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Two-dimensional patterns, lattices
and symmetry

2.1 Approaches to the study of crystal structures

In Chapter 1 we developed an understanding of simple crystal structures by first consid-
ering the ways in which atoms or ions could pack together and then introducing smaller
atoms or ions into the interstices between the larger ones. This is a pragmatic approach
as it not only provides us with an immediate and straightforward understanding of the
atomic/ionic arrangements in some simple compounds, but also suggests the ways in
which more complicated compounds can be built up.

However, it is not a systematic and rigorous approach, as all the possibilities of
atomic arrangements in all crystal structures are not explored. The rigorous, and essen-
tially mathematical approach is to analyse and classify the geometrical characteristics
of quite general two-dimensional patterns and then to extend the analysis to three di-
mensions to arrive at a completely general description of all the patterns to which atoms
or molecules or groups of atoms or molecules might conform in the crystalline state.

These two distinct approaches—or strands of crystallographic thought—are apparent
in the literature of the nineteenth and early twentieth centuries. In general, it was the
metallurgists and chemists, such as Tammann* and Pope,* who were the pragmatists,
and the theoreticians and geometers, such as Fedorov* and Schoenflies,* who were the
analysts. It might be thought that the analytical is necessarily superior to the pragmatic
approach because its generality and comprehensiveness provides a much more powerful
starting point for progress to be made in the discovery and interpretation of the crystal
structures of more and more complex substances. But this is not so. It was, after all, the
simple models of sodium chloride and zinc blende of Pope (such as we also constructed
in Chapter 1) that helped to provide the Braggs™ with the necessary insight into crystal
structures to enable them to make their great advances in the interpretation of X-ray
diffraction photographs. In the same way, 40 years later, the discovery of the structure of
DNA by Watson and Crick was based as much upon structural and chemical knowledge
and intuition, together with model building, as upon formal crystallographic theory.

However, a more general appreciation of the different patterns into which atoms
and molecules may be arranged is essential, because it leads to an understanding of
the important concepts of symmetry, motifs and lattices. The topic need not be pur-
sued rigorously—in fact it is unwise to do so because we might quickly ‘lose sight of
the wood for the trees!” The essential ideas can be appreciated in two dimensions, the

* Denotes biographical notes available in Appendix 3.

The Basics of Crystallography and Diffraction. Fourth Edition. Christopher Hammond.
© Christopher Hammond 2015. Published in 2015 by Oxford University Press.
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subject of this chapter. The extension to three dimensions (Chapters 3 and 4) which
relates to ‘real crystal structures’, should then present no conceptual difficulties.

2.2 Two-dimensional patterns and lattices

Consider the pattern of Fig. 2.1 (a), which is made up of the letter R repeated indef-
initely. What does R represent? Anything you like—a ‘two-dimensional molecule’,
a cluster of atoms or whatever. Representing the ‘molecule’ as an R, an asymmetric
shape, is in effect representing an asymmetric molecule. We shall discuss the different
types or elements of symmetry in detail in Section 2.3 below, but for the moment our
general everyday knowledge is enough. For example, consider the symmetry of the
letters R M S. R is asymmetrical. M consists of two equal sides, each of which is a
reflection or mirror image of the other, there is a mirror line of symmetry down the
centre indicated by the letter m, thus Mﬂ" . There is no mirror line in the S, but if it
is rotated 180° about a point in its centre, an identical S appears; there is a two-fold
rotation axis usually called a diad axis at the centre of the S. This is represented by a
little lens-shape at s the axis of rotation: 8 .

In Fig. 2.1(a) R, the repeating ‘unit of pattern’ is called the motif. These motifs may
be considered to be situated at or near the intersections of an (imaginary) grid. The grid
is called the lattice and the intersections are called lattice points.

Let us now draw this underlying lattice in Fig. 2.1(a). First we have to decide where
to place each lattice point in relation to each motif: anywhere will do—above, below, to
one side, in the ‘middle’ of the motif—the only requirement is that the same position
with respect to the motif is chosen every time. We shall choose a position a little below
the motif, as shown in Fig. 2.1(b). Now there are an infinite number of ways in which
the lattice points may be ‘joined up’ (i.e. an infinite number of ways of drawing a lattice
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Fig. 2.1. (a) A pattern with the motif R, (b) with the lattice points indicated and (c) the lattice and a
unit cell outlined. (Drawn by K. M. Crennell.)
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or grid of lines through lattice points). In practice, a grid is usually chosen which ‘joins
up’ adjacent lattice points to give the lattice as shown in Fig. 2.1(c), and a unit cell of
the lattice may also be outlined. Clearly, if we know (1) the size and shape of the unit
cell and (2) the motif which each lattice point represents, including its orientation with
respect to the lattice point, we can draw the whole pattern or build up the whole struc-
ture indefinitely. The unit cell of the lattice and the motif therefore define the whole
pattern or structure. This is very simple: but observe an importance consequence. Each
motif is identical and, for an infinitely extended pattern, the environment (i.e. the spa-
tial distribution of the surrounding motifs, and their orientation) around each motif is
identical. This provides us with the definition of a lattice (which applies equally in two
and three dimensions): a lattice is an array of points in space in which the environment
of each point is identical. Again it should be stressed that by environment we mean the
spatial distribution and orientation of the surrounding points.

Like all simple definitions (and indeed ideas), this definition of a lattice is often not
fully appreciated; there is, to use a colloquial expression, ‘more to it than meets the eye!’
This is particularly the case when we come to three-dimensional lattices (Chapter 4),
but, for the two-dimensional case, consider the patterns of points in Fig. 2.2 (which
should be thought of as extending infinitely). Of these only (a) and (d) constitute a
lattice; in (b) and (c) the points are certainly in a regular array, but the surroundings of
each point are not all identical.

Figures 2.2(a) and (d) represent two two-dimensional lattice types, named oblique
and rectangular, respectively, in view of the shapes of their unit cells. But what is the
distinction between the oblique and rectangular lattices? Surely the rectangular lattice
is just a special case of the oblique, i.e. with a 90° angle?

(@) (b)

() (d)

Fig. 2.2. Patterns of points. Only (a) and (d) constitute lattices.
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The distinction arises from different symmetries of the two lattices, and requires us to
extend our everyday notions of symmetry and to classify a series of symmetry elements.
This precise knowledge of symmetry can then be applied to both the motif and the lattice
and will show that there are a limited number of patterns with different symmetries (only
seventeen) and a limited number of two-dimensional lattices (only five).

2.3 Two-dimensional symmetry elements

The clearest way of developing the concept of symmetry is to begin with an asymmet-
rical ‘object’—say the R of Fig. 2.1—then to add successively mirror lines and axes of
symmetry and to see how the R is repeated to form different patterns or groups. The dif-
ferent patterns or groups of Rs which are produced correspond, of course, to objects or
projections of molecules (i.e. ‘two-dimensional molecules’) with different symmetries
which are not possessed by the R alone.

The patterns or groups which arise and which as explained below are of concern in
crystallography are shown in Fig. 2.3. On the left are the patterns of Rs, in the centre are
decorative motifs with the same symmetry, and on the right are projections of molecules.
Figure 2.3(1) shows the R ‘on its own’ and, as an example, the asymmetrical pro-
jection of the CHFCCIBr molecule. Figure 2.3(2) shows ‘right-’ and ‘left’-handed Rs
reflected in the ‘vertical’ mirror line between them. This pair of Rs has the same mirror
symmetry as the projection of the cis-difluoroethene molecule. Now add another ‘hori-
zontal’ mirror line as in Fig. 2.3(3). A group of four Rs (two right- and two left-handed)
is produced. This group has the same symmetry as the projection of the ethene molecule.

The R may be repeated with a diad (two-fold rotation) axis, as in Fig. 2.3(4). The two
Rs (both right handed) have the same symmetry as the trans-difluoroethene molecule.
Now look back to the group of Rs in Fig. 2.3(3); notice that they also are related by a
diad (two-fold rotation axis) at the intersection of the mirror lines: the action of reflect-
ing the Rs across two perpendicular mirror lines ‘automatically’ generates the two-fold
symmetry as well. This effect, where the action of two symmetry elements generates
another, is quite general as we shall see below.

Mirror lines and diad axes of symmetry are just two of the symmetry elements that
occur in two dimensions. In addition there are three-fold rotation or triad (3) axes (rep-
resented by a little triangle, A, four-fold rotation or tetrad (4) axes (represented by a
little square, M), and six-fold (6) or hexad axes (represented by a little hexagon, @).
Asymmetrical objects are represented as having a one-fold or monad (1) axis of sym-
metry (for which there is no little symbol)—which means in effect that one 360° rotation
brings the object into coincidence with itself.

Figure 2.3(5) shows the R related by a triad (three-fold) axis. The projection of the
trifluoroalkylammonia molecule also has this same symmetry. Now add a ‘vertical’ mir-
ror line as in Fig. 2.3(6). Three more left-handed Rs are generated, and at the same time
the Rs are mirror related not just in the vertical mirror line but also in two lines inclined
at 60° as shown; another example of additional symmetry elements (in this case mirror
lines) being automatically generated.
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This procedure (of generating groups of Rs which represent motifs with different
symmetries) may be repeated for tetrad (four-fold) axes (Fig. 2.3(7)); plus mirror lines
(Fig. 2.3(8)); for hexad (six-fold) axes (Fig. 2.3(9)); plus mirror lines (Fig. 2.3(10)).
Notice that not only do these axes of symmetry ‘automatically’ generate mirror lines at
90° (for tetrads) and 60° (for hexads) but also ‘interleaving’ mirror lines at 45° and 30°
as well.

The ten arrangements of Rs (and the corresponding two-dimensional motifs or pro-
jections of molecules) are called the ten two-dimensional crystallographic or plane
point groups, so called because all the symmetry elements—axes (perpendicular to
the page) and mirror lines (in the page)—pass through a point. The ten plane point
groups are labelled with ‘shorthand’ symbols which indicate, as shown in Fig. 2.3, the
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Fig. 2.3. The ten plane point groups showing left to right, the symmetry which arises based on an
asymmetrical object R; examples of motifs; examples of molecules and ions (drawn as projections)
and the point group symbols. (Drawn by K. M. Crennell.)

symmetry elements present: 1 for a monad (no symmetry), m for one mirror line, mm
(or 2mm) for two mirror lines (plus diad), 2 for a diad, 3 for a triad, 3m for a triad plus
three mirror lines, 4 for a tetrad, 4mm for a tetrad plus four mirror lines, 6 for a hexad
and 6mm for a hexad plus six mirror lines (the extra ‘m’ in the symbols referring to the
‘interleaving’ mirror lines).
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Now, in deriving these ten plane point groups we have ignored groups of Rs with
fivefold (pentad), seven-fold (heptad) etc. axes of symmetry with and without mir-
ror lines. Such plane point groups are certainly possible and are widely represented in
nature—the pentagonal symmetry of a starfish for example. However, what makes the
ten plane point groups in Fig. 2.3 special or distinctive is that only these combinations
of axes and mirror lines can occur in regular repeating patterns in two dimensions as
is explained in Sections 2.4 and 2.5 below. Hence they are properly called the two-
dimensional crystallographic point groups as indicated above. Patterns with pentagonal
symmetry are necessarily non-repeating, non-periodic or ‘incommensurate’ and conse-
quently have in the past been rather overlooked by crystallographers. However, with
the realization that groups of atoms (or viruses) can form ‘quasicrystals’ with five-fold
symmetry elements (see Section 4.9), the study of non-periodic two-dimensional pat-
terns has become of increasing interest and importance (see Section 2.9). A simple way
at this stage of ‘seeing the difference’ is to compare, for example, the arrangement of
six lattice points equally spaced around a central lattice point (hexagons) with the ar-
rangement of five ‘lattice’ points equally spaced around a central point (pentagons). In
the former case the arrangement of points can be put together to form a lattice (a pat-
tern or filing of hexagons with ‘no gaps’ and ‘no overlaps’). In the latter case the points
cannot be put together to form a lattice—there are always ‘gaps’ or ‘overlaps’ between
the tiling of pentagons. Try it and see!

2.4 The five plane lattices

Having examined the symmetries which a two-dimensional motif may possess we can
now determine how many two-dimensional or plane lattices there are. We will do this
by building up patterns from the ten motifs in Fig. 2.3 with the important condition
that the symmetry elements possessed by the single motif must also extend through-
out the whole pattern. This condition is best understood by way of a few examples.
Consider the asymmetrical motif R (Fig. 2.3(1)); there are no symmetry elements to be
considered and the R may be repeated in a pattern with an oblique unit cell (i.e. the
most asymmetrical) arrangement of lattice points. Now consider the motif which pos-
sesses one ‘vertical’ mirror line of symmetry (Fig. 2.3(2)). This mirror symmetry must
extend throughout the whole pattern from motif to motif which means that the lattice
must be rectangular. There are two possible arrangements of lattice points which fulfil
this requirement: a simple rectangular lattice and a centred rectangular lattice as shown
in Fig. 2.4(a).

These rectangular lattices also possess ‘horizontal’ mirror lines of symmetry corres-
ponding to the motif with the two sets of mirror lines as shown in Fig. 2.3(3). Now
consider the motifs with tetrad (four-fold) symmetry (Figs 2.3(7) and (8)). This four-
fold symmetry must extend to the surrounding motifs which means that they must be
arranged in a square pattern giving rise to a square lattice (Fig. 2.4(a)).

Altogether, five two-dimensional or plane lattices may be worked out, as shown in
Fig. 2.4(a). They are described by the shapes of the unit cells which are drawn be-
tween lattice points—oblique p, rectangular p, rectangular ¢ (which is distinguished
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The oblique p-lattice

p2mm
The rectangular p-lattice
° c2mm
The rectangular c-lattice
padmm
The square p-lattice
pbmm

The hexagonal p-lattice

(b)

Fig. 2.4. (a) Unit cells of the five plane lattices, showing the symmetry elements present (heavy solid
lines indicate mirror lines, dashed lines indicate glide lines) and their plane group symbols (from Essen-
tials of Crystallography, by D. McKie and C. McKie, Blackwell, 1986). (b) The rectangular c lattice,
showing the alternative primitive (rhombic p or diamond p) unit cell.
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from rectangular p by having an additional lattice point in the centre of the cell), square
p and hexagonal p. Notice again that additional symmetry elements are generated ‘in
between’ the lattice points as shown in Fig. 2.4(a) (right). For example, in the square lat-
tice there is a tetrad at the centre of the cell, diads halfway along the edges and vertical,
horizontal and diagonal mirror lines as well as the tetrads situated at the lattice points.

All two-dimensional patterns must be based upon one of these five plane lattices;
no others are possible. This may seem very surprising—surely other shapes of unit
cells are possible? The answer is ‘yes’, a large number of unit cell shapes are possible,
but the pattern of lattice points which they describe will always be one of the five of
Fig. 2.4(a). For example, the rectangular c lattice may also be described as a rhombic p
or diamond p lattice, depending upon which unit cell is chosen to ‘join up’ the lattice
points (Fig. 2.4(b)). These are just two alternative descriptions of the same arrangement
of lattice points. So the choice of unit cell is arbitrary: any four lattice points which
outline a parallelogram can be joined up to form a unit cell. In practice we take a sensible
course and mostly choose a unit cell that is as small as possible—or ‘primitive’ (symbol
p)—which does not contain other lattice points within it. Sometimes a larger cell is
more useful because the axes joining up the sides are at 90°. Examples are the rhombic
or diamond lattice which is identical to the rectangular centred lattice described above
and, to take an important three-dimensional case, the cubic cell (Fig. 1.6(c)) which
is used to describe the ccp structure in preference to the primitive rhombohedral cell
(Fig. 1.7(c)).

Now we combine the ten plane point group symmetries (Fig. 2.3) with the appropri-
ate plane lattices (Fig. 2.4) in order to work out the total number of two-dimensional
patterns. For example, plane point group symmetries 4 and 4mm, combined with the
square lattice, give two patterns p4 and p4mm (Fig. 2.6). Notice that in these (and other)
patterns additional mirror lines and axes of symmetry are ‘automatically’ generated
within the unit cell (Fig. 2.6(b)). Notice also that there are two possible combinations
of plane point symmetry 3m with the plane hexagonal lattice: the triad axes generated
within the unit cell either have mirror lines passing through them (p3m1) or not (p31m).
Continuing in this way we generate thirteen two-dimensional patterns known as the
symmorphic plane groups. However, there is a complication: the combination of a
point group symmetry with a lattice can give rise to an additional symmetry element
called a glide line. Consider the two patterns in Fig. 2.5, both of which have a rectangu-
lar lattice. In Fig. 2.5(a) the motif has mirror symmetry as in Fig. 2.3(2); it consists of
a pair of right- and left-handed Rs. In Fig. 2.5(b) there is still a reflection—still pairs
of right- and left-handed Rs—but one set of Rs has been translated, or glided half a
lattice spacing. This symmetry is called a reflection glide or simply a glide line of
symmetry. Notice that glide lines also arise automatically in the centre of the unit cell
of Fig. 2.5(b) as do mirror lines in Fig. 2.5(a). Glide lines are, of course, as familiar to
us as mirror lines; they represent the pattern of our footprints in the snow when we walk
in a straight line!

The presence of the glide lines also has important consequences regarding the sym-
metry of the motif. In Fig. 2.5(a) the motif has mirror symmetry but in Fig. 2.5(b) it
does not: the pair of right- and left-handed Rs is asymmetric. It is the repetition of the
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Fig. 2.5. Patterns with (a) reflection symmetry and (b) glide-reflection symmetry. The mirror lines (111)
and glide lines (g) are indicated.

translational symmetry elements—the glide lines—that determines the overall rectangu-
lar symmetry of the pattern. The glide lines which are present in the five plane lattices
are shown (in addition to the axes and mirror lines of symmetry) in Fig. 2.4(a).

2.5 The seventeen plane groups

Glide lines give rise to four more two-dimensional patterns (pg, pmg, pgg, and pdg—
Fig. 2.6)—the non-symmorphic plane groups giving seventeen in all—the seventeen
plane groups. On a macroscopic scale the glide symmetry in a crystal would appear as
simple mirror symmetry—the shift between the mirror-related parts of the motif would
only be observable in an electron microscope which was able to resolve the individual
mirror-related parts of the motif, i.e. distances of the order of 0.5-2 A (50200 pm).

The seventeen plane groups are shown in Fig. 2.6(a). They are labelled by ‘short-
hand’ symbols which indicate the type of lattice (p for primitive, ¢ for centred) and the
symmetry elements present, m for mirror lines, g for glide lines, 4 for tetrads and so on.
The symmetry elements within a unit cell are shown in Fig. 2.6(b). It is a good exercise
in recognizing the symmetry elements present in the 17 plane groups to lay a sheet of
tracing paper over Fig. 2.6(a), to indicate the positions of the axes, mirror and glide lines
of symmetry in an (arbitrary) unit cell and then to compare your ‘answers’ with those
shown in Fig. 2.6(b).

It is essential to practice recognizing the motifs, symmetry elements and lattice types
in two-dimensional patterns and therefore to find to which of the seventeen plane groups
they belong. Any regular patterned object will do—wallpapers, fabric designs, or the ex-
amples at the end of this chapter. Figure 2.7 indicates the procedure you should follow.
Cover up Fig. 2.7(b) and examine only Fig. 2.7(a); it is a projection of molecules of
CeH2(CH3)4. You should recognize that the molecules or groups of atoms are not iden-
tical in this two-dimensional projection. The motif is a pair of such molecules and this
is the ‘unit of pattern’ that is repeated. Now look for symmetry elements and (using
a piece of tracing paper) indicate the positions of all of these on the pattern. Compare
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your pattern of symmetry elements with those shown in Fig. 2.7(b). If you did not obtain
the same result you have not been looking carefully enough! Finally, insert the lattice
points—one for each motif. Anywhere will do, but it is convenient to have them coin-
cide with a symmetry element, as has been done in Fig. 2.7(b). The lattice is clearly
oblique and the plane group is p2 (see Fig. 2.6).

Another systematic way of identifying a plane pattern is to follow the ‘flow diagram’
shown in Fig. 2.8. The first step is to identify the highest order of rotation symmetry
present, then to determine the presence or absence of reflection symmetry and so on
through a series of ‘yes’ and ‘no’ answers, finally identifying one of the seventeen
plane patterns whose plane group symbols are indicated ‘in boxes’, corresponding to
those given in Fig. 2.6.

2.6 One-dimensional symmetry: border or frieze patterns

Identifying the number of one-dimensional patterns provides us with a good exercise in
applying our more general knowledge of plane patterns. It is also a useful exercise in
that it tells us about the different types of patterns that can be designed for the borders
of wallpapers, edges of dress fabrics, friezes and cornices in buildings, and so on.

In plane patterns the symmetry operations and symmetry elements are (clearly) re-
peated in a plane; in one-dimensional patterns they can only be repeated in or along
a line—i.e. the line or long direction of the border or frieze. This restriction immedi-
ately rules out all rotational symmetry elements with the exception of diads: two-fold
symmetry alone can be repeated in a line: three-, four-, and six-fold symmetry elem-
ents require the repetition of a motif in directions other than the line of the border. For
the same reason glide-reflection lines of symmetry, other than that along the line of
the border, are ruled out. Mirror lines of symmetry are restricted to those along, and
perpendicular to, the line of the border.

These restrictions result in seven one-dimensional groups, shown in Fig. 2.9. It is
a good and satisfying exercise for you to derive these from first principles as outlined
above. It is also useful to compare Fig. 2.9 with Fig. 2.6; the bracketed symbols in
Fig. 2.9 indicate from which plane pattern the one-dimensional pattern may be derived.
Notice that in one case two one-dimensional patterns—these with ‘horizontal” and ‘ver-
tical” mirror planes—are derived from one plane pattern (pm). This is because the mirror
lines in the plane group pm can be oriented either along, or perpendicular to, the line of
the one-dimensional pattern.

Figure 2.23 (see Exercise 2.6) also shows examples of some of the border patterns.
You can practice recognizing such patterns either by overlaying the pattern with a piece
of tracing paper, and indicating the positions of the diads, mirror and glide lines as
described above for plane patterns or by following the flow diagram (Fig. 2.10).

2.7 Symmetry in art and design: counterchange patterns

We have a rich inheritance of plane and border patterns in printed and woven textiles,
wallpapers, bricks and tiles which have been designed and made by countless craftsmen
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Fig. 2.7. Projection (a) of the structure of C¢Ha(CH3)a (from Contemporary Crystallography, by
M. J. Buerger, McGraw-Hill, 1970), with (b) the motif, lattice and symmetry elements indicated.

and artisans in the past ‘without benefit of crystallography’. The question we may now
ask is: ‘Have all the seventeen plane groups and seven one-dimensional groups been
utilized in pattern design or are some patterns and some symmetries more evident than
others? If so, is there any relationship between the preponderance or absence of certain
types of symmetry elements in patterns and the civilization or culture which produced
them?’

Questions such as these have exercised the minds of archaeologists, anthropolo-
gists and historians of art and design. They are, to be sure, questions more of cultural
than crystallographic significance, but patterns play such a large part in our everyday
experience that a crystallographer can hardly fail to be absorbed by them, just as he or
she is absorbed by the three-dimensional patterns of crystals.

The study of plane and one-dimensional patterns (and indeed three-dimensional
(space) patterns) is complicated by the question of colour—‘real’ colours in the case
of plane and one-dimensional patterns, or colours representing some property, such
as electron spin direction or magnetic moment, in space patterns (Chapter 4). Colour
changes may also be analysed in terms of symmetry elements in which colours are al-
ternated in a systematic way. Clearly, the greater the number of colours, the greater
the complexity. The simplest cases to consider are two-colour (e.g. black and white)
patterns. Figure 2.11 shows the generation of plane motifs through the operation of
what are called counter-change or colour symmetry elements,! which are distinguished
from ordinary (rotation) axes and mirror lines of symmetry by a prime superscript.
For example, the operation of a 2’ axis is a twice repeated rotation of an asymmetric

I These arc a special case of what are sometimes known as anti-symmetry c¢lements, which relate the
symmetry of opposites—black/white in this case.
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R RRRRR p111 (p1)

___Iz___B__-—B—- plal (pg)

® © © © © o o p112 (p2)

pim1 (pm)

}‘ _._R_ _ﬂ_._ .pma2 (p2mg) ks o

RIA|R{A|R|A
CAR-BE-AR-RE-SR-

pmm2 (p2mm) &

Fig. 2.9. (Left) the seven one-dimensional groups or classes of border or frieze patterns (drawn by
K. M. Crennell); (solid lines indicate mirror lines, dashed lines (symbol a) indicate glide lines and
e symbols indicate diads); (centre) their symmetry symbols and (bracketed) the plane groups from
which they are derived; and (right) examples of Hungarian needlework border patterns (from Symmetry
Through the Eyes of a Chemist 3rd edn. by M. and 1. Hargittai, Springer, New York and London 2008).

object by 180° plus a colour change at each rotation; the operation of an m’ mirror
line is a reflection plus colour change. Altogether there are eleven counterchange point
groups (Fig. 2.11) compared with the ten plane point groups (Fig. 2.3). Note that there
are no counterchange point groups corresponding to the plane point groups with only
odd-numbered axes of symmetry (the monad and the triad), but that there are in each
case two possible counterchange point groups corresponding to the plane point groups
with symmetry 2mm, 4mm and 6mm.
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Are vertical reflection axes present?

yes no

Is a horizontal Is there a horizontal
reflection axis present? reflection

or a glide reflection?

yes no yes no
Is 2-fold Is 2-fold
rotation present? rotation present?
yes no yes no

Is a horizontal
reflection axis present?

yes no
pmm2 pma2 pm1li p1im1 plail p112 p111
(p2mm) (p2mg) (pm) (pm) (Ppg)  (p2) (p1)

Fig. 2.10. Flow diagram for identifying one of the seven border patterns (from The Geometry of
Regular Repeating Patterns, in brackets the plane groups from which they are derived. loc. cit.).

The derivation of the counterchange one- and two-dimensional patterns also involves
the operation of a g’ glide line which involves a reflection plus a translation of half
a lattice spacing plus a colour change and gives (to extend our footprint analogy) a
sequence of black/white (i.e. right/left footprints).

Accounting for two-colour symmetry gives rise to a total of forty-six (rather than
seventeen) plane patterns and seventeen (rather than seven) one-dimensional patterns.
Figure 2.12 shows an example of plane group pattern p2gg (No. 8—see Fig. 2.6(a), (b))
and the two possible counterchange patterns (symbols p2’ gg’ and p2g’ ¢’) which are
based upon it.

Probably the most influential and pioneering study of patterns was The Grammar of
Ornament by Owen Jones, first published in 1856.> Owen Jones attempted to categorize
both plane and border patterns in terms of the different cultures that produced them,
and although the symmetry aspects of patterns are touched on in the most fragmentary

2 Owen Jones. The Grammar of Ornament, Day & Sons Ltd., London, reprinted by Studio Editions,
London (1986).
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Fig. 2.11. The eleven counterchange (black/white) point groups and (bracketed) the point group sym-
bols for the plane point groups to which they correspond (see Fig. 2.3). The counterchange symmetry
elements are denoted by prime superscripts. (Drawn by K. M. Crennell.)
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Fig. 2.12. (a) Plane group p2gg and (b) and (c) the two counterchange plane groups p2’ gg’ and p2g’g’

respectively which are based upon it. (Drawn by K. M. Crennell.)

way, there is no doubt that the superb illustrations and encyclopaedic character of the
book provided later writers with material which could be classified and analysed in
crystallography terms. Perhaps the best known of these was M. C. Escher (1898-1971)
who drew inspiration for his drawings of tessellated figures from visits to the Alhambra
in the 1930s, and also presumably from Owen Jones’ chapter on ‘Moresque Ornament’
in which he describes the Alhambra as ‘the very summit of Moorish art, as the Parthenon
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is of Greek art’. Escher’s patterns encompass all the seventeen plane groups, eleven of
which are represented in the Alhambra.*

More recent work has identified clear preponderances of certain plane symmetry
groups, and the absences of others.? For example, nearly 50% of traditional Javanese
batik (wax-resist textile) patterns belong to plane group p4mm (Fig. 2.6), others, such
as p3, p3ml, p31m and p6 are wholly absent. In Jacquard-woven French silks of the last
decade of the nineteenth century, nearly 80% of the patterns belong to plane group pg.
In Japanese textile designs of the Edo period all plane groups are represented, with a
marked preponderance for groups p2mm and c2mm. What these differences mean, or tell
us about the cultures which gave rise to them, is, as the saying goes, ‘another question’.

In X-ray crystallography crystal structures are frequently represented as two-
dimensional projections (electron density maps—see Section 13.2). The beauty and
variety of these patterns led Dr Helen Megaw™, a crystallographer at Birkbeck College,
London, to suggest that they be made the basis for the design of wallpapers and fabrics
in the same way that William Morris used flowers and birds in his pattern designs. Her
suggestion eventually bore fruit in the work of the Festival Pattern Group of the 1951
Festival of Britain and the production of a remarkable variety of patterned wallpapers,
carpets and fabrics based upon crystal structures as diverse as haemoglobin, insulin and
apophyllite. These patterns, recently republished,* provide a rich source of material for
plane group recognition.

2.8 Layer (two-sided) symmetry and examples in woven
textiles

Woven textiles consist of interlacing warp ‘north-south’ threads and weft ‘east-weft’
threads. The various combinations of interlacings, which give rise to the different pat-
terns of cloths, are very wide indeed, ranging from the simplest ‘single cloth’, plain
weave fabric, where individual warp and weft threads pass over and under each time
(Fig. 2.13), to more complex cloth structures. Common structures include twills (e.g.
Fig. 2.14), herringbones, sateens, etc. Clearly, there are symmetry relationships be-
tween the ‘face’ and ‘back’ of such woven fabrics and the study of such relationships
introduces us to what are known as layer-symmetry groups or classes.

We will not describe all the layer-symmetry groups or classes (of which there are a
total of 80) but just some of the general principles of their construction. Readers who
wish to follow this topic further should refer to the book by Shubnikov and Koptsik or
the papers by Scivier and Hann.” However, we may note here that the 80 layer-symmetry

* Denotes biographical notes available in Appendix 3.

3 M. A. Hann. Symmetry of Regular Repeating Patterns: Case Studies from various cultural settings.
Journal of the Textile Institute (1992), Vol. 83, pp. 579-580.

4 L. Jackson. From Atoms to Patterns, Crystal Structure Designs from the 1951 Festival of Britain. Richard
Dennis Publications, Shepton Beauchamp, Somerset (2008).

5 J.A. Scivier and M.A. Hann (2000) The application of symmetry principles to the classification of fun-
damental simple weaves, Ars Textrina 33, 29 and (2000) Layer symmetry in woven textiles, Ars Textrina
34, 81.
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2 x 2 weave repeat

—
Plane
group unit
cell pAgm
\\ : //
j7a \5' N .
i / Layer group unit cell p 4/n bm.
A Compared to the plane group:
''''' S RERRNL:ARNERY tetrads—no change
“=—l|l ] diads become tetrad mirror-rotation
= i( _ axes.
/ N m N H 7 4 Screw diad - \irror lines become diads and screw
| Y diads in the pl f the patt
: . % Diag iads in the plane of the pattern
Tetrad mirror- ' X
rotation axis .
Screw diad

Diads at
corners of cell

Fig. 2.13. Diagrammatic representation of a plain weave and (superimposed) the plane group unit
cell p4gm (see also Fig. 2.6) and the layer-symmetry group unit cell p4/nbm. Note the differences
between the symmetry elements in these unit cells: the diads and mirror lines in p4gm become tetrad
mirror-rotation axes and screw diads respectively (in the plane) in p 4/n bm. (Drawn by C. McConnell.)

groups are sub-groups of the 230 space groups (Section 4.6) and that the 17 plane groups
are, in turn, sub-groups of the 80 layer-symmetry groups.

Because of the structural restrictions imposed by the warp and weft character, the
five plane groups with three or six fold symmetry are not applicable to woven fabrics
and, correspondingly, neither are 16 of the 80 layer-symmetry groups.

As we have seen, in describing the 17 plane groups we are restricted to rotation
axes perpendicular to the plane and reflection (mirror) and glide lines of symmetry
within the plane. In describing layer-symmetry groups further symmetry elements or
operations are required which relate the ‘face’ and ‘back’ of the fabric. These are
(1) rotation-reflection (alternating) axes of symmetry perpendicular to the plane which
consist of a rotation plus a reflection in the plane. These symmetry operations corres-
pond to the black/white counterchange point groups (Fig. 2.11) in which the symbol R
is now understood to have two sides—black on the face and white on the back. Again,
because of the structural restrictions imposed by woven fabrics, only two such rotation-
reflection axes are applicable—2’ and 4’ (Fig. 2.11). (ii) Diad axes lying within the
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3 x 3 weave repeat
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Plane group
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|| Screw diad
[NENI ‘ H H

Diad
Fig. 2.14. Diagrammatic representation of a twill weave with a 3 x 3 repeat and (superimposed) the
plane group unit cell p2 and the layer-symmetry group unit cell ¢222. Note the differences between
these unit cells: ¢222 is a rectangular c-centred or ‘diamond’ unit cell (see Fig. 2.4) and contains diads
and screw diads lying in the plane of the pattern. (Drawn by C. McConnell.)

plane—both the simple diad axes which we have already met and also screw diad axes
which involve a rotation plus a translation (like glide lines) of half a lattice spacing
(screw diad axes are but one example of screw axes which we shall meet in our descrip-
tion of three-dimensional symmetry and space groups). In both cases, because the axes
lie in the plane, they ‘turn over’ the black face of the R to its white face. The operations
of these in-plane axes are shown in Fig. 2.15. Notice that the operation of the diad is
identical to that of the counterchange mirror line m’ (Fig. 2.11). (iii) Planes (not lines)
of symmetry coinciding with the plane; both reflection (mirror) planes (which are not
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Fig. 2.15. The additional symmetry operations for the 52 layer-symmetry groups applicable to woven
fabrics (plus the counterchange symmetry operations 2’ and 4’ (Fig. 2.11). The ‘face’ and ‘back’ of
the R symbols are shown here as black and white, respectively. (a) Operation of an in-plane diad
axis (double arrow-head) (identical to counterchange symmetry element m’—see Fig. 2.11) and (b) an
in-plane screw diad axis (single arrow-head). (c) Operation of in-plane glide planes (dashed lines)
for three different orientations of the glide directions—along the axes and diagonally. (Drawn by
K. M. Crennell.)

applicable to woven textiles because the back of the cloth is not identical to the front®)
and glide-reflection planes (which are applicable to woven textiles). These symmetry
operations are also shown in Fig. 2.15.

We will now apply these ideas to the plain weave and twill illustrated in Figs 2.13 and
2.14. The ‘weave repeat’ is the smallest number of warp and weft threads on which the
weave interlacing can be represented; it is a 2 x 2 square for the plain weave (Fig. 2.13)
and a 3 x 3 square for this example of a twill weave (Fig. 2.14). It is important to
note that these weave repeat squares do not correspond with the unit cells of the plane
patterns. These unit cells and the plane group symmetry elements are also shown in
Figs 2.13 and 2.14. As can be seen, the plain weave has plane symmetry p4gm and the
twill plane symmetry p2 (see Fig. 2.6).

Figures 2.13 and 2.14 also show the unit cells and layer symmetry elements for these
two weaves and the standard notation (which we will not describe in detail) which goes
with them. Notice that for the plain weave that the unit cell is identical to that for the
plane group symmetry but for the twill it is different—the primitive (p) lattice becomes
a centred (c) or diamond lattice. Notice also that the layer-group symmetry of the plain
weave is much more ‘complicated’ than that of the twill. It includes tetrad rotation-
reflection axes perpendicular to the plane as well as diads and screw diads within the
plane. The twill, by contrast, has no mirror lines of symmetry at all.

6 This restriction further reduces (by 12) the number of layer-symmetry groups applicable to woven textiles,
leaving a total of 80 — 16 — 12 = 52. Still a lot!



78 Two-dimensional patterns, lattices and symmetry

. N E

90° Reflection n

Warp 'float’ Weft facing Weft facing
front of fabric back of fabric

Fig. 2.16. Operation of a tetrad rotation-reflection axis showing an R superimposed on a ‘float’ of the
plain weave fabric (Fig. 2.13). The operations of reflection-rotation are of course repeated three times.
(Drawn by K. M. Crennell.)

Finally, look carefully at the positions of the tetrad rotation—reflection axes in the
centres of the plain weave warp and weft ‘floats’. These axes help us to visualize the
relation between the face and back of the fabric: for example, rotate a warp float 90°
and we have a weft float, reflect it (black to white) and you have the weft float in the
back face of the fabric as shown in Fig. 2.16.

2.9 Non-periodic patterns and tilings

Johannes Kepler was the first to show that pentagonal symmetry would give rise to a
pattern which was non-repeating. Figure 2.17 is an illustration from perhaps his greatest
work Harmonices mundi (1619) which shows in the figures captioned ‘Aa’ and ‘7’ a pat-
tern or tiling of pentagons, pentagonal stars and 10 and 16-sided figures which radiate
out in pentagonal symmetry from a central point. Griinbaum and Shephard’ have shown
how the tiling ‘Aa’ can be extended indefinitely giving long-range orientational order
but the pattern does not repeat and cannot be identified with any of the seventeen plane
groups (Fig. 2.6). A. L. Mackay® has shown how a regular, but non-periodic pattern,
can be built up from regular pentagons in a plane with the triangular gaps covered by
pieces cut from pentagons, which he describes with the title (echoing Kepler) De nive
quinquangula—on the pentagonal snowflake.

These are but two examples of non-periodic or ‘incommensurate’ tilings, the math-
ematical basis of which was largely developed by Roger Penrose and are generally
named after him. Figure 2.18 shows how a Penrose tiling may be constructed by link-
ing together edge-to-edge ‘wide’ and ‘narrow’ rhombs or diamond-shaped tiles of equal
edge lengths. The angles between the edges of the tiles (as shown in Fig. 2.18(a)) are
not arbitrary but arise from pentagonal symmetry as shown in Fig. 2.18(b) (where the
tiles are shown shaded in relation to a pentagon); nor are they linked together in an ar-
bitrary fashion but according to local ‘matching rules’, shown in Fig. 2.18(a) by little
triangular ‘pegs’ and ‘sockets’ along the tile edges. These are omitted in the resultant
tiling (Fig. 2.18(c)), partly for clarity and partly because their work in constructing the

7 B. Griinbaum and G. C. Shephard. Tilings and Patterns: An Introduction. W. H. Freeman, New York,
1989.
8 ALL. Mackay (1976) De nive quinquangula. Physics Bulletin, p. 495.
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Fig. 2.17. Non-periodic tiling patterns ‘z’ and ‘Aa’ (from Harmonices Mundi by Johannes Kepler,
1619, reproduced from the copy in the Brotherton Library, University of Leeds, by courtesy of the
Librarian).

pattern is done. (An alternative of showing how the tiles must be fitted together is to
colour or shade them in three ways and then to match the colours, like the pegs and
sockets, along the tile edges.) The tiling can be viewed as a linkage of little cubes where
we see three cube faces; the ‘front’ and ‘top’ faces (represented by the ‘wide’ diamonds)
and ‘side’ face (represented by the ‘narrow’ diamond).

However, building up a perfect Penrose tiling by adding wide and narrow tiles one-
by-one is not a straightforward task. Even if we strictly adhere to the edge-matching
rules, we soon find that ‘blind alleys’ are available at every step; nor is it easy to recog-
nize the point at which a mistake has been made until further tiles have been added. In
order to build a Penrose tiling without mistakes we need to invoke what are called ver-
tex matching rules: these are discussed in C. Janot’s book Quasicrystals (see Further
Reading).
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Fig. 2.18. (a) The two types (‘wide’ and ‘narrow’) tiles for the construction of a Penrose tiling. The
triangular ‘pegs’ and ‘sockets’ along the tile edges indicate how they should be linked together edge-to-
edge. (b) The geometry of the tiles in relation to a pentagon. The ratio OL/s (wide tile) = s/OS (narrow
tile) = (/5 4+ 1)/2 = 1.618...(c) shows the resultant tiling (pegs and sockets omitted for clarity)
(reproduced by courtesy of Prof. Sir Roger Penrose).

The mathematical analysis of non-repeating patterns is rather difficult (especially in
three-dimensions—see Section 4.9), but we can perhaps understand their essential ‘in-
commensurate’ properties by way of a one-dimensional analogy or example. Consider
a pattern made up of a row of arrows and a row of stars extending right and left from an
origin O. If the spacings of the arrows and stars are in a ratio of whole numbers then,
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depending on the values of these numbers, the pattern will repeat. Figure 2.19(a) shows
a simple case where the ratio of spacings is 3/2 and the pattern repeats (i.e. the ar-
rows and stars coincide) every third arrow or second star. If, however, the spacings of
the arrows and stars cannot be expressed as a ratio of whole numbers, in other words
if the ratio is an irrational number, then the pattern will never repeat—the arrows
and stars will never come into coincidence. Figure 2.19(b) shows an example where
the ratio of spacings is /2 = 1.414213...an irrational number, like v, where there
1s ‘no end’ to the number of decimal places and no cyclic repetition of the decimal
numbers.’

In Penrose five-fold or pentagonal tiling it turns out (Fig. 2.18(b)) that the ratio of
the diagonal OL to the edge length s (for the wide tile) and the ratio of the edge length
s to the diagonal OS (for the narrow tile) are also both equal to an irrational num-
ber (/5 + 1)/2 = 1.618034 .. . called the Golden Mean or Golden Ratio. The Golden
Ratio also occurs as the convergence of the ratio of successive terms in the so-called
Fibonacci series of numbers where each term is the sum of the preceding two, i.e. 1,
1,2, 3,5, 8, 13, 21, 34, 55, ...Not only is the Golden Ratio and Fibonacci series a
subject of mathematical interest but it also occurs in nature in, for example, the inter-
secting spirals of the florets traced in the head of a sunflower or in a pine-cone. In a
pine-cone there are, depending on species, 5/3, 8/5, 13/8 right-/left-handed intersect-
ing spirals and in a sunflower, depending on size, 55/34, 89/55 intersecting spirals—all
these numbers corresponding to successive terms in the Fibonacci series'’. The Fi-
bonacci series may also describe the growth rate of molluscan shells (in which new

(o)
A\ A\ A\ \ v v v Yy v VY vy VY VY \ A Yy v Y Y Yy v Yy v v \ (a)
* K& K K * K K K K K K K ®* * Kk K %
(o)
Yy vy v Yy v A J Yy v A\ Y \j Y VvV v Y A \ \ v VY Y \J v Yy v
* K X X K K KX K X K K K K K K * % (b)

Fig. 2.19. One-dimensional examples of (a) a periodic pattern and (b) a non-periodic pattern. In
(a) the pattern repeats every third arrow and second star, in (b) the ratio of the spacings is /2 and
the pattern never repeats.

9 The discovery that some numbers are irrational is one of the triumphs of Greek mathematics. The proof
that /2 is irrational, which is generally attributed to Pythagoras, may be expressed as follows. Suppose that
»/2 can be expressed as a/b where a and b are whole numbers which have no common factor (if they had,
we could simply remove it). Hence /2b = a and squaring 2b% = a®. Now 2b? is an even number, hence a®
is also an even number and, since the square of an even number is even, a is an even number. Now an even
number can be expressed as 2 x (any number), i.c. a = 2¢. Squaring again a* = 4¢* = 2b%, hence 2¢% = b?
and, for the same reason as before, since 2¢2 is an even number then b is an even number. So, both a and b
are even and have a common factor 2 which contradicts our initial hypothesis which therefore must be false.

10 The configurations produced by the orderly arrangement of leaves and florets around a stem (a subject
known as phyllotaxis) and the growth and shapes of shells, horns, and teeth, are fully discussed in the classic
text On Growth and Form (see Further Reading).
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material is added at the growing boundary) or the rate of population increase in ani-
mals. Suppose that in an interval of time a young animal (S) becomes an adult (L) and
an adult (L) has one offspring (S). Then following the sequence S — L and L —LS
we have: S, L, LS, LSL, LSLLS, LSLLSLSL, ...Notice that the numbers of L and § in-
dividuals in each term are equal to the numbers in the preceding and next-preceding
terms: e.g. in the term LSLLSLSL there are 5L and 3S. As the series progresses the ra-
tio L/S again converges to the Golden Ratio. The same is true of the ratio of wide and
narrow tiles in a Penrose tiling. The Golden Ratio is also met in architectural propor-
tion and design: a rectangle whose sides are in the (approximate) ratio 1.62:1 seems
particularly restful to the eye—not too narrow and not too wide. It occurs in the shapes
of window-panes, in the proportions of the facades of Greek temples or, to take a par-
ticular example, in the ratio of column spacing to column height (5:8) in the Colosseum
in Rome.

It is a simple exercise to show that if a square is cut off a Golden Rectangle, the
rectangle which remains also has sides which are in the Golden Ratio and clearly the
process can be continued indefinitely (Fig. 2.20). Finally, the rectangle can be used
as the template for the construction of an equiangular spiral (Fig. 2.20), so called
because the tangent at any point on the spiral is at a constant angle to the corresponding
radius-vector. This leads to the property of continued similarity: the shape remains the
same irrespective of size. A large molluscan shell (e.g. of an ammonite or nautilus) is
the same shape as a small one.

A G
(o),

D E C

Fig. 2.20. A Golden Rectangle ABCD. Cutting off a square AFED leaves a smaller Golden Rectangle
FBCE—and the process may be continued as shown. Notice the continued similarity of the inscribed
equiangular spiral—e.g. the portion DFG has the same shape as HKL.
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Exercises

2.1 Lay tracing paper over the plane patterns in Fig. 2.6. Outline a unit cell in each case and
indicate the positions of all the symmetry elements within the unit cell. Notice in particular
the differences in the distribution of the triad axes and mirror lines in the plane groups p31m
and p3ml.

2.2 Figure 2.21 is a design by M. C. Escher. Using a tracing paper overlay, indicate the positions
of all the symmetry elements. With the help of the flow diagram (Fig. 2.8), determine the
plane lattice type.

2.3 Figure 2.22 is a projection of the structure of FeS, (shaded atoms Fe, unshaded atoms S).
Using a tracing paper overlay, indicate the positions of the symmetry elements, outline a
unit cell and, with the help of the flow diagram in Fig. 2.8, determine the plane pattern type.

2.4 Figure 2.23 is a design by M. C. Escher. Can you see that the two sets of men are related by
glide lines of symmetry? Draw in the positions of these glide lines, and determine the plane
lattice type.
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Fig. 2.21. A plane pattern (from Symmetry Aspects of M. C. Escher’s Periodic Drawings, 2nd edn, by
C. H. MacGillavry. Published for the International Union of Crystallography by Bohn, Scheltema and
Holkema, Utrecht, 1976).
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Fig. 2.22. A projection of the structure of marcasite, FeS, (from Contemporary Crystallography by

M. J. Buerger, McGraw-Hill, New York, 1970).

84

Fig. 2.23. A plane pattern (from C. H. MacGillavry, loc. cit.).
Owen Jones. Using a tracing paper overlay, indicate the positions of the symmetry elements

and, with the help of the flow diagram (Fig. 2.10), determine the one-dimensional lattice

types.

symmetry of a chessboard.
2.6 Figure 2.24 shows examples of border or frieze patterns from The Grammar of Ornament by

2.5 Determine (with reference to Fig. 2.11) the counterchange (black—white) point group
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Fig. 2.24. Examples of border or frieze patterns (from The Grammar of Ornament by Owen Jones,
Day & Son, London 1856, reprinted by Studio Editions, London, 1986). a, b, Greek; c, d, Arabian; e,
Moresque; f, Celtic; g, h, Chinese; i, Mexican.

2.7 Figure 2.25(a) is a ‘wood block floor’ or ‘herringbone’ pattern with plane group symmetry
p2gg. Using a tracing-paper overlay (and with the help of Fig. 2.6(b) and the flow chart,
Fig. 2.8), locate the positions of the diad axes and glide lines. Now place your tracing paper
over the counterchange pattern (Fig. 2.25(b)) and determine which of the symmetry elem-
ents become counterchange (2" or g’) symmetry elements. To which of the counterchange
patterns shown in Fig. 2.12 does this pattern belong?

2.8 The symmetry of border pattern pma2 (p2mg) (Fig. 2.9) consists of a glide line a (or g)
along the length of the border with vertical mirror lines and diad axes in between. Derive
the two-colour (black and white) counterchange patterns based upon pma2 by replacing, in
turn, the glide lines, mirror lines and diad axes by the counterchange symmetry elements g’,
m’ and 2'.

(a) (b)

Fig. 2.25. “Wood block floor’ or ‘herringbone brickwork’ patterns (a) with all blocks the same colour,
and (b) with alternating black and white blocks.
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Bravais lattices and crystal
systems

3.1 Introduction

The definitions of the motif, the repeating ‘unit of pattern’, and the lattice, an array
of points in space in which each point has an identical environment, hold in three di-
mensions exactly as they do in two dimensions. However, in three dimensions there
are additional symmetry elements that need to be considered: both point symmetry
elements to describe the symmetry of the three-dimensional motif (or indeed any crys-
tal or three-dimensional object) and also translational symmetry elements, which are
required (like glide lines in the two-dimensional case) to describe all the possible pat-
terns which arise by combining motifs of different symmetries with their appropriate
lattices. Clearly, these considerations suggest that the subject is going to be rather more
complicated and ‘difficult’; it is obvious that there are going to be many more three-
dimensional patterns (or space groups) than the seventeen two-dimensional patterns (or
plane groups or the eighty two-sided patterns—Chapter 2), and to work through all
of these systematically would take up many pages! However, it is not necessary to do
so; all that is required is an understanding of the principles involved (Chapter 2), the
operation and significance of the additional symmetry elements, and the main results.
These main results may be stated straight away. The additional point symmetry elem-
ents required are centres of symmetry, mirror planes (instead of lines) and inversion
axes; the additional translational symmetry elements are glide planes (instead of lines)
and screw axes. The application and permutation of all symmetry elements to patterns
in space give rise to 230 space groups (instead of seventeen plane groups) distributed
among fourteen space lattices (instead of five plane lattices) and thirty-two point group
symmetries (instead of ten plane point group symmetries).

In this chapter the concept of space (or Bravais) lattices and their symmetries is
discussed and, deriving from this, the classification of crystals into seven systems.

3.2 The fourteen space (Bravais) lattices

The systematic work of describing and enumerating the space lattices was done initially
by Frankenheim™* who, in 1835, proposed that there were fifteen in all. Unfortunately
for Frankenheim, two of his lattices were identical, a fact first pointed out by Bravais™ in
1848. It was, to take a two-dimensional analogy, as if Frankenheim had failed to notice

* Denotes biographical notes available in Appendix 3.

The Basics of Crystallography and Diffraction. Fourth Edition. Christopher Hammond.
© Christopher Hammond 2015. Published in 2015 by Oxford University Press.
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(see Fig. 2.4(b)) that the rhombic or diamond and the rectangular centred plane lattices
were identical! Hence, to this day, the fourteen space lattices are usually, and perhaps
unfairly, called Bravais lattices.

The unit cells of the Bravais lattices are shown in Fig. 3.1. The different shapes
and sizes of these cells may be described in terms of three cell edge lengths or axial

a
a
]
Simple Body-centred Face-centred

cubic (P) cubic (/) cubic (F)
Simple Body-centred Simple Body-centred
tetragonal tetragonal orthorhombic orthorhombic

(P) 0 (P) 0

Base-centred Face-centred Rhombohedral Hexagonal
orthorhombic orthorhombic (R) (P)

47

Simple Base-centred Triclinic
monoclinic monoclinic (P)
(P) (C)

Fig. 3.1. The fourteen Bravais lattices (from Elements of X-Ray Diffraction, (2nd edn), by B. D.
Cullity, Addison-Wesley, 1978).
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distances, a, b, ¢, or lattice vectors a, b, ¢ and the angles between them, «, 8, y, where
« is the angle between b and ¢, B the angle between a and ¢, and y the angle between
a and b. The axial distances and angles are measured from one corner to the cell, i.e. a
common origin. It does not matter where we take the origin—any corner will do—but,
as pointed out in Chapter 1, it is a useful convention (and helps to avoid confusion) if
the origin is taken as the ‘back left-hand corner’ of the cell, the a-axis pointing forward
(out of the page), the b-axis towards the right and the c-axis upwards. This convention
also gives a right-handed axial system. If any one of the axes is reversed (e.g. the b-
axis towards the left instead of the right), then a left-handed axial system results. The
distinction between them is that, like left and right hands, they are mirror images of one
another and cannot be brought into coincidence by rotation.

The drawings of the unit cells of the Bravais lattices in Fig. 3.1 can be misleading
because, as shown in Chapter 2, it is the pattern of lattice points which distinguishes
the lattices. The unit cells simply represent arbitrary, though convenient, ways of ‘join-
ing up’ the lattice points. Consider, for example, the three cubic lattices; cubic P (for
Primitive, one lattice point per cell, i.e. lattice points only at the corners of the cell),
cubic I (for ‘Innenzentrierte’, which is German for ‘body-centred’, an additional lat-
tice point at the centre of the cell, giving two lattice points per cell) and cubic F (for
Face-centred, with additional lattice points at the centres of each face of the cell, giv-
ing four lattice points per cell). It is possible to outline alternative primitive cells (i.e.
lattice points only at the corners) for the cubic I and cubic F lattices, as is shown in
Fig. 3.2. As mentioned in Chapter 1, these primitive cells are not often used (1) because
the inter-axial angles are not the convenient 90° (i.e. they are not orthogonal) and (2)
because they do not reveal very clearly the cubic symmetry of the cubic I and cubic F
lattices. (The symmetry of the Bravais lattices, or rather the point group symmetries of
their unit cells, will be described in Section 3.3.)

Similar arguments concerning the use of primitive cells apply to all the other centred
lattices. Notice that the unit cells of two of the lattices are centred on the ‘top’ and

Fig. 3.2. (a) the cubic /, (b) the cubic F' lattice unit cells (dashed lines), and the corresponding
primitive thombohedral unit cells (full lines) with their inter-axial angles indicated.



3.2 The fourteen space (Bravais) lattices 89

‘bottom’ faces. These are called base-centred or C-centred because these faces are
intersected by the c-axis.

The Bravais lattices may be thought of as being built up by stacking ‘layers’ of the
five plane lattices, one on top of another. The cubic and tetragonal lattices are based on
the stacking of square lattice layers; the orthorhombic P and I lattices on the stacking
of rectangular layers; the orthorhombic C and F lattices on the stacking of rectangular
centred layers; the rhombohedral and hexagonal lattice on the stacking of hexagonal
layers and the monoclinic and triclinic lattices on the stacking of oblique layers. These
relationships between the plane and the Bravais lattices are easy to see, except perhaps
for the rhombohedral lattice. The rhombohedral unit cell has axes of equal length and
with equal angles («) between them. Notice that the layers of lattice points, perpendicu-
lar to the ‘vertical’ direction (shown dotted in Fig. 3.1) form triangular, or equivalently,
hexagonal layers. The hexagonal and rhombohedral lattices differ in the ways in which
the hexagonal layers are stacked. In the hexagonal lattice they are stacked directly one
on top of the other (Fig. 3.3(a)) and in the rhombohedral lattice they are stacked such
that the next two layers of points lie above the triangular ‘hollows’ or interstices of the
layer below, giving a three layer repeat (Fig. 3.3(b)). These hexagonal and rhombohedral
stacking sequences have been met before in the stacking of close-packed layers (Chap-
ter 1); the hexagonal lattice corresponds to the simple hexagonal AAA. .. sequence and
the rhombohedral lattice corresponds to the fcc ABCABC. .. sequence.

Now observant readers will notice that the rhombohedral and cubic lattices are
therefore related. The primitive cells of the cubic I and cubic F lattices (Fig. 3.2) are
rhombohedral—the axes are of equal length and the angles (o) between them are equal.
As in the two-dimensional cases, what distinguishes the cubic lattices from the rhombo-
hedral is their symmetry. When the angle « is 90° we have a cubic P lattice, when it is
60° we have a cubic F lattice and when it is 109.47° we have a cubic [ lattice (Fig. 3.2).
Or, alternatively, when the hexagonal layers of lattice points in the rhombohedral lat-
tice are spaced apart in such a way that the angle « is 90°, 60° or 109.47°, then cubic
symmetry results.

(@) (b)

Fig. 3.3. Stacking of hexagonal layers of lattice points in (a) the hexagonal lattice and (b) the
rhombohedral lattice.
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(a) (b)

Fig. 3.4. Plans of tetragonal lattices showing (a) the tetragonal P = C lattice and (b) the tetragonal
1 = F lattice.

Finally, compare the orthorhombic lattices (all sides of the unit cell of different
lengths) with the tetragonal lattices (two sides of the cell of equal length). Why are there
four orthorhombic lattices, P, C, I and F, and only two tetragonal lattices, P and /? Why
are there not tetragonal C and F lattices as well? The answer is that there are tetragonal
C and F lattices, but by redrawing or outlining different unit cells, as shown in Fig. 3.4,
it will be seen that they are identical to the tetragonal P and [ lattices, respectively. In
short, they represent no new arrangements of lattice points.

3.3 The symmetry of the fourteen Bravais lattices: crystal
systems

The unit cells of the Bravais lattices may be thought of as the ‘building blocks’ of crys-
tals, precisely as Haiiy envisaged (Fig. 1.2). Hence it follows that the habit or external
shape, or the observed symmetry of crystals, will be based upon the shapes and sym-
metry of the Bravais lattices, and we now have to describe the point symmetry of the
unit cells of the Bravais lattices just as we described the point symmetry of plane pat-
terns and lattices. The subject is far more readily understood if simple models are used
(Appendix 1).

First, mirror lines of symmetry become mirror planes in three dimensions. Second,
axes of symmetry (diads, triads, tetrads and hexads) also apply to three dimensions.
The additional complication is that, whereas a plane motif or object can only have one
such axis (perpendicular to its plane), a three-dimensional object can have several axes
running in different directions (but always through a point in the centre of the object).

Consider, for example, a cubic unit cell (Fig. 3.5(a)). It contains a total of nine mirror
planes, three parallel to the cube faces and six parallel to the face diagonals. There are
three tetrad (four-fold) axes perpendicular to the three sets of cube faces, four triad
(three-fold) axes running between opposite cube corners, and six diad (two-fold) axes
running between the centres of opposite edges. This ‘collection’ of symmetry elements
is called the point group symmetry of the cube because all the elements—planes and
axes—pass through a point in the centre.

Why should there be these particular numbers of mirror planes and axes? It is be-
cause all the various symmetry elements operating at or around the point must be
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Fig. 3.5. The point symmetry elements in (a) a cube (cubic unit cell) and (b) an orthorhombic unit cell.

consistent with one another. Self-consistency is a fundamental principle, underlying
all the two-dimensional plane groups, all the three-dimensional point groups and all the
space groups that will be discussed in Chapter 4. If there are two diad axes, for example,
then they have to be mutually orthogonal, otherwise chaos would result; by the same
token they also must generate a third diad perpendicular to both of them. It is the ne-
cessity for self-consistency which governs the construction of every one of the different
combinations of symmetry, controlling the nature of each combination; it is this, also,
which limits the total numbers of possible combinations to quite definite numbers such
as thirty-two, in the case of the crystallographic point groups (the crystal classes), the
fourteen Bravais lattices, and so on.

The cubic unit cell has more symmetry elements than any other: its very simplicity
makes its symmetry difficult to grasp. More easy to follow is the symmetry of an ortho-
rhombic cell. Figure 3.5(b) shows the point group symmetry of an orthorhombic unit
cell. It contains, like the cube, three mirror planes parallel to the faces of the cell but
no more—mirror planes do not exist parallel to the face diagonals. The only axes of
symmetry are three diads perpendicular to the three faces of the unit cell.

In both cases it can be seen that the point group symmetry of these unit cells
(Figs 3.5(a) and 3.5(b)) is independent of whether the cells are centred or not. All
three cubic lattices, P, I and F, have the same point group symmetry; all four ortho-
rhombic lattices, P, I, F' and C, have the same point group symmetry and so on. This
simple observation leads to an important conclusion: it is not possible, from the ob-
served symmetry of a crystal, to tell whether the underlying Bravais lattice is centred
or not. Therefore, in terms of their point group symmetries, the Bravais lattices are
grouped, according to the shapes of their unit cells, into seven crystal systems. For
example, crystals with cubic P, I or F lattices belong to the cubic system, crystals
with orthorhombic P, I, F or C lattices belong to the orthorhombic system, and so
on. However, a complication arises in the case of crystals with a hexagonal lattice. One
might expect that all crystals with a hexagonal lattice should belong to the hexagonal
system, but, as shown in Chapter 4, the external symmetry of crystals may not be iden-
tical (and usually is not identical) to the symmetry of the underlying Bravais lattice.
Some crystals with a hexagonal lattice, e.g. a-quartz, do not show hexagonal (hexad)
symmetry but have triad symmetry. (see Fig. 1.33a, Section 1.11.5) Such crystals are
assigned to the trigonal system rather than to the hexagonal system. Hence the trigonal
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system includes crystals with both hexagonal and rhombohedral Bravais lattices. There
is yet another problem which is particularly associated with the trigonal system, which
is that the rhombohedral unit cell outlined in Figs 3.1 and 3.3 is not always used—a lar-
ger (non-primitive) unit cell of three times the size is sometimes more convenient. The
problem of transforming axes from one unit cell to another is addressed in Chapter 5.

The crystal systems and their corresponding Bravais lattices are shown in Table 3.1.
Notice that there are no axes or planes of symmetry in the triclinic system. The only
symmetry that the triclinic lattice possesses (and which is possessed by all the other
lattices) is a centre of symmetry. This point symmetry element and inversion axes of
symmetry are explained in Chapter 4.

3.4 The coordination or environments of Bravais lattice
points: space-filling polyhedra

So far we have considered lattices as patterns of points in space in which each lattice
point has the same environment in the same orientation. This approach is complete
and sufficient, but it fails to stress, or even make clear, the fact that each of these
environments is distinct and characteristic of the lattices themselves.

We need therefore a method of clearly and unambiguously defining what we mean
by ‘the environment’ of a lattice point. One approach (which we have used already in
working out the sizes of interstitial sites) is to state this in terms of ‘coordination’—the
numbers and distances of nearest neighbours. For example, in the simple cubic (cubic
P) lattice each lattice point is surrounded by six other equidistant lattice points; in the
bee (cubic 7)) lattice each lattice point is surrounded by eight equidistant lattice points—
and so on. This is satisfactory, but an alternative and much more fruitful approach is
to consider the environment or domain of each lattice point in terms of a polyhedron
whose faces, edges and vertices are equidistant between each lattice point and its nearest
neighbours. The construction of such a polyhedron is illustrated in two dimensions for
simplicity in Fig. 3.6. This is a plan view of a simple monoclinic (monoclinic P) lattice
with the b axis perpendicular to the page. The line labelled (D represents the edge or
trace of a plane perpendicular to the page and half way between the central lattice point
0 and its neighbour 1. All points lying in this plane (both in the plane of the paper and
above and below) are therefore equidistant between the two lattice points O and 1. We
now repeat the process for the other lattice points 2, 3, 4, etc., surrounding the central
lattice point. The planes (D, @), @ etc. form the six ‘vertical’ faces of the polyhedron
and in three dimensions, considering the lattice points ‘above’ and ‘below’ the central
lattice point 0, the polyhedron for the monoclinic P lattice is a closed prism, shown
shaded in plan in Fig. 3.6. Each lattice point is surrounded by an identical polyhedron
and they all fit together to completely fill space with no gaps in between.

In this example (of a monoclinic P lattice) the edges of the polyhedron are where
the faces intersect and represent points which are equidistant between the central lattice
point and two other surrounding lattice points. Similarly, the vertices of the polyhedron
represent points which are equidistant between the central lattice point and three other
surrounding points. However, for lattices of higher symmetry this correspondence does
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Fig. 3.6. The Voronoi polyhedron (Dirichlet region or Wigner-Seitz cell) for a monoclinic P lattice
(plan view, b axis perpendicular to the page). The lines (D), @ etc. represent the edges or traces of
planes which are equidistant between the central lattice point O and the surrounding or coordinating
lattice points 1, 2, etc. The resulting Voronoi polyhedron is outlined in this two-dimensional section by
the shaded area.

not hold. If, for example, we consider a cubic P lattice, square in plan, and follow the
procedure outlined above, we find that the polyhedron is (as expected) a cube, but the
edges of which are equidistant between the central lattice point and three surrounding
lattice points and the vertices of which are equidistant between the central lattice point
and seven surrounding lattice points.

The polyhedra constructed in this way and which represent the domains around each
lattice point have various names: Dirichlet regions or Wigner-Seitz cells or Voronoi*
polyhedra. There are altogether 24 such space-filling polyhedra corresponding to the
14 Bravais lattices; it is not a simple one-to-one correspondence in all cases because
the shape of the polyhedron may depend upon the ratios between the axial lengths and
angles and whether the Bravais lattice is centred or not. For example, Fig. 3.7(a) and (b)
shows the two polyhedra for the tetragonal [ lattice; Fig. 3.7(a) for the case where the
axial ratio, c/a, is less than one and Fig. 3.7(b) for the case where it is greater than one.

The space-filling polyhedra for the cubic P, I and F lattices are particularly inter-
esting. For the cubic P lattice it is simply a cube of edge-length equal to the spacing
between nearest lattice points (Fig. 3.7(c)). For the cubic I lattice it is a truncated
octahedron (Fig. 3.7(d), the eight hexagonal faces corresponding to the eight nearest
neighbours at the corners of the cube and the six square faces corresponding to the
six next-nearest neighbours at the centres of the surrounding cubes. For the cubic F

* Denotes biographical notes available in Appendix 3.
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Fig. 3.7. Examples of domains or Voronoi polyhedra outlined around single lattice points (a) tetrag-
onal 7 lattice, c/a < 1; (b) tetragonal [ lattice, c/a > 1; (c) cubic P lattice; (d) cubic I lattice and (e)
cubic F lattice (from Modern Crystallography by B. K. Vainshtein, Academic Press, 1981).

lattice it is a rhombic dodecahedron (Fig. 3.7(e)), the twelve diamond-shaped faces
corresponding to the twelve nearest neighbours. (see Appendix 2).

It is of interest to compare the space-filling polyhedra for the fcc (cubic F) and hep
close-packing. These are shown in Fig. 3.8(a) and (b) respectively with the positions
of the ABC and ABA atom layers indicated. If the ‘central’ atom is considered to be a
B-layer then the ‘bottom’ three diamond-shaped faces correspond to the coordination of
the three A-layer atoms below, the six ‘vertical” diamond-shaped faces correspond to the
coordination of the six surrounding B-layer atoms and the ‘top’ three diamond-shaped
faces correspond to the coordination of the C-layer atoms for cubic close-packing
(Fig. 3.8(a)) or the A-layer atoms for hexagonal close-packing (Fig. 3.8(b)). The poly-
hedron in Fig. 3.8(a) is a rhombic dodecahedron (as in Fig. 3.7(e)) and in Fig. 3.8(b) it
is a trapezorhombic dodecahedron (see also Appendix 2).

The truncated octahedron (the Voronoi polyhedron for the cubic I lattice) also
known as a tetrakaidecahedron, is of particular interest and is also an Archimedean
polyhedron (see Appendix 2). It represents the ‘special case’ polyhedron for the
tetragonal I lattice when the c/a ratio changes from <1 to >1 (compare Figs 3.7(a),
(b) and (d)). More importantly, it is the space-filling solid with plane faces which
has the largest volume-to-surface-area ratio and therefore approximates to the shapes
of grains in annealed polycrystalline metals or ceramics or the cells in soap-bubble
foams (Fig. 3.9). However, the angles between the faces and edges do not satisfy the
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Fig. 3.8. Space filling polyhedra (a) for cubic close-packing (rhombic dodecahedron) and (b) for
hexagonal close-packing (trapezorhombic dodecahedron).

Fig. 3.9. Space-filling by an assembly of truncated octahedra or tetrakaidecahedra (edges of equal
length). These polyhedra have 14 faces (6 square plus 8 hexagonal) and are arranged at the points of a
cubic / lattice. (From Symmetry by Hermann Weyl, Princeton University Press, 1952.)

equilibrium requirements for grain boundary energy (e.g. in two-dimensions the grain
boundaries must meet at 120°). If, following Lord Kelvin, we (partly) accommodate
these requirements by allowing the surfaces and edges to bow in or out, we obtain a
(space-filling) solid with curved surfaces and edges called an B-tetrakaidecahedron.
This, however, does not represent the ‘last word’ in the geometry of grain boundaries.
If we relax the condition that all the polyhedra have an equal number of faces, then
a space-filling structure with a slightly larger volume to surface area ratio can be
built up consisting of pentagonal dodecahedra and 14-sided polygons consisting of
12 pentagonal faces and 2 hexagonal faces' (‘Cy;’ in fullerene notation). However,

' D. Weaire (ed.) The Kelvin Problem: Foam Structures of Minimal Surface Area. Taylor & Francis, London
and Bristol, Pa (1996).
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Fig. 3.10. Epidermal cells in mammalian skin which have the shapes of flattened tetrakaidecahedra
arranged in vertical columns (compare with Fig. 3.9). (Illustration by courtesy of Professor Honda,
Hyogo University, Japan.)

in practice, grains and the cells of soap-films are irregular in shape and size, although
they do have on average about fourteen faces, like tetrakaidecahedra. In biological
structures, the cells in the epidermis (the outer layer) of mammalian skin have also
been shown to have the shape of intersecting flattened tetrakaidecahedra arranged in
neat vertical columns (Fig. 3.10). In this case the edges are no longer equal in length;
two of the eight hexagonal faces (parallel to the surface of the skin) are large and all the
other faces are small and elongated. These epidermal cells are of course space-filling
but have much smaller volume-to-surface area ratios.

The Voronoi approach to the partitioning of space may also be applied to the analysis
of crystal structures, in which one alternative is to draw the planes equidistant between
the outer radii of atoms or ions and not their centres—the sizes of the polyhedra being
a measure of the relative sizes of the atoms or ions. All the polyhedra (now of different
sizes and shapes) are space-filling. It may also be used in entirely non-crystallographic
situations to determine, for example, the catchment areas for an irregular distribution of
schools; pupils whose homes are on the dividing lines between the irregular polyhedra
being equidistant from two schools and those whose homes are at the vertices being
equidistant from three schools.

Exercises

3.1 The drawings in Fig. 3.11 show patterns of points distributed in orthorhombic-shaped unit
cells. Identify to which (if any) of the orthorhombic Bravais lattices, P, C, I or F, each
pattern of points corresponds.

(Hint: It is helpful to sketch plans of several unit cells, which will show more clearly the
patterns of points, and then to outline (if possible) a P, C, I or F unit cell.)

3.2 The unit cells of several orthorhombic structures are described below. Draw plans of each
and identify the Bravais lattice, P, C, [ or F, in each case.
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Fig. 3.11. Patterns of points in orthorhombic unit cells.

(a) One atom per unit cell located at (x'y’7’).
(b) Two atoms per unit cell of the same type located at (O%O) and (%0%)

(c) Two atoms per unit cell, one type located at (00z") and (% %z’ ) and the other type at

(004 +2) and (35 (4 +2))-

(Hint: Draw plans of several unit cells and relocate the origin of the axes, x’, ', 7 should
be taken as small (non-integral) fractions of the cell edge lengths.)
What are the shapes of the Voronoi polyhedra which correspond to the rhombohedral
Bravais lattice?

(Hint: recall that the three cubic lattices are ‘special cases’ of the rhombohedral lattice
in which the inter-axial angle « is 90° (cubic P), 60° (cubic F) or 109.47° (cubic I).)
Calculate the ratio between the ‘long’ and ‘short’ diagonals of the diamond-shaped faces in
the primitive rhombohedral unit cells of the cubic I and cubic F lattices (see Fig. 3.2).
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Crystal symmetry: point groups,
space groups, symmetry-related
properties and quasiperiodiccrystals

4.1 Symmetry and crystal habit

As indicated in Chapter 3, the system to which a crystal belongs may be identified
from its observed or external symmetry. Sometimes this is a very simple procedure. For
example, crystals which are found to grow or form as cubes obviously belong to the
cubic system: the external point symmetry of the crystal and that of the underlying unit
cell are identical. However, a crystal from the cubic system may not grow or form with
the external shape of a cube; the unit cells may stack up to form, say, an octahedron, or
a tetrahedron, as shown in the models constructed from sugar-cube unit cells (Fig. 4.1).
These are just two examples of a very general phenomenon throughout all the crystal
systems: only very occasionally do crystals grow with the same shape as that of the
underlying unit cell. The different shapes or habits adopted by crystals are determined
by chemical and physical factors which do not, at the moment, concern us; what does
concern us as crystallographers is to know how to recognize to which system a crystal
belongs even though its habit may be quite different from, and therefore conceal, the
shape of the underlying unit cell.

(a) (b) )

Fig. 4.1. Stacking of ‘sugar-cube’ unit cells to form (a) a cube, (b) an octahedron and (c) a tetrahedron.
Note that the cubic cells in all three models are in the same orientation.

The Basics of Crystallography and Diffraction. Fourth Edition. Christopher Hammond.
© Christopher Hammond 2015. Published in 2015 by Oxford University Press.
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The clue to the answer lies in the point group symmetry of the crystal. Consider,
for example, the symmetry of the cubic crystals which have the shape or habit of a
cube, an octahedron or a tetrahedron (Figs 4.1 and 4.2) or construct models of them
(Appendix 1). The cube and octahedron, although they are different shapes, possess the
same point group symmetry. The tetrahedron, however, has less symmetry: only six mir-
ror planes instead of nine: only three diads running between opposite edges (i.e. along
the directions perpendicular to the cube faces in the underlying cubes) and, as before,
four triads running through each corner. The common, unchanged symmetry elements
are the four (equally inclined) triads, and it is the presence of these four triads which

BS A

(a) (b) (9 (d)

Fig. 4.2. (a) A cube, (b) an octahedron and (c) a tetrahedron drawn in the same orientation as the mod-
els in Fig. 4.1. (d) A tetrahedron showing the positions of one variant of the point symmetry elements:
mirror plane (shaded) (x6), triad (x4) and inversion tetrad (which includes a diad) (x3).

L

(a) (b) (0)

Fig. 4.3. Orthorhombic crystals (a) anglesite PbSOy4 (mmmnr), (b) struvite NH4MgPO4 - 6H>O (mmm?2),
(c) asparagine C4H4O3(NH>); (222) (from Introduction to Crystallography, 3rd edn, by FE. C. Phillips,
Longmans 1963).
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characterizes crystals belonging to the cubic system. Cubic crystals usually possess add-
itional symmetry elements—the most symmetrical cubic crystals being those with the
full point group symmetry of the underlying unit cell. But it is the four triads—not the
three tetrads or the nine mirror planes—which are the ‘hallmark’ of a cubic crystal.

Similar considerations apply to all the other crystal systems. For example, Fig. 4.3
shows three orthorhombic crystals. Figure 4.3(a) shows a crystal with the full symmetry
of the underlying unit cell—three perpendicular mirror planes and three perpendicular
diads. Figure 4.3(b) shows a crystal with only two mirror planes and one diad along
their line of intersection. Figure 4.3(c) shows a crystal with three perpendicular diads
but no mirror planes.

4.2 The thirty-two crystal classes

The examples shown in Figs 4.1-4.3 are of crystals with different point group sym-
metries: they are said to belong to different crystal classes. Crystals in the same class
have the same point group symmetry, so in effect the terms are synonymous. Notice that
crystals in the same class do not necessarily have the same shape. For example, the cube
and octahedron are obviously different shapes but belong to the same class because their
point group symmetry is the same.

In two dimensions (Chapter 2) we found that there were ten plane point groups; in
three dimensions there are thirty-two three-dimensional point groups. One of the great
achievements of the science of mineralogy in the nineteenth century was the systematic
description of the thirty-two point groups or crystal classes and their division into the
seven crystal systems. Particular credit is due to J. F. C. Hessel,* whose contributions to
the understanding of point group symmetry were unrecognized until after his death. The
concept of seven different types or shapes of underlying unit cells then links up with the
concept of the fourteen Bravais lattices; in other words, it establishes the connection
between the external crystalline form or shape and the internal molecular or atomic
arrangements.

It is not necessary to describe all the thirty-two point groups systematically; only
the nomenclature for describing their important distinguishing features needs to be
considered. This requires a knowledge of additional symmetry elements—centres and
inversion axes.

Finally, we come to a ‘practical’ problem, which those of us who collect minerals or
who grow crystals from solutions will immediately recognize. Our crystals are rarely
uniformly developed, like those in Figs 4.2 or 4.3, but are irregular in appearance, with
faces of different size and shape and from which it is almost impossible to recognize any
point symmetry elements at all. Figure 4.4 shows examples of quartz crystals in which
the corresponding faces are developed to different extents. It is this problem which hin-
dered the development of crystallography until the discovery of the Law of Constancy
of Interfacial Angles (Section 1.1) which enables us to focus on the underlying crystal
symmetry rather than being diverted by the contingencies of crystal growth.

* Denotes biographical notes available in Appendix 3.
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Fig. 4.4. Three quartz crystals with corresponding faces developed differently (from Modern Crys-
tallography by B.K. Vainshtein, Springer-Verlag, 1981).

4.3 Centres and inversion axes of symmetry

If a crystal, or indeed any object, possesses a centre of symmetry, then any line passing
through the centre of the crystal connects equivalent faces, or atoms, or molecules.
A familiar example is a right hand and a left hand placed palm-to-palm but with the
fingers pointing in opposite directions, as in Fig. 4.5(a). Lines joining thumb to thumb
or fingertip to fingertip all pass through a centre of symmetry between the hands. When
the hands are placed palm-to-palm but with the fingers pointing in the same direction,
as in prayer, then there is no centre of symmetry but a mirror (or reflection) plane of
symmetry instead, as in Fig. 4.5(b).

Notice the important relationship between these two symmetry elements: a centre of
symmetry (Fig. 4.5(a)) plus a rotation of 180° (of one hand) is equivalent to a mirror
plane of symmetry (Fig. 4.5(b)). Conversely, a mirror plane of symmetry plus a rotation
of 180° (about an axis perpendicular to the mirror plane) is equivalent to a centre of
symmetry. In short, centres and mirror planes of symmetry relate objects which (like
hands) do not themselves possess these symmetry elements; conversely objects which
themselves possess these symmetry elements do not occur in either right or left-handed
forms (see Table 3.1).

In two dimensions a centre of symmetry is equivalent to diad symmetry. (See, for
example, the motif and plane molecule shown in Fig. 2.3(4), which may be described
as showing diad symmetry or a centre of symmetry.) In three dimensions this is not the
case, as an inspection of Fig. 4.5(a) will show.

Inversion axes of symmetry are rather difficult to describe (and therefore difficult
for the reader to understand) without the use of the stereographic projection—a method
of representing a three-dimensional pattern of planes in a crystal on a two-dimensional
plan. This topic is covered in Chapter 12 and the representation of symmetry elements
in detail in Section 12.5.1. Geographers have the same problem when trying to represent
the surface of the Earth on a two-dimensional map, and they too make use of the stereo-
graphic projection. In atlases, the circular maps of the world (usually with the north or
south poles in the centre) are often stereographic projections.
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(a)

(b)

Fig. 4.5. Right and left hands (a) disposed with a centre of symmetry between them and (b) disposed
with a mirror plane between them.

Inversion axes are compound symmetry elements, consisting of a rotation followed
by an inversion. For example, as described in Chapter 2, the operation of a tetrad
(fourfold) rotation axis is to repeat a crystal face or pattern every 90° rotation, e.g.
in two dimensions giving four repeating Rs or the four-fold pattern of faces in a cube.
The operation of an inversion tetrad, symbol @ or 4, is to repeat a crystal face or pattern
every 90° rotation-plus-inversion through a centre. What results is a four-fold pattern
of faces around the inversion axis, but with each alternate face inverted. Examples of a
crystal and an object with inversion tetrad axes are shown in Figs 4.6(a) and (b). The
tennis ball has, in fact, the same point group symmetry as the crystal. Notice that when
it is rotated 90° about the axis indicated, the ‘downwards’ loop in the surface pattern is
replaced by an ‘upwards’ loop. Another 90° rotation brings a ‘downwards’ loop and so
on for the full 360° rotation. Notice also that the inversion tetrad includes a diad, as is
indicated by the diad (lens) symbol in the inversion tetrad (open square) symbol, @ or 4.

Finally, compare the symmetry of the tetragonal crystal in Fig. 4.6(a) with that of
the tetrahedron (Fig. 4.2(d)): the diad axes which we recognized passing through the
centres of opposite edges in the tetrahedron are, in fact, inversion tetrad axes or, to
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(a) (b)

Fig. 4.6. Examples of a crystal and an object which have inversion tetrad axes (both point group 42m).
(a) Urea CO(NH>); and (b) a tennis ball.

develop one of the points made in Section 4.1, stacking the cubes into the form of a
tetrahedron reduces the symmetry element along the cube axis directions from rotation
to inversion tetrad.

There are also inversion axes corresponding to rotation monads diads, triads and
hexads. The operation of an inversion hexad, for example, is a rotation of 60° plus an
inversion, this compound operation being repeated a total of six times until we return
to the beginning. However, for a beginner to the subject, these axes may perhaps be
regarded as being of lesser importance then the inversion tetrad because they can be
represented by combinations of other (better-understood) symmetry elements.

An inversion monad, symbol o or 1 is equivalent to a centre of symmetry.

An inversion diad, symbol 2 is equivalent to a perpendicular mirror plane.

An inversion triad, symbol A or 3 is equivalent to a triad plus a centre of symmetry—
which is the symmetry of a rhombohedral lattice (see Fig. 3.1). Notice that the ‘top’
three faces of the rhombohedron are related to the ‘bottom’ three faces by a centre of
symmetry.

An inversion hexad, symbol & or 6 is equivalent to a triad plus a perpendicular mirror
plane.

Again, these equivalences are best understood with the use of the stereographic pro-
jection (Chapter 12). The important point is that only inversion tetrads are unique (i.e.
they cannot be represented by a combination of rotation axes, centres of symmetry or
mirror planes) and therefore need to be considered separately.

The point group symmetries of the thirty-two classes are described by a ‘short-hand’
notation or point group symbol which lists the main (but not necessarily all) symmetry
elements present. For example, the presence of centres of symmetry is not recorded
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because they may arise ‘automatically’ from the presence of other symmetry elem-
ents, e.g. the presence of an inversion triad axis mentioned above. This notation for the
thirty-two crystal classes or point groups, and their distribution among the seven crystal
systems, is fully worked out in the International Tables for Crystallography published
for the International Union of Crystallography and in F. C. Phillips’ Introduction to
Crystallography. Altogether there are five cubic classes, three orthorhombic classes,
three monoclinic classes and so on. They are all listed in Table 3.1 (p. 93). The order
in which the symmetry elements are written down in the point group symbol depends
upon the crystal system.

In the cubic system the first place in the symbol refers to the axes parallel to, or
planes of symmetry perpendicular to, the x-, y- and z-axes, the second refers to the four
triads or inversion triads and the third the axes parallel to, or planes of symmetry per-
pendicular to, the face diagonal directions. Hence the point group symbol for the cube
or the octahedron—the most symmetrical of the cubic crystals—is 4/ m3 2/m. This full
point group symbol is usually (and rather unhelpfully) contracted to m3m because the
operation of the four triads and nine mirror planes (three parallel to the cube faces and
six parallel to the face diagonals) ‘automatically’ generates the three tetrads, six diads,
and a centre of symmetry. The symbol for the tetrahedron is 43m, the 4 referring to the
three inversion tetrad axes along the x-, y- and z-axes together with the m referring to the
face-diagonal mirror planes. The least symmetric cubic class has point group symbol
23, i.e. it only has diads along the x-, y- and z-axes and the characteristic four triads.

In the orthorhombic system the three places in the point group symbol refer to the
symmetry elements associated with the x-, y- and z-axes. The most symmetrical class
(Fig. 4.3(a)), which has the full point group symmetry of the underlying orthorhombic
unit cell (Fig. 3.5), has the full point group symbol 2/m2/m2/m, but this is usually ab-
breviated to mmm because the presence of the three mirror planes perpendicular to the
x-, y- and z-axes ‘automatically’ generates the three perpendicular diads. The other two
classes are mm?2 (Fig. 4.3(b))—a diad along the intersection of two mirror planes—and
222 (Fig. 4.3(c))—three perpendicular diads.

In the monoclinic system the point group symbol simply refers to the symmetry
elements associated with the y-axis. This may be a diad (class 2), an inversion diad
(equivalent to a perpendicular mirror plane (class 2 or m)), or a diad plus a perpendicular
mirror plane (class 2/m).

In the tetragonal, hexagonal and trigonal systems, the first position in the point group
symbol refers to the ‘unique’ z-axis. For example, the tetragonal crystals in Fig. 4.6
have point group symmetry 42m; 4 referring to the inversion tetrad along the z-axis, 2
referring to the diads along the x- and y-axes and m to the mirror planes which bisect
the x- and y-axes (which you will find by examining the model!). One of the trigonal
classes has point group symbol 32 (not to be confused with cubic class 23!), i.e. a single
triad along the z-axis and (three) perpendicular diads.

Not all classes are of equal importance; in 432 and 6 = 3/m there is only one ex-
ample of a crystal structure (Li Fes Og and LiO», respectively). On the other hand, the
two monoclinic classes m and 2/m contain about 50 per cent of all inorganic crystalline
materials on a ‘crystal counting’ basis, including feldspar, the commonest mineral in
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nature, and many other economically important minerals. As for the crystals of organic
compounds, class 2/m is by far the most important, while crystals of biologically import-
ant substances which contain chiral (right- or left-handed enantiomorphic molecules)
have a predilection for class 2. The commonest class in any system is the holosymmet-
ric class, i.e. the class which shows the highest symmetry. The holosymmetric cubic
class m3m, the most symmetrical of all, contains only a few per cent of all crystals
on this basis, but these also include many materials and ceramics of economic and
commercial importance.

It is a great help in an understanding of point group symmetry simply to identify
the symmetry elements of everyday objects such as clothes pegs, forks, pencils, tennis
balls, pairs of scissors, etc. Or, one step further, you could make models showing the
point group symmetries of all the 32 crystal classes as described in Appendix 1.

A note on alternating or rotation-reflection axes

These compound symmetry elements were used by Schonflies in his derivation of the
230 space groups. They are used in the description of layer-symmetry (Section 2.8)
but are otherwise little used today. They consist of rotation plus a reflection in a plane
perpendicular to the axis, rather than an inversion. Hence a monad alternating axis is
equivalent to a perpendicular mirror plane (or inversion diad); a diad alternating axis
1s equivalent to a centre of symmetry (or inversion monad); a triad alternating axis is
equivalent to an inversion hexad; a tetrad alternating axis is equivalent to an inversion
tetrad and a hexad alternating axis is equivalent to an inversion triad.

4.4 Crystal symmetry and properties

The quantities which are used to describe the properties of materials are, as we know,
simply represented as coefficients, 1.e. as one measured (or measurable) quantity divided
by another. For example, the property (coefficient) of electrical conductivity is given by
the amount of electrical current flowing between two points (which may be measured in
various ways) divided by the electrical potential gradient; the pyroelectric effect—the
property of certain crystals of developing electrical polarization when the temperature is
changed—is given by the polarization divided by the temperature change; the heat cap-
acity is given by the quantity of heat absorbed or given out divided by the temperature
change, and so on.

In many (in fact most) cases the measured quantities depend on direction and are
called vectors.! In the examples above, electrical current flow, potential gradient and
polarization are all vectors. The other quantities in the examples above, temperature
change, quantity of heat, do not depend on direction and are called scalars. Finally,
many quantities which are of importance in the description of the physical properties of
crystals are described by tensors, a subject which is introduced in Chapter 14.

I'See Appendix 5.
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The important point is that, in those cases where one or more of the measured
quantities vary with direction, so also do the crystal properties; they are said to be
anisotropic (from the Greek tropos, direction or turn; (an)iso, (not the) same). An-
isotropy clearly arises because the arrangements of atoms in crystals vary in different
directions—you would intuitively expect crystals to be anisotropic, the only exceptions
being those properties (the heat capacity) which are direction independent. You would
also intuitively expect cubic crystals to be ‘less anisotropic’ than, say, monoclinic ones
because of their greater symmetry, and this intuition would also be correct. For many
properties, but not all, cubic crystals are isotropic—the property (and property coeffi-
cient) is direction independent. In the example given above, cubic crystals are isotropic
with respect to electrical conductivity. They are also isotropic with regard to the pyro-
electic effect, i.e. cubic crystals do not exhibit electrical polarization when the tempera-
ture is changed; the pyroelectric coefficient is zero. But cubic crystals are not isotropic
with respect to all properties. For example, their elastic properties, which determine the
mechanical properties of stiffness, shear and bulk moduli, are direction dependent and
these are very important factors with respect to the properties of metals and alloys.

Hence, one major use of point groups is in relating crystal symmetry and properties;
as the external symmetry of crystals arises from the symmetry of the internal molecular
or atomic arrangements, so also do these in turn determine or influence crystal proper-
ties. Some examples have already been alluded to. For example, the pyroelectric effect
cannot exist in a crystal possessing a centre of symmetry, and the pyroelectric polariza-
tion can only lie along a direction in a crystal that is unique, in the sense that it is not
repeated by any symmetry element. There are only ten point groups or crystal classes
which fulfil these conditions and they are called the ten polar point groups:

1 2 3 4 6
m mm2 3m 4mm O6mm.

Hence, pyroelectricity or the pyroelectric effect can only occur in these ten polar
point groups or classes.

A very closely related property to pyroelectricity, and of great importance in electro-
ceramics, is ferroelectricity. A ferroelectric crystal, like a pyroelectric crystal, can also
show polarization, but in addition the direction of polarization may be reversed by the
application of an electric field. Most ferroelectric crystals have a transition temperature
(Curie point) above which their symmetry is non-polar and below which it is polar.

One such example is barium titanate, BaTiO3, which has the perovskite structure
(Fig. 1.17). Above the Curie temperature barium titanate has the fully symmetric cubic
structure, point group m3m, but below the Curie temperature, when the crystal becomes
ferroelectric, distortions occur—a small expansion occurs along one cell edge and small
contractions along the other two, changing the crystal system symmetry from cubic to
tetragonal and the point group symmetry from m3m to 4mm. As the temperature is
further lowered below the Curie point, further distortions occur and the point group
symmetry changes successively to mm?2 and 3m—all of them, of necessity, being polar
point groups (see Section 1.11.1).
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Another very important crystal property is piezoelectricity—the development of an
electric dipole when a crystal is stressed, or conversely, the change of shape of a crys-
tal when it is subjected to an electrical field. At equilibrium the applied stress will be
centrosymmetrical, so if a crystal is to develop a dipole, i.e. develop charges of opposite
sign at opposite ends of a line through its centre, it cannot have a centre of symmetry.
There are twenty-one non-centrosymmetric point groups (Table 3.1), all of which, ex-
cept one, point group 432, may exhibit piezoelectricity. It is the presence of the equally
inclined triads, tetrads and diads in this cubic point group which in effect cancel out the
development of a unidirectional dipole.

The optical properties of crystals—the variation of refractive index with the vibra-
tion and propagation direction of light (double refraction or birefringence), the variation
of refractive index with wavelength or colour of the light (dispersion), or the associated
variations of absorption of light (pleochroism)—are all symmetry dependent. The com-
plexity of the optical properties increases as the symmetry decreases. Cubic crystals
are optically isotropic—the propagation of light is the same in all directions and they
have a single refractive index. Tetragonal, hexagonal and trigonal crystals are charac-
terized by two refractive indices. For light travelling in a direction perpendicular to the
principal (tetrad, hexad or triad) axis, such crystals exhibit two refractive indices—
one for light vibrating along the principal axis, and another for light vibrating in a
plane perpendicular to the principal axis. For light travelling along the principal axis
(and therefore vibrating in the planes parallel to it), the crystal exhibits only one re-
fractive index, and therefore behaves, for this direction only, as an optically isotropic
crystal. Such crystals are called uniaxial with respect to their optical properties, and
their principal symmetry axis is called the optic axis. Crystals belonging to the re-
maining crystal systems—orthorhombic, monoclinic and triclinic—are characterized
by three refractive indices and two, not one, optic axes. Hence they are said to be bi-
axial since there are two, not one, directions for the direction of propagation of light
in which they appear to be optically isotropic. It should be noted, however, that un-
like uniaxial crystals, there is no simple relationship between the two optic axes of
biaxial crystals and the principal symmetry elements; nor are they fixed, but vary as
a result of dispersion, i.e. the variations in the values of the refractive indices with
wavelength.

Finally, there is the phenomenon or property of optical activity or rotatory polar-
ization, which should not be confused with double refraction. It is a phenomenon in
which, in effect, the vibrational direction of light rotates such that it propagates through
the crystal in a helical manner either to the right (dextrorotatory) or the left (laevo-
rotatory). Now right-handed and left-handed helices are distinct in the same way as a
right and left hand (Fig. 4.5) or the two parts of a twinned crystal (Fig. 1.18) and there-
fore optical activity would be expected to occur only in those crystals which occur in
right-handed or left-handed forms, i.e. those which do not possess a mirror plane or
a centre (or inversion axis) of symmetry. Such crystals are said to be enantiomorph-
ous and there are altogether eleven enantiomorphous classes or point group symmetries
(Table 3.1).
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A famous example is sodium ammonium tartrate, a salt of tartaric acid (Fig. 4.7). In
1848 Louis Pasteur™ first noticed these two forms ‘hemihedral to the right’ and ‘hemi-
hedral to the left’ under the microscope and, having separated them, found that their
solutions were optically active in opposite senses.

The study of enantiomorphism, or chirality, from the Greek word chiros, meaning
hand, is becoming increasingly important. Louis Pasteur, as a result of his work on tar-
taric acid, was the first to suggest that the molecules themselves could be chiral—i.e.
that they could exist in either right-handed or left-handed forms. The basic constitu-
ents of living things are chiral, including the amino acids® present in proteins, the
nucleotides present in nucleic acids and the DNA double helix itself. But only one enan-
tiomorph is ever found in nature—only L-amino acids are present in proteins and only
D-nucleotides are present in nucleic acids (L stands for laevo—or left-rotating, and D
stands for dextro—or right-rotating). Why this should be so is one of the mysteries sur-
rounding the origin of life itself and for which many explanations or hypotheses have
been offered. If, as many hypotheses suppose, it was the result of a chance event which
was then consolidated by growth, then we might reasonably suppose that on another
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Fig. 4.7. (a) Left- and right-handed forms of tartaric acid molecules (from Crystals: their Role in
Nature and Science by C. W. Bunn, Academic Press, New York, 1964); and (b) the left- and right-
handed forms of tartaric acid crystals (from F. C. Phillips, loc. cit.).

* Denotes biographical notes available in Appendix 3.
2 Except glycine, the simplest amino acid.
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planet such as ours the opposite event might have occurred and that there exist living
creatures, in every way like ourselves, but who are constituted of D-amino acids and
L-nucleotides!

However, to return to earth, once our basic chirality has been established, the D-
and L- (enantiomorphous) forms of many substances, including drugs in particular,
may have very different chemical and therapeutic properties. For example, the mol-
ecule asparagine (Fig 4.3(c)) occurs in two enantiomorphous forms, one of which tastes
bitter and the other sweet. Thalidomide also; the right-handed molecule of which acts
as a sedative but the left-handed molecule of which gave rise to birth defects. Hence
chiral separation, and the production of enantiomorphically pure substances, is of major
importance.

4.5 Translational symmetry elements

The thirty-two point group symmetries (Table 3.1) may be applied to three-dimensional
patterns just as the ten plane point group symmetries are applied to two-dimensional
patterns (Chapter 2). As in two dimensions where translational symmetry elements or
glide lines arise, so also in three dimensions do glide planes and also screw axes arise. It
is only necessary to state the symmetry properties of patterns that are described by these
translational symmetry elements. Glide planes are the three-dimensional analogues of
glide lines; they define the symmetry in which mirror-related parts of the motif are
shifted half a lattice spacing. In Fig. 2.5(b) the figures are related by glide lines, which
can easily be visualized as glide-plane symmetry. Glide planes are symbolized as a, b, ¢
(according to whether the translation is along the x-, y- or z-axes), n or d (diagonal or
diamond glide—special cases involving translations along more than one axis).

Screw axes (for which there is no two-dimensional analogue—except for screw diads
which arise in layer-symmetry patterns (see Section 2.8))—essentially describe helical
patterns of atoms or molecules, or the helical symmetry of motifs. Several types of heli-
ces are possible and they are all based upon different combinations of rotation axes and
translations. Figure 4.8 shows the possible screw axes (the direction of translation out
of the plane of the page) with the heights R of the asymmetrical objects represented as
fractions of the lattice repeat distance (compare to Fig. 2.3). Screw axes are represented
in writing by the general symbol N,,, N representing the rotation (2, 3, 4, 6) and the
subscript m representing the pitch in terms of the number of lattice translation or repeat
distances for one complete rotation of the helix. m/N therefore represents the transla-
tion for each rotation around the axis. Thus the 41 screw axis represents a rotation of 90°
followed by a translation of % of the repeat distance, which repeated three times brings
R to an identical position but displaced one lattice repeat distance; the 43 screw axis
represents a rotation of 90° followed by a translation of % of the lattice repeat distance,
which repeated three times gives a helix with a pitch of three lattice repeat distances.
This is equivalent to the 4| screw axis but of opposite sign: the 41 axis is a right-handed
helix and 43 axis is a left-handed helix. In short they are enantiomorphs of each other.
Similarly the 3; and 3, axes, the 6; and 65 axes, and the 6, and 64 axes are enantio-
morphs of each other. In diagrams, screw axes are represented by the symbol for the
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Fig. 4.8. The operation of screw axes on an asymmetrical motif, R. The fractions indicate the
‘heights’ of each motif as a fraction of the repeat distance.

rotation axis with little ‘tails’ indicating (admittedly not very satisfactorily) the pitch
and sense of rotation (see Fig. 4.8). Screw axes have, of course, their counterparts in
nature and design—the distribution of leaves around the stem of a plant, for example,
or the pattern of steps in a spiral (strictly helical) staircase. Figure 4.9 shows two such
examples. Figure 4.10 shows the 63 screw hexads which occur in the hep structure; no-
tice that they run parallel to the c-axis and are located in the ‘unfilled’ channels which
occur in the hep structure. They do not pass through the atom centres of either the A
layer or the B layer atoms; these are the positions of the triad (not hexad) axes in the
hcp structure.

Just as the external symmetry of crystals does not distinguish between primitive and
centred Bravais lattices, so also it does not distinguish between glide and mirror planes,
or screw and rotation axes. For example, the six faces of an hcp crystal show hexad,
six-fold symmetry, whereas the underlying structure possesses only screw hexad, 63,
symmetry.

In many crystals, optical activity arises as a result of the existence of enantio-
morphous screw axes. For example, in «-quartz (enantiomorphous class 32), the SiO;
structural units which are not themselves asymmetric, are arranged along the c-axis
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=

Fig. 4.9. (a) The 4, screw axis arrangement of leaves round a stem of pentstemon (after Walter
Crane); and (b) a 61 screw axis spiral (helical) staircase (from The Third Dimension in Chemistry
by A. F. Wells, Clarendon Press, Oxford, 1968).

6
—

(@) (b)

(a) (b)

Fig. 4.10. (a) A screw hexad (63) axis; and (b) location of these axes in the hcp structure. Notice that
they pass through the ‘unfilled channels’ between the atoms in this structure.

(which is also the optic axis) in either a 31 or a 3; screw orientation (see Figure 1.33(a),
Section 1.11.5). This gives rise to the two enantiomorphous crystal forms of quartz
(class 32, Fig. 4.11). The plane of polarization of plane-polarized light propagating
along the optic axis is rotated to right or left, the angle of rotation depending on the
wavelength of the light and the thickness of the crystal. This is not, to repeat, the same
phenomenon as birefringence; for the light travelling along the optic axis the crystal
exhibits (by definition) one refractive index. If the 3| or 3; helical arrangement of the
Si0; structural units in quartz is destroyed (e.g. if the crystal is melted and solidified as
a glass), the optical activity will also be destroyed.

However, in other crystals such as tartaric acid (Fig. 4.7) and its derivatives, the
optical activity arises from the asymmetry—the lack of a mirror plane or centre of
symmetry—of the molecule itself (Fig. 4.7(a)). In such cases the optical activity is not
destroyed if the crystal is melted or dissolved in a liquid. The left or right handedness of
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Fig. 4.11. The enantiomorphic (right- and left-handed) forms of quartz. The optic axis is in the
vertical (long) direction in each crystal (from F. C. Phillips, loc. cit).

the molecules, even though they are randomly orientated in a solution, is communicated
at least in part, to the plane-polarized light passing through it. Unlike quartz, in which
the optical activity depends on the direction of propagation of the light with respect to
the optic axis, the optical activity of a solution such as tartaric acid is unaffected by the
direction of propagation of the light. In summary, the optical activity of solutions arises
from the asymmetry of the molecule itself; the optical activity which is shown in crys-
tals, but not their solutions or melts, arises from the enantiomorphic screw symmetry of
the arrangement of molecules in the crystal.

4.6 Space groups

In Section 2.4 it is shown how the seventeen possible two-dimensional patterns or plane
groups (Fig. 2.6) can be described as a combination of the five plane lattices with the
appropriate point and translational symmetry elements. Similarly, in three dimensions,
it can be shown that there are 230 possible three-dimensional patterns or space groups,
which arise when the fourteen Bravais lattices are combined with the appropriate point
and translational symmetry elements. It is easy to see why there should be a substan-
tially larger number of space groups than plane groups. There are fourteen space lattices
compared with only five plane lattices, but more particularly there is a greater number
of combinations of point and translational symmetry elements in three dimensions, par-
ticularly the presence of inversion axes (point) and screw axes (translational) which do
not occur in two-dimensional patterns.

The first step in the derivation of 230 space groups was made by L. Sohncke* (who
also first introduced the notion of screw axes and glide planes described in Section 4.5).
Essentially, Sohncke relaxed the restriction in the definition of a Bravais lattice—that
the environment of each point is identical—by considering the possible arrays of points
which have identical environments when viewed from different directions, rather than
from the same direction as in the definition of a Bravais lattice. This is equivalent to
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combining the fourteen Bravais lattices with the appropriate translational symmetry
elements, and gives rise to a total of sixty-five space groups or Sohncke groups.

The second, final, step was to account for inversion axes of symmetry which gives
rise to a further 165 space groups. They were first worked out by Fedorov* in Moscow
in 1890 (who drew heavily on Sohncke’s work) and independently by Schonflies* in
Gottingen in 1891 and Barlow™ in London in 1894—an example of the frequently oc-
curring phenomenon in science of progress being made almost at the same time by
people approaching a problem entirely independently. (see Appendix 7)

The 230 space groups are systematically drawn and described in the International
lables for Crystallography Volume A, which is based upon the earlier International
Tables for X-ray Crystallography Vol. 1 compiled by N. F. M. Henry* and Kathleen
Lonsdale*—a work of great crystallographic scholarship. The space groups are arbitrar-
ily numbered 1 to 230, beginning with triclinic crystals of lowest symmetry and ending
with cubic crystals of highest symmetry. There are two space group symbols, one due
to Schonflies® used in spectroscopy and the other, which is now generally adopted in
crystallography, due to Hermann* and Mauguin.*

The Hermann—Mauguin space group symbol consists first of all of a letter P, I, F, R,
C, B or A which describes the Bravais lattice type (Fig. 3.1) (the alternatives C, B or A
being determined as to whether the unit cell axes are chosen such that the C, B or A faces
are centred); then a statement, rather like a point group symbol, of the essential (not all)
symmetry elements present. For example, the space group symbol Pba2 represents a
space group which has a primitive (P) Bravais lattice and whose point group is mm?2
(the a and b glide planes being simple mirror planes in point group symmetry). This
is one of the point groups of the orthorhombic system (Fig. 4.3) and the lattice type
is orthorhombic P. Similarly, space group P63/mmc has a primitive (P) (hexagonal)
Bravais lattice with point group symmetry 6/mmm.

The space group itself is represented by means of two diagrams or projections, one
showing the symmetry elements present and the other showing the operation of these
symmetry elements on an asymmetric ‘unit of pattern’ represented by the circular sym-
bol O and its mirror-image by (3): a circle with a comma inside. These symbols, which
may represent an asymmetric molecule, a group of molecules, or indeed any asymmet-
rical structural unit, correspond to the R and A of our two-dimensional patterns. The
choice of a circle to represent an asymmetric object might be thought to be inadequate—
surely a symbol such as R or, better still, a right hand would be more appropriate? In a
sense it would, but there would then arise a serious problem of typography, of clearly
and unambiguously representing the operation of all the symmetry elements in the pro-
jection. For example, in the case where a mirror plane lies in the plane of projection a
right hand (palm-down) would be mirrored by a left hand (palm-up)—and the problem
would be to represent clearly these two superimposed hands in a plan view. In the case
of a circle this situation is easily represented by () —a circle divided in the middle with
the mirror-image indicated in one half. Similarly, the use of a symbol such as R would

* Denotes biographical notes available in Appendix 3.
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lead to ambiguity. For example, a diad axis in the plane of projection would rotate an R
180° out of the plane of projection into an A—which would be indistinguishable from
an R reflected to an A in a mirror plane perpendicular to the plane of projection—i.e.
as for mirror-lines in the two-dimensional case. In the case of a circle there is no such
ambiguity; in the former case we have

2
o IO (diad axis in plane of paper—no change of hand of motif)

and 1n the latter case

m
Ve
0] ‘ O (mirror plane perpendicular to plane of paper—a change of hand of motif)

The representation of space groups and some, but not all of the associated crystallo-
graphic information, is best described by means of four examples Pba2 (No. 32), P2;/c
(No. 14), P63/mmc (No. 194) and P4122 (No. 92).

Figure 4.12, from the International Tables for X-ray Crystallography, shows space
group No. 32, Pba2 with the Hermann—Mauguin and Schoenflies symbols shown top
left and the point group and crystal system top right. The two diagrams are projections
in the x — y plane, the right-hand one shows the symmetry elements present—the diads
parallel to the z-axis at the corners, edges and centre of the unit cell and the a and b
glide planes shown as dashed lines in between. It would be perfectly possible to draw
the origin of the unit cell at an intersection of the glide planes—but to choose it, as
shown, at a diad axis is more convenient, hence the note ‘origin on 2’.

In the left-hand diagram the () is placed at (small) fractions, x, y, z of the cell edge
lengths away from the origin, the z parameter or ‘height’ being represented by a plus (+)
sign. This is called a ‘general equivalent position’ because the ) does not lie on any of
the symmetry elements present and the resulting pattern is known as the set of ‘general
equivalent positions’. The coordinates of these positions are listed below together with
the total number of them, 4, the ‘Wyckoff letter’, ¢ and the symbol 1 for a monad,
indicating the asymmetry of the O (and its glide plane image ().

If the pattern unit ) were to be placed not in a general position but in a ‘special
position’, on a diad axis in this example, then a simpler pattern results. The four asym-
metric pattern units ‘merge together’ to give two units with diad symmetry and these
are called ‘special equivalent positions’. There are in fact two possibilities, denoted
by the Wyckoff letters a and b and their co-ordinates are listed in the table on the
left. The Wyckoff letters are purely arbitrary, like the numbering of the space groups
themselves.

The table on the right lists the conditions (on the Laue indices /kl) limiting possible
reflections, those not meeting these conditions being known as systematic absences
in X-ray diffraction. These topics are covered in Chapter 9 and Appendix 6. Finally,
the ‘symmetry of special projections’ shows the plane groups corresponding to the
space group projected on different planes (just as in our projections of crystal struc-
tures in Chapter 2). For example, the projection on the (001) plane (which is that of the
diagrams) corresponds to plane groups pgg (or p2gg—see Fig. 2.6).
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Psb a 2 No. 32 Pba?2 mm?2  Orthorhombic
2v
+O +O &
O+ O+ v
®+
[ ]
o) [ ] ¢
+O +O Y
O+ O+
Origin on 2
Number of positions, Co-ordinates of equivalent positions Conditions limiting
Wyckoff notation, possible reflections
and point symmetry
General:
4 c 1 xyz XyzZ 3-X3tyz I+xi-yz hkl: No conditions
Okl: k=2n
h0l: h=2n
hk0: No conditions
h00: (h=2n)
0kO: (k=2n)

00/: No conditions

Special: as above, plus

2 b 2 03z 30z
hkl: h+k=2n
2 a 2 00z 313z
Symmetry of special projections
(001) pgg; a’'=a,b'=b (100) pm1; b'=b/2,c'=c (010) p1m; c'=c, a'=al2

Fig. 4.12. Space group Pba2 (No. 32) (from the International Tables for X-ray Crystallography).

Figure 4.13 is extracted from the entry for the most frequently occurring space group
No. 14 (P24/c) in the International Tables for Crystallography in which two choices
for the unique axis b or ¢ (parallel to the (screw) diad axes) and three choices of unit
cell are available. Figure 4.13(a) shows the usual choice of the b (or y-axis) parallel
to the (screw) diad axes as indicated by the monoclinic point group symbol 2/m (see
Section 4.3) and ‘cell choice 1°. The pattern of general equivalent positions is shown in
the lower right diagram and the symmetry elements (screw diads, centres of symmetry
and glide planes) are shown in three different projections. The centres of symmetry
are indicated by small circles, the glide planes by dashed or dotted lines depending as
to whether the glide direction is in, or perpendicular to, the plane of the diagram, and
similarly the screw diad axes normal to or in the plane of the projection are indicated by
¢ or single-headed arrow symbols respectively. Figure 4.13(b) shows the three possible
cell choices and the tables of the coordinates of the general and special equivalent
positions (with their Wyckoff letters running from bottom to top) and the reflection
conditions as before.
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@ P 21/C Cgh 2/m Monoclinic

No. 14 P12,/c1 Patterson symmetry P 12/m 1

UNIQUE AXIS b, CELL CHOICE 1

Orlgin at 1
Asymmetric unit 0=x=1; O=y=}, 0=z=1
Symmetric operations

(OR! (2) 2(0,5,0) 0,y,% (3)1 0,00 4)c x5,z

Fig. 4.13. (continued)

Figure 4.14 is extracted from the entry for space group P63/mmc, No. 194 in the
International Tables for X-ray Crystallography; this is the space group for the hcp
metals (Fig. 1.5(b)), A1B,, WC (Fig. 1.15) and wurtzite (Figs 1.26 and 1.36(b)). Notice
that there is a greater number of special equivalent positions (Wyckoff letters running
from a to k) than in the two lower-symmetry space groups we have just looked at and
that the coordinates of the pattern units are much reduced—from 24 for the general case
to 2 for positions with Wyckoff letters a, b, ¢, d. In hcp metals the A and B layer atoms
(Fig. 1.5(b)) are in the special equivalent positions denoted by Wyckoff letters ¢ and d.
Notice that if the origin of the unit cell is shifted so as to coincide with one of these
atoms then their coordinates become (000), (2/3 1/3 1/2) and (000), (1/32/31/2)
(see Exercise 1.6 and Section 9.2, Example 4). Finally, having studied Fig. 4.14 it is
a good test of your powers of observation to turn back to Fig. 4.10(b) and fill in all the
symmetry elements in addition to the 63 axes already indicated.
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() P 24/c Cgh 2/m Monoclinic

No. 14
UNIQUE AXIS b, DIFFERENT CELL CHOICES

SEANIEAN
INS 9
I NY R

P 124/c 1

UNIQUE AXIS b, CELL CHOICE 1

Orlgin at 1
Asymmetric unit 0=x=1; O=y=}, 0=z=1

Generators selected (1); t(1,0,0); t(0,1,0); t(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry
General:
4 e 1 (Mxyz @ xy+hz+; @B)xyz @) X,y +5.z +5 hol: 1=2n
0kO0: k = 2n
00/: /1=2n
Special: as above, plus
2 d 1 303 530 hki : k +1=2n
2 ¢ 1 00 010 hkl: k +1=2n
2 b1 304 b3 hki : k +1 = 2n
2 a1 000 0.5 hkl: k +/=2n

Fig. 4.13. Space group P2/c (No. 14) (from the International Tables for Crystallography), (a) unique
axis b, cell choice 1, (b) unique axis b, different cell choices.

Figure 4.15 is extracted from the entry for space group P41212 (No. 92) in the Inter-
national Tables for Crystallography, Volume A. This space group contains principally
41 (screw tetrad) axes of symmetry but no glide, mirror planes or inversion axes of
symmetry. It is enantiomorphous with space group P43212 (No. 96). In the left-hand
diagram two neighbouring cells are drawn to show clearly the operation of the 4
(right-handed) screw axes along the cell edges. To these two space groups belong the o
(low-temperature) form of cristobalite (see Section 1.11.5) in which the distortion from
the high temperature 8 (cubic) form gives rise to the enantiomorphous tetragonal forms.
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Pesmmc | o, P 65/m 2/m 2/c
4
D
I+ I+ 3+ I+
@@ Ogr @2 Jor

2

V. 2
iz 1@+ +@5-

Origin at centre Bm1)

Number of positions,
Wyckoff notation,
and point symmetry

Co-ordinates of equivalent positions

24 / 1 xy.z, Yx-y.z, y-xXXz, ¥.XzZ, XX=Y.Z, Y-X)Y.Z,
XV.Z, ViY-XZ, X-V.X.Z, Y.X.Z, XY-X.Z, X-Y.V.Z;
X V3+zZ,  V.y-Xi+zZ, X-Y.X3+Z;
XY.i-z, VX-yi-z, y-xXXi-z
Y. X3+Z,  Xy-Xi+z, xX-y.yi+z;
YX3-z, xXx-yi-z, y-xXyi-z

12 k m  X,2x,z, 2X,X,z, XXz, X,2X,Z, 2X,XZ, XXZ,
X,2X,3+2; 2X,X,1+Z XX, 3+Z;
X,2x,3-z; 2XX,i-z XX -z

Y-XXE VXE XXV YXYE

12 J m XY VXY
XY, X%, VX3 XXV.3  Xx-VJ3.

X. V.3 Y.yX3

12 i 2 x00; 0x0;, xXx0; x0% 0x3% XX35
x,0,0; 0,x0; xx0; X073 0X3% xx3.

6 h mm x.2x%; 2XX% XX+ X2%3 2X.X3  X.X3.

6 g 2m 300; 03,0, %30; %03 033 553

4 f 3m 13z 31z 433+z 143z

4 e 3m 0,0z 0,0z 003i+z; 0,031z

2 d 6m2 133 313
2 c 6m2 ';':%:211': 23.’13.'%
2 b 6m2 0,03 0,03

2 a 3m 0,00; 00,3

119

6/mmm Hexagonal

Conditions limiting
possible reflections

General:

hkil:_ No conditions
hh2hl: 1=2n
hhOl:  No conditions

Special: as above, plus

no extra conditions

hkil: 1=2n

no extra conditions

hkil: 1=2n

hkil: If h—-k=3n,
then /=2n

hkil: 1=2n

hkil: 1f h-k=3n,
then /=2n

hkil: 1=2n

Fig. 4.14. Space group P63/mmc (No. 194) (from the International Tables for X-ray Crystallography).
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P4,2:2 D 3 Tetragonal

No. 92 P4,2,2 Patterson symmetry P4/mmm
i- [ i- li 1 3 \
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‘2+ i+ l§ —’13
O _ [ \ /“
O . S N A S .
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X & X SN NN
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Origin on 2(110] at 2,1(1,2)
Asymmetric unit  0<x<1; 0<y<1; 0<z<4
Symmetry operations
(1 1 (2) 2(0,0,4) 0,0,z (3) 47(0,0,1) 0,4,z (4) 4:(0,0,9) 1,0,z
(5) 2(0,4,0) 4,y.4 (6) 2(4,0,0) x,4,3 (7y 2 x,x,0 ®) 2 x,x,}
Generators selected (1); 7(1,0,0); ¢(0,1,0); ¢(0,0,1); (2); @3); (5
Positions
%‘;‘c’i'ff??iiem, Coordinates Reflection conditions
Site symmetry
General:
8§ b 1 ()x,y.z (2) %,7,2+4 (3) yHixtdz+i (4) y+ig+i,z+1 00/:1=4
) Frhy+rizet (6 xilgenael () v ®) JrE H00: h=2n

Special: as above, plus

4 a .2 xx0 x5} x+tix+id x+ix+ii Okl: 1 =2n+1

or 2k+1=4n
Symmetry of special projections
Along [001] pagm Along [100] p2gg Along [110] p2gm
a=a b'=b a'=h b'=c a'=4(-a+b) b'=c
Origin at 0,4,z Origin at x,4,4 Origin at x,x,0

Fig. 4.15. Space group P412;2 (No. 92) (from the International Tables for Crystallography, Volume
A—vpartly redrawn and data relating to sub-groups omitted).

4.7 Bravais lattices, space groups and crystal structures

In the simple cubic, bce and ccp structures of the elements, the three cubic lattices
(Fig. 3.1) have exactly the same arrangement of lattice points as the atoms, i.e. in these
examples the motif is just one atom. In more complex crystals the motif consists of
more than one atom and, to determine the Bravais lattice of a crystal, it is necessary
first to identify the motif and then to identify the arrangement of the motifs. In crystals
consisting of two or more different types of atoms this procedure may be quite difficult,
but fortunately simple examples best illustrate the procedure and the principles involved.
For example, in NaCl (isomorphous with TiN; see Fig. 1.14(a)), the motif is one sodium
and one chlorine ion and the motifs are arranged in an fcc array. Hence the Bravais
lattice of NaCl and TiN is cubic F.
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In Li» O (isomorphous with TiH»; see Fig. 1.14(b)) the motif is one oxygen and two
lithium atoms; the motifs are arranged in an fcc array and the Bravais lattice of these
compounds is cubic F. In ZnS (isomorphous with TiH; see Fig. 1.14(c)) the motif is one
zinc and one sulphur atom; again, these are arranged in an fcc array and Bravais lattice
of these compounds is cubic F. All the crystal structures illustrated in Fig. 1.14 have the
cubic F Bravais lattice. They are called face-centred cubic structures not because the
arrangements of atoms are the same—clearly they are not—but because they all have
the cubic F lattice.

In CsC1 (Fig. 1.12(b)), the motif is one caesium and one chlorine ion; the motifs
are arranged in a simple cubic array and the Bravais lattice is cubic P. To be sure, the
arrangement of ions in CsCl (and compounds isomorphous with it) is such that there is
an ion or atom at the body-centre of the unit cell, but the Bravais lattice is not cubic 1
because the ions or atoms at the corners and centre of the unit cell are different. Nor,
for the same reason, should CsCl and compounds isomorphous with it be described as
having a body-centred cubic structure.

In the case of hexagonal structures the arrangements of lattice points in the hexagonal
P lattice (Fig. 3.1) corresponds to the arrangement of atoms in the simple hexagonal
structure (Fig. 1.5(a)) and not the hcp structure (Fig. 1.5(b)). In the simple hexagonal
structure the environment of all the atoms is identical and the motif is just one atom.
In the hcp structure the environment of the atoms in the A and B layers is different.
The motif is a pair of atoms, i.e. an A layer and a B layer atom per lattice point. The
environment of these pairs of atoms (as for the pairs of ions or atoms in the NaCl, or
CsCl or ZnS structures) is identical and they are arranged on a simple hexagonal lattice.
Notice that in these examples the motif is either asymmetric or has a mirror plane or
centre of symmetry. These are further instances of the situation which we found in
two-dimensional patterns (Section 2.5). It is the repetition of the motif by the lattice
which generates the crystal structures.

The space groups of the simple cubic bce and ccp structures of the elements are those
of maximum symmetry, namely Pm3m, Im3m and Fm3m, and in which the atoms are
all at the special positions 000 etc. Similarly, CsCl (Fig. 1.12(b)) and the cubic forms
of perovskite CaTiO3 (Fig. 1.17) or barium titanate BaTiO3, in which all the atoms
are in special positions, also belong to space group Pm3m. All these space groups or
structures have a centre of symmetry (at the origin) as indicated by the inversion triad
axis, 3, symbol.

In all the examples above, the (special) atom positions are fixed or ‘pinned down’
by the symmetry elements. For example, in the CaF; (fluorite) or LiO (antifluorite)
structures the space group, as with fcc metals, is of maximum symmetry Fm3m (point
group m3m) and the symmetry elements fix the positions of the atoms in their special
positions precisely as shown in Figs 1.16(c) and (d). For example, an atom or ion must
either be evenly bisected by a mirror plane or must be arranged in pairs equidistant
each side of it: it cannot occupy an ‘in between’ position because the mirror symmetry
would be violated. It is in crystals of lower symmetry that the positions of the atoms
are not completely fixed. The ‘classic’ example is the structure of iron pyrites, FeSa,
which at first glance might be thought to have the same structure as CaF,, the S atoms
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Fig. 4.16. A tetrahedral site in FeS, outlined within a cube. The Fe atoms are situated at four corners
of the cube, the other four corners are ‘empty’ (denoted by E). The S atom (starred) is shifted from the
centre of the tetrahedron/cube towards one of the four ‘empty’ corners as indicated by the arrow.

situated precisely at the centres of the tetrahedral sites co-ordinated by the Fe atoms.
But this is not so: the S atoms do not lie in the centres of the tetrahedra but are shifted
in a body-diagonal (triad axis) direction; in short, they lie in special positions in the
structure. The geometry, just for one S atom, is shown in Figure 4.16. Within the whole
unit cell the shifts of the S atoms are towards different ‘empty’ corners, preserving the
cubic symmetry but reducing the space group symmetry from Fm3m to Pa3 (point group
symmetry reduced from m3m to m3 (or 2/m3)).3

The ‘amount’ of shift of the S atoms in FeS,, a single parameter, was deduced by W.
L. Bragg in 1913 from the intensities of the X-ray reflections. It was the first structure
to be analysed in which the atom positions are not fixed by the symmetry and provided
Bragg, as he records long afterwards ‘with the greatest thrill’.* Today of course the
number of parameters required to be determined for the far more complex inorganic
and especially organic crystals runs into the thousands and constitutes the major task in
crystal structure determination.

Zinc blende, ZnS, and isomorphous structures such as TiH (Fig. 1.14(c)) and the
technologically important gallium arsenide, GaAs, have the cubic F' Bravais lattice,
the atoms are again in special positions but the structure does not have a centre of
symmetry; the space group in this case is F43m. This lack of a centre of symmetry,
which is the origin, or crystallographic basis of the important electrical and physical
properties in these structures, may be visualized with reference to Fig. 1.14(c). The
TiH, ZnS or GaAs atoms are arranged in pairs in the body-diagonal directions of the
cube (symbolized by (111)—see Section 5.2) and the sequence of the atoms is either,
e.g. %90 GaAs ®ee GaAs ®ee GaAs ®®e or the reverse, i.c. ®0® AsGa ®0® AsGa eee AsGa eee

3 See Appendix 1 for illustrative models of the five cubic point groups.
TW. L. Bragg The development of X-ray analysis, Proc. Roy. Soc. A262, 145 (1961).
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The body-diagonal directions are polar axes and the faces on he opposite sides of the
crystal are terminated either by Ga or by As atoms.

In silicon, germanium and the common (cubic) form of diamond (see Section 1.11.6),
the pattern of the atoms is the same as in ZnS or GaAs but of course all the atoms are of
the same type (see Fig. 1.36). The body-diagonal directions are no longer polar because
the sequence of pairs of atoms, e.g. ®®® SiSi eee SiSi eee SiSj eee _is obviously the same
either way. These structures are centro-symmetric, the centres of symmetry lying half-
way between the pairs of atoms.The space group in these cases is Fd3m, the d referring
to the special type of glide plane. Graphite and hcp metals, as mentioned above, belong
to space group P63/mmec, as does also wurtzite, the hexagonal form of ZnS (Fig. 1.26)
and the common crystal structure of ice (see Section 1.11.5) in which the oxygen atoms
lie in the same atomic positions as the carbon atoms in the hexagonal form of diamond
(Fig. 1.36(b)) and in which the H atoms are between (but not equidistant between)
neighbouring O atoms.

There are (Table 3.1) eleven enantiomorphous point groups (i.e. without a centre
or mirror plane of symmetry) and upon which are based the 65 space groups first de-
rived by L. Sohncke and in which there are eleven enantiomorphous pairs. We have
already noticed the enantiomorphous pair for a-cristobalite (P4;212 and P432,2) based
on the tetragonal point group 422. The others of particular interest are those for «-quartz
(P3121 and P3;,21) based on the trigonal point group 32 and for B-quartz (P6,22 and
P6422) based on the hexagonal point group 622.

Not all the 230 space groups are of equal importance; for many of them there are
no examples of real crystals at all. About 70% of the elements belong to the space
groups Fm3m, Im3m and Fd3m (all based on point group m3m), F43m (based on point
group 43m) and 63/mmc (based on point group 6/mmm). Over 60% of organic and inor-
ganic crystals belong to space groups P2;/c, C2/c, P2y, P1, Pbca and P2;2;2; and
of these space group P2;/c (based on point group 2/m, Fig. 4.12) is by far the commonest
(see Table 4.1, p. 125).

4.8 The crystal structures and space groups of organic
compounds

As mentioned in Section 1.10.1, the stability of inorganic molecules arises primarily
from the strong, directed, covalent bonds which bind the atoms together. In comparison,
the forces which bind organic molecules together are weak (in the liquid or solid states)
or virtually non-existent (as in the gaseous state). The strongest of the intermolecular
forces are hydrogen bonds, which link polar groups (as in water or ice, Section 1.11.5) or
hydroxyl groups as in sugars. Indeed, organic crystals in which hydrogen bonds domin-
ate are hard and rigid, like inorganic crystals. The remaining intermolecular forces are
short-range and are generally described as van der Waals bonds. Apart from residual
polarity, organic molecules are generally electrically neutral, and intermolecular ionic
bonds, such as occur between atoms or groups of atoms in ionic crystals, do not exist.
The crystal structures which occur (if they occur at all) are largely determined by the
ways in which the molecules pack together most efficiently: it is the ‘organic equivalent’
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of Robert Hooke’s packing together of ‘bullets’ described at the very beginning of
this book—except of course that organic molecules have far more complex shapes, or
envelopes, than simple spheres.

As described below, it is from such packing considerations that the space groups
of organic crystals can be predicted. However, it should be recognized at the outset
that the determination of the space group provides little information on the positions of
the atoms within the molecules themselves and which, particularly in macromolecules,
are nearly all in general positions. The importance of crystallization (apart from its
role in purification) lies in the fact that the structure of organic molecules may then be
investigated by X-ray diffraction techniques: the space group determines the geometry
of the pattern but it is the intensities of the X-ray reflections which ultimately determine
the atom positions (see Chapters 610 and Chapter 13).

However, there is a further desideratum. Organic molecules which constitute living
tissue—proteins, DNA, RNA—do not generally occur in vivo as crystals but are separ-
ated in an aqueous environment. The process of crystallization may not only reduce or
eliminate the aqueous environment but may also distort the molecules away from their
free-molecule geometry. An historically important example is the structure of DNA (see
Section 10.5). Only when the parallel-orientated strands of DNA are examined in the
wet or high-humidity condition (the B form) does the double-helical structure corres-
pond to that which occurs in vivo. In the low-humidity or ‘dry’ condition (the A form)
the repeat distance and conformation of the helices is changed—but at the same time
giving rise to much sharper diffraction patterns. FH.C. Crick realized that the trans-
formation was in effect displacive rather than reconstructive (see Section 1.11.5) and
that from the A form the double helical B form could be deduced.

4.8.1 The close packing of organic molecules

The first detailed analysis of the close (and closest) packing of organic molecules was
made by A.I Kitaigorodskii* who predicted the possible space groups arising from the
close packing of ‘molecules of arbitrary form’.> He proceeded on the principle that all
the molecules were in contact, none interpenetrated, but rather that the ‘protrusions’ of
one molecule fitted into the ‘recesses’ of a neighbouring molecule such that the amount
of empty space was the least possible. He found, in summary, that the deviations from
close-packing were small and that (as in the close-packing of spheres) a twelve-fold
coordination was the general rule. No assumptions were made as to the nature of the
intermolecular forces—the analysis is purely geometrical and must of course be modi-
fied when, for example, hydrogen bonding between molecules is taken into account.

The crystallographic interest of the analysis lies in its development from plane group
symmetry (Section 2.5) to layer-group symmetry (Section 2.8) and then to space-group
symmetry (Section 4.7). We shall follow these steps in outline (omitting the details of
the analysis).

* Denotes biographical notes available in Appendix 3.
SAT Kitaigorodskii Organic Chemical Crystallography, USSR Academy of Sciences, Moscow, 1955; Eng.
Trans (revised) Consultants Bureau Enterprises, New York, 1961.
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(b)

(o) (d)

Fig. 4.17. Close-packing of two-dimensional motifs of ‘arbitrary form’ in oblique and rectangular
unit cells. Motifs with point group symmetry 1 (a) and (b), 2 (c) and m (d) (from Organic Chemical
Crystallography by A.l. Kitaigorodskii, Consultants Bureau, New York, 1961).

For plane molecules (or motifs) of arbitrary form having point group symmetry 1, 2
or m (see Fig. 2.3) it turns out that the requirement of close or closest-packing limits
the plane groups to those with either oblique or rectangular unit cells (see Fig. 2.6).
Figure 4.17 shows four examples to illustrate the motifs of ‘arbitrary form’ and the
packing principles involved.

We now consider molecules or motifs which are three-dimensional, i.e. having ‘top’
and ‘bottom’ faces (as represented in Section 2.8, Fig. 2.15 by black and white R’s).

As in the two-dimensional case, such motifs can only be arranged with a minimum
of empty space in layers in which the unit cells are oblique (total 7) or rectangular (total
41), i.e. a total of 48 out of the 80 possible layer symmetry groups (see Section 2.8).
However, there are further restrictions. Layer symmetry groups with horizontal mirror
planes are unsuitable for the close packing of such motifs since such planes would
double the layers and cause protrusions to fall on protrusions and recesses on recesses.
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Similarly, horizontal glide planes parallel to, or mirror planes perpendicular to, the axes
of rectangular cells lead to four-fold, not six-fold coordination in the plane. Taking all
these restrictions into account we are left with only ten layer symmetry groups which
allow six-fold coordination close packing within the plane. These ten groups are shown
in Fig. 4.18 where the black and white triangles indicate the ‘top’ and ‘bottom’ faces of
the ‘molecules of arbitrary form’.

Now we need to stack these layers upon each other to create a close-packed structure.
Four of these layers are polar—the molecules all face the same way (all black triangles,
Fig. 4.18 (a), (d), (f), (1)), represented diagrammatically in Fig. 4.19(a). The rest are
non-polar, (Fig. 4.19(b)) and clearly only these non-polar layers can in principle give
rise to close packing. Further, the presence of diad axes normal to the layers prohibit
the close-packing of arbitrary shapes which just leaves us with layer-symmetry groups
b, c, g and h (Fig. 4.18). Finally Kitaigorodskii concludes that close-packing can be
achieved with molecules with monad symmetry (1) or a centre of symmetry (1) but that
for molecules with diad (2) or a single mirror plane (m) symmetry there is a reduction
in full packing density; such structures he called ‘limitingly close packed’.” Finally, he
established those space groups which he termed ‘permissible’. The space groups thus
derived are listed in Table 4.1.

It is of interest to compare these predicted space groups with those of the molecu-
lar solids listed in the Cambridge Structural Database which (in 2009) had a total
of 460,000 entries. Of this number, eight space groups account for 84% of all the
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Fig. 4.18. Representation of the ten-layer symmetry groups allowing coordination close packing of
three-dimensional motifs in a plane. Single-headed arrows indicate in-plane screw diads, dashed lines
indicate vertical glide planes (from Macromolecular Physics, Volume 1, by B. Wunderlich, Academic
Press, New York and London, 1973).
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(a)

(b)

Fig. 4.19. Representation using a cone as a motif of the packing of (a) polar and (b) non-polar layers
(from Macromolecular Physics, Volume 1, by B. Wunderlich, Academic Press, New York and London,
1973).

Table 4.1 Space groups for closest, limitingly and permissible close packing.

Motif symmetry  Closest packed Limitingly close Permissible
packed
1 P1,P2,,P2,/c,Pca2;, None P1, C., C2, P2;2,2,
Pna2q, P21212; Pbca
1 PI, P2{/c,C2/c, Pbca None Pccen
2 None C2/c, P21212, Pbcn C2, Aba2
m None Pmc2q, Cmc2y, Pnma Cpn, P2{/m, Pmn2q,

Abm?2, Ima2, Pbcm

entries, viz. P21/c (36%), P1 (17.6%), P21212; (10.2%), C2/c (1.0%), P2 (5.7%),
Pbca (4.1%), Pnma (1.7%) and Pna2; (1.7%). All these space groups are included
in Table 4.1—a remarkable predictive achievement when one considers how little
chemistry was involved!

4.8.2 Long-chain polymer molecules

The crystal structures and space groups formed by long-chain polymer molecules are
also in accord with the principles outlined above.

In the case of atactic polymers (i.e. those in which the side-groups are large and/or
randomly distributed along the chain), crystal structures rarely occur—the side-groups
keep the chains well apart—hence the name atactic. Crystal structures only occur in
tactic polymers in which the side-groups are regularly distributed on one side of the
chain (isotactic) or alternatively each side (syndiotactic). We shall consider just two
polymers—polyethylene (polythene) and isotactic polypropylene (polypropene).
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(a)

12

Fig. 4.20. Projections of polymer unit cells perpendicular to the chain axes. (a) Polyethylene, space
group Pnam, the centres of the carbon and hydrogen atoms in the planar zig-zag chains are shown
by black and open circles respectively; the envelopes of the molecules show clearly the close packing
(from Macromolecular Physics, Volume 1, by B. Wunderlich, Academic Press, New York and London,
1973). (b) Isotactic polypropylene, space group P 21/c; the senses of the helices are indicated by the O
and O symbols (from Structure and properties of isotactic polypropylene by G. Natta and P. Corradini,
Nuovo Cimento, Suppl. to Vol 15 1, 40, 1960).
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Polyethylene n(CH») is the simplest polymer, made up of a planar zig-zag chain of
carbon atoms, each carbon tetrahedrally coordinated to two hydrogen atoms. Two crys-
tal structures occur, polyethylene I (orthorhombic, space group Pram—equivalent to
Pnma by change of axes) and polyethylene II (monoclinic, space group C2/m). Poly-
ethylene I is the common, stable form and the arrangement of the chains in the unit cell
is shown in Fig. 4.20(a). The zig-zag planes of the chains are at 45° to the unit cell
axes and are so arranged that the protrusions of one chain fit into the ‘hollow’ or recess
formed by three neighbouring chains as is also shown in Fig. 4.20(a) by the outlines or
the envelopes of the molecules. Screw diad axes of symmetry run in the directions of all
three axes in the unit cell—principally along and through the centres of the chains.

In polypropylene (polypropene), n(CH2-CHCH3), the CHj3 side-groups approach too
closely for the backbone to remain planar and their efficient packing results in the back-
bone being twisted into a helical conformation, both right and left handed. In isotactic
polypropylene the crystal structure is monoclinic and the space group is P 2 /c—the
commonest space group of all. Figure 4.20(b) shows a projection of the unit cell per-
pendicular to the chain axes. The packing together of the helices is dictated by the
intermeshing of the CH3 side-groups and this occurs most efficiently when the rows of
helices along the c-axis are alternatively right and left handed as shown in Fig. 4.20(b).
The packing is, in fact, very close to hexagonal, like a bundle of pencils, and an hex-
agonal unit cell may also occur. (Figure 10.11(b) shows a fibre photograph of isotactic
polypropylene and Exercise 10.4 shows how the orientation of the chains in the unit cell
may be determined.)

4.9 Quasicrystals (quasiperiodic crystals or crystalloids)

The 230 space groups represent all the possible combinations of symmetry elements,
and therefore all the possible patterns which may be built up by the repetition, with-
out any limit, of the structural units of atoms and molecules which constitute crystals.
But real crystals are finite and the atoms or molecules at their surfaces obviously do
not have the same environment as those inside. Moreover, crystals nucleate and grow
not according to geometrical rules as such but according to the local requirements of
atomic and molecular packing, chemical bonding and so on. The resulting repeating
pattern or space group is the usual consequence of such requirements, but it is not a
necessary one. We will now consider some such cases where ‘crystals’ nucleate and
grow such that the resulting pattern of atoms or molecules is non periodic and does not
conform to any of the 230 space groups—in short the three-dimensional analogy to the
non-periodic patterns and tilings discussed in Section 2.9. But first we need to adopt a
new name for such structures and, following Shechtman® can call them quasiperiodic
crystals or materials, or following Mackay’ call them crystalloids or simply, call them
quasicrystals.

6 D. Shechtman, 1. Blech, D. Gratias, and J.W. Cahn (1984) Metallic phase with long-range orientational
order and no translational symmetry. Phys. Rev. Lett. 53, p. 1951.
TAL. Mackay (1976) De nive quinquangula, Phys. Bull. p. 495.
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(a) (b) (©

Fig. 4.21. (a) The close packing of 12 spheres around a central sphere as in the ccp structure. The solid
is a cubeoctahedron; note that the spheres are not evenly distributed round the central sphere, some of
the interstices are square, some triangular, (b) The twelve spheres shifted to obtain an even distribution;
note that the spheres are surrounded by, but not in contact with, five others. (c) The spheres brought
together such that they are now in contact; the central sphere is now ~10% smaller. The solid now has
the 20 triangular faces of an icosahedron (see also note on pp. 129-30).

We will start ‘where we began’ in Section 1.1 of this book by model-building
with equal size closely packed spheres. In the ccp structure, as we have seen, each
sphere is surrounded or coordinated by 12 others as shown in Fig. 4.21(a). The poly-
hedron formed around the central sphere is a cubeoctahedron. It is one of the thirteen
semi-regular or Archimedean solids (see Sections 3.4 and Appendix 2). However, even
though all the spheres are close-packed, they are not all evenly distributed around
the central sphere the interstices between them are different: some ‘square’, some
‘triangular’.

Now, we can shift the spheres around the central sphere to obtain an even distribution
and as we see (Fig. 4.21(b)), this occurs when each sphere is surrounded by (but not
now touching) five others and with ‘open’ triangular interstices between them. (This
operation is best carried out by making the central sphere out of soft modelling clay
and using pegs sticking from the spheres into the clay to keep them in place.) Finally,
we can squeeze the whole model (i.e. compress the central sphere) in our cupped hands
to bring all the spheres into contact and make a close-packed shell of 12 spheres as
shown in Fig. 4.21(c). We have created icosahedral packing because the solid has the
20 triangular faces of an icosahedron. The central sphere or interstice now has a radius
some 10% smaller than the 12 surrounding spheres.

The icosahedron can be extended by adding a second icosahedral shell of 42 atoms,
twice the size of the first, then a third shell of 92 atoms, as shown in Fig. 4.22. The
atoms in the surfaces of the 20 triangular faces are clearly close-packed but they are
not close-packed with the atoms in the underlying shells. As further shells are added,
Mackay shows that the packing density converges to 0.688—a value only a little greater
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than the packing density for a (monoatomic) bcc structure (see Section 2.9)—which is
often the high temperature structure of metals and alloys.

Mackay® also shows that the structure of quasicrystals may be understood by an ex-
tension of Penrose tiling from two to three dimensions (see Section 2.9), using obtuse
and acute thombohedra (instead of ‘wide’ and ‘narrow’ rhombs) and corresponding
matching rules. Again, the Golden Ratio occurs as the limit of the ratio of the oc-
currence of these two types of rhombohedra. Icosahedral packing is not the densest
packing (cubeoctahedral packing is the densest—packing density 0.7405—see Sec-
tion 1.4), nor is it crystallographic packing—the non-repeating pattern of the shells
of spheres constitutes a crystalloid with point group symmetry 235 indicating the pres-
ence of 30 two-fold, 20 three-fold and 12 five-fold axes of symmetry. It is, however, an
extremely stable structure (the spheres naturally ‘lock’ together during the squeezing
operation) and it is the basis of Buckminster Fuller’s construction of geodesic domes
(Section 1.11.6) as well as being characteristic of many virus structures (e.g. the polio
virus) which makes them so indestructible.

Icosahedral structures also occur in several metallic alloys, in particular those
based on aluminium with copper, iron, ruthenium, manganese, etc. These quasicrys-
tals were first recognized in an Al-25wt% Mn(AlgMn) alloy by Dan Shechtman (see
Section 11.4.3) from the ten-fold symmetry of their electron diffraction patterns (i.e.
five-fold symmetry) plus a centre of symmetry resulting from diffraction—Friedel’s

Fig. 4.22. Icosahedral packing of spheres showing close-packing on each of the 20 triangular faces
(from ‘A dense non-crystallographic packing of equal spheres’, by A. L. Mackay (1962), Acta. Cryst.
15, 916).

8AL. Mackay (1982) Crystallography and the Penrose Pattern, Physica 114A.
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Fig. 4.23. A quasicrystal of a 63% Al, 25% Cu-11% Fe alloy showing pentagonal dodecahedral
faces (from ‘A stable quasicrystal in Al-Cu-Fe system’ by An-Pang Tsai, Akihisa Inoue and Tsuyoshi
Masumoto, Jap. J. Appl. Phys. 26, 1505, 1987).

law—see Section 9.2). Many such quasicrystals, formed by rapid solidification from the
melt, are metastable and revert to crystalline structures on heating, but stable quasicrys-
tals as large as a few millimetres in size have been prepared. Figure 4.23 is a scanning
electron micrograph of a 63% Al-25% Cu-11% Fe alloy quasicrystal showing the exist-
ence of beautiful pentagonal dodecahedral faces. The pentagonal arrangement of atoms
in such a face can be revealed by scanning tunnelling microscopy of carefully prepared
surfaces and Fig. 4.24 shows such a (Fourier filtered) image of the quasicrystalline alloy
A170 Pd21 Mn9.

Icosahedral shells of atoms may also occur as the motif within crystal structures. For
example, the alloy MoAlj, consists of Mo atoms surrounded by icosahedral shells of
12 Al atoms, the icosahedra themselves being packed together in a bece array. Similarly,
the so-called complex alloy Frank—Caspar phases (with 162 atoms per unit cell) consist
of clusters of atoms of icosahedral shape (or parts of icosahedra) which are assembled
to form a periodic lattice.

Icosahedral groups of molecules also occur in a number of gas hydrates which can be
crystallized in the form of highly hydrated solids, called clathrates. For example, chlor-
ine hydrate, ClonH,O, has a body-centred cubic structure at the centre and corners of
which the water molecules are arranged at the corners of pentagonal dodecahedra—an
arrangement analogous to dodecahedrene (see Section 1.11.6). Further water molecules
occupy the interstices between four such dodecahedra and the chlorine molecules are
‘imprisoned’ within this framework—hence the name clathrate, meaning latticed or
screened.
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Fig. 4.24. Image (10nm x 10 nm) of a surface of the alloy Al;g Pd2; Mng showing the five-fold ‘dark
star’ quasiperiodic pattern. (Photograph by courtesy of Prof. Ronan McGrath, University of Liverpool.)

It was the known existence of such phases which led some crystallographers, Linus
Pauling in particular, to question the existence of quasicrystals. The arguments are com-
plex but may be (partly) understood by the tetrahedron models shown in Fig. Al.4
(Appendix 1): a multiply twinned crystal may exhibit a symmetry very close to that of
(true) pentagonal symmetry.

Quasicrystallography has an important role in the new science of nanomaterials.
As particle size decreases, surface energy terms increasingly dominate and determine
the relative stability of different crystal/quasicrystal structures. For example, W, Mo,
and Nb, which are all bcc in the bulk, have fcc or hcp structures at particle sizes
5~10 nm. All particles assume polyhedral shapes and small (<5 nm) clusters may be
quasicrystalline.

A note on the transformation from crystallographic to quasiperiodic
atom packing

The transformation from the cubeoctahedron to the icosahedron (Fig 4.21 and the front
cover illustration of this book) may be described in another way. In cubic close-packing
the ‘middle’ ring of six atoms is planar with a group of three close-packed atoms above
and three below. In icosahedral packing the corresponding ring of six atoms is puckered
(resulting in a ~10% smaller central cavity) with again three close-packed atoms above
and three below. Hence, the transformation may proceed by such small displacive atom
movements.
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Exercises

4.1 Draw the space group Pba2 with the pattern unit O) at the following positions:
(a) on the b glide plane, i.e. at (%{y%);

(b) at the intersections of the a and b glide planes, i.e. at (}1 %z’ );

(c) on a diad axis through the origin, i.e. at (00z');

(d) on a diad axis through the mid-points of the cell edges, i.e. at <%Oz/ )
Hence, show that only (c) and (d) constitute special positions.

4.2 Make and examine the crystal models of NaCl, CsCl, diamond, ZnS (sphalerite), ZnS
(wurtzite), LipO or CaF, (fluorite), CaTiO3 (perovskite). Identify the Bravais lattice and
describe the motif of each structure.

4.3 Figure 1.33 shows the pattern of silicon atoms in one enantiomorphous form of a-quartz
(trigonal) and the corresponding form in B-quartz. Identify the space groups of these two
forms and describe the structural relationships between them.



