
1

MATLAB
An Introduction

2 0 1 5 B R A Z I L S T U D Y A B R O A D P R O G R A M

T E X A S A & M U N I V E R S I T Y - U N I V E R S I T Y O F S A O PA U L O

E L M E R A L E X I S G A M B O A P E Ñ A LO Z A

R O D O L P H O V I L E L A A LV E S N E V E S

R A FA E L F E R N A N D O Q U I R I N O M A G O S S I

M I C H E L B E S S A N I

D E PA R TA M E N TO D E E N G E N H A R I A E L É T R I C A U S P - S Ã O C A R L O S

2 0 1 5

Why Matlab?

 Friendly environment

 Simple programming language

 Lots of tools

 Can be applied in several areas of knowledge

2

3

First steps
 Interface

4

First steps

 >> a = 1+1

 >> b = [1, 1, 2, 3, 5, 8, 13, 21]

 >> x = a+b

 x =
 3, 3, 4, 5, 7, 10, 15, 23

 Programming language

5

First steps

 Matlab’s tools

- Vectors and matrices

- Plotting and graphics

- Symbolic calculus

- Differential equations

- Transforms

- Model fitting

- Simulink

- A lot of other tools…

6

Hands on!

 Try calculating those math operations:

7

Hands on!

 Find the volume of a beer can (consider the can as a cylinder):

 The volume of a beer can be calculated by:

 r = 3 cm

 h = 12.5 cm

8

Hands on!

 >> r = 3;

 >> h = 12.5;

 >> V = pi*3^2*12.5

 V =
 353.4292

9

Other operators

 Natural logarithm

 >> log(a);

 Base ten log

 >> log10(a);

 Exponential:

 >> exp(a);

 Trigonometric functions

 >> cos(pi);

 >> sin(pi);

 >> tan(pi);

 >> acos(pi);

 >> asin(pi);

 >> atan(pi);

 Complex numbers

 >> y = 5i;

 >> z = 1+3*i;

 >> w = 3j;

10

Script file

 Using script files, it’s possible to save the work for
later use or for recording data

 It’s very useful when there is a long sequence of
operations

 Let’s create a script file:

◦ File -> New -> Script

◦ Or click on the New file icon on the toolbar at the
top of the screen

11

Script file

 Type in the script file:

 % Example 1: Using script file

 x = [1,2,3,4];

 y = exp(x)

Save the file as example1.m

12

Script file

 At the command window, type:

 >> example1

13

Vector and Matrices

 When you work with data, you need to handle them sometimes.

 Vectors are one-dimensional arrays.

>> a = [1, 2, 3]
a =

1 2 3

>> a = [1; 2; 3]
a =

1

2

3

>> a’
=

1 2 3

14

Vector and Matrices

Matlab allows you to append vectors together to create new ones.

Let u and v be two column vectors m and n respectively.

What happens if I type:

 >> w = [u; v]

15

Vector and Matrices

The same works for row vectors as well

>> w = [u; v];

>> size(w)

ans =

 m+n

16

Vector and Matrices

It is possible to create uniformly spaced vector using colons:

 >> t = [0:10]

 t =

 0 1 2 3 4 5 6 7 8 9 10

17

Vector and Matrices

You can also change the step size of the vector using the syntax:

 >> t = [0:2:10]

 t =

 0 2 4 6 8 10

18

Hands on!

Using a script file, try to create a time vector t from 0 to 10
using 1 as step size. Then, create a vector y = 1-exp(-t).

After that, create an vector t2 from 0 to 10 using 0.1 as step
size and a vector y2 = 1-exp(-t2).

19

Hands on!

First, the vector t:

 >> t = [0:10];

Then, the vector y:

 >> y = 1-exp(-t);

The vector t2 and y2:

 >> t2 = [0:0.1:10]; y = 1-exp(-t2);

20

Hands on! (Plus)

Using the command plot, try to plot txy and t2xy2 in the same figure.

 Tips:

 The syntax for plot is plot(a,b).

 a and b must be the same length.

 You can plot more than one couple using the syntax (a,b,c,d).

21

There are several commands to get information from vectors.

Some examples are:

Extracting information of the vectors

>> f = [1 4 -6 3 7 9 -2 6 3 -7…
4 9 19];

>> length(f)

ans =

 13

>> max(f)

ans =

 19

>> min(f)

ans =

 -7

22

Extracting information of the vectors

First of all, we need the dot product of the vector v.

Let’s define v = [4 6 9].

The array product of v is given by:

 >> v.*v

 ans =

 16 36 81

23

Extracting information of the vectors

Then, we need to sum the dot product of the vector v:

>> a = sum(v.*v)

a =

 133

The magnitude of v is the square root of a.

>> mag = sqrt(a)

mag =

 11.5325

24

A matrix is a two-dimensional array of numbers. To create a matrix
in Matlab, we enter each row as a sequence of comma (or space),
and then use semicolons to mark the end of each row.

For example:

>> A = [1, 4; 5 2]

A =

 1 4

 5 2

Operation with matrices

>>2*A

ans =

 2 8

 10 4

25

Operation with matrices

If two matrices have the same size, we can add or subtract them:

>> B = [1 3; -1 -4];

>> A+B

ans =

 2 7

 4 -2

26

Operation with matrices

We can also compute the transpose of a matrix. The transpose
operation switch the rows and columns in a matrix.

>> A’

ans =

 1 5

 4 2

27

Operation with matrices

If the matrix contains complex elements, the transpose will
compute the conjugates:

>> C = [1+i, 4-i; 5+2i, 3-3i]

C =

 1+1i 4-I

 5+2i 3-3i

>> C’

ans =

 1-1i 5-2i

 4+i 3+3i

28

Operation with matrices

If you want to compute the transpose of a matrix with complex
elements without computing the conjugate, you use (.’):

>> C.’

ans =

 1+1i 5+2i

 4-i 3-3i

29

Operation with matrices

The array multiplication works with matrix as well. It is important
to recognize that this is not matrix multiplication.

>> A = [1, 4; 5 2]; B = [1 3; -1 -4];

>> A.*B

ans =

 1 12

 -5 -8

30

Let’s consider two matrices:

>> C = [2, 1; 1, 2]; D = [3, 4; 5, 6];

The multiplication between them will be:

>> C*D

ans =

 11 14

 13 16

Matrix multiplication

31

The identify matrix is a square matrix that has ones along the diagonal
and zeros elsewhere. To create a n-order identify matrix, type:

>> eye(n);

>> eye(2)

ans =

 1 0

 0 1

Special matrix types

32

Special matrix types

To create a matrix of zeros, type:

>> zeros(n) % n-order matrix of zeros

>> zeros(m,n) % mxn matrix of zeros

To create a matrix of ones, type ones(n) or ones(m,n).

33

Individuals elements and columns in a matrix can be referenced using
Matlab. Consider the matrix:

>> A = [1 2 3; 4 5 6; 7 8 9]

A =

 1 2 3

 4 5 6

 7 8 9

Referencing matrix elements

34

Referencing matrix elements

We can pick out the element at row position m and column position
n by typing A(m,n).

For example:

>> A(2,3)

ans =

 6

35

Referencing matrix elements

To reference all elements in the ith column, we write A(:,i).

>> A(:,2)

ans =

 2

 5

 8

36

Referencing matrix elements

To pick out the elements in the ith through jth column, we type A(:,i:j).

>> A(:,2:3)

ans =

 2 3

 5 6

 8 9

37

Referencing matrix elements

We can pick out pieces or sub matrices as well.

>> A(2:3,1:2)

ans =

 4 5

 7 8

38

Referencing matrix elements

We can change the value of matrix elements using these
references as well.

>> A(1,1) = -8

ans =

 -8 2 3

 4 5 6

 7 8 9

39

Three-Dimensional Plots

40

Hands on!

example, if the coordinates x, y, and z are given as a function of
the parameter
t by: x = √t *sin(2*t)

y = √ t* cos(2*t)
z = 0.5*t

For 0 ≤ t ≤ 6*π

Using the command plot3, try to plot tx(x,y,z) in the same
figure.

41

Hands on!

t=0:0.1:6*pi;
x=sqrt(t).*sin(2*t);
y=sqrt(t).*cos(2*t);
z=0.5*t;
plot3(x,y,z,'k','linewidth',1)
grid on
xlabel('x'); ylabel('y'); zlabel('z')

42

Determinants and Linear Systems

To calculate the determinant of a matrix A in Matlab, simply write
det(A).

>> A = [1 3; 4 5]; det(A)
ans =
-7

For example:

43

Determinants and Linear Systems

Consider the following set of equations:

5𝑥+2𝑦−9𝑧=44
−9𝑥−2𝑦+2𝑧=11
6𝑥+7𝑦+3𝑧=44

To find a solution to a system of equations like this, we can use
two steps.

44

Determinants and Linear Systems

First, we find the determinant of the coefficient matrix A:

>> A = [5 2 -9; -9 -3 2; 6 7 3]; det(A)
ans =
368

376

239

925

A

When the determinant is nonzero, a solution exists. This solution
is the column vector:

z

y

x

X

45

Determinants and Linear Systems

Matlab allows us to generate the solution readily using left
division. First we need create a column of the numbers on right-
hand side of the system. We find:

>> b = [44; 11; 5];
>> A\b
ans =
[-5.1250 7.6902 -6.0272]’

46

Determinants and Linear Systems

Another way to solve linear system problems is check the rank of
the system. Let’s consider the linear system of equations with m
equations and n unknowns:

𝐀𝐱=𝐛

The augmented matrix is formed by concatenating the vector b
onto the matrix A.

[𝐀 𝐛]

47

Determinants and Linear Systems

The system has a solution if and if only rank(A) = rank([A b]). If the
rank is equal to n, then the system has a unique solution.

If rank(A) = rank([A b]) but the rank < n, there are infinite number
of solutions. If we denote the rank by r, then r of the unknown
variables can be expressed as linear combination of n-r the other
variables.

48

Determinants and Linear Systems

To compute the rank of a matrix, you can use the Matlab
command rank(A), for example.
>> rank(A);

49

Hands on!

Let’s consider the linear system

𝑥−2𝑦+𝑧=12
3𝑥+4𝑦+5𝑧=20
−2𝑥+𝑦+7𝑧=11

Find the solution using the Matlab command rank and the
left division.

50

Inverse and pseudoinverse of a matrix

Matlab has commands to compute the inverse and
pseudoinverseof a matrix. The syntax is:

>> A = [1, 2; 3, 4];
>> inv(A); %For inverse of the matrix A
>> pinv(A); %For the pseudoinverse of
the matrix A

51

Decomposition of a matrix

Matlab can computes the LU decomposition of a matrix using the
command lu.

>> A = [1 2 3; 3 2 1; 7 5 11]; b = [4; 2; -1];

>> [L,U] = lu(A);

U =
7.0000 5.0000 11.0000
0 1.2857 1.4286
0 0 -3.555659

L =
0.1429 1.0000 0
0.4286 -0.1111
1.0000
1.0000 0 0

52

Decomposition of a matrix

Matlab can computes the LU decomposition of a matrix using the
command lu.

>> A = [1 2 3; 3 2 1; 7 5 11]; b = [4; 2; -1];

>> [L,U] = lu(A);

U =
 7.0000 5.0000 11.0000
 0 1.2857 1.4286
 0 0 -3.5556

L =
 0.1429 1.0000 0
 0.4286 -0.1111 1.0000
 1.0000 0 0

53

Decomposition of a matrix

To solve the linear system, you need to solve the equation:

𝑥=𝑈\(𝐿\b)

>> x = U\(L\b)
x =
-1.8125
4.1250
-0.8125

54

Checkpoint

Let´s put our hands on practical programming things.
Go to EESC Moodle’s website and download the file Checkpoint
1.pdf

55

[1] Matlab Product Help.

[2] Matlab Demystified. A Self-Teaching Guide, David McMahon, McGraw Hill.

[3] Matlab: An Introduction with Applications, Amos Gilat, Fourth Edition,
 JOHN WILEY & SONS.

References

