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SYNOPSIS

Symmetry in science and arts
Visualizing symmetry
Symmetry in everyday objects
Defining symmetry
Introducing symmetry notation

1.1 Introduction

When I was lecturing to chemistry students on crystal symmetry, I would usu-
ally begin with the question: ‘what is common to the National Westminster
Bank logo, a Mercedes-Benz car emblem and a molecule of 2.4,6-
triazidotriazine?’ Generally, there was no reply: maybe they banked at Lloyds,
drove Fords and skipped the lectures on triazines—but when I showed a slide
of these entities (Fig. 1.1) there was always someone who saw that it had
something to do with the number ‘three’. And that is a good way to begin
the study of symmetry. Of course, it can all be done mathematically and there
is a place for that, as will be shown in later chapters. But for the moment, a
visual expression of symmetry will suffice. This chapter sets out to introduce
ideas on symmetry, and to show that it is experienced by everyone in some way
every day: breakfast at a table having reflection symmetry, a midday pint in a
glass of cylindrical symmetry, an evening stroll with the Dalmatian—even no
symmetry is a form of symmetry.

Fig. 1.1

(a) Logo of the National Westminster
Bank. (b) Emblem of Mercedes-Benz
cars. (c) Molecular skeleton of 2,4,6-
triazidotriazine, C3N3(N3)3.




Fig. 1.2
Regular polygons.

Fig. 1.3
Crystal of quartz, SiO,.

Fig. 1.4

Stereoview of the crystal structure of
oxalic acid dihydrate, (CO,H),.2H,0;
the circles in decreasing order of size rep-
resent O, C and H atoms. The double
lines indicate hydrogen bonds, with the
H — O- - - Hbond distance of ca. 2.50 A;
the sum of the van der Waals radii for
hydrogen and oxygen is 2.72 A, which
is good evidence of hydrogen bonding in
this structure. [Reproduced by courtesy
of Woodhead Publishing, UK.]
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1.2 Looking at symmetry

“Beauty is truth, truth beauty”—that is all ye know on earth, and all ye need
to know’ [1]. Few of us have difficulty in recognizing symmetry in the plane
geometrical shapes shown in Fig. 1.2. But it is a rather different matter when
considering more complex three-dimensional objects (Fig. 1.3 and Fig. 1.4).

Why should this be? I believe that the problem arises first from the fact
that while one can see all parts of a two-dimensional object simultaneously,
and thus take in the relationships of the parts to the whole, that cannot be
done so easily in three dimensions. Secondly, although some three-dimensional
objects, such as flowers, pencils and glass tumblers are simple enough to
be rotated and examined visually, the natural gift for mentally perceiving
and manipulating more complex objects may not be possessed by everyone.
Nevertheless, the facility of doing so can be developed with suitable aids and
with patience. If, initially, you have problems, take heart. You are not alone
and, like many before you, you will be surprised at how swiftly the required
facility can be acquired. Architects and sculptors may be blessed with a nat-
ural three-dimensional visualization aptitude, but they have learned to develop
it—particularly by making and handling models.

Standard practice is always to reduce three-dimensional objects to two
dimensions, in drawings such as projections and elevations: it is cheap, well
suited to reproduction in books and less cumbersome than handling three-
dimensional models. In this book, such two-dimensional representations still
have a value, but to rely on them exclusively only delays the acquisition of a
three-dimensional visualization ability. Fortunately, stereoscopic image pairs
may be employed, such as that shown in Fig. 1.4. This type of illustration is a
considerable help but, because it provides a view from only one standpoint, it
is not always quite the equal of a model that can be examined by hand.

This illustration shows the crystal structure of oxalic acid dihydrate [2]. One
half of the figure may be covered, whereupon the structure is viewed as a two-
dimensional representation. Although the figure has been drawn carefully, with
tapered bonds and hydrogen bonding indicated by double thin lines, it does not
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convey nearly as much information as the stereoview which, when viewed cor-
rectly, presents a convincing three-dimensional image. Notes on stereoviewers
and stereoviewing are given in Appendix Al.

1.3 Some symmetrical objects

Four different objects are presented in Fig. 1.5. At first, there may not appear
to be any connection between a Dobermann bitch, a Grecian urn, a molecule
of 3-fluorochlorobenzene and a crystal of potassium tetrathionate. Yet each
is an example of reflection symmetry: a symmetry plane (mirror plane, sym-
bol m) can be imagined to divide each object into halves that are related

(c)

Fig. 1.5

Examples of reflection (mirror) sym-
metry. (a) Dobermann, Vijentor Seal of
Approval at Valmara, JW. (b) Grecian
urn. (c) Molecule of 3-chlorofluoro-
benzene; circles in decreasing order
of size represent Cl, F, C and H
atoms. (d) Crystal of potassium tetra-
thionate, K2S,04, with the crystal faces
indexed by their Miller indices, (hkl).
[Reproduced by courtesy of Woodhead
Publishing, UK.]



Fig. 1.6

Portion of a floor with ideally square tiles.

Hoam=10A=10"m

Fig. 1.7
Portion of a brick wall with ideally regu-
lar, rectangular bricks.
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exactly as an object is to its mirror image, like a right hand to its left hand.
However, if the examples are perused in more detail, it would be noticed that
the Dobermann bitch, beautiful animal that she is, does not have perfect m sym-
metry; the urn is not absolutely symmetrical; the molecule may not be totally
planar; and the real crystal may have minute flaws that degrade perfect mirror
symmetry.

In seeking symmetry around us, repeating patterns are soon encountered,
such as tiled floors and brick walls (Fig. 1.6 and Fig. 1.7). Examine such struc-
tures in your locality at leisure, but do not be too critical about stains on the
tiles or chips off the bricks. Perfect tiled floors and perfect brick walls are, like
perfect crystals, conceptual. So what is the use of symmetry if the real objects
that are to be studied are not strictly symmetrical?

The symmetry of objects can be studied both as finite bodies—the Grecian
urn, the chemical molecule and as parts of larger, conceptually infinite
bodies—the brick wall, the crystal. When investigating the internal structure
of a crystal, which is one of the main reasons for studying crystal symmetry, it
is discovered that a crystal of finite size is composed of a myriad of building
blocks, or unit cells. Are all unit cells exactly alike? Noj; but to consider a spe-
cific case: sodium chloride crystallizes normally as cubes, and the basic unit
of this crystal is also a cube, with an edge length of 0.564 nm' and volume of
approximately 1.8 x 10728 m?.

Digressing for a moment: it is good practice to write numerical quantities
as numbers from 0 to 9 with the appropriate 10" multiplier; it makes for easy
checks on calculations.

A crystal of sodium chloride of experimental size in an X-ray diffraction
experiment could be of the order of 0.2, 0.2, 0.2 mm, a volume of 8 x 10712 m?,
Thus, the number of unit cubes in the whole crystal is approximately 4 x 10'6.
Symmetry concepts may be applied to real crystals because, although indi-
vidual building units may exhibit sub-microscopic differences, the complete
crystal behaves statistically towards physical observations as though it were
perfect and infinite, and the results of treating the crystal in this way are found
to be scientifically rewarding.

1.4 Defining symmetry

Symmetry is not an absolute property of a body: the result of a test for sym-
metry may depend on the nature of the examining probe. For example, the
crystal structure of chromium appears different under X-ray and neutron dif-
fraction examinations. Figure 1.8 illustrates the unit cell of chromium as seen
both by X-rays and by neutrons. X-rays see a body-centred unit cell (a), but a
neutron examination gives the different result, (b).

Elemental chromium has the electronic configuration (Ar)(4s)!(3d)’; it is
antiferromagnetic below 38 “C and paramagnetic above this temperature. In the
neutron diffraction experiment, although the individual atoms are similarly
placed, magnetic interactions with the neutron beam reverse the direction of
the magnetic moment of the central atom in the unit cell, so that it is no
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longer body-centred but primitive. Symmetry differences may arise also with
optical and photoelastic properties.

This book will be concerned with the symmetry of the positional distri-
bution of the parts of a molecule, crystal, body or pattern, as is revealed by
visual inspection, microscopic examination or diffraction techniques. A defin-
ition of symmetry is that spatial property of an assemblage by which the parts
of the assemblage can be brought from an initial state to another indistinguish-
able state by means of a certain operation—a symmetry operation. The term
‘assemblage’ is useful here because it can be used to describe the distribution
of faces on a crystal, of bonds radiating from a central atom and of diffractions
spectra from crystalline materials.

1.5 Symmetry in science

Manifestations of symmetry abound in most areas of science and, indeed,
throughout nature; they are not confined to molecules and crystals. In botany,
for example, the symmetry inherent in the structures of flowers and reproduct-
ive systems plays an important part in plant taxonomy. Figure 1.9 illustrates a
white orchid, Cattleya walkeriana, var. Alba; its bilateral, or m, symmetry is
clearly apparent.

Fig. 1.8

Unit cell of the crystal structure of ele-
mental chromium: (a) as seen by x-rays,
and (b) as seen by neutrons; the arrows
represent the direction of the magnetic
moment vectors of the chromium atoms.

Fig. 1.9

A bloom of the orchid Cattleya walkeri-
ana, variation Alba, showing bilateral
reflection symmetry. [Reproduced by
courtesy of Greg Allikas.] (See Plate 1)
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Examples of symmetry arise also in mathematics and physics. Consider first
the equation

X* =16 (1.1)

Its roots are X = +2 and X = £2i, where i is the square root of —1, and it may
be seen immediately that these solutions have a symmetrical distribution about
X = 0; the fourth power of each of these roots is 16.
The differential equation

d’Y

el Y =0 (1.2)
represents a type encountered, for example, in the physics of the simple
pendulum or of a mass attached to a spring. Its general solution is

Y = Aexp(ikX) + Bexp(—ikX) (1.3)

where A, B and k are constants. If reflection symmetry is introduced across the
point X = 0, so that X is converted into —X, then the solution would become

Y = Aexp(—ikX) + Bexp(ikX) (1.4)

Differentiating Eq. (1.4) twice with respect to X, shows that Eq. (1.4) is
also a solution of Eq. (1.2). If a translation constant ¢ is applied such that X
becomes X + ¢, then again, the equation and its solution have similar symmetry
properties.

The French mathematician and physicist Jean-Baptiste Joseph Fourier
(1768-1830) solved problems on thermal conduction by means of a series
consisting of cosine and sine terms [3]. Such series, termed Fourier series, are
of fundamental importance in many areas of science. For example, in crystal
structure analysis, X-ray diffraction data from a crystal structure are synthes-
ized mathematically by Fourier summation to form an image of the electron
density of the structure. A Fourier series is a single-valued, continuous, peri-
odic function that can be represented by a series of cosine and sine terms. For
a periodic, continuous function Y(X), defined on the interval £, the function
may be formulated as the Fourier series

o0
Y = Ay + Z Ay cos 2rkX + By sin 27wkX (1.5)

k=—o0

(k50)

A typical cosine function, shown in Fig. 1.10, exhibits reflection symmetry
about the line X = 0, and is an even function, Y(-X) = Y(X). Contrast it with
Fig. 1.11, a typical sine function, which shows inversion symmetry about the
origin and is an odd function, Y(—X) = -Y(X).

Example 1.1

Is the function Y(X) = sinX — X° cos X even or an odd?

To answer this question, it is generally sufficient to consider the value of the function
for a few values of X around the point X = 0. Thus, the table
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X Y(X) X Y(X)

-3 —26.8709 3 26.8709
-2 —4.23847 2 4.23847
-1 -0.301169 1 0.301169
0 0

shows that the function is antisymmetric across the origin, which is indicative of an odd

function.

Finally, in this section, consider a cube constructed from twelve 1 2 res-
istors, as shown by Fig. 1.12. Let an electrical current / be set up across the
points A and G. What would be the effective resistance of this assembly of
resistors for the path of the current from A to G? The problem is simplified
by considering the symmetry of the cube: the planes ACGE (broken lines),
AFGD and BGHA are all mirror planes, of the type already discussed. Thus,
the currents flowing along AB, AD, AE, CG, FG and HG are all equal to 1/3.

y axis

1.0

V2

Vo X axis
T 7 : ‘
_% Ya Y2
=—0.5
Fig. 1.10
Graph of an even function, f (—X) =
-—1.0 f(X)- Y =cos2wkX, k=2 _1/25
X <lph
y axis
1.0 |
0.5
Y.
° X axis
—1 1 5 ” 3
-y,
-—0.5
-—1.0 Fig. 1.11

Graph of an odd function, f(—X) =
—f(X):Y =sin2nkX, k=2; —lp <

X < lh.



Fig. 1.12

Cubic network of 12 resistors; electric
current / flows through the resistors from
AtoG.

Fig. 1.13

Reflection symmetry in music: an extract
from Etude No. 12, Opus 10, by Chopin;
the thin line marked m is an approximate
reflection line.

Fig. 1.14

Opening bars of Beethoven’s ‘Moon-
light’ sonata; an example of translational
symmetry, though not of infinite extent.
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The m symmetry requires that the currents in EF and EH are equal, and each
current here is /6. Similarly, the currents in BC and DC are also /6, from
which it follows that those in BF and DH are 1/6. Hence, any path through the
assembly of resistors from A to G has an effective resistance of 5/6 Q.

1.6 Symmetry in music

Symmetry has featured in music from Bach to Barték and beyond, an early
example being the so-called Crab Canon from Bach’s Musical Offering, which
was written in a palindromic form, such that its second part is the same as
the first part but written backwards (see Problem 1.11). Figure 1.13 illustrates
an extract from the well-known classic, Efude No. 12, Opus 10 by Chopin,
which shows approximate reflection symmetry, whereas the opening bars of
Beethoven’s piano sonata in C sharp minor, Opus 27, No. 2, ‘Moonlight’
(Fig. 1.14) is an illustration of translational symmetry. Of course, music has
to progress and to end, so that true translational symmetry is not possible.
Often the symmetry in music is apparent rather than true, but can be discovered
in many forms [4]. Even the piano itself exhibits an example of symmetry
(Fig. 1.15).
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1.7 Symmetry in architecture

Architecture of all cultural periods has made extensive use of symmetry.
As there are many kinds of symmetry, so many kinds of architecture have
evolved. A type of symmetry is chosen so as to achieve a particular objective
in terms of beauty and utility. Unlike most other arts, architecture has spatial-
ity. While two-dimensional composition is relatively straightforward, in three
dimensions there is a greater call on the imagination. The symmetry of an
object is fixed but the perception of it changes with the relative position of the
observer. One can not only move around but also through architectural designs,
thus providing experiences of symmetry.

Architectural elements comprise solid and void components, and an archi-
tectural body may be characterized by the nature of its elements and their
symmetry. Thus, differing types of symmetry occur in architecture, but there
is space here to consider only a few of them.

Reflection symmetry is probably the most common architectural form
(Fig. 1.16). Rotation symmetry occurs in domes, and cylindrical symmetry
exists in towers and columns; even spherical symmetry occurs, as in Boullée’s
Cenotaph for Isaac Newton, projected but never brought to fruition. Chiral

Fig. 1.15

Symmetry of the piano keyboard; the
keys of the triads A—C and E-G are sym-
metrical about the key D.

Fig. 1.16

Bilateral symmetry of the Parthenon; the

Greeks avoided placing the reflection line

on a pillar by having an even number of
pillars.
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Fig. 1.17

Model of Bernini’s St. Peter’s Colon-
nade. [Reproduced by courtesy of its
author, Enrico Dalbosco; <http://www.
enricodalbosco.it>] (See Plate 2)

Symmetry everywhere

symmetry makes use of design based on mirror images, and is well illustrated
by St. Peter’s Colonnade (Fig. 1.17).

Whereas the above examples reflect point group symmetry, translational
symmetry in architecture is a pseudo space group symmetry, but it falls ser-
iously short of the ideal as its manifestations in rows of pillars or arches of
viaducts are of very limited extent,.

1.8 Summary and notation

Symmetry, then, is a feature that is encountered in both scientific and every-
day life. In the following chapters, crystals and molecules will be studied first
as finite, non-repeating bodies, and then the expression of symmetry through
symmetry functions and point groups will be developed. Subsequently, the
symmetry of ideally infinite patterns will be examined, together with their
application to crystal structures. On the basis of the understanding of sym-
metry so gained, it is complementary to discuss the mathematical approach
of group theory and its applications. A brief encounter with black—white and
colour symmetry will also be presented.

It may seem that the important application of symmetry in chemistry has
been overlooked in this introduction. However, this topic will be effectively
addressed through the work of several of the subsequent chapters, as the study
of symmetry is pursued. But first a word about notation.

1.8.1 Introducing symmetry notation

There exist two notations for describing symmetry, both of which are in com-
mon use. The Hermann—Mauguin notation [5,6] is highly mnemonic, and
desirable in the description of crystals and crystal structures. For work with
molecules, the Schonflies notation [7] is also in general use; with space groups,
however, this notation is less elegant and has little to recommend it in that
application. The Hermann—Mauguin, or international, notation will be used at
first; when the principles of symmetry have been grasped, there should be little
problem with an alternative symmetry notation.
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Problems

blems 1

Seek out the following objects in the home, or elsewhere, and list their mir-
ror symmetry. (a) Plain teacup. (b) Plain rectangular table. (c) Outer sleeve of
a matchbox, ignoring the label. (d) Plain building brick. (e) Inner tray of a
matchbox, ignoring colour. (f) Gaming die.

Study the patterns of Fig. 1.6 and Fig. 1.7, considering them to be extended.
Illustrate each pattern by a minimum number of representative points.

Twelve identical 1 €2 resistors are connected so as to form a regular octahedron.
Use the symmetry of the octahedron, which is the same as that of the cube, to eval-
uate its effective resistance to an electrical current between any pair of opposite
apices.

Consider Fig. 1.5c. (a) What single atom change would double the number of
m planes in the molecule? (b) Where do the planes lie in the more symmetrical
molecule?

Write in upper case those letters of the alphabet that cannot exhibit m symmetry
across a line. Your answer may depend on how you form the letters.

State whether the following functions of X have even or odd symmetry.

(@) X3 (b)sin’X (c) cos®(X) (d) X'sinX (e) X*-X (f) X cosX

Try out the Symmetry Game to be found at the following website:
<http://www.innovationslearning.co.uk/subjects/maths/activities/year3/
symmetry/shape_game.asp>.

Refer to Fig. 1.2. (a) Find the number of m lines in each of these figures. (b)
Name the figures. (c) Deduce a relationship between the number 7 of the sides of
a polygon and the number M of symmetry lines that it presents? (c) Why does a
rectangle not follow the rule so derived?

Figure. P1.1 shows two views of the C—H bond directions in the molecule of
ethane, C,Hg, as seen in a Newman projection; the C—C bond lies normal to the
plane of the diagram. What differences are there in reflection symmetry in these
two conformations?

Consider the parabola Y = (X + 3)* — 4. Determine the position of the vertical
symmetry line of the parabola.

Figure. P1.2 shows a portion of Bach’s Musical Offering (Crab Canon). What
symmetry exists in this extract of music?
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Fig. P1.1

Newman projections of the molecule of
ethane, C,Hg: (a) staggered, (b) eclipsed.
The dihedral angle is 60° for (a) and 0°
for (b); in the latter diagram, a twist of a
few degrees has been applied to the C—C
bond in order to make the eclipsed hydro-
gen atom apparent. The eclipsed form
is approximately 12 kJ mol~! higher in
energy (less stable) than the staggered
form.

Fig. P1.2
Portion of Bach’s Musical Offering (The
Crab Canon).
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1.12 What aspects of symmetry are evident in the illustration of the Taj Mahal?

Fig. P1.3
The Taj Mahal.




Lattices

SYNOPSIS

Lattices in one, two and three dimensions
Unit cell and asymmetric unit

Lattices in the seven crystal systems

Law of rational intercepts

Introduction to the reciprocal lattice
Rotational symmetry of lattices

Lattice transformations

Wigner-Seitz cells

4.1 Introduction

The next logical step is the examination of the internal structure of crystals,
so their basis, the three-dimensional lattices or Bravais lattices, forms the next
topic. The Bravais lattices may be approached by considering first lattices in
fewer dimensions. In any dimension, a lattice may be defined as a regular
arrangement of points in space, of infinite extent, such that each point has the
same environment as every other point. Key words here are ‘regular’, ‘infinite’,
‘environment’ and ‘point’. The essence of most crystalline solids is regularity,
whether in one dimension or more, and a lattice is ideally of infinite extent.
That a practical use can be made of an infinite concept follows from the dis-
cussion in Section 1.2, and the identical environment of each point ensures the
regularity of the pattern built up by the lattice. It is necessary to remember that
a lattice is an arrangement of mathematical points: they are joined up, as in
children’s early drawing books, so as to form a picture, in this case one that
allows a ready appreciation of the geometry of the lattice.

4.2 One-dimensional lattice

In order to begin an appreciation of lattices, consider Fig. 4.1a; it is a line
of identical, regular bricks placed exactly end-to-end. A fixed point can be
identified at the same location on each brick, and so a series of points is
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Fig. 4.1

Simulation of a one-dimensional lattice,
or row. (a) Series of identical bricks
placed end-to-end. (b) Line of repres-
entative mathematical points forming a
one-dimensional lattice; the points relate
to the same position on the bricks.

Fig. 4.2

Simulation of a two-dimensional lattice,
or net. (a) Wall formed by stacking bricks
of Figure 4.1a in the traditional manner.
(b) Two-dimensional lattice: the points
represent the same location on the bricks.

Lattices
l 1 [ l
(a)
(] L] e L] [ ]
()
Table 4.1 Symmetry and dimensionality of lattices.
Dimension
Symmetry operation One (Row) Two (Net) Three (Bravais)
Reflection Across a point Across a line Across a plane
Rotation - About a point About a line
Inversion - - In a point

defined, representative of the row of bricks: this series of points represents
a one-dimensional lattice, or row, and the points form a regular, ideally infinite
pattern, each point in the same environment as every other point.

In considering the number of lattices, the number of different arrangements
of points is needed whatever the dimension under consideration: in one dimen-
sion, there is only a single lattice, and the only lattice symmetry is that of
reflection across any point. The argument in Section 3.5 on the extension of
symmetry operations with increased dimensionality may be recalled here; for
convenience, the results are summarized in Table 4.1.

4.3 Two-dimensional lattices

If the construction of bricks in Fig. 4.1a is extended to two dimensions, in
the traditional manner, a brick wall (Fig. 4.2a) results. As before, each brick
can be represented by a point, placed at the same location in each brick, and
so build up a two-dimensional lattice, or net. Fig. 4.2b is a stack of rows, in
this example each row is translated by one half row spacing with respect to
successive rows.

A general net is shown in Fig. 4.3. It is convenient to represent the net by
a unit cell, such as that outlined by vectors a and b in cell I. The net can be
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Fig. 4.3
Oblique net: I (conventional unit cell), 11 and 111 are three of an infinite number of possible unit cells; I and 1l are primitive, p, and III is centred,
c. [Reproduced by courtesy of Springer Science+Business Media, New York, © Kluwer Academic/Plenum Publishing.]

then constructed by stacking unit cells side-by-side, in the same orientation
and sharing adjacent lattice points. The unit cell I is primitive, symbol p: each
lattice point is associated with the area of one unit cell. This fact may be appre-
ciated either by noting that each point is shared equally by four unit cells, or
by translating the unit cell framework by a small distance, as shown by the thin
lines in cell I.

Every lattice point is a position of point group symmetry. In one dimension,
the symmetry at each point is m. In a net, each point has the symmetry of one of
the ten two-dimensional point groups (Section 3.4ff). It is desirable not to refer
to a unit cell by a point group symbol, because a unit cell is representative of
an infinite array of points and, therefore, not truly describable by point group
symmetry.

4.3.1 Choice of unit cell

The choice of unit cell is to some extent arbitrary. Three unit cells are shown
in Fig. 4.3. The conventional choice is the smallest sized repeat unit, provided
that the vectors delineating that unit cell lie on or are parallel to important
symmetry directions in the lattice. Thus, a conventional unit cell such as a, b,
in Fig. 4.4b is not always the smallest in its lattice.

4.3.2 Nets in the oblique system

The possible nets are referred conveniently to the two-dimensional systems
discussed in Section 3.4.4. In unit cell I (Fig. 4.3),a ¢ b and y, the angle Zab,
is ¢ 90° or 120°; angles of these values in a lattice would lead to higher sym-
metry; the symbol ¢ should be read as ‘not constrained by symmetry to equal’ .
Unit cell I has the same area as cell I, but has a more obtuse, less convenient
y angle. The centred unit cell c is clearly twice as large as I or II, and would
not be chosen. It does not represent a new oblique lattice, as the following
transformation shows:

a=a’ 4.1)
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Fig. 4.4

Rectangular nets. (a) In the conventional
p unit cell I, a and b are parallel to
the m symmetry lines; p cells II and
III both have the same area as I, but
neither is simply related to the m lines.
(b) A centred c unit cell a, b is the con-
ventional choice here; the p cell a’, b/,
although of smaller area, is oblique to the
m symmetry lines and is not the conven-
tional choice. [Reproduced by courtesy
of Springer Science+Business Media,
New York, (© Kluwer Academic/Plenum
Publishing.]

Lattices

a N b’
2 2

The result is not unexpected, since a lattice is invariant under choice of unit

cell.

4.2)

4.3.3 Nets in the rectangular system

If a, b or y is specialized in a non-trivial manner, the symmetry at each lattice
point will be then greater than 2: a condition such as @’ = 2a is trivial, and does
not lead to a new arrangement of points.

Consider the net in Fig. 4.4a: the symmetry at each point is 2mm, and the
net is allocated to the rectangular system. Three possible unit cells are out-
lined, of which cell I is the conventional choice (Section 4.3.1). Unlike in the
oblique system, the centred cell a, b here forms a new arrangement of points
(Fig. 4.4b). The primitive unit cell a’, b’ is a true unit cell in this net, and is
of smaller area. It is not the conventional choice because, in isolation, it does
not show clearly the lattice symmetry. The symmetry is still present, as can be
inferred from the transformation equations:

g2 b
2 2
b 4.3)
a
b=-+—
2+2
whence
a® b2
'=b=—+ — 4.4
a <4+4) 4.4)

Thus, a parallelogram unit cell with equal sides, a rhombus, in a lattice has
symmetry 2mm at each lattice point: the value of y’, the angle between a’ and

a
b’, depends on the ratio b

@ a ® ® °
11

(a)

. » b 5 = .

’ b’
° . ° a o

. a¥ " ; .

(b)
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4.3.4 Square and hexagonal nets

Increased specialization in the unit cell parameters leads to nets in the square
and hexagonal systems, which will be addressed in Problem 4.1; the five two-
dimensional lattices are listed in Table 4.2.

The honeycomb arrangement of points in Fig. 4.5a is not a lattice because
the environment of all points is not identical. A true net may be formed by
centring the honeycomb: but then each centred honeycomb cell encompasses
three primitive (triply primitive) hexagonal unit cells. If one of these primitive
cells itself were now centred, the arrangement would no longer represent a
hexagonal net: from the above discussion, the symmetry would be degraded to
2mm and the net rectangular.

Table 4.2 The five two-dimensional lattices.

System Unit cell symbol Point symmetry Unit cell parameters
Oblique p 2 a¢b; y ¢90°,120°
Rectangular p.c 2mm a¢ by =90°
Square p 4 mm a=b;y =90°
Hexagonal p 6 mm a=b;y =120°
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Fig. 4.5

The honeycomb arrangement of points
is not a lattice; compare the envir-
onment of points p; and p2. (b)
True lattice, but now with three p
unit cells within the centred hexagon.
[Reproduced by courtesy of Springer
Science+Business Media, New York, ©
Kluwer Academic/Plenum Publishing.]
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Fig. 4.7

Stereoview of a three-dimensional lattice,
obtained by stacking nets at a regular
spacing, non-collinear with the spacings
of the net. [Reproduced by courtesy of
Woodhead Publishing, UK.]

Lattices

Fig. 4.6

A rectangular net, with two lattice points in the p unit cell. Only if all points have the same vector
environment can they form a true lattice. Thus, the only position is the centre of the cell, to give a
¢ unit cell (see also Section 4.4.6). [Reproduced by courtesy of Woodhead Publishing, UK.]

4.3.5 Unit cell centring

The centred unit cells described here have a lattice point at their geometrical
centre. That this is the only site for a centring point in a lattice is clear from
Fig. 4.6: if a point were placed at P, then an identical vector placed at that point
would not terminate on another lattice point. This illustration is a rectangular
primitive net with two points per unit cell; alternatively, it could be described as
two identical primitive nets superimposed with a vector translation OP. There
is an exception to this rule, as will emerge with hexagonal and trigonal lattices,
in Section 4.4.6 and Section 4.4.7, respectively.

4.4 Three-dimensional lattices

‘If you have to fill a volume with a structure that’s repetitive, just keep your
wits about you, you don’t need to take a sedative! Don’t freeze with indecision,
there’s no need for you to bust a seam! Although the options may seem endless,
really there are just fourteen’ [1]. But Frankenheim found 15 [2]! However,
Bravais determined that two of Frankenheim’s lattices referred to monoclinic
C [3.,4]; thus, the designation Bravais lattice is in general use.

Section 4.1 introduced the lattice as the geometrical basis for crystal struc-
ture, and gave a definition of it that continues to be applicable in three
dimensions. If a number of nets (Section 4.3) is aligned in a regular man-
ner at a spacing ¢, non-collinear with a or b, a three-dimensional lattice is
obtained; Fig. 4.7 shows a stereoview of such a lattice. The fourteen Bravais
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lattices are distributed unequally among the seven crystal systems according to
their symmetry. A unit cell for each lattice is chosen in the conventional man-
ner (Section 4.3.1) and thus is not always primitive. The lattices in the seven
crystal systems will be studied, beginning with the least symmetrical.

4.4.1 Triclinic lattice

The triclinic lattice is illustrated in Fig. 4.8. The unit cell is characterized by the
parameters a¢ b ¢ c and o ¢ B¢ y ¢ 90°, 120°. Similar conditions were given in
Table 3.4 for the intercepts of the parametral plane and the interaxial angles,
arising from purely morphological considerations.

There is only one triclinic lattice, and its conventional unit cell is primitive,
symbol P (upper case letters in three dimensions): it contains one lattice point
per unit cell and the symmetry at each lattice point is 1; any centred triclinic
cell can be reduced to a primitive triclinic cell.

When the unit cell parameters are specialized in a non-trivial manner, higher
symmetry always results, and other crystal systems revealed.

4.4.2 Monoclinic lattices

The symmetry at each lattice point in the monoclinic system is 2/m, and
the conventional unit cell takes the standard conditions a¢bé¢c,x =y =
90° ¢ B, with B chosen to be obtuse. The variable angle 8 corresponds
to the characteristic twofold symmetry axis parallel to the y axis. In all
systems where the unit cell has a typically non-specialized value of a para-
meter, it is always possible that it may exhibit an uncharacteristic value.
Thus, some monoclinic crystals have been shown to have a g angle that is
90° within the limits of experimental measurement: but they remain mono-
clinic, because the symmetry of the crystal is dictated by the arrangement of
the contents of the unit cell.

In three dimensions, there are several types of centring possible for the
Bravais lattices, as set out in Table 4.3 with their standard notation. The table
lists also the fractional coordinates of the centring points.

Fractional coordinates are dimensionless quantities: the fractional coordin-
ate x is defined as X/a, where X and a represent, respectively, the coordinate in

17 [
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Fig. 4.8

Stereoview of a P unit cell in the tri-
clinic lattice. In the illustrations of unit
cells herein, the origin is in the bottom
left, rear corner, with +a towards the
reader, +b to the right and +c upward. The
parameters of the conventional unit cells
are listed in Table 4.4 (Cp. Table 3.4).
[Reproduced by courtesy of Woodhead
Publishing, UK.]
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Table 4.3 Notation for unit cells of the Bravais lattices.

Centring site/s Symbol Miller indices Fraction coordinates of unique
in the unit cell of centred faces lattice points
None P, R — 0,0,0

Ripexa — 0,0,0; 14,24, 25; 25, 15, 1/3
b, ¢ faces A (100) 0,0,0;0,15,15
¢, a faces B (010) 0,0,0;15,0,14
a, b faces C (001) 0,0,0;15,15,0
Body I — 0,0,0; 14, 15,15
All faces F (100), (010) 0,0,0;0, 14, 14;

(001) 15,0,1/;1/,15,0

2 The points +(1/3,24,2/3) in Ryex are as a form of centring.

b,b

¢

a,a

Fig. 4.9

Monoclinic lattice showing two B centred
unit cells, a, b; the conventional P unit
cell a/, b’ is outlined. [Reproduced by
courtesy of Woodhead Publishing, UK.]

Fig. 4.10

Stereoview of two monoclinic C unit
cells; the P cell outlined is not the con-
ventional choice for this lattice.

absolute measure and the corresponding unit cell dimension in the same units;
similar definition apply for y and z. They have the obvious advantage of being
independent of the dimensions of the unit cell.

Centring the B faces of a monoclinic unit cell is illustrated in Fig. 4.9. In this
case another unit cell can be defined by the transformation:

a =a
b =b
=P e 4.5)
c—__ —
272

The choice of —a/2 in ¢ instead of a/2 is often necessary in the monoclinic sys-
tem, so as to ensure the standard convention that 8’ is oblique. Now, a’ ¢ b’ ¢ ¢/;
and since ¢’ lies in the &', ¢’ plane, o’ = ' = 90° but 8’ is still a general value,
consistent with monoclinic symmetry. The transformed unit cell is P and has
half the volume of the B cell, as can be seen by counting the lattice points per
unit cell, and is the conventional choice.

A C unit cell in a monoclinic lattice is shown in stereoview in Fig. 4.10, neg-
lecting the thin lines for the moment. An A centred unit cell does not represent
a different monoclinic lattice, because the x and z axes can interchanged, while
retaining b as the unique twofold symmetry direction, provided that the signs
of the directions of the x and z axes are set so as to preserve a right-handed
axial set.
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So far, the conditions A = C and B = P have been deduced. A different res-
ult is obtained if the C unit cell is transformed to P, as shown by the thin lines
in Fig. 4.10. A transformation is given by

, a b
a=-—-—

2 2 46)
b =b '
d=c

Now @' ¢ b' ¢ ¢’ and @’ = 90°. However, because the a, b plane is inclined to
the b, ¢ plane, y’, as well as 8, is different from 90°. These results indicate
that monoclinic C is different from monoclinic P in the arrangement of points,
so that both descriptors are relevant to this system. Monoclinic I and F unit
cells both transform to C, and further discussion of them will be given in the
Problems section of this chapter. In carrying out these transformations, it is
always necessary to retain both the right-handed system of axes, and, as far as
1s practicable, an obtuse value for the 8 angle.

Example 4.1 Practical transformations involve numerical computation. In the trans-
formation B — P given by Eq. (4.5), only ¢’ and 8’ need be calculated.
From the discussion in Appendix A3.2.2, it follows that

Cen (30D (40)

n @ N ¢*  accos Zac
TGy 2 @7
L az_‘_c2 accos B\ 2
T 4T, 2
and
a-¢ =ddcosp
cosf = a -a/2+¢/2\ 1 (-a& N accos f
N ac’ Cad \ 2 2 (4.8)
B’ = cos™! (_—a - C/COSﬂ>
2¢

4.4.3 Orthorhombic lattices

The symmetry at a lattice point being that of the appropriate Laue group
implies that the point symmetry is mmm in any orthorhombic lattice. In the
conventional unit cell, a¢b¢c and « = f = y = 90°. Unit cells P, C, I and
F exist for this system. The A-centred and B-centred orthorhombic unit cells
can always be transformed to orthorhombic C: in studying space groups, how-
ever, A-centring is also required; in such cases, the equivalence of A and B
still applies. Fig. 4.11 illustrates a body-centred orthorhombic unit cell. That
the P, C, I and F cells represent different orthorhombic arrangements can
be demonstrated, following the procedure used with the monoclinic B — P
transformation:

After centring a P unit cell, the following questions should be considered,
in order:
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Fig. 4.11
Stereoview of the orthorhombic / unit
cell.

Lattices

e Does the centred cell represent a true lattice?

e Ifitis alattice, is the symmetry of the unit cell drawing apparently different
from that of the P cell?

e If the symmetry is unchanged, does the centred cell represent a different
arrangement of points? It may be judged by comparing the parameters of
the two cells in question, which is equivalent to asking if the unit cell has
been chosen according to convention.

These questions have been answered implicitly in the monoclinic transforma-
tions already studied.

The correct number of lattices can be reached in another way. The
orthorhombic system is characterized by three axes, 2 or 2, along a, b and c.
From the matrices in Appendix A3.7.1, a twofold rotation of a vector r(x, y, z)
about the axis along a has the effect xa, yb, z¢ — xa, yb, Zc; similarly,
a rotation of the same initial vector about the axis along b has the effect
xa, yb, z¢ — Xa, yb, zZc. From the study of point groups, it is evident that
the changes in sign show that a is perpendicular to b and ¢, and that b is per-
pendicular to ¢ and a. The product of the matrices for these two operations is a
matrix that has the effect xa, yb, zc — Xxa, yb, zc. Thus, the three twofold
axes are mutually perpendicular, as was found earlier, in Section 3.6.3.

Conditions such as this can be confirmed in another way. The scalar
product from the first transformation: xa - yb — xa - (—yb)orxyab cosy —
—xyab cos y. Since the twofold symmetry operation leads to indistinguishab-
ility, xyab cos y = —xyabcosy, or 2cosy = 0, which shows that y is 90°.
By considering the product xa - ze, § is found also to be 90°. If the product
yb - z¢ in the first transformation be examined, it evolves as yzbccosa =
(—y)(—2)bc cos . This reveals nothing about the angle «, because this trans-
formation concerns only the b, ¢ plane. However, when the argument is applied
to the second transformation, « is found to be 90°. Also, since there has been
no interchange among the x, y and z coordinates during these transformations,
there can be no restriction on the values of a, b and c. Thus, the arrangement of
twofold axes determines a system in whicha # b # canda = g =y = 90°,
and is called orthorhombic. Hence, any reduction of a centred unit cell that
infringes conditions so deduced shows that the centred cell is proper to its
system. Try it for the monoclinic C cell example (Fig. 4.10). In the crystal
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systems, the conditions impinging on the conventional unit cells on
account of the characteristic symmetry (Table 3.4) can all be deduced in
this way.

4.4.4 Tetragonal lattices

There are two tetragonal lattices, symmetry %mm at each point, represented
by P and [ unit cells; their parameters are: a =b¢c; a = =y =90° It is
straightforward to show that C = P and F = I.

Consider centring the B faces: the unit cell no longer has the characteristic
tetragonal symmetry. The symmetry is restored, apparently, by centring the A
faces as well. But this arrangement is not a lattice, as Fig. 4.12 shows. Centring
now the C faces produces a true tetragonal F unit cell, but this is equivalent to
I, and is not a new lattice (Fig. 4.13).

4.4.5 Cubic lattices

There are three cubic lattices, P, I and F, consistent with m3m symmetry at
each point and unit cell parameters a =b=cia =g =y =90°. If the A
faces are centred (Fig. 4.14a), the symmetry of the lattice is reduced m3 m —

Fig. 4.12

A ‘tetragonal’ unit cell centred on the A
and B faces does not represent a lattice,
because of the differing environments of

mmm. If a cubic [ cell is transformed by the equations p1 and p,.
a=a
b'=b
¢=a+c

the new cell is A centred, apparently monoclinic in isolation, and unconven-
tional. However, it still has cubic symmetry as it represents the same lattice

/

(Fig. 4.14b): the symmetry is inherent in the special conditions @’ = b/, ¢ =
a2, =y =90°p =45°.

| -
oy oA
1 . }
e o @ e
. ® . . ® .
- A
/aEy B

5 Fig. 4.13
‘Q/q ‘&/4 Stereoview of a tetragonal lattice, show-
ing the equivalence of F and / unit cells.
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Fig. 4.14

(a) Stereoview of a cubic P unit cell
degraded to orthorhombic A by cent-
ring the A faces alone. (b) Cubic I:
the thin lines delineate another unit cell,
withd =b ¢c,a =y =90° 8 = 45°,
apparently monoclinic C, but the sym-
metry at each point remains m3 m, so that
it is a non-standard representation of the
cubic lattice.

Fig. 4.15
Stereoview of a P unit cell in the
hexagonal lattice.

Lattices
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4.4.6 Hexagonal lattice

The hexagonal lattice has a P unit cell, witha = b ¢ c;a = f = 90°, y = 120°;
the lattice has point symmetry %mm, as shown in Fig. 4.15. If the hexagonal
unit cell is centred as C, I or F, it is no longer hexagonal. Check this for your-
self by drawing, or otherwise. However, if the ‘centring’ is carried out in the
sense of base centring the two trigonal prisms that make up the hexagonal unit
cell, that is, at the points =+ (1, 23, 0), then the hexagonal symmetry is retained,
and a smaller hexagonal unit cell is obtained:

|a'| = [la+25bl; b = |—lha+14bl ¢ =g,

whence @' = b’ = a+/3/3 and y’' = 120°, and a new lattice is not formed.
Show that the volume of the ‘new’ cell is one third that of the ‘old’ cell.
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Another valid lattice is obtained if the hexagonal unit cell is ‘centred’ at
=+ (24, 13, 1/3), which introduces the trigonal lattice.

4.4.7 Trigonal lattices

A hexagonal unit cell is compatible with sixfold and threefold symmetry, and
the centring just discussed leads to a lattice in the trigonal system (Fig. 4.16).
The lattice no longer has the characteristic 6 or 6 symmetry of the hexagonal
system. It is for this reason that the Schonflies point group symbol for
6 m2 is C3;, and the comment in Section 3.10.2, that the symmetry 6 cannot
operate on a rhombohedral lattice should be now clear. Since this trigonal lat-
tice has threefold symmetry axes parallel to z and passing through points with
x, y coordinates 2/, 15 and 13, 23, the possibility of a triply primitive hexagonal
H cell exists. Thus, for some trigonal crystals the unit cell is P, whereas for oth-
ers it will be Ryex, which can be deduced from the systematic absences in an
X-ray diffraction record (see Fig. 5.36).

The Ryex cell can be transformed to the primitive rhombohedral cell R,
for which a=b=canda = 8 =y ¢90° and < 120°. In this R cell, the

(a)
Vertical height
of lattice points
© O @ —Cus3
O O O @) =0
O — 23
O @) %3
O —0
@) @) — 23
@) —= i3
@, o -0
1) @] o — 203
@) @) O @ —Cuys3
O O ©) il

(b)
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Fig. 4.16

(a) Stereoview of the rhombohedral (tri-
gonal) R unit cell in the obverse setting
with respect to a hexagonal unit cell.
(b) Rhombohedral lattice and R unit cell,
ag, br, cr, viewed along [111]. The out-
lined hexagon delineates the triply prim-
itive hexagonal unit cell, ay, by, ¢y, and
the fractions in the right-hand column
refer to heights along z; ¢y is normal to
the ay, by plane and passes through the
origin.
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Table 4.4 The Bravais lattice unit cells.

Lattices

threefold axis is along [111], and its volume takes the simpler expression
V =,/a3(1 —3cos?a + 2cos? a). The lattice that is represented by a con-
ventional R unit cell is the single, true, trigonal unit cell. A cube extended
or compressed along its [111] direction produces a rhombohedral unit cell; in
compression it remains trigonal, but the « angle would be greater than 180°
and therefore unconventional.

There are two settings of the R cell in relation to the hexagonal cell: the
obverse setting, shown in Fig. 4.16, and the reverse setting, obtained by
rotating the R cell clockwise about cyy by 60°; the obverse setting is standard.

It is worth noting that symbols such as P and C do not actually describe
lattices, although they are used in this way. A lattice is an infinite array of
points, each of the same symmetrical environment. Whether or not it is termed
P, C or other designation depends on how the array is viewed, in other words,
how the unit cell is chosen. Hence, a designation C, for example, implies that
a choice of unit cell type has been made for a particular lattice: other choices
are possible in the same lattice, although they are not necessarily conventional
[5]. As long as terms such as ‘P lattice’ and ‘C lattice’ are used with this
proviso, the practice is acceptable. The Bravais lattice data are summarized in
Table 4.4.

4.5 Lattice directions

Lattice geometry is based around the three unit cell translation vectors a, b
and c. From the definition of lattice, it follows that any point may be reached,

System Unit cell symbols Axial relationships? Symmetry® at each lattice point
Triclinic P a¢béc
a¢ B¢y ¢90°, 120° 1
Monoclinic (y unique) pP,C a¢b¢c 2/m
o=y =90° B ¢90°, 120°
Orthorhombic P,C,ILF a¢bé¢c mmm
a=pF=y= 90°
4
Tetragonal P,C a=b¢c —mm
m
a=pF=y=90°
Cubic P,LLF a=b=c m3m
6
Hexagonal P a=b¢c —mm
m
a = =90°y = 120°
Trigonal (Hexagonal axes) P a=b¢c
a=p =90°y = 120° 3m
Trigonal (Rhombohedral axes) R a=b=c
a =B = y¢90°, < 120° 3m

# Read ¢ as ‘not constrained by symmetry to equal’.
b A lattice point exhibits the highest symmetry of its system.
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starting from any other point, by performing the basic translations, or positive
or negative multiples thereof, always in the directions of a, b and c.

Any lattice point may be taken as an origin for the lattice; then, the vector r
to any other lattice point is given by

r=Ua+ Vb+ Wc 4.9)

where U, V and W are positive or negative integers or zero, and are the
coordinates of the lattice point. The line joining the origin to the lattice points
U, V,W; 2U, 2V, 2W; ... nU,nV,nW defines the direction, or directed line,
[UVW]. The notation here is similar to that used for zone axes, because a dir-
ection, as defined here, is a possible zone axis, since crystal planes are rational.
A set of directions related by symmetry defines a form of directions, signified
by the notation <UVW=>.

In a similar way, any general position in the unit cell has fractional coordin-
ates x, y and z. Hence, the vector d from the origin of the unit cell to the point
X, y, zis given by

d=xa+yb+zc (4.10)

The numerical values of r and d can be evaluated from their scalar products,
d- d and r-r, following Appendix A3.2.1.

Example 4.2 Calculate the length of [312] in a trigonal unit cell where a =
0.473 nm and o« = 51.22°.

Using Eq. (4.9) and the scalar product equation, > =r-r= U? a* + V?> b> +
W? 2 4+ 2VWbccosa +2WUcacos B+ 2UVabcosy. But a=b=canda = =
y. Hence, r? = a*[(U? + V> 4+ W?) 4+ 2cos (VW + WU + UV)] = Evaluating, r =
2.094 nm.

4.6 Law of rational intercepts: reticular density

When the faces of crystals are allocated Miller indices (indexed) in the simplest
manner, the indices are small whole numbers; only occasionally does the index
of crystal face exceed 5. The law of rational intercepts, also called the law of
rational indices, embodies this result, and can be interpreted in terms of lattice
theory.

Consider the projection of an orthorhombic lattice, shown in Fig. 4.17. The
traces of the families of planes (100), (110) and (230) are outlined in relation
to the a, b projection of the primitive unit cell. It can be shown that as the Miller
indices increase numerically, the reticular densities, Dg, that is, the number
of lattice points per unit area, may be expected to decrease. In Fig. 4.17, the

1
(100) planes are the most densely populated, D = — ; the (110) planes with
ac

Dr = are less more densely populated, and the (230), with Dg =

1
1c«/a2 + b2

————— less densely still, and so on. The more densely populated planes
cv9a? + 4b? Y y pop P

are those of wider interplanar spacing d in a given material: d is proportional
to the reticular density or to 1/reticular area.
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Fig. 4.17

The (100),(110) and (230) families of
planes in an orthorhombic lattice. [Re-
produced by courtesy of Woodhead Pu-
blishing, UK.]
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If a lattice is based on an orthorhombic C unit cell, Dr(100) is the same
as for the P cell although the interplanar spacing is halved, but Dr(110) is
now twice that in the P cell. If, for example, the unit dimensions are a =
0.4,b = 0.6,c = 1.00nm, then the Dy ratios (100) : (110) : (230) are 2.50 :
1.39 : 0.589. This topic further may be explored a little further, restricting the
discussion to the cubic system. In this system

1
d(hkl) Ny o Dr 4.11)
and there are the three lattices to consider, specified by P, I and F. The planes
with the greater values of Dgr would be expected to correspond to the more
stable (lower energy) crystal state. Consider first a P unit cell; the Dr values
are listed hereunder:

P unit cell
hkl 100 110 111 210 211 221 310 311 (222) 320 321
Dr 1 0.71 0.58 0.45 041 0.33 0.32 0.30 0.29 0.28 0.27

These data indicate a preference for the hexahedral (cubic) {100} form; sodium
chlorate, which has a primitive unit cell, develops principally the forms
{100}, {110} and {210}. Note that the hkl values listed are those found on
an X-ray diffraction record. Morphologically, (222) is observed externally as
(111) and, in general, (2p) h, (2g) k and (2r)! as hkl, where p,q and r are
integers.

In an [/ unit cell, any index for which 4 + k 4 [/ is not an even number is
doubled, as underlined in the table, where the fundamental % k [ is written as a
subscript:

I unit cell
hkl 200¢100) 110 22241y 42050, 211 442051y 310 62231, 640(320) 321 411
Dg 0.5 0.71 0.29 0.22 0.41 0.17 0.32 0.15 0.14 0.27 0.24
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In this lattice, there is a preference for dodecahedral {110} forms, as in the
garnets and the caesium halides, except caesium fluoride, which show also the
{100} and {111} forms. Although caesium chloride, bromide and iodide do
not have strictly / unit cells because the atom at the centre of the unit cell is
different from those at its corners, they simulate / in their habits. Rewriting the
morphological forms in order of importance:

110 > 100 > 211 > 310 > 111 > 321 > 411 > 210 > 221 > 311 > 320

For an F unit cell, any index not containing mixed odd and even integers is
doubled, as in the following record:

F unit cell

Bkl 200009y 22010, 111 420010y 422011 M2 620430
Dr  0.50 0.35 058 0.22 0.20 0.17 0.16

311
0.30

331
0.23

511
0.19

531
0.17

Here, a preference exists for octahedral {111} and {100} forms, as in dia-
mond and calcium fluoride. Re-writing the morphological forms in order of
importance:

111 > 100 > 110 > 311 > 331 > 210 > 211 > 221/511 > 531 > 310

In simple structures, component atoms often occupy positions on lattice
points, so that the population of atoms on a given plane may be related in a
simple manner to the reticular density. The faces on a crystal represent the
terminations of families of planes, and a crystal grows in such a way that the
external faces are planes of highest reticular density. This situation produces a
more energetically stable system, because of a better balance of interatomic
forces than would arise with a surface that contains, on the atomic scale,
relatively large holes.

As the planes of higher reticular density are those of lower Miller indices,
the law of rational intercepts follows logically; it was developed significantly
by Bravais [3]. If the unit cells in a crystal pack in the manner of Fig. 4.18, the
external faces will have rational indices. A crystal does not build in fractions
of unit cells, so that the apparent steps shown here on {110} are only of atomic
dimensions and will not be observed.

A more general discussion on crystal growth and form has been given by
Donnay and Harker [6], who took space group symmetry into account. Thus,
morphologically, quartz would be expected to have {0001} as the dominant
form. In practice, this form is observed rarely. The first three Dg values are
(0001),(1010) and (1011); but on account of the 3; screw axis in quartz,
(0003) takes the place of (0001), so moving this plane down in the Dy order.
Subsequent work defined a growth morphology [7, 8] that attempted to explain
crystal growth in terms of an attachment energy of a crystal fragment on to an
already formed crystal. Equilibrium morphology attempts to determine crystal
growth in terms of minimum surface energy [9], the greater stability cor-
responding to low surface energy and high reticular density. A more recent
publication [10] considers the morphology and growth of crystals in detail.
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Fig. 4.18

Common shape of the cross-section on
an orthorhombic crystal; the zone axis
[001] is normal to the diagram. The {110}
planes on the macroscopic have rational
indices because the apparent steps are
microscopic in size. [Reproduced by
courtesy of Woodhead Publishing, UK.]
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(110) (110)
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4.7 Reciprocal lattice

It is convenient to introduce here the concept of the reciprocal lattice, which
will be needed when considering the diffraction of X-rays in a subsequent
chapter. A reciprocal lattice exists for each of the Bravais lattices, and may be
derived by the following construction, applied to a monoclinic P lattice.

A projection on to the (010) plane is shown in Fig. 4.19; the primitive unit
cell is outlined by vectors a and ¢. Lines are constructed from the origin, O, and
normal to the families of Bravais lattice planes shown. Recall that, in general,
the normal to a lattice plane does not coincide with the direction of the same
indices.

Along each line, reciprocal lattice points are defined such that the dis-
tances to these points from the origin are inversely proportional to the
corresponding interplanar spacings. Thus, in Fig. 4.19, the families of planes
(100), (101) and (001) give rise to reciprocal lattice points at distances from
the origin that are proportional to 1/d(100),1/d(101) and 1/d(001), where
d(100) = OP, d(101) = OQ and d(001) = OR. In general,

d* = K/d(hki) (4.12)

where the parameter K is unity (see also Section 6.4ff). The vectors
d*(100), d*(010) and d*(001) may be taken to define the translation vectors
a“, b and ¢” of a unit cell in the reciprocal lattice, also termed the reciprocal
unit cell. The following equations for the monoclinic reciprocal lattice can now
be determined. From Eq. (4.12),

d*(100) = 1/d(100) = a* (4.13)
But d (100) is, from Fig. 4.19, a sin 8. Hence
a* =1/(asinB) (4.14)
Similarly

¢* = 1/(csinp) 4.15)



Reciprocal lattice

z' axis
T~
But
b*=1/b (4.16)
because d*(010) is normal to the a, ¢ plane. The unique 8* angle is given by
B* = (180° — B) (4.17)
Furthermore,
a-a* = aa* cos Zaa™ = a(1/a)cos(B —90°) =1 (4.18)
and similarly for b - b* and ¢ - ¢*. For the mixed products,
a-b=ab*/cosab* =0 (4.19)

and similarly for all other such products. The relationships in Eq. (4.18) and
Eq. (4.19) apply to all crystal systems.

In looking next at the reciprocal lattice in a more general manner, the mater-
ial in Appendix A3 will be useful. In Fig. 4.20, the z* axis is normal to the
plane a, b. Since ¢ - ¢* = 1 = cc* cos ZCOR,

c* = |c*| =1/ccos ZCOR (4.20)
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Fig. 4.19

Reciprocal lattice. (a) Monoclinic lat-
tice in projection on to (010), show-
ing P unit cells and the traces of
the (100), (101) and (001) families of
planes. (b) Monoclinic reciprocal lattice
constructed from the lattice in (a), in
projection on the a”, ¢* plane.
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Fig. 4.20

Triclinic unit cell, with vectors a, b
and ¢, and the corresponding recip-
rocal unit cell vectors a*, b* and ¢.
[Reproduced by courtesy of Springer
Science+Business Media, New York, ©
Kluwer Academic/Plenum Publishing. ]

Lattices

Z axis

But ¢” is normal to both a and b, so that it lies in the direction of their vector
product. Hence,

¢ =n(a xb) 4.21)

where 7 is a constant. From Appendix A3, V = ¢* - (a x b); forming next the
scalar product of Eq. (4.21) and ¢,

c-cf=nc-axb)y=nV=1

so that n = ‘l, ; hence, from Eq. (4.21)
axb
o= @xD) (4.22)
c-(axb)
and similarly for a“ and b* by cyclic permutation. In scalar form,
bsi
=== S‘iny (4.23)

and similarly for " and b" by cyclic permutation.

The angles of the reciprocal unit cell are obtained through Fig. 4.21. The 7"
axis is perpendicular to the plane (001) and is, therefore, coincident with the
pole of the great circle containing x and y. Similar arguments apply to x* and y*.
Thus, the arc B'C’ is, at all points on it, 90° from the great circle of which AB
is an arc; similarly with B'C" and C'A" mutatis mutandis. Hence, the triangle
A'B'C’ is the polar triangle of triangle ABC.

Referring now to Section 2.6.1, it follows that
y* =180° — LC
y =180° — «£C
with similar expressions for A, B’, A and B’. Hence, from Eq. (2.33)
cos y + cosa cos

cosy* = : : (4.24)
sin o sin 8




Rotational symmetry of lattices

since A, B and C are here identified with «, B and y from Euler’s construction
(Section 3.6.3); the results for cos o® and cos f* may be obtained by cyclic
permutation. It remains to show that the reciprocal lattice points, as constructed
here, form a true lattice.

From Eq. (A3.39), the vector normal to the plane (hkl) is h(b x ¢) + k(¢ x
a) + /(a x b). Dividing by V, and denoting the resulting vector d’(hk),

(b xc) Tk (c x a) ; (a-b)
a-(bxc) b-(c x a) c-(a-b)

d*(hkl) = {h } = ha* + kb* + Ic*

(4.25)
as given in Eq. (A3.5). Since A, k and [ are integers, the vectors d*(hkl) drawn
from the common origin form a lattice, the reciprocal lattice, with translation
vectors a*, b* and ¢* and interaxial angles

a* = /b*c* = /010 — 001
B* = Zc*a* = Z010 — 001 (4.26)
y* = Za*b* = £100 — 010

It should be noted that reciprocal lattice points are denoted by the hkl values
of the family of planes in the Bravais lattice from which they were derived, but
are written without parentheses.

4.8 Rotational symmetry of lattices

Having now studied lattice geometry in some detail, it is relevant to show
analytically that rotational symmetry in a periodic lattice is restricted to the
degrees 1, 2, 3, 4 and 6, which was demonstrated graphically in Section 3.5.5.

In Fig. 4.22, A and B represent two adjacent points, of repeat distance
t, in any row of a lattice, and an R-fold axis acts normal to the plane and
through each lattice point. An R-fold anticlockwise rotation ¢ about the axis
through A maps B on to B, and a similar but clockwise rotation about the axis
through B maps A on to A’; it follows that A’B’ is parallel to AB. The lines A’S
and B'T are drawn perpendicularly to the line AB. In a lattice, any two points
in a row must be separated by an integral multiple of the repeat distance in
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Fig. 4.21

Spherical triangle ABC and its polar tri-
angle A*B*C*. [Reproduced by courtesy
of Springer Science+Business Media,
New York, © Kluwer Academic/Plenum
Publishing.]
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Fig. 4.22

Permitted rotational symmetries in lat-
tices are 1—,2—,3—,4 — and 6— fold,
corresponding to rotations of 0° (360°),
180°,120°, 90° and 60°.

Lattices

A

the direction of that row. Thus, A’B’ = mt, where m is an integer. Furthermore,
A'B' =t — (AT + BS) =t — 2rcos ¢; hence, m = 1 — 2 cos¢, or

cosp = (1 —m)/2 =M/2 4.27)

where M is another integer. Since |cos¢| < 1, the only values of M which
are admissible are 2, -2, —1, 0 and 1, which correspond to rotations of
360°,180°,120°,90° and 60°, respectively. This analysis provides a deeper
meaning that that given earlier. An alternative proof, which depends upon the
fact that the trace of a rotation symmetry matrix lies between —3 and +1, is
described in Appendix A3.7.

The 14 Bravais lattices are presented in their entirety by Fig. 4.23. Can
you now write the relationships between a, b, ¢, and «, 8, y for each unit cell
shown therein?

4.9 Lattice transformations

In practice, it is often necessary to transform the axes of the unit cell of a crystal
that may have been first chosen by experiment. The parameters that may be
involved, as well as the unit cell parameters a, b and c, are the Miller indices
hkl, the zone symbols or directions UVW, the reciprocal unit cell parameters
a*,b*, c* and the coordinates x, y and z in the direct unit cell.

4.9.1 Bravais lattice unit cell vectors

Let a, b and ¢ be transformed to a’, b’ and ¢, such that

a’ = sja+ spb 4+ si3¢
b’ = s51a + s0b + 53¢ (4.28)
¢ = s31a + S32b + s33€C



Lattice transformations

a a_ e

Following the matrix notation discussed in Appendix A3,

/

a S11 812 513 a
b | =\ su s s3 b
/
c §$31 832 833 C
or concisely
a’'=Sa

\ IR v
\\ L=~ 1
1
~<jan s, w ! N AN
a <7 NN W
f. 8 ° S Ne
RS \
7/ \ a7 I\ | 7\\
a ’ IR NG, al:/ N
. / SO
1 N
a a \ / a—’.\\ !

(4.29)

(4.30)

where a’ and a represent the two column vectors and S the matrix of elements

s;;. The inverse transformation may be written

!

a=S"'a

(4.31)

where S™! is the inverse matrix to S. The elements of the inverse matrix,

-1

i obtained as

denoted s
STI = 1
Y det(S)

(=DM
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Fig. 4.23

The 14 Bravais lattices. In order, left—
right, top-bottom: triclinic P, mono-
clinic P, monoclinic C, orthorhombic
P, orthorhombic C, orthorhombic I,
orthorhombic F, tetragonal P, tetragonal
I, hexagonal P (three unit cells are
shown), rhombohedral R, cubic P, cubic
I, cubic F. [Reproduced by courtesy
of Springer Science+Business Media,
New York, (© Kluwer Academic/Plenum
Publishing.]
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where |Mj;| is the minor determinant of S, obtained by striking the row and
column containing the ji element (Appendix A3.4.10). If the matrix is

2554
s=|T s
s 25 1p
the value of det(S) may be obtained as described in Appendix A3, or more
quickly from the cross-multiplication rule:

2 11 2
3\3><3><3/

1 1 17 N1 1
3/3 3 3 3

1 _2><1><_1\_2
3 3 3 3 3

=
W

-

G|

whence
det(S) 2 1-|-2-|-1-i-4-i-1 !
e e — J— —_— E — _— = -
27 27 27 27 27 27 3

The element s,3, for example, of the inverse matrix can be evaluated from S as:

B 1 (_1)2+3 2 1
Sy = 1—/3(—1)2+3|M32| = 13 73/3 1/23

In this way, the inverse matrix can be built up:

1
= m(—l)(lﬂ) =-1

1 1 0
S'=1o0o1 1]). (4.32)
1 1 1

4.9.2 Zone symbols and lattice directions

It will have been noticed that the normals to faces (k) in the construction
of the stereographic projection are also the directions of vectors to points Akl
in the reciprocal lattice: they are both normals to lattice planes. The difference
lies in the fact that in the stereographic projection the normals lack the linear
measurement explicit in the reciprocal lattice.

A direction r in a direct unit cell may be written as

r=Ua+Vb+ Wec (4.33)
and in a transformed cell as
r=Ua + Vb +Wc (4.34)
From Eq. (4.33) and Eq. (4.34)

a’ a a’

wvwHlv | =wvw) |b|l=wvws'|w
¢ c ¢



Lattice transformations

or
(U'V'W)=UVWS™!
Hence, from Appendix A3.4.12, and concisely,
U=Us"'=6"hHU (4.35)

where U and U’ are now column vectors.
Since (S™HT = (ST)~!, pre-multiplication of both sides of Eq. (4.35) by ST
leads to,

STU =STSH'u=U
or
U=S"U (4.36)

4.9.3 Coordinates of points in the direct unit cell
For any fractional coordinate x, y, z in the unit cell
r =xa+yb+4zc

From the transformation in Section 4.9.2, it is evident that these coordinates
transform as do zone symbols. Thus,

x =S HTx (4.37)
and
x =STx (4.38)

4.9.4 Miller indices
From Eq. (4.25) and EQ. (4.33),

d*(hkl) -r = hU + kV + IW
and following Eq. (4.36)

U U
d*hkl) - r=0h k D|V | = k Z)ST 74
w w’
But in terms of the transformed cell,
U/
d*(hkl) -x = (0 K 1) | V'
W/

and because d*(hkl) and d*(W'k’l') are one and the same vector.
(W' K )= k DS"
Transposing, as before
n h
K |=S|k
U l
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or

h'= Sh (4.39)
By multiplying by S7!,

h =S 'n (4.40)

where h and h’ represent A, k, [ and /', k’, I'; thus, the Miller indices trans-
form as do unit cell vectors. Miller—Bravais indices transform as Miller indices,
using A, k and / from the A, k, i and [ values.

4.9.5 Reciprocal unit cell vectors

Equation (4.25) may be written as

h/
d*(hkl) = (a* b* ¢*)S™' | K
l/
In the new reciprocal cell
h/
d*(hkl) — (a*/ b*/ c*/) k/
l/

so that
(a* b* ¢*') = (a* b* ¢*)S™!
By transposition, as earlier
a’ = (S™H'a* (4.41)
and
a* =S'a" (4.42)

so that reciprocal unit cell vectors transform as do zone symbols and coordin-
ates in a unit cell of a Bravais lattice. These transformations are summarized
in Table 4.5

Table 4.5 Relationships among transformation matrices.

Matrix S

Matrix S~!

OId unit cell translation vectors to new New unit cell translation vectors to old

Old Miller indices to new

Matrix (S’I)T

New Miller indices to old

Matrix ST

Old reciprocal unit cell translation vectors to new New reciprocal unit cell translation vectors to old

Old zone symbols to new

New zone symbols to old

Old Bravais unit cell coordinates to new New Bravais unit cell coordinates to old




Lattice transformations

4.9.6 Volume relationships

It has been shown earlier that V =a- (b x ¢). Thus, it follows from
Eq. (4.30) that the volume V’ of the transformed cell is given by

V' = det(S)V (4.43)
Thus, for the matrix
55
S=| % 1
15 25 15
which  applies to the transformation a (rhombohedral, Rop,) —
a(hexagonal,H[ﬁply primive),det (S) =14, so that Vg = 14Vy, which is

the expected result for the relationship between the triply primitive hexagonal
and rhombohedral unit cells.

4.9.7 Reciprocity of F and [ unit cells

In Fig. 4.24, a primitive unit cell has been selected from the face centered unit
cell by the transformation

1 1
ap = EbF + ECF
1 1
bp = ECF + Eap (4'44)
1 1
= = -b
Cp 2ap + > F

From Section 4.7, with appropriate cyclic permutation

. 1 1 1 1
ap = (bp x Cp)/VP = [(ECF + Eap) X (Eap + 5bp>:| /Vp

= Z[(CF x br) + (¢r x ap) + (ap x bp)]/Vr
crbr . Crar . arbr
Vi sino + v, sin B8 + v,

since Vg = 4Vp. Hence,

sin y

a, = —ap+br+cr (4.45)
with similar expressions for by and ¢j. The negative sign in front of aj. in
Eq. (4.45) is needed in order to preserve right-handed axes from the product

(cp X bp).
In the case of the body-centered unit cell, the equations similar to Eq. (4.44) are

1 1 1
= —— =b; + = 4.46
ap 231 + 5P + 201 (4.46)
with similar expressions for bp and ¢p. By writing Eq. (4.45) as
ap = —2a} /2 +2b} /2 +2¢} /2 (4.47)

it follows that an F unit cell in a Bravais lattice reciprocates into an / unit cell
in the corresponding reciprocal lattice, where the [ unit cell is defined by the
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Fig. 4.24
Cubic F unit cell with an inscribed rhom-
bohedron.
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vectors 2aj,, 2by and 2c¢j.. If, as is customary in practice, the reciprocal of an I
unit cell is defined by vectors aj., by and ¢}, then only those reciprocal lattice
points for which each of & + k, k + [ (and [ 4 h) are even integers belong to the
reciprocal of the I unit cell. In other words, Bragg reflections from an F unit
cell have indices of the same parity (see also Section 6.6.3).

Example 4.3 A tetragonal C unit cell with a = 4.774 and ¢ = 8.361 is transformed
to a tetragonal P. Calculate the new unit cell dimensions and the position of a point
(0.411,—-0.607, —0.193) in the new, C unit cell.

lh =1p 0 110
The transformation matrixis | !4 14 0 | and the inverse matrixis | T 1 0
0 0 1 001

Thus, the P unit cell dimensions are @' = b = 3.376, ¢ = 8.361 A, and the coordinates
are 1.018 (= 0.018), —0.196, —0.193. (The transpose of the inverse is required here.)
The results may be checked by a scaled drawing.

4.9.8 Wigner-Seitz cells

Before leaving the topic of lattices and unit cells, it may be noted that any
lattice can be represented by a true primitive unit cell, such cells being cap-
able of being stacked by three-dimensional translations so as to generate the
lattice from which they were derived. Conventional unit cells are chosen
so that the symmetries of their lattices are always self-evident. However,
it may be desirable in some solid state studies to work with a primitive
unit cell, whatever the corresponding Bravais unit cell might be. Such a
cell is the Wigner—Seitz, or Voronoi, cell, the construction of which from
a body centred cubic unit cell is shown to be relatively straightforward, as
follows.

In a cubic / unit cell, lines are drawn from a lattice point to its nearest
neighbour lattice points. Planes are then constructed so as to bisect these
lines perpendicularly and the planes then extended as necessary to form the
closed polyhedron of smallest volume. In the case of the cubic / cell, the poly-
hedron is a truncated octahedron (Fig. 4.25a); the directions a, b and ¢ are
clearly the normals to {100}, whereas the normals to the hexagonal shaped
faces are the directions <111>. For a cubic F cell, the Wigner—Seitz cell is a
rhombic dodecahedron. These results are not surprising because the coordin-
ation numbers in body- and face-centred structures of identical species are
eight and twelve respectively. Fig. 4.25b shows space filled by stacking equal
Wigner—Seitz unit cells; each cell displays the full rotation symmetry of its
lattice.

A similar type of construction in reciprocal space, or k space, produces the
first Brillouin zone, of which there are twenty-four such zones. In some sys-
tems more than one Wigner—Seitz cell exist for each Bravais lattice because
the shape of the Wigner—Seitz cell can depend also on the axial ratios; thus, in
the tetragonal system, for example, two Wigner—Seitz cells are derived from
the body centred lattice according as c/a is greater than or less than unity [11].
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The first Brillouin zone derived from an [ unit cell is the Wigner—Seitz cell of
an F unit cell lattice, illustrating again the reciprocity property of / and F unit
cells. Brillouin zones are important in chemistry in the movement from bonds
to bands in the quantum mechanical theory of metals [12], and in the physics
of lattice dynamics [13]. The working advantage of the Wigner—Seitz cell lies
in dealing with the smallest possible number of atoms while maintaining the
full symmetry of the structure.
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Problems 4

4.1 Consider twonets: (i) a = b,y = 90°, and (ii) a = b, y = 120°, (a) What is the
plane point group symmetry at each lattice point? (b) To what two-dimensional
system does each belong? (c) What is the result of centring the cell in each case?
Give transformation matrices as appropriate.

4.2 To what crystal system does a unit cell belong if a=0.7,b=0.6,c =
0.5 nm,a = 90°, B = 120°, y = 90°? Calculate the length of [123].

147

Fig. 4.25

(a) Wigner—Seitz (primitive) unit cell
from a cubic lattice represented by an
I unit cell; in reciprocal space, it cor-
responds to the first Brillouin zone. (b)
Stacking of Wigner-Seitz cells to fill
space. [Burns G and Glazer AM. Space
groups for solid state scientists. 1978;
reproduced by courtesy of Elsevier.]
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4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Define Bravais lattice. Which of the following unit cells represent a lattice: (i)
Orthorhombic B, (ii) Tetragonal A, (iii) Triclinic /, (d) Cubic B + C?

What are the transformation equations for each of the following?

(a) Monoclinic / — Monoclinic C

(b) Rhombohedral F — Rhombohedral R

(c) Tetragonal C — Tetragonal P

Do the relationships a¢ b ¢ c, o ¢ B ¢ 90°, y = 90° represent a diclinic system? If
s0, how so, and if not, why not.

Outline an R cell within an F cubic unit cell such that their [111] directions
coincide. What is the ratio “;_11: ?

A rhombohedral I unit cell has the dimensions « = 7.000 A and o = 50.00°.
Show that the cell obtained by the transformation ag = S a; is a rhombohedron
and calculate its unit cell dimensions; the transformation matrix S is given by

_l/2 1/2 l/2
1/2 _1/2 l/2
l/2 1/2 _l/2

An orthorhombic unit cell I is transformed to another unit cell II by the equation
ay = Saj, where S is the matrix

1 1 0
1 1 0
0 0 1

What is the volume of cell II in terms of the volume of cell I? Hence, or otherwise,
determine the coordinates of the point (0.123, —0.671,0.314) when transformed
from cell I to cell II.

What are the relative reticular densities of the planes (100), (220), (130)
and (042) in a cubic [ unit cell? Which planes would be expected to form the
external faces of a crystal that crystallizes with an [ unit cell?

The monoclinic unit cell of gypsum has been determined in different ways:
a/A b/A c/A B/°

@ 10.51 15.15 6.545 151.72

D 5.669 15.15 6.545 118.58

11Dy 10.51 15.15 6.285 99.30

(a) Outline the three unit cells on a common origin, projected on to the plane
(010) ; a suitable scale is 10 mm = 1 A.
(b) If cell T is P: (i) What are types Il and III? (ii) What are the ratios

‘—‘/,11111 and ‘—/‘1,?? (iii) Which unit cell would you choose? Give reasons.

(c) Derive the matrices for the transformations from cell I to cell II, cell I to cell
IIT and cell II to cell III.

(d) What are the dimensions of the reciprocal unit cell of the cell that you have
chosen? B

(e) Carry out the following transformations. (i) (132); — (hkl)y. (i) [213]y —
[UVW]q. (iii) (0.600, 0.500, —0.300) — (x, y, 21

Most elemental metals crystallize in a close packed cubic, close packed hexagonal
or body centred cubic structure. Determine the packing fraction, or space
occupied, by equal, spherical atoms in each structures.

A unit cell of a lattice has a single 4 axis along c. Show that the conditions a =
bé¢c,anda = =y = 90° must obtain.



