenge-shaped unit cell, with the b-axis normal
to the a- and c-axes, (Figure 2.10a). To construct
the sheet containing the a* and c¢* axes, draw the
direct lattice unit cell projected down b, and draw
normals to the end faces of the unit cell, (Figure
2.10b). These give the directions of the reciprocal
lattice a* and ¢* axes. The reciprocals of the per-
pendicular distances from the origin to the faces of
the unit cell give the axial lengths, (Figure 2.10c).
These allow the reciprocal lattice plane to be
drawn, (Figure 2.10d).
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Figure 2.10 The construction of a reciprocal lattice:
(a) the a—c section of the unit cell in a monoclinic (mP)
direct lattice; (b) reciprocal lattice axes lie perpendi-
cular to the end faces of the direct cell; (c) reciprocal
lattice points are spaced a* = 1/dy1o and ¢* = 1/dpor;
(d) the lattice plane is completed by extending the
lattice; (e) the reciprocal lattice is completed by adding
layers above and below the first plane

The b-axis is normal to a and ¢, and so the
b* axis is parallel to b and normal to the sec-
tion containing a* and c¢*, drawn. The length

of the b* axis is equal to 1/b. The reciprocal
lattice layer containing the 010 point is then
identical to Figure 2.10d, but is stacked a dis-
tance of b* vertically below it, and the layer
containing the 010 point is vertically above
it, (Figure 2.10e). Other layers then follow in
the same way.

For some purposes, it is convenient to
multiply the length of the reciprocal axes by a
constant. Thus, physics texts frequently use a
reciprocal lattice spacing 27 times that given
above, that is:

a* = 27T/d100, b* = 27T/d010, C* = 27T/d001.

Crystallographers often use a reciprocal lattice
scale multiplied by 4, the wavelength of the
radiation used to obtain a diffraction pattern,
so that:

a* = 21/dio, b* = 1/doo, ¢ = A/dyo:.

As with two-dimensional lattices, the pro-
cedure required to construct the (primitive)
Wigner-Seitz cell in the direct lattice yields a
cell called the first Brillouin zone when applied
to the reciprocal lattice. The lattice that is
reciprocal to a real space face-centred cubic F
lattice is a body-centred cubic [ lattice. The
(primitive) Wigner-Seitz cell of the cubic
body-centred [ lattice, (Figure 2.9a), a truncated
octahedron, (Figure 2.9b), is therefore identical
in shape to the (primitive) first Brillouin zone
of a face-centred cubic F lattice. In the same
way, the lattice that is reciprocal to a real space
body-centred cubic [ lattice is a face-centred
cubic F lattice. The Wigner-Seitz cell of the
real space face-centred cubic F lattice, (Figure 2.9c),
a regular rhombic dodecahedron, (Figure 2.9d),
is identical in shape to the first Brillouin zone
of a body-centred centred cubic [ lattice,
(Table 2.3).
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Table 2.3 Reciprocal and real space cells

Lattice Direct lattice Reciprocal lattice
plane oblique mp: Wigner-Seitz cell oblique mp: 1% Brillouin zone
Figure 2.7a Figure 2.7b
cubic 3-d F lattice: Wigner-Seitz cell is a I lattice: 1** Brillouin zone is a

rhombic dodecahedron, Figure 2.9d.

I lattice: Wigner-Seitz cell is a

truncated octahedron, Figure 2.9b

truncated octahedron, Figure 2.9b
F lattice: 1% Brillouin zone is a thombic
dodecahedron, Figure 2.9d

2.7 lattice planes and Miller indices

As described in Chapter 1, the facets of a well-
formed crystal or internal planes through a
crystal structure are specified in terms of Miller
Indices, /, k and [, written in round brackets,
(hkl). The same terminology is used to specify
planes in a lattice.

Miller indices, (hkl), represent not just one
plane, but the set of all identical parallel lattice
planes. The values of &, k and [ are the reciprocals
of the fractions of a unit cell edge, a, b and ¢
respectively, intersected by an appropriate plane.
This means that a set of planes that lie parallel to
a unit cell edge is given the index 0 (zero)
regardless of the lattice geometry. Thus a set of
planes that pass across the ends of the unit cells,
cutting the a-axis at a position 1 a, and parallel to
the b- and c-axes of the unit cell has Miller
indices (100), (Figure 2.11a,b). The same princi-
ples apply to the other planes shown. The set of
planes that lies parallel to the a- and c-axes, and
intersecting the end of each unit cell at a position
1 b have Miller indices (010), (Figure 2.11c,d).
The set of planes that lies parallel to the a- and
b-axes, and intersecting the end of each unit cell
at a position 1 ¢ have Miller indices (001),
(Figure 2.11e,f). Planes cutting both the a-axis
and b-axis at 1 a and 1 b will be (110) planes,
(Figure 2.11 g,h), and planes cutting the a-, b- and
caxes at 1 a, 1 b and 1 ¢ will be (111).

Remember that the Miller indices refer to a
family of planes, not just one. For example,
Figure 2.12 shows part of the set of (122) planes,
which cut the unit cell edges at 1 a, ¥2 b and Y2 c.

The Miller indices for lattice planes can be
determined using a simple method. For gene-
rality, take a triclinic lattice, and imagine a set
of planes parallel to the c-axis, intersecting par-
allel sheets of lattice points as drawn in Fig-
ure 2.13. The Miller indices of this set of planes
are determined by travelling along the axes in
turn and counting the number of spaces between
planes encountered on passing from one lattice
point to the next. Thus, in Figure 2.13, three
spaces are crossed on going from one lattice
point to another along the a-direction, so that &
is 3. In travelling along the b-direction, two spaces
are encountered in going from one lattice point to
another, so that the value of k is 2. As the planes
are supposed to be parallel to the c-axis, the value
of [ is 0. The planes have Miller indices (320).
For non-zero values of [/, repeat the sketch so as
to include a- and ¢- or b- and c¢-, and repeat the
procedure.

The planes described in Figures 2.11, 2.12 and
2.13 are crossed in travelling along positive
directions of the axes. Some planes may intersect
one of the axes in a positive direction and the
other in a negative direction. Negative intersec-
tions are written with a negative sign over the
index, h, (pronounced h bar), k, (pronounced k
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(i) (111)

Figure 2.11
(100); (¢, d) (010); (e, 1) (001), (g, h) (110); (i) (111)

Miller indices of lattice planes: (a, b)

bar) and I, (pronounced 1 bar). For example, there
are four planes related to (110), three of which
involve travelling in a negative axial direction in
order to count the spaces between the planes
encountered, (Figure 2.14). The plane shown as
a dotted line in Figure 2.14a cuts the a-axis at
+1a and the b-axis at +1b, and the planes have

Cc
° ° °
. . °
°
Q Q Q ° °
a

Figure 2.12 Part of the set of (122) lattice planes

Miller indices (110). The plane shown as a dotted
line in Figure 2.14b cuts the a-axis at —1a and the
b-axis at +1b, and the planes have Miller indices
(110), (pronounced one bar, one, zero). The plane
shown as a dotted line in Figure 2.14c cuts the a-
axis at +1a and the b-axis at —1b, and the planes
have Miller indices (110), (pronounced one, one
bar, zero). Finally the plane shown as a dotted
line in Figure 2.14d cuts the a-axis in —la and
the b-axis in —1b, so the planes have Miller
indices (110), (pronounced one bar, one bar, zero).
Note that a (110) plane is identical to a (110)
plane, as the position of the axes is arbitrary;
they can be placed anywhere on the diagram.

(320)

Figure 2.13 Determination of Miller indices: count
the spaces crossed on passing along each cell edge, to
give (320)
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Figure 2.14 Negative Miller indices: (a) (110); (b)
(110); (¢) (110); (d) (110)

Similarly, planes with Miller indices (110) are
identical to (110) planes.

In the three-dimensional direct and reciprocal
lattice pairs, the vector joining the origin of the
reciprocal lattice to a lattice point hkl is perpen-
dicular to the (hkl) planes in the real lattice and of
length 1/d};. An alternative method of construct-
ing the reciprocal lattice is thus to draw the
normals to the relevant (hkl) planes on the direct
lattice and plot the reciprocal lattice points along
lines parallel to these normals at separations of
1/dpy. This method is often advantageous when
constructing the reciprocal lattices for all of the
face- or body-centred direct lattices. The same is
true for the planar direct and reciprocal lattice
pairs. The vector joining the origin of the reci-
procal lattice to a lattice point ik is perpendicular
to the (hk) planes in the real lattice and of length
1 / dhk-

In lattices of high symmetry, there are always
some sets of (hkl) planes that are identical from
the point of view of symmetry. For example, in a
cubic lattice, the (100), (010) and (001) planes are
identical in every way. Similarly, in a tetragonal
lattice, (110) and (110) planes are identical. Curly
brackets, {hkl}, designate these related planes.
Thus, in the cubic system, the symbol {100}
represents the three sets of planes (100), (010),
and (001), the symbol {110} represents the six
sets of planes (110), (101), (011), (110), (101),
and (011), and the symbol {111} represents the
four sets (111), (111), (111) and (111).

2.8 Hexagonal lattices
and Miller-Bravais indices

The Miller indices of planes in hexagonal lattices
can be ambiguous. For example, three sets of
planes lying parallel to the c-axis, which is
imagined to be perpendicular to the plane of the
diagram, are shown in (Figure 2.15). These planes
have Miller indices A, (110), B, (120) and C,
(210). Although these Miller indices seem to refer
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b A (110) = (1120)

c§(§1 0) £ (21 1@)

° L -
B(120) = (1210)

Figure 2.15 Miller-Bravais indices in hexagonal
lattices. The three sets of identical planes marked
have different Miller indices but similar Miller-Bravais
indices

to different types of plane, clearly the three planes
are identical, and all are equivalent to the planes
through the ‘long’ diagonal of the unit cell. In order
to eliminate this confusion, four indices, (hkil), are
often used to specify planes in a hexagonal crystal.
These are called Miller-Bravais indices and are
only used in the hexagonal system. The index i is
given by:

h+k+i=0, ori=—(h+k)

In reality this third index is not needed, as it is
simply derived from the known values of 4 and k.
However, it does help to bring out the relationship
between the planes. Using four indices, the planes
are A, (1120), B, (1210) and C, (2110). Because it
is a redundant index, the value of i is sometimes
replaced by a dot, to give indices (hk.l). This
nomenclature emphasises that the hexagonal sys-
tem is under discussion without actually including
a value for i.
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2.9 Miller indices and planes in crystals

In most lattices, and all primitive lattices, there
are no planes parallel to (100) with a smaller
spacing than the (100) planes, because lattice
planes must pass through sheets of lattice points
or nodes, (see Figure 2.11). The same can be said
of (010), (001), (110) and other planes. However,
such planes can be described in crystals, and are
significant. These can be characterised in the same
way as lattice planes. For example, the fluorite
structure, described in Chapter 1, has alternating
planes of Ca and F atoms running perpendicular
to the a-, b- and c-axes, (see Figure 1.12). Taking
the (100) planes as an example, these lie through
the end faces of each unit cell and are perpen-
dicular to the b- and c-axes, (Figure 2.16a). They
contain only Ca atoms. A similar plane, also
containing only Ca atoms runs through the middle
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Figure 2.16 Planes in a crystal: (a) (100); (b),
(200); (c) (400); (d) (110); (e) (220). The crystal
structure is that of fluorite, CaF,
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of the cell. Using the construction described ear-
lier, (Figure 2.13), these can be indexed as (200),
as two interplanar spaces are crossed in moving
one lattice parameter distance, (Figure 2.16b).
Thus all the set of (200) planes contain only Ca
atoms. The set of parallel planes with half the
spacing of the (200) set will be indexed as (400), as
four spaces are crossed in moving one lattice para-
meter distance. However, these planes are not all
identical, as some contain only F atoms and others
only Ca atoms, (Figure 2.16¢). The Miller indices of
(110), (Figure 2.16d) and (220), (Figure 2.16e)
planes can be determined in the same way, by
counting the spaces crossed in moving along one
unit cell length in each direction. The atomic com-
position of both sets of planes is the same.

Any general set of planes parallel to the b- and
c-axes, and so only cutting the a cell edge is
written (h00). Any general set of planes plane
parallel to the a- and c-axes, and so only cutting
the b cell-edge has indices (0k0) and any general
plane parallel to the a- and b-axes, and so cutting
the ¢ cell-edge has indices (00/). Planes that cut
two edges and parallel to a third are described by
indices (hk0), (0kl) or (hO!). Planes that are at an
angle to all three axes have indices (hkl). Negative
intersections and symmetrically equivalent planes
are defined using the same terminology as described
in Section 2.7, above.

2.10 Directions

The response of a crystal to an external stimulus
such as a tensile stress, electric field, and so on,
is frequently dependent upon the direction of
the applied stimulus. It is therefore important
to be able to specify directions in crystals in
an unambiguous fashion. Directions are written
generally as [uvw] and are enclosed in square
brackets. Note that the symbol [uvw] includes all
parallel directions, just as (hkl) specifies a set of
parallel planes.

The three indices u, v, and w define the coordi-
nates of a point within the lattice. The index u
gives the coordinates in terms of the lattice repeat
a along the a-axis, the index v gives the coordi-
nates in terms of the lattice repeat b along the
b-axis and the index w gives the coordinates in
terms of the lattice repeat ¢ along the c-axis. The
direction [uvw] is simply the vector pointing from
the origin to the lattice point with coordinates u,
v, w. The direction [230], with u = 2 and v = 3, is
drawn in Figure 2.17a. Remember, though, that,
any parallel direction shares the symbol [uvw],
because the origin of the coordinate system is not
fixed and can always be moved to the starting
point of the vector, (Figure 2.17b). (A North wind
is always a North wind, regardless of where you
stand.)

The direction [100] is parallel to the a-axis, the
direction [010] is parallel to the b-axis and [001]
is parallel to the c-axis. The direction [111] lies
along the body diagonal of the unit cell. Negative
values of u, v and w are written #, (pronounced

[110]
Figure 2.17 Directions in a lattice: (a) [230]; (b) [110]
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[110]
[100]

Figure 2.18 Directions in a lattice

u bar), v, (pronounced v bar) and w, (pronounced
w bar). Further examples of directions in a lattice
are illustrated in Figure 2.18. Because directions
are vectors, [uvw] is not identical to [V w], in the
same way that the direction ‘North’ is not the
same as the direction ‘South’.

Directions in a crystal are specified in the
same way. In these instances the integers u, v,
w are applied to the unit cell vectors, a-, b- and
c-. As with Miller indices, it is sometimes con-
venient to group together all directions that are
identical by virtue of the symmetry of the
structure. These are represented by the notation
(uvw). In a cubic crystal the symbol (100) repre-
sents the six directions [100], [100], [010], [010],
[001], [001].

A zone is a set of planes, all of which are
parallel to a single direction. A group of planes
which intersect along a common line therefore
forms a zone. The direction that is parallel to the
planes, which is the same as the line of intersec-
tion, is called the zone axis. The zone axis [uvw]
is perpendicular to the plane (uvw) in cubic
crystals but not in crystals of other symmetry.

It is sometimes important to specify a vector
with a definite length. In such cases the vector, R,
is written by specifying the end coordinates, u, v w,
with respect to an origin at 0, 0, 0. Should the
vector be greater or less than the specified length,
it is prefixed by the appropriate scalar multiplier,

l» R = 14[010]

(b)

Figure 2.19 Vectors: (a) vectors in a lattice; (b) the
displacement of part of a crystal of fluorite, CaF,, by a
vector, R = % [010] with respect to the other half

(see Appendix 1), in accordance with normal
vector arithmetic, (Figure 2.19a).

Crystals often contain planar boundaries
which separate two parts of a crystal that are
not in perfect register. Vectors are used to define
the displacement of one part with respect to
the other. For example, a fault involving the
displacement of one part of a crystal of fluorite,
CaF,, by % of the unit cell edge, i.e. R="Y
[010] with respect to the other part', is drawn in
(Figure 2.19b).

As with Miller indices, directions in hexagonal
crystals are sometimes specified in terms of a

"In cubic crystals, a vector such as that describing the
boundary drawn in Figure 2.19b is frequently denoted as
%a[010]. Similarly, a vector %[310] may be written as
% a[310]. This notation is confusing, and is best avoided.
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four-index system, [¢/V'tw'] called Weber indices.
The conversion of a three-index set to a four-index
set is given by the following rules.

[ww] — [u'v'tw']
W =nu—v)/3
Vi =n(2v—u)/3
t=—+V)

w = nw

In these equations, n is a factor sometimes needed
to make the new indices into smallest integers.
Thus the direction [001] always transforms to
[0001]. The three equivalent directions in the
basal (0001) plane of a hexagonal crystal structure
such as magnesium, (Figure 2.20), are obtained by
using the above transformations. The correspon-
dence is:

[100] = [2110]
[010] = [1210]
[110] = [T120]

[ ] [ ]
[110] = [1120] oMo
[010] = [1270]
° °
° ° L ° °
[100] = [2110]
[ ] o o o

Figure 2.20 Directions in a hexagonal lattice

The relationship between directions and planes
depends upon the symmetry of the crystal. In
cubic crystals, (and only cubic crystals), the
direction [Akl] is normal to the plane (hkl).

2.11 Lattice geometry

The most important metrical properties of lattices
and crystals for everyday crystallography are given
below. These are expressed most compactly using
vector notation, but are given here ‘in longhand’,
without derivation, as a set of useful tools.

The volume of the reciprocal unit cell, V* is
given by:

Vv =1/V

where V is the volume of the direct unit cell.
The direction [uvw] lies in the plane (hkl) when:

hu-+kv+Ilw=20

The intersection of two planes, (hikil;) and
(hoky Do) is the direction [uvw], where:

u = kllz - k2l1
Vv = hzll — hllz
W = ]’llkz — ]’lzkl

Three planes, (h1kly), (hakaly) and (hsksls) form
a zone when:

h1 (k213 — lzk3) — kl (h213 — 12h3)
+ ll(hzkg — kzhg) =0

The plane (h3ksl3) belongs to the same zone as
(hiki 1) and (hykp1,) when:

h3 = mh1 + nhz;kg = mlq :|:I’lk2;l3 = m11 :|:mlz

where m and n are integers.
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Table 2.4 Interplanar spacing d

System 1/(d)’

cubic [? + k> + ] )a®

tetragonal [(h* + K*)/a®] + [1¥/c?]

orthorhombic  [h%/a?] + [K*?] + [P/c?]

monoclinic [h¥a? sin® B] + [k*/b?] + [I/c? sin® B] — [(2hl cos B)/(ac sin*B)]

triclinic* [1/V2] {[S117%] + [S22k?] + [S332] + [2S12hk] + [2S23kl] + [2S13h1]}

hexagonal [%][(h* + hk + k*)ja®] + [1P/c?]

thombohedral — {[(h? + k* + %) sin® o + 2(hk + kI + hl)(cos® o — cos )] /[@*(1 — 3 cos o + 2 cos® a)] }

* V =unit cell volume.
S11 = b2ctsin?a Sy = a?c? sin? f S33= a*b? sin? Y
S12 = abc*(cos o cos f — cosy)

Si3 = ab*c(cos y cos o — cos )

The three directions [ujviwy], [upvows] and
[#3v3ws] lie in one plane when

ui (vaws — wavs) — vy (uawz — wausz)

+ W1(M2V3 — V2u3) =0

Two directions [u;vyw;] and [upvow,] lie in a
single plane (hkl) when:

h= Viwy — Vowq
k= urwip — uypwy

[l = uivy — uUsvq

Table 2.5 Unit cell volume, V

System v
Cubic a
tetragonal a*c
orthorhombic abc
monoclinic abc sin f
triclinic

abc /(1 —cos?o.—cos? f—cos?y+2coso cos f cosy)

hexagonal [V/(3)/2]]d*c] ~ 0.866a%c
rhombohedral a*\/(1 —3cos? o + 2 cos? o)

Sa23 = a*bc(cos fcosy — cos o)

The reciprocal lattice vector
r =ua" +vb* + wc”

lies perpendicular to the direct lattice planes (uvw),
and the direct lattice vector

R=ha+kb-+Ic

lies perpendicular to the reciprocal lattice planes

(hkl).

Answers to introductory questions

How does a crystal lattice differ from a crystal
structure?

Crystal structures and crystal lattices are differ-
ent, although these terms are frequently (and
incorrectly) used as synonyms. A crystal struc-
ture is built of atoms. A crystal lattice is an
infinite pattern of points, each of which must
have the same surroundings in the same orienta-
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Table 2.6 Interplanar angle ¢

System cos
cubic [hihy + kiky + L) /{[R? + &2 + B][R2 + K2 + ]}/

h h2 + k1k2 lllz

— a2 Tz
tetragonal - a c

IR
[ + —_—
612 6'2 612 6'2

hth k1k2 1112

orthorhombic . a? b? c2
LAY
HERIE)
hih kik L1 lihy + Lh
monoclinic* dldz( L 22 122 - 22 . (Iihy + 2 21) cos ﬂ)
(12 sin ﬁ b C2 sin ﬂ ac sin ﬂ
o d1d2
triclinic* [Suh hy 4+ Sukiky + Ss3lilh + Soz(kila + kaly) + Si3(lihy + Ly ) + Si2(hika + hoky)]
3d%1,1

hihy + kiky, + 1/2(h1k2 + h2k1) + a4 ; 2

hexagonal T o
[(hf+k?+h1k1 + )<h2+k2+h2k2+ . >]
didy{(hihy + kiky + L) sin® o+ [hy (ka + b) 4 ki (hy + b) + 1 (hy + k) cos a(cos o — 1)] }

rhombohedral*

a*(1 — 3 cos? o+ 2 cos® o)

* V =unit cell volume, d; is the interplanar spacing of (h;k;/;) and d, is the interplanar spacing of (hyk;l,) and

Sy = b2t sin’ o Sy = a?c? sin? B Sz = a’h? sin® Y
S12 = abc?(cos acos f — cosy)

S13 = ab*c(cosy cosa — cos ff)

tion. A lattice is a mathematical concept. There
are only 5 different two-dimensional (planar)
lattices and 14 different three-dimensional (Bravais)
lattices.

All crystal structures can be built up from the
Bravais lattices by placing an atom or a group of
atoms at each lattice point. The crystal structure of
a simple metal and that of a complex protein may
both be described in terms of the same lattice, but
whereas the number of atoms allocated to each
lattice point is often just one for a simple metallic

S»3 = a*bc(cos fcosy — cosa)

crystal, it may easily be thousands for a protein
crystal.

What is a primitive unit cell?

A primitive unit cell is a lattice unit cell that
contains only one lattice point. The four primitive
plane lattice unit cells are labelled p: oblique,
(mp), rectangular, (op), square, (fp) and hexago-
nal, (hp). They are normally drawn with a lattice
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point at each cell corner, but it is easy to see that
the unit cell contains just one lattice point by
mentally displacing the unit cell outline slightly.
There are five primitive Bravais lattices, labelled
P: triclinic, (aP), monoclinic primitive, (mP),
tetragonal primitive, (¢P), hexagonal primitive,
(hP) and cubic primitive, (cP). In addition the
trigonal lattice, when referred to rhombohedral
axes, has a primitive unit cell, although the lattice
is labelled AR.

What are Miller-Bravais indices used for?

The facets of a well-formed crystal or internal
planes through a crystal structure are specified in
terms of Miller Indices, A, k and [, written in
round brackets, (hkl). Miller indices, (hkl), repre-
sent not just one plane, but the set of all identical
parallel planes.

The Miller indices of planes in crystals with a
hexagonal unit cell can be ambiguous. In order to
eliminate this confusion, four indices, (hkil), are
often used to specify planes in a hexagonal crystal.
These are called Miller-Bravais indices and are
only used in the hexagonal system. The index i is
given by:

h+k+i=0,0ori=—(h+k)

In reality this third index is not needed, as it is
simply derived from the known values of /& and
k. However, it does help to bring out relation-
ships between planes that are not obvious when
using just three indices. Because it is a redun-
dant index, the value of i is sometimes replaced
by a dot, to give indices (hk.l). This nomencla-
ture emphasises that the hexagonal system is
under discussion without actually including a
value for i.

Problems and exercises
Quick quiz

1 A lattice is:
(a) A crystal structure

(b) An ordered array of points
(c) A unit cell

2 The basis vectors in a lattice define:
(a) The crystal structure

(b) The atom positions
(c) The unit cell

3 The number of different two-dimensional
plane lattices is:

(a) 5
(b) 6
(c) 7

4 A rectangular primitive plane lattice has lat-
tice parameters:
(@) a#b, y=90°
(b) a=>b,y=90°

(c) a#b,y+#90°

5 The number of Bravais lattices is:
(a) 12

(b) 13
(c) 14
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6 An orthorhombic body centred Bravais lattice
has lattice parameters:

@ a, b, c,a=pf=7y=90°
(b) a(=b), c,a ==y =90°
©) a(=b), ¢, u = B =90°,y = 120°

7 A face centred (F) lattice unit cell contains:
(a) One lattice point

(b) Two lattice points

(c) Four lattice points

8 A unit cell with a lattice point at each cor-
ner and one at the centre of the cell is
labelled:

(a) B
(b) C
© I

9 The notation [uvw] means:
(a) A single direction in a crystal

(b) A set of parallel directions in a crystal

(c) A direction perpendicular to a plane
(uvw)

10 The notation {hkl} represents:
(a) A set of directions that are identical by
virtue of the symmetry of the crystal

(b) A set of planes that are identical by virtue
of the symmetry of the crystal

(c) Both a set of planes or directions that
are identical by virtue of the symmetry
of the crystal

Calculations and Questions

2.1 Several patterns of points are shown in the
figure below. Assuming these to be infinite
in extent, which of them are plane lattices?
For those that are lattices, name the lattice
type.

39
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2.2 Draw the plane direct and reciprocal lattice 2.5 Index the lattice planes drawn in the

for: figure below using Miller — Bravais (hkil)

(a) an oblique lattice with parameters a = and Miller indices (hkl). The lattice is hex-
8 nm, b = 12nm, y = 110° agonal with the c¢-axis is normal to the plane

(b) a rectangular centred lattice with para- of the page and hence the index / is O in
meters a = 10nm, b = 14 nm all cases.

(c) the rectangular lattice in (b) drawn as a
primitive lattice
Confirm that the reciprocal lattices in (b) and

(c) are identical and rectangular centred.

2.3 Sketch the direct and reciprocal lattice for
(a) a primitive monoclinic Bravais lattice with
a=15nm,b = 6nm,c = 9nm, f = 105°
(b) a primitive tetragonal Bravais lattice with
a =7nm, ¢c = 4nm

2.4 Index the lattice planes drawn in the figure
below. The c-axis in all lattices is normal to
the plane of the page and hence the index [ is

0 in all cases. W
==

(€) .

2.6 Give the indices of the directions marked
on the figure below. In all cases the axis
not shown is perpendicular to the plane of
the paper and hence the index w is O in

all cases.
[ ] (] [ ] L[] [ ] [ ]
_4d
] ] [ ] [ ] ]
e
b
b.
L] L[]
] a [ ]
L[] L[]

2.7 Along what direction [uvw] do the following
pairs of planes (hk;ly) and (hyk;l,) intersect?
(a) (110), (110); (b) (210), (011); (c) (111),
(100); (d) (212), (121).
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2.8 Calculate the interplanar spacing, djy, for:
(a) (111), cubic, a = 0.365nm; (b) (210),
tetragonal,

©

(321)

a = 0.475nm,
orthorhombic,

¢ = 0.235nm;
a = 1.204 nm,

b=0.82Inm, ¢c= 0.652nm; (d) (222),
monoclinic, a=0981nm, b =0.365nm,
¢ =0.869nm, f = 127.5° (e) (121), hexa-
gonal, a = 0.693 nm, ¢ = 1.347 nm.



